
Chapter 6
Time-Series Analysis

6.1 Taxonomy of Methods

Analysis of epidemic time series is a large endeavor because of the richness of dy-
namical patterns and plentitude of historical data (Rohani and King 2010). A wide
range of tools are used, some of which are borrowed from mainstream statistics
other of which are “custom made.” The classic “mainstream” methods belong to
two categories: the so-called time-domain and frequency-domain methods. The au-
tocorrelation function and ARIMA models belong to the former class and spectral
analysis and the periodogram belong to the latter. Hybrid time/frequency methods
have become increasingly prominent in the form of wavelet analysis because it al-
lows the study of changes in disease dynamics through time (Grenfell et al. 2001).
This chapter discusses a variety of “mainstream” methods using a variety of time-
series data. Examples of “custom made” methods are mechanistic models such as
the time-series SIR (TSIR) which is the focus of Chap. 7, semi-parametric models
(Ellner et al. 1998) and nonparametric (“empirical dynamic”) models. An example
of the latter is discussed in Sect. 10.8.

6.2 Time Domain: ACF and ARMA

The autocorrelation function (ACF) and the autoregressive-moving-average
(ARMA) model are classic tools for describing serial dependence in time series in
the time-domain. We first apply the ACF to the (weekly) time series of prevalence

This chapter uses the following R-packages: forecast, Rwave, imputeTS, nlts, and
plotrix.
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from the seasonally forced SEIR model. The ACF quantifies serial correlations at
different time lags. Figure 6.1 shows the ACF for lags up to 3 years (=156 weeks):

times = seq(0, 100, by=1/52)
paras = c(mu = 1/50, N = 1, beta0 = 1000, beta1 = 0.2,

sigma = 365/8, gamma = 365/5)
xstart = c(S=0.06, E=0, I=0.001, R = 0.939)
out = as.data.frame(ode(xstart, times,seirmod2, paras))

par(mfrow=c(1,2))
plot(times, out$I, ylab="Infected", xlab="Time",

xlim=c(90,100), type="l")
acf(out$I, lag.max = 156, main="")
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Fig. 6.1 The ACF of prevalence from the seasonally forced SEIR model. (a) time series, (b) ACF
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The major peak in autocorrelation at 104 weeks reflects the dominant 2-year
periodicity; the minor peak at 52 weeks reflects the subdominant annual periodicity.

6.2.1 ARMA

Autoregressive moving-average models have been used to forecast disease dy-
namics (e.g., influenza-like illness; Choi and Thacker 1981). The ARMA(p,q)-
model assumes that the future incidence (Yt) can be predicted according to Yt =
a1Yt−1 + . . .+ apYt−p + εt − b1et−1 − . . .− bqεt−q, where the ε’s represent stochas-
ticity and the echo of past stochasticity.1 We apply the ARMA model to monthly
ILI incidence in Iceland using the forecast-package:

require(forecast)
data(Icelandflu)

We convert the data frame to a time-series ts-object and do a seasonal decompo-
sition (Fig. 6.2). There is a slight trend through the data, but as expected the winter
seasonality is the dominant feature of the time series. Because the epidemics are
very peaky we consider square-root transformed numbers:

ilits=ts(sqrt(Icelandflu$ili), start=c(1980, 1),
end=c(2009, 12), frequency=12)

plot(decompose(ilits))

We train a seasonal ARMA(2,1) model on for example 1990 through 2000 epi-
demics and do a 24-month forecast (Fig. 6.3):

wts=window(ilits, start=c(1990,6), end=c(2000,5))
fit = arima(sqrt(wts), order=c(2, 0, 1),

list(order=c(1, 0, 0), period = 12))
coef(fit)

## ar1 ar2 ma1 sar1
## 1.4460827 -0.7323795 -0.7819940 0.2026528
## intercept
## 2.4823415

fore = predict(fit, n.ahead=24)

1 The ARMA model is usually considered a purely statistical model (i.e., not containing biological
mechanism), though it can be shown that the linearized discrete-time SIR model with stochastic
transmission can be rewritten as a ARMA(2,1) model (see Sect. 9.8).
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Fig. 6.2 A decomposition of the Iceland ILI time series

