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Abstract This chapter discusses individual-based models (IBMs) and uses the
Overview, Design concepts, and Details (ODD) protocol to describe a predator-prey
evolutionary ecosystem IBM called EcoSim. EcoSim is one of the most complex
and large-scale IBMs of its kind, allowing hundreds of thousands of intricate indi-
viduals to interact and evolve over thousands of time steps. Individuals in EcoSim
have a behavioral model represented by a fuzzy cognitive map (FCM). The FCM,
described in this chapter, is a cognitive architecture well-suited for individuals in
EcoSim due to its efficiency and the complexity of decision-making it allows. Fur-
thermore, it can be encoded as a vector of real numbers, lending itself to being part
of the genetic material passed on by individuals during reproduction. This allows
for meaningful evolution of their behaviors and natural selection without predefined
fitness. EcoSim has been enhanced to increase the breadth and depth of the questions
it can answer. New features include: fertilization of primary producers by consumers,
predator-prey combat, sexual reproduction, sex-linkage of genes, multiple modes of
reproduction, size-based dominance hierarchy, and more. In addition to describing
EcoSim in detail, we present data from default EcoSim runs to show potential users
the types of data EcoSim generates. Furthermore, we present a brief sensitivity anal-
ysis of some variables in EcoSim, and a case study that demonstrates research that
can be performed using EcoSim. In the case study, we elucidate some evolutionary
and behavioral impacts on animals under two conditions: when primary production
is limited, and when energy expenditure is reduced.
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1 Introduction

Among biological disciplines, behavioral ecology has a strong tradition of account-
ing for the role of organism-environment interactions in behavior [69]. Behavioral
ecology and the related field of optimal foraging theory [118] model animal behavior
in terms of optimal adaptation to environmental niches. The goal is not to test whether
organisms actually behave optimally, but to use normative expectations to interpret
behavioral data and/or generate testable hypotheses. One approach for understand-
ing the behavior of complex ecosystems is through individual-based models (IBMs),
which provide a bottom-up approach allowing for the consideration of the traits and
behavior of individual organisms. Ecological modelling is still a growing field, at the
crossroads between theoretical ecology, mathematics, and computer science [109].
Since natural ecosystems are very complex (in terms of number of species and of
ecological interactions), ecosystem models aim to characterize the major dynamics
of ecosystems in order to synthesize the understanding of such systems and to allow
for predictions of their behavior. Ecosystem simulations can also help scientists to
understand theoretical questions regarding the evolutionary process, the emergence
of species, and the emergence of learning capacities. One of the most interesting
aspects of such ecosystem simulations is that they offer a global view of the evo-
lution of the system, which is difficult to observe in nature. However, the scope of
ecosystem simulations has always been limited by the computational possibilities of
their time. Today, it is possible to run simulations that are more complex than ever,
due to the availability of high performance computing resources.

Several ecosystem simulation platforms with various features exist. For exam-
ple, Echo, one of the first such models, is a basic ecosystem simulation in which
resources are limited and agents evolve [58]. In Echo, each agent, upon obtaining
the required resources to copy its genome, replicates itself with some mutations. The
agents, through interaction with other agents (combat, trade, or mating) or the envi-
ronment, can acquire resources. Polyworld is another such IBM software [129] to
evolve artificial intelligence through natural selection and evolutionary algorithms. It
displays a graphical environment in which trapezoidal agents search for food, mate,
and create offspring. The number of agents is typically only in the hundreds, as each
agent is rather complex and the environment consumes considerable computational
resources. In this model, each individual makes decisions based on a neural network
which is derived from each individual’s genome. Recently, Polyworld has been used
to study the effects of different neuromodulation models on the adaptability of its
individuals [131], finding that neuronal plasticity modulation (decreasing or increas-
ing the rate at which neuron weights change) tends to produce individuals that adapt
more effectively. It has also been used to study the way in which network topolo-
gies influence the evolved complexity of the networks [130] and, most recently, the
level of chaos as the individuals in the system evolve [128]. Avida is another artifi-
cial life software platform for studying the evolutionary biology of self-replicating
and evolving computer programs [97], inspired by the Tierra system [122]. Unlike
Tierra, Avida assigns every digital organism its own protected region of memory and
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executes its program with a separate virtual CPU. A second major difference is that
the virtual CPUs of different organisms can run at different speeds. The speed at
which a virtual CPU runs is determined by several factors, but most importantly by
the tasks that the organism performs: logical computations that the organisms can
carry out to reap extra CPU speed as a bonus. With increasing computational power,
individual-based simulation platforms such as Tierra, Avida, Polyworld, and EcoSim
[45, 74, 108, 129] can be used to address increasingly difficult questions in biology
[22, 23, 43, 75]. EcoSim [45], in particular, has been designed to model large-scale
virtual ecosystems.

Recently, much has been done in the field of ecological IBMs on threemain fronts:
formalization anddevelopment practices of IBMs, pragmaticmodelling, and paradig-
matic modelling. In regard to formalization and development practices, some insist
that there is an increasing need for developers of IBMs to be transparent about the
process used to develop amodel [5, 49, 113]. They argue that potential clients need to
have a thorough understanding of themodel so that they can knowwhether the model
is applicable to whatever they would like to test. Clients need formal statements of
the question(s) the model is designed to answer, descriptions of the submodels and
their organization within the model, information on the degree of testing performed
on the model, and the rationale behind making any modifications throughout the
long and iterative process that is the “modelling cycle”. So, several researchers have
proposed and subsequently revised [49] a new standard format for the description
of an IBM, TRAnsparent and Comprehensive Ecological modelling documentation
(TRACE) [113], which differs from the previously-proposed ODD protocol [47] in
that TRACE is more comprehensive and more concerned with describing the devel-
opment cycle and practical ability of a model. Furthermore, the ODD protocol can be
used within TRACE as a means of describing the model’s implementation. TRACE
complements the principle of “evaludation” [5], representing an urged evaluation
and validation of a model throughout the development, application, and analysis of
it. The current revision of TRACE intends to focus the developer on documenting
the modelling process for the sake of ensuring quality and credibility throughout
said process, as the originally proposed TRACE was less efficient and less specific
regarding its goals. MacPherson and Gras [79] argue that there is too much of a
focus on “evaluation” and that not all IBMs are “merely adjunctive tools”. More
specifically, pragmatic models, focusing on a particular species or system usually
with intent of making predictions in applied ecology, should undergo a more rig-
orous parameterization process using empirical data, be subject to evaludation, and
be more stringently documented. Pragmatic models are often tied to conservation
efforts or the management of delicate ecosystems, and so a model must be realistic
enough to effectively predict how a specific (very complex) ecological system will
behave. On the other hand, MacPherson and Gras argue that paradigmatic models
are, in fact, experimental platforms. Though they must be realistic enough, in the
general sense, there should be less of a focus on incorporating empirical data into
the calibration or parameterization of them, as they are typically designed to answer
rather general theoretical questions, the results of which we often have no means of
historically validating due to the scale of interactions being emulated in the simula-
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tion. Furthermore, they argue that paradigmatic models can lose generalizability by
over-calibrating the model empirically. They propose a relaxed notion of model eval-
uation by removing the constraint of empirically calibrating a model; they instead
insist that the calibration be reasonable, that is, consistent with general observations
in nature.

Pragmatic models are those that aim to model a specific system or population,
and most IBMs are pragmatic in nature [25]. de los Santos et al. [27], for instance,
designed an IBM of a marine amphipod, Gammarus locusta, to assess the effect of
long-term exposure to a chemical pollutant, aniline, onG. locusta populations. They
used real life-history traits ofG. locusta to parameterize the model, and observed sig-
nificant negative impacts in individual survivorship and production of offspring with
exposure to aniline. Other recent works in pragmatic modelling include a toxicologi-
calmodel for zebrafish [50], amodel eliciting effects of climate change on population
dynamics in European anchovies [104], amodel formanagement of brown trout [33],
and a model for motion of the blue mussel, Mytilus edulis [26].

As the naming convention suggests, paradigmatic modelling moves away from
answering specific questions and instead aims to uncover the underlying causes of
more generalized ecological or evolutionary phenomena [25]. Zaman et al. [132],
for example, used Avida to show that parasite-host interactions increase the com-
plexity and evolvability of digital organisms over a long time-frame. Avida has been
used in several other recent works [32, 39, 71, 100]. Similar to Zaman et al. [132],
Kvam et al. [70] also studied the complexity of the brain of a population of digital
organisms, in this case Markov Brain agents. In contrast, they studied complexity
in light of the problem-solving environment the agents were subject to. Olson et
al. [99] used Markov Brain Agents as well, but instead they placed the agents into
a toroidal world and observed changes in physical cluster tightness when subject
to different types of predator attacks. Botta-Dukát and Czúcz [12] generated a spa-
tially implicit IBM to simulate community compositions and tested the ability of
five functional diversity indices. Functional diversity indices aim to determine the
number of functionally different species in a community. Their simulation accounted
for habitat filtering (suitability of an individual to a habitat—a means of local trait
convergence) and trait-similarity-based competition for resources (a means of local
trait divergence) in composing the simulated communities.Withmechanisms causing
individual trait divergence and convergence, they could effectively test the functional
diversity indices for their ability to detect these two key assembly processes. They
found trait divergence was difficult to detect for all the indices tested, whereas trait
convergence was detectable by some indices. Uchmański [124] found, using an IBM,
that dispersal mechanisms of individuals affect the persistence of metapopulations.
In different runs of the simulation, individuals would disperse from their current
habitat to another unoccupied neighboring habitat for different reasons (when one
gains no resources resulting from competition, when competition yields insufficient
resources to produce an offspring, random chance, or when no individuals in a habitat
could reproduce). If individuals dispersed due to total loss of resources due to compe-
tition, the metapopulations persisted longest. Similarly, when individuals dispersed
due to insufficient resources for reproduction, the metapopulations persisted longer
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than by chance. If individuals waited until none in a habitat could reproduce, the
metapopulations failed to persist longer than cases in which dispersal was random.
Another recent paradigmatic IBM tested the effects of patch size and refuge abun-
dance on the strength of predator-prey interactions and population dynamics [77].
They found that refuge availability decreased the interaction strength between prey
and predators, which consequently improved the stability of populations. CDPOP
[72] and its descendant CDMetaPOP [73] are both IBMs that use Mendelian inheri-
tance with any number of alleles and loci to study the effects of a varying landscape
of (nearly) any complexity on the genetic structure and composition of populations
or metapopulations. Though natural selection does occur, individual fitness is also
influenced by user-specified spatially explicit fitness values for each genotype that
is selected upon.

EcoSim is a large-scale evolving predator-prey paradigmatic ecosystem simula-
tion that can be used to perform studies in theoretical biology and ecology [43, 84].
It has been shown that EcoSim generates patterns as complex as those observed in
real ecosystems [40]. Several studies have been done using EcoSim. Devaurs and
Gras [28] have shown that the behavior of this model is realistic by comparing the
species-abundance patterns observed in the simulation with real communities of
species. Furthermore, chaotic behavior [40] with multi-fractal properties [41] of the
system has been proved to be similar to that observed in real ecosystems [114], and
Golestani, Gras, and Cristescu [43] have measured the effect of small geographic
barriers on speciation in EcoSim. The effect of the spatial distribution of individ-
uals on speciation has been investigated by Mashayekhi and Gras [83]. Khater et
al. [61] demonstrated that introduction or removal of predators in an ecosystem
can have widespread effects on the survival and evolution of prey by altering their
genomes and behavior.Mashayekhi et al. [84] proved that the extinctionmechanisms
in EcoSim are similar to those of real communities. Lastly, a study by Gras et al.
[46] used EcoSim to elicit the roles of natural selection and spatial isolation in the
speciation process. They were able to unequivocally demonstrate that in order to
observe genetic clusters (species), natural selection must be present. The number of
individuals per species was much greater, species abundance distributions were far
more even, the compactness and separation of genetic clusters were far greater, and
hybrid production was far lower (after sufficient time had passed in the simulation)
in runs where natural selection was present.

Real ecosystems are extremely complex systems with numerous interacting com-
ponents and feedback loops. No paradigmatic model has all of the features of real
ecosystems; consequently, these artificial systems are restricted to a small spec-
trum of possible questions to be answered. EcoSim was already quite complex and
diverse in the types of questions it could answer, but we have added specific features
to further improve its realism and applicability. Our objective is to propose to the
community an improved simulation platform that models as many of the important
features of real ecosystems as possible. Of course, not every significant feature of real
ecosystems could be integrated into such a simulation platform. However, we have
chosen a set of features that seem most important in modelling a stable, long-term
evolutionary ecosystem and to provide the mechanisms needed to answer the largest
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possible spectrum of important theoretical questions. The three most important fea-
tures we have added to EcoSim are fertilization of soil via animal excretion, the
ability of prey to defend against attacking predators (individually or cooperatively),
and a female/male binary sex systemwith sexual reproduction. In previous iterations
of EcoSim, individuals were of uniform sex and any two individuals of the same type
(prey or predator) could attempt to reproduce.

