Chapter 15 )
Non-independent Data G

15.1 Introduction

Many infectious disease experiments result in non-independent data because of spa-
tial autocorrelation across fields (such as discussed in Chap. 13), repeated mea-
sures on experimental animals (such as the in-host Plasmodium data discussed in
Sect.7.7), or other sources of correlated experimental responses among experimen-
tal units (such as the possibility of correlated infection fates among the rabbit lit-
termates discussed in Sect. 4.3). Statistical methods that assume independence of
observations are not strictly valid and/or fully effective on such data (e.g., Legen-
dre 1993; Keitt et al. 2002). “Mixed-effects models” and “Generalized linear mix-
effects models” (GLMMs) have been/are being developed to optimize the analysis
of such data (Pinheiro and Bates 2006).

While this full topic is outside the main scope of this text, it is very pertinent to
analyses of disease data, so we will consider the three case studies.

require (nlme)
require (ncf)
require (1me4)
require (splines)

15.2 Spatial Dependence

We use the rust example introduced in Sect. 13.2 (Fig. 13.1) to illustrate two ap-
proaches to accounting for spatial dependence in disease data: (1) random blocks vs
(2) spatial regression. This experiment looked at severity of a foliar rust infection

This chapter uses the following R-packages: nlme, ncf, 1me4, and splines.
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on three focal individuals of flat-top goldenrods in each of 120 plots across a field
divided into four blocks. The experimental treatments were (1) watering or not and
(2) whether surrounding non-focal host plants were conspecifics only, a mixture of
conspecifics and an alternative host (the Canadian goldenrod) or the alternative host
only.

15.2.1 Random Blocks

As in our spatial pattern analysis, we jitter the coordinates because some meth-
ods require unique coordinates for each data point.

data (gra)
gra$jx = jitter (gras$xloc)
gra$jy = jitter (gra$yloc)

We first use 1me to fit two random effect models. The first considers individuals
in blocks. The second considers plots nested in blocks.

fit=1me (score”comp+water, random = "1 | block,
data= gra, na.action=na.omit)
fit2=1me (score~comp+water, random = "1 | block / plot,

data= gra, na.action=na.omit)

We next do a likelihood ratio-test to check for the better fit. The likelihood ratio
test (provided by anova) shows that the nested model provides the best fit.

anova (fit, fit2)

# Model df AIC BIC logLik Test
## fit 1 6 1186.175 1209.424 -587.0874

## £it2 2 7 1077.579 1104.704 -531.7895 1 wvs 2
H## L.Ratio p-value

## fit

## f£it2 110.5959 <.0001

The intervals-call shows that the between-plot variance is about twice as
large as the between-block variance, and watered plots have a significantly higher
rust burden.

intervals (fit2)

## Approximate 95% confidence intervals

## Fixed effects:

## lower est. upper
## (Intercept) 0.8678624 1.4180556 1.9682487
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## compSOL -0.2517755 0.2083333 0.6684422
## compSYM -0.1726089 0.2875000 0.7476089
## watermesic 0.2548782 0.6305556 1.0062329
## attr(,"label")

## [1] "Fixed effects:"

#H

## Random Effects:

## Level: block

## lower est. upper
## sd((Intercept)) 0.154977 0.4101308 1.08537
H# Level: plot

## lower est. upper
## sd((Intercept)) 0.7901556 0.9302044 1.095076
##

## Within-group standard error:

## lower est. upper

## 0.7317349 0.8001735 0.8750132

15.2.2 Spatial Regression

The above randomized block mixed-effects models are the classic solution to an-
alyzing experiments with spatial structure. An alternative is to formulate a regres-
sion model that considers the spatial dependence among observations as a func-
tion of separating distance. To investigate how proximate observations on dif-
ferent experimental treatments may be spatially autocorrelated, we can explore
the spatial dependence among the residuals from a simple linear analysis of the
data. We use the nonparametric spatial covariance function (as implemented in the
spline.correlogram () -function in the ncf-package) discussed in Chap. 13.
We first fit the simple regression model that ignores space altogether.

fitlm = lm(score ~ comp + water, data = gra)

Next we calculate the spatial correlation function among the residuals of the fit
(Fig. 15.1).

fitc = spline.correlog(gras$x, gras$y, resid(fitlm))



