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1 Introduction

Logistics is a term describing essential components of a production process such
as transportation, storage, and handling of products from raw material to the
final consumption points (McKinnon 2010). Among these components, transport
activity is the most important. It is related to the movement and coordination of
goods. During the transport of goods, different vehicles can be used depending
on the type and specification of the product, the underlying technology, the
relevant infrastructure and the nature of the respective operations (Bektas 2017).
Transportation allows the carriage of loads from door-to-door, that is, between the
starting and arriving points, which is a significant effect as a complementary element
in other modes of transport.

Environmental pollution, which is widely spreading on a large area all over the
world, is one of the most critical threats to the survival of living beings. Because
of the processes such as electric power generation, industrial processes, heating,
and transportation, millions of kilograms of carbon dioxide (CO2) are spreading
to the atmosphere everyday. Electricity and industrial production areas are suitable
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for filtration systems due to high CO2 emission values. Numerous small energy
consumption points and vehicles used in transportation define other sectors that are
not currently available for filtration. In the coming years, the technological changes
in production technologies and the characteristics of transportation fuels may enable
the reduction of carbon dioxide emissions. Green logistics practices are also eco-
friendly business processes. Environmental management of the supply chain and
logistics activities (green logistics) is now becoming increasingly popular as an
enterprise practice.

The Vehicle Routing Problem (VRP) is a favorite and NP-Hard class combi-
natorial optimization problem. Depending on a set of constraints, it is a generalized
version of the Travelling Salesman Problem and defined as the problem of determin-
ing the lowest-cost routes for deliveries to geographically separate customers from
a warehouse. VRP is the primary element of many operational research problems
and has many variations. The exact solution methods and many common heuristics
have been proposed to solve VRPs.

In recent years, significant emphasis has been placed on sustainable logistics
practices in order to overcome environmental concerns. The version that focuses on
sustainable business practices is called Green Vehicle Routing Problem (G-VRP) in
general. Due to the fact that it is an important area within the logistics activities,
studies related to G-VRP has shown a significant increase in recent years. In this
type of VRP, unlike the original VRP, the effect of the routing on the environment
is being tried to be minimized. It is known that there is a direct effect of energy
(fuel) consumption on the CO2 emissions depending on the movement and the load
of vehicles.

Most of the vehicles in road transport work with diesel or gasoline fuel in Turkey.
Today, although vehicles that use alternative energy sources (LPG, electricity,
biodiesel etc.) have been developed, gasoline and diesel vehicles continue to be
used predominantly in this sector. Emissions from freight transport largely depend
on the type of fuel used (Piecyk 2010). Higher use of roads in freight and
passenger transport has led to increased traffic intensity and air pollution as well
as transportation costs (Aydemir and Cubuk 2016). According to the statistics of the
Turkish Statistical Institute (TSI) in 2014, total Green House Gas (GHG) emissions
as CO2 equivalent increased by 125% in 2014 compared to the emissions in 1990
and the share of the transportation sector in total greenhouse gas emission values is
about 19%. Figure 1 shows the change in emission values between 1990 and 2014.
Despite declining in some years, there is a tendency to increase in greenhouse gas
emissions per capita in general. The CO2 equivalent emission per capita was 6.08
tonnes in 2014, while it was 3.77 tonnes for the year 1990 (TSI 2014).

Investments and promotions that aim to direct drivers to public transport and
freight transport from road to rail have been the result of efforts to reduce the
use of fossil fuels. Although the effort being undertaken in this direction is
obviously beneficial, achieving the significant decline will only be possible with a
multi-perspective approach (Erdoğan andMiller-Hooks 2012). Governments should
continue to increase their promotional and financial support for the use of greener
energy resources. On the other hand, both public institutions and private sector
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Fig. 1 GHG emissions per capita in Turkey, 1990–2014 (TSI 2014)

companies should prefer eco-friendly energy sources in vehicles they use for
transportation.

Along with the increased emphasis on supply chain management in the envi-
ronmental sense, the need to develop models to reduce environmental pollution
has emerged. At this point, sustainable transport, which aims to efficiently transfer
goods, services and sustainable transport and delivery systems, has become an
important issue for companies. The development of theoretical models is the first
step in these studies. Factors such as travel distance, vehicle weight and vehicle
speed which affect the emission value produced by the vehicle should be controlled.
Another critical factor that determines the emission value is the total vehicle weight,
which is the sum of the cargo and the vehicle’s empty weight (Ayadi et al. 2014).
Improvements to the above factors will help to achieve sustainable transport goals.

In this section, three analytical models were used to identify the G-VRP. A
Simulated Annealing-based solution algorithm is preferred for the solution of large-
scale test instances. The results obtained from this solution algorithm are compared
with the results of the classical G-VRP model. Although there are many studies
in the literature for G-VRP, the current contribution of the study is to propose new
mathematicalmodels alongside the classical models used for G-VRP and solve them
quickly and efficiently with the Simulated Annealing method.

