
Chapter 2
SIR

2.1 The SIR Model

In 1927, Kermack and McKendrick (1927) published a set of general equations
(Breda et al. 2012) to better understand the dynamics of an infectious disease spread-
ing through a susceptible population. Their motivation was

“One of the most striking features in the study of epidemics is the difficulty of finding a
causal factor which appears to be adequate to account for the magnitude of the frequent
epidemics of disease which visit almost every population [. . .] The problem may be sum-
marized as follows: One (or more) infected person is introduced into a community of in-
dividuals, more or less susceptible to the disease in question. The disease spreads from
the affected to the unaffected by contact infection. Each infected person runs through the
course of his sickness, and finally is removed from the number of those who are sick, by
recovery or by death. The chances of recovery or death vary from day to day during the
course of his illness. The chances that the affected may convey infection to the unaffected
are likewise dependent upon the stage of the sickness. As the epidemic spreads, the num-
ber of unaffected members of the community becomes reduced [. . .] In the course of time
the epidemic may come to an end. One of the most important problems in epidemiology is
to ascertain whether this termination occurs only when no susceptible individuals are left,
or whether the interplay of the various factors of infectivity, recovery and mortality, may
result in termination, whilst many susceptible individuals are still present in the unaffected
population.”

Following a general mathematical exposé, they suggested a set of pragmatic as-
sumptions which lead to the standard SIR model of ordinary differential equations

This chapter uses the following R-packages: deSolve, rootSolve, phaseR, and shiny.
A conceptual understanding of reproductive ratios and the closed epidemic is useful prior to this
discussion. Five minute epidemics-MOOC introductions can be watched from YouTube:
Reproductive number https://www.youtube.com/watch?v=ju26rvzfFg4.
Closed epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97487-3_2&domain=pdf
https://www.youtube.com/watch?v=ju26rvzfFg4
https://www.youtube.com/watch?v=sSLfrSSmJZM
https://doi.org/10.1007/978-3-319-97487-3_2


10 2 SIR

for the flow of hosts between Susceptible, Infectious, and Recovered compartments.
In modern notation, their simplest set of equations is (Fig. 2.1):

dS
dt

=μ(N − S)−β I
S
N

(2.1)

dI
dt

=β I
S
N
− (μ + γ)I (2.2)

dR
dt

=γI− μR. (2.3)
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Fig. 2.1 The SIR flow diagram. Flows represent per capita flows from the donor compartments

The assumptions of Eqs. (2.1)–(2.3) are:

• The infection circulates in a population of size N, with a per capita “background”
death rate, μ , which is balanced by a birth rate μN. From the sum of Eqs. (2.1)–
(2.3), dN/dt = 0 and N = S+ I+R is thus constant.

• The infection causes acute morbidity (not mortality); That is, in this version of
the SIR model we assume we can ignore disease-induced mortality. This is rea-
sonable for certain infections like chickenpox, but certainly not for others like
rabies, SARS, or ebola.

• Individuals are recruited directly into the susceptible class at birth (so we ignore
perinatal maternal immunity).

• Transmission of infection from infectious to susceptible individuals is controlled
by a bilinear contact term β I S

N . This stems from the assumption that the I infec-
tious individuals are independently and randomly mixing with all other individ-
uals, so the fraction S/N of the encounters is with susceptible individuals; β is
the contact rate times the probability of transmission given a contact between a
susceptible and an infectious individual.
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• Chances of recovery or death is assumed not to change during the course of
infection.

• Infectiousness is assumed not to change during the course of infection.
• Infected individuals move directly into the the infectious class (as opposed to the

SEIR model; see Sect. 3.7) and remains there for an average infectious period of
1/γ (assuming μ << γ).1

• The model assumes that recovered individuals are immune from reinfection for
life.

The basic reproductive ratio (R0), defined as the expected number of secondary in-
fections from a single index case in a completely susceptible population, is a very
important quantity in epidemiology. Chapter 3 is entirely devoted to this quantity.
For this simple SIR model R0 =

β
γ+μ .

2.2 Numerical Integration of the SIR Model

If there are no (or negligible) births and deaths during the duration of an epidemic
(μ � 0), it is commonly referred to as a closed epidemic. While it is occasionally
possible to derive analytical solutions to systems of ODEs like Eqs. (2.1)–(2.3), we
generally have to resort to numerical integration to predict the numbers over time.
We use the deSolve R-package to numerically integrate the equations. We will
numerically integrate a variety of different models. While the models differ, the
basic recipe is generally the same: (1) define a R-function for the general system of
equations, (2) specify the time points at which we want the integrator to save the
state of the system, (3) provide values for the parameters, (4) give initial values for
all state variables, and finally (5) invoke the R-function that does the integration. We
use the ode-function in the deSolve-package.

