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Abstract The hand is one of the most complex and fascinating organs of the human
body. We can powerfully squeeze objects, but we are also capable of manipulating
them with great precision and dexterity. On the other hand, the arm, with its redun-
dant joints, is in charge of reaching the object by determining the hand pose during
preshaping. The complex motion and task execution of the upper-limb system may
lead us to think that the control requires a very significant brain effort. As a matter
of fact, neuroscience studies demonstrate that humans simplify planning and control
using a combination of primitives, which the brain modulates to produce hand con-
figurations and force patterns for the purpose of grasping and manipulating different
objects. This concept can be transferred to robotic systems, allowing control within
a space of lower dimension. The lower number of parameters characterizing the sys-
tem allows for embodying the control in machine learning frameworks, reproducing
a sort of human-like cognition.

1 Postural Synergies in Human Beings

With 27 bones, 18 joints and 39 intrinsic and extrinsic muscles with over 20 degrees
of freedom [1–3], the hand is one of the most complex biomechanical parts of the
human body. A traditional point of view is that the brain controls each joint and
muscle to generate forces for grasping objects [4, 5]. To date, however, most studies
have emphasized the opposite [6]. An early attempt to characterize hand postures
during grasping has been made in [7], describing two main categories: precision
grasps and power grasps. In the first category, one or more fingers are positioned,

M. Monforte (B) · F. Ficuciello · B. Siciliano
DIETI, Università degli Studi di Napoli Federico II, Naples, Italy
e-mail: marco.monforte@iit.it; marco.monforte3@gmail.com

F. Ficuciello
e-mail: fanny.ficuciello@unina.it

B. Siciliano
e-mail: bruno.siciliano@unina.it

© Springer Nature Switzerland AG 2019
M. I. Aldinhas Ferreira et al. (eds.), Cognitive Architectures, Intelligent Systems,
Control and Automation: Science and Engineering 94,
https://doi.org/10.1007/978-3-319-97550-4_6

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97550-4_6&domain=pdf


72 M. Monforte et al.

usually in opposition to the thumb, to exert the necessary pressure to avoid the object
falling from the hand [8]. In the second category, the palm is involved in the grasp to
constrain the object. Later on, other authors [9–12] proposed further categorizations,
based on the configuration of the fingers and on the part involved in the contact with
the object. The key point of all of these works is that the fingers are used to generate
forces, and it is assumed implicitly that the hand configuration is linked to this goal.
If this is true, the posture should not change over time, but rather, there should be a
discrete set of postures, each one corresponding to a grip.

This problem has been further investigated in [13], which introduces for the first
time the concept of Postural Hand Synergies to study how the human brain controls
the hand pre-grasping without considering haptic feedback. The results of these
studies have revealed that the hand is controlled using a number of principal motions.
A combination of those motions allows for continuously changing from a power to
a precision grasp preshaping.

The Principal Component Analysis (PCA), performed on a number of hand con-
figurations measured on different subjects, has shown that the first two components
account for >80% of the variance among the dataset, implying a huge reduction from
the 15 degrees of freedoms (DoFs) used to define a simplified kinematic model of
the human hand. Higher-order PCs provide additional information about the hand
posture, providing small adjustments to the fingers’ position.

Another relevant work, developed in [14], has been conducted to study whether
the grasp can be described by a lower number of postural synergies andwhether there
are similarities between synergies in grasping different objects. Five subjects have
performed different types of reach-to-graspmovement on objects of different size and
shape, while 21 joint positions have been recorded along the entire movement thanks
to markers and a four-camera video system. The SVD analysis used in this work has
proved that the first eigenposture explains most of the variance in the configurations
and is comparable across the subjects. The second eigenposture contributes to the
opening of the hand to its maximum during the reaching phase and to the thumb and
finger flexion during the closing phase. Finally, higher order eigenpostures contribute
by adding further information to the hand shape, in particular, about the flexion of
the PIPs and DIPs joints.

All of these works suggest that the human brain does not control each finger
or muscle independently but it applies some patterns learned during the evolution
process through its cognitive capabilities, aiming at optimizing and simplifying the
control of such complex biomechanical structures.

2 Postural Synergies in Robotics

The continuous technological improvement of recent decades is leading the robotics
field to spread exponentially throughout in our society. Robots should be provided
with improved reasoning capabilities and sensorimotor skills in order to interact
deftly with their surrounding environment. Anthropomorphic robotic hands con-
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tribute to this purpose, providing great dexterity and manipulation capabilities. Their
high number of joints, however, might represent a complication for planning and
control, especially during interaction with the environment.

