
Chapter 11
Spatial Dynamics

11.1 Dispersal Kernels

Pathogens move in space because of movement of transmission stages and in-
fected/susceptible hosts. Spatial pattern arises from landscape heterogeneities, dis-
persal and “reaction-diffusion” dynamics among spatially dispersed susceptible, and
infected individuals. The probability distribution that governs dispersal distances is
often referred to as the dispersal kernel. A variety of functional forms have been pro-
posed in the ecological and epidemiological literature (e.g., Mollison 1991; Clark
1998; Bjørnstad and Bolker 2000; Smith et al. 2002). From the point of view of
basic theory, it is often assumed that dispersal takes an exponential (the proba-
bility of dispersing a distance d ∝ exp(−d/a), where a is the range) or Gaussian
(∝ exp(−(d/a)2)) shape. The exponential model arises, for example, if we assume
dispersal happens in a constant direction with a constant stopping rate. The Gaussian
model arises if the stopping rate is constant but movement direction changes ran-
domly like a Brownian motion. However, other kernels are relevant; Broadbent and
Kendall (1953) calculated the movement probabilities of infectious larvae of a gut
nematode of sheep, Trichostrongylus retortaeformis, that performs a random walk
until it encounters a leaf of grass. Assuming the location of the leaves are according
to a spatially random point process, they showed that the random walk leads to a dis-
persal distance distributions that follows a Bessel K0-function. Ferrari et al. (2006b)

This chapter uses the following R-packages: ncf and animate.
A conceptual understanding of spatial spread is useful prior to this discussion. A 5-min epidemics-
MOOC can be seen on YouTube: https://www.youtube.com/watch?v=WPjsAdyD1Gg.
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used this kernel in a model of pollinator-vectored plant pathogens. Empirical dis-
persal distribution of free-living organisms typically has an over-representation of
rare long-range jumps that are improbable according to these kernels; They are the
so-called “fat-tailed” kernels (Clark 1998), which have important consequences for
the speed of spatial spread (Kot et al. 1996).

For human infections spatially contiguous, diffusive kernels are often a poor fit to
empirical patterns because spread often follows a characteristic “hierarchical” fash-
ion (Grenfell et al. 2001); Infections usually appear in big cities early, thereafter the
timing of epidemics on average happens in an order of descending size and increas-
ing isolation. This chapter is focused on inferring the shape of the spread-kernel
from spatial patterns over time, and then investigates the dynamical consequences
of such spread. We start with considering the simpler diffusive kernels and then
consider the more complicated patterns arising from human mobility.

11.2 Filipendula Rust

Jeremy Burdon and Lars Ericson surveyed presence/absence of a fungal pathogen
on a wild plant, Filipendula ulmaria, across islands in a Swedish archipelago (Smith
et al. 2003). The filipendula data contains observations for 1994 ($y94) and
1995 ($y95), with spatial coordinates $X and $Y. There are additionally a large
number of descriptive covariates for each site. Smith et al. (2003) used the data to
estimate the most likely dispersal kernel of the rust. The host plant is an herbaceous
perennial with pathogen spores overwintering on dead tissue. The infections in 1995
thus arose from the spores produced in 1994.

If spores disperse according to, say, an exponential function with range, a, then
the spatial force of infection on any location, i, will be ∝ ∑ j z jexp(−di j/a), where
z j is the disease status (0/1) in the previous year and di j are the distances to other
locations. The idea is that in each spring, every local group of hosts will be in the ac-
cumulated spore shadow of last year’s infected individuals. This leads to a metapop-
ulation “incidence-function” model (Hanski 1994) for the presence/absence of rust
among all locations from year to year. Figure 11.1 shows the spatial data.

data(filipendula)
symbols(filipendula$X, filipendula$Y, circles=

rep(1,162), inches=.1, bg=filipendula$y95+1,
xlab="X", ylab="Y")

symbols(filipendula$X, filipendula$Y, circles=
rep(1,162), inches=.05, bg=filipendula$y94+1,
add=TRUE)

legend("topright", c("infected 94", "infected 95"),
pch=c(21,21), pt.cex=c(1,2), pt.bg=c(2,2))

As for the basic catalytic (Chap. 4) and TSIR (Chap. 7) models, we can use the
glm-framework to estimate the parameters. Since the response variable is binary,
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Fig. 11.1 Presence/absence of the rust on its Filipendula ulmaria host plant in 1994 and 1995. Red
is infected. Black is uninfected

we use logistic regression to calculate a profile likelihood for a. We first calculate
the distance matrix among the 162 locations:

dst = as.matrix(dist(filipendula[, c("X", "Y")]))

