
Chapter 8
Trajectory Matching

8.1 Preamble: Prevalence Versus Incidence

When we fit mechanistic models to data, we have to consider carefully the relation-
ship between the nature of the data versus the nature of the model state variables.
For example, when we work with continuous-time S(E)IR models it is important
to keep in mind that incidence is not prevalence; so if our data is incidence we will
need to do something more than trying to match simulated prevalence with observed
incidence. We therefore start with a toy example using simulated data.

When/if we can assume that dynamics is unaffected by process noise (demo-
graphic and environmental stochasticity), we can fit models to data using trajectory
matching. The assumption is that discrepancies between the observations and the
predictions from the dynamic model are due to observational errors. The upside
of trajectory matching is that we can easily fit continuous-time models to variably
spaced observations on any/all state-variable, the downside is that these assumptions
are usually restrictive.

8.2 Event-Based Stochastic Simulation

To begin, we will consider how to stochastically simulate the continuous-time
SIR model (Eqs. (2.1)–(2.3)). Previously we consider stochastic simulation using
discrete-time models. An alternative is to do continuous-time stochastic simulation
using an event-based approach: The Gillespie exact algorithm (Gillespie 1977) and

This chapter uses the following R-package: deSolve.

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 8

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97487-3_8&domain=pdf
https://doi.org/10.1007/978-3-319-97487-3_8

138 8 Trajectory Matching

the τ-leap approximation (Gillespie 2001). As discussed in Sect. 2.7, the S(E)IR-
model (and all simple ODEs) implies exponentially distributed waiting times be-
tween events. The Gillespie algorithms take advantage of this idea. If we for exam-
ple consider how the SIR-states of the SIR flows ((2.1)–(2.3)) should change over
time, we expect the following six possible changes:

• S → S+1 at rate μN from births
• S → S−1 at rate μS from deaths
• S → S−1 and I → I +1 at rate βSI/N from infection
• I → I −1 at rate μI from deaths
• I → I −1 and R → R+1 at rate γI from recovery
• R → R−1 at rate μR from deaths

Thus, the system is expected to change by an overall summed rate of r = μN+μS+
βSI/N + μI + γI + μR. We can therefore draw a random exponential waiting-time
with mean r to update a continuous-time clock, then draw a random event from a
multinomial distribution with probabilities given by the relative rates, update the
state variables accordingly, and repeat. . .

Because of the many versions of compartmental models used in studying disease
dynamics, it is useful to write a general purpose stochastic simulator that can be
applied to any set of rate equations. To this end we first define a rlist-list of
equations corresponding to the rates for the six transitions of the SIR flows. The
quote-formalism allows us to set up the list such that all equations can be evaluated
in a single sapply-call as the simulation progress.

rlist=c(quote(mu * (S+I+R)), #Births
quote(mu * S), #Sucseptible deaths
quote(beta * S * I /(S+I+R)), #Infection
quote(mu * I), #Infected death
quote(gamma * I), #Recovery
quote(mu*R)) #Recovered death

We next define a transition matrix associated with each SIR event. The three
columns correspond to changes in S, I, and R, respectively; The rows correspond to
the six possible events.

emat=matrix(c(1,0,0,
-1,0,0,
-1,1,0,
0,-1,0,
0,-1,1,
0,0,-1),
ncol=3, byrow=TRUE)

We finally write a general-purpose function to simulate a dynamical systems us-
ing the Gillespie algorithm. The idea is to write a function that is sufficiently robust

8.2 Event-Based Stochastic Simulation 139

and general that it can be applied to event-based stochastic simulation of any model
that fits within a compartmental framework. The function takes five arguments to
accomplish this:

• rateqs—a list of E rate equations corresponding to each of the E possible
events using the quote-formalism

• eventmatrix—a E-by-S matrix of changes to each of the S state variables
associated with each event

