)

Check for
updates

Ping-Pong Tests on Distributed Processes
Using Java Bindings of Open-MPI
and Java Sockets with Applications

to Distributed Database Performance

Mehmet Can Boysan(®)

Institute of Computer Science, J. Liivi 2, 50409 Tartu, Estonia
mehmet.can.boysan@ut.ee

Abstract. The use of distributed database solutions is becoming more
widespread due to their higher performance and storage capabilities com-
pared to relational databases. Since these systems rely heavily on inter-
process communications, an investigation on the effect of network latency
is needed. In this paper, we examine the Java bindings of Open-MPI
library running on InfiniBand and TCP/IP stack and the Java Socket
API for TCP/IP communications with a simple ping-pong test with anal-
ysis of latency on performance of distributed in-memory key-value stores
that operate in single data centers.

Keywords: Distributed databases - Network latency - Ethernet
InfiniBand - Java sockets + TCP - MPI - Java

1 Introduction

Distributed in-memory key-value stores are becoming more widespread to be
used as the preferred caching solutions because of their superior performance
and higher scalability compared to relational databases. However, the distributed
nature of such systems require intensive inter-process communication to be able
to provide acceptable levels of consistency, availability and fault-tolerance. One
way to achieve these properties is by using consensus protocols to decide on the
valid state of the system. This requires a lot of message passing between the
processes. Therefore, measuring the communication latency is important.

In this paper, the Java bindings of the Open-MPI library and Java Sockets
have been used to develop a program that can send Ping-Pong messages between
the processes to compare communication latencies on InfiniBand and 10 Gb Eth-
ernet interconnects. The motivation behind this study is to provide some results
for communities that seek high performance and specifically want to use Java as
implementation language.

The paper is structured as follows. First, a background and an analysis of the
existing literature is given in Sect. 2. In the next Section, the testing environment
and the methodology used for latency evaluation is described. The collected
results are analyzed in Sect.4 and the report is finalized with a conclusion.

© Springer Nature Switzerland AG 2018
A. Lupeikiene et al. (Eds.): DB&IS 2018, CCIS 838, pp. 134-141, 2018.
https://doi.org/10.1007/978-3-319-97571-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97571-9_12&domain=pdf
http://orcid.org/0000-0001-6087-4242

Ping-Pong Tests Using Java Bindings of Open-MPI and Java Sockets 135

2 Background and Literature Review

NoSQL databases is being preferred instead of the relational databases since they
can be deployed in a distributed fashion which allows them to scale horizontally
when more power and performance is needed. One possibility is to use such
systems as distributed in-memory key-value stores that are able to serve as
high performing caching solutions. Some popular examples for such systems are
Apache Ignite [5] and Hazelcast [1].

When such systems are deployed in a distributed manner however, they need
ways to provide high availability, consistency and fault tolerance. Brewer’s the-
orem on the other hand suggests that achieving them in case of a system failure
is impossible [10]. Therefore, most of these systems apply some known consensus
protocols like two/three phase commit (2/3PC) [12,18], Paxos [15] and Raft [17].
The problem with this approach is that many messages of relatively small sizes
need to be passed between the connected processes in order to reach an agree-
ment on the valid state of the overall system. On slow networks, as the number of
processes increase, the overall performance would be negatively affected because
of the added overhead of these message transmissions.

In order to mitigate such a performance degradation, different interconnects
such as InfiniBand can be chosen instead of 10 Gigabit+ Ethernet. There have
been some studies conducted such as [11,13] that compare these technologies
by doing point-to-point communication benchmarks which show that Infini-
Band outperforms 10 Gigabit Ethernet in terms of communication latency in
the tested High Performance Computing (HPC) environments. As for the inter-
process communications, any parallel communication library or language such
as PCJ [16] or Titanium [20] can be chosen, but we prefer to stick with the well-
established Message Passing Interface (MPI) [2] as the message passing solution.

