
Chapter 3
R0

3.1 Primacy of R0

For directly transmitted pathogens, R0 is, per definition, the expected number of
secondary cases that arise from a typical infectious index-case in a completely sus-
ceptible host population. R0 plays a critical role for a number of aspects of disease
dynamics and is therefore the focus of much study in historical and contemporary
infectious disease dynamics (Heesterbeek and Dietz 1996). For perfectly immuniz-
ing infections in homogeneously mixing populations these include (e.g., Anderson
and May 1991):

• The threshold for pathogen establishment. When R0 is greater than one, a
pathogen can invade. When it is smaller than one, the chain of transmission will
stutter and break (Lloyd-Smith et al. 2009). For directly transmitted wildlife dis-
eases there is often an associated critical host density for disease invasion. This
has for example been estimated to be 1 red fox per km2 for rabies in Europe (An-
derson et al. 1981) and 17 mice/ha for Sin nombre hantavirus in Montana (Luis
et al. 2015).

• The threshold for vaccine-induced herd immunity: If a sufficient number of indi-
viduals are vaccinated, the effective reproductive ratio will be below one, and the
population will be resistant to pathogen invasion. The threshold is pc = 1−1/R0.
Thus, measles with a R0 of up to 20 requires around 95% vaccine cover for elim-
ination and smallpox (R0 � 5) 80%.

This chapter uses the following R-packages: bbmle and statnet.
A conceptual understanding of reproductive ratios and the simple epidemic is useful prior to this
discussion. Five minute epidemics-MOOC intros can be watched from YouTube:
Reproductive number https://www.youtube.com/watch?v=ju26rvzfFg4.
Simple epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.
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• As discussed in Sect. 2.3, the final epidemic size is given by R0 according to the
approximate relationship f � exp(−R0).

• In a stable host population, the mean age of infection is approximately ā �
L/(R0 − 1), where L is host life-expectancy (Dietz and Schenzle 1985). In a
changing population a more accurate calculation is ā � 1/(μ(R0 − 1)), where μ
is the host birth rate.

• As derived in Sect. 2.5, the susceptible fraction at equilibrium is S∗ = 1/R0.
A consequence of this is that for competing strains that elicit cross-protecting
immunity, R0 will determine competitive dominance and strain replacement
(Shrestha et al. 2014).1

A lot of attention has been given to measuring R0 for various infectious diseases.

3.2 Preamble: Rates and Probabilities

When working with data, models, and “models-and-data” for infectious disease dy-
namics, it is important to keep a cool head in terms of keeping track of which quan-
tities are probabilities and which quantities are rates, and how to move between
these two mathematical currencies.2 Confusion arises because the nomenclature of
epidemiology and mathematical epidemiology is related but not always identical. In
epidemiology the “case-fatality rate” is used to denote the fraction of infections that
ends in death, which from a mathematical/statistical point of view is not a rate but a
probability: the probability that an infection will lead to death (Dietz and Heester-
beek 2002). Likewise, in epidemiology, the seasonal influenza “attack rate” denotes
the fraction of people that contracts the flu in a given influenza season. Again, from
a mathematical/statistical/dynamical-systems point of view this quantity is not a
rate but a probability representing the chance of any randomly chosen individual
of unknown previous influenza infection-history getting infected during the season.

When considering events in modeling terms, a rate x per time unit is defined on
[0,∞] and 1/x is the average time to an event (if the rate remains constant). If events
are random and independent, the probability of no events in a time interval Δ t is
1− exp(xΔ t) and the number of events in Δ t follows a Poisson-distribution with
mean xΔ t (if the rate remains constant). A probability, in contrast, is defined on
[0,1]. If we observe a probability p of something happening in a time interval, we
can back-calculate the associated (constant) rate as x =−log(1− p)/Δ t.

1 This result is parallel to Tilman (1976)’s R∗-theory of resource-based competition of free-living
organisms: whichever species can sustain positive growth at the lowest concentration of the limited
resource will be competitively dominant.
2 The disease dynamics literature has many example of how easy it is to confuse the two; cf some
of the mathematical models of ebola dynamics published during the 2014 West Africa outbreak.
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If we have two competing rates, x at which event one (e.g., recovery) happens
and y at which event two (e.g., death) happens, the probability of ending up with
outcome one is x/(x + y) and the probability of ending up with outcome two is
y/(x+ y). This scales such that with three competing rates the probability of out-
come one is x/(x+ y+ z).

3.3 Estimating R0 from a Simple Epidemic

A variety of methods have been proposed to estimate R0 (or the effective repro-
ductive ratio, RE

3) in an epidemic setting (such as the 2014–15 West African ebola
outbreak; Althaus 2014). Some are purely model based, others involve very elab-
orate model fitting exercises, and some use fairly simple ideas based on the closed
epidemic and analogies to the ecology of free-living organisms (Dietz 1993).

The simplest idea is that during the initial spread phase susceptible depletion may
be sufficiently negligible that the epidemic may be assumed to grow in a density-
independent, exponential fashion. Basic ecology of free-living organisms tells us
that the rate of exponential growth is r = log(R0)/G, where G is the generation time;
thus R0 = exp(rG).4 Moreover, since an exponentially growing population grows
according to N(t) = N(0)exp(rt), the time for a population to double is log(2)/r.
We can apply these ideas to the early phase of an epidemic to get a rough value for
R0.