• parameters—a vector of parameter values
• initialvals—a vector of initial values for the S states
• numevents—number of events to be simulated

gillespie=function(rateqs, eventmatrix, parameters,
initialvals, numevents){

res=data.frame(matrix(NA, ncol=length(initialvals)+1,
nrow=numevents+1))

names(res)=c("time", names(inits))
res[1,]=c(0, inits)
for(i in 1:numevents){
#evaluate rates
rat=sapply(rateqs, eval,

as.list(c(parameters, res[i,])))
#update clock
res[i+1,1]=res[i,1]+rexp(1, sum(rat))
#draw event
whichevent=sample(1:nrow(eventmatrix), 1, prob=rat)
#updat states
res[i+1,-1]=res[i,-1]+eventmatrix[whichevent,]
}

return(res)
}

We provide parameters and initial conditions for a stochastic simulation assum-
ing an infectious period of 20 days (Fig. 8.1):

paras=c(mu=1, beta=500, gamma=365/20)
inits=c(S=100, I=2, R=0)
sim=gillespie(rlist, emat, paras, inits, 1000)
matplot(sim[,1],sim[,2:4], type="l", ylab="Numbers",

xlab="Time", log="y")
legend("topright", c("S", "I", "R"), lty=c(1,1,1),

col=c(1,2,3))

The Gillespie algorithm provides an “exact” stochastic simulation in the sense
that the time-evolution of the system is changing exactly according to the expo-

140 8 Trajectory Matching

0.0 0.5 1.0 1.5

1
2

5
10

20
50

10
0

Time

N
um

be
rs

S
I
R

Fig. 8.1 A Gillespie exact simulation of the stochastic SIR model with μ = 1, β = 500, and γ =
365/20

nential waiting-time distributions of the stochastic differential system. It is, how-
ever, computationally expensive as every event is recorded separately. Gillespie’s
τ-leap method uses the Poisson approximation corresponding to the discussion of
Sect. 7.1; If we assume that the interval, Δ t, is sufficiently short that any change
in the rates are negligible, the number of events should be Poisson-distributed with
mean overallrate ∗ Δ t and multinomially divided among the events according to
their relative rates.

We write a general τ-leap simulator and then apply it to the SEIR model. The
SEIR model has eight possible events:

• S → S+1 at rate μN from births
• S → S−1 at rate μS from deaths
• S → S−1 and E → E +1 at rate βSI/N from infection
• E → E −1 at rate μE from deaths
• E → E −1 and I → I +1 at rate σE from becoming infectious
• I → I −1 at rate μI from deaths
• I → I −1 and R → R+1 at rate γI from recovery
• R → R−1 at rate μR from deaths

8.2 Event-Based Stochastic Simulation 141

We thus have the following event matrix:

emat2=matrix(c(1,0,0,0,
-1,0,0,0,
-1,1,0,0,
0,-1,0,0,
0,-1,1,0,
0,0,-1,0,
0,0,-1,1,
0,0,0,-1),
ncol=4, byrow=TRUE)

The SEIR equations associated with each event are:

rlist2=c(quote(mu * (S+E+I+R)), quote(mu * S),
quote(beta * S * I/(S+E+I+R)), quote(mu*E),
quote(sigma * E), quote(mu * I),
quote(gamma * I), quote(mu*R))

A general-purpose τ-leap simulator is:

tau=function(rateqs, eventmatrix, parameters,
initialvals, deltaT, endT){

time=seq(0, endT, by=deltaT)
res=data.frame(matrix(NA, ncol=length(initialvals)+1,

nrow=length(time)))
res[,1]=time
names(res)=c("time", names(inits))
res[1,]=c(0, inits)
for(i in 1:(length(time)-1)){

#calculate overall rates
rat=sapply(rateqs, eval, as.list(c(parameters,

res[i,])))
evts=rpois(1, sum(rat)*deltaT)
if(evts>0){
#draw events
whichevent=sample(1:nrow(eventmatrix), evts,

prob=rat, replace=TRUE)
mt=rbind(eventmatrix[whichevent,],

t(matrix(res[i,-1])))
mt=matrix(as.numeric(mt), ncol=ncol(mt))
#update states
res[i+1,-1]=apply(mt,2,sum)
res[i+1,][res[i+1,]<0]=0
}
else{ #if no events in delaT