2 Background

Vehicle Routing Problem (VRP), first described by Dantzig and Ramser (1959), is a
generalized version of the Travelling Salesman Problem and defined as the problem
of determining the lowest-cost routes for deliveries to geographically separated



164 K. Karagul et al.

customers from geographical locations, depending on a number of factors (Cetin
and Gencer 2010). The main components of VRP are the road network, warehouses,
and vehicles. VRP is generally describes by vehicle capacity or route distance
constraints. If only capacity-related constraints are identified, the problem is named
as Capacitated Vehicle Routing Problem (CVRP).

CVRP has been a problem that has attracted many researchers since its first
definition. Many exact solution methods have been developed taking into account
the capacity constraints. Some of them are applied with the necessary modifications
to distance limited problems. However, the heuristics methods that are developed
often add accountability to both constraints (Barhant and Laporte 2006). One of
the first methods proposed for this problem is Clarke and Wright (1964) (C–W)
Savings Algorithm. They introduced the savings concept which is based on the
computation of savings for combining two customers into the same route (Pichpibul
and Kawtummachai 2013). Since then, many different types have been introduced
by adding new constraints to VRP, and many models and algorithms have been
developed for these types of problems. In order to obtain different types of VRP,
each component may be supplemented with different constraints and states, or each
can achieve specific goals.

The literature on VRP is extensive and to date, many different VRP variations
have been developed. Themain types of VRP are Capacitated VRP (e.g., Bräysy and
Gendreau 2005), VRP with Time Windows (e.g., Alvarenga et al., 2007), VRP with
Backhauls (e.g., Gribkovskaia et al. 2008), VRP with Pick-up and Delivery (e.g.,
Ganesh and Narendran 2007), VRP with Heterogeneous Vehicle Fleet (e.g., Salhi
et al. 2014), Open VRP (e.g., Özyurt et al. 2006), Periodic VRP (e.g., Cacchiani
et al. 2014) and Stochastic VRP (e.g., Yan et al. 2006). The version that focuses
on sustainable business practices is named as Green Vehicle Routing in general.
Research on VRP, in which environmental issues such as fuel consumption and
greenhouse gases (GHG) were assessed, has begun quite recently. Since this study
is related to G-VRP, the following section only refers to the literature related to this
type of problems.

In the above-mentioned types of vehicle routing problems, variations of the
G-VRP arise when the objective function is formed by considering the fuel
consumption or emission values. During the last ten years period, a series of
literature reviews have been conducted on the G-VRP. Lin et al. (2014) presented
an extensive literature review of G-VRP. They provide a classification of G-VRP
that categorizes G-VRP into Green-VRP as Pollution-Routing Problem, VRP in
Reverse Logistics, and suggested research gaps between its state and more luxurious
models describing the complexity in real-world cases. Eglese and Bektaş (2014),
described the current fuel consumption and emission models in the literature and
the ways in which these models can be integrated into existing formulations or
approaches for VRP. As an extension of the classical VRP, the Pollution-Routing
Problem (PRP) accounts the amount of greenhouse emissions, fuel, travel times and
costs (Bektaş and Laporte 2011; Koç et al. 2014; Kramer et al. 2015). Demir et
al. (2014) provide a review of recent research on green road freight transportation.
In this research, they focus on the scientific literature related to fuel reduction in
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road freight transportation by means of operations research techniques. Park and
Chae (2014) focus on solution approaches for papers related to G-VRP which were
published after 2000. Zhang et al. (2014) reviewed 115 studies published over
the last 2 decades and observed the practice of Swarm Intelligence (SI) in Green
Logistics (GL). The integration of GL and SI has been systematically classified into
GL and SI categories by analyzing the context of the problem and the methodology
used. Toro et al. (2016) conducted a literature survey including variations, solution
models and methodologies of the VRP, in which the G-VRP is included. Recent
studies related to G-VRP are summarised in the following sections.

2.1 Exact Solution Methods for G-VRP

It is possible to obtain an optimal solution in small-scale problems with exact solu-
tion methods. However, it is difficult and time-consuming to find optimal solutions
in large-scale problems as the energy consumption or emission values assigning
a specific customer to a tour depend on the other customers that are assigned to
the tour. Studies using exact solution methods such as branch and bound dynamic
programming for solving the problem are included in the literature. Kara et al.
(2007) proposed a new cost function based on distance and load of the vehicle for the
EnergyMinimizing Vehicle Routing Problem (EMVRP). They developed an Integer
Programming (IP) formulation with O(n2) binary variables and O(n2) constraints.
Bektaş and Laporte (2011) offered a new integer programming formulation for
the Pollution-Routing Problem which minimizes a total cost function composed of
labor, fuel and emission costs expressed as a function of load, speed, and other
parameters. The proposed model is solved by the branch-cut method, which is
an advantageous method for integer programming problems. Huang et al. (2012)
studied a G-VRP with simultaneous pickup and delivery problem (G-VRPSPD).
They suggested a linear integer programming model including CO2 emission and
fuel consumption costs for G-VRPSPD, modified from the commodity flow based
VRPSPD formulation.