Today, large vendors like Amazon provide highly scalable cloud infrastruc-
tures that use 10 Gb+ Ethernet instead of InfiniBand interconnect which do not
provide better performance than a typical mid-range Linux cluster [14]. In some
cases, setting up an in-house cluster might not be feasible, hence, sticking to a
plan offered by such vendors might still be the preferred way for the businesses
to fulfill their requirements. This means that such systems need to rely on the
10 Gb+ Ethernet interconnect which might prevent the system from reaching its
full potential.

Another point in this discussion is that the distributed database solutions
that use Java as their implementation language might not take full advantages
of the native C implementations of the MPI communication standard. We have
identified a number of Java implementations of this interface namely, mpiJava [3],
MPJ Express [4] and also found that the Open-MPI distributions started includ-
ing the Java bindings of their C implementations [19]. Although, some latency
analysis comparing Java Open-MPI bindings with the original implementation
is done, there seems to exist no literature that compares any MPI Java imple-
mentation with Java’s TCP/IP socket layer in terms of communication latency.
Hence, this paper intends to fill this gap by providing some experiments in this
regard.

136 M. C. Boysan

3 Test Environment

3.1 Test Hardware and Software

The tests were done on the Rocket cluster located in the High Performance
Computer Center of University of Tartu [7]. Table1 illustrates the hardware
properties of a single compute node in the cluster. At most 10 compute nodes
(out of 135) were used in the tests without any modifications on their existing
hardware or software. Each compute node uses CentOS 7.4 as its operating
system. Open-MPI version 1.8.4 and Oracle Java 8 with development kit (JDK)
and runtime environment (JRE) version 1.8.0_25 are used.

Table 1. Hardware specifications of a single compute node in the Rocket cluster

CPU 2xIntel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz (20 cores total) (4 CPU
cores used in tests)

RAM 64 GB RAM

Storage | 1TB HDD (860 GB usable)

Network | 4x QDR Infiniband, 8 Mellanox switches

10Gbit/s Ethernet, ConnectX-3 MT27500 Mellanox switch

3.2 Methodology

The software created for this investigation can be found in [9].

Ping-Pong Test Setup: In the code, a distributed process object, referred to
as a Role was created. A Role can be thought of as a single processing unit and
is supposed to be deployed to different cluster nodes. In this case, it is created
to serve ping-pong messages. In a cluster of IV Roles, a single leader is selected
which sends a ping message to all the Roles in the cluster including itself. The
time starting from the first ping and ending with the last pong gives the round
trip latency of a single leader trying to send a consensus message. Individual
ping-pong message round trip latencies between the Roles were also recorded.

Each Role uses Java’s Socket API for TCP/IP communication, and
MPI.iRecv routine for MPI’s InfiniBand and TCP/IP communications. A single
message listener accepts each connection in a loop and once a message arrives,
a separate thread processes it. Messages are sent in a non-blocking manner,
meaning that each message is sent in a dedicated thread without waiting for its
completion. Messages are sent with Java sockets for TCP/IP and for MPI, with
MPI.iSend routine.

The Ping and Pong messages are initially constructed as Java objects which
are first marshalled into JSON strings and then converted into byte arrays prior
to sending. Upon receival, the byte array is first converted back to a JSON string
and unmarshalled back to its Java object representation for further processing.
Also note that a fixed message size of 353 bytes was used.

Ping-Pong Tests Using Java Bindings of Open-MPI and Java Sockets 137

Test routines were implemented to send the ping-pong messages between the
processes in separate phases called “warmup” and “full-load”. The warmup phase
was run with 100 iterations and the full-load phase was run with 500 iterations.
A result collector object was created and was run on a separate thread to collect
the latency results. All the test phases were repeated 200 times to minimize the
effects of the cluster network load on the results.

Both the Java socket and MPI latency tests were run separately on a number
of compute nodes varying from 1 to 10. They were submitted as batch jobs to
the job scheduler of the cluster [8].