142 8 Trajectory Matching

res[i+1,-1]=res[i,-1]
}}

return(res)
}

We assume an initial population comprised of 1000 individuals and 1 initial in-
fected and simulate daily incidence for 2 years and assume measles-like parameters:

paras = c(mu = 1, beta = 1000,
sigma = 365/8, gamma = 365/5)

inits = c(S=999, E=0, I=1, R = 0)
sim2=tau(rlist2, emat2, paras, inits, 1/365, 2)
matplot(sim2[,1],sim2[,2:5], type="l", log="y",

ylab="Numbers", xlab="Time")
legend("bottomright", c("S", "E", "I", "R"),

lty=c(1,1,1,1), col=c(1,2,3,4))

0.0 0.5 1.0 1.5 2.0

1
5

10
50

10
0

50
0

10
00

Time

N
um

be
rs

S
E
I
R

Fig. 8.2 A τ-leap simulation of the SEIR model using a daily time step for 2 years assuming
μ = 1, β = 1000, an infectious period of 8 days, a latent period of 5 days, and an initial population
comprised of 1000 individuals one of which is infected

8.3 Trajectory Matching 143

Following the virgin epidemic, the inherent birth/death stochasticity leads to low-
amplitude oscillations (Fig. 8.2) according to the resonant periodicity of the SEIR
model (see Chap. 9).

8.3 Trajectory Matching

Trajectory matching assumes that the discrepancies between models and data are
due to error of observation. The event-based, stochastic simulation breaks with this
assumption as model discrepancies are due to demographic stochasticity; Let us
nevertheless see if we can fit the SEIR model to the event-based simulation. We first
recall the gradient-function for the system:

require(deSolve)
seirmod = function(t, y, parms) {

S = y[1]
E = y[2]
I = y[3]
R = y[4]

with(as.list(parms), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dE, dI, dR)
list(res)

})
}

Following the ideas introduced in Sect. 3.4, we define a likelihood function to
estimate parameters. The Gaussian log-likelihood is = const− n

2 log(RSS), where n
is the length of the time series, RSS is the residual sum-of-squares, and the constant
is n(log(n)− log(2π)−1)/2 (Aitkin et al. 2005).1

lfn=function(p){
times = seq(0, 2, by=1/365)
start = c(S=999, E=0, I=1, R = 0)
paras=exp(c(mu=p[1], N=p[2], beta=p[3],

1 If in a hurry we can ignore the constant and minimize n
2 log(RSS) because it is the relative

likelihood that matters.

144 8 Trajectory Matching

sigma=p[4], gamma=p[5]))
out = as.data.frame(ode(start, times=times,

seirmod, paras))
n=length(sim2$I)
rss=sum((sim2$I-out$I)ˆ2)
return(log(rss)*(n/2)-n*(log(n)-log(2*pi)-1)/2)

}

We next estimate parameters:

initial values for mu, N, beta, sigma, gamma
paras0 = log(c(2, 500, 500, 365/7, 365/7))
fit = optim(paras0, lfn, hessian = TRUE)

and plot the deterministic prediction:

times = seq(0, 2, by=1/365)
paras = exp(c(mu = fit$par[1], N = fit$par[2],

beta = fit$par[3], sigma = fit$par[4],
gamma = fit$par[5]))

start = c(S=999, E=0, I=1, R = 0)
out = as.data.frame(ode(start, times, seirmod, paras))
plot(out$time, out$I, xlab="Time", ylab="Prevalence",

type="l")
lines(sim2$time, sim2$I, col=2, type="l")
legend("topright", c("Gillespie simulation",

"SEIR fit"), lty=c(1,1), col=c(2,1))

The trajectory-match’ed fit predicts the virgin epidemic and the next dampened
epidemic well, but not—as expected—the subsequent stochastically excited low-
amplitude cycles (Fig. 8.3). In addition to finding parameter estimates we are usually
interested in uncertainty and trade-offs among parameters in producing a fit to the
data.