There is a vast array of indirect impacts of herbivores on plant community fea-
tures [6, 98]. Most importantly, herbivores affect the quantity and quality of organic
matter returning to the soil [7, 8, 56, 126]. Generally, animal excreta facilitates
decomposition through increasing soil microbial biomass [7, 34] and net Carbon (C)
and Nitrogen (N) mineralization [35, 89]. Feces and urine also make it easier for
plants to absorb, thereby increasing their growth rates [51]. Thus, herbivores are able
to influence their own food supply [29, 54, 125] by producing negative feedback
against the reduction of resources they consume. In order to include this complex
feedbackmechanism,we introduced a newconcept to our simulated ecosystemcalled
“fertilizer”, which models the effect of prey fertilizing their environment.

There is limited experimental evidence in the ecological literature regarding mob-
bing behavior as a kind of reciprocal altruism between heterospecifics. Krams et al.
[67] and Krams et al. [68] report that breeding Fecedula hypoleuca (pied flycatch-
ers) engage in mobbing behavior primarily with heterospecifics as a form of defense
against predation. As Krams et al. [67] note, there is little empirical evidence for the
existence of mobbing behavior as a form of reciprocal altruism. EcoSim could thus
be used to test for mobbing behavior as a form of reciprocal defense in the presence
of predation. In a related vein, an important unresolved debate in the biological lit-
erature is whether eusociality evolved via kin selection or group selection; Nowak
et al. [96] claim that group selection rather than kin selection (inclusive fitness)
combined with haplodiploidy theory is the best way to explain eusociality. They
suggest that there may be no real relation between haplodiploidy and eusociality,
and argue that inclusive fitness theory is not sufficiently general since it is a simple
mathematical theory that has great limitations [96]. Furthermore, Nowak et al. [96]
argue that there is no empirical confirmation of inclusive fitness theory. On the other
hand, Marshall [82] and Abbot et al. [1] argue that recent evidence helps to support
inclusive fitness theory. Since there is apparently an argumentative stalemate regard-
ing whether kin selection or group selection drives evolution, EcoSim could help to
resolve this debate by testing the hypothesis that kin selection explains the evolution
of eusociality and altruism. Finally, another important issue in evolutionary theory
is whether predation selects for morphological defenses in prey. Bollache et al. [14]
argued that the main reason that the invasive amphipodGammarus roeseli was eaten
less than the native amphipod species Gammarus pulex was due to the presence of
a spin on G. roseli, as opposed to behavioral differences. EcoSim could be used to
help resolve the debate regarding whether morphology or behavior is a key inducible
defense against predators.

Typically, in sexually reproductive species in which sexual dimorphism exists,
females are generally choosier thanmales when selectingmates. Compared tomales,
females typically invest far more resources (time and energy) into offspring. For
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instance, females typically providemore parental care thanmales. Females also invest
more in gametes for sexual reproduction; males produce the microgamete sperm,
whereas females produce large, nutritious eggs.Moreover, unlikemales, females only
produce a limited number of eggs as long as they are reproductively active; therefore,
there is more risk associated with mate choice [2]. To broaden the applicability and
increase the realism of EcoSim, we introduced a model for sexual reproduction into
the simulation. Previously, there was no categorization of individuals by sex; any
individual could attempt reproduction with any other of the same type (prey with
prey, predators with predators). Now, prey and predator individuals are divided into
two groups,males and females. Furthermore, we havemade significantmodifications
to reproductionmechanisms such as selection ofmates, energy dynamics, and genetic
recombination; these changes reflect the information-gathering and decision-making
process that is mate choice [9]. These new improvements were aimed at unravelling
some of the most controversial issues in behavioral ecology, such as the evolution of
female preference.

In addition to presenting the new version of EcoSim following the updated 7-
points Overview, Design concepts, and Details (ODD) standard protocol [47, 48],
we present and discuss data fromEcoSim in its default configuration.We also analyze
the divergence of two sister species in EcoSim.We then present a sensitivity analysis
on three parameters of EcoSim: the amount of energy spent per time step for prey and
predators, the maximum amount of grass held in cells, and the initialization of newly
added social concepts related to defense. The purpose of this sensitivity analysis was
to show how sensitive or robust EcoSim is to these parameters. Finally, we present
a case study of EcoSim’s application; we determined the behavior and evolution of
individuals under two conditions: reduced primary production (thereby increasing
competition) and reduced energy expenditure. This study serves as an example of
the types of study that are made possible by the EcoSim platform.

2 ODD Description of EcoSim

EcoSim is an individual-based ecosystem simulation [45, 85] for simulating ani-
mals’ behaviors in a dynamic, evolving ecosystem. The individuals of EcoSim are
prey and predators acting in a simulated environment. A description of the older
version of EcoSim can be found in [84, 85]. In addition to the main features out-
lined above, EcoSim has been expanded by adding several smaller features such as:
new individuals’ perceptions of their environment, new actions, new physical traits
(governed by what we call the physical genome), sex-linked genes, various modes
of reproduction, modified acting priority for individuals, new ways to control the
dynamics of the environment, and new crossover and mutation operations that con-
sider an individual’s sex. Below, we describe the new version of EcoSim following
the updated 7-points Overview, Design concepts, and Details (ODD) standard pro-
tocol [47, 48].EcoSim source code (in C++) can be obtained from the repositories



230 R. Scott et al.

at https://github.com/EcoSimIBM, and more information on EcoSim can be found
at https://sites.google.com/site/ecosimgroup/home.

2.1 Purpose

EcoSimwas designed to simulate animal behavior in a dynamic and evolving ecosys-
tem. Themain purpose of EcoSim is to study biological, ecological, and evolutionary
theories by constructing a complex adaptive system that leads to a generic virtual
ecosystem with behaviors like those found in nature. Due to the complexity, scale,
and resource requirement of studying these theories in real biological systems, simu-
lations of this nature are necessary. EcoSim uses a fuzzy cognitive map (FCM; [66])
to model an individual’s behavior. Since the FCM is coded in the genome and heri-
table, behavior can evolve during the simulation. Importantly, the fitness of a given
set of behaviours and physical traits is not predefined. Instead, fitness emerges from
interactions between the model organisms and their biotic and abiotic environment.

2.2 Entities, State Variables, and Scales

2.2.1 Individuals

EcoSim has two types of individuals: prey and predators. Each individual possesses
two types of traits: acquired and inherited traits (Table1). The former varies depend-
ing on the environmental conditions and the latter is encoded in an individual’s
genome and is fixed during its lifetime. The age and speed are initialized to zero for
newborn individuals, while energy, a crucial property of the individual, is initialized
based on the amount of energy invested into a newborn by its parents at reproduction
time (State of Birth or SOB—see Reproducing under Submodels). Afterward, energy
is provided to the individuals by resources (food) that they find in their environment.
Prey consume grass, which is dynamic in quantity and location (see Submodels for
grass diffusion model), whereas predators hunt for prey individuals or scavenge
their remains when they die. Strength of an individual is calculated based on its
current energy (Energy), maximum energy (MaxEnergy), age (Age), maximum age
(MaxAge) and reproductive age (RepAge). Young (Age is less than RepAge) and
old individuals (Age is greater than or equal to MaxAge minus RepAge) have less
Strength. Strength can range from 25% of an individual’s MaxEnergy (if the individ-
ual is too young or old and has energy approaching zero) to 100% of the individual’s
MaxEnergy (if the individual has energy greater than or equal to 1/3 of itsMaxEnergy
and the individual is not too young or old).

Each individual performs one unique action during a time step, based on its
perception of the environment and state (see Emergence under Design Concepts).
At each time step, each individual spends energy depending on its selected action

https://github.com/EcoSimIBM
https://sites.google.com/site/ecosimgroup/home
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Table 1 Several physical and life history characteristics of individuals from five independent runs.
The values for the inherited features are the values at initialization, and for the acquired features
they are the average values over 20,000 time steps

Type Characteristic Male predator Female predator Male prey Female prey

Inherited Maximum
energy

3000 3000 2500 2500

Maximum
age

50 50 46 46

Vision 20 20 8 8

Maximum
speed

20 20 6 6

Minimum age
of
reproduction

5 5 6 6

State of birth 14 18 12 16

Defense N/A N/A 0.05 0.05

Cooperative
defense

N/A N/A 0.05 0.05

Acquired Average
energy

2312.2 2211.4 1664.9 1678.3

Average age 16.5 13.7 14.3 12.3

Average
speed

3.4 2.9 6.5 6.0

Average
strength

3306.3 3107.9 2478.9 2439.7

(e.g., reproduction, eating, moving), the complexity of its behavioral model (number
of existing edges in its FCM; see Adaptation under Design Concepts for details),
and its physical characteristics (encoded in its physical genome; see Adaptation
under Design Concepts for details). To achieve a realistic rate of energy expenditure
we involved as many of its contributory factors as possible and used empirically-
determined physiological scaling rates (see Eq. (1), per time step energy penalty for
prey, and Eq. (2), per time step energy penalty for predators). In general, any action
performed by a living organism is involved in spending some amount of energy [20],
dependent on what the action is [11]. Thus, the action performed was included as a
contributing factor in energy expenditure (Eqs. (1) and (2)). Moreover, the size of a
living organism plays a fundamental role in its metabolic rate [21]. In EcoSim, the
size of each individual is modelled through its MaxEnergy and Strength. MaxEnergy
is a heritable limit on an individual’s capacity to store energy, whereas Strength is a
slightly more complex proxy of size, being derived from an individual’s MaxEnergy,
Energy, and Age. Experimental and empirical investigations have demonstrated that
there is a nonlinear relationship between adult animal’s bodymass and theirmetabolic
rate, which is best described by a 3/4 scaling exponent [53, 64, 65, 94, 102, 103,
107, 112, 116, 117]. Consequently, the metabolic rate of an individual in EcoSim is
quantified through a power function of coefficient 3/4 on its MaxEnergy (Eqs. 1 and
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2). Energy expenditure associated with movement is also modelled in EcoSim using
the kinetic energy equation (KE), and here we use Strength as a proxy of mass (KE
= mass × speed2, Eqs. (1) and (2)). The complexity of an organism’s behavioral
model increases an individual’s energy expenditure, because it has been accepted
that species belonging to a higher-level taxonomic affiliation require more energy to
survive [91, 92]. Individuals with a larger brain also require more energy, as the brain
is an expensive organ in terms of specific chemical and thermoregulatory needs [31,
127]. Consequently, possessing a large brain leads to a heaviermetabolic requirement
[111]. The complexity and the size of the brain vary in different species; while some
species possess a very simple and small brain, many higher vertebrates have a brain
so large and complex that it is considered as the most complex organ in these species
[115]. Therefore, we also include this parameter in calculating the energy spent by
an individual. Taking these points into consideration, the energy spent by prey (1)
and predators (2) at any time step is given by the following equations:

Energy Spent by Prey = 0.8 × max
(
(NbArcs − 100)0.75, 1

)

+ (Strength × Speed2)

10, 000
+

(
MaxEnergy

5.5

)0.75

+ (Vision × 5.0)0.75 + (MaxSpeed × 5)0.75

+ (Defense × 100)0.75 + (CoopDefense × 75)0.75

+ (max(0.8 − RepAge))2.3, (1)

Energy Spent by Predator = (
0.8 × max

(
(NbArcs − 130)0.75, 1

))

+
(
Strength × Speed2

)

11, 000
+

(
MaxEnergy

5.5

)0.75

+ (Vision × 5.0)0.75 + (MaxSpeed × 5)0.75

+ (max(0.7 − RepAge))2.3, (2)

where NbArcs is a measure of the complexity of the individual’s brain based on the
number of edges in its FCM (see Adaptation under Design Concepts for details),
Vision refers to the distance up to which the individuals can see (which is initially
8 cells for prey and 25 cells for predator), Defense quantifies the ability of the prey
individuals to protect themselves when they are attacked by predators, CoopDefense
quantifies the ability of a prey individual to protect other prey in its cell, and RepAge
is the age at which the individuals can start reproducing.

All individuals first perceive their environment (all the surrounding cells in their
vision range) before using their behavioral model to choose a single action (see
Emergence under Design Concepts for details of how individuals choose actions).
After perceiving its environment (including grass resources, prey, predators, etc.),
the possible actions for a prey individual are: evade (escape from predator), search
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for food (if there is not enough grass available in its cell, prey can move to another
cell to find grass), socialize (move to the closest prey in the vicinity, move to the
cell with strongest prey, move to the cell with the greatest total prey strength, and
move to a cell with the least total prey strength), explore, rest (to save energy), eat,
and reproduce. Predators also perceive their environment to gather information used
to choose an action among: hunt (to catch and eat a prey), move to the cell with
strongest prey, move to the cell with the least total prey strength, move to the cell
with the weakest prey, search for food, socialize (move to the closest predator in the
vicinity, move to the cell with strongest predator), explore, rest, eat, and reproduce.
See the Submodels section for a full description of actions. Every individual takes
one action per time step, after which its energy level and strength are adjusted. The
age of all individuals is also increased by one unit at each time step. In addition to the
acquired physical traits mentioned above, each individual has many state variables
that, together, represent its state of mind. These variables are the values held in
the nodes of each individual’s FCM. Each FCM node has a single value that is its
activation level (degree of stimulation) of its represented concept. Concepts can either
be sensory, such as the individual’s perception of local food, internal, such as the
individual’s hunger, or action, such as the individual’s willingness to perform the eat
action (see Emergence, Adaptation, and Submodels for more information).

