
Chapter 4
FoI and Age-Dependent Incidence

4.1 Burden of Disease

In everyday conversation about contagious maladies, “disease” and “infection” are
sometimes used interchangeably. Often this imprecision does not matter. It is how-
ever useful to keep in mind that disease strictly speaking refers to symptomology
and infection to pathogen/parasite colonization-status. The latent period —the time
between a pathogen colonizes a host and the host can pass the infection on—is dif-
ferent from the incubation period—the time from colonization to onset of symptoms
(“disease”). Such distinctions are obvious for certain infections; We all recognize
the distinction between AIDS and HIV positive. The former refers to disease status,
the latter to infection status. For “the flu,” the virus is typically cleared in less than a
week, but noncontagious cough and discomfort can last for another week or more.
Thus clinical relevance is not always the same as dynamic relevance.

The severity of disease of many infections depends on age. The very young are
often prone to more severe disease. Both measles and whooping cough, for exam-
ple, cause highest morbidity and mortality in children under one (e.g., Miller and
Fletcher 1976; Grais et al. 2007). Other diseases are more severe in the elderly.
Mortality from influenza-like illness is a common example. “Teratogenic” diseases
are those that cause complications during pregnancies. Rubella, chicken pox, and

This chapter uses the following R-packages: splines and fields.
A conceptual understanding of Force of Infection is useful prior to this discussion. A 5-min
epidemics-MOOC intro can be watched from YouTube:
Force of Infection https://www.youtube.com/watch?v=dj1DiqA4Lvg.
Pathogens and Extinction https://www.youtube.com/watch?v=v67gtiACBTY.
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Zika are important examples (Metcalf and Barrett 2016). For these, infections of
reproductive-age women are the most pressing public health concern. It is important
to understand determinants of age-prevalence curves for two reasons: First, because
of such age-specificity in burden of disease, and second—as we shall see—because
age-structure can mold infectious disease dynamics in important ways.

4.2 Force of Infection

The Force of Infection (FoI) is the per capita rate at which susceptibles are ex-
posed to infection. The FoI in the S(E)IR compartmental model (Eqs. (2.1)–(2.3)
and (3.1)–(3.3)) is φ = β I/N because each susceptible is assumed to contact other
individuals in the population at some rate, the fraction of those contacts that are
with infected individuals is I/N and β is by definition the contact rate times the
probability of infection upon contact.1

An important basic and applied question is how the FoI scales with population
density/size (de Jong et al. 1995). The literature suggests two extreme situations
termed: “density-dependent” transmission for which the FoI scales linearly with
density and “frequency-dependent” transmission for which the FoI is independent
of density. Roberts and Heesterbeek (1993) points out that there is some significant
confusion in the literature about the meaning of these terms, as the denominator N
in the SEIR formulations is by some wrongly interpreted as Eqs. (3.3)–(3.5) being a
“frequency-dependent” model. Roberts and Heesterbeek (1993) clarify that this is a
mistaken interpretation; the I/N simply stems from the idea that only this fraction
of random contacts are with infectious individuals (as opposed to the complimen-
tary fraction which is with noninfectious individuals). The issue of density- versus
frequency-dependence should be thought of in terms of how β (= contact rate ∗
transmission probability) scales with density (Roberts and Heesterbeek 1993; Fer-
rari et al. 2011). For the strictly density-dependent model, numbers of contacts are
proportional to density, so β (N) ∝ N and thus transmission and R0 scales linearly
with density. In contrast the strictly frequency-dependent model assumes that con-
tact rates are independent of N and, therefore, so is R0. The frequency-dependent
model is often used for sexually transmitted diseases (STDs) and vector-borne in-
fections with the logic that the number of sexual partner does not scale with density
and neither does the feeding requirements of mosquitos.

An interesting ecological implication is that in the absence of an alternative host,
a deadly density-dependently transmitted pathogen is less likely to drive a host ex-
tinct because as the pathogen decimates the host, the reproductive ratio is expected

1 The theoretical FoI is model specific, so more complicated models may have more complicated
FoIs. The FoI for the SEIHFR model of Sect. 3.9.2, for example, is given by rate 1© in Fig. 3.9.
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to eventually decrease below one, at which time the chain-of-transmission will falter
and break. Frequency-dependent pathogens, in contrast, may be able to sustain the
chain-of-transmission to a bitter end as the reproductive ratio may remain supercrit-
ical (De Castro and Bolker 2005).