Arbitrarily assuming a value of a of 10 m, the 1995 FoI on each location will be
proportional to:

a = 10
foi = apply(exp(-dst/a) * filipendula$y94, 2, sum)

We use glm to evaluate the likelihood. The deviance of the glm object is 2
times the negative log-likelihood.

lfit=glm(y95˜foi, family=binomial(), data=filipendula)
lfit$deviance/2

## [1] 69.8527
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Figure 11.2 shows the likelihood profile across candidate values for a.

a=seq(1,20, length=1001)
llik=rep(NA, length(a))
for(i in 1:length(a)){

foi=apply(exp(-dst/a[i])*filipendula$y94,2,sum)
lfit=glm(y95˜foi, family=binomial(),

data=filipendula)
llik[i]=lfit$deviance/2

}
plot(a, llik, type="l", ylab="Neg. log-like")
abline(h=min(llik)+qchisq(0.95,1)/2)
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Fig. 11.2 Likelihood profile for a the parameter in the exponential dispersal kernel. The horizontal
line represents the 95% cut off for the χ2(1)/2 deviation from the minimum

We can compare our best kernel model with a nonspatial model assuming a ho-
mogenous risk among hosts using likelihood-ratio tests (Sect. 8.4). Recall that for
nested glm’s (i.e., where the simpler model is nested within the more complicated
model), the difference in deviances (= 2xlog-likelihood) is χ2(d f =Δ p)-distributed,



11.2 Filipendula Rust 213

where Δ p is the number of extra parameters in the complex model. The anova-
function provides this calculation in R. Since we first profiled on a, and then use the
value â that minimizes the negative log-likelihood, we have to correct the residual
degrees of freedom of the spatial model to get the correct likelihood-ratio test.

ahat=a[which.min(llik)]
foi=apply(exp(-dst/ahat)*filipendula$y94,2,sum)
spmod=glm(y95˜foi, family=binomial(), data=filipendula)
nullmod=glm(y95˜1, family=binomial(), data=filipendula)
#correct the df of the spmod
spmod$df.residual=spmod$df.residual-1
anova(nullmod, spmod, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: y95 ˜ 1
## Model 2: y95 ˜ foi
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 161 222.10
## 2 159 109.48 2 112.63 < 2.2e-16
##
## 1
## 2 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The spatial model gives a highly significantly better fit than the null model.
The Gaussian dispersal kernel takes the form ∝ exp(−(di j/a)2). We can estimate

the parameters assuming this alternative kernel:

a2=seq(1,20, length=1001)
llik2=rep(NA, length(a2))
for(i in 1:length(a2)){

foi2=apply(exp(-(dst/a2[i])ˆ2)*filipendula$y94,2,sum)
lfit2=glm(y95˜foi2, family=binomial(),

data=filipendula)
llik2[i]=lfit2$deviance/2

}
ahat2=a2[which.min(llik2)]
foi2=apply(exp(-(dst/ahat2)ˆ2)*filipendula$y94,2,sum)
spmod2=glm(y95˜foi2, family=binomial(),

data=filipendula)
spmod2$df.residual=spmod2$df.residual-1
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Finally, we can visualize the shape of the competing probability kernels (using
appropriate scaling for power exponential functions) (Fig. 11.3):

curve((2/(ahat2 * gamma(1/2))) * exp(-((x/ahat2)ˆ2)),
0, 10, col = 2, lty = 2, ylab = "Probability",
xlab = "Meters")

curve((1/(ahat) * gamma(1)) * exp(-x/ahat), 0, 10,
add = TRUE)

legend("topright", c("Exponential", "Gaussian"),
lty = c(1, 2), col = c(1, 2))

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Meters

Pr
ob

ab
ilit

y

Exponential
Gaussian

Fig. 11.3 The estimated exponential and Gaussian dispersal distance distributions for the Filipen-
dula rust data

The two spatial models are not nested, but we can get model rankings using their
AICs:

spmod$aic

## [1] 113.4775

spmod2$aic

## [1] 116.6538

The exponential model is favored over the Gaussian.
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11.3 Simulation

In addition to being a statistical method, our binomial spatial model also repre-
sents a fully specified metapopulation model for presence/absence of the rust.1

Since we used logistic regression (the default for the binomial-family), our re-
gression provides estimates for logit(p) = β0 + β1 ∗ foi. The inverse-link is p =
exp(β0 +β1 ∗ foi)/(1+ exp(β0 +β1 ∗ foi)).

