
Chapter 13
Spatial and Spatiotemporal Patterns

13.1 Introduction

Spatial and spatiotemporal data analysis is of great importance in disease dynam-
ics for a number of reasons such as looking for space-time clustering, hot-spot de-
tection, characterizing invasion waves, and quantifying spatial synchrony. Spatial
synchrony—the level of correlation in outbreak dynamics at different locations—
is of particular significance to acute immunizing infections, because asynchrony
may permit regional persistence of infections despite local chains-of-transmission
breaking during post-epidemic troughs (Keeling et al. 2004). Conversely, spatial
synchrony can exacerbate the economic and public health burden because the re-
sulting regionalized outbreaks can overwhelm logistical capabilities as was evident
in the early part of the 2013–2014 West African ebola outbreak.

Spatial statistics is also important in order to correct for the problem of spurious
associations between incidence and environmental data because spatial autocorrela-
tion violates the assumption of independence. We will discuss this in Sect. 15.2.

13.2 A Plant-Pathogen Case Study

Jennifer Koslow carried out an experiment with a foliar, nonsystemic rust
(Coleosporium asterum) infecting the flat-top goldenrod (Euthamia graminifo-
lia). The gra data present the severity of disease expression ($score, from 0 to
10) on host-plants planted within mesocosms ($plot) in an old field near Ithaca,
NY, USA. The mesocosms were in a checkerboard grid with locations specified by

This chapter uses the following R-package: ncf.
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coordinates $xloc and $yloc. Each mesocosm contained three focal E. gramini-
folia plants. The field also contained naturally occurring E. graminifolia, as well as
several other hosts of the rust notably the Canada goldenrod (Solidago canaden-
sis). Two different treatments, species composition ($comp, with three levels) and
watering treatment ($water, with two levels), were applied to the mesocosms in
a fully factorial design. Finally, to account for spatial variation across the field,
there were four blocks with treatment combinations randomly assigned within each
block.

We have to jitter the coordinates for some of the analyses because the three plants
within each plot were not given separate coordinates. Figure 13.1 the spatial layout
of the study. The vertical lines mark the blocks.

data(gra)
gra$jx=jitter(gra$xloc)
gra$jy=jitter(gra$yloc)
symbols(y=gra$xloc, x=gra$yloc, circles=gra$score,

inches=0.1, xlab="y", ylab="x")
abline(v=47.5,col=2)
abline(v=97.5,col=2)
abline(v=147.5,col=2)

0 50 100 150 200

0
20

40

y

x

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

lll

Fig. 13.1 Rust scores from Keslow’s experiment

13.3 Spatial Autocorrelation

Spatial statistics is a very rich field. We will focus on a subset of methods that
are more (or less) commonly used in disease ecology. Many of these involve the
notion of spatial autocorrelation in one form or another. Legendre (1993) is a great
introduction to the use of spatial autocorrelation in ecological studies in general.
While all the methods we will be discussing—such as Mantel tests, parametric and
nonparametric correlation functions, local indicators of spatial association, etc.—
come in canned packages (this chapter uses the ncf-package), it is useful to spend
a bit of time on the underlying ideas.
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Many geostatistical methods to describe spatial pattern are focused on either spa-
tial variance (Gary’s C) or spatial correlation (Moran’s I). We will discuss the fam-
ily of “correlational” methods. We start off with considering the regular (Pearson’s)
product-moment correlation between two random variables, Z1 and Z2, which we
denote by ρ12 and defined as:

ρ12 =
(Z1 −μ1)

σ1

(Z2 −μ2)

σ2

where μ’s are expectations and σ ’s are standard deviations. Autocorrelation has ex-
actly the same definition and is used when the Z’s are measurements of the same
quantity (e.g., prevalence, incidence, presence/absence, etc.) at different spatial lo-
cations (or different times).

To calculate the autocorrelation we need to know (or have an estimate of) the
values of the μ’s and σ ’s. In the case of single snapshot spatial data we use the
marginal mean and marginal standard deviation.1 Let’s explore using the gramini-
folia rust data (Fig. 13.1).

n = length(gra$score)
# marginal mean:
mu = mean(gra$score)
# marginal MLE sd:
sig = sd(gra$score) * (n - 1)/n

The estimated “autocorrelation matrix” (rho) among all 360 plants is then2:

# rescale Zs
zscale = (gra$score - mu)/sig
# autocorrelation matrix
rho = outer(zscale, zscale)

Note that these individual values are not constrained to be between −1 and 1.
This is not a worry, though, because the various geostatistical methods we will be
discussing involve relatively simple manipulations of this matrix. For several of the
methods we also need some sort of spatial distance matrix. Most commonly used
is the Euclidian distance for UTM coordinates and greater-circle distance for lati-
tude/longitude coordinates. The Euclidean distance matrix among all 360 plants is:

dst = as.matrix(dist(gra[, c("xloc", "yloc")]))

1 Note that the geostatistical methods usually use the Maximum Likelihood Estimator (MLE) of
the sd rather than the Best Linear Unbiased estimator (BLUE): i.e., the denominator is n rather
than n−1.
2 The outer-function provides all pairwise products of two vectors.

https://en.wikipedia.org/wiki/Great-circle_distance
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To understand the different geostatistical methods we will consider the plot of
the first 1000 pairs as a function of their spatial distance (Fig. 13.2). Plotting all the
64,620 pairs would clutter up the screen.

plot(dst[1:1000], rho[1:1000], ylab="Pairwise rho",
xlab="Pairwise distance (m)")
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Fig. 13.2 Scatterplot of pairwise-ρ versus pairwise-distance

With this we are ready to conceptually understand many different geostatistical
methods:

• Mantel test: An overall test for whether there is any significant relationship be-
tween the elements in the two matrices. This is essentially a test for significant
correlation between ρ and distance.

• Correlogram: The most classic tool of testing how autocorrelation depends on
distance without assuming any particular function—hack the x-axis into seg-
ments (given by specifying some distance increment) and calculate the average
within each distance class.3

• Parametric correlation functions: Assume the relationship follows some para-
metric relationship—such as Exponential, Gaussian, or Spherical functions—and
do the appropriate nonlinear regression of ρ on distance; Sect. 15.2 provides an
example of such fitting via the lme-function of the nlme-library.

3 The semivariogram is similar to the correlogram but instead of using the “autocorrelation simi-
larity” measure it uses the “semivariance dissimilarity” measure: (Zi −Z j)

2/2.
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• Nonparametric correlation function: Fit a “nonparametric regression” (usually
a smoothing spline or a kernel smoother) to the relationship (Hall and Patil 1994).
This also goes by the name of the “spline.correlogram” (Bjørnstad and Falck
2001).

• LISA: Local indicators of spatial association (Anselin 1995): A test for
“hotspots.” Specify a neighborhood size, and for each location calculate the
average ρ with all the other locations that belongs to its neighborhood to find
areas of significant above-average values.

There are a bunch of other named methods that are variations of these. Several of
which are extensions to when there is multiple observations at each location (such
as a time series), in which case it is natural to estimate the “autocorrelation matrix”
using the regular correlation matrix. The “modified correlogram” of Koenig (1999)
is the multivariate extension of the correlogram (e.g., Bjørnstad et al. 1999b). The
“time-lagged spatial cross-correlation function” has been used to study waves of
spread (see below and Sect. 11.7). Various directional versions allow the spatial cor-
relation function to vary by cardinal direction (so-called anisotropic correlograms)
to investigate directional patterns (e.g., Bjørnstad et al. 2002b).

13.4 Testing and Confidence Intervals

An important reason why specialized methods are needed for these analyses—
despite most being conceptually simple—is because while the n original data-points
may (or may not) be statistically independent, the n2 numbers in the autocorrela-
tion matrix is obviously very statistically not-independent and the interdependence
is very intricate. None of the usual ways of testing for significance or generating
confidence intervals are therefore applicable. Testing is usually done using permu-
tation tests under the null-hypothesis of no spatial patterns. The correlogram (or
Mantel test, or . . . ) of the real data should look no different than that of a random
reallocation of observations to the spatial coordinates if the null hypothesis is true.
Statistical significance is calculated by comparing the observed estimate to the dis-
tribution of estimates for, say, 999 different randomized data sets.4 If the observed
is more extreme than 950 (990) of the randomized we conclude that there is signifi-
cant deviation from spatial randomness at a nominal 5%-level (1%-level). For some
of the methods it is possible to generate confidence intervals using bootstrapping
(resampling with replacement) (e.g., Bjørnstad and Falck 2001).

All the above methods are available in the ncf-package.

require(ncf)

4 This produces a total of 1000 known possible outcomes; The 999 we randomly generated + the
one nature provided.
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13.5 Mantel Test

We continue using Keslow’s data as a case study.

test1 = mantel.test(M1 = rho, M2 = dst)

test1

## $correlation
## [1] -0.04603662
##
## $p
## [1] 0.000999001
##
## $call
## [1] "mantel.test(M1 = rho, M2 = dst)"
##
## attr(,"class")
## [1] "Mantel"

We see that there is a significant negative association between similarity and
distance. This is a crude tool but it does reveal that locations near each other tend to
be more similar in disease status than those separated by a greater distance.

