
Asynchronous Client-Side Coordination
of Cluster Service Sessions

Karolis Petrauskas(B) and Romas Baronas

Vilnius University, Institute of Computer Science, Vilnius, Lithuania
{karolis.petrauskas,romas.baronas}@mif.vu.lt

Abstract. A system-to-system communication involving stateful ses-
sions between a clustered service provider and a service consumer is
investigated in this paper. An algorithm allowing to decrease a number
of calls to failed provider nodes is proposed. It is designed for a clustered
client and is based on an asynchronous communication. A formal spec-
ification of the algorithm is formulated in the TLA+ language and was
used to investigate the correctness of the algorithm.

Keywords: Session management · Cluster · Formal specification

1 Introduction

Nowadays business applications include a lot of interactions with service
providers for handling various operations like order and payment processing,
application monitoring and other specialized services [11]. The business applica-
tions themselves are often provided as services [12]. This kind of system architec-
ture leads to many system-to-system integrations. Requirements for high avail-
ability and fault tolerance impose use of clustered topologies. In the case of
system-to-system communications, clustered topologies are often used on the ser-
vice consumer side as well as on the service provider side. The service providers
are often deployed on a cloud or another virtualized infrastructure. Such infras-
tructure provides a lot of flexibility, but introduces a network instability, con-
nection drops and other disruptions caused node migrations [1,14].

A lot of service providers implement the model of the eventual consistency
in order to maintain high availability together with the service scalability [3].
That means the consistency is not guaranteed globally and special requirements
are imposed on the service consumers in order to minimize the observed incon-
sistency. A common requirement for the clients of such services is to maintain
session stickiness to particular nodes in the provider cluster [13]. That applies
also to the stateless protocols, as requests for the particular end-user should be
routed to the same back-end node in order to minimize the primary-node or the
cache misses causing data inconsistency for a particular user.

A lot of mainstream protocols have no support for detecting lost connections
or server failures immediately [2]. In such cases, the node availability should be

c© Springer Nature Switzerland AG 2018
A. Lupeikiene et al. (Eds.): DB&IS 2018, CCIS 838, pp. 121–133, 2018.
https://doi.org/10.1007/978-3-319-97571-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97571-9_11&domain=pdf
http://orcid.org/0000-0002-3446-9531
http://orcid.org/0000-0002-9175-9623

122 K. Petrauskas and R. Baronas

tracked by examining responses to the service requests. Only specific faults can
be used as an indication of the failed provider node, excluding all the business
faults as well as bad requests. If the service is accessed rarely, additional fake
requests can be performed in order to keep the sessions alive or to detect node
failures faster, before next user request will be received.

One of the ways to handle failing provider nodes is to consider another server
from the remaining list and use it onwards for the session. This strategy can be
inefficient if applied for each session separately, without sharing the knowledge on
the failed nodes in the case of multiple sessions bound to a single provider node.
After detecting the node failure, the error can be propagated to the caller or fail-
over to another provider node can be performed silently, without interrupting
the caller. Even if the error is handled by the consumer application, usually it
has an impact on the behaviour of the system at least as increased execution
time of some operations [2,8]. Because of that, the number of calls reaching the
failed nodes should be minimized. The optimization usually includes sharing the
node availability information between the sessions.

Applications consuming the provider services are often implemented as clus-
ters themselves. The state sharing in the cluster is much more expensive than
in a single node, especially if consistency should be preserved [12]. Inconsistency
in tracking back-end availability has relatively low cost, as fixing it can only
cause several unnecessary calls to the failed nodes. Keeping that in mind, it is
reasonable to implement the sharing of the back-end node availability without
consistency guarantees, employing the best-effort strategy. One of the ways for
implementing it is to use asynchronous messages to share the known information
on the provider availability.

Different applications require complex event processing relying on the detec-
tion of composite events often formed by logical and temporal combinations of
events coming from many sources [9]. Various formal methods handling tempo-
rally composed events have been designed and implemented for complex event
processing [4,7]. The Temporary Logic of Actions (TLA) is among such meth-
ods successfully used to describe behaviours of concurrent systems [5]. The cor-
responding specification language TLA+ and the TLC model checker help to
prevent serious bugs from reaching production as well as to optimize complex
algorithms without sacrificing quality [10].