We can write a simulator that stochastically projects the epidemic metapopula-
tion forwards in time (assuming a fixed host plant distribution). We will initiate the
simulation with the state of the system in 1995.

zprev = filipendula$y95
x = filipendula$X
y = filipendula$Y
beta0 = spmod$coef[1]
beta1 = spmod$coef[2]

Infection probabilities for next year are:

foi = apply(exp(-dst/ahat) * zprev, 2, sum)
logitp = beta0 + beta1 * foi
p = exp(logitp)/(1 + exp(logitp))

A stochastic realization is:

znew = rbinom(162, 1, p)
symbols(x, y, circles = rep(1, 162), bg = znew +

1, inches = 0.1, xlab = "X", ylab = "Y")

We can animate the next 100 years (if uncommented, the Sys.sleep argument
makes the computer go to sleep for 0.1 s to help visualization):

simdat=matrix(NA, ncol=100, nrow=162)
for(i in 1:100){

zprev=znew
foi=apply(exp(-dst/ahat)*zprev,2,sum)
logitp=beta0+beta1*foi
p=exp(logitp)/(1+exp(logitp))
znew=rbinom(162, 1, p)
simdat[,i]=znew
#symbols(x, y, circles=rep(1,162), bg=znew+1,

1 Just like the chain-binomial model in Sects. 3.4 and 3.5 the spatial logistic model can be used
both as a statistical method and a stochastic simulator.
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# inches=.1, xlab="X", ylab="Y")
#Sys.sleep(0.1)

}

Figure 11.4 shows the predicted relative spatial risk from the stochastic simula-
tion. The spatial.plot-function in the ncf-library is a wrapper for symbols
that plots values larger (smaller) than the mean as red circles (black squares). In this
case we see that spatial configuration alone can result in heterogenous infection risk
across the metapopulation. A corollary of this is that specialist plant pathogens may
regulate the spatial distribution of host plant recruitment through locally density-
dependent mortality and thus promote species diversity according to the Janzen-
Connell hypothesis (e.g., Clark and Clark 1984; Petermann et al. 2008).

require(ncf)
mprev = apply(simdat, 1, mean)
spatial.plot(x, y, mprev, ctr = TRUE)
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Fig. 11.4 Plot of predicted relative risk of rust infection from the metapopulation model. Risks
larger (smaller) than the mean are shown as red circles (black squares). The size of the symbols
reflects the deviation from the mean
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11.4 Gypsy Moth

Various viruses and parasitoids of insects cause population instabilities and cycles in
their hosts. The 5–10-year cycles in the gypsy moth (Lymantria dispar) are caused
by the ldNPV-virus. Larvae get infected when ingesting viral occlusion bodies.
The virus subsequently kills the larvae to release more of these infectious parti-
cles. USDA forest service conducts surveys each year of defoliation by the gypsy
moth across the Northeastern USA to reveal complex spatiotemporal patterns. A
web-optimized animated gif of the annual defoliation across the Northeastern USA
between 1975 and 2002 can be viewed from https://github.com/objornstad/epimdr/
blob/master/mov/gm.gif.

Spatiotemporal models can help to better understand such dynamics. There are
specialized models for both the local and spatiotemporal dynamics of the gypsy
moth (Dwyer et al. 2004; Abbott and Dwyer 2008; Bjørnstad et al. 2010). Here we
will consider a simpler spatially extended SIR model.

11.5 Coupled Map Lattice SI Models

Coupled map lattice models2 are constructed by assuming that spatiotemporal dy-
namics happens in two steps (Kaneko 1993; Bascompte and Solé 1995). First, local
growth according to some model, for example, the seasonally forced (discrete time)
SI model. Followed, second, by spatial redistribution of a fraction, m, of all individ-
uals to other neighboring patches.

