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Chapter 10
3D Reconstruction of Confocal Image Data

Thomas C. Trusk

10.1  Introduction

The main advantage of the confocal microscope is often said to be the ability to 
produce serial optical sections of fluorescent samples, ultimately for the purpose of 
reconstructing microscopic objects in three dimensions (3D) (Carlsson and Aslund 
1987). There are many ways, and reasons, to reconstruct confocal image data. As an 
example, consider the sample of embryonic mouse heart shown in Fig. 10.1 recon-
structed using a variety of 3D techniques. This chapter will introduce these methods 
and discuss such topics as (a) why one might want to undertake this task, (b) some 
definitions of the representation of 3D space using images, (c) the different types of 
3D representations that can be made, and (d) the necessary steps to making useful 
reconstructions. Along the way, the limitations and potential pitfalls that arise will 
be discussed.

10.2  Why Reconstruct?

Reconstructing image data into three-dimensional representations is a fairly recent 
activity made necessary by the invention of devices which virtually deconstruct 
their subjects by scanning serial planes at different depths. Positron-emission 
tomography scanners, computed axial tomography scanners, magnetic resonance 
imagers, ultrasonic imagers, and confocal microscopes are all examples of devices 
which can collect these 3D image datasets. Prior to the development of those tools, 
building accurate 3D models of microscopic biological specimens had always been 
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a daunting task, that is, until powerful computers and sophisticated software were 
introduced. Instead of using scissors, cardboard, wax, modeling clay, or Styrofoam, 
it is now possible to sit in front of a computer workstation and construct, in a frac-
tion of the time, a model that can be displayed in multiple forms and used to convey 
a wide variety of useful information.

Historically, the primary reason to reconstruct in 3D has been to display the 
morphology of the subject. In many cases, the 3D shape of the microscopic object 
may be completely unknown, or some experimental condition may influence its 
structure. It might also be helpful to reconstruct the various compartments of the 
subject and divide it into organs, tissues, cells, organelles, and even domains where 
some fluorescently labeled protein might be expressed. These arrangements often 
produce clues concerning function (e.g., see Savio-Galimberti et  al. 2008). The 
value of a computerized 3D reconstruction is that the finished reconstruction can be 
viewed at different angles, including visualizations from perspectives impossible to 
achieve in the confocal microscope. Furthermore, most 3D software applications 
provide tools to produce digital movies, including interactive surface slicing, 
transparency, or subregion coloration in the models. These animations can be 
invaluable in conveying the structure of the subject.

3D reconstructions can be used to provide a substrate for the superimposition 
of other information (Hecksher-Sorensen and Sharpe 2001). For instance, the mul-
tiple channels used in confocal microscopy can be used to highlight the domain 
of proteins bound to fluorescent markers emitting different colors. Depending on 
the experimental question, these domains may be expected to be mutually exclu-
sive or partially (or even completely) correlated within the structure of the sub-
ject. In another example, quantitative information (such as cell density or rate of 

Fig. 10.1 Sample 3D reconstructions. The left ventricle of an embryonic mouse sampled in a 
confocal microscope. The 3D image dataset is contained inside the orange box where only the first 
confocal optical slice is shown (a). Methods which sample the 3D dataset include (b) an oblique 
slice, (c) a maximum projection through the z-axis, (d) a simple volume render, (e) a surface render 
manually segmented to highlight interior features, and (f) a volume render using complex lighting 
and segmentation information derived from (e)
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cell  proliferation) may be overlaid as a coded color scheme onto a reconstructed 
object and provide a visualization of that property throughout the sample (Soufan 
et al. 2007).

Finally, once a fully segmented, surface-rendered reconstruction has been made, 
it is a simple matter to extract quantitative information from the sample. This 
includes counting objects, determining volumes, measuring surface areas, or quan-
tifying the spatial arrangements of parts (such as measuring distances or angles 
between features).

10.3  Defining the 3D Space Using Images

The 3D Cartesian coordinate system (Fig. 10.2) provides a convenient space within 
which to reconstruct image data. The Cartesian system consists of three physical dimen-
sions – width (x), length (y), and height (z) – which are perpendicular to each other (a 
relationship termed orthogonal) and are typically oriented with the z dimension point-
ing up. Individual images are considered orthogonal slices through the z dimension, 
and the pixel plane of each image is defined in the x and y dimensions. Figure 10.1a is 
an example of an orthogonal slice. Planes cut through the Cartesian space that are not 
perpendicular to a major axis are said to be oblique, as in the slice shown in Fig. 10.1b.

10.3.1  Perspective

When an observer views a three-dimensional scene consisting of objects of equal 
size, objects that are off in the distance will appear smaller than objects closer to the 
viewer. An artist (and a computer) will enhance the perception of depth in rendering 

Fig. 10.2 The 3D Cartesian system. A mathematical model of three-dimensional space. Every 
position in the space is defined by its location along one of three axes (x, y, and z)
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a scene by drawing objects “in perspective,” as if the drawing was traced on a window 
through which the viewer was looking. In Fig. 10.3a, rays exit the object and project 
directly to the viewer. The object is drawn on the display such that the back face of 
the box appears smaller than the front face. In an orthographic projection (Fig. 10.3b), 
all rays passing through the scene toward the display are parallel, and the object on 
the display does not appear in perspective. These types of renderings are sometimes 
useful, as in architecture, where object size comparisons are more important than 
the perception of depth. Most 3D software suites can draw objects on the screen 
with or without perspective, as the viewer chooses. The perception of depth in a 
scene is quite helpful to the viewer, especially when objects may be moving in 
dynamic displays or animations. Objects drawn orthographically and rotated often 
appear to suddenly switch rotation direction.