If we, instead of having two matrixes, have spatial coordinates and observations,
the syntax is:

test = mantel.test(x = ..., y = ..., z = ...)

13.6 Correlograms

The correlogram shows how the autocorrelation is a function of distance (Fig. 13.3).
The shape of the correlogram can indicate random versus diffusive versus clinal pat-
terns. Legendre and Fortin (1989) provide probes for patterns using various visual
characteristics of the correlogram.

test2=correlog(x=gra$xloc, y=gra$yloc, z=gra$score,
increment=10)

plot(test2)
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The first distance class is significantly positive, and the estimated distance to
which the local positive distance decays to zero (the x-intercept) is 44 m, in-
dicative of significant local similarity. There is further evidence of significantly neg-
ative autocorrelation at long distances suggestive of a gradient (Legendre and Fortin
1989) across the field (Fig. 13.3).
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Fig. 13.3 The spatial correlogram of Keslow’s rust data. Values that significantly deviate from that
expected under the null hypothesis of complete spatial randomness are represented by filled black
circles

13.7 Nonparametric Spatial Correlation Functions

We can get a bit finer resolution and confidence intervals for the underlying spatial
correlation function using a nonparametric spatial covariance function (Hall and
Patil 1994) as implemented in the spline correlogram (Bjørnstad and Falck 2001).
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test3=spline.correlog(x=gra$xloc, y=gra$yloc,
z=gra$score)

summary(test3)

## $call
## [1] "spline.correlog(x = gra$xloc, y = gra$yloc,
## z = gra$score)"
##
## $estimate
## x e y
## estimate 36.53433 5.981471 0.5824953
##
## $quantiles
## x e y
## 0 -1.805418 0.000000 -0.02511758
## 0.025 23.252053 0.000000 0.14654935
## 0.25 33.067324 0.000000 0.28755750
## 0.5 36.555305 1.316775 0.38985499
## 0.75 39.924299 5.880383 0.48984864
## 0.975 44.163650 11.783945 0.75428625
## 1 49.466042 14.797740 0.98590369

The spline correlogram returns a bunch of stuff—in fact all the summary statistics
I thought might be of relevance in some previous spatial analyses. These are:

• estimates: a vector of benchmark statistics
• x: is the lowest value at which the function is = 0.5

• e: is the lowest value at which the function is = 1/e (i.e., the spatial scale param-
eter in the presence of exponential or Gaussian spatial correlation).

• y: is the extrapolated value at x = 0.
• quantiles: A matrix summarizing the quantiles in the bootstrap distributions of

the benchmark statistics. The 2.5- and 97.5-percentiles represent the 95% confi-
dence interval.

plot(test3)

Figuer 13.4 shows the estimated correlation function with its bootstrap 95% con-
fidence intervals. The confidence intervals allows us to compare correlation func-
tions for different data sets to test for significant differences (e.g., Bjørnstad et al.
1999a).

5 If correlation is initially negative, the distance calculated appears as a negative measure. This
may seem a little strange, but some locally inhibitory processes predict significant negative local
auto- or cross-correlation (e.g., Seabloom et al. 2005).
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Fig. 13.4 The spline correlogram of Keslow’s rust data. The outer lines represent the 95% boot-
strap confidence interval

13.8 LISA

The previous methods average across all locations to study how similarity depends
on distance. Local indicators of spatial association (Anselin 1995) quantify how
similar observations are within neighborhoods of each observation—this can be
used to test for significant spatial hot-/cold-spots of disease (Fig. 13.5). For this we
have to define the radius of the neighborhood. Spatial dependence in the Koslow-
data decay to zero at around 40 m (Fig. 13.4), so we use 20 m:

test4=lisa(x=gra$yloc, y=gra$xloc, z=gra$score,
neigh=20)

plot(test4)
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Fig. 13.5 LISA analysis of Koslow’s rust data (with a 20 m neighborhood). Filled red circles are
significant spatial hot-spots. Squares are cold-spots

Significant hot-spots show up as filled red circles and cold-spots as filled squares.
The size of the symbols reflects how much the disease-score deviates from the mean.