2.2.2 Time Step

Each time step involves each individual perceiving its environment, making a deci-
sion, and performing one action. In addition, species memberships are updated and
all relevant variables (e.g., quantity of available grass) are recorded (see Process
Overview and Scheduling for algorithm).

2.2.3 Cells and Virtual World

The smallest units of the environment are cells. Each cell represents a large space
which may contain an unlimited number of individuals, some limited amount of
food, and some limited amount of fertilizer. The number of individuals a cell can
host, therefore, is indirectly limited by the amount of food a cell contains. There are
two types of food: grass, which only prey can eat, andmeat, which only predators can
eat. Grass amounts are controlled by a grass diffusion and growth model, and meat is
generatedwhenpredators kill prey (seeSubmodels for grass diffusionmodel andmeat
generation). Fertilizer is produced by individuals residing in a cell (see Submodels
for fertilizer dynamics). The virtual world consists of a matrix of 1000 × 1000 cells.
The world is large enough that an individual moving in the same direction over the
course of its entire life could not even cross half of it, and thus high-level movement
patterns can be observed. The virtual world wraps around to remove any spatial bias.
In addition, the dimensions of theworld are adjustable, but expanding the dimensions
increases the computational requirements (time and memory) of the simulation.
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2.2.4 Species

By default, numerous prey and predators coexist in the simulation at any time step.
Alternatively, the simulation can be run without predators. For each type, there is
some number of species determined by the genetic makeup of the sets of individuals.
There is at least one prey species and one predator species unless an extinction occurs,
and at most there can be one species per individual. A species is a set of individuals
with sufficiently similar genomes (see Collectives under Design Concepts for more
details about speciation).

2.3 Process Overview and Scheduling

At each time step, the value of the state variables of individuals and cells are updated.
The overview and scheduling of every time step is as follows:

1. For prey individuals:

1.1. Perceive environment
1.2. Compute next action
1.3. Increase Age
1.4. Females that chose to Reproduce act in order of decreasing Strength (to

simulate female choice in mate selection)
1.5. Remaining prey act in order of decreasing Strength
1.6. Update list of prey (as some may have died due to depletion of Energy or

maximum Age)

2. For predator individuals:

2.1. Perceive environment
2.2. Compute next action
2.3. Increase Age
2.4. Females that chose to Reproduce act in order of decreasing Strength (to

simulate female choice in mate selection)
2.5. Remaining predators act in order of decreasing Strength
2.6. Update list of predators and prey (for predators, some may have died due

to depletion of Energy, maximum Age, or combat with prey; for prey, some
may have died due to predation)

3. Sort prey in order of decreasing Strength
4. Sort predators in order of decreasing Strength
5. Update prey species
6. Update predator species
7. For every cell in the world

7.1. Update Fertilizer level
7.2. Update Grass level
7.3. Update Meat level
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The complexity of the simulation algorithm is mostly linear with respect to the
number of individuals. If we consider that there are N1 prey and N2 predators, then
the complexity of parts 1 and 2 of the above algorithm, including the clustering
algorithm used for speciation, will beO(N1) andO(N2), respectively [4]. The sorting
parts (parts 3 and 4) have a complexity of O(N1log(N1)) and O(N2log(N2)), but
are negligible in computational time so we will exclude them from the complexity
computation. The complexity of parts 5 and 6 will beO(N1 + N2). The virtual world
of the simulation has 1000 × 1000 cells, therefore the complexity of part 7 will
be O(k = 1000 × 1000). As a result, the overall complexity of the algorithm is
O(2N1 + 2N2 + k), which is O(N = 2N1 + 2N2). In terms of computational time,
the speed of simulation per time step is related to the number of individuals. Recent
executions of the simulation produced approximately 20,000 time steps in 60 days.

2.4 Design Concepts

2.4.1 Basic Principles

The genome of each individual consists of two parts: a physical genome and a behav-
ioral genome. An individual’s genome is fixed at birth. When a new offspring is
created, it receives a genome that combines the genomes of its parents with some
possible mutations. An individual’s physical genome determines its physical char-
acteristics and its behavioral genome determines its behavioral characteristics. An
individual’s physical genome comprises values that represent its physical attributes
(see Table1, inherited traits).

The behavioral model of each individual is encoded as an FCM [45] (Fig. 1).
Formally, an FCM is a directed graph that contains a set of nodes C and a set of
edges I (Fig. 1); [66]. Each node Ci represents a concept and each edge Iij represents
the influence of the concept Ci on the concept Cj. A positive weight associated with
the edge Iij corresponds to an excitation of the concept Cj from the concept Ci,
whereas a negative weight represents inhibition. A zero value indicates that there
is no influence of Ci on Cj. The edges of an FCM can be represented by an n × n
matrix, L, in which n is the number of concepts and Lij is the influence of the concept
Ci on the concept Cj. If Lij = 0, there is no edge between Ci and Cj. An individual’s
behavioral genome is its set of FCM edges (its matrix L). Since the edges of the FCM
are encoded in the genome, the behavioral model is heritable, mutable, and subject
to evolution. Individuals act at each time step by using their FCM to compute their
action (see Emergence). The activation level (degree of stimulation) of each concept,
represented as the value held in its corresponding node, is dynamic in each individual.
Collectively, the activation levels of every one of an individual’s nodes represent
the individual’s behavioral state. In each FCM, three kinds of concept are defined:
sensory (such as distance to foe or food, amount of energy, etc.), internal (fear, hunger,
curiosity, satisfaction, etc.), and action (evade, socialize, explore, reproduce, etc.). At
each time step, the activation level of a sensory concept is computed by performing
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Fig. 1 An example FCM of a predator a and prey b. Red edges between nodes indicate negative
association (inhibition) of a concept (where the edge begins) with another (where the edge points
to), and blue edges indicate positive association (excitation). The thickness of the edges represents
the magnitude of the gene. The leftmost column of nodes is sensory concepts, the middle is internal
concepts, and the rightmost is action concepts. There are many unconnected nodes because we aim
to observe evolution in action; over time, new edges may form and others may disappear
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a fuzzification of the information that the individual perceives in the environment
(changing its real scalar value into a fuzzy value, i.e., transforming the input value
by a potentially nonlinear function). Subsequently, for an internal or action concept
C, the activation level is computed from the weighted sum of the current activation
level of all input nodes by applying a defuzzification function (another nonlinear
function transforming the fuzzy input value into the final’ real’ value).

We will illustrate the operation of the FCM with a simplified example prey FCM
(Fig. 2) consisting of only four nodes (EnemyClose, EnemyFar, Fear, and Evade).
EnemyClose and EnemyFar are sensory concepts, whereas Fear is internal and Evade
is an action. All sensory nodes appear in pairs, like EnemyClose and EnemyFar;
the activation level of one of these nodes is always equal to 1 − a, where a is the
activation level of the other. The individual perceives its environment to get a raw
value for the distance to the nearest predator; this raw value is fuzzified to compute
values between 0 and 1 for the activation levels of EnemyClose and EnemyFar by
nonlinearly transforming it. To compute the activation level of Fear, a weighted sum
of the activation levels of all nodes with incident edges to Fear is computed and the

Fig. 2 A simplified example prey FCM for detection of predators (bottom left), with fuzzification
(top left) and defuzzification (top right) functions, and its matrix (bottom right) which is the behav-
ioral genome of the individual. EnemyClose and EnemyFar are sensory concepts, Fear is an internal
concept, and Evade is an action concept. The edges of the FCM show influence of the activation
level of a node on another. In the matrix, rows represent influencing concepts and columns rep-
resent those that are influenced. Row and column indices of 0 represent EnemyClose, 1 represent
EnemyFar, 2 represent Fear, and 3 represent Evade
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weights are the edge values from the behavioral genome. From our example, Fear
has incident edges from EnemyClose and EnemyFar, thus we use edge weights from
the behavioral genome for EnemyClose → Fear and EnemyFar → Fear to compute
the weighted sum. The same computation is performed for the activation level of
Evade. Finally, if Evade is the action selected by the individual (if, of all action
concepts, it has the highest activation level), the speed of evasion is computed by
defuzzifying the activation level of Evade. In the behavioral genome where no edge
exists between two nodes (for instance, EnemyClose → Evade), the corresponding
genes have values of zero. However, as individuals evolve, new edges can be added
and pre-existing edges could be removed.

2.4.2 Emergence

This representation of the behavioral model allows for the apparition of positive
and negative feedback loops. For instance, an individual may evolve a positive edge
between the internal concept Fear and itself—this positive feedback loop can allow
complex phenomena such as paranoia to emerge. Similarly, negative feedback loops
can evolve that stabilize individual behavior. For instance, a negative association
between EnergyHigh and Hunger with a positive association between Hunger and
Eatmeans that after an individual replenishes its energy by performing the Eat action,
it is less willing to eat again until its energy levels are lower. The fuzzification and
defuzzification mechanisms allow for nonlinear transformations of the perception
signal, which permits, for example, the representation of saturation of information.
An individual’s action is selected based on the action node with the highest activation
level. Because of the way in which the behavioral genome determines the behavior of
individuals and how the physical genome determines their physical capabilities, the
evolution of behavioral and physical properties of individuals is emergent and it also
influences other emergent properties of the system, such as number of individuals,
spatial compactness of individuals (a proxyof competition for resources), andnumber
of species.

At the initiation of the simulation, prey and predators are scattered randomly all
around the virtual world (see Stochasticity for a description of this process). Through
the course of the simulation, the distribution of the individuals in the world changes
based on many different factors such as behavior selection (prey escaping from
predators, individuals socializing to form groups, and individuals moving to find
food resources). In addition, emergent high-level migration phenomena and group-
ing patterns with spiral waves can be observed because of these complex interactions
between the individuals and their environment. The distribution of individuals form-
ing spiral waves is one property of prey-predator models ([42]; Fig. 3).
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Fig. 3 A cropped image of an EcoSim run at time step 20,000. Hungry predator individuals (red)
chase fleeing prey individuals (green), one of the many contributory factors to the emergent high-
level movement patterns we observe

2.4.3 Adaptation

The behavioral genome’s maximal length is fixed (663 genes for prey and 756 for
predator), where each site corresponds to an edge between two concepts of the FCM.
However, many edges have an initial value of zero; only 117 edges for prey and 131
edges for predators have nonzero values at initialization. Each gene of the behavioural
genome follows the continuum-of-alleles model [19] and can take values between
−12 and 12. These alleles represent the strength of the positive or negative influence
of one concept on another, such as the strength of the association between level of
hunger and willingness to eat. In addition to the behavioral genome, every individ-
ual has a physical genome that describes its physical characteristics, with each trait
coded by one gene.Maximumenergy (MaxEnergy),maximumage (MaxAge), vision
(Vision), maximum speed (MaxSpeed), minimum reproductive age (RepAge), and
state of birth (StateOfBirth) are physical traits that both prey and predators possess.
Prey have two more traits: defense (Defense), and cooperative defense (CoopDe-
fense), so they can protect themselves from predators. The mechanisms involving
the various physical traits are described further below and under Submodels.
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Both genomes have two representations—a lightweight byte vector representa-
tion used for efficient storage in save files and for the computing of evolutionary
distances and evolutionary operations, and a floating-point vector representation
used for all other computing (activation levels, action selection, physical distances,
energy dynamics, etc.). The mapping between these representations differs between
the genomes. Both representations are fixed at birth for the individual’s lifespan.
For the behavioral genome, the byte value of zero maps to the floating-point value
of zero. Any byte value less than 128 is reduced by 128 and then divided by 10 to
get its associated floating-point value. Any byte value greater than or equal to 128
is reduced by 127 and then divided by 10 to get its associated floating-point value.
Thus, byte values from zero to 127 take the range of [−12.7, 0] and byte values from
128 to 255 take the range of [0.1, 12.8]. For example, under this representation, a
byte value of 76 yields a floating-point value of −5.2((76 − 128)/10) and a byte
value of 200 yields 7.3 ((200 − 127)/10). For the physical genome, the floating-
point representation of each gene has a minimum and a step. For byte value k, its
floating-point equivalent is minimum + (k × step). For instance, MaxEnergy has a
minimum of 100 and a step of 25. Thus, a byte value of 17 for MaxEnergy yields a
floating-point value of 525.0.