4.3 Probability of Infection at Age: The Catalytic Model

The FoI is a rate, thus if age-invariant, in a randomly mixing population the expected
waiting-time to first infection is 1/φ . For endemic, fully immunizing infections in a
constant-sized host population, R0 determines the mean age of infection, ā, accord-
ing to R0 � 1+L/ā where L is the life expectancy of the host. Thus the mean age
of infection will be2 ā � L/(R0 −1).

The general rate, φ(a, t), at which any susceptible will be infected may depend
on age (a) and time (t). Ignoring time-dependence (but see Ferrari et al. 2010),
the integrated rate of infection to age a is

∫ a
0 φ(a)da, thus the probability of not

being infected by age a is 1− p(a) = exp(−∫ a
0 φ(a)da) and the probability of being

infected on or before age a is (by the logic laid out in Sect. 3.2):

p(a) = 1− e−
∫ a

0 φ(a)da. (4.1)

This is called the catalytic model (Muench 1959; Hens et al. 2010).3 Age-
intensity curves and age-seroprevalence curves are important data-sources for esti-
mating the FoI. For nonlethal, persistent infections and nonlethal, fully immunizing
infections the former/latter provides excellent data for estimating φ . In the simplest
case we assume that the FoI is independent of both age and time, in this case the
probability of being infected by age a is 1− exp(−φa). If we have data on number
of infected individuals by age, we can use the standard generalized linear model
(glm) framework to estimate the FoI for this simplest model.

Generalized linear models have two components: an error distribution (such as
binomial, Poisson, negative binomial, normal, etc.) and a “link” function which
specifies how the expected (predicted) values ŷ are linked to the “linear predictors”
x = a+ b1x1 + c1x2 · · · . Common link functions are (depending on error distribu-
tions): “identity,” “log,” “logit” (= “log-odds” = log(ŷ/(1− ŷ))), and “complimen-
tary log-log” (= log(− log(1− ŷ))) (McCullagh and Nelder 1989). The link func-
tions are associated with inverse link functions which for the aforementioned are:
“identity,” ex, ex

1+ex , and 1− e−x, respectively.

2 In populations of changing size a more accurate calculation is ā � 1/(μ(R0 −1)), where μ is the
host birth rate (Dietz and Schenzle 1985).
3 If immunity wanes at a rate ω , the reversible catalytic model is p(a) = φ(a)

φ(a)+ω (1−e−
∫ a

0 φ(a)+ωda)

(see e.g., Pomeroy et al. 2015, for an example). Heisey et al. (2006) discuss corrections needed if
infection causes significant disease-induced mortality.
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Let us assume we test some na individuals of each age a and find from serology
that ia individuals have been previously infected. Inferring φ from this data is a
standard(ish) binomial regression problem: p(a) = 1− exp(−φa) is the expected
fraction infected (or seropositive) by age a. Thus log(− log(1− p(a))) = log(φ)+
log(a), so we can estimate a constant log-FoI as the intercept from a glm with
binomial error, a complimentary log-log link and log-age as a regression “offset.”4

The R call will be of the form5:

glm(cbind(inf, notinf) ˜ offset(log(a)),
family=binomial(link="cloglog"))

We can illustrate the approach using the pre-vaccination Measles antibody data of
Black (1959). The data contain seroprevalence-by-age-bracket of some 300 people
from around New Haven, Connecticut from blood drawn in the summer of 1957:

data(black)
black

## age mid n pos neg f
## 1 <1 0.75 10 8 2 0.8000000
## 2 1-4 2.50 21 4 17 0.1904762
## 3 5-9 7.00 41 31 10 0.7560976
## 4 10-14 12.00 52 50 2 0.9615385
## 5 15-19 17.00 30 28 2 0.9333333
## 6 20-29 25.00 38 37 1 0.9736842
## 7 30-39 35.00 51 49 2 0.9607843
## 8 40-49 45.00 35 31 4 0.8857143
## 9 >50 60.00 30 26 4 0.8666667

The age-profile of seroprevalence takes the characteristic shape of many pre-
vaccination childhood diseases: High seroprevalence of the very young (<1 year)
due to the presence of maternal antibodies that wanes with age, followed by rapid
build-up of immunity to almost 100% seroprevalence by age 20 (Fig. 4.1). There
is perhaps some evidence of loss of immunity in the elderly. We use the binomial
regression scheme to estimate the log-FoI based on the data for people in the 1–40
year groups, and compare predicted and observed seroprevalence by age (Fig. 4.1):