Because R is a vectorized language we can simulate CMLs using very com-
pact code. We first write the function for the local SI dynamics according to
the expectation from the chain-binomial formulation (Sect. 3.4). We assume a
birth/death rate of μ and sinusoidal forcing on the transmission rate according to
β0 +β1 cos(2∗π ∗ t/26) (so there are 26 time-steps in a year). We assume infected
individual stays infected and infectious for one time step.

local.dyn = function(t, S, I, b0, b1, mu, N) {
beta = b0 * (1 + b1 * cos(2 * pi * t/26))
I = S * (1 - exp(-beta * I))
S = (1 - mu) * S + mu * N - I
list(S = S, I = I)

}

Next we construct the redistribution matrix among the nx−by−ny locations (we
consider a 30× 30 lattice). Nearest-neighbors will be <1.5 spatial units apart (to

2 The name refers to how the most stylized of these models assumes a lattice (checker board)
of locations at which local numbers change from one generation to the next according to some
“mapping”-rule such as the discrete logistic, the Nicholson-Baily model (see Chap. 14) or, in this
case, a discrete-time seasonally forced SI model.

https://github.com/objornstad/epimdr/blob/master/mov/gm.gif
https://github.com/objornstad/epimdr/blob/master/mov/gm.gif
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be exact <
√

3). Assume that the fraction that disperses to neighboring patches is
m = 0.25 and that movement is random and independent of disease status.

m = 0.25
ny = nx = 30
# generate coordinates
xy = expand.grid(x = 1:nx, y = 1:ny)
# make distance matrix
dst = as.matrix(dist(xy))
# make redistribution matrix with zeros
redist = matrix(0, nrow = ny * nx, ncol = ny * nx)
# populate the matrix so each of the 8 neighbors
# gets their share
redist[dst < 1.5] = m/8
# the remaining fraction stays put
diag(redist) = 1 - m

The S and I matrices will hold the results from the simulation. We will run the
model for IT=520 iterations (= 20 years). Assume that all patches have S0 =
100 susceptibles and that 1 infected is introduced in location {400, 1}:

IT = 520
S = I = matrix(NA, nrow = ny * nx, ncol = IT)
S[, 1] = 100
I[, 1] = 0
I[400, 1] = 1

We define the remaining parameters necessary for the local dynamics:

b0 = 0.04
b1 = 0.8
mu = 0.02/26
N = 1000

We are now ready to simulate the model. The %*%-operator represents matrix-
multiplication and the matrix-multiplication of a vector of abundances with the
redistribution-matrix moves all individuals appropriately.

for (t in 2:IT) {
# local growth:
tmp = local.dyn(t, S = S[, t - 1], I = I[, t -

1], b0 = b0, b1 = b1, mu = mu, N = N)
# spatial movement
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S[, t] = redist %*% tmp$S
I[, t] = redist %*% tmp$I
# progress monitor
cat(t, " of ", IT, "\r")

}

The simulation can be visualized as an inline animation. The predicted incidence
from the spatial SI-model varies so widely it is useful to transform incidence (using
a fourth-root) so that low values shows up better.

x = xy[, 1]
y = xy[, 2]
scIcubed = Iˆ(1/4)/(max(I[, 10:IT]ˆ(1/4)))

for (k in 1:IT) {
symbols(x, y, fg = 2, circles = scIcubed[, k],

inches = FALSE, bg = 2, xlab = "", ylab = "")
Sys.sleep(0.05)

}

Analyses of a variety of host-parasit(oid) CML models (Hassell et al. 1991;
Bjørnstad et al. 1999b; Earn et al. 2000a) have revealed a variety of emergent spa-
tiotemporal patterns including complete synchrony, waves, spatial chaos, and frozen
patterns. The pattern in any given system depends on the local dynamics and mobil-
ity. We will visit on these CML models further in Chap. 14.

11.6 Making Movies

We can make permanent movies by writing the plots to a sequence of jpeg’s and then
use an open-source utility like ImageMagick to convert the sequence to a movie.3

for(k in 100:IT){
png(filename=paste("m",1000+k,".jpg", sep=""))

symbols(x, y, fg=2, circles=scIcubed[,k],
inches=FALSE, bg=2,xlab="",ylab="")

dev.off()
}

3 The system()-function in R passes the convert and rm calls to the command-line. A web-
optimized version of the animated gif can be viewed on https://github.com/objornstad/epimdr/blob/
master/mov/simovie.gif.

http://www.imagemagick.org
https://github.com/objornstad/epimdr/blob/master/mov/simovie.gif
https://github.com/objornstad/epimdr/blob/master/mov/simovie.gif
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system("convert m*.jpg simovie.gif")
system("rm m*.png")
#For mp4-animation:
#system("convert -delay 5 m*.jpg simovie.mp4")

Alternatively we can incorporate the animation directly into a pdf—though for
this to work we need to work with LaTeX and use the LaTeX animate-package.