The genomes of two parent individuals are transmitted to an offspring individual
after recombination and potentially some mutations. EcoSim incorporates genetic
recombination through crossover, and in the behavioral genome this includes epis-
tasis (e.g., multiple stimuli can influence a given drive) but no pleiotropy (each gene
influences only one link between nodes). To model this form of linkage, alleles of the
behavioral genome are transmitted by blocks. All incident edges for a given FCM
node are transmitted together from a randomly selected parent with equal probability
(there is no recombination among genes representing edges to a given node). Sex-
linkage occurs for perception nodes, as the selected parent is of the same sex as the
offspring. Sex-linkage of MaxEnergy occurs, as it is a weighted sum of that of its
parents. The parent with the same sex as the offspring has five times the influence
on the offsprings MaxEnergy as the other parent (Eq. (3); MaxEnergy is abbreviated
to ME; subscripts o, m, and f represent offspring, mother, and father, respectively).
Sex-linkage occurs for StateOfBirth as well, as an offspring’s StateOfBirth is equal
to that of its parent of the same sex. All genes in the physical genome are poten-
tially mutated after crossover with some probability (t-test p = 0.001). A mutation
on a gene in the physical genome is a modification of its byte value (randomly
drawn from a truncated normal distribution between −6 and +6). Mutations in the
behavioral genome occur due to the formation of new edges (with a probability of
0.001), removal of existing edges (with a probability of 0.0005), and changes in
the weights associated with existing edges (with a probability of 0.005). The effect
of a given mutation is modification of the value randomly drawn from a truncated
normal distribution between −0.6 and +0.6 on the floating-point value of a gene.
The probability of mutation in the behavioral genome is doubled for old individuals
(Age > MaxAgeRepAge). New genes may emerge from the initial pool of edges
with a zero value. This emergence and disappearance of the genes in FCM is due to
natural selection and genetic drift, which lead to adaptability of individuals [46].
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MEo =
{

5×MEm+MEf

6 , if offspring is female
5×MEf +MEm

6 , if offspring is male
. (3)

2.4.4 Fitness

Tomeasure the capacity of an individual to survive andproduce offspring that can also
survive, the fitness of a species is calculated as the average fitness of its individuals.
The fitness of an individual is defined as the age of death of the individual plus
the sum of the age of death of its direct offspring. Accordingly, the fitness value
represents the individual’s ability to survive and produce well-adapted offspring.
There is no predefined explicit fitness-seeking process in the simulation; rather,
fitness is a consequence of natural selection. Individuals who are better adapted to
the environment sustain a higher level of energy, live longer, are able to have more
offspring, and transfer their efficient genomes to them [45, 46]. The fitness value is
only computed for analysis of the results of the simulation and is not used in process
during the simulation.

2.4.5 Prediction

So far, there is no learning mechanism for individuals and they cannot predict the
consequences of their decisions. The only information available to an individual for
decision-making comes from its perception at a given time step and the value of the
activation level of the internal and action concepts at the previous time steps. The
activation levels of the concepts of an individual are never reset during its lifetime. As
the previous time step activation level of a concept is involved in the computation of
its next activation level, thismeans that the previous states of an individual participate
in the computation of its current state. Therefore, an individual has a basic memory
of its own past that will influence its future behaviour. As the action undertaken by
an individual at a given time step depends on the current activation level of the action
concepts, the behavior of the individual depends on a complex combination of the
individual’s perception, the current internal states, the past states it went through
during its life, and its genome.

2.4.6 Sensing

Every individual in EcoSim can perceive its local environment inside of its range
of vision. Some of these senses are common between prey and predator; both can
perceive nearby friends and foes, how close food is, their energy level, the amount
of food in their cell, how many potential reproductive partners are in their cell, and
their age. Additionally, new to EcoSim, all individuals can perceive their Strength
and the maximum Strength of potential mates in their cell. Also new to EcoSim,
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prey individuals can sense the sum of Strength of prey in their cell and the sum of
Strength of the cell within vision range that has the highest sum of prey Strength.
Similarly, predator individuals can sense the sum of Strength × (1 + Defense) of
prey in their cell, the distance to the cell in vision range with the highest sum of
prey Strength × (1 + Defense), and the maximum strength × (1 + Defense) in their
cell. These new sensory concepts serve several purposes related to the notion of
prey defending against predators, new to EcoSim. With these new sensory concepts,
prey can use strength-related sensory information to join a cell with other strong
prey to bolster cooperative defenses. Similarly, predators can use strength-related
information to avoid conflict with stronger prey individuals or groups of strong prey.
Alternatively, if the predator is very strong, it may use this information to gain a
larger energy reward for killing stronger prey. Individuals can only reproduce with
individuals of the same type in their current cell. Having the ability to sense strong
individuals and move to them means that (with the right combination of edges) there
is potential to improve the chance of reproducing with strong individuals. Thus, these
concepts can also lead to some potentially interesting evolutionary phenomena, such
as a strength-based evolutionary arms race between prey and predator populations.

2.4.7 Interaction

In EcoSim, there are direct and indirect interactions amongst individuals and between
individuals and their environment. These interactions stem from actions that prey and
predator individuals can perform. The only direct interaction that requires a coor-
dinated decision by two individuals is Reproduction. Reproduction occurs between
two prey or two predators. For Reproduction to be successful, the two parents need
to be in the same cell, have sufficient Energy, choose the Reproduction action, and
be genetically similar. The individuals cannot determine their genetic similarity with
their potential partner; they try to mate and if the partner is too dissimilar (the dissim-
ilarity between the two genomes is greater than some percentage of the speciation
threshold, by default 62.5%), the reproduction fails. See Reproducing under Sub-
models for more details of the Reproduction action.

The Hunting action of predators is a direct interaction that occurs between a
predator and some number of prey existing in a cell. For Hunting to succeed, the
predator must be able to move to the cell containing its target prey individual and
it must have greater Strength than its target’s Energy. Should the Hunt succeed, the
prey target is killed and the predator receives some amount of Energy. The predator
also receives an Energy penalty if the target prey tries to defend itself, or if other
prey in the cell were defending the target. See Hunting under Submodels for more
details of the Hunting action.

Lastly, there are several ways that individuals can indirectly interact with each
other and their environment. An individual’s perception of its local environment
causes its actions and movement to be influenced by the distribution of other
individuals and food resources. Moreover, individuals that share a cell compete
for the limited resources that the cell contains (food and mates), and this yields
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density dependence. Competition generally comes in two main forms, which repre-
sent opposites along a gradient. Contest competition arises when a single individual
claims all of its local resources, leaving other individuals with nothing [15]. This
allows individuals to potentially monopolize resources, because strong individuals
continue to claim resources while the weak starve and ultimately perish. Scramble
competition, in contrast, occurs when individuals share resources equally, and are
thus equally penalized by local density increases [15]. Competition in EcoSim, like
in most ecosystems, is neither purely contest or scramble competition; elements of
both forms of competition can be observed.

2.4.8 Stochasticity

Toproduce variability in the ecosystem simulation, several processes involve stochas-
ticity. At initialization, the number of grass units is determined for each cell following
a uniform random distribution (a value between 1 and MaxGrass). Similarly, at ini-
tialization, individuals are randomly distributed across the world in clusters. The
simulation takes as input a clustering radius and a number of prey and predator
individuals per cluster (see Initialization and Input Data). Let x and y be random
coordinates for the center of a cluster, ClusteringRadius be the clustering radius,
and k be the number of prey individuals in a cluster. Then, for each of the k prey
individuals, xn and yn (the x and y coordinates for the position of the nth individual
in the cluster) are produced by taking x and y and subtracting from or adding to them
a random value between zero and ClusteringRadius. This process occurs until the
entire initial set of prey individuals is placed in the world. The same process then
occurs for the predators. The age of an individual is also determined randomly at birth
from a uniform distribution in [1, 24] for prey and [1, 35] for predators. Similarly,
the initial energy of an individual is randomly generated in a uniform distribution,
ranging from 40 to 100% of the initial maximum energy of the individual. Age and
Energy are randomly generated in this manner to avoid apparition of synchronicity
in action selection and death cycles early in runs that would cause instability leading
to extinction of prey or predators. The sex of an individual at initialization or at birth
is randomly generated with equal probability to be male or female. Stochasticity is
also included in several kinds of actions of the individuals (see Submodels for full
descriptions of each action). For instance, if a hunting predator cannot find a prey
within its vision range, the direction of its movement will be random. Furthermore,
the direction of the exploration action is always random.

Mutation and crossover both involve stochasticity, as described under Adaptation.
Furthermore, when individuals perceive their environment, they perform a radial
sweep about their position along the four cardinal directions. The sweep begins
at a distance of one and increments to the individual’s vision range. The starting
cardinal direction and the direction of the radial sweep are randomly generated to
remove any biases in perception and movement. Lastly, stochasticity is incorporated
into the grass diffusion model (see Submodels for elaboration). To understand the
extent of stochasticity in EcoSim, Golestani and Gras [40] examined whether chaotic
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behavior (one signal of non-randomness) exists in time series generated by the sim-
ulation. The authors concluded that the overall behavior of the simulation generates
emergent patterns that are non-randomand are instead like those observed in complex
biological systems [60].

2.4.9 Collectives

An EcoSim run persists while there is at least one prey individual. If all prey die, the
run is complete due to extinction as the predators can only eat prey. EcoSim can be
run with or without predators, though typically there are predators as it is designed to
observe predator-prey interaction. A typical EcoSim run has 60,000–1,000,000 prey
and 2000–30,000 predators at any time step, depending on the parameterization of
the run.

In EcoSim, it is necessary to compute the genetic distance between any two
genomes of the same type (prey or predator) in order to establish the notion of
species. This distance calculation does not include sex-linked genes (seeReproducing
under Submodels). To compute this distance, it is first initialized to zero. For every
element of the behavioral genome in its byte vector form, the absolute difference
between the pair of corresponding values from each genome is added to the distance.
Subsequently, for every gene of the physical genome, a weight is computed by taking
the absolute difference of corresponding floating-point values and then dividing by
the range of values for that gene. This weight is then multiplied by the difference
between genes, multiplied by five, and added to the distance.

Species emerge from the evolving sets of prey and predators. Species membership
is strictly used in data analysis—it is not used to govern any mechanics related to
reproduction. There is a separate genetic similarity threshold used for reproduction
which is much lower than the speciation threshold, and this allows hybridization
(reproduction between members of different species) to occur (see Reproducing
under Submodels). At initialization of EcoSim, there is one species per type. Species
can become extinct if all their members die. EcoSim implements a species based
on the genotypic cluster definition [80] in which a species is a set of individuals
sharing a high level of genomic similarity. In addition, in EcoSim, each species is
associated with the average of the genetic characteristics of its members, called the
‘species center’. The speciation mechanism implemented in EcoSim is based on the
gradual divergence of individual genomes. The speciation method begins by finding
the individual A in a species S with the greatest genetic distance from the species
center. Next, the individual B in S with the greatest distance to A is found. If this
distance is greater than a predefined threshold for speciation, a 2-means clustering
is performed [4], otherwise S stays unchanged.

To initialize the 2-means clustering process, one center is assigned to a random
individual, denoted Ir , and the other center is assigned to the individual who is
the most genetically different from Ir . After eight cycles of the 2-means clustering
algorithm, two new sister species are created to replace S. Each species for each
type in EcoSim has a unique species identifier, starting at one and incrementing
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automatically when a new species is formed. Of the two sister species replacing
S, one retains the species identifier of S and the other obtains the next available
identifier.

2.4.10 Observation

EcoSim produces a large amount of data at each time step, recording many statistics
like the number of individuals, the characteristics of each individual, and the status
of each cell of the virtual world. Information regarding individual characteristics
include spatial position, level of energy, choice of action, species identity, parents,
FCM, etc. Information about the individuals, species, and virtual world for every
20 time steps are stored in a file, optionally using the HDF5 format [123] with an
average size of 6 gigabytes. Also, there is a possibility of storing all of the values
of every variable in the current state of the simulation in a separate file, creating the
possibility of restoring the simulation from that state afterwards. The overall size
of this file, which is only stored every 20 time steps (by default, this frequency can
be modified in the parameters file) of the simulation, is a few gigabytes depending
on the numbers of individuals and species. All of the data is stored in a compact
special format, to facilitate storage and future analysis. There are also several utility
programs that can be used, for example, to analyze the simulation outputs, to calculate
the species and individual fitness, to generate images of the world for each time step
of the simulation, to generate video of the world throughout a run or some portion
of it, and to draw the FCM of the individuals.

2.4.11 Initialization and Input Data

A parameter file (with filename “Parameters1.txt”) is defined for EcoSim, which is
used to assign the values for each state variable at initialization of the simulation.
Example parameters include the width and height of the world, initial numbers of
individuals, thresholds of genetic distance for prey/predator speciation, speed of
grass growth, probability of grass diffusion, initial maximum age, initial maximum
energy, initial maximum speed, initial maximum vision range, initial values of FCM
edges for prey/predators, and the characteristics of the fuzzification functions for
sensory input. Any of these parameters can be changed for specific experiments
and scenarios. Initialization involving stochasticity (such as the initial distribution of
individuals in theworld) is described under Stochasticity, above.Many of these initial
parameters are only important in stabilization of the simulation in its early stages,
before the emergent properties of the system are observable. These parameters have
been tested extensively to ensure that EcoSim is stable in a wide variety of scenarios
(if grass levels are low, if grass levels fluctuate regularly over time, if grass diffusion
probability is reduced, if prey reproduce asexually rather than sexually, etc.). EcoSim
is designed to be highly generalized. Typically, the emergent properties of at least two
sets of runs initialized identically (or very similarly) with fewmechanical differences
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Table 2 Values for
user-specified parameters

User-specified parameter Used value

Number of prey 80,000

Number of predators 4000

Max grass quantity in each cell 4000

Prey maximum energy 2500

Predator maximum energy 3000

Prey vision range 8

Predator vision range 20

are studied and compared, to observe the effect of these few mechanical differences
on the evolution of the populations. Thus, the physiological scaling rates are informed
by empirical biological studies (as noted above under Individuals) but the aim of the
initial parameters of EcoSim is to produce a stable system, and thus they are largely
arbitrary. An example of a list of common user-specified parameters for initially
running the EcoSim are presented in Table2.