OSU Latency Test in Java: In order to complement the work implemented
in the previous section, we also wanted to measure the one-way communica-
tion latency of the Java sockets and Open-MPI in a simpler way. Therefore, we
decided to use the standard OSU Micro-Benchmarks, located in [6]. These tests
are offered by the Ohio State University to provide ways to measure the network
communication performance of MPI configurations. Specifically, the point-to-
point osu_latency test was chosen that would allow us to benchmark Java socket
and Open-MPI latencies in the cluster. However, the OSU tests are implemented
in C, therefore to allow for a direct comparison, the osu_latency test was also
converted to Java.

We implemented three different versions of this test, one using the Open-MPI
library and the others using Java Sockets. The Open-MPI version is a one-to-one
translation of the test. The first socket test opens and closes a socket each time
a message needs to be sent, whereas the second one keeps the connection open
until all message transactions are done. The first method provides a better fault
tolerant system, where if an endpoint is dead, we would get immediate notifica-
tion that the socket connection could not be established. On the other hand, the
second one provides a performance efficient methodology due to the eliminated
overhead of opening and closing a socket when sending a message. Also note
that, in all the tests, inter-process communications are done synchronously in a
single Java thread.

Finally, the tests were run with 1000 iterations, including the Java Virtual
Machine (JVM) warmup period.

4 Experimental Results

4.1 Ping-Pong Latency Test Results

Figure 1(a) shows the average round trip latency (in milliseconds) of a single
ping message sent from a single process to N nodes varying in sizes from 1 to 10
when Java’s Socket API and Open-MPI library are used on different transmission
protocols. Figure 1(b) on the other hand shows the average round trip latency (in
milliseconds) of a message sent from one node to the other, indicating the average
round trip latency of the point-to-point communication on Java sockets and
Open-MPI library. The results show that Java TCP/IP sockets are more stable

138 M. C. Boysan

and efficient than the Java bindings of Open-MPI running on both InfiniBand
and TCP/IP stack when node count is less than 8. And the latency values in
all the cases converged when the node count is 8 and more. However, what
was interesting to observe was that Open-MPI on both InfiniBand and TCP/IP
stack showed higher average latency results when the number of nodes are kept
between 1 and 3. Since the tests were run multiple times with sufficient number of
iterations, the problem seems not to be related with Java’s internal mechanisms
like failure in optimizing the runtime performance with just-in-time compilation
or overhead associated with the garbage collection. Instead, this seems like an
internal issue with the Java bindings of Open-MPI.

6

@ N
E E
oy oy
[= C
o 2
S S —— socket_tcp
S > <+ =4 = mpi_infiniband
@ S W e Ve mpi_tep
z z

0 0

12 3 45 6 7 8 910 1 23 456 7 8 910

Number of Nodes Number of Nodes

() (b)

Fig. 1. (a) Average round trip latency (in milliseconds) of a message of size 353 bytes
sent from a single node to N nodes. (b) Average round trip latency (in milliseconds)
of a point-to-point communication between 2 nodes, using messages of size 353 bytes.

4.2 OSU Point-to-Point Latency Results

Figure 2 shows the average one-way latency (in microseconds) of point-to-point
communication of two nodes in varying data sizes. These are the end results of
the OSU point-to-point one-way latency benchmarks performed with Java Sock-
ets that use TCP/IP, C implementation and Java bindings of Open-MPI that
use InfiniBand and TCP/IP as the underlying communication stack. The Java
socket solution included the methodology with opening and closing a socket
when a message needs to be delivered each time (java_socket_tcp-open_close)
and the one with an always-open connection throughout the test’s lifecylce
(java_socket_tcp_always_open). It can be seen that the best latency values are
obtained with the C implementation of Open-MPI running on InfiniBand inter-
connect. The slightly higher latency values observed in Open-MPI Java bindings
compared to Open-MPI C version seem to have originated from the added over-
head of calls being made to the C compiled binaries of Open-MPI. However, the
reason for the high latency jump from data of sizes 32768 to 65536 in Open-MPI
versions running on TCP interconnect is currently not known. Java sockets on

Ping-Pong Tests Using Java Bindings of Open-MPI and Java Sockets 139

the other hand, performed worse than the provided MPI solutions. Although
for small data sizes, the “always open” socket solution performed better than
the “open-close” solution, similar results were observed when data size is over
4096 bytes. This means that the added overhead of opening and closing a socket
becomes irrelevant when a data with larger size need to be transferred.