8.4 Likelihood Theory 101

We have used maximum likelihood principles in several of our previous analysis
of, for example, the chain-binomial, the catalytic and the TSIR models. We have,
however, not discussed likelihood theory in a formal fashion.2 For our purposes it

2 Bolker (2008) is an excellent broad discussion on estimation for ecologically realistic models
using a variety of methods.

8.4 Likelihood Theory 101 145

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

Time

Pr
ev

al
en

ce
Gillespie simulation
SEIR fit

Fig. 8.3 SEIR fitted predicted trajectory superimposed on the τ-leap simulation of the SEIR model

is useful to summarize the key results with respect to inference from “elementary”
likelihood theory with maximum brevity (see, for example, appendix A of McCul-
lagh and Nelder 1989):

• Let L(D|θ) be the function that calculates the likelihood for a set of data, D; i.e.,
the probability of observing the data given some values for the parameters, θ .
The values that maximize this probability are the maximum likelihood estimates
(MLEs) of the parameters, θ̂ .

• If �(θ) is the negative log-likelihood (i.e., − logL), then θ̂ are the values that
minimizes �. If data points are independent, then the joint log-likelihood is simply
the sum of the log-likelihoods of the data points.

• The MLE is a minimum of �, so the score function U(θ) = ∂�/∂θ is zero at the
MLE.

• The likelihood profile graphs how �(θ) changes with θ . The 95% confidence
interval is the set of values of θ for which �(θ) is within χ2(0.95, p)/2 of the
minimum, where p is the number of parameters. The quantity 2�(θ) is referred
to as the deviance, so if we work with the deviance we would use χ2(0.95, p) as
the cut-off.

• The second derivative of �(θ) with respect to θ is called the Fisher informa-
tion, ι(θ) = ∂ 2�/∂θ 2. The inverted information matrix is an approximation to
the variance-covariance matrix of the parameters, so we can obtain approximate
standard errors as the square-root of the diagonal of the inverted information ma-

146 8 Trajectory Matching

trix. The approximate correlation matrix is the standardized inverted information
matrix.

• A matrix of second derivatives is generally referred to as a Hessian matrix. If we
call optim(..., hessian=TRUE), R will numerically estimate the Hes-
sian at the minimum, so if the function to be minimized is the negative log-
likelihood, we can obtain approximate SEs and the approximate correlation ma-
trix from this Hessian.

• If we have two alternative models that are nested—meaning that the more com-
plex model contains all the parameters of the simpler—then we can test for
significant model improvement; the difference in the log-likelihood is χ2(d f =
Δ p)/2-distributed, where Δ p is the number of extra parameters in the complex
model.3

We apply these ideas to our model fit:

MLEs:
round(exp(fit$par), 4)

[1] 1.5165 642.3009 563.3407 50.3001 69.6786

Approximate SEs:
round(exp(sqrt(diag(solve(fit$hessian)))), 4)

[1] 1.2744 1.2441 1.2561 1.0224 1.0240

Correlation matrix:
round(cov2cor(solve(fit$hessian)), 4)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000 -0.9976 -0.9972 0.6107 -0.9546
[2,] -0.9976 1.0000 0.9974 -0.5872 0.9649
[3,] -0.9972 0.9974 1.0000 -0.6421 0.9543
[4,] 0.6107 -0.5872 -0.6421 1.0000 -0.4653
[5,] -0.9546 0.9649 0.9543 -0.4653 1.0000