2.5 Submodels

2.5.1 Food Sources: Grass and Meat

There are dynamic processes for the resources in each cell, such as grass growth, grass
diffusion, and variation in the amount of meat at each time step. At initialization,
there is no meat in the world and the amount of grass energy units is randomly
determined for each cell as described under Stochasticity.

The grass growth rate in each cell is regulated by several factors: SpeedGrow-
Grass (200 by default), ProbaGrowGrass (0.035 by default), MaxGrass (4000 by
default), and Fertilizer. The first, SpeedGrowGrass, is a parameter in the EcoSim
parameter file that determines the speed of grass growth. For a cell not already
containing grass, grass can diffuse from an adjacent cell with a probability of Proba-
GrowGrass at a rate of SpeedGrowGrass, provided that one of the eight cells around
the cell contains a nonzero amount of grass. Fertilizer, a feature new to EcoSim, is
derived from the excretions of individuals. AmountOfFertilizer, the amount of fer-
tilizer in a cell, is proportional to the sum of maximum energy (MaxEnergy) of the
prey and predators residing in that cell, limited to a total of 20,000. If AmountOf-
Fertilizer is less than SpeedGrowGrass, then the fertilizer does not have any effect.
Otherwise, the rate of grass growth is equal to AmountOfFertilizer and limited to
triple SpeedGrowGrass. For a cell already containing grass, the rate of grass growth
is simply added to the amount of grass currently in the cell at a given time step.
AmountOfFertilizer decreases at a rate of 10% per time step. The amount of grass
in a cell is limited to MaxGrass.
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Another new EcoSim feature is that MaxGrass can be set to fluctuate cyclically
following a cos wave by setting the FluctuatingResources parameter in the param-
eter file. The period, minimum (as a ratio of MaxGrass), and amplitude (as a ratio
of MaxGrass) of the wave can be set using the parameters FluctuationCycle, Fluc-
tuationMinimumRatio, and FluctuationAmplitudeRatio, respectively. Another new
feature is that MaxGrass can be set in such a way that it creates regularly positioned
circular patterns throughout the world using the CircularFoodGrowth parameter. The
diameter of the circles, the maximum grass level at the center of the circle (as a ratio
of MaxGrass, though still limited by MaxGrass), and the minimum amount of grass
in any cell (as a ratio of MaxGrass) are set using the FoodCircleDiameter, Food-
CircleMaxRatio, and FoodCircleMinimumRatio parameters. FoodCircleMaxRatio
is used to increase the rate at which MaxGrass increases closer toward the center of
a circle, and MaxGrass increases following a cos wave from FoodCircleMinimum-
Ratio to FoodCircleMaxRatio from the edge of a circle to the center. The amount
of meat in each cell is limited to MaxMeat (4000 by default) and increases every
time step by the Strength of the prey killed in that cell during that time step. It also
decreases at each time step by 1000, even if no meat has been eaten in this cell.

2.5.2 Actions

For each movement action M, the movement speed is equal to MaxSpeed × Activa-
tionLevel(M), thus the speed at which an individual moves during the action depends
on its willingness to perform it. Movement speed is the straightline distance that an
individual can move in a single time step. Each action has its own corresponding
submodel:

1. Evading (for prey only). An evading prey moves in the direction opposite to the
barycenter of the five closest predators within its vision range, with respect to
its position. If no predator is within the vision range of the prey, the direction is
chosen randomly.

2. Hunting (for predators only). The predator selects the closest cell (including
its current cell) that contains at least one prey and moves toward that cell. If
it reaches the corresponding cell based on its speed, the predator selects a prey
target and tries to kill it.When there are several prey in the destination cell, one of
them is chosen randomly as the target. If the speed of the predator is not enough
to reach the cell, it moves at its speed toward the cell and the hunt has failed.
Similarly, the hunt has failed if there is no prey in the vicinity. When a predator’s
hunt succeeds, the Strength of the killed prey is added to the cell in meat energy
units. Afterward, the predator consumes the meat to gain its required energy,
min (MaxEnergy Energy, MeatUnits), where MeatUnits is the number of meat
energy units produced by the killed prey. The remaining units of meat energy
are allocated to the cell and can be consumed by other predators using their Eat
action. Prey have a defense capability, as well as cooperative defense, and use
them in a battle against the predator [3].
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Prey defense and cooperative defense is passive; prey defend automatically if
they have a nonzero Defense value and are targeted by a predator, or if they
have a nonzero CoopDefense value and share a cell with a target. Prey spend
energy when trying to defend, and predators receive an energy penalty (P in Eq.
(4), AP.D and AP.S are Defense and the Strength of the attacked prey; CPi.D,
CPi.CD, and CPi.S are the Defense, CoopDefense, and Strength of the prey i
in the same cell) when they attempt to attack a prey individual with defense or
a cell containing prey defending cooperatively. It is even possible for a preda-
tor to be killed by defending prey, particularly if the predator already has low
Energy. Additionally, the prey that are involved in a cooperative defense also
lose some amount of Energy based on the strength of the predator (0.2 × Preda-
torStrength/NumberOfDefenders). The target prey loses Energy equal to 100%
of the attacking predator’s Strength if it is not cooperatively defended, otherwise
it loses 80% of the attacking predator’s Strength. If, after the attack, the prey’s
Energy is greater than zero, the prey survives and the hunt has failed.

P = AP · D × AP · S +
∑

i

(CPi · D × CPi · CD × CPi · S) (4)

3. Searching for food. The direction toward the closest food (grass for prey, meat
for predators) within the vision range is computed. If the individual’s speed is
high enough to reach the food, the individual is placed in the cell containing
this food. Otherwise, it moves at its speed toward this food. If no food is within
vision range, the individual moves in a random direction.

4. Socializing. The direction toward the closest possible mate within the vision
range is computed. If the individual’s speed is high enough to reach this mate,
the individual is placed in the cell containing this mate. Otherwise, the individ-
ual moves at its speed toward this mate. If no mate is within vision range, the
individual moves in a random direction.

5. Exploring. A direction is computed randomly. The individual moves at its speed
in this direction.

6. Resting. Nothing happens.
7. Eating. If the current amount of grass (meat) in the prey’s (predator’s) cell is

greater than 0, the prey (predator) consumes the grass (meat) to gain its required
energy,min(MaxEnergyCurrentEnergy, EnergyUnits), where EnergyUnits is the
number of grass (meat) energy units in the cell. EnergyUnits is decreased by the
amount consumed by the individual.

8. Reproducing. Chromosomes in eukaryotic cells are usually present in pairs
(diploid organisms). The chromosomes of each pair separate in meiosis, one
going to each gamete. In many animal species, sex is determined by a special
pair of chromosomes called sex chromosomes (allosomes), the X and Y. All
other chromosomes are called autosomes. The sex chromosomes are an excep-
tion to the rule that all chromosomes of diploid organisms are presented in pairs
of morphologically similar homologs. While females have two X chromosomes,
the males have one X chromosome along with a morphologically unmatched
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chromosome, called the Y chromosome. All somatic cells in male and female
organisms have a complete set of autosome and sex chromosomes. Every egg
cell contains an X chromosome, while only half of sperm cells contain an X
chromosome and the other half contain a Y chromosome. This difference is a
chromosomal mechanism for determining sex at the time of fertilization. In other
words, while autosome chromosomes are randomly obtained from both parents,
the Y chromosome inmale offspring is exclusively acquired from the father [52].
Individuals in EcoSim, in contrast to the common case, are haploid. That is, their
chromosomes are present as singletons that are generated from specialized evo-
lutionary operations described below. To model more realistic individuals, we
made it so that all perception genes, MaxEnergy genes, and StateOfBirth genes
exist on allosomes (that is, they are sex-linked), while all other genes exist on
autosomes. Thus, there is an evolving differentiation between male and female
behavior.
As per the section Process Overview and Scheduling, females intending to repro-
duce act first. This is because females initiate reproduction in EcoSim, to sim-
ulate female choice. Females can attempt to reproduce with any male in their
cell, however, success is not guaranteed and individuals always act in order of
decreasing strength. There are several ways a reproduction attempt can fail in
EcoSim. Reproduction fails if there are no males in the current cell. Otherwise,
the female randomly selects a potential male partner. A reproduction attempt
with a single male can fail if: the male has already reproduced (with a different,
stronger female), the male has selected a different action (e.g., Eat or Evade), the
male is below reproduction age, the male has insufficient energy to reproduce, or
the genetic distance between the female and male is too great. The genetic dis-
tance threshold for reproduction failure is greater than the speciation threshold,
therefore individuals from different species can reproduce to generate hybrid
offspring. In this case, the hybrid offspring is assigned to the species that has a
smaller genetic difference between its average genome and the genome of the
offspring. The female can attempt to reproduce with each male in the current
cell, but loses two Energy for each failed attempt. If reproduction succeeds, the
process of generating a new offspring consists of the following steps. When a
new offspring is created, it is given a genome which is a combination of the
genomes of its parents using a specialized crossover operation along with some
possible mutations (as explained under Adaptation). The sex of the offspring
is randomly determined with equal probability of being male or female. Then,
the initial Energy (Energy0) of the offspring is computed (Eq. (5)) based on
the parents’ MaxEnergy (abbreviated to ME in the equation) and StateOfBirth
(abbreviated to SOB in the equation).

Energy0 = MEf × SOBf × MEm × SOBm

100
. (5)
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Finally, the Energy of the two parents is decreased. The energy penalty for the
mother, penaltym, is calculated based on Eq. (6), where the subscript m and
f mean mother and father, respectively. The parameter Energy is the newborn
individual’s Energy. FPP is the first-time pregnancy penalty for themother, which
is five percent of its energy and zero for the subsequent pregnancies. The energy
penalty for the father is based on Eq. (7).

penaltym = SOBm × Energy × 1.05

SOBm + SOBf
+ FPP (6)

penaltyf = SOBf × Energy × 1.05

SOBf + SOBm
. (7)

9. Move2StrongestPrey/Predator (for prey/predator, respectively). The direction
toward the strongest possible mate within the vision range is computed. If the
speed of the individual is high enough to reach the mate, the individual is placed
in the cell containing this mate. Otherwise, the individual moves at its speed
toward this mate. If no mate is within the vision range of the individual, the
direction is chosen randomly.

10. Move2StrongestPreyCell (for prey only). This action is similar to Move2-
StrongestPrey/Predator, except that the direction of movement is toward the cell
with the highest cumulative Strength of prey individuals. This allows prey to
benefit from cooperative defense against predators.

11. Move2WeakestPreyCell (forpreyonly).Thisaction is similar toMove2Strongest-
PreyCell, but the direction of movement is toward the cell with the lowest cumu-
lative Strength of prey individuals. This allows prey to have a higher chance of
success in competition with other prey individuals in accessing food or mates.

12. Move2StrongestPreyDistance (for predator only). The predator moves toward
the strongest prey individual to acquire more energy after possible hunting. If
the speed of the individual is high enough to reach the prey, the individual is
placed in the cell containing this prey. If the speed of the predator is not enough
to reach the prey, it moves at its speed toward this prey.

13. Move2WeakestPrey (forpredatoronly).This action is similar toMove2Strongest-
PreyDistance, with the exception that the direction of movement is toward the
weakest prey individual for easier hunting in the future.

14. Move2WeakestPreyCell (for predator only). This action is similar to Move2-
WeakestPrey, but the direction of movement is toward the cell with the low-
est cumulative Strength of prey individuals to minimize the possible effect of
cooperative defense by prey individuals.
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2.6 Ecological and Evolutionary Properties of EcoSim

Time-series data are generated automatically by EcoSim per time step, as explained
above. We computed ten runs of EcoSim in the default configuration (which we
hereby refer to as Default) to 20,000 time steps. Using external tools that have
already existed, we computed the mean of several important measures for these
ten runs. We computed the number of prey and predator individuals, the number
of prey and predator species, the mean distance evolved of all female individuals,
and three physical attributes for all female individuals (MaxEnergy, MaxSpeed, and
Vision). Distance evolved is computed by first computing the mean genome for all
individuals at a given time step and subsequently computing the genetic distance
from this genome to the prey genome that the simulation was initialized with.