Treitl et al. (2014) proposed an integer programming model for Inventory
Routing Problem to minimize total transport costs as well as costs for CO2 emissions
from transport activities and warehousing activities over the planning horizon.
Ramos et al. (2012) developed a modular and innovative solution approach for the
multi-depot VRP and applied to a real case-study in order to restructure the current
operation and achieve a more environmental-friendly solution. The primary goal of
the research is to define service areas and vehicle routes that minimize the CO2
emissions of a logistics system with multiple products and depots. They solved the
decomposition solution method using the branch-and-bound algorithm.

Pan et al. (2013) adopted the emissions functions in a Mixed Integer Linear
Programming (MILP) to minimize the CO2 emissions related to freight transport in
two extensive supply chains. Franceschetti et al. (2013) described an integer linear
programming formulation of The Time-Dependent Pollution-Routing Problem
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(TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers
and determining the speeds on each leg of the routes. Taha et al. (2014) presented
an integer programming based exact solution model for the small size G-VRP.
Alkawaleet et al. (2014) investigated the effect of CO2 emissions on the inventory
and routing decisions determined over a given time horizon. They formulate a mixed
integer programming for the inventory routing problem of a product distributed to
a number of customers from a single distribution center. Andelmin and Bartolini
(2017) developed an exact algorithm for the G-VRP based on a set partitioning
formulation using a multigraph. They weakened their formulations by adding weak
subset sequence inequalities, subset sequence inequalities, and k-path cuts.

2.2 Heuristic and Meta-Heuristic Algorithms for G-VRP

Real-life optimization problems are very complex and require analysis of large
data sets. Although an exact solution model has been developed for G-VRP, it is
impossible to obtain a solution in an acceptable time. It is often enough to find
an approximate solution to real-life problems. Therefore, there are many heuristic
and meta-heuristic methods developed for G-VRP solutions. When the literature
is examined, it is seen that the proposed heuristic methods are based on the route
construction and neighborhood search. The Clark and Wright’s Saving Algorithm
(Clark and Wright 1964) is the most commonly used method to construct routes in
G-VRP. Faulin et al. (2011) and Ubeda et al. (2011) constructed some algorithms
with environmental criteria based on the Saving Algorithm to address the need for
solutions to real problems in delivery companies or logistic carriers. Aranda et al.
(2012) also developed an environmental performance method based on Life Cycle
Assessment (LCA) and complemented with the Saving Algorithm to qualify the
environmental performance of the end of life tyres (ELTs) management system, in
terms of CO2 emissions. Peiying et al. (2013) suggested a heuristic method called
Bi-directional Optimization Heuristic Algorithm (BOHA) to reduce the most cost
based on low carbon emissions. Zhou and Lee (2017) proposed a nonlinear mixed
integer programming model with vehicle speeds, vehicle weights, road grades, and
vehicle routes as decision variables. They used sweep algorithm for the initial
solution and 2-opt local search algorithm for the improvements to find vehicle routes
of G-VRP.

In recent years, many meta-heuristic methods are used to solve the G-VRP. The
most preferred methods in the G-VRP solution are Genetic Algorithms (GA), Tabu
Search (TS) and Simulated Annealing (SA). In addition to these methods, Scatter
Search (SS), Near-Exact (NEA), Local Search (LS), Iterative Route Construction
and Improvement (IRCI), Artificial Bee Colony (ABC) algorithms are also used
in the literature. Maden et al. (2010) described a TS based heuristic algorithm
for vehicle routing and scheduling problems to minimize the total travel time,
where the time required for a vehicle to travel along any road in the network
varies according to the time of travel. Kuo and Lin (2010) proposed a model to
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calculate the total fuel consumption when given a routing plan. They consider three
factors that affect fuel consumption and used a simple Tabu Search to optimize the
routing plan. Jabali et al. (2012) presented a model that considers travel time, fuel
consumption, and CO2 emissions costs accounting for time-dependent travel times
between customers. They solved the model using a tabu search procedure. Li (2012)
presented a mathematical model for the VRP with time windows (VRPTW) with a
new objective function of minimizing the total fuel consumption and solved the
problem using a novel TS algorithm with a random variable neighborhood descent
procedure (RVND). This algorithm uses an adaptive parallel route construction
heuristic, introduces six neighborhood search methods and employs a random
neighborhood ordering and shaking mechanisms. Kwon et al. (2013) adopted a
mixed integer-programming model for the objective of minimizing the sum of
variable operation costs, including a cost-benefit assessment of acquiring carbon
rights under a cap-and-trade regime. They deployed TS algorithms were deployed
together with three neighborhood generation methods. Úbeda et al. (2014) proposed
a TS algorithm based on Gendreau et al.’s (1994) approach to solving the green
distance CVRP. They applied this approach on a set of instances obtained from
the company Eroski producing the cleanest solutions in all cases. Ene et al. (2016)
presented a SA and TS-based hybrid metaheuristic algorithm to analyze the effect
of a heterogeneous fleet on reducing fuel consumption. They used a time-oriented
nearest neighbour heuristic to generate the initial solution for the algorithm and
preferred local search method to generate neighbours.