1 The implicit assumptions that stem from the use of deterministic, ordinary differential equa-
tion (ODE) are that the infectious periods (and resident times in all compartments) are expo-
nentially distributed. This is a tractable approximation for exploring overall dynamics, but ob-
served duration of infection periods is often much less variable—the Eimeria-gut parasite (a rel-
ative of Plasmodium that cause malaria) undergoes exactly 8 replication cycles before leaving a
host; or much more variable—see superspreader MOOC video: https://www.youtube.com/watch?
v=3H1tG4uz9uk. Section 2.7 discusses a practical approach to model dynamics when the expo-
nential assumption is deemed too simplistic.

https://www.youtube.com/watch?v=3H1tG4uz9uk
https://www.youtube.com/watch?v=3H1tG4uz9uk
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require(deSolve)

Step 1: We define the function (often called the gradient-functions) for the equa-
tion systems. The deSolve-package requires the function to take the following
parameters: time,2 t, a vector with the values for the state variables (S, I, R), y, and
parameter values (β , μ , γ , and N), parms:

sirmod = function(t, y, parms) {
# Pull state variables from y vector
S = y[1]
I = y[2]
R = y[3]
# Pull parameter values from parms vector
beta = parms["beta"]
mu = parms["mu"]
gamma = parms["gamma"]
N = parms["N"]
# Define equations
dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dI, dR)
# Return list of gradients
list(res)

}

The ode-function solves differential equations numerically.
Steps 2–4: Specify the time points at which we want ode to record the states of

the system (here we use 26 weeks with 10 time-increments per week as specified
in the vector times), the parameter values (in this case as specified in the vector
parms), and starting conditions (specified in start). In this case we model the
fraction of individuals in each class, so we set N = 1, and consider a disease with an
infectious period of 2 weeks (γ = 1/2), no births or deaths (μ = 0) and a transmis-
sion rate of 2 (β = 2). For our starting conditions we assume that 0.1% of the initial
population is infected and the remaining fraction is susceptible.

times = seq(0, 26, by = 1/10)
parms = c(mu = 0, N = 1, beta = 2, gamma = 1/2)
start = c(S = 0.999, I = 0.001, R = 0)

2 Though, in the case of the simple SIR model there is no time-dependence in any of the parameters,
so this parameter is not called within the gradient function; This will change when we consider
seasonality (Chap. 5).
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Step 5: Feed start values, times, the gradient-function and parameter vector
to the ode-function as suggested by args(ode).3 For convenience we convert
the output to a data frame (ode returns a list). The head-function shows the
first 5 rows of out, and round(,3) rounds the number to three decimals.

out=ode(y=start, times=times, func=sirmod, parms=
parms)

out=as.data.frame(out)
head(round(out, 3))

## time S I R
## 1 0.0 0.999 0.001 0
## 2 0.1 0.999 0.001 0
## 3 0.2 0.999 0.001 0
## 4 0.3 0.998 0.002 0
## 5 0.4 0.998 0.002 0
## 6 0.5 0.998 0.002 0

We can plot the result (Fig. 2.2) to see that the model predicts an initial exponen-
tial growth of the epidemic that decelerates as susceptibles are depleted, and finally
fade-out as susceptible numbers are too low to sustain the chain of transmission.

plot(x=out$time, y=out$S, ylab="Fraction", xlab=
"Time", type="l")

lines(x=out$time, y=out$I, col="red")
lines(x=out$time, y=out$R, col="green")

R allows for a lot of customization of graphics—Rseek.org is a useful resource to
find solutions to all things R. . . Fig. 2.2 has some added features such as a right-hand
axis for the effective reproductive ratio (RE )—the expected number of new cases per
infected individuals in a not completely susceptible population—and a legend so
that we can confirm that the turnover of the epidemic happens exactly when RE =
R0s = 1, where s is the fraction of remaining susceptibles. The threshold R0s = 1 ⇒
s∗ = 1/R0 results in the powerful rule of thumb for vaccine induced eradication and
herd immunity: If we can—through vaccination —keep the susceptible population
below a critical fraction, pc = 1−1/R0, then pathogen spread will dissipate and the
pathogen will not be able to reinvade the host population (e.g., Anderson and May
1982; Roberts and Heesterbeek 1993; Ferguson et al. 2003). This rule of thumb
appeared to work well for smallpox, the only vaccine-eradicated human disease;
Its R0 was commonly around 5, and most countries saw elimination once vaccine
cover exceeded 80% (Anderson and May 1982). The actual code used to produce
Fig. 2.2 is:

3 For further details on usage, do ?function on the R command-line, i.e., ?ode in this instance.

http://rseek.org
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#Calculate R0
R0=parms["beta"]/(parms["gamma"]+parms["mu"])

#Adjust margins to accommodate a second right axis
par(mar = c(5,5,2,5))
#Plot state variables
plot(x=out$time, y=out$S, ylab="Fraction", xlab="Time",

type="l")
lines(x=out$time, y=out$I, col="red")
lines(x=out$time, y=out$R, col="green")
#Add vertical line at turnover point
xx=out$time[which.max(out$I)]
lines(c(xx,xx), c(1/R0,max(out$I)), lty=3)

#prepare to superimpose 2nd plot
par(new=TRUE)
#plot effective reproductive ratio (w/o axes)
plot(x=out$time, y=R0*out$S, type="l", lty=2, lwd=2,

col="black", axes=FALSE, xlab=NA, ylab=NA,
ylim=c(-.5, 4.5))

lines(c(xx, 26), c(1,1), lty=3)
#Add right-hand axis for RE
axis(side = 4)
mtext(side = 4, line = 4, expression(R[E]))
#Add legend
legend("right", legend=c("S", "I", "R",

expression(R[E])), lty=c(1,1,1, 2),
col=c("black", "red", "green", "black"))

2.3 Final Epidemic Size

The closed epidemic model has two equilibria {S = 1, I = 0,R = 0} which is unsta-
ble when R0 > 1, and the {S∗, I∗,R∗}-equilibrium which reflects the final epidemic
size, for which I∗ = 0 as the epidemic eventually self-extinguish in the absence of
susceptible recruitment; S∗ is the fraction of susceptibles that escape infection al-
together; and R∗ is the final epidemic size—the fraction of susceptibles that will
be infected before the epidemic self-extinguish. For the closed epidemic, there is
an exact mathematical solution to the final epidemic size (below). It is nevertheless
useful to consider computational ways of finding equilibria in the absence of exact
solutions.



2.3 Final Epidemic Size 15

The rootSolve-package will attempt to find equilibria of systems of differ-
ential equations through numerical integration. The function runsteady is really
just a wrapper function around the ode-function that integrates until the system
settles on some steady-state (if it exists). It takes the same arguments as ode. By
varying initial conditionsrootSolve should find multiple stable equilibria if there
are more than one stable solution.4
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Fig. 2.2 The closed SIR epidemic with left and right axes and effective reproductive ratio, RE . The
epidemic turns over at RE = 1

require(rootSolve)
equil=runsteady(y=c(S=1-1E-5, I=1E-5, R=0),
times=c(0,1E5), func=sirmod, parms=parms)
round(equil$y, 3)

4 It will not find unstable equilibria, for these we will need to use other strategies. We will consider
finding all equilibria in more depth in Sect. 9.3.
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## S I R
## 0.02 0.00 0.98

So for these parameters, 2% of susceptibles are expected to escape infection al-
together and 98%—the final epidemic size—are expected to be infected during the
course of the epidemic.

Let us explore numerically how the final epidemic size depends on R0. Recall that
for the specific SIR variant we are working with R0 = β/(γ + μ), and since we are
studying the closed epidemic μ = 0. In the above example we assume an infectious
period of 2 weeks (i.e., γ = 1/2), so we may vary β so R0 goes from 0.1 to 5. For
moderate to large R0 this fraction has been shown to be approximately 1−exp(−R0)
(e.g., Anderson and May 1982). We can check how well this approximation holds
(Fig. 2.3).5

#Candidate values for R0 and beta
R0 = seq(0.1, 5, length=50)
betas= R0 * 1/2
#Vector of NAs to be filled with numbers
f = rep(NA, 50)
#Loop over i from 1, 2, ..., 50
for(i in seq(from=1, to=50, by=1)){

equil=runsteady(y=c(S=1-1E-5, I=1E-5,
R=0), times=c(0,1E5), func=sirmod,
parms=c(mu=0, N=1, beta=betas[i], gamma=1/2))

f[i]=equil$y["R"]
}
plot(R0, f, type="l", xlab=expression(R[0]))
curve(1-exp(-x), from=1, to=5, add=TRUE, col="red")

We see that the approximation is good for R0 > 2.5 but overestimates the final
epidemic size for smaller R0 (and is terrible for R0 < 1).