10.3.2  Voxels

A single confocal “optical slice” has a “thickness” in the z dimension that is defined 
by the microscope optics and the confocal pinhole. Recall that increasing the diam-
eter of the pinhole allows extra light from above and below the focal plane to con-
tribute to the light gathered at each pixel. On the other hand, a single “image” is 
infinitely thin along the z dimension (see Fig. 10.4). Confocal z-series images are 
typically collected at evenly spaced intervals, and when the images are restacked at 
the correct z distance, the empty space between the images is readily apparent.

In order to fill the space between images, it is necessary to expand the concept of 
a two-dimensional image pixel into a three-dimensional volumetric voxel. This is 
demonstrated for a single voxel in Fig. 10.5. The grid of two-dimensional image 

Fig. 10.3 Perspective vs orthographic projection. For objects drawn on a screen in perspective (a), 
all rays project from the object to the viewer. The more distant back face of the box appears smaller 
than the front face. In an orthographic projection (b), all rays projected from the object to the dis-
play screen remain parallel, and the perception of depth in the scene is lost
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pixels is stretched in the z dimension to produce three-dimensional voxels. Each 
voxel has the same dimensions of single image pixels in the x and y dimensions and 
the distance between consecutive images in the z dimension. Thus, the volume of 
each voxel is defined as the area of each pixel (x multiplied by y) multiplied by the 
distance between optical slices (z). This voxel volume is the smallest unit of volume 
that can be measured in that image dataset.

Fig. 10.4 A single image has no depth. Five evenly spaced confocal slices demonstrating the 
infinitely thin nature of image data in the depth (z) plane

Fig. 10.5 Definition of a voxel. A portion of two consecutive images from a confocal series is 
shown. Image pixel dimensions were x units by y units, and images were collected every z units. 
A single voxel is the space defined by the pixel dimensions and the distance between consecutive 
images
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One can easily imagine that voxels are the “bricks” used to construct a 3D model. 
Each voxel not only has spatial dimensions, but each voxel also has a single unique 
brightness value inherited from its basis pixel. In an 8-bit sensitivity system, this 
value will range from 0 to 255 and is constant within the confines of a single voxel. 
Much like the bricks used to construct buildings, the voxels in a 3D image dataset 
are all the same shape and size, and each voxel has only one homogeneous color.

10.3.3  Resolution

The shape of individual voxels in an image dataset is determined by the resolution 
of the system. Some confocal microscope software controls will, by default, choose 
to optically slice a sample using a z distance that is as close as feasible to the pixel 
size. This would result in voxels that are nearly cubic, where x, y, and z dimensions 
are approximately equal. This is desirable for many reasons. First, cubic voxels 
more easily reconstruct 3D features correctly no matter what orientation they may 
have. For example, if you were to choose to use bricks to build a sphere, what shape 
brick would make the best representation? Figure 10.6 displays surface reconstruc-
tions of the same sphere rebuilt with different-shaped voxels and demonstrates the 
effect of increasing the voxel z dimension (or slice thickness) on the surface of 
reconstructed objects.

Most mathematical functions used in 3D reconstruction and visualization are 
much more efficient when the dataset uses isotropic or cube-shaped voxels. Using 
extremely anisotropic voxels can lead to inaccuracies in many measurements, espe-
cially surface area, and produce 3D visualizations that lose resolution when viewed 
from particular angles (see Fig. 10.7).

Fig. 10.6 Effect of voxel shape on surface reconstruction. The same spherical object is surface- 
reconstructed with voxels of increasing z dimension. The voxel shape used is shown (much magni-
fied) below each rebuilt sphere with the voxel dimensions in x,y,z. The leftmost sphere was rebuilt 
using cubic voxels
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One solution offered in 3D reconstruction software is to resample the image data 
into near-cubic dimensions. That is, the original data will be interpolated to fit a 
cubic voxel model. However, this approach only helps in the calculation efficiency 
and does not improve the visualization of the sample. Resampling the data into 
larger voxels can be quite helpful if the computer memory is insufficient, but resa-
mpling into smaller voxel sizes will only make the volume take up more memory 
and not increase visible resolution at all. It is worth noting that resolution decisions 
are best made at the microscope when acquiring images, and this is demonstrated in 
Fig. 10.8. The same epithelial cell was captured using a 20× lens, a 40× lens, and a 
40× lens with a digital zoom of 5 (for an effective 200× magnification). The actual 
collected pixel sizes were 0.73 μm, 0.37 μm, and 0.07 μm for the 20×, 40×, and 
200× images, respectively. In each image, a white box identifies the same mitochon-
dria, and the image data inside has been magnified to show individual image pixels. 
It should be easy to discern that the visual information obtained at 20× would be 
difficult to resample (or subdivide) into the higher resolution information seen at 
higher optical magnifications. This demonstration of resolution in the x and y 
dimensions also applies to the z dimension.

Resolution in the z dimension is set at the confocal microscope by choosing an 
appropriate distance between optical slices. For 3D reconstruction work, a good 
rule of thumb is to optically slice at a distance between 1 and 5 times the size of 
pixels in the XY images. Oversampling the object by slicing at smaller intervals is 
easier to correct later by resampling. If you are worried about datasets that are too 
large or take too long to collect, consider that the cost of data storage is essentially 
free. Returning the sample to the microscope later is always risky as fluorescence 
may have waned or the tissue may have deteriorated.