An algorithm for coordinating sessions using asynchronous messages in the
consumer cluster is proposed in this paper. In order to avoid misbehaviours in
various corner cases, the algorithm was formulated as a formal specification in
the TLA+ language [5,6]. The specification was verified by performing model
checking [15], employing the TLC tool provided by the TLA+ toolbox. We first
provide a direct solution of the problem in Sect. 3 and show its misbehaviour by
performing model checking. Then we propose two modifications of the algorithm
in Sects. 4 and 5. In Sect. 6 we provide the details on the performed model
checking and discuss the difference between the proposed correct solutions.

Asynchronous Client-Side Coordination of Cluster Service Sessions 123

2 Principal Structure

We consider an interaction between two systems – a service provider and a
service consumer. Both systems are assumed to be master-less clusters consisting
of several nodes. The nodes of the consumer cluster maintain a set of sessions
bound to some nodes in the service provider cluster. A structure of the elements
participating in the session management is shown as a UML class diagram in
Fig. 1.

Fig. 1. Principal structure of the modelled subsystem

The main idea of the session management algorithm is that a client-side
session process notifies its coordinator when a failure of the provider node is
detected. The coordinator then notifies the other sessions bound to the same
provider node and the coordinators on the other consumer nodes. The coordi-
nators then notifies the corresponding sessions on their nodes. In that way, all
the sessions in the cluster can handle the failure of the provider node gracefully.

We assume that a session can be bound to another node in the case of a
provider failure, although re-binding of sessions should be avoided, as the cost
of such operation is not negligible. The cost can be expressed in terms of per-
formance drop or a possibility to provide the end-user with inconsistent data,
etc. A session can be unbound, i.e. not bound to any of the provider nodes. This
can be the case for the sessions that were dropped by the provider and were not
reconnected yet.

3 Formal Specification

In this section we define a formal specification for the session management algo-
rithm that relies on the asynchronous communication for sharing the knowledge
about the provider node availability. We assume each session to be a separate
process in a node. These processes communicate asynchronously with a coor-
dinator process responsible for tracking a state of the provider cluster in the
consumer node.

124 K. Petrauskas and R. Baronas

3.1 State of the Model

The specification of the session management algorithm is formulated in the
TLA+ language and has several parameters (constants). A constant in the spec-
ification does not change during a single simulation (model checking), but can
have different values in separate simulations. The following excerpt defines con-
stants and a state structure of the proposed specification:

constants PNodes, CNodes, SNames
variables prov , cons
NA

Δ
= choose n : n /∈ PNodes

Msg
Δ
= [pn : PNodes]

TypeOK
Δ
= prov ∈ [PNodes → boolean] ∧ cons ∈ [CNodes → [

c : [PNodes → [st : boolean]],
s : [SNames → [pn : PNodes ∪ {NA}, m : subset Msg]],

sm : subset Msg , cm : subset PNodes]]

In order to keep the specification simple and the state space finite, we consider
a number of consumer and provider nodes as well as a number of sessions in
each node to be constant. The constant PNodes stands for a set of provider
nodes. Each node in this set is defined by assigning a unique identifier, e.g.
PNodes = {p1,p2}. Similarly the constant CNodes stands for a set of consumer
nodes. The constant SNames stands for a session pool in the consumer node and
should be assigned with a set of session identifiers.

Systems are modelled as state machines in TLA+. Variables define a state
structure of the machine. In this specification the variable prov represents the
actual state of the provider nodes. This variable is a function with the domain
PNodes and the range boolean, where true means the corresponding node is
operational, and false – the node is down.

The variable cons represents the state of the consumer cluster including its
view of the provider nodes. It is a function with a domain CNames and therefore
describes state for each node in the consumer cluster separately.