require("animation")
oopt = ani.options(interval = 0.02, nmax = 100)
test.function = function (xy, I, nmax) {

x = xy[,1]
y = xy[,2]
scIcubed = Iˆ(1/4)/(max(I[,10:IT]ˆ(1/4)))
for (i in seq_len(ani.options("nmax"))) {

dev.hold()
symbols(x,y,fg=2,circles=I[,i],inches=0.1,bg=2,

xlab="",ylab="")
ani.pause()

}
}

saveLatex({
test.function(xy=xy, I=I, nmax=50)
},
ani.basename = "BM", ani.opts = "controls,loop,
width=0.8\\textwidth", ani.first =
par(mar = c(3, 3, 1, 0.5), mgp = c(2, 0.5, 0),
tcl = -0.3, cex.axis = 0.8, cex.lab = 0.8,
cex.main = 1), latex.filename = "test.tex",
pdflatex = "/usr/texbin/pdflatex",
img.name = "Xplot")

ani.options(oopt)

11.7 Nonparametric Covariance Functions for Spatiotemporal
Data

Keeling et al. (2002) discuss how we may understand the emergent complicated spa-
tiotemporal dynamics of models of natural enemies in terms of the spatial variance
(or associated autocorrelation) and covariance of the interacting species.4 Bjørnstad
and Bascompte (2001) proposed to calculate auto- and cross-correlation functions

4 Seabloom et al. (2005) provide similar calculations for spatial competition models.

https://latex-project.org
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from simulated or real data. We can use the Sncf-function in the ncf-package
to calculate the “multivariate” spatial correlation function (Bjørnstad et al. 1999b)
among the simulated time series (see Chap. 13 for further details on this and other
geostatistical methods). We can further look at the spatial cross-correlation function
between susceptibles and infected (Fig. 11.5). The background synchrony for both
compartments (of around 0.3) is due to the common seasonal forcing. The locally
higher autocorrelation at shorter distances is due to emergence of dispersal-induced
aggregations of infected individuals. The negative local cross-correlation is due to
the local S-I cycles.

fitI = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(I[,
261:520]), resamp = 500)

fitS = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(S[,
261:520]), resamp = 500)

fitSI = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(S[,
261:520]), w = sqrt(I[, 261:520]), resamp = 500)

par(mfrow = c(1, 3))
plot(fitI, ylim = c(-0.1, 1))
plot(fitS, ylim = c(-0.1, 1))
plot(fitSI, ylim = c(-0.2, 0.2))
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Fig. 11.5 Spatial correlation (1) infecteds, (2) susceptibles, and (3) S-I cross-correlation as a func-
tion of distance
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One interesting additional application is the so-called time-lagged spatial corre-
lation function (Bjørnstad et al. 2002a). This analysis may help quantify wave-like
spread. For example we can look at the spatiotemporal relationship between the
infecteds and themselves 5 time-steps later (Fig. 11.6). The peak in correlation is
offset from the origin by somewhere between 5 and 10 units. This makes sense,
since we assume nearest neighbor dispersal, so the leading edge should move 5
units vertically/horizontally and 5∗√2 = 7.1 units diagonally during 5 time steps.

fitIlag = Sncf(x = xy[, 1], y = xy[, 2], z = I[,
261:515], w = I[, 266:520], resamp = 100)

plot(fitIlag, ylim = c(-0.2, 0.2))
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Fig. 11.6 The time-lagged spatial cross-correlation function of predicted prevalence of the SI cml
model (with a 5-year time lag)

Bjørnstad et al. (2002b) used time-lagged spatial correlation functions to show
that parasitoid-host interactions (see Chap. 14) lead to waves of larch tree defoliation
that travels at 210 km per year in a north-easterly direction across the European Alps.
Traveling waves have also been documented in the dynamics of dengue (Cummings
et al. 2004) and influenza A (Gog et al. 2014).

11.8 Gravity Models

Regional spread of human pathogens rarely forms a simple diffusive pattern because
human mobility patterns are more complex—movement may be distant dependent,
but overall flow between any two communities also typically depend on the size



11.8 Gravity Models 223

(and desirability) of both “donor” and “recipient” location (Erlander and Stewart
1990; Fotheringham 1984). Grenfell et al. (2001), for example, showed that the
spatiotemporal dynamics of measles across all cities and villages in pre-vaccination
England and Wales exhibited “hierarchical waves,” in which the timing of epidemics
relative to the big urban conurbations (the donors) depended negatively on distance
but positively on the size of the recipient. Viboud et al. (2006) demonstrated similar
hierarchical spread of seasonal influenza across the states of continental USA.

