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Abstract This work proposes a decision-theoretic approach to problems involving
interaction between robot systems and human users, with the goal of estimating the
human state from observations of its behavior, and taking actions that encourage
desired behaviors. The approach is based on the Partially Observable Markov Deci-
sion Process (POMDP) framework, which determines an optimal policy (mapping
beliefs onto actions) in the presence of uncertainty on the effects of actions and
state observations, extended with information rewards (POMDP-IR) to optimize the
information-gathering capabilities of the system. The POMDP observations consist
of human gestures and spoken sentences, while the actions are split into robot behav-
iors (such as speaking to the human) and information-reward actions to gain more
information about the human state. Under the proposed framework, the robot system
is able to actively gain information and react to its belief on the state of the human
(expressed as a probability mass function over the discrete state space), effectively
encouraging the human to improve his/her behavior, in a socially acceptable manner.
Results of applying the method to a real scenario of interaction between a robot and
humans are presented, supporting its practical use.

1 Introduction

Social robots need to be capable of developing affective interactions and to empathize
with human users [4]. This requirement involves the ability to infer and react accord-
ing to latent variables: the user’s affective and motivational status.
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The agent acting in a Human-Robot Interaction (HRI) scenario must take into
account the effects of its actions on the human user, which are uncertain, and the
sensory information it receives, which is noisy. Planning under these conditions is
attainable through Partially Observable Markov Decision Processes (POMDPs) [3].
POMDPs, through the transition and observation models, deal with the aforemen-
tioned uncertainty, by probabilisticallymodeling the possible outcomes of the agent’s
different actions and the accuracy of the sensory information. Furthermore, the prob-
lem of empathizing with the human user adds the goal of information gain on latent
(i.e., not directly observed) state variables, which is addressed by the extensions
to POMDPs introduced by Partially Observable Markov Decision Processes with
Information Rewards (POMDPs-IR) [9].

Thus, this work introduces a POMDP-IR framework for planning under uncer-
tainty in HRI problems, which allows the agent to accomplish a given task, actively
infer latent state variables of interest and adapt its behavior accordingly. The afore-
mentioned framework is implemented in a real robot system, to ensure it is capable
of successfully solving HRI planning problems in practice.

2 Related Work

Among HRI scenarios, Decision-Theoretic (DT) approaches to planning based on
the POMDP framework are found in assistive scenarios, such as the robot wheelchair
[10], in which the goal is to recognize the intention of the user but do not include
social capabilities for improving recognition. Also, in socially assistive settings, the
POMDP framework models the social interaction between robot and human users
in, e.g., nursing homes [7], although without taking into account the user’s status.
Finally, the POMDP was used to model problems with latent variables and adapt the
agent’s behavior accordingly in an automated hand-washing assistant [1]. However,
the agent in the latter work does not actively seek to gain information on the user’s
status, and is, therefore, limited to reacting based on a possibly high-uncertainty
belief on the hidden variables.

The traditional POMDP model does not allow for rewarding low-uncertainty
beliefs. Consequently, in order to obtain a certain level of knowledge about the fea-
tures of interest, the POMDP framework needs to be extended to reward information
gain. This extension is provided through the POMDP-IR (POMDP with Information
Reward)) framework. DT planning based on POMDP-IR has been applied to the
problem of active cooperative perception [9]. The present work, however, is focused
on multimodal human-robot interaction.
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3 Background

POMDP-IR can be expressed as a tuple (S, A, T, R,Ω, O, γ ), where:

• S = S1 × · · · × Sn represents the environment’s factored state space, defining the
model of the world;

• A is a finite set of actions available to the agent that contains the domain-level
action factor Ad and an Information-Reward (IR) action factor Ai for each state
factor of interest (A = Ad × A1 × · · · × Al , where l is the number of IR actions);

• T is the transition function that represents the probability of reaching a particular
state s ∈ S by a given state-action pair (T : S × A × S → [0, 1]);

• R is the reward function, which defines the numeric reward given to the agent
for each state-action pair (R : S × A → R), and is therefore given by R =
Rd(s, ad) + ∑l

i=1 Ri (si , ai ), with s ∈ S, ad ∈ Ad , si ∈ Si , ai ∈ Ai , Rd being the
POMDP reward model and Ri the information reward;

• Ω is a finite set of observations that correspond to features of the environment
directly perceived by the agent’s sensors;

• O is the observation function that represents the probability of perceiving obser-
vation o ∈ Ω after performing action a ∈ A and reaching state s ′ ∈ S (O :
S × A × Ω → [0, 1]);

• γ is the discount factor, used to weight rewards over time.