Therefore, the use of postural synergies holds great potential, implying a substan-
tial reduction of the dimension of the grasp synthesis problem. Their computation
requires human hand motion mapping on the robotic hand.

2.1 Mapping Human Hand Motion to a Robotic Hand

Human hand motion mapping is a quite challenging problem due to the complex-
ity and variety of hand kinematics. To obtain an accurate estimation of the human
hand posture, a reliable kinematic hand model and very precise motion tracking
instruments are required.

A model-based approach has been proposed in [15], using the fully actuated
anthropomorphic DEXMART Hand [16]. The method is based on the detection of
the positions of the fingertips of the human hand with respect to the palm through a
Kinect RGBD camera. Due to the obvious differences in size and kinematics of the
human hand [17], 5 different subjects have been involved in the acquisitions. Each
of them had to perform the 36 grasps, with different types of grasp and objects of
different shape and size.

To obtain the measures of the fingertips with respect to the palm frame, we first
need to compute the homogeneous transformation between the camera frame and the
palm frame. This goal has been achieved by measuring a set of five reference points
on a rigid panel fixed to the back of the hand. Thus, first and foremost, each subject
has worn this panel on the opisthenar and has assumed an open-hand posture. Ten
points have been detected: the fingertips and five points suitably placed on the panel
(Fig. 1a). Once the transformation Ti between the camera and the palm frame of the
i-th subject has been found, each subject performs the 36 configurations.

To map the human grasps on the DEXMART Hand, a Closed-Loop Inverse Kine-
matics (CLIK) algorithm [18] has been used to retrieve the hand configuration, start-
ing from the measured fingertip positions. In the CLIK algorithm, the DEXMART
hand kinematics, properly scaled according to the dimensions of the human hand has

(a) Open-hand configuration. (b) Grasping an object.

Fig. 1 Snapshots from the fingertip position acquisition process
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been used. The scaling of the robotic hand kinematics is obtained by multiplication
of the D-H parameters for the ratio between the lengths of human and robotic fingers.

As a result, the matrix C ∈ R
36×15 has been created, where each ci is a joint

configuration representing the average of the five robotic hand configurationsmapped
from the five subjects.

2.1.1 Mapping to an Under-Actuated Robotic Hands

The same mapping method has been applied in [19] to an under-actuated robotic
anthropomorphic hand to evaluate how the postural synergies change with respect
to the fully-actuated case. The robotic hand considered in this work is the Schunk
5-Finger Hand (S5FH) [20]. Its structure is human-inspired, with dimensions com-
parable to those of humans and a weight of 1.3 kg. The hand possesses 20 degrees of
freedom actuated by only 9 motors, thanks to mechanical synergies that regulate the
kinematic couplings between the joints. These mechanical couplings are represented
by the matrix Sm in (1), where the relationship between the 20 joints and the 9 motors
is clear:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qto
qtcm
qtmcp

qtdip
qis
qimcp

qi pip
qidip
qmmcp

qmpip

qmdip

qpo
qrs
qrmcp

qrpip
qrdip
qls
qlmcp

qlpip
qldip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
q

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0 0 0 0 0 0 0 0
0 0.29 0 0 0 0 0 0 0
0 0.29 0 0 0 0 0 0 0
0 0.42 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.25
0 0 1 0 0 0 0 0 0
0 0 0 0.49 0 0 0 0 0
0 0 0 0.51 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.49 0 0 0
0 0 0 0 0 0.51 0 0 0
0.5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.25
0 0 0 0 0 0 0.26 0 0
0 0 0 0 0 0 0.36 0 0
0 0 0 0 0 0 0.38 0 0
0 0 0 0 0 0 0 0 0.5
0 0 0 0 0 0 0 0.26 0
0 0 0 0 0 0 0 0.36 0
0 0 0 0 0 0 0 0.38 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Sm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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m9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m

+q0, (1)

where q is the joints vector, m is the motors vector and q0 is an offset representing
the vector of joint values when the motor positions are zero.
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In this case, to map the subject fingertip positions for the 36 configurations to
the robotic hand, the CLIK algorithm must take these couplings into account. The
differential kinematics between themechanical synergies subspace and the Cartesian
space then becomes

ẋ = Jhs ṁ, (2)

where Jhs is the mechanical synergies Jacobian, computed as

Jhs = JhSm . (3)

In (2), ẋ is the derivative of the five fingertips position vector x ∈ R
15 and Jh is

the (15 × 20) S5FH Jacobian. The CLIK algorithm using the JTh has ultimately been
used to map the grasps executed by the five subjects to the S5FH, leading, as with
the DEXMART Hand, to the creation of a matrix of the configurations C ∈ R

36×9.