1000

o
- -
» PP pap - P

"""" java_socket_tcp_always_open

3 100 v e C_mpi_infiniband

E‘ ——4— java_mpi_infiniband

2 c_mpi_tcp

S A T & —&—java_mpi_tcp

% 0 L == P= - java_socket_tcp_open_close
2

L R A > © > O
A QQ,]@%Q@@%@Q;@"’@@ -
Size (bytes)

Fig. 2. Average one-way latency (in microseconds) between two nodes on varying data
sizes.

The average latency when using OSU tests was lower with a factor of over
a thousand than those described in Sect. 4.1. The reason for it is because of the
complexity of the project, which was created to serve as a basic simulation of the
consensus messaging between the distributed processes. From data marshalling
to result collection, a lot of internal processing happens even on a single ping-
pong request-response pair, which we believe is expected in such systems.

The other important point was to see that the performance of the socket and
the Open-MPI solutions gave opposite results when Figs. 1 and 2 are compared.
The main distinction between the two benchmarks is that OSU tests use a syn-
chronized communication strategy with a single Java thread to send and receive
messages, whereas the project described above runs on a multi-threaded envi-
ronment asynchronously. We can conclude that the Java bindings of Open-MPI
is not optimized well enough to run concurrently.

5 Conclusion

We have compared the average round trip latency values of the Java bindings of
the Open-MPI library running on InfiniBand and TCP/IP stack with the Java’s
Socket API for TCP/IP communications. The comparison was made with a
simple ping-pong test that is intended to reflect a basic distributed database
system that uses consensus protocols to reach an agreement on the valid state
of the overall system. In addition, we have provided the results collected for
the point-to-point osu_latency benchmarks implemented in Java to compare the

140 M. C. Boysan

average latency values between the C implementation and Java bindings of the
Open-MPT library and implementations made with the Java Socket API.

We have seen high differences in latencies when osu_latency and ping-pong
test results are compared. We concluded that this is caused by the additional
functionality that needed to be implemented to give support for a distributed
database solution. We have also observed that, regardless of the interconnect,
Java bindings of Open-MPI performed poorly than the Java Sockets when mul-
tiple Java threads are used to provide concurrent communication.

Although further analysis is needed to investigate the latency performance
with a newer version of Java bindings of Open-MPI, these results show that Java
Sockets should be preferred instead to develop a distributed database system that
will operate in single data centers.

Acknowledgements. Thanks to B.K Muite and A. Jasinski for helpful discussions
and suggestions. This work was carried out in the High Performance Computing Center
of University of Tartu. This work is partially funded by the Estonian Research Council
[[UT34-4].

References

1. Hazelcast the leading in-memory data grid. https://hazelcast.com/. Accessed 06

Apr 2018

MPI documents. http://mpi-forum.org/docs/. Accessed 06 Apr 2018

mpiJava. http://www.hpjava.org/mpiJava.html. Accessed 06 Apr 2018

MPJ Express project. http://mpj-express.org/. Accessed 06 Apr 2018

Open source memory-centric distributed database, caching, and processing plat-

form - apache ignite™. https://ignite.apache.org/index.html. Accessed 06 Apr

2018

6. OSU Microbenchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.
Accessed 07 Apr 2018

7. Rocket cluster - high performance computing center, University of Tartu. https://
hpc.ut.ee/en_US/web/guest /rocket-cluster. Accessed 07 Apr 2018