4 An offset is a covariate that has a fixed coefficient of unity in a regression.
5 Binomial regression either takes a binary 0/1 variable as the response or a matrix with two
columns representing number of successes and failures for each covariate level.
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b2=black[-c(1,8,9),] #subsetting age brackets
#Estimate log-FoI
fit=glm(cbind(pos,neg) ˜ offset(log(mid)),

family=binomial(link="cloglog"), data=b2)
#Plot predicted and observed
phi=exp(coef(fit))
curve(1-exp(-phi*x), from=0, to=60,

ylab=’Seroprevalence’, xlab=’Age’)
points(black$mid, black$f, pch=’*’, col=’red’)
points(b2$mid, b2$f, pch=8)
exp(fit$coef)

## (Intercept)
## 0.1653329

The estimated FoI is 0.16/year, giving a predicted mean age of infection of 6
years.
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Fig. 4.1 Seroprevalence-by-age from the measles antibody study of Black (1959) from pre-
vaccination Connecticut. The solid line is the predicted age-prevalence curve for the subset of
the data used for estimation (black stars). The smaller red stars are data excluded from estimates
due to maternal antibodies or possibly waning titers. Data are centered on the midpoints of each
age-bracket
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4.4 More Flexible φ -Functions

The assumption of a constant, age-invariant FoI is usually too simplistic because of
age- or time-varying patterns of mixing. We can use Long et al.’s (2010) data on
prevalence of the bacterium Bordetella bronchiseptica in a rabbit breeding facility
to illustrate. B. bronchiseptica is a non-immunizing, largely avirulent (though it can
cause snuffles), persistent infection of rabbits. Two-hundred-and-fourteen rabbits of
known age were swabbed nasally and tested for the bacterium.

data(rabbit)
head(rabbit)

## a n inf
## 1 1.0 59 3
## 2 2.0 8 7
## 3 2.5 4 4
## 4 3.0 2 1
## 5 3.5 5 1
## 6 4.0 2 0

We first calculate the average FoI from the binomial regression scheme intro-
duced above. In the breeding facility the older breeding animals are kept separate
from the younger animals, so we restrict ourselves to rabbits <1 year old. We su-
perimpose our fit on the plot of prevalence by age. In Fig. 4.2 the size of the circles
is proportional to the sample size:

rabbit$notinf=rabbit$n-rabbit$inf
#Binomial regression
fit=glm(cbind(inf, notinf)˜offset(log(a)),

family=binomial(link="cloglog"),
data=rabbit, subset=a<12)

#Plot data
symbols(rabbit$inf/rabbit$n˜rabbit$a, circles=rabbit$n,

inches=.5, xlab="Age", ylab="Prevalence")
#Predicted curves for <1 and all
phi=exp(coef(fit))
curve(1-exp(-phi*x), from=0, to=12, add=TRUE)
curve(1-exp(-phi*x), from=0, to=30, add=TRUE, lty=2)
1/phi

## (Intercept)
## 5.918273

The predicted median age of infection is just under 6 months. The constant-FoI
model seems to do well for up to about 15 months of age, but the model overpredicts



4.4 More Flexible φ -Functions 63

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

Pr
ev

al
en

ce

Fig. 4.2 Age-prevalence of B. bronchiseptica in a rabbit breeding facility. Circle size is proportion-
ate to the number of animals tested in each age group. The solid line is the predicted age-prevalence
curve for the subset of the data used for estimation (up to 1-year animals). The dotted line is the
extrapolation to older individuals

the prevalence in older individuals. To allow for the scenario that the FoI varies
with age, we need to implement our own framework (as opposed to using glm)
using the maximum likelihood ideas introduced in Sect. 3.4. A simple model for
age-specific FoI assumes a piecewise constant model (Grenfell and Anderson 1985),
where individuals are classified into discrete age classes. For a piecewise constant
model the integrand in Eq. (4.1) integrates to φa(a− ca)+∑k<a φkdk, where φa is
the FoI of individuals in the a’th age bracket, and ca and da are the lower cut-off
age and duration of that bracket, respectively. We define a function for the integrand
which takes the argument a for age, up is a vector of the upper cut-offs for each age
bracket, and foi is the vector of age-specific FoIs:

integrandpc=function(a, up, foi){
#Find which interval a belongs to
wh=findInterval(a, sort(c(0,up)))
#Calcultae duration of each interval
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dur=diff(sort(c(0,up)))
#Evaluate integrand
inte=ifelse(wh==1, foi[1]*a,

sum(foi[1:(wh-1)]*dur[1:(wh-1)])+
foi[wh]*(a-up[wh-1]))

return(inte)
}

The negative log-likelihood function for the piecewise constant model takes ar-
guments corresponding to log-FoI (par), age (age), number of positives (num),
number tested in each age group (denom), and age-class cut-offs (up). Estimating
the FoI on a log-scale (foi=exp(par)) ensures that all rates will be positive.

llik.pc = function(par, age, num, denom, up) {
ll = 0
for (i in 1:length(age)) {

p = 1 - exp(-integrandpc(a=age[i], up = up,
foi = exp(par)))

ll = ll + dbinom(num[i], denom[i], p, log = T)
}

return(-ll)
}

We use 1, 4, 8, 12, 18, 24, and 30 months as cut-off points for the age categories
and assign arbitrary initial values of 0.1 for each piece of the FoI-function:

x = c(1, 4, 8, 12, 18, 24, 30)
para = rep(0.1, length(x))

For the analysis we use the optim-function to find maximum likelihood esti-
mates:

est = optim(par=log(para),fn=llik.pc, age=rabbit$a,
num=rabbit$inf, denom=rabbit$n, up=x,
method="Nelder-Mead", control=list(trace=2))

The maximum likelihood estimates for the log-FoI is given in est$par. The
associated age-specific FoIs are:

round(exp(est$par), 6)
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Fig. 4.3 The piecewise constant age-specific FoI of B. bronchiseptica in a rabbit breeding facility
and the associated predicted age-prevalence curve

We can predict the age-prevalence curve and plot it as a step function (Fig. 4.3).

#Make space for left and right axes
par(mar = c(5,5,2,5))
#Add beginning and ends to x and y for step plot
xvals=c(0,x)
yvals=exp(c(est$par, est$par[7]))
plot(xvals, yvals, type="s", xlab="age", ylab="FoI")

#Superimpose predicted curve
par(new=T)
p = rep(0, 28)
for (i in 1:28) {

p[i] = 1 - exp(-integrandpc(a=i, up = x,
foi = exp(est$par)))

}
plot(p˜c(1:28), ylim=c(0,1), type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA)

#Add right axis and legend
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axis(side = 4)
mtext(side = 4, line = 4, "Prevalence")
legend("right", legend=c("FoI", "Prevalence"),

lty=c(1,1), col=c("black", "red"))

The FoI peaks perinatally and then falls to zero after the 8-month age class. This
is likely due to the older breeder females being housed separately and only having
contact with their kittens. Long et al. (2010) used this (in combination with some
other analyses; see Sect. 15.4) to conclude that most infections happen at a young
age from infected mothers to their offspring and then among litter mates.

4.5 A Log-Spline Model

An alternative nonparametric approach to the piecewise constant model is to use
smoothing splines. A spline is a smooth curve that can take an arbitrary shape ex-
cept that it is constrained to be continuous and with continuous first and second
derivatives (Härdle 1990; Hastie and Tibshirani 1990). The popularity of splines in
nonparametric regression stems from its computational tractability; A spline can be
fit by multiple regression on a set of “basis function”-decompositions of a covariate.
The gam and mgcv packages offer automated ways to fit a variety of spline-variants
to binomial data (and any other error distribution within the exponential family).
Unfortunately, as with the case of the piecewise constant model, fitting the log-
spline model is a bit more involved because of the integration step in Eq. (4.1). The
splines package has functions to create various spline-bases that can be used with
lm; predict.lm can predict values for the spline given regression coefficients.