A state of the coordinator process is represented by the field c, that holds
known states for all the provider nodes in each consumer node. The state of a par-
ticular provider node cons[cn].c[pn].st (where cn ∈ CNodes and pn ∈ PNodes)
can differ from prov [pn], because changes of the node availability are not detected
immediately by the consumer nodes.

The field cons[cn].s stands for a session pool in a consumer node. Each
session cons[cn].s[sn] (where sn ∈ SNames) is bound to a node pn ∈ PNodes or
is unbound, if cons[cn].s[sn].pn = NA. The session has also a set of asynchronous
messages cons[cn].s[sn].m received from the coordinator in the current node.
Synchronous calls are modelled as direct changes of the corresponding variables.
In this algorithm we consider messages sent to the sessions by the coordinator
to be asynchronous. The set of possible messages is defined as Msgs.

The fields sm and cm in cons[cn] stand for sets of asynchronous messages
received by the coordinator process correspondingly from the sessions in the
current node and the coordinators in other consumer nodes.

Asynchronous Client-Side Coordination of Cluster Service Sessions 125

A set of valid states in the specification is defined by the predicate TypeOK .
This predicate is used to check the type correctness of the specification.

3.2 Behaviour of the Provider Nodes

Transitions of the state machine are defined by the actions – formulas involving
primed variables (they stand for the variable values in the next step). Actions
describing behaviour of the provider nodes are the following:

ProvNodeUp(pn)
Δ
= ¬prov [pn]

∧ prov ′ = [prov except ! [pn] = true]
∧ unchanged 〈cons〉

ProvNodeDown(pn)
Δ
= prov [pn]

∧ prov ′ = [prov except ! [pn] = false]

∧ unchanged 〈cons〉

The action ProvNodeUp(pn) states that the provider node pn ∈ PNodes
can become operational at any time if it is currently down. The expression
[prov except ! [pn] = true] stands for a function that is equal to prov except
that the value of prov [pn] equals to true. The state of the consumer nodes is
not affected by this transition (unchanged 〈cons〉) as the availability of the
provider node is only detected by the consumer later by performing some oper-
ations. The action ProvNodeDown(pn) correspondingly turns operational node
down.

3.3 Behaviour of a Consumer Session

This section describes operation of the session processes. A session can either
handle requests, update its state based on messages from the coordinator or
connect if it was not bound to any provider node. The latter is modelled by
the action SessionConnect(cn, sn), where cn ∈ CNodes stands for a consumer
node and sn ∈ SNames stands for a session identifier. This action is enabled, if
the session is not bound to a provider node (cons[cn].s[sn] = NA) and there is
a node pn ∈ PNodes that is operational (prov [pn] = true) and the consumer
node knows it is operational (cons[cn].c[pn].st = true),

SessionConnect(cn, sn)
Δ
= cons[cn].s[s].pn = NA ∧ cons[cn].c[pn].st

∧ ∃ pn ∈ PNames : ∧ prov [pn]
∧ cons ′ = [cons except ! [cn].s[sn].pn = pn]

∧ unchanged 〈prov〉
When connected (cons[cn].s[sn].pn ∈ PNodes), a session can be used by the

consumer node to issue requests to the service provider. Only failing requests
are modelled in this specification, because the successful requests do not affect
the state of the modelled subsystem. We consider all the requests ended up with
business faults as completed successfully. A request is considered failed only if
the corresponding provider node is down (prov [pn] = false) at the moment,
when the request is performed. In that case the session marks itself as unbound
and sends an asynchronous message indicating the failure of the provider node

126 K. Petrauskas and R. Baronas

to the coordinator process. The state of the other sessions as well as the state
of the coordinator is not affected in this transition directly,

SessionReqFail(cn, sn)
Δ
= cons[cn].s[sn].pn ∈ PNodes ∧ ¬prov [cons[cn].s[sn].pn]

∧ cons ′ = [cons except
! [cn].s[sn].pn = NA,
! [cn].sm = @ ∪ {[pn 	→ cons[cn].s[sn].pn]}]

∧ unchanged prov

The symbol @ in this and other formulas stands for the current value of the
function.