270 15 Non-independent Data

The nonparametric spatial correlation function reveals strong spatial autocorre-
lation that decays to zero around 38 m (with a CI of 31-43 m).

plot(fitc, ylim = e¢(-0.5, 1))
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Fig. 15.1 The spline correlogram of the residuals from the regression model of Keslow’s rust data

To fit the spatial regression model we use the gls-function from the nlme-
package (Pinheiro and Bates 2006). This function fits mixed models from data that
have a single dependence group, i.e., one spatial map, one time series, etc.; With
multiple groups we use the 1me-function discussed (see Sect. 15.3). There are many
possible models for spatial dependence. We compare the exponential model (which
assumes the correlation to decay with distance according to exp(—d/a) where d is
distance and a is the scale) and the Gaussian model (exp(—(d/a)?). [The nugget-
flag means that the function is not anchored at one at distance zero]. We compare
these to the nonspatial model (£itn) and the best random block model (£it2)
using AIC.
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fite=gls(score”comp+water, corr = corSpatial (form =
“jx + jy, type="exponential", nugget=TRUE),
data=gra, na.action=na.omit)
fitg=gls (score”comp+water, corr = corSpatial (form =
“jx + jy, type="gaussian", nugget=TRUE), data=gra,
na.action=na.omit)
fitn=gls (score”comp+water, data=gra, na.action=na.omit)
AIC(fite, fitg, fitn, £f£it2)

#H# daf AIC
## fite 7 1061.725
## fitg 7 1064.522
## fitn 5 1209.500
## fit2 7 1077.579

The AICs show that the exponential model provides the best fit. Moreover,
the spatial regression model provides a better fit than the nested random effect
model. This is presumably because of the gradual decay in correlation with distance
(Fig. 15.1).

summary (fite, corr = FALSE)

## Generalized least squares fit by REML
H## Model: score ~ comp + water
## Data: gra

## AIC BIC logLik
H# 1061.725 1088.849 -523.8623
#H#

## Correlation Structure: Exponential spatial
## correlation

## Formula: “Jjx + Jjy

## Parameter estimate(s):

## range nugget

## 9.9222621 0.3210873

#HH

## Coefficients:

H## Value Std.Error t-value p-value
## (Intercept) 1.4914991 0.2595408 5.746685 0.0000
## compSOL 0.1776521 0.2030045 0.875114 0.3821
## compSYM 0.2068005 0.2015687 1.025955 0.3056
## watermesic 0.4998769 0.1589941 3.143996 0.0018
##

## Correlation:

H# (Intr) cmpSOL cmpSYM

## compSOL -0.393
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## compSYM -0.397 0.547

## watermesic -0.291 0.041 0.022

##

## Standardized residuals:

## Min Q1 Med Q3
## -1.3253792 -0.7737412 -0.1546712 0.6258009
H## Max

## 3.9090911

H##

## Residual standard error: 1.281276
## Degrees of freedom: 360 total; 356 residual

The parametrically estimated range of 9.8 m is a bit longer (but within the con-
fidence interval) of the e-folding scale (5.5 m) estimated by the spline correlogram;
1-nugget = 0.64 is comparable (but a little greater) than the 0.55 y-intercept. We can
use the Variogram-function from the nlme-package to see if the spatial model
adequately captures reflects the spatial dependence (Fig. 15.2). It looks like a plau-
sible fit.

plot (Variogram(fite))
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Fig. 15.2 A variogram plot of the fitted and observed spatial dependence for the spatial regression
model
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15.3 Repeated Measures of In-Host Mouse Malaria

Repeated measurements usually result in non-independent data because of the in-
herent serial dependence. Consider Huijben’s data on anemia of mice infected by
five different strains of Plasmodium chaubodii introduced in Sect. 7.7 with lots of
measurements taken on days 3 through 21, 24, 26, 28, 31, 33, and 35. We will study
the red blood cell counts (RBCs) of mice infected by one of five different clones as
well as the control group. The sample sizes per treatment were 10 for AQ, BC, CB,
and ER, 7 for AT and 5 for control. Eleven of the animals died. SH9 has the data (in
long format).! For the analysis we strip some unnecessary columns 1, 3, 4, 7, 8, and
11 that are extraneous to focus on the RBC count:

data (SH9)
SHO9RBC = SH9([, -c¢(1, 3, 4, 7, 8, 10, 11)]

For the repeated measures analyses we create a groupedData-object from the
data frame using the nm1le-package. The below call declares how the RBC counts
represent time series for each mouse. Note that mice that died are scored by zero
RBC count in the data set and that these zeros end up dominating patterns, we
therefore rescore these data as missing (NA), and plot the grouped data object to
visualize the anemia by treatment (Fig. 15.3).