For the closed epidemic SIR model, there is an exact mathematical solution to the
fraction of susceptibles that escapes infection (1− f ) given by the implicit equation
f = exp(−R0(1− f )) or equivalently exp(−R0(1− f ))− f = 0 (Swinton 1998). So
we can also find the final size by applying the uniroot-function to the equation.
The uniroot-function finds numerical solutions to equations with one unknown
variable (which has to be named x).

#Define function
fn=function(x, R0){
exp(-(R0*(1-x))) - x

5 We use a for-loop here to calculate the final epidemic size for a range of values of R0; A loop
works by repeating calculations (in this case 50 times), after each repeat the value of the looping
variable (in this case i) is changed to the next value in the looping vector. So in this example i
will be 1 first, then 2, then . . . until the loop ends after i= 50.
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Fig. 2.3 The final epidemic size as a function of R0. The black line is the solution based on nu-
merically integrating the closed epidemic, and the red line is the approximation f � 1−exp(−R0)

}
1-uniroot(fn, lower = 0, upper = 1-1E-9,

tol = 1e-9, R0=2)$root

## [1] 0.7968121

#check accuracy of approximation:
exp(-2)-uniroot(fn, lower = 0, upper = 1-1E-9,

tol = 1e-9, R0=2)$root

## [1] -0.06785259

So for R0 = 2 the final epidemic size is 79.6% and the approximation is off by
around 6.7% points.
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2.4 Open Epidemic

The open epidemic has recruitment of new susceptibles (i.e., μ > 0). As long as
R0 > 1, the open epidemic has an “endemic equilibrium” were the pathogen and host
coexist. If we use the SIR equations to model fractions (i.e., set N = 1), Eq. (2.2) of
the SIR model implies that S∗ = (γ + μ)/β = 1/R0 is the endemic S-equilibrium,
which when substituted into Eq. (2.1) gives I∗ = μ(R0 − 1)/β , and finally, R∗ =
N − I∗−S∗ as the I and R endemic equilibria. We can study the predicted dynamics
of the open epidemic using the sirmod-function. Let us assume a life expectancy
of 50 years, a stable population size, and thus a weekly birth rate of μ = 1/(50∗52).
Let’s assume that 19% of the initial population is susceptible and 1% is infected and
numerically integrate the model for 50 years (Fig. 2.4).

times = seq(0, 52*50, by=.1)
parms = c(mu = 1/(50*52), N = 1, beta = 2,

gamma = 1/2)
start = c(S=0.19, I=0.01, R = 0.8)
out = as.data.frame(ode(y=start, times=times,

func=sirmod, parms=parms))
par(mfrow=c(1,2)) #Make room for side-by-side plots
plot(times, out$I, ylab="Fraction", xlab="Time",

type="l")
plot(out$S, out$I, type="l", xlab="Susceptible",

ylab="Infected")

2.5 Phase Analyses

When working with dynamical systems we are often interested in studying the dy-
namics in the phase plane and derive the isoclines that divide this plane in regions
of increase and decrease of the various state variables. The phaseR package is a
wrapper around ode that makes it easy to analyze 1D and 2D ode’s.6 The R-state
in the SIR model does not influence the dynamics, so we can rewrite the SIR model
as a 2D system.

simod = function(t, y, parameters) {
S = y[1]
I = y[2]

6 The phaseR package requires the gradient function to take the arguments t, y, and
parameters.
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Fig. 2.4 The open SIR epidemic. (a) The fraction infected over time. (b) The joint time series of
infecteds and susceptibles in the S-I phase plane. The trajectory forms a counter-clockwise inwards
spiral in the S-I plane (note that the 50-year simulation is not long enough for the system to reach
the steady-state endemic equilibrium at the center of the spiral)

beta = parameters["beta"]
mu = parameters["mu"]
gamma = parameters["gamma"]
N = parameters["N"]

dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
res = c(dS, dI)
list(res)