Fig. 10.7 Effect of voxel shape on 3D visualization. A confocal 3D image dataset is sliced in the 
XY plane (as originally collected by the confocal system) and in the ZY plane. Voxel x,y,z dimen-
sions in micrometers are 2.4, 2.4, and 12, respectively
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10.4  Types of 3D Reconstruction

3D image datasets can be reconstructed and visualized in a variety of ways. These 
3D models range in complexity from projections, a common function within most 
confocal system software suites, to surface reconstructions, which often require 
additional software. More recent confocal microscopes now include a sophisticated 
selection of reconstruction routines as part of the operating software, or possibly as 
optional additions. There are three basic methods used to present a 3D dataset: pro-
jections, volume renders, and surface reconstructions. The following will briefly 
describe how each type is calculated.

10.4.1  Maximum Projections

A projection is a single two-dimensional image generated using data from the entire 
3D image set. In the case of fluorescent images, this consists of finding the brightest, 
or maximum pixel value at each pixel address from each image in the entire dataset, 
and projecting it onto a result image (see an example in Fig.  10.1c). While the 

Fig. 10.8 Changing resolution. A bovine epithelial cell acquired on a confocal microscope using 
increasing objective power to improve resolution. The actual pixel dimension resolved is given for 
each image in micrometers. The white box region in each image has been magnified to reveal 
actual image pixels
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obtained image itself is not a 3D object, it conveys a visualization of the entire 
object from a particular viewpoint. Typically, the viewpoint used has been orthogo-
nal, or along a principal axis (x, y, or z), which simplifies the mathematics of calcu-
lating a projected image.

Consider the simple 3D dataset in Fig. 10.9. Three optical slices, each a 3 by 3 
pixel image, are projected along z-axis (red) and x-axis (green) projection lines. The 
brightest pixel encountered along each line is placed in the result image. Note that 
these projection lines are parallel to each other; thus they produce an orthographic 
rendering of the data, as previously discussed. As such, projected images tend to 
lack perceived depth.

An illusion of depth can be partially elicited by making a projection animation 
(or multi-frame movie) where the object appears to rotate in place, either in  complete 
circles, or by alternately rocking the object clockwise and counterclockwise. These 
animations are generated by mathematically rotating the object a few degrees and 
recalculating the maximum pixels encountered along parallel rays projected toward 
the result image (see Fig. 10.10). When the frames are collected into a movie and 
played in sequence, the projected object appears to rotate. Recall that the resolution 
along the z-axis (as seen through the microscope) is always best and that resolution 

Fig. 10.9 Projected images. Three optical slices, each 3 × 3 pixels, are projected along the z-axis 
(red lines) and along the x-axis (green lines). The maximum (or brightest) pixel values along each 
projection line are placed in the resulting projected image
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is reduced when the data is viewed along the x- or y-axis. This is why projected 
images tend to appear to lose clarity as the object rotation exceeds 30–45° away 
from perpendicular to the z-axis. For this reason, most animations are made to show 
the object shifting rotation between ±30° of tilt.

A common mistake is to slice the confocal sample at step sizes 10 or more times 
the size of individual pixels. This will produce a 3D dataset that will lose resolution 
too rapidly as the object is rotated. The illusion of depth is also lost when the num-
ber of slices is very small when compared to the pixel dimensions of each XY 
image. For example, 10 z-slices taken at 1024 × 1024 resolution will make disap-
pointing rotation projection animations. The best projection animations use 3D 
datasets with z-slice intervals close to xy pixel size (i.e., near-cubic voxels) and 
small rotation factors between projection animation frames (about 1° of rotation for 
each frame).

Maximum projections are the most commonly seen 3D reconstructions, and all 
confocal software systems routinely generate orthogonal views at the press of a but-
ton. Procedures for making projection animations are also widely available. 
Projections work best as orthogonal visualizations of 3D fields with little depth and 
provide the “all-in-focus” micrographs difficult to obtain on widefield fluorescent 
microscopes. However, be warned that maximum projections can also be  misleading. 
When the object is hollow with internal structure, like the heart ventricle shown in 
Fig.  10.1c, the external signal will mask the interesting internal features. More 
importantly, maximum projections of multichannel image sets will mix colors by 
addition. Red and green channel signals that lie along similar projection lines, but 
are not otherwise colocalized, will produce yellow objects in the result image. This 
could lead to misleading conclusions.

Fig. 10.10 Maximum projection animation. A 61-frame animation is made by rotating a 3D image 
dataset one degree before each maximum projection result frame is calculated. When the frames 
are collated into a movie, the projected image appears to rotate in place
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10.4.2  Volume Rendering

As acquired in the confocal microscope, each voxel can be described with certain 
x,y,z spatial coordinates and a fluorescent intensity recorded in each channel. In 
order to visualize a 3D dataset in proper perspective, we need to render an image 
on the display in a manner which will allow internal structure to be correctly 
observed. One way to accomplish this is to arbitrarily assign each voxel an addi-
tional attribute of transparency. This attribute is termed alpha in imaging technol-
ogy, and it has an inverse commonly used in 3D rendering called opacity, i.e., a 
voxel of 100% opacity has no alpha transparency. Alpha ranges from 0 to 1; thus 
opacity is 1-alpha.

By now you should be familiar with the concept of pseudo-coloring images 
using color lookup tables. For 3D renderings, alpha becomes a fourth attribute, and 
voxel pseudo-color values are often referred to as RGBA tuples, referring to the four 
values assigned to each voxel. A typical RGBA lookup table is shown in Fig. 10.11 
for two possible voxel values. In fluorescent images, the background is typically 
dark (not fluorescent). Since we wish to see through nonfluorescent regions, 

Fig. 10.11 RGBA lookup table. An 8-bit lookup table is used to convert gray values from a voxel 
into the corresponding red, green, blue, and alpha (transparency) values used for display. Red and 
green table values range from 0 to 255, blue is 0 across the range, and alpha ranges from 1 (trans-
parent) to 0 (opaque). The gray values at A and B are converted in the mixed RGBA values and 
displayed in voxels at the right. The darker value at A mixes red and green to produce a transparent 
weak yellow voxel, while the brighter value at B produces a more saturated and opaque yellow 
voxel
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we assign the most transparent alpha values to the darkest image pixels. In this 
particular example, we choose to make brighter image values to produce more satu-
rated yellow voxels that also become less transparent (or more opaque) as intensity 
increases. This RGBA table will produce brightly stained fluorescent objects as yel-
low structures and leave the unstained background transparent.