The POMDP-IR fits into the classic POMDP framework, and can, therefore, be
represented as a belief-stateMarkovDecision Process (MDP), in which the history of
executed actions and perceived observations are encoded in a probability distribution
over all states: the belief state. Every time the agent performs an action a ∈ A and
observes o ∈ Ω , the belief is updated by the Bayes’ rule:

bao(s ′) = P(o|s ′, a)

P(o|b, a)

∑

s∈S
P(s ′|s, a)b(s), (1)

where P(s ′|s, a) and P(o|s ′, a) are defined by the Transition andObservationmodel,
respectively, and

P(o|b, a) =
∑

s ′∈S
P(o|s ′, a)

∑

s∈S
P(s ′|s, a)b(s) (2)

is a normalizing constant. Furthermore, the value function V π (b), defined as the
expected future discounted reward given to the agent by following policy π , starting
from belief b:

V π (b) = Eπ

[ ∞∑

t=0

γ t R(bt , π(bt ))
∣
∣
∣b0 = b

]

, (3)

where R(bt , π(bt )) = ∑
s∈S R

(
s, π(bt )

)
bt (s), remains approximately Piecewise

Linear Convex (PWLC) in the POMDP-IR framework. This way, the most common
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algorithms for solving POMDPs,which exploit the PWLC representation of the value
function, can also be used to solve POMDPs-IR. The optimal policy π∗ is charac-
terized by the optimal value function V ∗, which satisfies the Bellman optimality
equation:

V ∗(b) = max
a∈A

[

R(b, a) + γ
∑

o∈O
P(o|b, a)V ∗(bao)

]

. (4)

Solution methods for POMDPs differ from exact solution algorithms (e.g., Mon-
ahan’s enumeration algorithm [5]), intractable for large problems, to approximate
policy optimization (e.g., Point-based Value Iteration (PBVI) [6]). The method of
reference in solving POMDPs throughout this work is PERSEUS [8], a randomized
PBVI algorithm.

4 Framework Description

The proposed framework approaches the problem of planning under uncertainty in
HRI under the POMDP-IR extension. Figure 1 represents the projected POMDP-IR
as a two-stage Dynamic Bayesian Network (DBN), which depicts the dynamics of
the HRI problem.

4.1 States and Transitions

The agent acting in an HRI scenario considers two types of state factors: the task
variables T and the person variables P . The task variables model the environment
features that provide information on the progress of the tasks. On the other hand, the
person variables track the human state and are inherently latent. The latter are used
to gain information on the human user’s affective and motivational status and adapt
the robot behavior accordingly.

The number of state variables depends on the amount of features essential to
represent the environment, and is, therefore, dependent on the specific task. The
criteria for the selection of states involve a trade-off between operational complexity
and predicted system performance, since operational complexity increases with the
number of states.

Furthermore, depending on the objectives of the agent acting in an HRI setting,
the task variables might not exist. This is the case when the single goal of the agent
is to gain information on the human user.

A person variable can have a constant value over time if its value does not change
during the task. This is the case with personal traits (e.g., Personality and Prefer-
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Fig. 1 DBN representation of the DT model for multimodal HRI

ences), which are relevant for the robot behavior and do not change for the duration
of the interaction. In Fig. 1, Pk represents a constant person variable.

Otherwise, person variables are inferred from the user’s behavior at each time step
(factors P1 to Pj in Fig. 1), which is represented in the model’s observations. These
state variables may consist of state factors of interest, according to the POMDP-IR
framework.
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4.2 Observations and Observation Model

In a social HRI setting, observations reflect the user’s behavior. This behavior is used
to monitor the progress of the task and infer the user’s affective and motivational
status.