13.9 Cross-Correlations

Janis Antonovics and his colleagues have done road-side surveys of antler smut dis-
ease counting number of healthy and diseased wild campions (silene alba) at the
Mountain Lake Biological field station for more than 20 years (Antonovics 2004).
The silene2-data contains the mean number of healthy ($hmean) and diseased
($dmean) individuals for each road segment, as well as latitude ($lat) and longi-
tude ($lon) (Fig. 13.6).

data(silene2)
symbols(silene2$lon, silene2$lat, circles =

sqrt(silene2$dmean), inches=.2, xlab="Longitude",
ylab="Latitude")

Most geostatistical methods can be extended to consider spatial cross-correlation
between different variables. We can use the silene data set to investigate if
prevalence is spatially cross-correlated with abundance using the spline cross-
correlogram (Fig. 13.7).

silene2$ab=silene2$dmean+silene2$hmean
silene2$prev=silene2$dmean/(silene2$dmean+silene2$hmean)

We square-root transform the abundance measure before analyses. There is sig-
nificant positive cross-correlation within a 1 km range (95% CI: {0.6, 2.9} km).

testcc=spline.correlog(x=silene2$lon, y=silene2$lat,
z=silene2$prev, w=sqrt(silene2$ab),
latlon=TRUE, na.rm=TRUE)

plot(testcc)
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Fig. 13.6 Burden of antler smut on wild campion at Mt. Lake field station (Antonovics 2004)

We can use a spatial cross-correlogram (using 25 m distance increments) to study
if presence/absence of rust is spatiotemporally cross-correlated between 1994 and
1995 in the filipendula data set we discussed in Sect. 11.2.

data(filip)
testcc2=correlog(x=filip$X, y=filip$Y, z=filip$y94,

w=filip$y95, increment=25)

The local inter-year correlation (corr0) is 0.75 and the first cross-correlation is
significantly positive with a cross-correlogram x-intercept of 148 m6:

testcc2$corr0

## [1] 0.7651124

testcc2$x.intercept

## (Intercept)
## 148.939

Locations heavily affected in 1994 were thus also heavily affected in 1995 (testi-
fying to the importance of local contagion and/or habitat heterogeneity in infection
risk). This is an example of a “time-lagged cross-correlogram” (e.g., Bjørnstad et al.
2002b).

6 The spline cross-correlogram would give bootstrap confidence intervals on these quantities.
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Fig. 13.7 Spatial cross-correlation of prevalence and abundance in the silene data

13.10 Gypsy Moth

The gypsy moth was introduced to the northeastern USA in the late 1860s and has
spread at a rate of 10–20 km/year since. The larvae eats leaves of a wide range of
trees and shrubs and reach outbreak (defoliating) densities usually around every
10 years. The outbreaks end through epizootics of the Lymantria dispar nuclear
polyhedrosis virus and more recently the entomopathogenic fungus Entomophaga
maimaiga that together kills virtually all larvae following outbreaks. Bjørnstad et al.
(2010) used the nonparametric spatial covariance function to study the spatiotem-
poral patterns in these outbreaks. The gm-data set contains UTM coordinates and
fraction of forests defoliated each year between 1975 and 2002 in 20 × 20 km grid
cells across the northeastern USA. We characterize the patterns of synchrony and
time-lagged cross correlation in the outbreak time series.

data(gm)
sel=apply(gm[3:30],1,sum)!=0
#Synchrony:
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fit1=Sncf(gm[sel,1]/1000, gm[sel,2]/1000,
gm[sel,3:30], resamp=500)

#Lag 1 cross-correlation
fit2=Sncf(gm[sel,1]/1000, gm[sel,2]/1000,

z=gm[sel,3:29], w=gm[sel,4:30], resamp=500)
#Lag 2 cross-correlation
fit3=Sncf(gm[sel,1]/1000, gm[sel,2]/1000,

z=gm[sel,3:28], w=gm[sel,5:30], resamp=500)

The outbreaks are highly synchronized out to 200 km, with a regional aver-
age outbreak correlation of around 0.2. The time lagged cross-correlation function
shows significant local cross-correlation at the 1-year lag but not 2-year lag, indicat-
ing that outbreaks tend to persist spatially for 2 years before collapsing (Fig. 13.8):

par(mfrow = c(1, 3))
plot(fit1, ylim = c(-0.1, 1))
plot(fit2, ylim = c(-0.1, 1))
title("Lag 1")
plot(fit3, ylim = c(-0.1, 1))
title("Lag 2")
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Fig. 13.8 The (a) nonparametric spatial covariance function, (b) lag-1, and (c) lag-2 cross-
correlation function of gypsy moth outbreak data from the northeastern USA between 1975 and
2002
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