For pathogens, the Ns above would represent the prevalence. The G represents
the serial interval (V ) which is the average time between infection and reinfection.
This interval will normally be a little shorter than the latent plus infectious period.
Disease data, however, most often represents incidence—i.e., the number of new
infections, not the number of current infections. However, incidence also grows
at the same exponential rate. The simplest way to estimate R0 is thus to regress
log(cumulative incidence) on time to estimate the rate of exponential increase (r)
and then calculate R0 = Vr + 1 (e.g., Anderson and May 1991). The logic comes
from the fact that in one serial interval each infected is expected to give rise to R0

secondary cases and one removal (thus the total change is R0 − 1).
Let us explore using weekly measles-data from the 2003 outbreak in Niamey,

Niger (Grais et al. 2008). The data is available as niamey in the epimdr-package.
The tot cases-column represents the total incidence across the city for each
week of the outbreak.5

3 The effective reproductive ratio is the expected number of secondary cases in a partially immune
population RE = sR0, where s is the fraction of the population that is susceptible.
4 Unless explicitly stated otherwise, log will always be taken to mean the natural logarithm in this
text.
5 All data sets analyzed in this text are included in the epimdr-package. To get a more detailed
description of each data set consult the R help-pages.
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data(niamey)
head(niamey[, 1:5])

## absweek week tot_cases tot_mort lethality
## 1 1 45 11 0 0.000000
## 2 2 46 12 1 8.333333
## 3 3 47 15 0 0.000000
## 4 4 48 14 1 7.142857
## 5 5 49 30 0 0.000000
## 6 6 50 41 1 2.439024

We can do a visual inspection to identify the initial period of exponential growth:

par(mar = c(5,5,2,5))
plot(niamey$absweek, niamey$tot_cases, type="b",

xlab="Week", ylab="Incidence")
par(new=T)
plot(niamey$absweek, niamey$cum_cases, type="l",

col="red", axes=FALSE, xlab=NA, ylab=NA, log="y")
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative incidence")
legend("topleft", legend=c("Cases", "Cumulative"),

lty=c(1,1), pch=c(1,NA), col=c("black", "red"))
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Fig. 3.1 Weekly incidence of measles in Niamey, Niger during the 2003–2004 outbreak
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The cumulative incidence looks pretty log-linear for the first 6 weeks or so
(Fig. 3.1). The data is weekly and the serial interval for measles is around 10–12
days, thus V is around 1.5–1.8 weeks; We calculate R0 assuming either 1.5 or 1.8:

fit=lm(log(cum_cases)˜absweek, subset=absweek<7,
data=niamey)

r=fit$coef["absweek"]
V=c(1.5, 1.8)
V*r+1

## [1] 1.694233 1.833080

So a fast-and-furious estimate of the reproductive ratio for this outbreak places
it in the 1.5–2 range. Measles exhibits recurrent epidemics in the presence of var-
ious vaccination campaigns in Niger, so this number represents an estimate of the
effective reproductive ratio, RE , at the beginning of this epidemic.

In their analysis of the SARS epidemics, Lipsitch et al. (2003) showed that for an
infection with distinct latent and infectious periods a more refined estimate is given
by R = V r + 1+ f (1− f )(V r)2, where f is the ratio of infectious period to serial
interval. For measles the infectious period is around 5 days:

V = c(1.5, 1.8)
f = (5/7)/V
V * r + 1 + f * (1 - f) * (V * r)ˆ2

## [1] 1.814450 1.999198

Lipsitch et al.’s (2003) refined calculations thus produce slightly higher estimates
of RE in the range of 1.8–2. These simple methods based on initial growth are very
handy because they are simple. However, they only use a portion of the data, and
as pointed out by King et al. (2015a) it may be desirable to carry out more rigorous
estimation.

3.4 Maximum Likelihood: The Chain-Binomial Model

Ferrari et al. (2005) proposed a maximum likelihood “removal” method for esti-
mating R0 for the simple epidemic based on the so-called “chain-binomial” model
of infectious disease dynamics. The chain-binomial model, originally proposed by
Bailey (1957), is a discrete-time, stochastic alternative6 to the continuous-time, de-
terministic SIR model introduced in Chap. 2.

6 This model also forms the foundation for the TSIR model (Bjørnstad et al. 2002a; Grenfell et al.
2002) which is the focus of Chap. 7.
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In contrast to the S(E)IR models, the chain-binomial assumes that an epidemic
is formed from a succession of discrete generations of infectious individuals in a
coin-flip fashion. Just like in the SIR we assume that infectious individuals exert a
force of infection on susceptibles of β I/N. In a generation, t, of duration given by
the serial interval (which we use as the basic time unit). The probability that any
given susceptible will escape an infectious contact will be exp(−β I/N). This comes
from the basic result that if some event—such as contacts between a susceptible
and the population of infectious individuals—is happening at rate, x, the number
of events in Δ t will be distributed according to a Poisson(xΔ t) distribution, so the
probability of no events—no contacts—will be e−xΔ t . The converse outcome will
happen with a probability 1 − exp(−β I/N), thus if there are St susceptibles we
expect St(1− exp(−β It/N)) new infecteds in generation t + 1. Since we assume
that contacts happen at random, the stochastic chain-binomial model is:

It+1 ∼ Binomial(St ,1− exp(−β It/N)). (3.1)

St+1 = St − It+1 = S0 −
t

∑
i=1

Ii

If we ignore observational error, we thus have two unknown parameters: the initial
number of susceptibles, S0, and the transmission rate. The reproductive ratio is a
composite of these two R = S0(1 − exp(−β/N)), which for large populations is
approximately β S0/N because 1− exp(−x) � x for x << 1. Thus β is approxi-
mately the reproductive ratio at the beginning of the epidemic, which makes sense,
since infectious individuals are expected to transmit for exactly a time unit before
recovering.