Kuo (2010) suggested a model for calculating total fuel consumption for
the time-dependent vehicle routing problem (TDVRP). Then a SA algorithm is
used to find the vehicle routing with the lowest total fuel consumption. Suzuki
(2011) developed an approach to the time-constrained, multiple-stop, truck-routing
problem that minimizes the fuel consumption and pollutants emission. They used
the enumeration technique to find the optimal solutions for instances with n = 5
or n = 10 and the compressed annealing (Ohlmann and Thomas 2007) for
experiments in which n = 15. Xiao et al. (2012) presented a mathematical model
for Fuel Consumption Rate (FCR) considered CVRP (FCVRP) in which the fuel
consumption rate is added to the CVRP. They developed SA algorithm for the
proposed model. In this algorithm, Swap, Relocation, 2-opt, and Hybrid exchange
rules are used. Yasin and Vincent (2013) adopted a model using the mathematical
model of Erdoğan and Miller-Hooks (2012) and developed a SA based solution
method for the G-VRP. Küçükoğlu and Öztürk (2015) formulated G-VRP with
time windows (G-VRPTW) using a mixed integer linear programming model. They
adopted a memory structure SA (MSA-SA) meta-heuristic algorithm due to the
high complexity of the proposed problem. To calculate fuel consumption and CO2
emissions, they integrated proposed an algorithm with a calculation procedure. Koç
and Karaoglan (2016) proposed a SA heuristic based exact solution approach to
solve the G-VRP by considering a limited driving range of vehicles in conjunction
with limited refueling infrastructure. They used branch-and-cut algorithm based
exact algorithm to improve lower bounds and a heuristic algorithm based on SA
to obtain upper bounds. Vincent et al. (2017) generated a mathematical model to
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minimize the total cost of travel by driving Plug-in Hybrid Electric Vehicle (PHEV)
for the hybrid vehicle routing problem (HVRP), which is an extension of the G-VRP.

Urquhart et al. (2010) used an Evolutionary Multi-Objective Algorithm to
investigate the trade-off between CO2 savings, distance and number of vehicles
used in a typical vehicle routing problem with Time Windows (VRPTW). Omidvar
and Tavakkoli-Moghaddam (2012) used SA and GA methods along with a partial
heuristic method and an exact algorithm for solving small-scale problems. They
aimed to minimize the total cost of vehicles, traveled distance, travel time and
emissions solving time-dependentVRP. Jemai et al. (2012) implemented the NSGA-
II evolutionary algorithm to the bi-objective G-VRP to minimize the total traveled
distance and the total CO2 emissions with respect to classical routing constraints.
Ayadi et al. (2014) proposed a mathematical model for the G-VRP with multiple
trips developed a solution method by combining a GA with a local search procedure
to solve it. Oliveira et al. (2017) used GA that incorporates elements of local and
population search to minimize CO2 emission per route for G-VRP. Bouzekri et al.
(2014) defined the bi-objective G-VRP (bi-GVRP) in the context of sustainable
transportation and applied the genetic algorithm to solve bi-GVRP benchmarks.
Hsueh (2016) proposed a mathematical model considering heterogeneous fleet
which is affected several factors such as vehicle types and conditions, travel speeds,
roadway gradients, and payloads. They developed a customized GA for solving the
model. Cooray and Rupasinghe (2017) implemented a GA to solve the Energy-
Minimizing VRP and usedmachine learning techniques to determine the parameters
of the developed GA. Tunga et al. (2017) developed a mathematical model to
minimize the total energy consumed and balancing the routes, and proposed GA
for finding out a solution to the G-VRP with different constraints.