The approach taken here is a bit cheeky in that it “hi-jacks” a spline-regression
object created using the bs-spline basis functions in combination with lm and use
optim to update/override the regression coefficients in the lm-object until a max-
imum likelihood solution is found. First we set the number of degrees-of-freedom
for the spline. The dl-object will end up as the hi-jacked object for the age-specific
FoI (Long et al. 2010).

require(splines)
# Degrees-of-freedom
df = 7
# Construct dummy lm-object
dl = lm(inf ˜ bs(a, df), data = rabbit)

We write a tmpfn-function to predict the spline on a log-transformed scale to
ensure that the force-of-infection (FoI) is strictly positive:

https://en.wikipedia.org/wiki/Smoothing_spline
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tmpfn = function(x, dl) {
x = predict(dl, newdata = data.frame(a = x))
exp(x)

}

The tmpfn2-function calculates the negative log-likelihood of the FoI as we
did in the foipc-function above. In contrast to the piecewise constant model, the
integrated splines do not have a closed form solution, so we use Rs inbuilt numerical
integrator, integrate:

tmpfn2=function(par,data, df){
#Dummy lm-object
dl=lm(inf˜bs(a,df), data=data)
#Overwrite spline coefficients with new values
dl$coefficients=par
#Calculate log-likelihood
ll=0
for(i in 1:length(data$a)){
p = 1 - exp(-integrate(tmpfn, 0, i, dl = dl)$value)
ll=ll+dbinom(data$inf[i],data$n[i],p,log=T)

}
return(-ll)
}

We use arbitrary initial values and minimize the negative log-likelihood using
optim.

para=rep(-1, df+1)
dspline = optim(par=para, fn=tmpfn2, data=rabbit,

df=df, method="Nelder-Mead", control=
list(trace=2, maxit=2000))

We can plot the resultant maximum likelihood fits (Fig. 4.4).

par(mar = c(5,5,2,5)) #Room for two axes
#Overwrite dummy-objects coefficients with MLEs
dl$coefficients=dspline$par
#Age-prevalce plot
plot(tmpfn(rabbit$a,dl)˜rabbit$a, type="l", ylab="FoI",

xlab="Age (mos)", las=1)
#Overlay FoI
par(new=T)
p = rep(0, 28)
for (i in 1:28) {

p[i] = 1 - exp(-integrate(tmpfn, 0, i,
dl = dl)$value)
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}
plot(p˜c(1:28), ylim=c(0,1), type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA)
axis(side = 4, las=1)
mtext(side = 4, line = 4, "Prevalence")
legend("topright", legend=c("FoI", "Prevalence"),

lty=c(1,1), col=c("black", "red"))

Both the piecewise and spline models show strong evidence of age-specificity
in the FoI with a peak in transmission somewhere between 1 and 5 months of age,
suggesting that circulation is mainly among the young and among littermates (Long
et al. 2010). We revisit on this case study in Sect. 15.4.
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Fig. 4.4 The spline-estimate of the age-specific FoI of B. bronchiseptica in a rabbit breeding facil-
ity
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4.6 Rubella

Rubella is a relatively mild, vaccine-preventable infection except that infection dur-
ing pregnancy leads to stillbirths or congenital rubella syndrome. The main public
health objective is therefore to minimize the FoI in women of childbearing age.
The issue was made clear because of a surprising surge in CRS cases in Greece in
the mid-90s following a low-intensity vaccination campaign (Panagiotopoulos et al.
1999).

Age-intensity data is less ideal than seroprevalence data for catalytic analysis;
however, it is more common and therefore worth considering. Metcalf et al. (2011c)
studied age-intensity curves for rubella across the provinces of Peru between 1997
and 2009. There were 24,116 reported cases during the period. The data are 1/2-
monthly to age 1 and yearly thereafter (Fig. 4.5). With age-incidence data on immu-
nizing infections, we can use the catalytic framework to estimate the relative age-
specific FoI using the cumulative incidence by age (in place of age-seroprevalence
or age-prevalence). For the analysis we use the total number of cases as our denomi-
nator because the actual number of susceptibles in each age group is not monitored.
Hence, the estimate is a relative FoI because of the unknown baseline. Using the to-
tal cases as a denominator, further leads to sever biases of the FoI at old age classes
(because exactly all of the assumed susceptibles in the final age class will be pre-
sumed to be infected at the time), so it should only be applied to the younger portion
of the data. Its application also assumes a uniform age-distribution, so a correction
for the age-pyramid may be necessary for a more refined analysis (Ferrari et al.
2010).

data(peru)
head(peru)

## age incidence cumulative n
## 2 0.01095890 1 56 24116
## 3 0.01369863 1 57 24116
## 4 0.01643836 1 58 24116
## 5 0.01917808 2 60 24116
## 6 0.03561644 1 61 24116
## 7 0.03835616 2 63 24116