If we make the assumption that each epidemic generation depends only on the
state of the system in the previous time step (“conditional independence”), the re-
moval method estimates β and S0 from a sequence of binomial likelihoods. The
advantage of this method relative to the earlier methods is that we can use all the
data and not just a few observations from the beginning of an epidemic.

We employ a standard recipe, for doing a “nonstandard” maximum likelihood
analysis (see Bolker 2008, for an excellent discussion of this). The first step is to
write a function for the likelihood. Conditional on some parameters, the function
returns the negative log-likelihood of observing the data given the model. The like-
lihood, which is the probability of observing data given a model and some param-
eter values, is the working-horse of a large part of statistics. R has inbuilt dxxxx-
functions to calculate the likelihood for any conceivable probability distribution.
The function to calculate a binomial likelihood is dbinom. We can thus define a
likelihood-function for the chain-binomial model 7:

7 Note that the [-x] subsetting in R means “drop the x’th observation”; thus the [-n] and [-1]
make sure that adjacent pairs of observations are aligned correctly. We use the floor-function for
the vector of S’s because dbinom requires the denominator and numerator to be integers.
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llik.cb = function(S0, beta, I) {
n = length(I)
S = floor(S0 - cumsum(I[-n]))
p = 1 - exp(-beta * (I[-n])/S0)
L = -sum(dbinom(I[-1], S, p, log = TRUE))
return(L)

}

For the real statistical analysis (below), the two parameters will be estimated
simultaneously. However, in order to ease into the idea of likelihood estimation we
will consider the two sequentially and visualize the likelihood by plotting it over a
grid of potential values. We illustrate with the data on measles from one of the three
different reporting centers in Niamey, Niger from 2003 (Grais et al. 2008). We first
need to aggregate the data into 2-week intervals which is roughly the serial interval
for measles. The epidemic in district 1 lasted for 30 weeks (the 31st week is a zero)8:

twoweek = rep(1:15, each = 2)
y = sapply(split(niamey$cases_1[1:30], twoweek), sum)
sum(y)

## [1] 5920

In district 1 there were 5920 cases during the epidemics, so S0 needs to be at
least that number. In the above parameterization RE � β , lets initially assume a
candidate value of 6500 for S0 and calculate the likelihood for each candidate value
of β between 1 and 10 by 0.1 (Fig. 3.2):

S0cand=6500
betacand=seq(0,10, by=.1)
ll=rep(NA, length(betacand))
for(i in 1:length(betacand)){

ll[i]=llik.cb(S0=S0cand, beta=betacand[i], I=y)
}
plot(ll˜betacand, ylab="Neg log-lik", xlab=

expression(beta))
betacand[which.min(ll)]

## [1] 2.3

We follow the convention of using the negative log-likelihood in the profile. Intu-
itively, one may think that it would be more natural to consider the likelihood itself
(i.e., the probability of observing the data, given particular parameter values). How-

8 The function split splits a vector into a list based on some grouping variable, and sapply
applies a function—in this case sum—to the list.
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Fig. 3.2 The conditional profile log-likelihood of β for Niamey’s district 1 assuming S0 = 6500

ever, since this would be a product of small numbers (one for each observation),
computers are not precise enough to distinguish the joint probability from zero if
the data set is large.

If our S0 guess is right, then β should be around 2.3. We can do a similar check
for S0 (assuming β is 2.3). The grid-value associated with the highest likelihood
value is 7084.8 (Fig. 3.3), so our original S0 guess was good but not perfect.

betacand=2.3
S0cand=seq(5920,8000, length=101)
ll=rep(NA, length=101)
for(i in 1:101){

ll[i]=llik.cb(S0=S0cand[i], beta=betacand, I=y)
}
plot(ll˜S0cand, ylab="Neg log-lik", xlab=

expression(S[0]))
S0cand[which.min(ll)]

## [1] 7084.8

For a proper analysis we minimize the negative log-likelihood by varying both
parameters simultaneously. We can do this using the generic optim-function or
the mle2-function in the bbmle-package. The mle2-function uses optim to find
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Fig. 3.3 The conditional profile log-likelihood of S0 for Niamey’s district 1 assuming β = 2.3

maximum likelihood estimates, but also provides confidence intervals, profile like-
lihoods, and a variety of other useful measures (Bolker 2008). We summarize the
basic pertinent likelihood theory for these other measures in Sect. 8.4.

require(bbmle)
fit=mle2(llik.cb, start=list(S0=7085, beta=2.3),

method="Nelder-Mead",data = list(I = y))
summary(fit)

## Maximum likelihood estimation
##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 7085,
## beta = 2.3), beta = 2), data = list(I = y))
##
## Coefficients:
## Estimate Std. Error z value Pr(z)
## S0 7.8158e+03 1.3022e+02 60.019 < 2.2e-16 ***
## beta 1.8931e+00 3.6968e-02 51.209 < 2.2e-16 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -2 log L: 841.831
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confint(fit)

## Profiling...

## 2.5 % 97.5 %
## S0 7577.967212 8088.641095
## beta 1.820943 1.966336

So the joint MLE estimates are S0 = 7816 (CI: 7578, 8088) and β = 1.89 (CI:
1.82, 1.7).