2.2 Hand Synergies Computation

Several methods have been proposed for computing the postural synergies. In [21–
23], the synergies subspace is constituted by a matrix of constant eigengrasps, while
in [24], the synergies are mapped directly to the robotic hand, resulting in a non-
constant synergy matrix.

The first method has been used in [19] on the matrix C = {c1, . . . , c36} after
centering through the vector c̄, which is the mean configuration over the 36 grasps.
In thisway, thematrixCnorm = {c1 − c̄, . . . , c36 − c̄} of the grasp offsetswith respect
to c̄ has been computed. The Principal Component Analysis can now be applied by
diagonalizing the covariance matrix of Cnorm such that

CnormCT
norm = ES2ET , (4)

where the (h × h) orthogonal matrix E gives the directions of the variance of the
data, while the diagonal matrix S2 represents the variance in each direction sorted
by decreasing magnitude. Moreover, the matrix E represents the base matrix of
the synergies subspace. Considering the entire (9 × 9) matrix, we obtain the whole
configuration space of the hand, but, analyzing the variance described by the first j-th
eigenvalues, it has been found that the first three principal components account for
>85% of the variance, in accordance with what has been proved for the human hand
in [13, 14]. This means that the matrix C can be reconstructed faithfully selecting
the three predominant components from the PCA:

Ê = [
e1 e2 e3

]
, (5)

while the configuration ci can be projected onto the postural synergies subspace with
a suitable choice of the parameter vector α ∈ R

3 of the postural synergies:
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Fig. 2 Mean configuration and first three eigengrasps for the S5FH

ĉi = c̄ + Ê

⎡
⎣

α1,i

α2,i

α3,i

⎤
⎦ . (6)

With these parameters, each synergy can be associated with a minimum and a
maximum configuration, obtained by spanning the respective eigenvector through
the minimum and maximum value of the associated weight αi without violating the
joint limits. Figure2 shows the mean configuration c̄ in the center and the minimum
and maximum configuration from each synergy computed on the Schunk 5-Finger
Hand.

It can be seen that the first synergy acts on the joints with a flexionmovement, thus
it is responsible for the opening and closing of the hand. The second synergy generates
opposite motions for the metacarpophalangeal flexion and proximal interfalangeal
flexion joints of the index and middle fingers (the ones without couplings). Finally,
the third synergy acts mainly on the flexion and opposition of the thumb.

2.3 Grasping Control in the Synergies Subspace

Each grasp posture can be reconstructed from the linear combination of the restricted
number of synergies adopted. From (6), it is easy to see that the coefficients of
the synergies, characterizing the i-th configuration, can be obtained with a simple
inversion:
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Fig. 3 Two examples of reconstructed configuration

⎡
⎣

α1,i

α2,i

α3,i

⎤
⎦ = Ê

†
(ci − c̄) , (7)

where Ê
†
is the Moore-Penrose pseudo-inverse of Ê.

Of course, since the synergies provide only the final posture, the entire movement
is not defined. However, we remember that in [14], it has been noticed that the human
being opens its hand when reaching for an object to grasp it. Thus, it is licit to assume
that a grasping movement might start from the initial configuration c̄, then go into
an open-hand configuration c0, and finally towards the grasp configuration ci . In this
way, the movement of the finger is obtained by means of a linear interpolation of the
three coefficients α corresponding to the three configurations mentioned above and
computed with (7).

However, due to differences between human hand and robotic hand kinematics,
some postures might not be accurate enough to allow for effective grasping of the
object. This is also clear from Fig. 3, where we can see that not all the fingers are in
contact with the objects. Thus, this simple approximation obtained bymeans of a few
predominant synergies must be integrated with an appropriate control law, operating
directly in the synergies subspace, in order to adjust the grasp and adapt the hand
to the shape of the object. The approach proposed in [19] is a CLIK algorithm, in
which a constant fingertip reference term is given by an approximation of the desired
grasp in the synergies subspace. This term will determine a good hand pre-grasping.
Afterwards, an additional term is designed to close the hand around the centroid of a
virtual object, calculated as the mean position of the fingers employed in the grasp.
The inverse kinematics is based on the synergies Jacobian given by ẋ = Jhss α̇, with
Jhss = JsSmSs and where Ss = Ê and α are the synergies coefficients of the grasp
posture. The latter are linked to the joint velocities by Eq. (8).

q̇ = Smṁ = SmSs α̇. (8)
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Fig. 4 Example of grasp
configurations without (left)
and with (right) the
additional term based on the
virtual object centroid

Moreover, to limit the grasping forces, the target position of the CLIK is limited
through the measured motor current and by means of a defined threshold related to
the texture of the object. The experiments have proved that a wide variety of objects
can be grasped with this control strategy in the synergies subspace. The algorithm
is stable and effectively modifies the finger positions to close the hand on the object
and regulate the contact forces (Fig. 4).