#Calculate cumulative incidence
peru$cumulative=cumsum(peru$incidence)
#Define denominator
peru$n=sum(peru$incidence)
par(mar = c(5,5,2,5)) #Make room for two axes and plot
#Plot incidence with cumulative overlaid
plot(peru$incidence˜peru$age, type="b", xlab="Age",

ylab="Incidence")
par(new=T)
plot(peru$cumulative˜peru$age, type="l", col="red",

https://en.wikipedia.org/wiki/Congenital_rubella_syndrome
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axes=FALSE, xlab=NA, ylab=NA)
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative")
legend("right", legend=c("Incidence", "Cumulative"),

lty=c(1,1), col=c("black", "red"))
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Fig. 4.5 Age-specific incidence and cumulative incidence of rubella in Peru 1997–2009

We first apply the piecewise model assuming a separate FoI for each year up
to age 20 and 10 year classes thereafter. Convergence of the piecewise model with
this many segments is very slow, so the actual figure (Fig. 4.6) was produced by
doing repeat calls to optim using different optimization methods (Nelder-Mead,
BFGS, and SANN), feeding the estimates from each call as starting values for the
next. However, the basic analysis is:
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#Upper age cut-offs
up=c(1:20,30, 40, 50, 60, 70,100)
para=rep(.1,length(up)) #Inital values
#Minimize log-likelihood
est2 = optim(par=log(para),fn=llik.pc, age=peru$age,

num=peru$cumulative, denom=peru$n, up=up,
method="Nelder-Mead", control=
list(trace=2, maxit=2000))

#Step plot
x=c(0, up)
y=exp(c(est2$par, est2$par[26]))
plot(x, y, ylab="Relative FoI", xlab="Age", type="l",

ylim=c(0,0.25), xlim=c(0,80))
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Fig. 4.6 The relative age-specific FoI of rubella in Peru as estimated using the piecewise-constant
model
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We see a clear peak in FoI in the 8–10 age group. The pattern makes sense given
the biology of rubella and the assortative mixing commonly seen in the human host
with most contacts being among same-aged individuals (see Sect. 4.7). Peru has a
life-expectancy of around 75 years, and the R0 of rubella is typically quoted in the
4–10 range, so according to ā � L/(R0 − 1) the peak in circulation is predicted to
be in an interval around 10 years of age.

We can do a more refined scenario-analyses regarding consequences of vaccina-
tion using the spline model. We focus on the 0–45-year age-range as this spans the
pre to post child-bearing age:

data3 = peru[peru$age < 45, ]
df = 5
para = rep(0.1, df + 1)

We use a log-transformation to constrain the FoI to be positive, create the
“dummy” lm-object, and define the function to evaluate the negative log-likelihood
of the FoI curve given the data:

#Prediction function
tmpfn=function(x,dl){

x=predict(dl, newdata=data.frame(age=x))
exp(x)}
#Dummy lm-object
dl=lm(cumulative˜bs(age,df), data=data3)
#Log-likelihood function
tmpfn2=function(par,data, df){

dl=lm(cumulative˜bs(age,df), data=data)
dl$coefficients=par
ll=0
for(a in 1:length(data$age)){
p=((1-exp(-integrate(tmpfn,0,data$age[a],

dl=dl)$value)))
ll=ll+dbinom(data$cumulative[a],data$n[a],p,log=T)

}
return(-ll)
}

Getting a good fit is, again, computationally expensive, but reveals an interesting
two-peaked force-of-infection (Fig. 4.7): A dominant peak just under 10 years and a
subdominant peak around 35. A plausible scenario is that most people get infected
in school but the fraction that escapes this dominant mode of infection are most
likely to contract the virus from their children when they reach school age.

#Fit model
dspline.a45.df5=optim(par=log(para),fn=tmpfn2,

data=data3, df=df, method="Nelder-Mead",
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control=list(trace=4, maxit=5000))
#Overwrite dummy-objects coefficients with MLEs
dl$coefficients=dspline.a45.df5$par
plot(exp(predict(dl))˜data3$age, xlab="Age",

ylab="Relative FoI", type="l")
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Fig. 4.7 The relative age-specific FoI of Rubella in Peru as estimated using the spline model

The fraction of cases that is predicted to occur in the child-bearing age-bracket
(say, 15–40 years of age) is the joint probability of not being infected by age 15 and
the probability of being infected in the 15–40 age range.

exp(−
∫ 15

0
φ(a)da)(1− exp(−

∫ 40

15
φ(a)da)) (4.2)

We can predict this fraction from the spline model.