8. SLURM - high performance computing center, University of Tartu. https://hpc.
ut.ee/en_US/slurm. Accessed 07 Apr 2018

9. Boysan, M.: mboysan/ping-pong-mpi-tcp: Ping pong test with TCP and MPI.
https://github.com/mboysan/ping-pong-mpi-tcp. Accessed 06 Apr 2018

10. Brewer, E.: Towards robust distributed systems. In: PODC, p. 7, January 2000

11. Council, H.A.: Interconnect analysis: 10GigE and InfiniBand in high performance
computing. HPC Advisory Council, Technical report (2009)

12. Gray, J., Lamport, L.: Consensus on transaction commit. Technical report, Jan-
uary 2004. https://www.microsoft.com/en-us/research/publication /consensus-on-
transaction-commit/

13. Ismail, R., Wati Abdul Hamid, N.A., Othman, M., Latip, R., Sanwani, M.A.:
Point-to-point communication on gigabit ethernet and infiniband networks. In:
Abd Manaf, A., Sahibuddin, S., Ahmad, R., Mohd Daud, S., El-Qawasmeh, E.
(eds.) ICIEIS 2011. CCIS, vol. 254, pp. 369-382. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25483-3_30

Grs Wi

https://hazelcast.com/
http://mpi-forum.org/docs/
http://www.hpjava.org/mpiJava.html
http://mpj-express.org/
https://ignite.apache.org/index.html
http://mvapich.cse.ohio-state.edu/benchmarks/
https://hpc.ut.ee/en_US/web/guest/rocket-cluster
https://hpc.ut.ee/en_US/web/guest/rocket-cluster
https://hpc.ut.ee/en_US/slurm
https://hpc.ut.ee/en_US/slurm
https://github.com/mboysan/ping-pong-mpi-tcp
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://doi.org/10.1007/978-3-642-25483-3_30

14.

15.

16.

17.

18.

19.

20.

Ping-Pong Tests Using Java Bindings of Open-MPI and Java Sockets 141

Jackson, K., et al.: Performance analysis of high performance computing appli-
cations on the Amazon web services cloud. In: 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 159—
168. IEEE (2010)

Lamport, L.: The part-time parliament, May 1998. https://www.microsoft.com/
en-us/research/publication/part-time-parliament/

Nowicki, M., Gérski, L., Grabrczyk, P., Bala, P.: PCJ-Java library for high per-
formance computing in PGAS model. In: 2014 International Conference on High
Performance Computing and Simulation (HPCS), pp. 202-209. IEEE (2014)
Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC 2014, USENIX Association, Berkeley, CA, USA, pp.
305-320 (2014). http://dl.acm.org/citation.cfm?id=2643634.2643666

Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed
system. IEEE Trans. Softw. Eng. SE-9(3), 219-228 (1983). https://doi.org/10.
1109/TSE.1983.236608

Vega-Gisbert, O., Roman, J., Squyres, J.: Design and implementation of Java bind-
ings in open MPI. Parallel Comput. 59, 1-20 (2016)

Yelick, K., et al.: Titanium: a high-performance Java dialect. Concurr. Comput.:
Pract. Exp. 10(11-13), 825-836 (1998)

https://www.microsoft.com/en-us/research/publication/part-time-parliament/
https://www.microsoft.com/en-us/research/publication/part-time-parliament/
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://doi.org/10.1109/TSE.1983.236608
https://doi.org/10.1109/TSE.1983.236608

	Ping-Pong Tests on Distributed Processes Using Java Bindings of Open-MPI and Java Sockets with Applications to Distributed Database Performance
	1 Introduction
	2 Background and Literature Review
	3 Test Environment
	3.1 Test Hardware and Software
	3.2 Methodology

	4 Experimental Results
	4.1 Ping-Pong Latency Test Results
	4.2 OSU Point-to-Point Latency Results

	5 Conclusion
	References