#Calculate approximate upper (U) and
#lower (L) prediction intervals
U = fore$pred + 2*fore$se
L = fore$pred - 2*fore$se
# plot observed and predicted values
ts.plot(sqrt(wts), fore$pred, U, L, col=c(1, 2, 4, 4),

lty=c(1, 1, 2, 2), ylab="Sqrt(cases)")
legend("bottomleft", c("ILI", "Forecast",

"95% Error Bounds"), col=c(1, 2, 4),lty=c(1, 1, 2))

While ARMA forecasting is useful in many disciplines and is an important part
of the broad statistical toolbox, it suffers from lacking mechanism and can therefore
not answer questions like “how are dynamics likely to change if we vaccinate 50%
of susceptible children?” It furthermore assumes that time series are stationary, es-
sentially meaning that dynamical patterns do not change radically over time. As we
frequently see in infectious diseases, this is not a good assumption. In Chap. 7 we
discuss how time-series methods that incorporate more biological mechanisms (like
the “time-series SIR” model) are better able to capture/predict dynamic transitions.
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Fig. 6.3 Forecast of square-root transformed ILI incidence in Iceland for the 2001 and 2002 sea-
sons using a seasonal ARMA(2,1) model

6.3 Frequency Domain

The Schuster periodogram is a direct way of estimating and testing for significant
periodicity. The periodogram decomposes a time series into cycles of different fre-
quencies (frequency = 1/period). The importance of each frequency is measured
by the spectral amplitude. We use the spectrum-function to calculate the peri-
odogram for the time series from the seasonally forced SEIR model. The analysis
clearly identifies the two superimposed periods (Fig. 6.4).

my.spec = spectrum(out$I, plot=FALSE)
par(mfrow=c(1,2))
#default plot (less default lables)
plot(my.spec, xlab="Frequency", ylab="Log-amplitude",

main="", sub="")
#plot with period (rather than frequency)
plot(1/my.spec$freq/52,my.spec$spec, type="b", xlab=

"Period (year)", ylab="Amplitude", xlim=c(0,5))
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Fig. 6.4 The power spectrum of prevalence for the seasonally forced SEIR model. (a) Default plot
of log-amplitude against frequency and (b) amplitude against period (in years)

Using the fast Fourier transform (FFT), the Schuster periodogram will automat-
ically estimate the spectrum of a time series (of length T ) at the following T/2

frequencies: f = { 1
T ,

2
T , . . . ,

T/2
T } (or equivalent periods: {T, T

2 , . . . ,2}). An upside
of using FFT is that it is fast. A downside is that the Schuster periodogram is not
a consistent method, meaning that the estimated periodogram does not converge
on the true power spectrum as the time series gets longer because the number of
frequencies considered (and thus the number of parameters) increases linearly with
time-series length. Numerous fixes of this have been developed, the most common
is to smooth the periodogram (Priestley 1981), but nonparametric density estima-
tion has also been proposed. We use Kooperberg et al.’s (1995) log-spline method
in Sect. 9.7.

6.4 Wavelets

The wavelet spectrum is an extension of spectral analysis that allows an additional
time axis and therefore to allow the study of changes in dynamics over time (Tor-
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rence and Compo 1998). Unlike the periodogram, wavelets do not have “canoni-
cal” periods for decomposition. If we use the Morlet wavelet (which is provided
by the cwt-function in the Rwave-package), we need to specify the periods we
wish to consider through the number of octaves, no, and voices, nv. With 8 octaves
the main periods will be {21,22, . . . ,28} = {2,4, . . . ,256}. The number of voices
specifies how many subdivisions to estimate within each octave. With four voices
the resultant periods will be {21,21.25,21.5,21.75,22,22.25, . . .}. We first consider the
simulated time series of prevalence for the unforced SEIR model (Fig. 6.5).