(exp(-integrate(tmpfn,0,15,dl=dl)$value))*(1-
exp(-integrate(tmpfn,15,40,dl=dl)$value))

## [1] 0.08815273

Thus, with the current pattern of circulation just over 9% of the cases are pre-
dicted to occur in the at-risk age group. Let us ask how this fraction will change
with a flat 50% reduction in FoI.
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redn=0.5
(exp(-redn*integrate(tmpfn,0,15,dl=

dl)$value))*(1-exp(-redn*integrate(tmpfn,
15,40,dl=dl)$value))

## [1] 0.2376147

The reduction in FoI results, as predicted by theory, in an increase in the mean
age of infection (in reality this will also likely lead to a change in the age-specific
FoI curve), so that almost 24% of cases is predicted to fall in the at-risk group.
Assuming an associated 50% reduction in cases, the total number in the age-bracket
of concern would thus increase given this intervention—predicting an intervention-
induced enhancement of the public health problem as was seen in Greece during the
1990s (Panagiotopoulos et al. 1999).

Metcalf and Barrett (2016) discuss public health issues related to the possible in-
troduction of vaccines against Zika virus, which can cause microcephaly in children
of mothers infected during pregnancy, in light of the lessons learnt from rubella.
Whooping cough is another vaccine preventable disease that causes significant mor-
bidity and mortality in perinatal children. Lavine et al. (2011) discuss how an im-
perfect (waning) vaccine could increase circulation among people of child-bearing
age and thus increase the risk of parent-newborn transmission. They recommended
that cocoon-vaccination of expecting parents should be considered if the current
acellular vaccine is as leaky as is feared (Warfel et al. 2014). Althouse and Scarpino
(2015) provide further discussion of the utility of cocoon-vaccination and other in-
terventions.

4.7 WAIFW

Age-structured FoIs result from non-assortative mixing among different age groups.
The Who-Acquires-Infection-From-Whom (WAIFW) matrix is used to describe the
patterns of nonhomogenous mixing among different age groups (Grenfell and An-
derson 1989). Mossong et al. (2008) conducted a diary-based social study to map
age-stratified contact rates for various countries in Europe as part of the POLY-
MOD project. The contact rates by contactor and contactee are provided in
the mossong-data set. We can visualize the diary data using an image plot with
contours superimposed (Fig. 4.8)

data(mossong)
head(mossong)

## contactor contactee contact.rate
## 1 1 1 120.37234
## 2 2 1 33.45833
## 3 3 1 23.13380
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## 4 4 1 24.33333
## 5 5 1 29.00662
## 6 6 1 14.50331

x=y=mossong$contactor[1:30]
z=matrix(mossong$contact.rate, ncol=30, nrow=30)
image(x=x, y=y, z=z, xlab="Contactor",

ylab="Contactee", col=gray((12:32)/32))
contour(x=x, y=y, z=z, add=TRUE)
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Fig. 4.8 The contact rates reported in the diary study of Mossong et al. (2008)

The reported contact rates are not symmetrical—which a WAIFW matrix will
be—because of age-specific biases in diary entry rates as well as the age-profile
of the contactors versus contactees. Before we “symmetrize” the matrix, we look
at the reported marginal contact rate for each age group. Most contacts are among
same-aged individuals and school-age children have the greatest number of con-
tacts (Fig. 4.9). We do, however, also see off-diagonal ridges resulting from parent-
offspring or children teacher interactions.
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plot(apply(z,1,mean)˜x, ylab="Total contact rate",
xlab="Age")
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Fig. 4.9 The age-specific contact rates reported by the diary study of Mossong et al. (2008)

The symmetrized contact rate matrix (Fig. 4.10) is an estimate of the “WAIFW”-
matrix.