Observations are discrete, symbolic values, classified from sensory data, which
correspond to features of the environment that are observable in a given state.

The observation factors are contingent on the sensory capabilities of the robot
system. Nevertheless, the correct understanding of the user’s status relies on the
agent being capable of recognizing human communication methods. Consequently,
the robot system ought to be able to recognize speech and gestures in order to
understand the human user’s affective and motivational status.

The observationmodel is of key importance in the achievement of the information
gain goals of the agent. It reflects the probability of receiving a certain observation,
given the state of the environment and the action performed. Certain actions, such
as questioning or approaching the user, increase the probability of perceiving certain
observations. This fact is of utter importance in order to actively gain information on
the user’s status. The dependency on the action is represented in observations Om to
O f in Fig. 1.

4.3 Actions

The model in Fig. 1 comprehends two sets of actions: Ad and Acommit . The actions
in Ad have an effect on the environment and are dependent on the actuators of the
agent, while the actions in Acommit are used to achieve the information gain goals of
the agent.

Typically, the action set Ad contains the minimum set of functionalities that allow
the agent to complete its tasks. Social robots need to communicate in a natural, easily
understandable way with the human users. To achieve this objective, the robot must
be able to express different moods and emotions. Consequently, the action set Ad of
a social robot ought to include speech and/or gestural capabilities and/or graphical
emotion displays.

Following the POMDP-IR framework, besides the domain-level action factor Ad ,
the model has additional action factors Acommit for each state factor of interest.
The state factors of interest, in the problem under study, are included in the person
variables, as these contain the aforementioned affective and motivational state of the
human user. The actions in Acommit allow for rewarding the agent for decreasing the
uncertainty regarding particular features of the environment.
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4.4 Reward Model

In the DT model in Fig. 1, rewards are either associated with task objectives: Rd , or
with the information gain goals: Ri , i = 1, . . . , j . The sum of these rewards, RI R ,
constitutes the reward awarded to the agent at each time step.

The behavior of the robot consists of the sequence of domain actions Ad the agent
performs. In the social HRI scenario, and in order to adapt the robot’s behavior to
the user’s affective and motivational status, the reward assigned to an action depends
not only on the task variables, but also on the person variables.

The information rewards Ri influence the behavior of the agent, with the pur-
pose of achieving a low uncertainty regarding certain person variables. The value of
these rewards is dependent on the threshold of knowledge required, according to the
POMDP-IR framework [9].

5 Selected Application

The proposed approach was tested in a case study that considers a socially assistive
task: rehabilitation therapy.

5.1 Scenario

Rehabilitation therapy includes passive or active exercises. In the first, the therapist
(human or robot) physically assists the patient in moving the affected limb. On the
other hand, in active exercises, the patient moves the affected limb by him/herself,
while the therapist has the functions of coaching and motivating.

Up-to-date research in rehabilitation robotics mainly covers passive exercises.
Nevertheless, social robots provide a way to approach active rehabilitation exercises,
representing an innovative way to monitor, motivate and coach patients.

Overall, the goals of the robot therapist in the considered rehabilitation scenario
are:

• To help the user in the given setting, by monitoring the patient’s movements (e.g.,
encouraging the patient to continue if he/she stops performing the exercise);

• To adapt its behavior and, consequently, the therapy style (e.g., nurturing vs chal-
lenging the patient), in accordance with the patient’s affective and motivational
status.
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Fig. 2 DBN representation
of the DT model for the
robot therapist
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5.2 Decision-Theoretic Model for the Robot Therapist

The application of the proposed framework to the robot therapist scenario results in
the DT model represented in Fig. 2.

5.2.1 States

The significant features of the environment in which the robot is to operate are related
to the human user. Fulfillment of the task’s objectives requires that the agent keep
track of the user’s movements (state Exer.), possess knowledge regarding relevant
personal traits (Pers.) of the user and infer his/her affective status (Fat.). Therefore,
the proposed DT model considers the state space represented, in factored form, in
Table 1.