#Simulate and plot time series
times = seq(0, 25, by=1/52)
paras = c(mu = 1/50, N = 1, beta = 1000,

sigma = 365/8, gamma = 365/5)
xstart = c(S=0.06, E=0, I=0.001, R = 0.939)
out2 = as.data.frame(ode(xstart, times, seirmod, paras))
par(mfrow = c(1, 2)) #Side-by-side plots
plot(times, out2$I, type="l", xlab="Time",

ylab = "Infected")

#Wavelet analysis
require(Rwave)
#Set the number of "octaves" and "voices"
no = 8; nv = 32
#Calculate periods
a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
#Do the continous wavelet decomposition
wfit = cwt(out2$I, no, nv, plot=FALSE)
#Calculate the wavelet spectrum
wspec = Mod(wfit)

#Wavelet plot with contours
image(x=times, wspec, col=gray((12:32)/32), y=a/52,

ylim=c(0,4), xlab="Time", ylab="Period")
contour(x=times, wspec, y=a/52, ylim=c(0,4),

zlim=c(mean(wspec), max(wspec)), add=TRUE)

The initial inter-epidemic period at around 2.5 years is strong (recall that the
dampening period of the SEIR with these parameters is 2.3 years with these param-
eters; Sect. 5.3), but then wanes as the system converges towards the stable endemic
equilibrium. We see this clearly illustrated if we compare the wavelet spectrum at,
for example, the beginning of year 2 and the beginning of year 10 (Fig. 6.6).
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Fig. 6.5 Prevalence against time for the unforced SEIR model (μ = 1/50, N = 1, β = 1000, σ =
365/8, γ = 365/5) with associated wavelet spectrum

plot(a/52, wspec[104,], type="l", ylab="Amplitude",
xlab="Period")

lines(a/52, wspec[1040,], type="l",
lty=2, col="red")

legend("topright", legend=c("Year 2", "Year 10"),
lty=c(1,2), col=c("black", "red"))

6.5 Measles in London

The pre-vaccination incidence of measles shows interesting non-stationarities that
have been traced back to changing susceptible recruitment due to the post-World
War II baby boom (Fig. 6.7). The meas data set contains the biweekly incidence
and births from 1944 and 1965.
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Fig. 6.6 The estimated wavelet spectrum at the first week of year 2 and year 10 for the unforced
SEIR model

data(meas)
head(meas)

## year week time London B
## 1 44 2 44.00000 180 1725
## 2 44 4 44.03846 271 1725
## 3 44 6 44.07692 423 1725
## 4 44 8 44.11538 465 1725
## 5 44 10 44.15385 523 1725
## 6 44 12 44.19231 649 1725

par(mar = c(5,5,2,5)) #Make room for two axes
plot(meas$time, meas$London, type="b", xlab="Week",

ylab="Incidence", ylim=c(0,8000))
par(new=T) #Superimposed births plot
plot(meas$time, meas$B, type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA, ylim=c(1000, 2700))
axis(side = 4)
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mtext(side = 4, line = 3, "Births")
legend("topright", legend=c("Cases", "Births"),

lty=c(1,1), col=c("black", "red"))
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Fig. 6.7 Biweekly incidence of measles in London between 1944 and 1965 with susceptible re-
cruitment (births) superimposed

We apply the wavelet analysis to the historical measles dynamics from London
(Grenfell et al. 2001). In addition to providing a continuous wavelet transform, the
Rwave-package has a “crazy climber” algorithm to highlight ridges in the wavelet
spectrum (implemented with the crc and cfamily-functions). When applied to
the London measles data, the crazy climber reveals the background annual rhythm
and the punctuated appearance of the biennial cycle in the early 1950s (Fig. 6.8).

#Set octaves, voices and associated periods
no = 8; nv = 32
a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
#Continous wavelet decomposition
wfit = cwt(meas$London, no, nv, plot=FALSE)
wspec = Mod(wfit)
#Crazy climber
crcinc<-crc(wspec, nbclimb=10, bstep=100)
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fcrcinc<-cfamily(crcinc, ptile=0.5, nbchain=1000,
bstep=10)

## There are 2 chains.

ridges<-fcrcinc[[1]]
ridges[which(ridges==0)]<-NA
#Wavelet plot with crazy-climber and contours
image(x=meas$time, wspec, col=gray((12:32)/32), y=a/26,

ylim=c(0.1,3), ylab="Period", xlab="Year")
contour(x=meas$time, wspec, y=a/26, ylim=c(0,3),

nlevels = 6, zlim=c(mean(wspec), max(wspec)),
add=TRUE)

image(x=meas$time, y=a/26, z=ridges, add=TRUE,
col=gray(0))
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Fig. 6.8 The wavelet spectrum of the London measles incidence with “crazy-climber” ridges. The
appearance of a significant biennial rhythm in the 1950s is conspicuous
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We can contrast the spectrum of the first biweek of January 1945 and the first
biweek of January 1954 (Fig. 6.9). The transition from a dominance of annual to
biennial epidemics is conspicuous. Two-year cycles are pronounced when birth rates
are around 20 per thousand per year; Annual epidemics are associated with higher
birth rates. This transition, due to the post-World War II baby boom, is as predicted
by the seasonally forced SEIR model with dropping birth rates (Earn et al. 2000b,
Fig. 5.6).