3 Mathematical Models

3.1 A Classical Green VRP Model

VRPs have many different forms; however, most of them minimize the distance cost
while visiting each customer once and with respect to vehicles capacity constraints.
Actually, the consumed fuel amount is more important than the traveled distance
for fuel cost savings (Xiao et al. 2012). In G-VRP, a set of delivery routes are
determined to satisfy the demand with a minimum distance costs and the minimum
volume of emitted CO2. The G-VRP is also an NP-hard problem due to the fact
that it is an extension of the standard VRP considering with green supply chain
preferences.
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Consider a G-VRP defined over a directed graph G = (V, A ) where V = { 0, 1,
2, . . . , n} the node set where is V=0 is the depot and A = { (i, j ) : i, j ∈ V, i �= j} is
the set of arcs the components of which are given as:

dij Distance between nodes iand j
qi Non-negative weight (demand and supply) of node i
cij Traveling cost between nodes i and j
Q Capacity of a vehicle (truck)
k Number of identical vehicles
K Number of vehicles
n Number of customers

An unlimited number of the homogeneous vehicle fleet is available at the depot
to serve customers with fuel tank capacity Q (liters) and fuel consumption rate r
(liters per km). The problem is to determine the corresponding vehicle routes so as
to minimize the total cost subject to the following assumptions (Kara et al. 2007;
Koç and Karaoglan 2016):

• Each vehicle is used for at most one route,
• Each route starts and ends at the depot,
• Each node is served exactly by one vehicle,
• Fuel level at the vehicle’s tank must be greater than or equal to the fuel

consumption between any two nodes,
• The amount of fuel in a vehicle’s tank is sufficient to be able to visit any pair of

nodes,
• The load of a vehicle does not exceed its capacity Q.

The decision variables are:

• qij: the amount filled to the vehicle k between nodes i and j

• xk
ij =

{
1
0

if vehicle k drives from customer i to customer j
otherwise

• yk
i =

{
1
0

if vehicle k visits customer i

otherwise

In the solution of a VRP, a matrix representation is used for distance, time and
cost parameters between nodes i and j. In G-VRP, a matrix representation also
requires showing CO2 emissions based on the estimation of CO2 emitted between
nodes i and j (Palmer 2007). About the linear formulation of emission volume,
considering the delivery with a distance for Heavy Duty Vehicle (HDV) which has
the average speed 80 km/h and fully loaded 25 tons (Hassel and Samaras 1999) Eq.
(1) is given as follows (Elbouzekri et al. 2013):

Eij (q, d) = dij ×
[(

ef − ee

Q

)
qij + ee

]
(1)
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Where:

Eij(q, d): the CO2 emissions from a vehicle in kg/km with the variable of load q in
ton and d in km

ef : the CO2 emissions of a fully loaded vehicle (1.096 kg/km for a HDV truck)
ee: the CO2 emissions of an empty vehicle (0.772 kg/km for a HDV truck)

The objectives are to find a set of m vehicle routes of minimum total cost
(distance) and minimum total emitted CO2 emission level. The mathematical model
is given as follows (modified from Xiao et al. 2012; Bouzekri and Alaoui 2014):

min T otalCost (f ) =
n∑

i=0

n∑
j=0

K∑
k=1

cij .x
k
ij (2)

minCO2Emission (g) =
n∑

i=0

n∑
j=0

K∑
k=1

dij .

[(
ef−ee

Q

)
.qk

ij + ee1.x
k
ij

]
(3)

Subject to:

n∑
i=0

xk
0i ≤ 1 ∀k = 1, . . . ,K (4)

n∑
i=0

xk
i0 ≤ 1 ∀k = 1, . . . ,K (5)

n∑
i=1

yk
i ≤ M.

n∑
j=1

xk
0j ∀k = 1, . . . ,K (6)

n∑
i=1

yk
i ≤ M.

n∑
j=1

xk
j0 ∀k = 1, . . . ,K (7)

n∑
k=1

yk
i ≤ 1 ∀k = 1, . . . ,K (8)

n∑
j=1

xk
ji =

n∑
j=1

xk
ij

∀k = 1, . . . ,K
∀i = 1, . . . ,K

(9)

n∑
i=0

n∑
j = 1
i �= j

qk
ij ≤ Q.xk

ij ∀k = 1, . . . ,K (10)
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n∑
j = 0
i �= j

qk
ij −

n∑
j = 0
i �= j

qk
ji = Di ∀i = 1, . . . , n (11)

The f function is related to minimize total traveling cost from i and jcan be
expressed as cij = c0 × dij, where c0 is the unit fuel cost from i to j. About the
g function, it is to minimize the sum of the total vehicle emitted CO2 emission level
considering as a green VRP. The mathematical model has two types of constraint set
which are routing and capacity. Constraints (4–9) are related to routing, Constraints
(4–7) of them have ensured that each vehicle tour begins and ends at the depot.
Constraint (8) also guarantees that each node (except the depot) is visited by a
single vehicle and by Constraint (9) each node is linked only with a pair of nodes
also except the depot which respects the Kirchhoff Law. Constraints (10 and 11)
are the capacity constraints which ensure that no vehicle can be over-loaded and
limits the maximal load when xk

ij = 0 respectively. As another feature of Constraint
(11), it indicates the reduced cargo of the vehicle and also doesn’t permit any illegal
sub-tours.