The user’s movement is encoded in the task state factor Exercise (Exer.). When
the exercise is performed as prescribed, the state factor assumes the value Correct:
Exer. = Correct . Otherwise, if the movement is inappropriately performed or not
performed at all, Exer. = I ncorrect . The state factor Personality (Pers.) is a con-
stant person variable, known beforehand by the problem designer, which represents
the patient’s behavioral personality, as Introverted orExtroverted. Finally, theFatigue
state factor (Fat.) is a measure of the patient’s weariness, caused by the physical
exercise. It assumes the values Tired or Energized, depending on whether the patient
shows signs of fatigue or liveliness, respectively.
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Table 1 State, observation and action spaces for the robot therapist case study

Factors Values

States Exer. Correct, incorrect

Pers. Introverted, extroverted

Fat. Tired, energized

Observations OExer. Proper, wrong

OFat. Weary, energetic, none

Actions Ad Nurture, challenge, query
patient, end therapy, none

AFat. Commit tired, commit
energized, null

5.2.2 Observations

The observation space is represented, in factored form, in Table 1. Observations
reflect the relevant behavior of the patient, in accordance with the task’s goals. In
the present case study, the agent ought to classify the movement performed by the
patient (OExer.) and his/hers affective status (OFat.).

The gesture-related observation factor OExer. is used to evaluate the exercise and
assumes, as a result, the values Proper or Wrong. OExer. = Proper whenever the
agent perceives that the patient performed the movement as prescribed. Otherwise,
OExer. = Wrong if the agent perceives that the patient did not perform themovement
or performed it incorrectly.

The observation factor OFat., which is related to the affective status of the patient
represented in state factor Fatigue, assumes the values Weary, Energetic or None.
OFat. = Weary or OFat. = Energetic when the patient demonstrates feeling tired
or lively, respectively. Otherwise, OFat. = None if the agent does not perceive any
relevant information regarding the affective status of the patient.

OExer. is obtained by visual classification of the patient’s gestures and OFat.

through classification of the user’s verbal responses.

5.2.3 Actions

The proposed DT model considers two action factors: the Action Domain Ad and
the IR Action AFat. At each time step, the agent chooses one value for each action
factor. The possible values for the action factors are represented in Table 1.

The IR action is defined according to the POMDP-IR framework, with a commit
action for each value of the related state factor (Fat.) and a null action. AFat. allows
for rewarding the agent for reducing the uncertainty regarding the state factor Fat.,
related to the patient’s fatigue.

The Action Domain Ad contains the set of functionalities that allow the agent to
achieve the task and information gain goals.
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The therapy style, i.e., the robot’s approach to the patient, changes as a function
of his/her Fatigue and Personality. Dependent on these factors, the encouragement
is classified as Nurture or Challenge if the agent opts, respectively, for a softer
(e.g., “You are doing great! Keep up the good work.”) or a more defiant approach
(e.g., “You can do better than that!”).

Since the therapy style is dependent on the person variables, it is important to
gain information and maintain a low uncertainty regarding the state factors Pers.
and Fat. As Pers. is constant, the agent actively seeks to reduce uncertainty on the
state factor Fat. through the Query Patient action. This action consists of verbally
interacting with the patient to infer his/hers Fatigue.

Moreover, the agent ought to end the exercise (End T herapy) when the patient
persistently shows he/she is not able to proceed with it. Finally, at each time step,
the agent might choose to do nothing (None).

5.2.4 Transition, Observation and Reward Functions

The proposed framework allows us to take into account the effects of time in the
states of the DT model. Namely, in the current case study, the transition function T
encodes that b(Fat. = T ired) increases at each time step in the absence of opposing
observations (OFat. = Energetic). That is, the agent realistically believes that the
patient is feeling more tired over time. The transition function of this case study
dictates that the probability of the patient correctly performing the exercise (Exer. =
Correct) increases with themotivation actions (Nurture orChallenge).Moreover,
Personality (Pers.) is modeled as a constant variable, not inferred by the agent, as
its value does not change during the task.