The true parameter values used in the simulation were μ = 1, N = 1000, β =
1000, σ = 45.6, and γ = 73. So while the model prediction gives a good fit, the
parameter estimates are not particularly accurate. This is where it is useful to use
likelihood theory more extensively. From the normalized inverted Hessian we see
that several of the parameters are highly (positively or negatively) correlated, and
several with correlations more extreme than ±0.9. That means that different param-
eter combination may provide a very similar fit to the data. This is an illustration
of identifiability problems; With observations only on the infectious stage, for in-
stance, a relatively short infectious period and high transmission rate will predict a

3 If the models are non-nested, formal tests are not available but information theoretical rankings
of models using AIC, BIC, AIC-weights, etc. are useful.

https://en.wikipedia.org/wiki/Hessian_matrix

8.5 SEIR with Error 147

similar trajectory to a relatively short latent period and a lower transmission rate.
Furthermore, a smaller population size and higher birth rate can result in identical
susceptible recruitment rate than a larger population with lower birth rate. For infer-
ence it is therefore normally best to inform the analysis with any known biological
quantities; For example if the latent and infectious periods are known from house-
hold or clinical studies, it may be best not to attempt to infer these from the time
series alone (though, as King et al. (2008) point out for Cholera dynamics, conven-
tional wisdom may not always be consistent with dynamical patterns). Moreover, if
there are strong correlations, the individual SEs (and CIs derived there from) may
be a poor representation of parametric uncertainty. It may then be better to look at
pairwise confidence ellipses (e.g., Bolker 2008).

8.5 SEIR with Error

We can use ode to integrate the SEIR model and add noise, to generate a data
set that exactly adheres to the assumption that the dynamics is only affected by
observational noise. Let us simulate 10 years of weekly data assuming measles’ish
parameters and that 6% of the initial population is susceptible:

times = seq(0, 10, by=1/52)
paras = c(mu = 1/50, N = 1, beta = 1000,

sigma = 365/8, gamma = 365/5)
start = c(S=0.06, E=0, I=0.001, R = 0.939)

out = as.data.frame(ode(start, times, seirmod, paras))

We add noise to the data using the jitter-function (Fig. 8.4),

datay = jitter(out$I, amount = 1e-04)

plot(times, datay, ylab = "Infected", xlab = "Time")
lines(times, out$I, col = 2)

define a Gaussian likelihood function,

lfn=function(p, data){
times = seq(0, 10, by=1/52)
start = c(S=0.06, E=0, I=0.001, R = 0.939)
paras=c(mu=p[1], N=p[2], beta=p[3],

sigma=p[4], gamma=p[5])
out = as.data.frame(ode(start, times=times,

seirmod, paras))
n=length(data)

148 8 Trajectory Matching

0 2 4 6 8 10

0e
+0

0
2e

-0
4

4e
-0

4
6e

-0
4

8e
-0

4
1e

-0
3

Time

In
fe

ct
ed

Fig. 8.4 Fraction infectious and jittered data from the SEIR model assuming μ = 0.02, β = 1000,
σ = 45.6, and γ = 73/year

rss=sum((data-out$I)ˆ2)
return(log(rss)*(n/2)-n*(log(n)-log(2*pi)-1)/2)

}

and estimate parameters using the jittered observations.

mu, N, beta, sigma, gamma
paras0 = c(1/30, 1, 1500, 365/4, 365/10)
fit = optim(paras0, lfn, data = datay, hessian = TRUE)

The estimates are

MLEs:
round(fit$par, 3)

[1] 0.036 1.031 2179.946 71.197 138.851

Approximate SEs:
round(sqrt(diag(solve(fit$hessian))), 3)

[1] 0.003 0.066 200.261 7.584 8.718

Correlation matrix:
round(cov2cor(solve(fit$hessian)), 3)

8.6 Boarding School Flu Data 149

[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 -0.743 -0.330 -0.407 0.374
[2,] -0.743 1.000 0.820 -0.258 0.204
[3,] -0.330 0.820 1.000 -0.658 0.714
[4,] -0.407 -0.258 -0.658 1.000 -0.821
[5,] 0.374 0.204 0.714 -0.821 1.000