In the process of calculating a volume rendering, imaginary projection rays pro-
ceed from the display screen and completely penetrate the 3D dataset. If the display 
is to be orthographic, the rays remain parallel from the display through the object. 
For displays remaining in perspective, the rays appear to originate from the viewer 
and are not parallel. The number of rays possible can be quite high, but only enough 
are needed to fill each pixel on the display screen. As this limited number of rays 
pass through the object, the software has the choice of using all of the data, where 
calculations are made from every voxel the ray passes through, or the data can be 
interpolated by averaging across a select number of neighboring voxels to speed up 
the process for more dynamic displays.

The first steps in the process of calculating voxel values used along a projection 
ray are shown in Fig. 10.12. Consider a small sample, a 3 × 3 × 3 volume. The vol-
ume is shown in the brick model in (A) and, in another conceptual format, the cell 
model in (B). In the cell model, voxels are viewed as the vertices of a three- 
dimensional grid. A single projection ray is shown in (C) as it passes through the 
volume and intersects the display pixel where the result will be seen. As the ray 
passes through the volume, it passes through several cells, each defined by the 8 
voxels in the cell corners. The intensity value used for each cell is calculated using 
trilinear interpolation, as shown in (D). In the first approximation, four pairs of cor-
ner voxels are averaged, then those four values are averaged, and then finally the last 
pair is averaged. The final value is converted using the lookup table into an RGBA 
tuple. This process is repeated for all cells along the projection ray, and the final step 
is to composite all of these tuples into a single value to be displayed.

In compositing these values, calculations usually proceed from the back of the 
object space to the front, toward the viewer. As the ray first strikes the object, it has 
the color or intensity value of the background. The intensity passing through each 
cell in turn is modified according to the formula:

 
Intensity Intensity alpha Intensity alphaout in cell cell= × −( ) + ×1 ccell( ),  

and this process continues until the ray leaves the object, where the final intensi-
tyout is placed in the display pixel.

Most modern computer video display adapters are now capable of performing 
much of these 3D rendering computations very rapidly. This makes it possible for 
most modern desktop computers to perform volume renders as quickly as expensive 
graphic workstations of the recent past. The addition of hardware accelerators dedi-
cated to 3D texture mapping, mainly used in modern gaming software, has also 
made it possible to generate even more complex volume texture renderings. For 
these methods, each cell can be given attributes beyond color intensity and transpar-
ency, such as texture mapping, specular or diffuse reflection, shadowing, and other 
lighting effects (as shown in Figs. 10.1f and 10.20c).
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Volume render animations more faithfully display internal structure as compared 
to maximum projection animations and are less likely to generate false positive 
conclusions regarding co-localization. However, a single frame volume render of a 
multichannel 3D dataset can be just as misleading regarding co-localization as a 
maximum projection of the same dataset. Depending on the software, multichannel 
volume renders will often mix RGBA tuples for the final display image or may 
choose to display one channel as masking another. It is best not to rely on one visual 
aspect when ascertaining co-localization.

10.4.3  Surface Reconstruction

In image-based reconstruction, a surface is a three-dimensional polygonal boundary 
surrounding voxels of special interest. These voxels can be defined by setting a 
single intensity threshold value or by including a specific range of intensity values. 

Fig. 10.12 Voxel averaging. A simple 3 × 3 × 3 volume shown using the brick model (a) and the 
cell model (b). In the cell model, voxels are viewed as the vertices of a three-dimensional grid. A 
single projection ray is shown in (c) as it passes through the volume and intersects the display pixel 
where the result will be displayed. As the ray passes through the volume, it passes through cells, 
each defined by the eight voxels in the corners. The intensity value used for each cell is calculated 
using trilinear interpolation, as shown in (d). In the first approximation, four pairs of corner voxels 
are averaged, then those four values are averaged, and then finally the last pair are averaged
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Alternatively, individual voxels can be selected manually (in a process called seg-
mentation) for inclusion into a surface boundary. A mathematical routine called the 
marching cube algorithm is typically used to define a surface in 3D space.

As an introduction to 3D surfaces, consider the simpler two-dimensional isosur-
faces used to map intensity values in single images. We are used to seeing contour 
lines mapping altitude or isotherm lines showing temperature differences on weather 
maps. In Fig. 10.13a, the color-coded isolines surround pixels of a narrow range of 
intensity values. In 3D space, the isolines become surfaces which divide eight-voxel 
cells (as described above in volume rendering) to isolate voxels either by intensity 
or by segmentation. For example, given a threshold value of 100, the voxels of the 
single cell shown in Fig. 10.13b require the green surface to divide the 4 voxels of 
intensity 200 from the 4 voxels of intensity 40. This is how the marching cube algo-
rithm functions, evaluating every cell in the volume so as to place boundaries suf-
ficient to isolate voxels which either exceed a selected threshold or which have been 

Fig. 10.13 Surface reconstruction. (a) Intensity isolines in a two-dimensional image. (b) A single 
8-voxel cell is subdivided by a green surface boundary based on voxel intensities above 100. (c) 
The 15 possible solutions to the marching cube algorithm. (d) A 3D polygonal wireframe surface 
bounding volume-rendered voxels
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manually selected. There are 256 possible solutions to an eight-voxel cell analysis, 
but given rotational symmetries, this number can be reduced to only 15 potential 
answers (Fig. 10.13c). After cleaning up some inconsistencies and imposing some 
rules governing maximal surface folding, the algorithm produces a set of vertices 
defining a mesh of triangles which enclose the selected voxels (D).