The observation function O encodes the error in sensory data classification.
This means, for instance, that even if the patient’s gesture is classified as incor-
rect (OExer. = Wrong), the agent’s belief about Exer. = I ncorrect is not 100%,
and the robot might require more information before motivating the patient. Fur-
thermore, the probabilities in O take into account that information-gathering actions
(such as Query Patient) increase the probability of perceiving a verbal response
from the user (e.g., OFat. = Weary).

The DT model in Fig. 2 rewards IR actions (RFat.) and Ad actions (Rd ). The
information rewards are defined, in accordance with the POMDP-IR framework,
so that the agent actively seeks to have a certainty about Fat. greater than 75%
(i.e., b(Fat. = T ired) > 0.75 or b(Fat. = Energi zed) > 0.75). Actions in Ad are
rewarded in accordance with the state of the environment: Encouragement actions
(Nurture and Challenge) are rewarded 0.2 whenever the patient is incorrectly
performing the exercise or 0.1 when he/she shows signs of feeling tired, and penal-
ized −0.1 otherwise. The reward given to each action also depends on the state
factor Pers.: for an Introverted person, the Nurture action is preferred, while the
Challenge action is favored for an Extroverted person; The Query Patient action
is penalized with −0.2; None is neither rewarded nor penalized; End T herapy
receives high penalization (−1) when the patient feels energetic and a reward of 0.1
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otherwise. Rewards are defined over the abstract states and actions of the DT model.
The discount factor in this case study is γ = 0.9.

As it would be impractical to obtain the models from empirical studies, especially
as the system becomes more complex, the aforementioned reward values are tuned
to lead to a policy that handles different patients adequately.

6 Experiments

The robot therapist case study was implemented as a robot system consisting of a real
social mobile robot networked with a RGB-D camera, which interacted, in different
experiments, with distinct persons, in a realistic apartment testbed.

6.1 Experimental Setup

The networked robot system used in the present case study consists of theMOnarCH
robot platform, represented in Fig. 3a, and an external Kinect camera. The robot
platformprovides the actuating capabilities required to implement the domain actions
Ad and the sensors necessary for the speech-related observations OFat.. The Kinect
camera is strategically located for a clear view of the patient’s movements and is
used, therefore, for the classification of the exercise OExer..

(a) Robot Platform used in
      the experiments

(b) Living room area of the ISRoboNet@Home testbed

Fig. 3 Experimental setup for the robot therapist case study
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Fig. 4 Evolution of the belief about the states Fat. and Exer. w.r.t. the decision episode, the
observations received and the actions performed, for experiment A

The experiments within this case study took place in the ISRobotNet@Home
Testbed,1 which is represented in Fig. 3b. This testbed provides the infrastructure
necessary to implement networked robot systems in a domestic environment.

6.2 Experimental Results

Each experiment considers a different user, who is classified according to his/hers
personality (i.e., as introverted or extroverted), and with regard to his/hers ability to
perform the exercise (athletic or unfit).

The experiments carried out within this work were recorded, and videos are avail-
able at https://goo.gl/TlyXGT.

6.2.1 Experiment A

This experiment considers a user who is classified as extroverted (Pers. = Extro-
verted) and athletic. The user feels energetic for the first 50 s (decision step 10),
approximately, and tired afterwards. Figure 4 plots the data acquired in experimentA.

At the beginning, the robot chooses not to act, since the exercise is well performed
and the agent has a low uncertainty regarding the fatigue status of the user. This

1http://welcome.isr.tecnico.ulisboa.pt/isrobonet/.

https://goo.gl/TlyXGT
http://welcome.isr.tecnico.ulisboa.pt/isrobonet/
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uncertainty on the state factor Fat., however, increases over time, driving the robot
to actively seek to reduce it, by querying the user (decision step 3). The answer
(OFat. = Energetic), informs the robot that the user is still active and motivated,
increasing the certainty about Fat. = Energi zed. This behavior is repeated until the
user does not perform the exercise correctly (OExer. = I ncorrect) in decision step
11. Then, the robotmotivates the person through a challenging approach according to
the considered personality of the user and the current fatigue status. After receiving
information that the user now feels tired (OFat. = Weary), the robot changes therapy
style and adopts a nurturing approach. As the user continuously shows an inability
to carry out the exercise and the certainty about Fat. = T ired increases, the robot
finally chooses to end the therapy in decision step 15.