}
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The isoclines (sometimes called the nullclines) in this system are given by the
solution to the equations dS/dt = 0 and dI/dt = 0 and partitions the phase plane
into regions were S and I are increasing and decreasing. For N = 1, the I-isocline is
S= (γ +μ)/β = 1/R0 and the S-isocline is I = μ(1/S−1)/β . We can draw these in
the phase plane and add a simulated trajectory to the plot (Fig. 2.5). The trajectory
cycles in a counter-clockwise dampened fashion towards the endemic equilibrium
(Fig. 2.5). To visualize the expected change to the system at arbitrary points in the
phase plane, we can further use the function flowField in the phaseR-package
to superimpose predicted arrows of change (vectors).
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Fig. 2.5 The S-I phase plane with isoclines and the predicted anti-clockwise trajectory towards the
equilibrium

require(phaseR)
#Plot vector field
fld=flowField(simod, x.lim=c(0.15,0.35), y.lim=c(0,.01),

parameters=parms, system="two.dim", add=FALSE,
ylab="I", xlab="S")

#Add trajectory
out = as.data.frame(ode(y = c(S=0.19, I=0.01), times=

seq(0, 52*100, by=.1), func=simod, parms=parms))
lines(out$S, out$I, col="red")
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#Add S-isocline
curve(parms["mu"]*(1/x-1)/parms["beta"], 0.15, 0.35,

xlab="S", ylab="I", add=TRUE)
#Add I-isocline
shat=(parms["gamma"]+parms["mu"])/parms["beta"]
lines(rep(shat, 2), c(0,0.01))

legend("topright", legend=c("Transient", "Isoclines"),
lty=c(1, 1), col=c("red", "black"))

2.6 Stability and Periodicity

If we work with continuous-time ODE models like the SIR, equilibria are locally
stable if (and only if) all the real part of the eigenvalues of the Jacobian matrix—
when evaluated at the equilibrium—are smaller than zero. We will discuss stability
and resonant periodicity in detail in Chap. 9, so this section is just a teaser. . . An
equilibrium is (1) a node (i.e., all trajectories moves monotonically towards/away
from the equilibrium) if the largest eigenvalue has only real parts, or (2) a focus
(trajectories spiral towards or away from the equilibrium) if the largest eigenvalues
are a conjugate pair of complex numbers (a± bı).7 For a focus the imaginary part
determines the dampening period of the cycle according to 2π/b. We can thus use
the Jacobian matrix to study the SIR model’s equilibria. If we let F = dS/dt =
μ(N − S)− β SI/N and G = dI/dt = β SI/N − (μ + γ)I, the Jacobian of the SIR
system is

J =

( ∂F
∂S

∂F
∂ I

∂G
∂S

∂G
∂ I

)
, (2.4)

and the two equilibria are the disease-free equilibrium and the endemic equilibrium
as defined above.

R can help with all of this. We first calculate the equilibria:

# Pull values from parms vector
gamma = parms["gamma"]
beta = parms["beta"]
mu = parms["mu"]
N = parms["N"]

# Endemic equilibrium

7 And a center—like the Lotka-Volterra predator-prey model—if conjugate pair only has imaginary
parts.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Lotka-Volterra_equations
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Sstar = (gamma + mu)/beta
Istar = mu * (beta/(gamma + mu) - 1)/beta
eq1 = list(S = Sstar, I = Istar)

We then calculate the elements of the Jacobian using R’s D-function:

# Define equations
dS = expression(mu * (N - S) - beta * S * I/N)
dI = expression(beta * S * I/N - (mu + gamma) * I)
# Differentiate w.r.t. S and I
j11 = D(dS, "S")
j12 = D(dS, "I")
j21 = D(dI, "S")
j22 = D(dI, "I")

We pass the values for S∗ and I∗ in the eq1-list to the Jacobian,8 and use eigen-
function to calculate the eigenvalues:

#Evaluate Jacobian at equilibrium
J=with(data=eq1, expr=matrix(c(eval(j11),eval(j12),

eval(j21),eval(j22)), nrow=2, byrow=TRUE))
#Calculate eigenvalues
eigen(J)$values

## [1] -0.00076864+0.02400384i -0.00076864-0.02400384i

For the endemic equilibrium, the eigenvalues are a pair of complex conjugates
which real parts are negative, so it is a stable focus. The period of the inwards spiral
is:

2 * pi/(Im(eigen(J)$values[1]))

## [1] 261.7575

So with these parameters the dampening period is predicted to be 261 weeks (just
over 5 years). Thus, during disease invasion we expect this system to exhibit initial
outbreaks every 5 years. A further significance of this number is that if the system
is stochastically perturbed by, say, environmental variability affecting transmission,
we expect the system to exhibit low amplitude “phase-forgetting” cycles (Nisbet

8 In previous coding like for the sirmod-function, we “pulled” parameter values from the input
arguments inside the function to make the code as transparent as possible; while it makes the code
easy to read, it makes for extra coding, and can clutter up the workspace with variables that are
defined in multiple locations. The with-function allows the evaluation of an expression using
variables defined in a data list.
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and Gurney 1982) with approximately this period in the long run (see Chap. 9).
We can make more accurate calculations of the stochastic system using transfer
functions (Nisbet and Gurney 1982; Priestley 1981). We will visit on this slightly
more advanced topic in Sect. 9.7.