RBC = groupedData (RBC Day | Ind2, data = SH9RBC)
RBCSRBC [RBCSRBC == 0] = NA
plot (RBC, outer = "“Treatment, key = FALSE)

The main difference is between control and treatments, but the maximum anemia
varies somewhat among strains. To test for significant differences we use 1me to
build a repeated measures model. In the simplest case we follow standard convention
and model the time series using day as an ordered factor and assume the treatment
effect to be additive. The random= ~ 1 |Ind2-call in the formula indicates that
we assume there to be individual variation in the intercept (but not the slopes) among
individuals. We then use the ACF function to look for evidence of serial dependence
in the residuals from the fit. As is apparent from the ACF plot there is temporal
autocorrelation in the residuals out to at least 4 days (Fig. 15.4).

mle.rbc=1me (RBC Treatment+ordered (Day), random =
~1|Ind2, data=RBC, na.action=na.omit, method="ML")
plot (ACF (mle.rbc))

There are many models for serial dependence. We use a first order autoregres-
sive process (AR1). This is specified by the correlation=corAR1l (form= ~

! With repeated measures data we often use both 1ong-format with one line for each observation
and wide-format with one line for each experimental unit.
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Fig. 15.3 RBC counts of control and P. chaubodii-infected mice. Each panel represents a different
parasite strain
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Fig. 15.4 Serial dependence as quantified using the ACF-function on the repeated measures mixed-
effects model of the SHORBC data

Day|Ind2) function call. Note that this is one of a variety of time-series models
available in the n1me-package, the most general of which is the ARMA(p, q) model
discussed in Sect. 6.2.1.
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mle.rbc2=1me (RBC " Treatment+ordered (Day) ,
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random=

~1|Ind2, data=RBC, correlation=corARl (form="
Day|Ind2), na.action=na.omit, method="ML")
mle.rbc2

## Linear mixed-effects model

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

TreatmentBC
0.947853117

Data: RBC

Log-likelihood: -1568.255

Fixed: RBC 7 Treatment + ordered (Day)
(Intercept) TreatmentAT
5.860494309 0.024586193
TreatmentCB Treatmentcontrol

-0.022048465
ordered (Day) .L
3.339300000
ordered (Day) "4
1.498354649
ordered (Day) "7
1.352000127
ordered (Day) 10
0.312998475
ordered (Day) 13
0.219014886
ordered (Day) "16
0.180627944
ordered (Day) 19
-0.142080994
ordered (Day) "22
-0.039333282

Random effects:
Formula:

StdDev:

1.560872851
ordered (Day) .Q
6.015597509
ordered (Day) "5
0.067695099
ordered (Day) "8
-1.122142721
ordered (Day) "11
-0.673514349
ordered (Day) 14
0.378460147
ordered (Day) "17
-0.024392052
ordered (Day) "20
-0.046539002
ordered (Day) "23
-0.210031799

"1 | Ind2
(Intercept)
0.0002332905 1.327223

Residual

Correlation Structure: ARMA(1,0)

Formula: “Day |

Ind2

Parameter estimate(s) :

Phil
0.7088701

Number of Observations:
Number of Groups:

1104
52

TreatmentER
0.325308683
ordered (Day) .C
-5.057192257
ordered (Day) "6
-0.600409959
ordered (Day) "9
-0.394162545
ordered (Day) "12
-0.122937927
ordered (Day) "15
0.191963472
ordered (Day) "18
0.032617128
ordered (Day) "21
-0.054854991
ordered (Day) "24
0.006591632
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The Phil parameter of 0.7088 represents the estimated day to day correlation,
which is substantial. We can plot the predicted and observed correlation. The AR1-
model seems to be a nice fit (Fig. 15.5).