6.2.2 Experiment B

This experiment considers a user classified as extroverted (Pers. = Extroverted)
and unfit. The user feels energetic for the first 40 s, approximately, and tired after-
wards. Figure 5 plots the data acquired in experiment B.

Figure 6 represents an episode of experiment B where the robot interacts with the
user.

Thebehavior of the robot is similar to that in the previous experimentwhile the user
demonstrates feeling energetic and correctly performs the exercise. Nonetheless, the
user incorrectly performs the exercise more often, upon which occasions the robot

Fig. 5 Evolution of the Belief about the states Fat. and Exer. w.r.t. the decision episode, the
observations received and the actions performed, for experiment B
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Fig. 6 Episode of the experiment B when the robot queries the user. Right and top left images show
different views of the interaction between the robot and the human; bottom left image represents
the interface of the gesture classification application

motivates the user with a challenging approach, while the agent believes that the
user feels motivated/energetic. Despite motivating the user, the robot keeps track of
his/her fatigue and reacts when the uncertainty about Fat. is high. Finally, the agent
ends the therapy once it persistently observes that the user is not performing the
exercise and feels tired.

6.2.3 Experiment C

This experiment considers a user classified as introverted (Pers. = I ntroverted)
and athletic. The patient feels energetic up to, approximately, 45 s (decision step 9),
and tired afterwards. Figure 7 plots the data acquired in experiment C.

The behavior of the robot is heavily dependent on its knowledge regarding the
fatigue status of the user.While the uncertainty about the Fat. state factor is high, the
robot queries the user. Since the uncertainty about Fat. increases over time, the agent
performs the action Query Patient until it perceives an answer OFat = Energetic
or OFat = Weary (decision steps 3 and 4/7 and 8). Nevertheless, the robot performs
the therapy task while actively gathering information on the environment, motivating
the user once the belief about b(Fat. = T ired) is high, and ending the therapy
appropriately.
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Fig. 7 Evolution of the Belief about the states Fat. and Exer. w.r.t. the decision episode, the
observations received and the actions performed, for experiment C

6.2.4 Experiment D

This experiment considers a user who is classified as introverted (Pers. =
I ntroverted) and unfit. The user feels energetic for the first 40 s (decision step 8),
approximately, and tired thereon. Figure 8 plots the data acquired in experiment D.

The behavior of the robot changes in accordance with its belief about the states
of the environment. In the present experiment, there is a “trade-off” between moti-
vating or querying the user depending on the belief about the state factors Fat.
and Exer. In decision step 3, the agent queries the agent due to the high uncer-
tainty about Fat. Afterwards, the agent perceives no answer, but observes that the
user performed the movement incorrectly. This observation does not translate, how-
ever, into an absolute certainty about the exercise having been performed incorrectly
(b4(Exer. = Correct) ≈ 0.3), since the DT framework takes into account sensor-
related noise. The agent then queries the user once again (decision step 4), due
to the increasing uncertainty about the fatigue of the user. Once again, the Net-
work Robot System (NRS) receives no answer (OFat. = None), and observes that
the user performed the movement incorrectly. This time, the agent’s belief about
Exer. = I ncorrect is higher (b5(Exer. = I ncorrect) ≈ 0.95), and thus it moti-
vates the user. Nevertheless, the uncertainty about Fat. is still high in decision step
6, and the robot once again queries the user, perceiving an answer this time.

For the rest of the experiment, the robot follows a behavior similar to that of the
previous experiments, until it ends the trial in decision step 14.
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Fig. 8 Evolution of the Belief about the states Fat. and Exer. w.r.t. the decision episode, the
observations received and the actions performed, for experiment D

6.3 Discussion

Table 2 details the behavior of the robot for each experiment. As expected, the
number of motivation actions is higher for the users classified as unfit, who perform
the exercise incorrectly more often than the athletic users; and the number of query
actions is higher for the users classified as introverted.