Sending an asynchronous message is modelled by adding it to the set of
messages cons[cn].sm sent by the sessions to the coordinator. The ordering of
messages is not modelled in this specification in order to decrease the space
of possible states. This also allows to avoid complicated requirements for an
implementation. Duplicated messages are modelled by not removing a message
from the set cons[cn].sm after processing it.

A session can receive notifications from the coordinator indicating provider
nodes that became down. Upon receiving such a message the session unbinds
itself, if the provider node specified in the message matches with the node the
session is bound to. This behaviour is modelled by the following action:

SessionUpdate(cn, sn)
Δ
=

∃msg ∈ cons[cn].s[sn].m :
∃msgsDeq ∈ {cons[cn].s[sn].m, cons[cn].s[sn].m \ {msg}} :

∧ cons ′ = let consDeq
Δ
= [cons except ! [cn].s[sn].m = msgsDeq]

in if msg .pn = cons[cn].s[sn].pn
then [consDeq except ! [cn].s[sn].pn = NA]
else consDeq

∧ unchanged prov

Receiving a message (dequeuing) is modelled by taking any message from
the set of sent messages cons[cn].s[sn].m ignoring their order. The set of sent
messages is either left unchanged or the selected message is removed from that
set. The former case models the situation when there were several identical mes-
sages in the queue. This case also models duplication of messages, that can occur
because of various retries or message re-deliveries in the software implementing
this algorithm. The latter case models dequeuing of the last message of that
kind. It also covers the situation, when part of messages can be lost.

3.4 Behaviour of the Consumer Node Coordinator

The coordinator is responsible for maintaining the state of the provider nodes
in a single consumer node. It is responsible also for sharing this knowledge
between the consumer nodes. The coordinator receives messages indicating fail-
ures of the provider nodes from the sessions. Then it updates its internal state
(cons[cn].c[pn].st) and notifies all the sessions and other consumer nodes about

Asynchronous Client-Side Coordination of Cluster Service Sessions 127

the state changes, if some node becomes unavailable. This is modelled by the
following action:

CoordSessionMsg(cn)
Δ
=

∃msg ∈ cons[cn].sm : ∃ sm ∈ {cons[cn].sm, cons[cn].sm \ {msg}} :
let consDeq

Δ
= [cons except ! [cn].sm = sm]

consEnq
Δ
= [c ∈ domain consDeq 	→ [consDeq [c] except

! .cm = if c = cn then @ else @ ∪ {msg .pn}]]
consUpd

Δ
= [consEnq except

! [cn].c[msg .pn].st = false,
! [cn].s = [s ∈ domain @ 	→ [@[s] except ! .m = @ ∪ {msg}]]]

in ∧ cons ′ = if cons[cn].c[msg .pn].st then consUpd else consDeq

∧ unchanged prov

The coordinator sends notifications to other consumer nodes when some
provider node becomes offline. These notifications are handled by coordinators on
the corresponding consumer nodes. Handling these notifications is modelled by
the action CoordClusterMsg(cn). Main distinction from CoordSessionMsg(cn)
in this action is that the corresponding provider node is checked explicitly (the
conjunct ¬prov [pn]) before marking it as offline. This check is kept explicit in
order to avoid accidental marking of operational node as unavailable. We assume
the network can make a particular provider node visible from one consumer node
and not visible from another. Another distinction is that the notification is not
propagated to other nodes here,

CoordClusterMsg(cn)
Δ
=

∃ pn ∈ cons[cn].cm : ∃ cm ∈ {cons[cn].cm, cons[cn].cm \ {pn}} :
let consDeq

Δ
= [cons except ! [cn].cm = cm]

consEnq
Δ
= [consDeq except ! [cn].c[pn].st = false,

! [cn].s = [s ∈ domain @ 	→ [@[s] except ! .m = @ ∪ {[pn 	→ pn]}]]]
in ∧ cons ′ = if cons[cn].c[pn].st ∧ ¬prov [pn] then consEnq else consDeq