The same protocol can be used on the disease-free equilibrium {S∗ = 1, I∗ = 0}.

eq2=list(S=1,I=0)
J=with(eq2,

matrix(c(eval(j11),eval(j12),eval(j21),
eval(j22)), nrow=2, byrow=TRUE))

eigen(J)$values

## [1] 1.4996153846 -0.0003846154

The eigenvalues are strictly real and the largest value is greater than zero, so
it is an unstable node (a “saddle”); The epidemic trajectory is predicted to move
monotonically away from this disease free equilibrium if infection is introduced into
the system. This makes sense because with the parameter values used, R0 = 3.99
which is greater than the invasion-threshold value of 1.

2.7 Advanced: More Realistic Infectious Periods

The S(E)IR-type differential equation models assumes that rate of exit from the in-
fectious classes are constant, the implicit assumption is thus that the infectious pe-
riod is exponentially distributed among infected individuals; The average infectious
period is 1/(γ + μ), but an exponential fraction is infectious much shorter/longer
than this. The chain-binomial model (see Sect. 3.4), in contrast, assumes that every-
body is infectious for a fixed period and then all instantaneously recover (or die).
These assumptions are mathematically convenient, but in reality neither are particu-
larly realistic. Hope-Simpson (1952) traced the chains of transmission of measles in
multi-sibling household. The timing of secondary and tertiary cases was analyzed in
detail by Bailey (1956) and Bailey and Alff-Steinberger (1970). The average latent
and infectious periods were calculated to be 8.58 and 6.57 days, respectively. While
the distribution around each of these averages were not estimated separately (the la-
tent period was assumed to be distributed and the infectious period assumed fixed),
the variance around the roughly fortnight period of infection was estimated to be
3.13. The mean duration of infection is thus 15.15 days with a standard deviation
of 1.77 (Fig. 2.6). So neither a fixed nor an exponential distribution is very accurate
(Keeling and Grenfell 1997; Lloyd 2001).

Kermack and McKendrick’s (1927) original model allows for arbitrary
infectious-period distributions. We can write Kermack and McKendrick’s origi-
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nal equations as “renewal equations” (Breda et al. 2012), introducing the additional
notation of k(t) being the (instantaneous) incidence at time t (i.e., flux into the
I-class at time t).

dS
dt

= μ(N − S)− k(t) (2.5)

k(t) = β I
S
N

(2.6)

dI
dt

= k(t)− μI−
∫ ∞

0

h(τ)
1−H(τ)

k(t − τ)dτ (2.7)

dR
dt

=

∫ ∞

0

h(τ)
1−H(τ)

k(t − τ)dτ − μR, (2.8)
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Fig. 2.6 Gamma distributed infectious periods: (a) The predicted infectious period distribution
based on a Gamma distribution with shape u = 1, 5, 25, 100, and 100,000; u = 1 corresponds to
the exponential distribution implicit in the standard SIR model; the bold line (u = 73) is the one
corresponding to the variance observed in Hope-Simpson’s (1952) study of measles. The dotted
line (virtually indistinguishable from the u = 100) is a Gaussian distribution intended to show
that when u is large the Gamma distribution converges on the Gaussian. (b) The probability of
still being infectious as a function of time for the different distributions; as u becomes large, the
distribution converges on a fixed infectious period. Note that the empirical distribution (bold) is
quite different from the exponential
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where k(t − τ) is the number of individuals that was infected τ time units ago,
h(τ) is the probability of recovering on infection-day τ , and H(τ) is the cumulative
probability of having recovered by infection-day τ; k(t − τ)/(1−H(τ)) is thus the
fraction of individuals infected at time t−τ that still remains in the infected class on
day t and the integral is over all previous infections so as to quantify the total flux
into the removed class at time t. Though intuitive, these general integro-differential
equations (Eqs. (2.5)–(2.8)) are not easy to work with in general. For a restricted set
of distributions for the h()-function, however—the Erlang distribution (the Gamma
distribution with an integer shape parameter)—the model can be numerically in-
tegrated using a “Gamma-chain” model (referred to as “linear chain trickery” by
Metz and Diekmann 1991) of coupled ordinary differential equations (e.g., Blythe
et al. 1984; de Valpine et al. 2014; Bjørnstad et al. 2016). The trick is to separate
any distributed-delay compartment into u sub-compartments through which individ-
uals pass through at a rate overallrate∗u. The resultant infectious period will have a
mean of 1/overallrate and a coefficient-of-variation of 1/

√
u.