Applying statistical tools to biological models—like the chain-binomial—can
usefully highlight uncertainties due to parametric interdependencies. In the case of
a “simple epidemic” like the measles outbreak considered here, for example, it is
conceivable that similar epidemic trajectories can arise from having a large number
of initial susceptibles and a low transmission rate, or a more moderate number of
susceptibles and a higher transmission rate. We can quantify this through consider-
ing the correlation matrix among the parameters of our likelihood analysis; vcov
calculates their variance-covariance matrix from which we can calculate standard
errors according to sqrt(diag(vcov(fit))) and cov2cor converts this to
a correlation matrix. As intuition suggested there is a strong negative correlation
between the estimates of the β and S0 parameters.

cov2cor(vcov(fit))

## S0 beta
## S0 1.0000000 -0.7444261
## beta -0.7444261 1.0000000

3.5 Stochastic Simulation

The chain-binomial is both a statistical model for estimation and a stochastic model
for dynamics. We can thus write a function to simulate dynamics using the estimated
parameters.9

sim.cb=function(S0, beta, I0){
I=I0
S=S0
i=1
while(!any(I==0)){

9 In contrast to the loop introduced in Sect. 2.3, where the number of iterations is constant and
known, the number of epidemic generations may vary among realizations because disease extinc-
tion is a stochastic process. We therefore use while instead of for when looping; ! means “not”
in R.
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i=i+1
I[i]=rbinom(1, size=S[i-1], prob=1-

exp(-beta*I[i-1]/S0))
S[i]=S[i-1]-I[i]

}
out=data.frame(S=S, I=I)
return(out)

}

We superimpose 100 stochastic simulations on the observed epidemic. The sim-
ulations from the chain-binomial model brackets the observed epidemic nicely
(Fig. 3.4), suggesting that the model is a reasonable first approximation to the un-
derlying dynamics. We will revisit on this case study in the context of outbreak-
response vaccination in Sect. 8.8.

plot(y, type="n", xlim=c(1,18),
ylab="Predicted/observed", xlab="Week")

for(i in 1:100){
sim=sim.cb(S0=floor(coef(fit)["S0"]),
beta=coef(fit)["beta"], I0=11)
lines(sim$I, col=grey(.5))

}
points(y, type="b", col=2)

3.6 Further Examples

3.6.1 Influenza A/H1N1 1977

The flu data set in the epimdr-package represents the number of children con-
fined to bed each day during a 1978 outbreak of the reemerging influenza A/H1N1
strain in a boarding school in North England (Fig. 3.5). This subtype of influenza
had been absent from human circulation after the A/H2N2 pandemic of 1957 but
reemerge (presumably from some laboratory freezer) in 1977. The school had 763
boys of which 512 boys were confined to bed sometime during the outbreak. None
of the boys would have had previous exposure to A/H1N1.

The typical time of illness was 5–7 days. Since the data is number confined to
bed each day, the data is not incidence but (a proxy for) prevalence. The data looks
pretty log-linear for the first 5 days. Family studies have been used to estimate the
serial interval for flu between 2 and 4 days (most between 2 and 3; Cowling et al.
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Fig. 3.4 Observed (red) and 100 simulated (gray) epidemics using the chain-binomial model and
ML parameters for S0 and β from Niamey’s district 1 data

2009; Vink et al. 2014). Volunteer studies show the mean infectious period around
5 days (Carrat et al. 2008).

data(flu)
plot(flu$day, flu$cases, type="b", xlab="Day",

ylab="In bed", log="y")
tail(flu)

## day cases
## 9 9 192
## 10 10 126
## 11 11 70
## 12 12 28
## 13 13 12
## 14 14 5

The “fast-and-furious” estimate of R0 is thus:

fit=lm(log(cases)˜day, subset=day<=5,
data=flu)

lambda=fit$coef["day"]
V=c(2,3)
V*lambda+1
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Fig. 3.5 Daily number of children confined to bed in a boarding school in North England during
an outbreak in 1978 of the reemerging A/H1N1 strain

## [1] 3.171884 4.257827

This is higher than most estimates of R0 of pandemic flu (which typically lies in
the 1.5–2.5 interval). However, contact rates within a boarding school is likely to be
higher than average across human populations as a whole.