The number of triangle faces produced by the marching cube algorithm depends 
on the voxel resolution. An ideal solution contains just enough faces to efficiently 
enclose the 3D region of interest. However, the speed of rendering a surface is 
directly related to the number of faces to draw. Most efficient surfaces have less than 
40,000 faces, yet the first approximation of the marching cube algorithm will often 
yield over a million faces. The face count can be reduced by either averaging across 
two or more voxels before executing the marching cube algorithm or by using a 
surface simplification routine on the final surface.

A variety of choices are available when rendering a surface to the display 
(Fig. 10.14). Drawing the mesh of triangles which connect the vertices defining the 
surface produces a wireframe (Fig. 10.14a) which is transparent. Triangles can be 
filled with a chosen solid color (Fig. 10.14b), and the wireframe triangles can be hid-
den (Fig. 10.14c). This reveals the faceted reflections of the light bouncing off the 
triangles. This facet effect is caused by the 3D lighting calculations of the  display 

Fig. 10.14 Surface rendering. A portion of a folded surface reconstruction rendered as a wire-
frame (a), a wireframe filled with green (b), a green surface without the wireframe (c), and a green 
surface with reflection normals moved to the center of vertices (d)
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system, which depend upon a surface normal that has been generated for each sur-
face triangle. The normal is a spatial vector pointing away from the center of each 
triangle, and this vector is orthogonal to the plane of each triangle. The normal guides 
light in the scene directly to the triangle face, where it is reflected, producing a fac-
eted appearance. This reflection can be removed by forcing the rendering engine to 
use normals centered on the triangle vertices rather than the center of triangle faces, 
which produces reflections of a smoother, more natural surface (Fig. 10.14d).

Surface reconstructions produce virtual representations of objects in 3D. While 
they appear less like the original object compared to projections and volume render-
ings, the segmentation process for surface reconstructions is a necessary first step to 
quantifying anything in the dataset. The process of segmenting dataset voxels based 
on intensity (or some other specific criteria) provides a framework for calculating 
volumes (the number of voxels multiplied by the volume of a single voxel) and 
counting objects (the number of independent regions with directly connected vox-
els). Surface areas are easily determined by adding together the areas of triangles 
enclosing virtual objects of interest.

10.5  The Steps to Reconstruction

Three possible reconstruction pathways are shown in Fig. 10.15. Each path is based 
on the main types of reconstruction that can be produced, and the flow chart points 
out the main steps that will be required to achieve the desired result. Note that 
results obtained in more complicated reconstructions may contribute to other types 
of visualizations. The steps to reconstruction can be reduced to seven basic pro-
cesses that must be followed in order, but it should be clear that not every step is 
required to produce a 3D visualization.

Most 3D reconstruction software systems perform similar functions (Clendenon 
et al. 2006; Rueden and Eliceiri 2007), but it is beyond the scope of this chapter to 
produce a guide to reconstruction for each system. As is generally true with soft-
ware, the more you pay, the more power you get. Each system should have a user 
guide to the functions, and with luck, some tutorials designed to reduce the learning 
curve for novice users. This section will present a more philosophic approach to 3D 
reconstruction and attempt to describe the generic steps to performing this compli-
cated task.

10.5.1  Planning

When building (or rebuilding) any structure, it is always helpful to have a plan. In 
3D reconstruction, this means gathering as much information about the sample as is 
feasible and to have some idea of what the final product will include. For example, 
what is the approximate real size of the largest and smallest features to be 
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reconstructed? That information will guide the microscopist to select an objective 
with enough resolving power and sufficient field of view. In some cases, there is no 
objective that will work well for both resolution and view field. This typically is true 
when the entire object is too large to fit in the view of an objective needed to resolve 
the smallest features of interest. In those situations, it’s best to use the higher power 
objective for the best resolution of the smaller features. The microscopist should 
then plan to collect overlapping fields of view in acquisition and then realign all the 
parts into one complete dataset.

There should be specific goals in place. Ask yourself which products will result 
from the reconstruction? Are you attempting to visualize the sample from unique 
3D perspectives? Will you need to subdivide the structure into components to study 
how they fit together? Do you wish to quantify some spatial characteristics of your 
sample? The answers to these questions will determine which tasks you must per-
form and will lead you to an efficient path to your goals.

Fig. 10.15 The reconstruction process flowchart. The steps required to reconstruct will depend 
upon the type of result desired. (Red) Simple 3D visualizations generated using maximum projec-
tion methods only require a confocal z-series. (Green) Volumes rendered in perspective may need 
some intensity adjustment and the assignment of a suitable RGBA lookup table. (Blue) Surface 
reconstructions and any 3D measurements will require segmentation of the volume into regions of 
interest. The dashed arrows between pathways indicate that results from one path can contribute to 
other types of reconstruction. For example, the segmentation output of a surface reconstruction can 
be used to assign textures to multiple regions of a volume render (instead of using an RGBA 
lookup table)
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10.5.2  Acquisition

Most of the content of this book is aimed at improving the readers’ ability to acquire 
quality confocal images, but it is worth repeating that collecting the best dataset pos-
sible will greatly influence the reconstruction process. All of the issues previously 
discussed apply, especially maximizing contrast and resolution in the images. The 
basic rule is to enhance the visualization of the regions of interest as much as possible.