3.2 Proposed G-VRP Model

The proposed G-VRP model contains some differences compared to the classical
model described earlier. First, a new emission calculation equation for the G
function is proposed. Accordingly, the weight of the vehicle’s fuel deposit will
decrease as the vehicle travels, thus changing the overall weight of the vehicle. As
a result, it is predicted that the amount of emitted emissions will also vary. The new
emission equation is called G and it is given Eq. (12). In Eq. (12), an assumption of
fuel consumption for a truck per km is averagely obtained as 0.3 L from the actual
manufacturer’s technical datasets. Generally, this situation is also an assumption of
the mathematical models. However, using this approach can be founded in some
studies with different ways (Xiao et al. 2012; Koç and Karaoglan 2016).

minCO2Emission(G) =
n∑

i=0

n∑
j=0

K∑
k=1

dij .

[(
ef −ee

Q

)
.qk

ij − 0.3

(
ef−ee

Q

)
+ ee

]

(12)

Then, the second important difference of the proposed models in terms of
objective functions is the minimization the distance instead of a cost function which
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is formulated as:

minObjFunc (F ) =
n∑

i=0

n∑
j=0

K∑
k=1

dk
ij (13)

3.3 Convex Composition Model

In fact, the proposed G-VRP mathematical model also has a bi-objective form.
At this phase, a convex composition approach is applied in order to obtain an
aggregation objective function as a single objective function that is given as follows:

minObjFunc (H) = 1

3
F + 2

3
G (14)

According to H function, it composes with two objective functions that the
extended objective function (G) of emitted CO2 emission level affects twice as much
than the extended objective function (F) of total distance cost.

4 Solution Algorithm: Simulated Annealing

The determination of the optimal solution for the VRP using analytical methods
is a difficult task. Depending on this feature, metaheuristic methods are generally
referred for solving these problems. The purpose of these methods is to investigate
the solution space efficiently and to provide useful solutions close to the optimal
solution expeditiously. One of the heuristic methods that can be used to solve
vehicle routing problems is also SA, first applied with success on the Ising spin
glass problem by Kirkpatrick et al. (1983). It is the algorithmic counterpart to this
physical annealing process, using the well-known Metropolis algorithm as its inner
loop (Johnson et al. 1989). This method has an extensive use in solving advanced
optimization problems similar to other metaheuristic algorithms.

The basic of the algorithm is derived from the solid annealing principle. The
first step of the method consists of “melting” the system at a high and efficient
temperature. When it is heated, an internal particle of solid rise into disordered
shape with the high temperature. At the second step, the temperature of the system is
reduced until there is no change. At each temperature, particles reach an equilibrium
state. At the last, the temperature reaches the ground state in the room and then
internal energy is reduced to the minimum (Lin and Fei 2012). The method has
four parameters: the initial temperature, the number of solutions to be produced at
each temperature, the temperature reduction function, and the stop criterion. The SA
based solution algorithm is given as follows in Table 1 which includes Pseudo-Code
and the values of the run parameters in detail.



A Simulated Annealing Algorithm Based Solution Method for a Green Vehicle. . . 173

Table 1 The SA based solution algorithm with proposed CO2 emission model

// Problem Definition
// Inputs
[ Read Problem ]
1- n customers with position coordinates and demand
2- m vehicles with capacity
3- one depot with position coordinates

// Select Cost Function (Given in Mathematical Definitions)
Cost Function-1 // Bozuekri and Alaoui (2014) Model
Cost Function-2 // Proposed Model-1
Cost Function-3 // Proposed Model-2
// Simulated Annealing Parameters
MaxIt = 1200 // Maximum Number of Iterations
MaxIt2 = 80 // Maximum Number of Inner Iterations
T0 = 100 // Initial Temperature
Alpha = 0.98 // Cooling ratio
// Initialization
// Create Initial Solution
solutionRandom = CreateRandomSolution(Inputs)
Cost, Solution = CostFunction(solutionRandom)

// Update Best Solution Ever Found
BestSol = Cost, Solution

// Array to Hold Best Cost Values
BestCostHistory = CreateZeroVector(MaxIt)

// Set Initial Temperature
T = T0

// Simulated Annealing Main Loop
for it = 1:MaxIt
for it2 = 1:MaxIt2

// Create Neighborhoods
newSolution = Shake(solutionRandom) // Create Neighbors
newCost, newSolution = CostFunction(newSolution) // Calculate Solutions Costs
if newCost<=Cost