3.6.2 Ebola Sierra Leone 2014–2015

The CDC’s record for the 2014–2015 ebola outbreak in Sierra Leone is in the
ebola-data set. The serial interval for ebola is estimated at around 15 days with an
incubation period of 11 days. The mean time to hospitalization is 5 days and mean
time to death or dismissal was 5 and 11 days, respectively (WHO Ebola Response
Team 2014; White and Pagano 2008). The data is the back-calculated incidence as
the difference of the cumulative cases reported by the CDC. Because of the com-
plexities of reporting and revisions of case-load through time, this leads to some
negative numbers for certain dates. These were set to zero as a crude fix (Fig. 3.6).

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs.html
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data(ebola)
par(mar = c(5,5,2,5))
plot(ebola$day, ebola$cases, type="b", xlab="Week",

ylab="Incidence")
par(new=T)
plot(ebola$day, ebola$cum_cases, type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA, log="y")
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative incidence")
legend("right", legend=c("Cases", "Cumulative"),

lty=c(1,1), pch=c(1,NA), col=c("black", "red"))
tail(ebola)

## date day cum_cases cases
## 98 7/8/15 468 13945 34
## 99 7/15/15 475 13982 37
## 100 7/22/15 482 14001 19
## 101 7/29/15 489 14061 60
## 102 8/5/15 496 14089 28
## 103 8/12/15 503 14122 33

We first use the regression method with Lipsitch’s correction:

V = 15
f = 0.5
V * lambda + 1 + f * (1 - f) * (V * lambda)ˆ2

## day
## 1.6988

We next aggregate the data in 2-week increments roughly corresponding to the
serial interval, so we can apply the removal method.10

#Data aggregation
cases=sapply(split(ebola$cases,

floor((ebola$day-.1)/14)), sum)
sum(cases)

## [1] 14721

#Removal MLE
fit=mle2(llik.cb, start=list(S0=20000, beta=2),

method="Nelder-Mead",data = list(I = cases))

10 Because of the difference in magnitude of the estimates of S0 (in the ten thousands) and R0
(around 1.4), the numerical method used to calculate confidence intervals struggles, so we suggest
starting standard errors for the confint-function.



3.6 Further Examples 45

0 100 200 300 400 500

0
20

0
40

0
60

0
80

0
10

00
12

00

Week

In
ci

de
nc

e

1
10

10
0

10
00

10
00

0

C
um

ul
at

iv
e 

in
ci

de
nc

e

Cases
Cumulative

Fig. 3.6 Incidence and cumulative incidence of ebola during the 2014–2015 outbreak in Sierra
Leone

summary(fit)

## Maximum likelihood estimation
##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 20000,
## beta = 2), data = list(I = cases))
##
## Coefficients:
## Estimate Std. Error z value Pr(z)
## S0 2.7731e+04 2.5949e-07 1.0687e+11 < 2.2e-16 ***
## beta 1.4237e+00 1.1783e-02 1.2083e+02 < 2.2e-16 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -2 log L: 5546.683

confint(fit, std.err=c(100,0.1))
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## Profiling...

## 2.5 % 97.5 %
## S0 26393.579452 29287.725327
## beta 1.384683 1.463184

The removal and Lipsitch methods provide comparable estimates that are some-
what lower than those concluded by more elaborate analyses by the WHO team for
the Sierra Leone outbreak (WHO Ebola Response Team 2014).

3.6.3 Ebola DRC 1995

The ferrari-data set holds the incidence data for a number of outbreaks—Ebola
DRC ’95, Ebola Uganda ’00, SARS Hong Kong ’03, SARS Singapore ’03, Hog
Cholera Netherlands ’97, and Foot-and-mouth UK ’00—aggregated by disease-
specific serial intervals (Table 3.1; Ferrari et al. 2005).

Table 3.1 Serial intervals for each outbreak in the ferrari data set
Disease Serial interval Location Year
Ebola 14d DRC 1995

Uganda 2000
SARS 5d Hong Kong 2003

Singapore
Hog cholera 7d Netherlands 1997
FMD 21d UK 2000

names(ferrari)

## [1] "Eboladeaths00" "Ebolacases00" "Ebolacases95"
## [4] "FMDfarms" "HogCholera" "SarsHk"
## [7] "SarsSing"

ferrari$Ebolacases95

## [1] 4 6 5 18 36 99 40 17 4 1 NA NA NA NA NA

sum(ferrari$Ebolacases95, na.rm = TRUE)

## [1] 230

y = c(na.omit(ferrari$Ebolacases95))

The number of initial susceptibles must be larger than the summed incidence, so
we make an initial guess of 300.
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fit=mle2(llik.cb, method="Nelder-Mead",
start=list(S0=300, beta=2), data = list(I = y))

fit

##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 300,
## beta = 2), data = list(I = y))
##
## Coefficients:
## S0 beta
## 241.118108 3.181465
##
## Log-likelihood: -48.3

confint(fit, std.err=2)

## Profiling...

## 2.5 % 97.5 %
## S0 233.973778 254.051292
## beta 2.692505 3.718357

The estimated R0 is 3.2. It thus appears that the Ebola outbreak in DRC in 1995
was more explosive than in Sierra Leone in 2014. This could be due to aggregation
across a larger geographic area of the latter and/or the more intensive public health
interventions. We will revisit on the DRC outbreak using the “next-generation ma-
trix” method in Sect. 3.9.2.