tmp = ACF (mle.rbc2)
plot (ACF lag, data = tmp)
lines(0:15, 0.70887(0:15))
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Fig. 15.5 An ACF plot of the fitted and observed serial dependence for the repeated measures
regression model

Moreover, a formal likelihood-ratio test provided by the anova function reveals
that the correlated error model provides a significantly better fit to the data:

anova (mle.rbc, mle.rbc2)

## Model df AIC BIC logLik
## mle.rbc 1 32 3834.369 3994.583 -1885.184
## mle.rbc2 2 33 3202.510 3367.731 -1568.255
H## Test L.Ratio p-value

## mle.rbc

## mle.rbc2 1 vs 2 633.8586 <.0001

Statistically, the time-by-treatment interaction model, rather than the additive
model, is better still:

options (width=50)
mle.rbc3=1me (RBC Treatment+rordered (Day), random=
~l|Ind2, data=RBC, correlation=corARl (form=
~Day|Ind2), na.action=na.omit, method="ML")
anova (mle.rbc2, mle.rbc3)
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## Model df AIC BIC logLik
## mle.rbc2 1 33 3202.510 3367.731 -1568.255
## mle.rbc3 2 153 3163.654 3929.679 -1428.827
H# Test L.Ratio p-value

## mle.rbc2
## mle.rbc3 1 vs 2 278.8557 <.0001

Finally we can plot the predicted values against time (filtering out predictions for
the missing values in the original data) (Fig. 15.6). There is a distinct ordering in the
virulence of the strains:

pr=predict (mle.rbc3)

RBCSpr=NA

RBCSpr[!is.na (RBCSRBC)]=pr

plot (RBCSpr "RBCSDay, col=as.numeric (RBCSTreatment),
pch=as.numeric (RBC$Treatment) ,xlab="Day",
ylab="RBC count")

legend ("bottomright",

legend:c ( IIAQ n, WATW, 18 =Yell , " CcB" , " Control" , IIERII) ,
pch=unique (as.numeric (RBCS$Treatment)), col=1:6)
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Fig. 15.6 Predicted and observed for the repeated measures RBC data
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Modeling time as an ordered factor is quite parameter wasteful (the full interac-
tion model has 153 parameters). A flexible yet more economic approach may be to
model time using smoothing splines. The following example uses a B-spline with
5 degrees-of-freedom (Fig. 15.7). The qualitative features are similar to the more
parameter rich model (Fig. 15.6)

require (splines)
mle.rbc4=1me (RBC Treatment+bs (Day, df=5), random=
~1|Ind2, data=RBC, correlation=corARl (form=

NDay|Ind2), na.action=na.omit, method="ML")
pr=predict (mle.rbc4)
RBCSpr=NA

RBCS$pr[!is.na (RBCSRBC)]=pr

plot (RBCSpr~"RBCS$Day, col=as.numeric (RBC$Treatment),
pch=as.numeric (RBCS$STreatment), xlab="Day",
ylab="RBC count")

legend ("bottomright",

legend=c ( IIAQII , IIATII , IIBCII , n CB n , n Controlll , n ERII) ,
pch=unique (as.numeric (RBCS$Treatment)), col=1:6)
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Fig. 15.7 Predicted and observed for the repeated measures RBC data using a spline model in time
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15.4 B. bronchiseptica in Rabbits

Bordetella bronchiseptica is a respiratory infection of a range of mammals (e.g.,
Bjgrnstad and Harvill 2005). Its congeners, B. pertussis and B. parapertussis, cause
whooping cough in humans, but B. bronchiseptica is usually relatively asymp-
tomatic (though it can cause snuffles in rabbits and kennel cough in dogs). The
data comes from a commercial rabbitry which breeds NZW rabbits to study trans-
mission paths in the colony. The data is from the same study as we used to study the
age-specific force of infection in Sect. 4.3. Nasal swabs of female rabbits and their
young were taken at weaning (~4 weeks old). A total of 86 does and 408 kits were
included in the study (Long et al. 2010).

data(litter)

To investigate if (a) offspring of the infected mothers have an increased instan-
taneous risk of becoming infected and (b) if offspring of the same litter tended to
have the same infection fate because of within-litter transmission, we use a random
effect (generalized linear mixed model, GLMM) logistic regression, with litter as a
random effect. We first do some data formatting.