As expected, there was a dependency between number of prey and predators
(Fig. 4). At initialization of the simulation, the number of prey is greater than the
number of predators (80,000 and 4,000, respectively). Therefore, we tend to observe
an early spike in the number of prey, which subsequently sharply declines when the
number of predator individuals rises. The increasing number of prey provides a good
chance for the predators to have access to more food, resulting in an increasing in
their Energy and reproduction rate. The resulting increase in hunting by predators
accompanied by local food resource shortages for prey decreases the number of
prey, and consequently the number of predators, ultimately leading to stabilization
of the system. A similar phenomenon occurs at finer spatial scales; local population
explosions and extinctions yield fine-scaled fluctuations in numbers of individuals
over time, with a time lag between the fluctuations in number of prey and predators.
This dependence of predator population on prey population is known as the Lotka-
Volterra model, as outlined in Berryman [10] and empirically corroborated by Piana
et al. [105] where they fitted the model to a time series dataset of 16 species of
neotropical fish that were classified as either predators or prey. These time series
mostly stabilizewith these small fluctuations, resulting in 268,871prey (SD=80,804)
and 10,388 predators (SD= 2,613.4). As Britten et al. [16] observed, this stabilization

Fig. 4 The number of prey (left y-axis) and predator (right y-axis) individuals in the world, over
the course of the simulation
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Fig. 5 The number of prey and predator species throughout the course of the simulation

can be jeopardized if there is a sudden decline in predator species in such a predator-
prey system.

The number of species more strongly correlated with the number of individuals
for predators than for prey (Fig. 5). Generally, an increase in the number of individ-
uals allows for a corresponding increase in variation within the gene pool, and this
increased variation tends to lead to increased speciation [62]. However, with the num-
ber of prey individuals so high, the gene flow is also very high,which results in overall
genetic convergence. Spatial separation in individuals reduces gene flow.With fewer
predator individuals in the world, there is greater spatial separation overall amongst
predators, providing a greater opportunity for the subpopulations to genetically dif-
ferentiate and ultimately yield new species. As Hoskin et al. [57] argued, reduced
gene flow in allopatry results in the gradual emergence of reproductive isolation, and
subsequently new species; this has been observed in EcoSim as well [43].

The prey and predator distance evolvedwere comparable by the end of the simula-
tion (Fig. 6). However, at the end of the simulation, the rate of predator evolution was
greater than that of prey. In fact, nearly halfway through the simulation, the distance
evolved for prey hit a plateau. This highlights an important distinction—that the prey
(with such a high number of individuals) evolved rapidly but in a convergent man-
ner whereas the predators evolved more slowly but with high differentiation across
all individuals. As Brodie and Brodie [17], as well as Brodie et al. [18], observe,
predators that pursue prey with multiple defenses will tend to adapt evolutionarily,
which may in part explain the higher rate of evolution of predators versus prey. Two
main factors are responsible for the convergent evolution in prey: the aforementioned
high gene flow and the fact that natural selection occurs in EcoSim, since there is
no predefined fitness function [46, 61]. The fitness landscape in EcoSim is dynamic
overall; both the prey and predators evolve simultaneously and the world state is
constantly changing. However, many aspects of the world remain constant, such
as MaxGrass, the functions that govern energy expenditure of the individuals, and
the rules that govern processes like reproduction. Thus, some genetic convergence
should be expected—certain behavioral and physical genotypes will be desirable
regardless of the world state at any given time step. The high genetic divergence
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Fig. 6 The distance evolved for prey and predators throughout the course of the simulation

Fig. 7 The evolution of MaxEnergy for prey and predators throughout the course of the simulation

accumulated early by the predators (apparent in the number of species over time)
lead to faster overall evolution later in the simulation. Another factor contributory to
the fast evolution of predators later in the simulation is that there is more potential
for divergence in the predator behavioral genome; the prey behavioral genome has
663 elements, whereas that of predators has 756. It is inevitable that predators will
eventually evolve in a more convergent manner as well; this is observable in the
subtle decrease in predator evolutionary rate over time.

MaxEnergy evolved similarly for both prey and predators (Fig. 7). In both cases,
it monotonically increased from the initial values of 2500 for prey and 3000 for
predators to an average of 3763 (SD = 505.7) and 4310 (SD = 372.3), respectively.
As Strength is related to MaxEnergy, this could represent a type of evolutionary
arms race because of the possibility of prey fighting back against predators when they
attack.Alternatively, a highermaximumenergy capacitymaybe strictly beneficial for
the individuals, because it allows individuals to survive longer between Eat actions.
Moller [88] performed estimates of basal metabolism rate (BMR) of 76 bird species
who were pursued by predators. The author reports that birds with longer flight
initiation distances used to escape predators also had higher BMRs, from which he
concludes that predation creates a selection pressure on species to develop higher
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BMRs [88]. Thus, it is possible that the highermaximumenergy capacity is necessary
in individuals due to an increased BMR. Furthermore, the energy dynamics of each
physical attribute is governed in part by the energy consumption functions for prey
and predators. Thus, it is possible that with a more heavily penalized MaxEnergy,
it might be less prone to such a runaway. Vision and MaxSpeed are related in that
individuals must both perceive a resource (amate, food, etc.) and be able tomove to it
in order to use it immediately. Otherwise, the individual will have to wait for at least
one time step until it can use the resource it desires, whichmay be too late, depending
on the state of the individual and the environment around it. Thus, we should expect
that Vision and MaxSpeed evolve in a related and intuitive manner. Predator Vision
and MaxSpeed appeared to be heavily related in the way we expected (Fig. 8). That
is, both Vision andMaxSpeed evolved to slightly increase and then slightly decrease,
nearly in unison, withVision always greater thanMaxSpeed. This is intuitive because
it is particularly imperative for predators to perceive their resources; potential mates
are far less abundant for predators and their food resources are constantly changing
positions in the world. This observation has been empirically corroborated in a study
of predatory bird species conducted by Garamszegi et al. [37], in which it was
found that predatory species evolved increased visual acuity along with larger brains
to detect prey. On the other hand, it is less important for prey to perceive their
resources, but it is important for prey to move quickly to evade predators. Potential
mates and food resources are far more abundant for prey, and their food resources
are static in the world (unless a cell’s grass is fully consumed before the prey can
reach it). Furthermore, over time, we observed that prey tended to perform the Evade
action decreasingly, while they increasingly performed Explore instead (Fig. 9). The
directionality of the Explore action is randomly generated, and with the high prey
density, it is possible that when they Explore, they can randomly discover mates or
food resources while they simultaneously evade predators. If all prey in a particular
wave performed Evade when faced with a predator, many of the prey individuals
would move in a similar direction, which could increase competition for resources.
On the other hand, increasingly performing Exploremay be evidence of the evolution

Fig. 8 The evolution of Vision and MaxSpeed for prey and predators throughout the course of the
simulation
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Fig. 9 Selection of actions by prey over time. Prey evolved to Evade less and Explore more, while
simultaneously reducing their reproduction failure rate (ReproduceFailed). Evolution of an increase
in Move2StrongestPreyCell and Move2StrongestPrey is also observed

of altruism; if a small percentage of prey purposely sacrifice themselves by moving
towards the wave of predators (using Explore rather than Evade), it keeps the wave
of predators away from the highest-density prey regions.

2.7 Divergence of Sister Species

From a single Default EcoSim run, we found two sister species (species 1 and species
40) that coexisted for 1860 time steps. Species 40 was produced at time step 246 of
this particular run andwent extinct at time step 2106, while species 1was produced at
initialization and persisted to the end of the simulation.We analyzed divergence of the
behavioral and physical genomes of these two species throughout their coexistence.

In EcoSim, depending on the genomeswithin a species, differentiation of very few
genes canbe sufficient to trigger a speciation.When species 40was initially produced,
only one gene in the behavioral genome showed a high degree of differentiation,
though 1500 time steps later the species were highly diverged in other ways (Fig. 10).
Interestingly, in this case, the allele that caused the initial speciation disappeared
from species 40 over 1500 time steps. This indicates that although the appearance
of this allele was sufficient to cause speciation, the allele was likely deleterious and
was evolved out of the species over time. This was corroborated by the fact that
the change that caused the initial speciation was an evolution of the mean value of
the gene FriendFar→Move2StrongestPreyCell to 0.41 in species 40, which had a
mean value of −0.00020 in species 1. With no friend nearby, attempting to move
to the cell with the highest cumulative strength would likely be a waste of energy
and an action. Furthermore, the genetic distance between behavioral genomes of
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Fig. 10 Divergence of behavior models of two sister species over 1500 time steps. Each square
represents the absolute difference of a gene in the average behavioral genome of two sister species
from a single run of EcoSim. Though differentiation of one gene was sufficient to cause the initial
speciation (purple square in left heatmap), over time, the behavioral genomes diverged substantially

these two species declined over the first 175 time steps after speciation (due to the
loss of the aforementioned allele in species 40) and then rose over the subsequent
time steps due to the differentiation in the other behavioral genes (Fig. 11). Another
factor contributing to the initial decline in genetic distance is low spatial separation
(implying high gene flow) between the species shortly after the speciation event,
with increased spatial separation and genetic divergence thereafter. EcoSim allows
hybridization (reproduction between individuals of different species; seeCollectives,
ReproducingunderSubmodels), thuswhen two species are genetically similar enough
and not spatially separated, their individuals can reproduce to form hybrid offspring.
Being sister species generated very early in a run, the physical genomes between
these species did not differentiate.

2.8 Sensitivity Analysis of EcoSim

In addition to the ten Default EcoSim runs noted above, we computed ten runs each
of EcoSim with the following modifications: reduction of initial social action edges
related to defense by 25% of their default value (referred to hereon as RSE25), reduc-
tion of initial social action edges related to defense by 50% of their default value
(referred to hereon as RSE50), reduction of energy spent by all individuals by 25% of
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Fig. 11 Genetic distance between behavioral genomes of sister species throughout their coexis-
tence, computed as Euclidean distance between average behavioral genomes. After a slight decline
in genetic distance due to the loss of a deleterious allele in the smaller species and hybridization
along the interface of the two species, the behavioral genomes of the species diverged over time

the default (referred to hereon as RE25), reduction of energy spent by all individuals
by 50% of the default value (referred to hereby as RE50), reduction of MaxGrass
by 25% of the default value (referred to hereby as RMG25), and reduction of Max-
Grass by 50% of the default value (referred to hereon as RMG50). For RSE25 and
RSE50, the affected edges for prey were all edges incident to Move2StrongestPrey,
Move2StrongestPreyCell, and Move2WeakestPreyCell. The affected edges in these
runs for predators were all edges incident to Move2StrongestPredator, Move2-
StrongestPreyDistance, Move2WeakestPreyCell, and Move2WeakestPrey. For each
of these runs, we computed the mean across ten runs and across time steps 5,000
through 6,000 for the following measures: number of prey and predator individuals,
number of prey and predator species, mean energy level of all female prey individ-
uals, and mean energy level for all female predator individuals. We computed these
values over a window of 1,000 time steps, because many of the above measures show
different behaviors at different scales. For instance, the number of prey or predator
individuals at a very high scale may appear to follow the classic growth curve, with
an initial lag period followed by a period of nearly linear growth that reduces in rate
of increase as it approaches its asymptote (the carrying capacity of the system) and
ultimately oscillates below the asymptote. At a smaller scale, however, many small
cycles can typically be observed due to local population explosions and extinctions.
For each treatment (reduction of energy spent, reduction of maximum grass, and
reduction of social edges related to defense), we compared values of each observa-
tion to the respective values generated by Default EcoSim runs and determined the
percent change in these observations. This allowed us to determine how sensitive or
robust the system is to these changes, and it also allowed us to determine how these
observations behaved relative to the different treatments (for example, to determine
if a reduction in MaxGrass yields a linearly dependent reduction in number of prey
individuals or number of prey species).

We expected that modifications in the action edges related to defense would yield
nonlinear and nonmonotonic relationships to most of the dependent variables, as
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Fig. 12 Sensitivity of several variables to modification of action edges related to prey defense

we applied this modification to both prey and predators. None of the measures we
computed were sensitive to these modifications (t-test p ≥ 0.15 in all cases), and
the amounts of energy of prey and predator individuals were particularly insensitive.
Interestingly, both prey and predator number of individuals and species declined
slightly when these edges were reduced by 25%, if both increased when these edges
were reduced by 50%, but insignificantly so (Fig. 12). Though the percent difference
from Default runs was very high for some of these measures, the difference was sta-
tistically insignificant due to extremely high variance (only one run was responsible
for these very high values).

Modifications to the rate of Energy consumption of both prey and predators sig-
nificantly impacted all of the variables we analyzed (t-test p ≤ 0.0006 in all cases,
Fig. 13). The number of prey increased to 208% of the Default value with a 25%
decrease in Energy consumption, and increased further to 277% of the Default value
with a 50% decrease in Energy consumption. The number of predators followed a
similar trend, increasing to 431 and 626% of the Default values, respectively. Both
prey and predator numbers seemed affected by diminishing returns based on reduc-
tion of Energy consumption, most likely due to increased competition when Energy
consumption was decreased. The effect of reduction of Energy consumption was
stronger at higher trophic levels; the effect of Energy consumption on number of
predators was almost double that on number of prey. Not surprisingly, the number
of predator and prey species both increase significantly with reduction of Energy
consumption, though the number of prey species closely followed the trend of num-
ber of prey individuals. The number of predator species, on the other hand, did not
follow the trend of the number of predator individuals; there appeared to be a tip-
ping point where decreasing Energy consumption actually decreased the number of
predator species, despite their increasing number of individuals. This is due to the
interplay between genetic variation across the population and gene flow; more indi-
viduals allows formore potential genetic variation (which should increase the number
of species), but more individuals also increases gene flow (which should decrease
the number of species). Decreasing the Energy consumption of predator and prey
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Fig. 13 Sensitivity of several variables to modification of Energy consumption per time step for
both prey and predators

individuals actually decreased their mean Energy levels by 8–16%. The decreasing
of Energy consumption provides the individuals with increased longevity and poten-
tial to reproduce, because their physical and behavioral traits are energetically less
expensive to maintain. Thus, as we observed, the number of individuals increases
drastically and disproportionately given the reduction in Energy consumption. With
such a drastic increase in the number of individuals given the same food resource
supply, competition strongly increased as well. Consequently, the individuals have
a significantly lower Energy level.