3.7 R0 from S(E)IR Flows

As discussed in Sect. 2.1, R0 = β/(γ + μ) for the simple SIR model. This is the
correct quantity assuming that the force-of-infection (the rate at which susceptibles
are infected) is β I/N, there is no latent period and no disease-induced mortality, so
the index case is expected to be infectious for a period of 1/(γ+μ) time units during
which it will transmit at a rate of β ∗N/N. The numerator comes about because all
the N individuals in the population is by definition susceptible when we consider
the basic reproductive ratio.

Different SIR-like flows will produce different definitions of R0 but we can use
the same logic for all linear SIR-like flows. Consider, for example, the SEIR model
(Fig. 3.7) of the flow of hosts between Susceptible, Exposed (but not yet infectious),
Infectious, and Recovered compartments in a randomly mixing population:

dS
dt

= μ(N[1− p]− S)− β IS
N

(3.2)
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Fig. 3.7 The SEIR flow diagram. Apart from vaccination, flows represent per capita rates of flow
from the donor compartment. Vaccination is assumed to be a fraction of children vaccinated at
birth

dE
dt

=
β IS
N

− (μ +σ)E (3.3)

dI
dt

= σE − (μ + γ +α)I (3.4)

dR
dt

= γI − μR+ μN p, (3.5)

where susceptibles are either vaccinated at birth (fraction p) or infected at a rate
β I/N. Infected individuals will remain in the latent class for an average period of
1/(σ + μ) and subsequently (if they escape natural mortality at a rate μ) enter the
infectious class for an average time of 1/(γ + μ +α); α is the rate of disease in-
duced mortality (not case fatality rate). By the rules of competing rates (Sect. 3.2),
the case fatality rate is α/(γ + μ +α) because during the time an individual is ex-
pected to remain in the infectious class the disease is killing them at a rate α . By
a similar logic, the probability of recovering with immunity (for life in the case of
the SEIR model) is γ/(γ + μ +α). Putting all these pieces together, the expected
number of secondary cases in a completely susceptible population is thus: probabil-
ity of making it through latent stage without dying * expected infectious period *
transmission rate while infectious. Thus, R0 =

σ
σ+μ

1
γ+μ+α

β N
N = σ

σ+μ
β

γ+μ+α .
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3.8 Other Rules of Thumb

3.8.1 Mean Age of Infection

For endemic, fully immunizing infections, in a constant-sized host population R0 is
related to mean age of infection, ā, according to R0 � 1+ L/ā where L is the life
expectancy of the host (e.g., Dietz and Schenzle 1985). This rule of thumb is often
used in conjunction with seroprevalence-by-age profiles to get ballpark estimates of
R0. Chapter 4 discusses age-incidence patterns in more detail.

3.8.2 Final Epidemic Size

In principle, the reproductive ratio can be estimated from the final epidemic size
according to the equations discussed in Sect. 2.3. If there is some preexisting im-
munity and there is homogeneous mixing, then R0 can be quantified according to
log(s0)−log(s∞)

s0−s∞
, where s0 and s∞ are the fractions of the population that is suscepti-

ble at the beginning and end of the epidemic, respectively (Heesterbeek and Dietz
1996). However, this is unlikely to be very reliable because the final epidemic size
calculations assume that the epidemic is progressing according to the deterministic
model (and all its assumptions) including no changes in host behavior in the face of
the epidemic. For example, ebola is thought to have an R0 in the 2–3.5 range, which
is what lead CDC to warn that the West-African outbreak could result in millions of
cases. In the end the total number of cases in Guinea, Liberia, and Sierra Leone was
a far lower number, around 25,000, because of extensive public health interventions
and changes to dangerous funeral practices.

For certain common infections like seasonal influenza the rule of thumb may
hold; The annual attack rate for the flu is around 10–15% which is probably close
to that expected from its R0 (around 1.5–2) and the typical fraction of susceptible
of around a quarter (pre-vaccination; assuming immunity following infection lasted
around 4 years).

3.8.3 Contact Tracing

Contact tracing can provide direct estimates of R0. Blumberg and Lloyd-Smith
(2013) showed that this together with size-distributions of subcritical transmission-
chains can provide estimates in important low R settings, such as human monkey
pox in the face of eroding smallpox herd-immunity. They estimated the human-to-
human reproductive ratio to be 0.32. Given that the smallpox vaccine is likely to
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be cross-protective against monkey pox, the worry is that this effective reproduc-
tive ratio will increase over time since smallpox vaccination is no longer carried
out. Contact tracing was also used to estimate R0 during the early spread of SARS
during the 2003 outbreak (Riley et al. 2003).