Your raw image data will be collected using your specific model confocal micro-
scope’s software system. Every manufacturer’s software suite saves z-series image 
stacks in a different format, so it is important to understand how your system stores 
these images. Furthermore, every 3D reconstruction program reads these image 
stacks in a different manner, so you must also be prepared for the possibility that 
you might need to reformat your original data in order to move it into the 3D soft-
ware. Hopefully your 3D software can read the raw data format of your confocal 
microscope, but if not, the best solution is to export z-series into TIFF format images 
using filenames that are in the correct order when alphabetically sorted. If you must 
export TIFF images, you must also keep different confocal channel images in sepa-
rate, appropriately named folders. As explained elsewhere in this book, it is best to 
avoid using JPEG format when moving 3D datasets.

Another consequence of exporting TIFF images is that spatial information may 
not be read with the data into the 3D software. If you plan to produce quantitative 
information using physical units, be prepared to know the pixel size and z-slicing 
distance. Most 3D systems ask for the size of a single voxel as an x,y,z input. Be 
sure to report all of these values in the same units (e.g., micrometers).

10.5.2.1  Deconvolution

Deconvolution of confocal image data may seem unnecessary, but this process can 
actually remove a noticeably large proportion of the background noise, especially in 
the z-plane, and greatly assist in later reconstruction steps. Deconvolution should 
really be considered an adjustment method, but because its implementation has 
more stringent image acquisition requirements, it is best to mention it here. Any 
discussion of the process of deconvolution would be beyond the scope of this chap-
ter, so the reader is greatly encouraged to consider recent papers for a general intro-
duction (Biggs 2004, 2010; Feng et al. 2007; McNally et al. 1999).

10.5.3  Alignment

One of the more difficult and tedious tasks in reconstruction is aligning the serial 
slices of the 3D image set. When serial tissue slices from a microtome are mounted, 
stained, and photographed, the slices must be returned to their original positions by 
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transforming the images (moving in x and y directions and rotating). Often, the 
process of cutting the tissue will change the shape of serial slices as the sample is 
dragged across a sharpened knife. For confocal data, this step is completely unnec-
essary. The sample remains intact, the serial slices are obtained optically, and every 
image is collected in perfect alignment to the entire sample.

However, circumstances do arise when it becomes necessary to align multiple 
confocal datasets into one large dataset. Consider the case where larger features of 
interest cannot fit into the field of view of the objective required to resolve the small-
est regions of interest. In these situations the entire range of features can be obtained 
by tiling 3D image sets together. Many modern confocal microscopes come 
equipped with automated x-y stages and software which will stitch together neigh-
boring z-series into large 3D image datasets.

10.5.4  Adjustment

Typically, if you were carefully setting the gain and offset during acquisition, your 
confocal images should need little adjustment beyond minor changes in brightness 
or contrast. Please keep in mind the guidelines for scientific data as applied to 
images, such as those defined by the Microscopy Society of America (Mackenzie 
et al. 2006). However, it might be necessary to adjust the intensity values in the 
images to enhance the differentiation of regions of interest for thresholding or man-
ual segmentation procedures to follow. Always remember that it is important to 
keep a record of these procedures and to report them in any scientific reports so that 
your results are repeatable.

Most 3D software suites provide image adjustment functions that will alter the 
brightness data in the images either in individual slices, across all slices, or even 
using 3D kernels as image filters. These functions are strictly to be used to help dif-
ferentiate regions of interest when necessary. Some “automatic” segmentation rou-
tines work best when regions of interest have sharp boundaries based on intensity, 
and these functions can often help the efficiency of those routines. When manual 
segmentation procedures will follow, these adjustment routines greatly assist the 
observer in finding regional boundaries.

As an example, consider the application of the histogram equalization function. 
Histogram equalization is often used to increase contrast in an image by “equaliz-
ing” the frequency of pixel intensities across the available range. The effect of typi-
cal unrestrained histogram equalization is shown in Fig. 10.16a and b. For confocal 
images, this type of equalization tends to emphasize the out-of-focus epifluores-
cence, which tends to defeat the purpose of optical slicing. A better solution is to 
apply the histogram equalization function repeatedly over smaller, more contextual 
regions of the image in a procedure called local adaptive histogram equalization. 
This greatly maximizes contrast, making hidden regions more visible, but also 
greatly enhances the background noise and produces shadows at image intensity 
edges (Fig. 10.16c).

10 3D Reconstruction of Confocal Image Data



298

Fig. 10.16 Image adjustment. Histogram equalization. (a) A raw image and the corresponding 
histogram. (b) The result of a typical unrestrained histogram equalization. (c) Local adaptive his-
togram equalization without contrast limit. The effect of increasing the contrast limit in adaptive 
histogram equalization to 5 (d), 10 (e), and the maximal 15 (f)
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10.5.4.1  Contrast-Limited Adaptive Histogram Equalization (CLAHE)

This is a procedure originally developed for medical imaging and can be quite help-
ful in enhancing low-contrast images without amplifying noise or shadowing edges. 
Briefly, CLAHE works by limiting the amount of contrast stretching allowed in 
small local areas based on the contrast already present. So in regions where inten-
sity is uniform, the amount of equalization is reduced, and the noise is not empha-
sized. The CLAHE effect is typically set by variably adjusting the degree of contrast 
stretching to be applied in local areas, and this is demonstrated in Fig. 10.16d–f. For 
the purpose of regional segmentation, the adjusted image in Fig. 10.16d would be far 
easier to differentiate than the original for both automatic and manual procedures.