Modifications to MaxGrass proportionally (and almost linearly) affected some
variables while nonlinearly affecting other variables (Fig. 14). The differences
between RMG25 and Default runs were almost all statistically significant (t-test
p < 0.01 for all comparisons, except predator number of species, p = 0.10, and
predator energy, p = 0.33). Similarly, differences between RMG50 and Default
runs were mostly very statistically significant, yielding t-test p < 0.0001 (except
predator number of species, which was still significant, with p = 0.0015, and prey
energy, which was not, with p = 0.78). For instance, with a 25% and 50% reduction
in MaxGrass, the number of prey individuals was reduced by 51.7% and 65.8%,
respectively. Similarly, the number of predators were respectively reduced by 41.2%
and 47.3%. With a 25% reduction in MaxGrass, both prey and predator number of
species decreased (by 28.1% and 41.0%, respectively), while they both increased (by
309.9% and 146.3%, respectively) with a 50% reduction in MaxGrass. With only a
25% reduction in MaxGrass, it is possible that the reduction in number of prey and
predators is sufficient to reduce the genetic variation across the populations while
insufficient to reduce gene flow such that speciation increases. Thus, a net decrease
in the number of species of each type was observed. Conversely, with a 50% reduc-
tion in MaxGrass, the number of individuals was so greatly reduced that gene flow
between subpopulations was practically halted, which allowed for very high differ-
entiation between spatially separated individuals, and consequently a high number of
species. The vast difference in number of predator species given such a slight change
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Fig. 14 Sensitivity of several variables to modification of MaxGrass

in number of predator individuals between RMG25 and RMG50 runs could also be
explained by increased fragmentation of prey subpopulations. The predators must
follow the prey in order to survive, and spatially fragmented prey subpopulations
should yield spatially fragmented predator subpopulations. Interestingly, prey and
predator energy levels were largely unaffected by this modification, though preda-
tor energy was reduced by 20.6% in RMG50 runs. Overall, some aspects of the
system are sensitive to MaxGrass and many others may be nonlinearly affected by
modifications to it.

3 Case Study: Application of EcoSim to Study Behavior
and Evolution Under Conditions of Reduced Primary
Production and Reduced Energy Expenditure

The focus of this case study will be twofold: to investigate possible links between
both intraspecific and interspecific competition for resources and evolution, as well
as examine possible links between energy expenditure of organisms and evolution.

First, a number of studies have found evidence of a link between competition
within and between species and the evolution of morphology, as well as the evolu-
tion of resource polymorphism and temporal variation. Pafilis et al. [101] maintain
that, in general, resource availability and competition (and predation) drive the evo-
lution of body size. They conducted an empirical study in which they showed that
in the presence of a high number of breeding seabirds, there is an increase in lizard
population densities, which in turn results in increased intraspecific competition for
resources [101]. Pafilis et al. [101] report that the resultant increase in competition
for resources leads to the evolution of large body sizes (gigantism) in a species of
lizards (Podarcis gaigeae). Along the same lines, Svanback et al. [121], in an empir-
ical study, report that a species of perch (Perca fluviatilis) and a species of roach
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(Rutilis rutilis) that cohabitate two regions of a lake were deeper bodied in the lit-
toral region versus individuals caught in the pelagic region, which they attributed to
intraspecific competition. On the other hand, Grant and Grant [44] discovered that
interspecific competition between two species of Darwins finches (Geospiza fortis
vs. G. magnirostris) resulted in the divergence of beak sizes.

In addition, Svanback et al. [121], cited above, found evidence of resource poly-
morphism in the fish and roach species, so that fish and roaches in the littoral region
fed on different sorts of organisms versus their counterparts in the pelagic region.
Svanback and Bolnick [120] studied a sympatric population of three-spine stickle-
back fish (Gasterosteus aculeatus) for which there was an increase in population
density, thereby increasing intraspecific competition for prey. The result was diet
variation between phenotypically different stickleback individuals so that some fish
found alternative prey [120], although the authors attributed some of this resource
polymorphism to phenotypic plasticity rather than to evolution. Marini et al. [81]
demonstrated that interspecific competition between two species of mosquito (Cx.
pipiens and Ae. albopictus) resulted in a shift in temporal dynamics for both species.
The result is that the species tend to be in a common breeding site at different times
to minimize overlap [81]. Strauss et al. [119] note that few studies have investigated
the evolutionary effects of invasive species on native species. In reviewing studies on
a variety of animal species, the authors conclude that, amongst other contexts (e.g.,
predation), invasive species as competitors drive evolution in native species [119].

Secondly, recent biological research has uncovered possible links between energy
expenditure and animal morphology, as well as the rate of evolution. In a comprehen-
sive literature review, Niven and Laughlin [95] report that the reduction of energy
expenditure has driven the evolution of the morphology of sensory systems in a
wide variety of vertebrate and invertebrate animal species. For example, animals that
live on islands where there is limited energy due to scarce resources tend to lose
some of their sensory systems, such as vision, in order to conserve energy [95]. In
the same vein, Navarrette et al. [93] argue that the evolution of encephalization in
humans is the result of the stabilization of energy inputs along with a redirection
of energy from locomotion, reproduction and growth. Furthermore, Jasienska [59]
hypothesizes that reproductive suppression in humans has evolved as a way of deal-
ing with low energy. As Leonard and Ulijaszek [78] report, the role of energetics in
the evolution of humans is an emerging domain.

Using a plethora of data relating to substitution rates for mitochondrial and
nuclear genomes of a variety of vertebrate and invertebrate organisms, Gillooly
et al. [38] argue that there is a direct link between the rate of energy transfor-
mation in metabolism and the rate of nucleotide substitution. In particular, they
claim that smaller organisms (with a higher metabolic rate) evolve faster than larger
organisms. Using a DNA-based phylogenetic analysis of 86 angiosperm plant sister
species across environments with varying energy levels, Davies et al. [24] found
that evolutionary rates are higher amongst populations in higher energy environ-
ments. According to the authors, many non-energetic variables such as geographical
complexity and history contribute to species richness and rate of evolution in plant
species, so that discerning the role of energeticswith respect to these phenomena is an
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important area of investigation. Finally, an empirical study conducted byMönkkönen
et al. [90] found that energy use in a variety of North American and European forest
birds translated into species diversification.

Besides shedding additional light on the connections between competition, ener-
getics, and evolution, this studywill help to address several open questions in ecology
and evolution relating to these issues. First, our studywill help to elucidate the effects
of competition for limited resources on evolution. Secondly, our simulation study
will help to determine the role of energetics in the evolution of morphology, which
is regarded as an emerging domain by Leonard and Ulijaszek [78].

Using five runs each of the aforementioned Default, RMG25, and RE25 Eco-Sim
variants, we aimed to determine differences in the way which individuals behave and
evolve under conditions of reduced primary production (modelled by the RMG25
runs) and energy expenditure (modelled by the RE25 runs). Of the ten runs of each
variant, we selected the five runs thatweremost progressed due to computational time
constraints. To determine differences in behavior, we computed the mean percentage
of individuals performing each action at each time step across the five runs of each
type, and analyzed these time series data for differences over time. To determine
differences in evolution of the behavioral genome, we compared distance evolved
over time. Furthermore, we compared the evolution of physical traits such as vision
range (Vision), maximum energy (MaxEnergy), and maximum speed (MaxSpeed).
Since theRMG25 runs have lower amounts of grass (and consequently lower carrying
capacities for prey and predators), they run very fast. Therefore, we analyzed the
RMG25 runs to 20,000 time steps. The RE25 variant allows individuals to retain
more energy and survive better, thus there are significantly more predators and prey
in these runs. Consequently, they run slower, and we had to limit our analysis of
RE25 runs to 10,000 time steps.

3.1 Reduced Primary Production

Both prey and predators evolved differently in several wayswhen primary production
was reduced, compared to the Default scenario (Fig. 15). The amount of differentia-
tion between themean behavioral genome at a given time step and that at initialization
(Distance Evolved) showed stark contrast between the two scenarios for prey start-
ing at approximately 7000 time steps (Fig. 15a). Prior to that, prey living in high
primary production evolved faster than those living in reduced primary production,
and sometimes significantly so (t-test p < 0.05). However, after 7000 time steps,
the prey in an environment with low primary production evolved much faster (t-
test p < 0.001). The same phenomenon was observed for predators, however, the
point at which those living in low primary production evolved further than those
in high primary production came much later, at approximately 18,300 time steps.
Friman et al. [36] report that the evolution of prey-predator interactions is driven
by the availability of prey resources, although evolution of anti-predator defenses
was greater in the presence of high resources. Along the same lines, Hiltunen et al.
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Fig. 15 Comparison of four measures related to evolution of prey and predator individuals between
Default and RMG25 runs over time. Each measure uses the left y-axis while the t-test 1 − p value
uses the right axis. T -test 1 − p value shows the significance of difference between Default and
RMG25 runs for prey and predators separately. Distance evolved a is the genetic distance between
behavioral genomes at initialization and the mean of all individuals at a given time step. MaxEnergy
(b),Vision (c), andMaxSpeed (d) are physical properties determining themaximumenergy capacity,
vision range, andmaximummovement speed of individuals, respectively.Values shownare themean
of all individuals alive at the given time step
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[55] report that in an experimental predator-prey system involving bacteria (P. fluo-
rescens) and ciliates (T. thermophilia), evolution of anti-predator defenses evolved
at a higher rate in stable resources versus fluctuating resources. All of these results
agree with what we found in our simulations. We have two main hypotheses as to
why we observe these phenomena, and they are not mutually exclusive. First, this
is a long-term evolutionary effect of differences in density. Reduced density of prey
and predators when primary production is reduced caused a reduction in gene flow,
which has been shown to increase evolutionary rates of populations. Secondly, as
Distance Evolved is a measurement of evolutionary change from the initial popula-
tions, it is quite possible that the initial behavioral genome is simply more similar to
the optimal genomes of the Default runs. Disputing this claim, the optimal genome
is a moving target in EcoSim, as there is no fixed fitness function and the state of the
simulation is highly dynamic. Furthermore, Distance Evolved is showing increasing
trends in all cases, and it is impossible to determine whether it will ever equilibrate.
Currently, we cannot force EcoSim to retain a constant density of prey or predators
despite changing environmental conditions, which is a limitation in this particular
situation. However, it is much more realistic, as in nature, the density of individuals
is always dynamic and influenced by environmental conditions.

MaxEnergy displayed an increasing trend overall (Fig. 15b) and individuals in
an environment with high primary production evolved a higher energy capacity—
statistically significantly so in the case of predators and approaching statistical sig-
nificance for prey. It is reasonable that individuals from an environment with high
primary production evolve a higher energy capacity. Prey individuals can consume
all of the Grass contents of a cell in a single Eat action, and each action is a highly
valuable resource. Thus, it is highly beneficial to prey to obtain and retain as much
Energy as possible when they do perform Eat. With a higher MaxEnergy, prey indi-
viduals can use their Eat actions more efficiently by storing more Energy per eat
event. As Lewis and Kappler [76] observe, female lemurs (Propithecus verreauxi
verreauxi) that inhabit seasonal environments will have higher body mass when
there is an abundance of resources during the wet season, and during this time, they
are more likely to reproduce and wean infant offspring. Furthermore, MaxEnergy
influences Strength, as both are proxies for the size of the individual. A predator
must have greater Strength than its prey target has Energy for a Hunt action to suc-
ceed. Thus, as prey MaxEnergy increases, that of the predators must as well. What
we are observing is an evolutionary arms race between prey and predators, and the
maximum amount of primary production in each cell significantly impacts the way
in which this arms race occurs, as noted by Friman et al. [36].