∧ unchanged prov

As shown above, the coordinator marks the provider nodes as being down in
the consumer state based on messages from the sessions and the other coordina-
tors. The coordinator is also responsible for marking the nodes as being avail-
able, when they become operational. This is performed periodically by checking
the nodes that are currently marked as down (cons[cn].c[pn].st = false) and
marking them available if the checks succeed. This is modelled by the action
CoordProviderCheck(cn, pn). The check of the provider node is performed syn-
chronously and is modelled here by the conjunct prov [pn],

CoordProviderCheck(cn, pn)
Δ
= ¬cons[cn].c[pn].st ∧ prov [pn]

∧ cons ′ = [cons except ! [cn].c[pn].st = true]

∧ unchanged prov

128 K. Petrauskas and R. Baronas

3.5 Temporal Properties

The complete specification in TLA+ is represented as a temporal formula

Spec
Δ
= Init ∧ �[Next]〈prov,cons〉 ∧ Liveness

where Init describes the initial state, Next defines all the possible transitions at
any step and Liveness defines requirements for actions to actually occur. Here
� is a temporal operator “always”. The expression [Next]〈prov ,cons〉 states that
either a step Next or a step not changing the variables prov and cons can occur.

The formula Init stands for the initial state. It is similar to the TypeOK
predicate, except that message sets are initialized with empty sets {} and all
the provider nodes are assumed to be operational initially. The formula Next is
a disjunction of all the actions and describes all the possible transitions at any
step. This formula straightforward and therefore is omitted in this paper.

Liveness is a temporal formula describing what actions should actually occur
in the system if they are enabled (contrary to “can occur”). We assume weak
fairness conditions (an action will be performed if it is enabled forever) for all
the actions describing behaviour of the consumer nodes (the sessions and the
coordinators).

The specification Spec can be used to check if it satisfies required properties.
A typical property usually checked for any specification is a type correctness
invariant

TypeInvariant
Δ
= Spec ⇒ �TypeOK

Apart from simple invariants, TLA+ allows to define temporal properties.
These properties imply requirements for the entire behaviour (a sequence of
transitions). The following temporal properties are expected to be held in the
system:

NodeDownDetected
Δ
=

∀ pn ∈ PNodes, cn ∈ CNodes, sn ∈ SNames :
(cons[cn].s[sn].pn = pn ∧ ¬prov [pn]) � (cons[cn].s[sn].pn = NA ∨ prov [pn])

SessionsWillReconnect
Δ
=

∀ pn ∈ PNodes, cn ∈ CNodes, sn ∈ SNames :

(cons[cn].s[sn].pn = NA ∧ prov [pn]) � (cons[cn].s[sn].pn = NA ∨ ¬prov [pn])

The temporal property NodeDownDetected asserts that if a provider node
becomes unavailable, then sessions bound to it will be eventually disconnected,
unless the node will become operational again (� is the temporal operator “leads
to”). It was checked that this property holds for the specification by employing
the TLC model checker.

The property SessionsWillReconnect asserts, that if a session is unbound and
there is an operational node, the session will reconnect and will continue to serve
requests. These properties should be implied by the specification,

TemporalProperties
Δ
= Spec ⇒ NodeDownDetected ∧ SessionsWillReconnect

The TLC model checker was used to check the type correctness invariant as
well as the temporal properties defined above. The model checking showed that

Asynchronous Client-Side Coordination of Cluster Service Sessions 129

property SessionsWillReconnect is not satisfied by the specification. The misbe-
haviour is caused by the asynchronous communication between the sessions and
the coordinator. One of the counter-examples: a provider node was down, then
it becomes available, coordinator process marks it as available and then receives
a delayed message from a session indicating node failure. As a consequence,
the node is marked as unavailable again till the next CoordProviderCheck(pn).
This behaviour can repeat infinitely, making the consumer to consider running
provider node as failed thus decreasing availability of the system.