8.6 Boarding School Flu Data

The boarding school flu data set introduced in Sect. 3.6.1 has an approximate match
between observation and prevalence because the data represents the number of chil-
dren confined to bed each day, and while the average stay in bed (3–7 days) is maybe
a bit different than the infectious period, the durations are comparable.

data(flu)

We define the gradient functions for a closed SIR epidemic:

sirmod = function(t, y, params) {
S = y[1]
I = y[2]
R = y[3]
with(as.list(params), {

dS = -beta * S * I/N
dI = beta * S * I/N - gamma * I
dR = gamma * I
res = c(dS, dI, dR)
list(res)

})
}

and define the likelihood function assuming normally distributed errors

lfn2 = function(p, I, N) {
times = seq(1, 14, by = 1)
start = c(S = N, I = 1, R = 0)
paras = c(beta = p[1], gamma = p[2], N = N)
out = as.data.frame(ode(start, times = times,

sirmod, paras))
n = length(I)
rss = sum((I - out$I)ˆ2)

150 8 Trajectory Matching

return(log(rss) * (n/2) - n * (log(n) -
log(2 * pi) - 1)/2)

}

There are two parameters to estimate: β and γ . The time-scale is daily so we set
reasonable initial conditions and maximize the likelihood:

#beta, gamma
paras0 = c(1.5, 1/2)
flufit = optim(paras0, lfn2, I = flu$cases, N = 763,

hessian = TRUE)

The estimated parameters and basic reproductive ratio, R0, are:

parameters
flufit$par

[1] 1.9566375 0.4738335

R0:
flufit$par[1]/flufit$par[2]

[1] 4.129377

The R0 estimate is comparable to the estimate we made in Chap. 3. The observed
and predicted outbreaks are seemingly a good match (Fig. 8.5):

times = seq(1, 20, by=.1)
start = c(S=762, I=1, R = 0)
paras=c(beta=flufit$par[1], gamma=flufit$par[2], N=763)
out = as.data.frame(ode(start, times=times,

sirmod, paras))
plot(out$time, out$I, ylab="Prevalence",

xlab="Day", type="l")
points(fluday, flucases)

8.7 Measles

We consider, again, the measles incidence data collected by Doctors Without Bor-
ders (MSF) during the 03/04 outbreak in Niamey, Niger (Fig. 8.6; Sect. 3.4) but
using data at a daily resolution. We can compile the daily incidence in a vector y.

8.7 Measles 151

5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

Day

Pr
ev

al
en

ce

Fig. 8.5 Predicted and observed influenza prevalence for the 1978 boarding school data

y = as.vector(table(niamey_daily))

The challenge with this data is that we need to make the SEIR-formulation rele-
vant to the data on incidence. The complication is that I represents prevalence (i.e.,
current number of infected individuals), while incidence, y, represents appearance
of new cases (i.e., flux) into the infected class. If we recast the SEIR model to also
keep track of cumulative incidence, K, we can difference the K time series at time-
steps corresponding to that of the observations to predict incidence (y). We define
the SEIRK-model assuming known latent and infectious periods of 8 and 5 days,
respectively.

times= unique(niamey_daily$day)
paras = c(mu = 0, N = 1, beta = 5, sigma = 1/8,

gamma =1/5)
start = c(S=0.999, E=0, I=0.001, R = 0, K = 0)

The resultant gradient function is:

seirkmod = function(t, x, params) {
S = x[1]
E = x[2]
I = x[3]
R = x[4]

152 8 Trajectory Matching

K = x[5]

with(as.list(params), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
dK = sigma * E
res = c(dS, dE, dI, dR, dK)
list(res)

})
}

We next define the likelihood function (assuming Poisson distributed errors) for
the unknown transmission rate, β , and initial susceptible number, N. According to
the MSF outbreak response protocol, an outbreak is declared once five cases have
been confirmed. The unknown infectious fraction is thus 5/N.