10.5.4.2  Z-Drop

The sample itself will often interfere with both excitation light on the way in and 
emission light on the way out (Guan et al. 2008; Lee and Bajcsy 2006; Sun et al. 
2004). The effect of this is to produce an image set where the average intensity of 
each optical slice appears to be reduced in deeper z-sections (a phenomenon termed 
z-drop, see Fig.  10.17). Most automated segmentation routines used threshold- 
based rules based on voxel intensity; thus it would be desirable that voxel intensity 
within regions of interest be uniform throughout the sample. Many 3D reconstruc-
tion systems offer routines to correct for z-drop as an adjustment procedure.

Fig. 10.17 Correcting for z-drop in confocal data. Volume rendering (XZ view) of confocal data-
set showing the effect of z-drop through the depth of the sample (right). Following correction (left), 
voxel intensities have been adjusted so that average intensity is more nearly constant with depth
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It is often possible to correct z-drop in the acquisition process by systematically 
adjusting laser intensity or detector gain (or both) as deeper optical slices are col-
lected. Many confocal microscope control systems include a routine which will 
adjust these settings with optical depth, usually based on linear models of the 
z-drop effect.

10.5.5  Segmentation

Segmentation is the process of dividing the image dataset into regions of interest. 
This is often the most time-consuming task and typically requires a great deal of 
expertise. It is worth noting here that segmentation is required in order for any 
measurements to be collected. In the simplest case, a confocal dataset collected 
in a single fluorescent channel can be divided into two regions: fluorescent signal 
and background. Segmenting this channel using a fast, automated method is a 
matter of choosing a threshold intensity value that discriminates between these 
regions. However, the selection of a single threshold value that will apply across 
every optical slice is often thwarted by effects such as noise or z-drop. When such 
problems cannot be otherwise corrected in acquisition or by adjustment, manual 
segmentation methods are usually necessary. In this simple case, that may involve 
selecting a different threshold appropriate for each optical slice (to subvert condi-
tions like z-drop) or manually editing the results of an automatic segmentation to 
remove artifacts.

An example of a segmentation editor is shown in Fig. 10.18. This routine is from 
the 3D software Amira (www.visageimaging.com) and offers a slice-by-slice view 
of the data from any perspective in addition to a selection of automated and manual 
selection tools. In the sample shown, a threshold has been set in the Display and 
Masking section to select all voxels (in the entire confocal dataset) with an intensity 
greater or equal to 64. Those voxels were then placed in a material named “myocar-
dium” and outlined in green. This material data is saved in a separate label data file 
associated with the image data.

Once the nonfluorescent background has been isolated from the fluorescent sig-
nal, further refinements are possible. For the sample data shown in Fig. 10.18, it was 
decided to further segment the fluorescent signal into two histologically relevant 
regions: trabecular myocardium and compact myocardium. Obviously these regions 
cannot be isolated based on voxel intensity, so manual segmentation by an 
 experienced observer is required. In Fig.  10.19, the “myocardium” material was 
renamed “compact myocardium,” and a second material “trabecular myocardium” 
has been defined and color-coded red. The background material “exterior” was 
locked (to prevent any changes), and a large paintbrush was used on each optical 
slice to select voxels from the green regions that belong in the red material. For 170 
optical slices and a trained observer, this procedure took about 2 hours.

More sophisticated approaches to automatically segmenting confocal data 
have been reported (Lin et  al. 2003; Losavio et  al. 2008; Rodriguez et  al. 2003; 
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Fig. 10.19 Segmenting confocal data based on manual selection. The automatically segmented 
data in Fig. 10.18 was further separated into trabecular (red) and compact (green) myocardium on 
each optical slice by manual selection using the drawing tools

Fig. 10.18 Segmenting confocal data based on threshold. The segmentation editor in Amira 
(www.visageimaging.com) was used to locate voxels with intensity values between 64 and 255 
(see the Display and Masking section on the right). The selected voxels are assigned to the material 
“myocardium” and outlined in green. Although only one slice is shown, the selection was com-
pleted on all 170 optical slices simultaneously
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Yi and Coppolino 2006), and some have even been made available in some special-
ized 3D software programs. These methods are usually based on finding the edges 
of regions based on voxel intensity, and some use filters based on the shape and size 
of the regions they expect to locate. As such, these routines require the image data 
to have the best contrast available (the data uses most of the available brightness 
spectrum), and the resolution should be optimal (and probably even deconvolved). 
While these routines can save time, the results will still contain errors and require 
some manual editing.

10.5.6  Modeling and Visualization

Most modern computers can now render 3D models practically in real time; thus 
visualized results are often rendered repeatedly until desired results are obtained. 
These computational speeds also make it easier to render animation frames, where 
the subject changes position or rotates in the field of view in a series of predeter-
mined steps. Nearly all 3D software programs offer methods of generating anima-
tions in AVI or MPEG format or can generate a folder full of single frames suitable 
for import into digital movie applications such as Adobe Premiere.

The amount of information conveyed in a 3D visualization can be augmented 
with just a little extra work. Consider the data from the confocal dataset from the 
previous segmentation example now portrayed in Fig. 10.20. In (A), the middle 50 
optical slices are shown as a maximum projection image generated immediately 
after acquisition. If all 170 optical slices had been included in the projection, the 
interior detail of the trabecular myocardium inside the ventricle would have been 
obscured (see Fig. 10.1c). In Fig. 10.20b, all of the data is visualized in a volume 
render using an RGBA lookup table which renders the background noise as trans-
parent. The more intense voxels are rendered more opaque. The 3D nature of the 
sample is more apparent, and the trabecular myocardium can now almost be dif-
ferentiated from the compact myocardium. In (C), the volume render has made use 
of the segmentation data to color code the two histological types of myocardium, 
and the discrimination of trabeculae inside the ventricle wall composed of compact 

Fig. 10.20 Reconstruction models. (a) Projected data from the middle 50 slices (of 170). (b) 
Volume rendering of all 170 optical slices. (c) Volume rendering using manual segmentation to 
highlight trabecular (red) and compact myocardium (green)
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myocardium is clear. Note that (C) is not a surface reconstruction but a special 
 volume render utilizing the segmentation data to color-code voxels and adding dif-
fused lighting and specular effects.