4 Explicit Provider Checks

Another possible solution allowing to avoid the impact of the delayed mes-
sages is to check node availability before marking it as offline in the coor-
dinator process. In that case, the CoordSessionMsg(cn) action should be
changed by adding expression cons[cn].c[msg .pn].st ∧ ¬prov [msg .pn] instead of
cons[cn].c[msg .pn].st in the IF condition. The changed parts of the action are
as follows:

CoordSessionMsg(cn)
Δ
=

. . .
∧ cons ′ = if cons[cn].c[msg .pn].st ∧ ¬prov [msg .pn] then consUpd else consDeq

∧ unchanged prov

With this change the temporal property SessionsWillReconnect is fulfilled.
The drawback of this approach is that additional calls to the service provider
must be performed.

5 Detecting Delayed Messages

In order to avoid the impact of the delayed messages, generations of the provider
nodes can be introduced. Each time when a provider node is detected to become
online by the coordinator, its generation number is increased. Messages referring
to generations older than one known by the coordinator are then ignored. The
generations should be tracked in the coordinator process as well as in the sessions
and should be included in the messages exchanged between them. The updated
structure of the messages and the state of the model are as follows:

Msg
Δ
= [pn : PNodes, gen : Nat]

TypeOK
Δ
=

∧ prov ∈ [PNodes → boolean]
∧ cons ∈ [CNodes → [

c : [PNodes → [st : boolean , gen : Nat]],
s : [SNames → [pn : PNodes ∪ {NA}, gen : Nat , m : subset Msg]],

sm : subset Msg , cm : subset PNodes]]

The observed generations of the provider nodes are tracked inside of the
consumer nodes and are not shared between them. Each node can observe dif-
ferent provider node interruptions. Moreover, depending on a network topol-
ogy, a particular provider node can be accessible from one consumer node and

130 K. Petrauskas and R. Baronas

not accessible from other. The message delays between the consumer nodes
are handled by the explicit node checks (conjunct ¬prov [pn]) in the action
CoordClusterMsg(cn).

Some parts of the model should be updated to maintain the observed provider
node generations. The initial state can start from any generation. We consider
to have gen �→ 0 in all the sessions and the coordinators.

For the coordinator behaviour, the CoordProviderCheck(cn, pn) action is
changed to increment the node generation each time the coordinator detects
it became available,

CoordProviderCheck(cn, pn)
Δ
= ¬cons[cn].c[pn].st ∧ prov [pn]

∧ cons ′ = [cons except ![cn].c[pn].st = true, ![cn].c[pn].gen = @ + 1]

∧ unchanged prov

The coordinator then ignores all the messages received with old generations
(msg .gen < cons[cn].c[msg .pn].gen) in the CoordSessionMsg(cn) action. It also
includes the generation into the messages sent to the sessions when node change
is detected on a notification from other consumer nodes in CoordClusterMsg(cn).
The generation is included in the messages triggered by the session notifications
in the CoordSessionMsg(cn) action without changes in the specification as it
only forwards received messages (and they include the gen field).

When connecting, a session takes the current provider node generation from
the coordinator in the consumer node (cons[cn].c[pn].gen), therefore the action
SessionConnect(cn, sn) is updated to assign the generation known by the session
as follows:

SessionConnect(cn, sn)
Δ
= cons[cn].s[s].pn = NA ∧ cons[cn].c[pn].st

∧ ∃ pn ∈ PNames : ∧ prov [pn]
∧ cons ′ = [cons except ! [cn].s[sn].pn = pn,

![cn].s[sn].gen = cons[cn].c[pn].gen]

∧ unchanged 〈prov〉
The sessions should only consider messages received from the coordinator in the
SessionUpdate(cn, sn) action with a generation not less than the current gener-
ation known by the session (cons[cn].s[s].gen ≤ msg .gen) and then remember
it as the last known generation (![cn].s[s].gen = msg .gen). All the other mes-
sages are just dequeued and ignored. The sessions include the generation to the
messages sent to the coordinator in the SessionReqFail(cn, sn) action.