lfn4=function(p, I){
times=unique(niamey_daily$day)
xstart=c(S=(p[1]-5)/p[1], E=0, I=5/p[1], R = 0,

K=0)
paras=c(mu=0, N=p[1], beta=p[2], sigma=1/8,

gamma=1/5)
out=as.data.frame(ode(xstart, times=times, seirkmod,

paras))
predinci=c(xstart["I"], diff(out$K))*p[1]
ll=-sum(dpois(I, predinci, log=TRUE))
return(ll)
}

For starting values we assume initial susceptible numbers N = 11,000 and β = 5
and optimize:

#N, beta
paras0 = c(11000, 5)
measfit=optim(paras0,lfn4,I=y, hessian=TRUE)
day = 1:230
xstart = c(S=(measfit$par[1]-5)/measfit$par[1], E=0,

I=5/measfit$par[1], R = 0, K = 0)
paras=c(mu=0, N=measfit$par[1], beta=measfit$par[2],

sigma=1/8, gamma=1/5)
out = as.data.frame(ode(xstart, times=day,

seirkmod, paras))

8.8 Outbreak-Response Vaccination 153

plot(table(niamey_daily), xlab="Day", ylab="Incidence")
lines(out$time, c(xstart["I"], diff(out$K))*

measfit$par[1], col=2, lwd=2)

0
50

10
0

15
0

20
0

Day

In
ci

de
nc

e

1 15 29 43 57 71 85 99 115 133 151 169 187 205 223

Fig. 8.6 Predicted and observed measles incidence using the MLEs from the Poisson-likelihood

The estimated effective reproductive ratio, RE , is comparable to the estimates
obtained in Chap. 3:

with(as.list(paras),
sigma/(sigma+mu)*1/(gamma+mu)*beta /N)

[1] 1.761133

8.8 Outbreak-Response Vaccination

Grais et al.’s (2008) objective in fitting a model to the Niamey outbreak data was
to evaluate the effectiveness of outbreak-response vaccination (ORV) in reducing
the burden of disease during an on-going outbreak. The ORV campaign began on

154 8 Trajectory Matching

day 161 after the beginning of the epidemic with a goal of vaccinating 50% of
all children of ages between 9 months and 5 years. After 10 days, almost 85,000
(57%) of this at-risk group was vaccinated (without knowledge of previous disease
or vaccination status). Assuming vaccination was at random with respect to immune
status, we can write a modified SEIR function to study the problem. The vaccine
cover is a fraction—effectively a probability—so we need to translate it to a rate
using the relation discussed in Sect. 3.2: r =− log(1− p)/D, where D is the length
of the campaign. We define two functions to carry out the efficacy calculations.
The sivmod-function integrates the SI-model with outbreak-response vaccination
and the retrospec-function compares predicted epidemic trajectories with and
without the ORV.

sivmod=function(t,x,parms){
S=x[1]
E=x[2]
I=x[3]
R=x[4]
K=x[5]
with(as.list(parms),{
Q= ifelse(t<T | t>T+Dt,0,(-log(1-P)/Dt))
dS= -B*S*I-q*Q*S
dE= B*S*I-r*E
dI= r*E - g*I
dR= g*I+q*Q*S
dK=r*E
res=c(dS,dE,dI,dR,dK)
list(res)

})
}

retrospec=function(R, day, vaccine_efficacy,
target_vaccination,intervention_length,
mtime, LP=7, IP=7, N=10000){
steps=1:mtime

out=matrix(NA,nrow=mtime, ncol=3)
#starting values
xstrt=c(S=1-1/N,E=0,I=1/N,R=0,K=0)
beta= R/IP #transmission rate
#Without ORV
par=c(B=beta, r=1/LP, g = 1/IP, q = vaccine_efficacy,

P = 0, Dt = 0, T = Inf, R=R)