De et al. (2004) did a contact-tracing study of the spread of gonorrhea across a
sexual network in Alberta, Canada. The directional transmission graph among the 89
individuals is in the gonnet-data set. The initial cluster of 17 cases all frequented
the same bar, each infected between 0 and 7 other partners with 2.17 as the average.
We can use the statnet-package to visualize the chains of transmission (Fig. 3.8):

require(statnet)
data(gonnet)
nwt = network(gonnet, directed = TRUE)
plot(nwt, vertex.col = c(0, rep(1, 17), rep(2, 71)))

Fig. 3.8 Network of spread of gonorrhea as studied by De et al. (2004). The initial 17 cases (in
black) frequented the same bar (white) were ultimately responsible for a cluster of 89 cases iden-
tified through contact tracing

The subsequent infections, in turn, infected between 0 and 6 partners with an
average of 0.62. The drop is (1) due to the sexual network being depleted of sus-
ceptibles, and (2) because infection across heterogenous networks will differentially
infect individuals according to their number of contacts (Ferrari et al. 2006a). Epi-
demics across social networks is the topic of Chap. 12 and we will revisit on this
network therein.
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3.9 Advanced: The Next-Generation Matrix

For models that are not simple linear chains, it is less straightforward to calculate R0

from parameterized models using the “logical method.” The next-generation matrix
is the general approach that work for all compartmental models of any complexity
(Diekmann et al. 1990). It is done in a sequence of steps:

1. Identify all n infected compartments,
2. Construct a n× 1 matrix, F, that contains expressions for all completely new

infections entering each infected compartment,
3. Construct a n× 1 matrix, V−, that contains expressions for all losses out of each

infected compartment,
4. Construct a n× 1 matrix, V+, that contains expressions for all gains into each

infected compartment that does not represent new infections but transfers among
infectious classes,

5. Construct a n× 1 matrix, V = V−−V+,
6. Generate two n× n Jacobian matrices f and v that are the partial derivatives of F

and V with respect to the n infectious state variables,
7. Evaluate the matrices at the disease free equilibrium (dfe), and finally
8. R0 is the greatest eigenvalue of fv−1|d f e.

3.9.1 SEIR

This is quite an elaborate scheme, so we will try it out first for the SEIR model for
which we already know the answer. Unfortunately, R cannot do vectorized symbolic
calculations, so we need to do this, one matrix element at a time.11 In Chap. 2, we
discussed how to use expression to do symbolic calculations in R. The quote-
function is an alternative way to define mathematical expressions; substitute
allows some simple additional manipulations.

Step 1: Infected classes are E and I, let us label them 1 and 2.
Step 2: All new infections: dE/dt = β SI/N, dI/dt = 0

F1 = quote(beta * S * I/N)
F2 = 0

Step 3: All losses dE/dt = (μ +σ)E , dI/dt = (μ +α + γ)I

Vm1 = quote(mu * E + sigma * E)
Vm2 = quote(mu * I + alpha * I + gamma * I)

Step 4: All gained transfers dE/dt = 0, dI/dt = (σ)E

11 Though it is possible to do calculations more compactly using a list of equations.

https://en.wikipedia.org/wiki/Next-generation_matrix
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Vp1 = 0
Vp2 = quote(sigma * E)

Step 5: Subtract Vp from Vm

V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))

Step 6: Generate the partial derivatives for the two Jacobians

f11 = D(F1, "E"); f12 = D(F1, "I")
f21 = D(F2, "E"); f22 = D(F2, "I")

v11 = D(V1, "E"); v12 = D(V1, "I")
v21 = D(V2, "E"); v22 = D(V2, "I")

Step 7: Assuming N=1, the disease free equilibrium (dfe) is S = 1,E = 0, I =
0,R = 0. We also need values for other parameters. Assuming a weekly time-step
and something chickenpox-like we may use μ = 0, α = 0, β = 5, γ = .8, σ = 1.2,
and N = 1.

paras=list(S=1, E=0, I=0, R=0, mu=0, alpha=0,
beta=5, gamma=.8, sigma=1.2, N=1)

f=with(paras,
matrix(c(eval(f11),eval(f12),eval(f21),

eval(f22)), nrow=2, byrow=TRUE))

v=with(paras,
matrix(c(eval(v11),eval(v12),eval(v21),

eval(v22)), nrow=2, byrow=TRUE))

Step8: Calculate the largest eigenvalue of f × inverse(v). Note that the function
for inverting matrices in R is solve.

max(eigen(f %*% solve(v))$values)

## [1] 6.25

Let us check that the next-generation method and the “flow” method are in agree-
ment recalling that for the SEIR-flow R0 =

σ
σ+μ

β
γ+μ+α .

with(paras, sigma/(sigma + mu) * beta/(gamma + mu + alpha))

## [1] 6.25
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3.9.2 SEIHFR

Legrand et al. (2007) forms the foundation for many of the recent Ebola models.
The model has five compartments corresponding to Susceptible, Exposed, Infec-
tious in community, Infectious in hospital, Dead but not yet buried, and removed
(either buried or immune). The model is more complex than previous compartmen-
tal models and cannot be represented by a simple linear chain (Fig. 3.9). The pa-
rameterization used here is motivated by the original formulation of Legrand et al.
(2007), but the notation conforms to the other sections of this book; Each infectious
compartment contributes to the force of infection through their individual β s. There
are two branching-points in the flow: The hospitalization of a fraction Θ of the in-
fectious cases after an average time of 1/γh days following onset of symptoms, and
the death of a fraction Λ of the I- and H-class after an average time of 1/γ f days and
1/η f days, respectively. For the 1995 DRC outbreak, Legrand et al. (2007) assumed
that hospitalization affected transmission rates but not duration of infection or prob-
ability of dying. Model parameters are given in Table 3.2, and the model equations
are:

dS
dt

= −(βiI +βhH +β f F)S/N (3.6)

dE
dt

= (βiI+βhH +β f F)S/N−σE (3.7)

dI
dt

= σE −ΘγhI− (1−Θ)(1−Λ)γrI− (1−Θ)Λγ f I (3.8)

dH
dt

= ΘγhI −Λη f H − (1−Λ)ηrH (3.9)

dF
dt

= (1−Θ)(1−Λ)γrI +Λη f H − χF (3.10)

dR
dt

= (1−Θ)(1−Λ)γrI +(1−Λ)ηrH + χF (3.11)

There are four infected compartments (E , I, H, and F), thus F, V−, and V+ will
be 4× 1 matrices, and f and v will be 4× 4 matrices.