6 Model Checking

Three variants of the specification were defined in Sects. 3, 4 and 5. All of them
were model-checked for the type correctness as well as for the temporal proper-
ties. The model checking was performed on a laptop with 8 CPUs, 16 GB RAM
and an SSD disk, using TLA+ Toolbox version 1.5.6 with OpenJDK Java version
1.8.0 running on a Linux OS.

A model checking in TLA+ is performed by defining a model and exploring its
possible states. The model instantiates the specification with particular values for

Asynchronous Client-Side Coordination of Cluster Service Sessions 131

the constants. In all the cases the following values were used for the specification
constants:

CNodes = {c1, c2},PNodes = {p1,p2},SNames = {s1, s2}.
Small sets were selected in order to decrease state space while keeping the model
meaningful.

The specification maintaining observed generations of the provider nodes
(Sect. 5) has fields gen ∈ Nat , whose range is infinite. In order to keep the state
space finite, additional constraint was used when checking the model,

∀cn ∈ CNodes, pn ∈ PNodes : cons[cn].c[pn].gen < 3.

For all the variants of the specification the type correctness invariant (Spec ⇒
�TypeOK) was checked for the entire space of the state values (with the con-
straints shown above). The temporal properties were checked only for a fraction
of the state space. If a model checking was running for 10 h with no property
violations reported, the checking was stopped and considered successful. The vio-
lation of the SessionsWillReconnect property for the initial specification (Sect. 3)
was found in 3 min.

6.1 Modelling Message Queues

Message queues were modelled as sets of sent messages [6]. This approach ignores
the order of messages and also cannot represent several identical messages in the
queue precisely.

Another way to model a message queue is to use a sequence instead of a set.
In that case the order of messages is maintained and multiple messages with
the same representation are supported. While this approach is more precise, it
increases the state space a lot. The corresponding specifications were designed
during this research with message queues represented by sequences. The model
checker was unable to explore all the state space (the checking was stopped)
even for the type correctness invariant with a constraint for the queues to have
length less than 3.

Note also, that the violation of the property SessionsWillReconnect was not
reproduced with these models in a reasonable time. Possible reasons for not
reproducing the violation are: the model was to small (maybe longer message
queues should be considered), the model checking was cancelled to early, respect
of the message order solves the race condition leading to violation of this prop-
erty. Particular reason for this was not found in this research.

6.2 Number of Synchronous Provider Checks

The specification variants in Sects. 4 and 5 both solve the race condition found
when model checking the initial specification (Sect. 3).

The specification with the explicit checks (Sect. 4) is simpler to implement,
though is not efficient. A session needs to check the provider node availability

132 K. Petrauskas and R. Baronas

by performing a synchronous call each time it receives notification from the
coordinator. The number of calls will be equal to the number of sessions bound
to that particular provider node. In the case of uniform distribution of sessions
over the provider nodes there will be |SNames| × |CNodes|/|PNodes | checks
performed (usually |SNames| � |PNodes |). In the worst case (all the sessions
are be bound to a single node) the number of checks will be |SNames|×|CNodes|.
The number of synchronous checks can cause two kinds of problems:

1. If the provider node is actually online, unnecessary calls will be issued to the
provider. All the checks will be performed approximately in the same time
and therefore can cause a notable increase in a load on the provider. The
sessions cannot serve user requests while performing the check.

2. If the provider node is not reachable, the checks can take long time before
failing, causing delays before switching to another node. This can be the
case, if the provider becomes unavailable because of network interruptions or
misconfiguration, e.g. when packets are dropped instead of rejecting them.

The specification maintaining the observed node generations (Sect. 5) allows
to decrease the number of calls to the failing nodes. The number of synchronous
checks will be equal to the number of nodes in the consumer cluster, as each
node will perform single synchronous check.

7 Conclusions

The proposed algorithm for tracking provider node availability allows to avoid
synchronous communication in the consumer cluster as well as inside of the con-
sumer node. That allows to avoid process blocking thus decreasing impact on the
performance. The algorithm was formulated by employing formal specification
language and was model-checked for its correctness in a subset of its possible
states.