8.8 Outbreak-Response Vaccination 155

outv=as.data.frame(ode(xstrt,steps,sivmod,par))
fsv=max(outv$K)
#With ORV
par=c(B=beta, r=1/LP, g = 1/IP, q = vaccine_efficacy,

P = target_vaccination, Dt =
intervention_length, T = day)

outi=as.data.frame(ode(xstrt,steps,sivmod,par))
fsi=max(outi$K)
res=list(redn=fsi/fsv, out=outv, orv=outi, B=par["B"],

r=par["r"], g=par["g"], q=par["q"], P=par["P"],
Dt=par["Dt"], T=par["T"], R=R)

class(res)="retro"
return(res)

}

We will discuss S3-class programming more formally in Sect. 12.1. However, as
a preview we define a plot.retro-function for objects of class retro as the
list returned by the retrospec-function is labeled:

plot.retro=function(x){
plot(x$out[,1], x$out[,"I"], type="l", ylim=c(0,

max(x$out[,"I"])), xlab=’Day’, ylab=’Prevalence’)
polygon(c(xT, xT, x$T+x$Dt,

x$T+x$Dt), c(-0.1,1,1,-.1), col="gray")
lines(x$out[,1], x$out[,"I"])
lines(x$orv[,1], x$orv[,"I"], col="red")
title(paste("Final size: ", round(100*(x$redn),1),

"% (R=",x$R,", target=", 100*x$P, "%)", sep=""))
legend(x="topleft", legend=c("Natural epidemic",

"With ORV"), col=c("black", "red"), lty=c(1,1))
text(x=x$T+x$Dt, y=0, pos=4,

labels=paste(x$intervention_length,
"ORV from ", x$T))

}

If we assume our model is correct and that the vaccine either elicits instantaneous
protection or after 2 or 4 weeks (for the antibody response to mature), the ORV is
predicted to have reduce the epidemic by 25%, 15%, or 8% respectively:

156 8 Trajectory Matching

red1=retrospec(R=1.8, 161, vaccine_efficacy=0.85,
target_vaccination=0.5, intervention_length=10,
mtime=250, LP=8, IP=5, N=16000)

red2=retrospec(R=1.8, 161+14, vaccine_efficacy=0.85,
target_vaccination=0.5, intervention_length=10,
mtime=250, LP=8, IP=5, N=16000)

red3=retrospec(R=1.8, 161+28, vaccine_efficacy=0.85,
target_vaccination=0.5, intervention_length=10,
mtime=250, LP=8, IP=5, N=16000)

1-red1$redn

[1] 0.2612989

1-red2$redn

[1] 0.1509867

1-red3$redn

[1] 0.07827277

We can plot the red1-object to inspect the predicted epidemic curve with and
without outbreak-response vaccination (Fig. 8.7). The key insight is that for ORVs
to work it needs to be implemented early (Grais et al. 2008).

plot(red1)

8.9 ShinyApp

The epimdr-package contains the orv.app with a more detailed sensitivity anal-
yses of outbreak response vaccine scenarios. The app can be launched from R
through:

require(shiny)
orv.app

8.9 ShinyApp 157

0 50 100 150 200 250

0.
00

0.
01

0.
02

0.
03

0.
04

Day

Pr
ev

al
en

ce
Final size: 73.9% (R=1.8, target=50%)

Natural epidemic
With ORV

 ORV from 161

Fig. 8.7 Epidemic curve with and without outbreak-response vaccination starting on day 161 with
a target of 50%, vaccine efficacy of 85%, campaign duration of 10 days, and an effective reproduc-
tive ratio of 1.8

	8 Trajectory Matching
	8.1 Preamble: Prevalence Versus Incidence
	8.2 Event-Based Stochastic Simulation
	8.3 Trajectory Matching
	8.4 Likelihood Theory 101
	8.5 SEIR with Error
	8.6 Boarding School Flu Data
	8.7 Measles
	8.8 Outbreak-Response Vaccination
	8.9 ShinyApp