// new is better, so it is accepted
solution = newSolution
Else

// new is not better, so it is accepted conditionally
delta = newCost-Cost
p = exp(-delta/T)
if rand<=p
solution = newSolution
End
End

(continued)
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Table 1 (continued)

// Update Best Solution
if Cost<=BestSolutionCost

BestSolution = newSolution
End
End
// Store Best Cost
BestCost[ it ] = BestSolutionCost
// Display Iteration Information
iterationNumber, BestCost

// Reduce Temperature
T = alpha*T

End
// Results
[ Outputs ]

1- Minimum Distance
2- Minimum CO2 (Xiao et al. 2012; Bouzekri and Alaoui 2014)
3- Minimum CO2 (Proposed Model)
4- Routes
5- Solution Graph
6- Performance Graph

5 Experimental Study

This section describes computational experiments obtained to investigate the per-
formance of the proposed model by using SA algorithm. The algorithm was coded
in MATLAB

®
and run on a computer with i7 2.9 GHz CPU and 8 GB RAM. In this

study, three models are used for the instances which are C1–C14 from Christofides
et al. (1979) and Set A–B–P from Augerat (1995) as CVRPs.

The investigated models are:

• Model 1: GVRP Model (Xiao et al. 2012; Bouzekri and Alaoui 2014)
• Model 2: Proposed GVRP Model
• Model 3: Convex Composition Model

First of all, in order to show the efficiency of the proposed G-VRP models, an
illustrative small example is given in below by Jaramillo (2011). The small instance
considers ten customers that will be served from a single depot and the usage of
two vehicles, each with a capacity of 12 tons, and a curb weight of 8 tons. Table 2
includes depot and customer locations coordinates, customer demands in tons, and
distances between locations in miles.

The results obtained for the sample data set detailed above are summarized in
Table 3. In addition, the graphics of solution performance and routes are combined
as in Fig. 2 for visualizing the small G-VRP’s best solutions from Model 3 in
Table 3.
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Table 2 Small VRP instance dataset (Jaramillo 2011)

Coordinates dij
L x y qij 0 1 2 3 4 5 6 7 8 9 10

0 15 6 0 0 84 75 90 23 59 57 42 33 100 74
1 85 54 2 0 50 43 61 61 39 43 61 23 81
2 90 4 2 0 89 54 89 66 42 72 73 111
3 56 87 3 0 74 38 34 63 57 31 48
4 37 15 1 0 51 40 18 25 79 71
5 24 65 2 0 24 50 27 63 21
6 46 54 3 0 30 25 46 46
7 53 24 3 0 30 62 71
8 26 38 2 0 71 45
9 86 77 4 0 78
10 8 80 1 0

According to results presented in Table 3, two CO2 emission calculation methods
are used for the comparison of the Models 1–3. One of them is developed by
Bouzekri and Alaoui (2014) and the other one is proposed by this study in Eq.
(12). In fact, Eq. (12) is also used as an objective function for the Model 2 and 3.
However, it is to be an emission calculation method that is used in Bouzekri and
Alaoui (2014) model (Model 1) within SA algorithm.

Computational results of the problems were compared using One-way ANOVA
and Tukey tests. The averages of the statistically significant results were tested with
the Tukey Test and the differences between the different models were investigated.
At first, the box-plot graphic is given for the small G-VRP example in Fig. 3 and
Differences between models were tested by one-way ANOVA that is given in Table
4. The hypotheses established for the analysis are presented below. H0 hypothesis
is that the averages of the models are equal to each other and, the H1 hypothesis is
that the averages of the models are not equal to each other and they are given Eqs.
(14 and 15).

H0 : μ1 = μ2 = μ3 (14)

H1 : μ1 �= μ2 �= μ3 (15)

According to the Table 4, the difference between the models for all parameters
is statistically significant for the small G-VRP problem. Before testing whether the
difference between the models is statistically significant, the Bartlett test was used
to test whether the variances of the models were homogeneous. The Bartlett’s test
results for the Small G-VRP problem are given in Table 5 .