Step 1: Infected classes are E , I, H, and F , and let us label them 1–4.
Step 2: All new infections dE/dt = β SI/N, dI/dt = 0

F1=expression(betai * S * I / N + betah* S * H / N +
betaf * S * F / N)

F2=0
F3=0
F4=0
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Fig. 3.9 The SEIHFR flow diagram for ebola dynamics

Table 3.2 Parameters for Legrand et al. (2007)’s Ebola model using the data from the 1995 DRC
epidemic

Parameter Meaning Value
N Population size
1/σ Incubation period 7d
1/γh Onset to hospitalization 5d
1/γ f Onset to death 9.6d
1/γr Onset to recovery 10d
1/η f Hospitalization to death 4.6d
1/ηr Hospitalization to recovery 5d
1/χ Death to burial 2d
Θ Proportion hospitalized 80%
Λ Case fatality ratio 81%
βi Transmission rate in community 0.588
βh Transmission rate in hospital 0.794
β f Transmission rate at funeral 7.653

To avoid confusion, we use lowercase Greek for rates and uppercase for probabilities

Step 3: All losses

Vm1=quote(sigma * E)
Vm2=quote(Theta * gammah * I + (1 - Theta) * (1-

Lambda) * gammar * I + (1 - Theta) * Lambda *
gammaf * I)

Vm3=quote(Lambda * etaf * H + (1 - Lambda) * etar * H)
Vm4=quote(chi * F)



3.9 Advanced: The Next-Generation Matrix 55

Step 4: All gained transfers

Vp1=0
Vp2=quote(sigma * E)
Vp3=quote(Theta * gammah * I)
Vp4=quote((1 - Theta) * (1 - Lambda) * gammar * I+

Lambda * etaf * H)

Step 5: Subtract Vp from Vm

V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))
V3 = substitute(a - b, list(a = Vm3, b = Vp3))
V4 = substitute(a - b, list(a = Vm4, b = Vp4))

Step 6: Generate the partial derivatives for the two Jacobians

f11 = D(F1, "E"); f12 = D(F1, "I"); f13 = D(F1, "H")
f14 = D(F1, "F")

f21 = D(F2, "E"); f22 = D(F2, "I"); f23 = D(F2, "H")
f24 = D(F2, "F")

f31 = D(F3, "E"); f32 = D(F3, "I"); f33 = D(F3, "H")
f34 = D(F3, "F")

f41 = D(F4, "E"); f42 = D(F4, "I"); f43 = D(F4, "H")
f44 = D(F4, "F")

v11 = D(V1, "E"); v12 = D(V1, "I"); v13 = D(V1, "H")
v14 = D(V1, "F")

v21 = D(V2, "E"); v22 = D(V2, "I"); v23 = D(V2, "H")
v24 = D(V2, "F")

v31 = D(V3, "E"); v32 = D(V3, "I"); v33 = D(V3, "H")
v34 = D(V3, "F")

v41 = D(V4, "E"); v42 = D(V4, "I"); v43 = D(V4, "H")
v44 = D(V4, "F")

Step 7: Disease free equilibrium: the dfe is S = 1,E = 0, I = 0,H = 0,F = 0,R =
0. We also need values for other parameters. We use the estimates from the DRC
1995 outbreak scaled as weekly rates from tables and appendices of Legrand et al.
(2007).

gammah = 1/5 * 7
gammaf = 1/9.6 * 7
gammar = 1/10 * 7
chi = 1/2 * 7
etaf = 1/4.6 * 7
etar = 1/5 * 7
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paras=list(S=1,E=0, I=0, H=0, F=0,R=0,
sigma=1/7*7, Theta=0.81, Lambda=0.81, betai=0.588,
betah=0.794, betaf=7.653,N=1, gammah=gammah,
gammaf=gammaf, gammar=gammar, etaf=etaf,
etar=etar, chi=chi)

f=with(paras,
matrix(c(eval(f11),eval(f12),eval(f13),eval(f14),

eval(f21),eval(f22),eval(f23),eval(f24),
eval(f31),eval(f32),eval(f33),eval(f34),
eval(f41),eval(f42),eval(f43),eval(f44)),
nrow=4, byrow=T))

v=with(paras,
matrix(c(eval(v11),eval(v12),eval(v13),eval(v14),

eval(v21),eval(v22),eval(v23),eval(v24),
eval(v31),eval(v32),eval(v33),eval(v34),
eval(v41),eval(v42),eval(v43),eval(v44)),
nrow=4, byrow=T))

Step 8: Calculate the largest eigenvalue of f × inverse(v)

max(eigen(f %*% solve(v))$values)

## [1] 2.582429
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