Xia et al. (2004) and Viboud et al. (2006) subsequently showed that a metapopu-
lation model where movement among communities followed a “generalized gravity
model” approximates the dynamic patterns; The “gravity model” is a model of mo-
bility/transportation from transportation science that posits that transportation vol-
ume between two communities depends inversely on distance, d, but bilinearly on
the size, N, of the communities (Erlander and Stewart 1990; Fotheringham 1984).
Gravity-like models have since been applied to study the spatial dynamics of a vari-
ety of human infection settings (e.g., Mari et al. 2012; Truscott and Ferguson 2012;
Gog et al. 2014).

The generalized gravity model quantifying the spatial interaction between lo-
cations i and j (commonly) take the form θNτ1

i Nτ2
j d−ρ

i j , where θ , τ1, τ2, and ρ are
nonnegative parameters shaping the topology of the spatial interaction network. The
gravity model has at least two important special cases: ρ = 0,τ1 = τ2 = 1 represent-
ing a mean field model and τ1 = τ2 = 0 representing simple spatial diffusion.

Viboud et al. (2006) proposed a stochastic multipatch SIR model for the spread
of seasonal influenza among the states of the continental USA. We will consider a
simpler SIR version of the model (ignoring susceptible recruitment)5:

dSi

dt
= −(β Ii +∑

j �=i

ι j,iI j)Si (11.1)

dIi

dt
= (β Ii +∑

j �=i

ι j,iI j)Si − γIi (11.2)

dRi

dt
= γIi, (11.3)

where ι j,iI j is the gravity-weighted force of infection exerted by state j on state i.
The corresponding R-code is:

require(deSolve)
SIR.space = function(t, y, pars) {

i = c(1:L)

5 Note that we assume that spatial transmission does not dilute local transmission. Keeling and
Rohani (2002) provide a discussion of this issue.
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S = y[i]
I = y[L + i]
R = y[2 * L + i]
with(pars, {

beta = beta[i]
dS = -(beta * I + m * G %*% I) * S
dI = (beta * I + m * G %*% I) * S - gamma *

I
dR = gamma * I
list(c(dS, dI, dR))

})
}

G is the spatial interaction matrix and m is a scaling factor. Combining state-level
ILI-data with county-level commuter census data, Viboud et al. (2006) estimated the
gravity parameters to be τ1 = 0.3, τ2 = 0.6, and ρ = 3.6 The usflu data contains
coordinates and populations for each of the contiguous lower 48 states plus the
District of Columbia. The gcdist-function of the ncf-package generates spatial
distance matrices from latitude/longitude data:

require(ncf)
data(usflu)
usdist = gcdist(usflu$Longitude, usflu$Latitude)

We define a function to generate the spatial interaction matrix given parameters
and distances:

gravity = function(tau1, tau2, phi, pop, distance) {
gravity = outer(popˆtau1, popˆtau2)/distanceˆphi
diag(gravity) = 0
gravity

}
G = gravity(0.3, 0.6, 3, usflu$Pop, usdist)

We finally define initial conditions and parameters (scaling β such that R0 will
be the same in all states). Viboud et al. (2006) were interested in exploring spread
in a pandemic setting. We therefore assume that everybody is susceptible, with 1
initial index case arriving in New York:

gamma = 1/3.5
R0 = 1.8
beta = R0 * gamma/usflu$Pop

6 Viboud et al. (2006) showed that the commuter flows has a heavier tail than predicted by this
gravity model which we, for expedience, ignore.



11.8 Gravity Models 225

m = 1/1000/sum(usflu$Pop)
parms = list(beta = beta, m = m, gamma = gamma, G = G)
L = length(usflu$Pop)

S = usflu$Pop
R = I = rep(0, length(usflu$Pop))
I[31] = 1
inits = c(S = S, I = I, R = R)

We are now set to simulate a spatial SIR pandemic across the USA (Fig. 11.7):
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Fig. 11.7 Simulated influenza dynamics across the continental USA using a multipatch SIR model
with gravity coupling parameterized according to Viboud et al. (2006)
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require(deSolve)
times = 0:200
out = ode(inits, times, SIR.space, parms)
matplot(out[,50+(1:L)], type="l", ylab="Prevalence",

xlab="Day")

The outbreak peaks are predicted to be staggered because of the spatial diffusion
of the infection across the continent.
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