2.4 Mapping Human Arm Motion to a Robotic Arm

The same concept of hand synergies can be extended to the human arm. A mo-cap
suit has been used in [25]. The goal is the creation of a dataset of reaching-to-grasp
movements (thus waveforms and no longer static postures) for a robotic arm for the
computation of the arm synergies. The robotic arm is a KUKA Lightweight Robot
4+ [26], while the mo-cap system in question is the Xsens-MVN tool [27], composed
by the Xsens suit and the proprietary software Moven Studio. The Xsens is a full
body suit equipped with IMU sensors, named MTx, with advanced sensor fusion
algorithms and wireless communication. Seventeen MTx are mounted on the most
important parts of the human body, such as the head, chest, arm, forearm, hand,
and so on. These MTx send their data to the MVN software, which, after an earlier
calibration process, allows for real-time visualization of the humanmotion, playback
and editing of the received data. An important option of this software is given by the
possibility of sending data to third applications. Using an UDP/TCP-IP socket, the
MTx data have been sent to the robotic arm using a mapping method that exploits
the fact that the KUKA LWR presents 7 degrees of freedom, like the human arm.
This has enabled a faithful replication of the master’s movements.

To map her/his arm motion to the KUKA LWR 4+, the human master has to wear
the Xsens suit (Fig. 5). After the calibration procedure provided by the software,
the unit quaternions of the arm, forearm and hand, Qarm , Q f orearm and Qhand , are
continuously received from the C++ script, which is charged with controlling the
robotic arm by means of two CLIK algorithms. The first CLIK receives Qarm and
solves for the first three joints of the KUKA. The second CLIK receives Qhand and
solves for the other four joints of the robot arm. The elbow is a redundant joint
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Fig. 5 The human master wearing the Xsens suit in order to telemanipulate the KUKA LWR 4+
and S5FH hand-arm system

controlled in the null space of the robot Jacobian to impose the same angle between
the human arm and forearm, computed from Qarm and Q f orearm with (9):

θelbow = arccos

(
vav f

‖va‖‖v f ‖
)

, (9)

where va and v f are the respective directions of the arm and the forearm.
Using this setup, 38 grasps of balls and cylinders, of different shapes and sizes, and

with precision and power configurations have been performed. Since each acquired
motion has a different duration, a data conditioning process has been carried out using
Dynamic Time Warping (DTW) [28], in order that all of the same time length t f for
the N samples may be reached. As a result, the matrix M ∈ R

38×7×N of grasping
movements has been obtained.

2.5 Arm Synergies Computation

The approach presented in Sect. 2.2 for computing the hand postural synergies uses
the PCA technique on static configurations. To compute motion arm synergies, an
extension for multivariate waveforms of the PCA, namely Multivariate Functional
Principal Component Analysis (MFPCA), has been used. A well-recognized pro-
cedure for computing the MFPCA does not exist at the moment. A first approach
has been proposed in [29] and consists in stacking the waveforms recorded for each
demonstration and then performing a commonUnivariate Functional Principal Com-
ponent Analysis. The computed FPCA are then divided by the number of variables,
obtaining the single FPCs. Extensions of the clustering problem and of data analysis
of different dimensional domains have been respectively proposed in [30] and [31].
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These works have an approach based on the Karhunen-Loev̀e representation of the
data. A different method is illustrated in [32], in which the MFPCA is computed
by performing the PCA at each time step and then interpolating the results. Further
details about the theory behind the Univariate FPCA and the Multivariate FPCA can
be found in [31].

According to the Karhunen-Loev̀e theorem, each grasping movement

mi (t) = (
m(1)

i (t),m(2)
i (t), . . . ,m(7)

i (t)
)

with t ∈ [
0, t f

]
, i = 1, . . . , 38 (10)

can be seen as a realization of a stochastic process and, under some assumptions, can
be decomposed as

mi (t) = μ(t) +
∞∑
k=1

ξikϕk(t) with t ∈ [
0, t f

]
, (11)

where μ(t) is the vector of the mean functions of the joints, ϕk is the vector of the
k-th FPCs and ξik is the k-th coefficient (or score) of the respective FPC for the i-th
demonstration (Fig. 6). Thus, by truncating the sum to K terms, it is possible to
approximate and parametrize each grasping movement with K scalar coefficients.