While single images of 3D models are easy to publish, often it is of value to share 
a model which can be viewed from multiple angles. This has typically involved sup-
plying a supplementary animation file with a guided tour of the object as directed by 
the filmmaker. It is now possible to include 3D objects entirely within the Adobe 
Acrobat PDF file format (www.adobe.com) such that the data can be interactively 
manipulated by anyone with the PDF file (Ruthensteiner and Hess 2008). Note that 
only surface reconstruction data (not volume renders) can be imported into PDF 
files as of the writing of this chapter.

10.5.7  Measurement

Measurements obtained from 3D datasets are based on the spatial dimensions of 
single voxels in the data. For example, if the size of a single voxel is 
1 mm × 1 mm × 1 mm, then the smallest volume that can be measured is a single 
voxel, or 1 mm3. To determine the volume of a fluorescent object in an image data-
set, it is necessary to identify (segment) and then count the voxels in that object. The 
total volume will then be the voxel count multiplied by the volume of a single voxel.

The calculation of surface area will require a surface reconstruction. In this case, 
the individual triangles within the surface will each have unique areas determined 
by the x,y,z coordinates of the three vertices of each triangle. The planar areas of 
each triangle are calculated and summed to produce a total surface area. (One can 
appreciate why surface calculations proceed more slowly when there are millions of 
triangles.)

The segmentation data of Fig. 10.19 was used to make the surface reconstruc-
tions shown in Fig. 10.21. Figure 10.21a is a surface model of the voxels contained 
in both segments. For segmented data and surface reconstructions, it is possible to 
model the segments together (Fig. 10.21b) or independently (Fig. 10.21c–d). The 
volume and surface area measurements for the defined segments are shown in 
Table 10.1.

Most 3D software systems with measurement capabilities will further subdivide 
each material into regions based on voxel connectivity. That is, an isolated island of 
contiguous voxels is considered a region separate from other voxel regions. Material 
statistics can be gathered for materials based on regions, which are useful for count-
ing cells, or nuclei, or any other objects that exist as isolated fluorescent entities.

Figure 10.22a shows a field of fluorescently stained nuclei that were segmented 
using an automatic threshold and then surface rendered (Fig. 10.22b). Material sta-
tistics generated on this segmentation yields the data in Table  10.2, where the 
nuclear material has been analyzed based on region (the table is abbreviated). 
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The analysis provides a total count of the regions revealing that 139 isolated regions 
were identified. The volume; voxel count; x,y,z center coordinates; and mean voxel 
intensity within each region are provided. The data can be exported for more com-
plex analyses. Note that this data from Amira is sorted by volume. It is a task left to 
the experimenter to decide if the smallest regions (nuclei with volumes of 1 μm3) 
are noise

Fig. 10.21 Surface reconstructions from segmented confocal data. (a) Surface from threshold- 
based automatic segmentation. (b) Surface from data in (a) manually segmented into trabecular 
(red) and compact (green) myocardium. Segmented regions of interest allow separate rendering (c, 
d) and measurement

Table 10.1 Measurements from 3D reconstructed confocal data

Material Voxel count Volume (m3) Surface area (m2)

Exterior 7,083,350 0.760
Trabecular myocardium 1,838,729 0.197 21.4
Compact myocardium 2,219,041 0.238 7.3
Total 11,141,120 1.196

Voxel size = 5.08 × 5.08 × 4.14 μm
Total dataset is 256 × 256 × 170 voxels
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Table 10.2 Regional measurements

Nr Region Voxel count Volume CenterX CenterY CenterZ Mean

1 Exterior 1 2,196,590 116823.1 93.6 119.4 5.3 13.0
2 Nuclei 139 13,248 704.5 44.7 133.3 6.2 78.6
3 Nuclei 138 13,229 703.5 122.8 96.4 5.5 81.3
4 Nuclei 137 9868 524.8 104.0 111.3 5.6 87.6
5 Nuclei 136 9134 485.7 93.1 92.6 6.2 89.2
6 Nuclei 135 8511 452.6 62.9 114.3 5.5 71.9
7 Nuclei 134 8500 452.0 80.5 105.9 5.1 79.1
8 Nuclei 133 8015 426.2 72.0 83.7 5.7 82.0
9 Nuclei 132 7334 390.0 78.5 92.4 5.6 84.9
10 Nuclei 131 7048 374.8 77.6 123.0 5.6 73.6
… … … … … … … …
138 Nuclei 3 19 1.0 41.4 149.6 6.83 59
139 Nuclei 2 19 1.0 93.7 72.6 2.9 57
140 Nuclei 1 19 1.0 82.3 91.4 8.8 62

Fig. 10.22 Counting nuclei in segmented confocal data. (a) Voxel rendering of a field of stained 
nuclei. (b) The nuclei were segmented using an automated threshold for a surface reconstruction. 
Material statistics for the regions in this segmentation report volume, spatial location, and fluores-
cence intensity data for each nucleus (see Table 10.2)

The measurement routines in most 3D software systems will provide the basic 
data described here. Some provide more sophisticated tools, but these systems tend 
to be more expensive and will have highly specialized functions of little use to 
everyone. Thus, the last advice this chapter can offer is that the user should have 
some knowledge of the type of quantitative measures needed and to carefully select 
software that will fulfill the research requirements.
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