We can write a chain-SIR model to simulate S → I → R flows with more realistic
infectious period distributions9:

chainSIR=function(t, logx, params){
x=exp(logx)
u=params["u"]
S=x[1]
I=x[2:(u+1)]
R=x[u+2]
with(as.list(params),{
dS = mu * (N - S) - sum(beta * S * I) / N
dI = rep(0, u)
dI[1] = sum(beta * S * I) / N - (mu + u*gamma) * I[1]
if(u>1){

for(i in 2:u){
dI[i]= u*gamma * I[i-1] - (mu+u*gamma)* I[i]

}
}

dR = u*gamma * I[u] - mu * R
res=c(dS/S, dI/I, dR/R)
list(res)

})
}

9 With high number of compartments this system of equations can become “stiff” with the com-
puter potentially making rounding errors leading to erroneous negative numbers. We use a “log-
trick” (Ellner and Guckenheimer 2011) available for systems where all state variables are strictly
positive: we solve the system in log-coordinates to smooth abrupt changes and force all number
to be greater than zero. To employ this technique we log-transform all initial values in start,
change the first line in the function to x = exp(logx) and the last line to return dS/S, etc. in
place of dS which comes from the chain-rule of differentiation and the fact that D(logx) = 1/x.

https://en.wikipedia.org/wiki/Erlang_distribution
https://en.wikipedia.org/wiki/Chain_rule
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We can compare the predicted dynamics of the simple SIR model with the u = 2
chain model, the u= 500 chain model (which is effectively the fixed-period delayed-
differential model) and the “measles-realistic” u = 73 model.

times = seq(0, 10, by=1/52)
paras2 = c(mu = 1/75, N = 1, beta = 625,

gamma = 365/14, u=1)
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001,

paras2["u"]-1)), R = 0.0001))
out = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
plot(times, exp(out[,3]), ylab="Infected", xlab=

"Time", ylim=c(0, 0.01), type=’l’)

paras2["u"] =2
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001/

paras2["u"], paras2["u"]-1)), R = 0.0001))
out2 = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
lines(times, apply(exp(out2[,-c(1:2,length(out2))]),

1 ,sum), col=’blue’)

paras2["u"] =73
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001/

paras2["u"], paras2["u"]-1)), R = 0.0001))
out3 = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
lines(times, apply(exp(out3[,-c(1:2,length(out3))]),

1, sum), col=’red’, lwd=2, lty=2)

paras2["u"] =500
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001/

paras2["u"], paras2["u"]-1)), R = 0.0001))
out4 = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
lines(times, apply(exp(out4[,-c(1:2,length(out4))]),

1,sum, na.rm=TRUE), col=’green’)

legend("topright", legend=c("SIR", "u=2", "u=500",
"u=73 (H-S)"), lty=c(1,1,1,2), lwd=c(1,1,1, 2),
col=c("black", "blue", "green", "red"))

The more narrow the infectious-period distribution, the more punctuated the pre-
dicted epidemics. However, infectious-period narrowing—alone—cannot sustain
recurrent epidemics; In the absence of stochastic or seasonal forcing epidemics will



2.8 ShinyApp 27

0 2 4 6 8 10

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Time

In
fe

ct
ed

SIR
u=2
u=500
u=73 (H-S)

Fig. 2.7 Chain-SIR models with different infectious period distributions

dampen to the endemic equilibrium (though the damping period is slightly accel-
erated and the convergence on the equilibrium is slightly slower with narrowing
infectious period distributions) (Fig. 2.7).

In the above we considered non-exponential infectious-period distributions.
However, the general ODE chain method can be used for any compartment. Lavine
et al. (2011), for example, used it to model non-exponential waning of natural and
vaccine-induced immunity to whooping cough.