plot(a/26,wspec[261,], type="l",xlim=c(0,3),
xlab="period (years)", ylab="amplitude")

lines(a/26,wspec[27,], type="l", lty=2, col="red")
legend("topleft", legend=c("1945", "1954"),

lty=c(2,1), col=c("red", "black"))
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Fig. 6.9 The wavelet spectrum of the London measles in Jan 1945 vs Jan 1954

The above methods of time-series analysis require regularly spaced time
series without any missing values. Lomb (1976) developed the Lomb peri-
odogram for unequally spaced data. Furthermore, the classic spectral methods
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cannot quantify rhythms in cruder “nonmetric” data such as presence/absence
of infection. Legendre et al. (1981) developed the “contingency periodogram”
for such situations. The nlts-package has the functions spec.lomb and
contingency.periodogram to carry out such analyses. The mvcwt-package
can do wavelet analyses of time series with missing data.

6.6 Project Tycho

Project Tycho (http://www.tycho.pitt.edu) is a great resource for time series on his-
torical disease incidence. The data used in Sect. 5.1 were downloaded from this
database. Weekly data of whooping cough (1925–1947), diphtheria (1914–1947),
and measles (1914–1947) in the city of Philadelphia are from Project Tycho and are
saved in the tywhooping, tydiphtheria, and tymeasles data sets. These
were all important causes of childhood mortality in the early twentieth century and
were therefore “reportable infections” in the USA. Whooping cough is caused by
bacterial colonization of the lower respiratory tract by congeneric species in the
genus Bordetella, most notably B. pertussis, and cause violent coughing, vomiting,
and pneumonia. Diphtheria is caused by infection by Corynebacterium diphtheriae
which toxins cause a range of health complications. Measles is a severely immuno-
compromising paramyxovirus. We will use these time series to illustrate some addi-
tional aspects of disease dynamics/time-series analysis.

data(tywhooping)
tywhooping$TIME=tywhooping$YEAR+tywhooping$WEEK/52
tywhooping$TM=1:length(tywhooping$YEAR)
data(tydiphtheria)
data(tymeasles)
tydiphtheria$TIME=tymeasles$TIME=tymeasles$YEAR+

tymeasles$WEEK/52

These time series have occasional weeks of missing data which we interpolate.
We will use the imputeTS-package. But first we use the whooping cough data to
illustrate the use of the Lomb periodogram for spectral analysis of unevenly spaced
data.

6.7 Lomb Periodogram: Whooping Cough

There are 14 missing weeks in the tywhooping data set. For frequency-domain
analyses of this data we either have to interpolate the missing weeks or use the Lomb
periodogram. We compare the two approaches:

http://www.tycho.pitt.edu
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data(tywhooping)
whp=na.omit(tywhooping)

#data with missing values interpolated
require(imputeTS)
sum(is.na(tywhooping$PHILADELPHIA))

## [1] 14

tywhooping$PHILADELPHIA=
na.interpolation(ts(tywhooping$PHILADELPHIA))

#Classic periodogram
my.spec = spectrum(sqrt(tywhooping$PHILADELPHIA))
#Lomb periodogram
require(nlts)
my.lomb=spec.lomb(x=whp$TM, y=sqrt(whp$PHILADELPHIA))

plot(1/my.spec$freq/52, my.spec$spec, type="b",
xlab="Period (year)", ylab="Amplitude")

par(new=TRUE)
plot(1/my.lomb$freq/52, my.lomb$spec, axes=FALSE,

type="b", col=2, xlab="", ylab="")
legend("topright", legend=c("Classic", "Lomb"),

lty=c(1,1), pch=c(1,1), col=c("black", "red"))

With only 14 missing values in a 1000+ week long time series the shape of the
Schuster periodogram (on interpolated data) and the Lomb periodogram are almost
identical (Fig. 6.10).