H0 : σ1 = σ2 = σ3 (16)

H1 : σ1 �= σ2 �= σ3 (17)
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Fig. 3 Box-plot for the small G-VRP instance

As can be seen from Table 5, the hypothesis that the variances of the model for
distance, CO2_1, and CO2_2 are homogeneous is rejected. The hypothesis that the
variances are homogeneous for the solution time (Sol_Time) is accepted.
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Table 4 Results of one-way ANOVA

Problem name Parameter df1 df2 F value P(>F) alfa F-Crt H0

Small_G-VRP Distance 2 27 4.047 0.029 0.05 4.242 Rejecta

Small_G-VRP CO2_1 2 27 4.161 0.027 0.05 4.242 Rejecta

Small_G-VRP CO2_2 2 27 4.193 0.026 0.05 4.242 Rejecta

Small_G-VRP Sol_Time 2 27 11.195 0.000 0.05 4.242 Rejecta

aHypothesis was rejected significantly in two-tailed test at the 0.05 level

Table 5 Variance homogeneity test results (Bartlett test)

Problem Parameter df Chisq value P value alfa Chisq-crt H0

Small_G-VRP Distance 2 9.108 0.011 0.05 5.991 Rejecta

Small_G-VRP CO2_1 2 8.623 0.013 0.05 5.991 Rejecta

Small_G-VRP CO2_2 2 8.625 0.013 0.05 5.991 Rejecta

Small_G-VRP Sol_Time 2 4.243 0.12 0.05 5.991 Not reject
aHypothesis was rejected significantly in two-tailed test at the 0.05 level

In this study, the parameters of the SA algorithm, max # of iteration 1200, max
# of inner iteration 80, Initial temperature 100 and cooling ratio 0.99, are used on
the proposed method and each test instance is run 10 times and summarized with
the results of average values. About the test instances, Christofides et al. (1979) C1–
C14 datasets and Augerat (1995) Set A1–A3, B1–B3 and P1–P3 are used from and
their results are respectively given in Tables 6 and 7 which also show the emission
savings (kg).

When the SA solutions given in Tables 6 and 7 which are examined, there is
no difference between solution times in terms of absolute differences. However,
when examined from the point of view of CO2 emissions and distances, there is a
difference between the absolute differences. In Table 6, 9 of the 14 problems with
Model 3, 3 of them with Model 2 and 2 of them with Model 1 are superior to CO2
emissions. Then, the following solutions are compared in terms of distances: ten of
them with Model 3, three of them with Model 2 and one of them with Model 1 are
better. Similarly, the absolute differences in terms of CO2 emissions are shown in
Table 7, where four of nine problems with Model 3, three of them with Model 2
and two of them with Model 1 were better solutions for nine problems in Augerat
(1995) dataset. In the same way, when absolute differences are compared in terms
of distances, it is seen that six of them with Model 3, two of them with Model 1 and
one of them with Model 1 have better solutions, respectively.

The “t-test” is used to check whether the difference between the models’
averages is statistically significant. The hypothesizes are given below and the results
presented in Table 8.

H0 : μ1 = μ2 (18)

H1 : μ1 �= μ2 (19)
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According to the test results, the hypothesis that the mean values of objective
functions are equal for distance, CO2_1, CO2_2 for Model 1 and Model 2, and
Model 2 and Model 3 is accepted. On the other hand, the difference between Model
1 and Model 3 for these three objective functions was found to be statistically
significant at the 5% significance level for the two-tailed test. The difference
between Model 1and Model 3, and Model 2 and Model 3 for solution time is
found to be statistically significant at the 5% significance level and two-tailed
test. The H0 hypothesis cannot be rejected for the difference between Model 1
and Model 2. Consequently, the proposed G-VRP model is statistically significant
and has more efficient solutions. In addition, it can be predicted that it provides
some opportunities for challenges on the green supply chain and encourages the
researchers and industrial practitioners.

6 Conclusions and Further Research

The results of the research conducted were analyzed in terms of absolute differences
and statistical analysis. Two alternative models are proposed in the literature. The
Model 1 based on the literature is obtained by adding the effect of fuel consumption
as an extension of Model 2 from the proposed models. The Model 3 is obtained by
convex composition of two objective functions based on distance minimization with
Model 2.

The C1–C14 instances from Christofides et al. (1979) and set A, B and P
instances from Augerat (1995) were solved with SA algorithm. Each problem was
run 10 times and the best, worst and average solutions were summarized. The results
are compared with other solutions in the literature especially Bouzekri and Alaoui
(2014) solutions.

The solutions of Model 1, Model 2 and Model 3 with SA were statistically
analyzed in detail with absolute values. In absolute difference analysis, a total of
23 problems were compared with respect to CO2 emissions. Thirteen of them with
Model 3, 6 of them with Model 2 and 4 of them with Model 1 were better solutions.
About the total distances, 16 of them with Model 3, 4 of them with Model 2 and 3
of them with Model 1 were the best solutions.

In this study, the analysis was made using theoretical VRP test problems.
However, the proposed model for G-VRP is tried to be solved depending on vehicle
load and total distance relation. It is our expectation that this objective function is
considered to provide a more efficient CO2 emission minimization on real industrial
problems and the proposed models are suggested to address green thinking to
the researchers. As a further research, the load effect of these models in real life
problems, such as slope, altitude, load intensity, etc can be applied as different
extensions of G-VRP.
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