2.8 ShinyApp

The following code will launch a local shinyApp of the SIR model in your local
browser. This App can also be launched by calling SIR.app in the epimdr-
package. Several of the subsequent chapters also have associated shinyApps. Those
will only be accessible from the package (because the code is long and a bit tedious).
We quote an annotated version of the SIR.app in full.

require(shiny)
require(deSolve)
require(phaseR)

#This creates the User Interface (UI)
ui = pageWithSidebar(
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#The title
headerPanel("The SIR model"),
#The sidebar for parameter input
sidebarPanel(

#Sliders:
sliderInput("beta", "Transmission (yrˆ-1):", 300,

min = 0, max = 1000),
sliderInput("infper", "Infectious period (days)", 5,

min = 1, max = 100),
sliderInput("mu", "birth rate:", 5,

min = 0, max = 100),
sliderInput("T", "Time range:",

min = 0, max = 1, value = c(0,1))
),
#Main panel for figures and equations
mainPanel(
#Multiple tabs in main panel
tabsetPanel(

#Tab 1: Time plot (plot1 from server)
tabPanel("Time", plotOutput("plot1")),
#Tab 2: Phase plot (plot2 from server)
tabPanel("Phase plane", plotOutput("plot2",

height = 500)),
#Tab 3: MathJax typeset equations
tabPanel("Equations",

withMathJax(
helpText("Susceptible $$\\frac{dS}{dt} =

\\mu (N - S) - \\frac{\\beta I S}{N}$$"),
helpText("Infecitous $$\\frac{dI}{dt} =

\\frac{\\beta I S}{N} - (\\mu+\\sigma) I$$"),
helpText("Removed $$\\frac{dR}{dt} =

\\gamma I - \\mu R$$"),
helpText("Reproductive ratio $$R_0 =

\\frac{1}{\\gamma+\\mu} \\frac{\\beta N}{N}$$")
))

))) #End of ui()

# This creates the ’behind the scenes’ code (Server)
server = function(input, output) {
#Gradient function for SIR model
sirmod=function(t, x, parms){

S=x[1]
I=x[2]
R=x[3]
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beta=parms["beta"]
mu=parms["mu"]
gamma=parms["gamma"]
N=parms["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
dR = gamma * I - mu * R
res=c(dS, dI, dR)
list(res)

}

#Gradient function used for phaseR phase-plot
simod=function(t, y, parameters){
S=y[1]
I=y[2]
beta=parameters["beta"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
res=c(dS, dI)
list(res)

}

#Plot1: renderPlot to be passed to UI tab 1
output$plot1 = renderPlot({
#input\$xx’s are pulled from UI
times = seq(0, input$T[2], by=1/1000)
parms = c(mu = input$mu, N = 1, beta = input$beta,

gamma = 365/input$infper)
start = c(S=0.999, I=0.001, R = 0)
R0 = round(with(as.list(parms), beta/(gamma+mu)), 1)

#Integrate ode with parameters pulled from UI
out=ode(y=start, times=times, func=sirmod,

parms=parms)
out=as.data.frame(out)

#Plot1
sel=out$time>input$T[1]&out$time<input$T[2]
plot(x=out$time[sel], y=out$S[sel], ylab="fraction",

xlab="time", type="l", ylim=range(out[sel,-c(1,4)]))
title(paste("R0=", R0))
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lines(x=out$time[sel], y=out$I[sel], col="red")
lines(x=out$time[sel], y=out$R[sel], col="green")
legend("right", legend=c("S", "I", "R"),

lty=c(1,1,1), col=c("black", "red", "green"))
})

#Plot2: renderPlot to be passed to UI tab 2
output$plot2 = renderPlot({
times = seq(0, input$T[2], by=1/1000)
parms = c(mu = input$mu, N = 1, beta = input$beta,

gamma = 365/input$infper)
start = c(S=0.999, I=0.001, R = 0)
R0 = round(with(as.list(parms), beta/(gamma+mu)), 1)

#Integrate simod
out=ode(y=start[-3], times=times, func=simod,

parms=parms)
out=as.data.frame(out)

#Plot2
plot(x=out$S, y=out$I, xlab="Fraction suceptible",

ylab="Fraction infected", type="l")
title(paste("R0=", R0))
#Add vector field
fld=flowField(simod, x.lim=range(out$S), y.lim=

range(out$I), parameters=parms, system="two.dim",
add=TRUE, ylab="I", xlab="S")

#Add isoclines
abline(v=1/R0, col="green")
curve(parms["mu"]*(1-x)/(parms["beta"]*x), min(out$S),

max(out$S), add=TRUE, col="red")
legend("topright", legend=c("I-socline",

"S-isocline"), lty=c(1,1), col=c("red", "green"))
})

} #End of server()

shinyApp(ui, server)
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