4.8 Advanced: RAS Model

Schenzle (1984) discussed the importance of age-structured mixing when model-
ing infectious disease dynamics. Bolker and Grenfell (1993) extended this model
to the “realistic age-structured (RAS) model” which in its full elaboration is an
age-structured compartmental model with discrete aging of each birth cohort (at
the beginning of each school year) and seasonality in transmission. Seasonality is
the topic of Chap. 5. We can incorporate the POLYMOD contact matrix in a sim-
pler age-structured model. We will make the simplifying assumptions that individ-
uals age exponentially with rates set such that they will on average spend the right
amount in each age-bracket. This allows us to formulate the model using chains of
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ordinary differential equations. The upper-age cut-offs and age-progression rates for
the n = 30 age categories are x and

a = c(1/diff(x), 0)

We can in principle use the raw symmetrized WAIFW matrix in our model,
but we will use a thin-plate spline smoothed matrix using the Tps-function in the
fields-package. The smoothing protocol also allows interpolation to use differ-
ent age-brackets for the model than used in the contact survey whenever necessary
(Fig. 4.10).

require("fields")
n=length(x)
z2=(z+t(z))/2
z3=as.vector(z2)
xy=data.frame(x=rep(x[1:n], n), y=rep(y[1:n], each=n))
polysmooth=Tps(xy, z3, df=100)
surface(polysmooth, xlab="", ylab="",

col=gray((12:32)/32))

## [1] 6400 2

For our age-structured SIR model we first normalize the WAIFW matrix:

W=matrix(polysmooth$fitted.values[,
1]/mean(polysmooth$fitted.values), nrow=n)

The age-specific force-of infection is φ = βWI/N. The age-structured SIR
model is thus (in log-coordinates)6:

siragemod = function(t, logx, params){
n=length(params$a)
x = exp(logx)
S = x[1:n]
I = x[(n+1):(2*n)]
R = x[(2*n+1):(3*n)]
with(as.list(params), {

phi = (beta*W%*%I)/N
dS = c(mu,rep(0,n-1)) - (phi+a)*S +

c(0,a[1:n-1]*S[1:n-1])*(1-p) - mu*S
dI = phi*S + c(0,a[1:n-1]*I[1:n-1]) -

(gamma+a)*I - mu*I
dR = c(0,a[1:n-1]*S[1:n-1])*p +

c(0,a[1:n-1]*R[1:n-1]) + gamma*I -

6 Recall that the with(as.list(...)) allows us to evaluate the equations using the defini-
tions in the params-vector.
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Fig. 4.10 The thin-plate spline smooth estimate of the WAIFW

a*R - mu*R
res = c(dS/S, dI/I, dR/R)
list((res))

})
}

where S, I, and R are vectors of length n, φ is the age-specific force of infec-
tion predicted by the WAIFW matrix, and p is a vector of length n that allows for
age-specific vaccination rates (we will assume no vaccination). The a-vector sets
appropriate aging rates when age groups vary in duration. We use the following
parameters and initial conditions:

p.pre=rep(0,n)
pars.pre =list(N=1, gamma=365/14, mu=0.02, sigma=0.2,

beta=100, W=W,p=p.pre, a=a)
ystart=log(c(S=rep(0.099/n,n), I=rep(0.001/n,n),

R=rep(0.9/n,n)))
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Fig. 4.11 The age-specific prevalences from the age-structured SIR model. (a) Trajectory through
time. (b) Equilibrium age-incidence curves for the polymod matrix (o) vs homogenous mixing (∗)

and integrate to plot the age-specific I-dynamics (Fig. 4.11a) and equilibrium
age-specific prevalence (Fig. 4.11b) for the polymod matrix. Figure 4.11b also
shows the predicted age-prevalence curve for the age-structured model with ho-
mogenous mixing.

times=seq(0,500,by=14/365)
#Polymod mixing
out=as.data.frame(ode(ystart, times=times,

func=siragemod, parms=pars.pre))
par(mfrow=c(1,2)) #Room for side-by-side plots
#Time series
matplot(times, exp(out[,32:61]), type="l", xlab="Time",

ylab="Prevalence", xlim=c(50,90), ylim=c(0, 0.0005))
#Final age-prevalence curve
plot(x, t(exp(out[13036,32:61])*a), ylab="Prevalence",
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xlab="Age", ylim=c(0, 4E-5))
#Homogenous mixing:
pars.pre$W=matrix(1, ncol=30, nrow=30)
out2=as.data.frame(ode(ystart, times=times,

func=siragemod, parms=pars.pre))
points(x, t(exp(out2[13036,32:61])*a), col=2, pch="*")

In contrast to the model with homogenous mixing which predicts that age-
intensity curves decay exponentially with age, the RAS model can lead to a variety
of age-incidence curves including the hump-shaped curve with a mode at around 10
years seen in Fig. 4.11b.
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