The robot detected the fatigue status change from Energi zed to T ired in all of
the experiments. Moreover, the agent motivated the user upon detection of faulty
movements, either immediately after observing OExer. = Wrong (experiments A, B
andC) or after two consecutive observations (experiment D). Finally, the agent ended

Table 2 Behavior of the robot with regard to the experiment

A B C D

Motivation actions 3 5 2 4

Query actions 4 3 5 5

Time elapsed until agent detected
change of user’s status (s)

15 15 15 20

Time elapsed until agent ended ther-
apy because it detected user was
tired (s)

10 10 10 10

Duration of the experiment (s) 75 65 70 70
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the therapy after consistently observing that the user was not capable of proceeding
with the exercise.

Overall, the DT approach to planning in the robot therapist resulted in a behavior
capable of achieving the task and information goals, in a manner both adaptive to
the user’s status and socially appealing.

7 Conclusions and Future Work

Building on the POMDP-IR framework, this work introduced a DT approach to
planning under uncertainty with information rewards in social HRI. The properties
of the DT framework were demonstrated in the robot therapist case study and the
experiments’ results validate the proposed framework for a problem involving robot
systems in HRI scenarios.

Use of (PO)MDPs to model decision-making in realistic scenarios, such as the
framework proposed in this work, presents an important practical difficulty, since
they assume complete knowledge of the stochastic transition and observationmodels,
meaning one needs to specify or estimate all of the probabilities involved. Moreover,
any change to the parameters of thesemodels implies a recalculation of theDTpolicy.
Alternatively, in model-free Reinforcement Learning (RL) approaches [2], the DT
policies are learned from the interaction of robot agents with their environment,
without requiring full knowledge of the transition and observationmodels. Therefore,
we plan to use RL in future applications of these methods.

To further validate the framework developed within this work, we plan its applica-
tion to another health-related scenario, which we have been working with under the
CMU-Portugal project INSIDE,2 considering distinct scenarios of HRI with autistic
children and their therapists. INSIDE is a research project, whose team developed a
mobile robot with several interaction sensors and expressiveness skills, networked
with RGB-D cameras. This networked robot system has been designed to display
symbiotic autonomy when interacting with autistic children. Research has reported
that autistic children are frequently willing to engage with social robots, and even
create affective bonds with them. This is probably due to the predictability of the
robots’ behaviour. Despite the relative simplicity (when compared with a human)
of the behaviours displayed by the INSIDE robot system so far, the system requires
multi-modal perception systems that enable it to recognize children’s activity (e.g.,
speech/sound, gestures, motion and location) and actuation systems so as to interact
with the children using different approaches (e.g., spoken sentences, motion, ”face”
expressiveness). As the autonomy level of the robot system increases, autonomous
decision-making methods such as the one described in this work must be included
in the system.

The INSIDE robot system is composed of a mobile robot with onboard sensors,
such as a LIDAR (for self-localization and obstacle avoidance), RGB-D cameras (to

2http://www.project-inside.pt.
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detect children’s faces and their emotions), and a directional microphone (to recog-
nize children’s utterances and therapist keywords), networked with four Microsoft
Kinect RGB-D cameras installed on the ceiling of the room (to detect and locate the
children and understand some of their gestures). Additionally, a supervision inter-
face, comprising an actuation and a perception console, enables external operators,
hidden from the children, to become aware of the interaction status and intervene
in the robot decision-making process if necessary. A state machine orchestrates the
sequencing of behaviours, interfacing with them through a behaviour manager. The
systemwas developed to follow an adjustable autonomy strategy, aiming at a smooth
transition from a Wizard of Oz setup (in which external operators, can override the
information sensed and processed by the system, as well as the behavior selections
suggested by the decision-making algorithm) to full autonomy. The symbiotic auton-
omy manifests itself through the fact that some of the robot behaviours consist of
asking the child to help, while others make suggestions to the child as to what to
do. We plan to apply our method to the development of a decision-making system
that encourages the children to progress in games (e.g., building a puzzle, removing
an obstacle that prevents the robot from entering an area where it can help the chil-
dren during the game) by observing a child’s behavior and updating the belief about
his/her performance.
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