In analogy with the postural synergies of the hand, the function ϕk represents the
waveform of a synergy, while the coefficient ξik modulates the latter to obtain the
movement.

From the MFPCA application on the matrix M, 7 mean functions[
μ(1)(t), . . . , μ(7)(t)

]
of the KUKA joints are obtained, K eigenfunctions[

ϕ
( j)
1 (t), . . . , ϕ( j)

K (t)
]
for each joint j representing the basis of the subspace for each

Fig. 6 Example of a mean function and the first 4 FPCs computed for the 5th joint
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joint, and a matrix � ∈ R
38×K , where each row contains the scores of the respective

demonstration.
From the analysis of the eigenvalues, it has been found that K = 2 FPCs are

enough to cover >90% of the variance.

3 Combining Synergies with Machine Learning

From Sects. 2.2 and 2.3, it is clear that synergic patterns can be computed to reduce
the number of parameters so as to control a high DoFs device.

In order to generalize the grasping strategy, a supervised learning system can
be trained with the goal of learning the non-linear function that links the object’s
characteristics to its coefficients, so as to estimate the synergies coefficients for
new objects. By selecting appropriate input features, such as the object type, its
dimensions and/or the type of grasp, a database of configurations can be created, as
in [19]. Applying the synergies computation to this database, a training set can be
obtained associating the synergies coefficients with each example (thus, with each
grasp performed). In this way, a Neural Networkmodel can be trained with one of the
several existing methods. Close attention, of course, must be paid to the creation of
the training set, which has to cover a large variety of object shapes and sizes, and to the
model hyperparameters tuning, such as learning rate, regularization term (to prevent
underfitting and overfitting), number of hidden layers and number of hidden units.
Anyway, a small percentage of error is always present when using neural networks.
In the case of synergies, this is due first and foremost to the approximation introduced
by their computation, and then to other reasons, like the training procedure itself.

To compensate for this error, in [33], a Reinforcement Learning strategy has been
integrated directly into the synergies subspace. In particular, amodified version of the
Policy Improvement with Path Integrals (PI2) algorithm [34, 35] has been used. The
policy update uses a probability-weighted averaging, without the needs of a gradient
estimate and avoiding numerical instabilities due to matrix inversions. The synergies
coefficients obtained from the neural network initialize the vector θ , representing
the mean value of a Multivariate Gaussian distribution. From the latter, a number K
samples are executed. K is defined by the user, along with the number of iterations
of the algorithm, the initial covariance matrix �ini t of the Multivariate Gaussian and
a decay rate of 0 < γ ≤ 1. The PI2 extracts these K samples and evaluates them,
using a function based on the grasp quality index defined in [36] and already used
in [19]. After the evaluation, the mean of the Multivariate Gaussian is updated by
weighting the previous trials and moving θ toward those attempts with better reward.
The covariance matrix, instead, is multiplied by the decay rate, in order to reduce
the dispersion of the subsequent trials from the good values obtained previously.
The algorithm proceeds in this way until it reaches an optimal mean value for the
Gaussian, with a covariance so small that the samples are too close to the mean to
bring substantial differences.
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The experiments are made with the robotic hand-arm system constituted by the
KUKA LWR 4+ and the SCHUNK 5FH. Exploiting the hand and arm synergies
computed in [19] and [25], two neural networks have been trained (one for the hand
and one for the arm) using the Matlab NN Toolbox to provide the initial synergies
parameters for a PI2 algorithm. Human supervision has been necessary (but could
be replaced in future by a vision system) to tell whether the object was grasped or
not, in order to evaluate the reward function adopted (12)

r(θ k) = V (θ k) + φ, (12)

where V (θ k) is the measured quality index and φ is

φ =
{

0 if grasp succeeds
103 if grasp fails

, (13)

which is chosen in order to penalize failed trials, and thus lead the convergence of
the PI2 toward the successful grasp.

4 Conclusions

The experiments carried out proved that the usage of 3 hand synergies and 2 arm syn-
ergies in amachine learning system composed by neural networks and reinforcement
learning allows the robot to improve its grasping capabilities through a trial-and-error
approach (Fig. 7).Machine learning techniques can be efficiently combinedwith syn-
ergies in order to create frameworks capable of reducing the complexity of control
by taking inspiration from human cognitive architectures.

(a) Precision grasp of a ball.

(b) Power grasp of a cylinder.

Fig. 7 Improvement of the grasp during execution of the algorithm
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