The model checking showed that straight-forward solution of the problem
works incorrectly at some race-conditions. Explicit node checks can be used to
solve the inconsistencies though they introduce a lot of overhead and can cause
bottlenecks in the system. The overhead can be decreased by tracking observed
generations of the provider nodes. It is meaningful to track the generations in a
single consumer node, although its usefulness cluster-wide depend on the network
topology.

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010). https://doi.org/10.1145/1721654.1721672

2. Ayari, N., Barbaron, D., Lefevre, L., Primet, P.: Fault tolerance for highly available
internet services: concepts, approaches, and issues. IEEE Commun. Surv. Tutor.
10(2), 34–46 (2008). https://doi.org/10.1109/COMST.2008.4564478

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/COMST.2008.4564478

Asynchronous Client-Side Coordination of Cluster Service Sessions 133

3. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions,
and beyond. Queue 11(3), 20:20–20:32 (2013). https://doi.org/10.1145/2460276.
2462076

4. Hinze, A., Voisard, A.: EVA: an event algebra supporting complex event specifica-
tion. Inf. Syst. 48, 1–25 (2015). https://doi.org/10.1016/j.is.2014.07.003

5. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

6. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

7. Li, D., Zhang, Q., Zio, E., Havlin, S., Kang, R.: Network reliability analysis based
on percolation theory. Reliab. Eng. Syst. Saf. 142, 556–562 (2015). https://doi.
org/10.1016/j.ress.2015.05.021

8. Lowell, D.E., Chandra, S., Chen, P.M.: Exploring failure transparency and the
limits of generic recovery. In: Proceedings of the 4th Conference on Symposium on
Operating System Design & Implementation, vol. 4, p. 15, OSDI 2000, USENIX
Association, Berkeley (2000). Article No. 20

9. Luckham, D.C.: Event Processing for Business: Organizing the Real-Time Enter-
prise. Wiley, Hoboken (2015). https://doi.org/10.1002/9781119198697

10. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015). https://doi.org/10.1145/2699417

11. Petcu, D.: Consuming resources and services from multiple clouds. J. Grid Comput.
12(2), 321–345 (2014). https://doi.org/10.1007/s10723-013-9290-3

12. Tsai, W., Bai, X., Huang, Y.: Software-as-a-service (saas): perspectives and chal-
lenges. Sci. Chin. Inf. Sci. 57(5), 1–15 (2014). https://doi.org/10.1007/s11432-013-
5050-z

13. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009). https://
doi.org/10.1145/1435417.1435432

14. Xie, R., Wen, Y., Jia, X., Xie, H.: Supporting seamless virtual machine migration
via named data networking in cloud data center. IEEE Trans. Parallel Distrib.
Syst. 26(12), 3485–3497 (2015). https://doi.org/10.1109/TPDS.2014.2377119

15. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1145/2460276.2462076
https://doi.org/10.1145/2460276.2462076
https://doi.org/10.1016/j.is.2014.07.003
https://doi.org/10.1145/177492.177726
https://doi.org/10.1016/j.ress.2015.05.021
https://doi.org/10.1016/j.ress.2015.05.021
https://doi.org/10.1002/9781119198697
https://doi.org/10.1145/2699417
https://doi.org/10.1007/s10723-013-9290-3
https://doi.org/10.1007/s11432-013-5050-z
https://doi.org/10.1007/s11432-013-5050-z
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1109/TPDS.2014.2377119
https://doi.org/10.1007/3-540-48153-2_6

	Asynchronous Client-Side Coordination of Cluster Service Sessions
	1 Introduction
	2 Principal Structure
	3 Formal Specification
	3.1 State of the Model
	3.2 Behaviour of the Provider Nodes
	3.3 Behaviour of a Consumer Session
	3.4 Behaviour of the Consumer Node Coordinator
	3.5 Temporal Properties

	4 Explicit Provider Checks
	5 Detecting Delayed Messages
	6 Model Checking
	6.1 Modelling Message Queues
	6.2 Number of Synchronous Provider Checks

	7 Conclusions
	References