Vision reached an equilibrium with high and low primary production for both
predators and prey, except in the case of predators in low primary production, in
which it evolved to its maximum value of 25 (Fig. 15c). For both predators and
prey, after approximately 10,000 time steps, the difference in Vision between runs
with high and low primary production was almost always statistically significant
(t-test p < 0.05) and individuals living in low primary production evolved higher
Vision. This result shows that despite the Energy cost of maintaining Vision, there
is a significant advantage to being able to perceive more potential resources (such
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as mates and food) and competitors, particularly when food resources are scarcer.
As Eklöf et al. [30] report, five species of insectivorous bats of the family Vespertil-
ionidae developed different types and levels of visual acuity depending on the type
of foraging they engaged in. Along similar lines, Potier et al. [106] observe that the
visual abilities of two raptor species (Parabudteo unicinctus and Milvus migrans)
differ according to their foraging activity. Reduced primary production effectively
reduces the carrying capacity per cell, which increases the intensity of competition
for resources within each cell. Thus, it is imperative to the survival of individuals to
be able to obtain information about the locations of potential food and competitors so
they can reduce their competition. In the same way, individuals evolve to move faster
when primary production is reduced (Fig. 15d). Having a higher MaxSpeed aids in
the dispersal of individuals, which serves to reduce competition amongst them. As
stated earlier, MaxSpeed and Vision are highly related and tend to evolve together,
because individuals can only move to positions with resources when they perceive
these resources. Thus, the emergent pattern of evolution of MaxSpeed mirroring that
of Vision is not surprising, and the difference between runs with high and low pri-
mary production were, again, mostly significant after time step 10,000. Similar to
the evolution of MaxGrass, the evolution of both Vision and MaxSpeed may also
represent an evolutionary arms race—a higher Vision range and MaxSpeed in prey
means that they can perceive and evade potential threats more easily. We observed
slight overall increases in both Vision and MaxSpeed in predators as well, despite
the fact that these traits were already initialized to much higher values for predators.

Mirroring the differences in rate of behavioral evolution between the two Eco-
Sim variants noted above, we observed many differences in the resultant behavior
selections of the individuals (Fig. 16a, b—prey; Fig. 17a, b—predators). For prey, we
observed significant differences in Reproduce and ReproduceFail. Overall, prey in
an environment with high primary production both succeeded and failed to reproduce
farmore than those in an environmentwith lowprimary production, as they attempted
to reproduce far more often (t-test p < 0.05 for much of the time series). The reason
for this is twofold: Reproduce is very costly in terms of Energy, and Reproduce
requires that individuals are in the same cell. Due to the Energy cost of reproduction,
when primary production is low, individuals reduce reproduction to save Energy.
Furthermore, as Reproduce requires individuals to be in the same cell, with lower
prey density, this is much harder to achieve when primary production is low. We
observed insignificant differences in Eat success, but in an environment with reduced
primary production, EatFail was significantly higher (t-test p < 0.05 for most of the
time series). This indicates that the preywere heavily affected by competition for food
resources. Initially counterintuitively, we observed that prey Socialized significantly
more oftenwhenprimaryproductionwas reduced (t-testp < 0.05 formost of the time
series). This was counterintuitive because Socialize brings individuals together, and
it was expected that preywould aim to reduce their competitionwith reduced primary
production by reducing their Socialization. Furthermore, we observed insignificant
differences in prey Compactness, the mean number of prey individuals per cell for
all cells containing at least one prey individual (defined analogously for predators).
However,with lower preydensity, Socialize is an importantmechanism for improving
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Fig. 16 Mean ratios of actions performed by prey in Default, RMG25, and RE25 EcoSim runs.
Due to computational time constraints, RE25 runs were terminated at 10,000 time steps

reproduction success, as reproduction requires thatmates be in the same cell. Because
Compactness was not different despite significant differences in Socialize, it is likely
that prey in RMG25 runs Socialize as a means to increase Reproduce success, and
then disperse after in order to reduce subsequent competition. In fact, we found that
actions aiding in dispersal (Escape, SearchForFood, and Explore) were performed
19% more often after Reproduction attempts in RMG25 runs than in Default runs,
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Fig. 17 Mean ratios of actions performed by predators in Default, RMG25, and RE25 EcoSim
runs. Due to computational time constraints, RE25 runs were terminated at 10,000 time steps

and Reproduce was attempted after Socialize 21% more often in an RMG25 run
than in a Default run. To determine this, we tracked all actions performed by all
individuals born in time steps 20,000–20,010 for a single Default and RMG25 run.

Similar actions ratios overall were observed for predators between the two run
types, but there was significantly more Reproduce success with high primary pro-
duction for the same reasons for which we observed this phenomenon in prey (t-test
p < 0.05 for much of the time series). With many of the other actions yielding
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insignificant difference, the other time series affected by primary production was
the ratio of Hunt actions performed. Predators must Hunt more with low primary
production because prey are scarcer, they must take the opportunity to obtain Energy
when the opportunity presents itself.

3.2 Reduced Energy Expenditure

Both prey and predators followed different evolutionary trajectories with reduced
Energy expenditurewhen compared toDefault EcoSim runs (Fig. 18). The behavioral
genomes of preywith reduced Energy expenditure evolved faster than in Default runs
prior to approximately 4000 time steps, which agrees with the experimental results
obtained in Gillooly et al. [38], in which it was found that animals with lower energy
expenditure evolved at a faster rate than animals with higher energy expenditure.
However, after 4000 time steps we found that prey with reduced energy expenditure
lagged behind in rate of evolution thereafter (Fig. 18a, t-test p < 0.05 for most of the
time series). Prior to 10,000 time steps, behavioral genomes of predatorswith reduced
Energy expenditure evolved faster than their Default counterparts, which once again
agrees with the results obtained in Gillooly et al. ([38], although near the end of the
runs, it appeared inevitable that Default predators would ultimately overtake those
in RE25 in terms of Distance Evolved (Fig. 18a, t-test p < 0.05 until approximately
9500 time steps). The shapes of these curves bear strong resemblance to those of
Distance Evolved when Default runs were compared to RMG25, however, here the
roles are reversed. The common element between the two graphs is that the runs
with significantly higher numbers of individuals exhibited faster evolution in prey
and predators early in the run, only to be overtaken by the runs with lower number of
individuals later on. This corroborates our speculations regarding the links between
number of individuals, spatial separation of individuals, and gene flow.

Similarly, the shape of curves for MaxEnergy over time comparing Default and
RE25 runs (Fig. 18b) are very similar to those comparing Default and RMG25 runs,
though again, the roles are reversed (MaxEnergy in RE25 runs is greater than that in
Default runs, t-test p < 0.05 after 5600 time steps for prey, p < 0.001 after 500 time
steps for predators). Of all the determinants of Energy expenditure, MaxEnergy (a
proxy of the size of the individual) plays the strongest role for both prey and predator
individuals, as it is penalized directly in the Energy functions and also indirectly
through the cost associated with Speed of movement in a given time step. Thus, as
expected, individuals with reduced Energy expenditure per time step evolved to be
larger, more rapidly.

Conversely, we did not entirely expect what we observed for evolution of Vision
and MaxSpeed when comparing Default runs to RE25 (Fig. 18c, d), in light of the
Energy costs associated with maintaining these features. We observed that individu-
als fromDefault EcoSim runs evolved greater Vision andMaxSpeed than their RE25
counterparts (t-test p < 0.05 after 4000 time steps), in all cases except forMaxSpeed
of prey. The results pertaining to visual acuity do, in fact, agree with empirical find-



EcoSim, an Enhanced Artificial Ecosystem … 269

Fig. 18 Comparison of four measures related to evolution of prey and predator individuals between
Default and RE25 runs over time. Each measure uses the left y-axis, while the t-test 1 − p value
uses the right axis. The T -test 1 − p value shows the significance of the difference between Default
and RE25 runs for prey and predators separately. Distance evolved a is the genetic distance between
behavioral genomes at initialization and the mean of all individuals at a given time step. MaxEnergy
(b),Vision (c), andMaxSpeed (d) are physical properties determining themaximumenergy capacity,
vision range, andmaximummovement speed of individuals, respectively.Values shownare themean
of all individuals alive at the given time step



270 R. Scott et al.

ings in the literature when we consider them in light of evolution of body size. Kiltie
[63] found a positive correlation between body size and visual acuity across various
species of birds, so that larger birds with higher energy expenditure exhibit higher
visual acuity than smaller birds with lower energy expenditure. Moreover, Mech and
Zollner [87] report a positive correlation between body size and perceptual range
for various forest dwelling rodent species, including chipmunks, grey squirrels and
fox squirrels. Finally, Rutowski, Gislen and Warrant [110] found that visual acuity
increases with body size across four species of nymphalid butterfly.We expected that
cheaper Energy costs associatedwithmaintainingVision andMaxSpeedwould allow
them to evolve to larger values, much like MaxEnergy. However, relatively, Vision
and MaxSpeed play much smaller roles in determining the Energy expenditure of
individuals per time step but crucial roles in determining the fitness of individuals.
With reduced Energy consumption, the number of both prey and predator individuals
was far greater than in Default runs. This result agrees with the empirical findings
reported in McNab [86] with respect to a variety of vertebrate species inhabiting
oceanic islands. Species with lower energy expenditure persist on oceanic islands by
means of population increases, as opposed to specieswith higher energy expenditures
[86]. As the number of individuals is much greater, so is the density of individuals,
and thus finding mates is far less difficult. Furthermore, as individuals expend less
Energy, they less often need to find food resources in order to survive. Thus, for
both predators and prey, it is reasonable that, despite the cheaper cost of maintaining
Vision and MaxSpeed, the importance of maintaining these features was overbear-
ingly diminished as well in RE25 runs. The only anomaly is MaxSpeed of prey,
however, at approximately 5000 time steps, the difference between the two run types
was mostly insignificant, following a very similar trend to the earlier comparison
regarding primary production. At approximately 9000 time steps in that comparison,
MaxSpeed of RMG25 runs overtook that of Default runs. It is quite possible that in
the long term, such a phenomenon would be observed here.

We observed several changes in behavior of prey (Fig. 16a, c) and predators
(Fig. 17a, c) when their resource consumption was decreased. In prey, most notably,
individuals in RE25 far more rapidly evolved a general loss in the ability to Evade
predators and a reduction in Eat attempts, while only gaining in their frequency of
Explore (t-test p < 0.05 in all cases, for most of the runs). Ultimately, in Default
runs, the loss of Evade occurs as well, but at a much later time (∼10,000 time steps
versus 5000 time steps), and Explore still occurred significantly less in the long term
(t-test p < 0.05 comparing Default time steps 16,000–20,000 against RE25 time
steps 6000–10,000, for most of the time series). The rapid loss of the ability to Evade
speaks to the futility in attempting to do so—in RE25 runs, the number of predators
(and, accordingly, their density) was significantly greater (t-test p < 0.05 for most of
the duration of the runs), and thus performing Evade was insufficient in prolonging
the lives of prey individuals. The reduction in prey Eat attempts was expected, again
because the individuals require less Energy to persist. The remaining prey behaviors
showed no deviation between the two EcoSim variants.

Predators in RE25 runs showed a significant reduction in frequency of Hunt when
compared to Default runs (t-test p < 0.05 for most of the time series), in accordance
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withwhatwas observed in prey. Like prey, the predators inRE25 required less Energy
to survive, and thus evolved to spend fewer actions on obtaining Energy. Unlike prey,
however, the predators of RE25 did not show an increase in Explore (which is sensi-
ble, as Explore has very little value to predators as it is). Instead, predators evolved
to attempt Reproduction significantly more often in RE25 runs when compared to
Default runs (t-test p < 0.05 for most of the time series). Generally, as predators
have much lower density, they also have a much harder time finding mates, and
consequently, they tend to exhibit far more ReproduceFail than prey. In RE25 runs,
with predator density greatly increased and Energy requirements slightly reduced,
allocating more actions and Energy to Reproduction is necessary to improve their
fitness. Thus, with the RE25 variant of EcoSim, both prey and predators get what
they need to improve their fitness: the prey improve their longevity and the predators
improve their fecundity through greater chance of Reproduction success.

4 Conclusion

We added many new features to EcoSim, improving the breadth and depth of ques-
tions it can now answer. The new features include new sensing and action concepts
in the FCM of individuals, sexual reproduction, realistic feedback via fertilization
of primary producers by consumers, and predator-prey combat, among others. In
addition, new physical traits have been added to the behavioral genome, allowing
different niches to emerge. Our results underline the importance of competition and
energetics in evolution, and the great complexity that can emerge from relatively
simplistic individuals. Our model reveals insights into the genetic mechanisms of
niche adaptation, advances our understanding of both evolution and ecology, and
allows us to address more complicated biological questions at resolutions varying
from individual to whole communities. This is a major advantage of IBMs over
empirical studies in the real world or other types of model; using IBMs, we are
able to record anything we want at the resolution of the individual, something that
would largely not be practical or possible otherwise. Of course, EcoSim and the
general IBM approach has its drawbacks as well. Every IBM requires substantial
simplification of the system it aims to replicate; as Box said regarding all scientific
models, “All models are wrong but some are useful” [13]. Thus, the simplifications
and assumptions made by an IBM must be understood before using it as an exper-
imental platform, and conclusions made from use of the model must be considered
in light of its assumptions and simplifications. For the same reason, it is sometimes
difficult to generate new hypotheses using the IBM approach; researchers must ask
themselves if the novelty of their conclusions is legitimate or, again, due to assump-
tions or simplifications of the model. Furthermore, many IBMs require substantial
computing power, and EcoSim is no exception. Many IBMs, particularly those that
would be considered pragmatic, require significant model tuning and validation to
ensure legitimacy of the data they generate. Being at an early stage of the analysis of
the new version of EcoSim, these preliminary results are promising and will lead to
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some more dedicated studies on niche emergence, reproduction, ecology, and evo-
lution. For instance, EcoSim is currently being used to perform exciting research on
sexual selection, the evolution of communication (particularly, communication of
fear), asexual versus sexual reproduction, and biological invasions.
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