6.8 Triennial Cycles: Philadelphia Measles

Like in London, pre-vaccination measles dynamics in Philadelphia exhibit inter-
esting nonstationarities we can highlight with the wavelet analysis. There are 24
missing weeks we interpolate:

data(tymeasles)
sum(is.na(tymeasles$PHILADELPHIA))

## [1] 24

tymeasles$PHILADELPHIA=
na.interpolation(ts(tymeasles$PHILADELPHIA))
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Fig. 6.10 The Lomb periodogram and the classic periodogram (on interpolated data) of the
Philadelphia whooping cough time series

We twiddle with the graphics margins and layout using the par and layout
functions to make a prettier compound graphic (Fig. 6.11).

par(mfrow=c(2,1), mar=c(2,4,2,1))
layout(matrix(c(1,1,2,2,2), ncol=1))
plot(tymeasles$TIME, sqrt(tymeasles$PHILADELPHIA),

type="b", ylab="Sqrt(incidence)")
title("Measles 1914-47")

no = 8; nv = 16; a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
wfit = cwt(sqrt(tymeasles$PHILADELPHIA),

no, nv, plot=FALSE)
wspec = Mod(wfit)
par(mar=c(1,4,0.25,1))
image(z=wspec, y=a/52, ylim=c(0,4), ylab="Period(year)",

col=gray((12:32)/32), xaxt=’n’)
contour(z=wspec, y=a/52, ylim=c(0,4), nlevels = 6,
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zlim=c(mean(wspec), max(wspec)), add=TRUE)
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Fig. 6.11 Wavelet spectrum of measles in Philadelphia

The early annual epidemics give way to triennial epidemic cycles from 1920
onwards (Fig. 6.12). The tri-annual cycles are the hallmarks of chaotic epidemics
(Dalziel et al. 2016) we discuss further in Sect. 10.2.

plot(a/52,wspec[54,], type="l", xlim=c(0,4),
xlab="Period (years)", ylab="Amplitude",
col="red", lty=2)

lines(a/52,wspec[1357,], type="l", xlim=c(0,4))
legend("topleft", legend=c("1915", "1940"),

lty=c(2,1), col=c("red","black"))
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Fig. 6.12 The Jan 1915 versus Jan 1940 measles wavelet spectrum; Annual epidemics give way to
triennial cycles

6.9 Wavelet Reconstruction and Wavelet Filter: Diphtheria

Diphtheria exhibited conspicuous annual cycles during the beginning of the twen-
tieth century until the addition of an adjuvant to the toxoid vaccine in 1926 led to
a strong secular downward trend and effectively the elimination of the disease
(Fig. 6.13). The wavelet lets us study how adjuvant-induced reduction in incidence
is associated with a loss of periodicity and increase in high-frequency variability
(“noise”) (Fig. 6.13). There are 18 missing values we interpolate prior to the analy-
sis.

data(tydiphtheria)
sum(is.na(tydiphtheria$PHILADELPHIA))

## [1] 18

tydiphtheria$PHILADELPHIA=
na.interpolation(ts(tydiphtheria$PHILADELPHIA))

par(mfrow=c(2,1), mar=c(2,4,2,1))
layout(matrix(c(1,1,2,2,2), ncol=1))
plot(tydiphtheria$TIME, sqrt(tydiphtheria$PHILADELPHIA),

https://en.wikipedia.org/wiki/Diphtheria#History
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type="b", ylab="Sqrt(incidence)")
title("Diphteria 1914-47")

no = 8; nv = 16; a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
wfit = cwt(sqrt(tydiphtheria$PHILADELPHIA),

no, nv, plot=FALSE)
wspec = Mod(wfit)
par(mar=c(1,4,0.25,1))
image(z=wspec, y=a/52, ylim=c(0,3), ylab="Period(year)",

col=gray((12:32)/32), xaxt=’n’)
contour(z=wspec, y=a/52, ylim=c(0,3), nlevels = 6,

zlim=c(mean(wspec), max(wspec)), add=TRUE)
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Fig. 6.13 Wavelet spectrum of diphtheria in Philadelphia
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Fig. 6.14 Wavelet reconstructed variability in the 45–60 week range of diphtheria in Philadelphia

We are sometimes interested in using the wavelet as a “filter.” We may for ex-
ample want to quantitate how the strength of the annual cycle of diphtheria (in the
45–60 week range, say) changes over time. To do this we use wavelet reconstruc-
tion around the relevant time scales (Fig. 6.14). For the Morlet wavelet the formula
for reconstruction using the j’th though j+ sth scales is provided by Torrence and
Compo (1998). The mid-pass filter clearly illustrates the loss of annual signal over
time (Fig. 6.14).