tdat=data.frame (lsize=as.vector (table(littersLitter)),
Litter=names (table(littersLitter)),
anysick=sapply (split(litter$sick,littersLitter) ,b sum))
ldat=merge(litter, tdat, by="Litter")
ldatsothersick=1datSanysick-1ldats$sick
ldats$anyothersick=1dat$Sothersick>0
1dat$X=1:408

Here, the concern is with whether littermates share correlated fates. Unlike for
spatial or temporal autocorrelation, there are no canned functions to quantify this
correlation. However, following our discussion of autocorrelation in Sect. 13.3, it is
easy to customize our own calculations. In the below, the first double-loop makes a
sibling-sibling “contact-matrix,” tmp, that flags kits according to litter membership.
After, tmp2 rescales the binary sick vector that flags whether or not an animal was
infected, and tmp3 generates the correlation matrix. Finally mean (tmp3*tmp)
provides the within-litter autocorrelation in infection status averaged across all lit-
ters.

tmp=matrix (NA, ncol=length(ldatsLitter),
nrow=length (ldatSLitter))
for (i in 1:length(ldat$Litter)){
for (j in 1:length(ldat$Litter)){
if (ldatsSLitter[i]l==1dat$Litter[j]){
tmp[1,]j]=1
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}
¥
diag (tmp) =NA
tmp2=scale (ldats$sick) [, 1]
tmp3=outer (tmp2, tmp2, "*")
mean (tmp3+xtmp, na.rm=TRUE)

## [1] 0.5302508

The within-litter correlation of 0.53 represents a substantial interdependence
among littermates. Since the response variable is binary (infected vs noninfected)
we cannot use 1me. Instead we use the 1mer-function from the 1me4-package and
specify using the “family” argument that the response is binomial. Using AICs we
contrast the fit with within-litter correlation (£1tL) with the fit that assumes inde-
pendence (£1t0); The appropriate independence fit is generated by declaring that
each of the 408 individuals are in their own group (variable X in the data set).

require (1lme4)

fitL=glmer (sick"msick+lsize+Facility+anyothersick+
(1|Litter), family=binomial(), data=1ldat)

fitO0O=glmer (sick™msick+lsize+Facility+anyothersick+
(1|X), family=binomial(), data=ldat)

AIC(fitL, fito)

#H daf AIC
## fitL 7 291.0263
## £it0 7 316.5853

The litter-dependent model is clearly best (no surprise given the strong empirical
intra-litter correlation). The summary of the best model reveals that the key predictor
of infection fate is whether or not a sibling was infected (anyothersickTRUE).
The infection status of the mother was insignificant. The mixed-effect logistic re-
gression thus reveals that the most important route of infection is likely to be sib-to-
sib transmission (Long et al. 2010).

summary (fitlL, corr = FALSE)

## Generalized linear mixed model fit by maximum

H# likelihood (Laplace Approximation) [glmerMod]
## Family: binomial ( logit )

## Formula:

## sick 7 msick + lsize + Facility + anyothersick +
## (1 | Litter) Data: ldat

##
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H## AIC BIC logLik deviance df.resid
#H# 291.0 319.1 -138.5 277.0 400
#i#t

## Scaled residuals:

HH Min 1Q Median 3Q Max

## -1.7277 -0.3199 -0.1333 -0.0386 13.2186

H##

## Random effects:

## Groups Name Variance Std.Dev.

## Litter (Intercept) 2.077 1.441

## Number of obs: 407, groups: Litter, 52
H##
## Fixed effects:

## Estimate Std. Error z value
## (Intercept) -3.43236 2.32298 -1.478
## msick 2.74171 1.65447 1.657
## lsize -0.37908 0.19153 -1.979
## FacilityT3 1.15833 0.80626 1.437
## FacilityTo9 -0.01773 0.68553 -0.026
## anyothersickTRUE 2.88387 0.71564 4.030
H## Pr(>|z|)

## (Intercept) 0.1395

## msick 0.0975 .

## lsize 0.0478 =x

## FacilityT3 0.1508

## FacilityT9 0.9794

## anyothersickTRUE 5.58e-05 *#*x

#H# ---
## Signif. codes:
## 0 "*xx’ 0.001 ’“x%’ 0.01 "%’ 0.05 .’ 0.1 " " 1
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