#midpass filter
sel=a>45 & a<60
rec=0.6*apply(Re(wfit[,sel])/sqrt(a[sel]), 1,

sum)/(0.776*(piˆ(-1/4)))
data=pi*scale(sqrt(tydiphtheria$PHILADELPHIA))/2
plot(tydiphtheria$TIME, data, type="b", xlab="Year",

ylab="Scaled cases")
lines(tydiphtheria$TIME, rec, type="l", col=2, lwd=3)
legend("topright", legend=c("Scaled cases",

"Annual reconstruction"), pch=c(1, NA), lty=c(1,1),
lwd=c(1,3), col=c("black", "red"))
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6.10 Advanced: FFT and Reconstruction

One-hundred-and-twenty years ago, Arthur Schuster proposed the bold idea that any
discrete time series can be decomposed and exactly reconstructed from a sum of
trigonometric functions. Given its nonstationary transition from annual to biennial
epidemics, the pre-vaccination 1944–1964 London measles time series (in the meas
data set) offers a nice test-bed for this assertion.

The below code generates an animated visualization of the reconstruction. Sec-
tion 11.6 discusses making in-line and permanent animations in more detail. A web-
optimized animated gif can be found in https://github.com/objornstad/epimdr/blob/
master/mov/fftrecon.gif.

If z is the fast Fourier transform of the time series, then the trigonometric “sig-
nal” of the k’th observation is 1

T (∑ f (Re(z)cos(2π(k − 1) f ))− Im(z)sin(2π(k −
1) f )), where Re() and Im() represent real and imaginary parts. We first piece to-
gether relevant bits for the formula; we then do the reconstruction in the rec2-
object where the contribution of each frequency is weighed:

# fft
x <- meas$London
p <- length(x)
z <- fft(x)
f <- seq(from = 0, length = p, by = 1/p)
a <- Re(z)
b <- Im(z)
# reconstruction
rec2 = matrix(NA, ncol = p, nrow = p)
for (k in 1:p) {

rec2[, k] <- (a * cos(2 * pi * (k - 1) * f) - b *
sin(2 * pi * (k - 1) * f))/p

}

Finally we can visualize the convergence on the original signal using the se-
quence of frequencies order by amplitude (highest to lowest importance):

sim=rep(0, p)
n=0
samp=order(aˆ2+bˆ2, decreasing=TRUE)
for(g in samp){
n=n+1
par(mfrow=c(1,2))
plot(x, ylim=c(0,11000), ylab="Incidence",

xlab="Biweek")
title(paste("nfreq = ", n))
sim=sim+rec2[g,]
lines(sim, col=2)

https://github.com/objornstad/epimdr/blob/master/mov/fftrecon.gif
https://github.com/objornstad/epimdr/blob/master/mov/fftrecon.gif
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par(new=TRUE)
sc=scale((cos(2*pi*(0:(p-1))*f[g]) -

sin(2*pi*(0:(p-1))*f[g]))/p)
plot(sc*(aˆ2+bˆ2)[g]/max(aˆ2+bˆ2), type="l", col=
gray(.5), ylim=c(-8, 2), axes=FALSE, xlab="", ylab="")

plot(x, sim, ylab="Reconstructed", xlab="Observed",
ylim=c(0,8000))

#Sys.sleep makes R wait a bit
Sys.sleep(.2)
}


	6 Time-Series Analysis
	6.1 Taxonomy of Methods
	6.2 Time Domain: ACF and ARMA
	6.2.1 ARMA

	6.3 Frequency Domain
	6.4 Wavelets
	6.5 Measles in London
	6.6 Project Tycho
	6.7 Lomb Periodogram: Whooping Cough
	6.8 Triennial Cycles: Philadelphia Measles
	6.9 Wavelet Reconstruction and Wavelet  Filter: Diphtheria
	6.10 Advanced: FFT and Reconstruction


