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Abstract
Viruses cause significant diseases on maize
worldwide. Intensive agronomic practices,
changes in vector distribution, and the intro-
duction of vectors and viruses into new areas
can result in emerging disease problems.
Because deployment of resistant hybrids and
cultivars is considered to be both economically
viable and environmentally sustainable, genes
and quantitative trait loci for most economically
important virus diseases have been identified.
Examination of multiple studies indicates the
importance of regions of maize chromosomes 2,
3, 6, and 10 in virus resistance. An understand-
ing of the molecular basis of virus resistance in

maize is beginning to emerge, and two genes
conferring resistance to sugarcane mosaic virus,
Scmv1 and Scmv2, have been cloned and
characterized. Recent studies provide hints of
other pathways and genes critical to virus
resistance in maize, but further work is required
to determine the roles of these in virus suscep-
tibility and resistance. This research will be
facilitated by rapidly advancing technologies
for functional analysis of genes in maize.

12.1 Introduction

Viruses cause significant disease in crops world-
wide (Gomez et al. 2009; Kang et al. 2005), and
they account for the majority of emerging diseases
in plants (Anderson et al. 2004). In maize, losses
due to virus diseases were estimated at 3% (Oerke
and Dehne 2004). Based on estimated production of
875 million tonnes worldwide (Ranum et al. 2014),
losses would be about 26 billion tonnes of grain
valued at about 4.5 billion USD. Although more
than 50 virus species can infect maize (Lapierre and
Signoret 2004), only about a dozen of these cause
significant disease problems (Stewart et al. 2016;
Redinbaugh and Zambrano Mendoza 2014).

In contrast to most fungal and bacterial
pathogens, viruses are obligate intracellular
pathogens, dependent on the host cell for repli-
cation (Hull 2002). Plant virus genomes may
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consist of double-stranded or single-stranded
RNA or DNA, may have a single genome seg-
ment or be multipartite, and generally encode
fewer than 20 genes. Viruses generally enter
plant cells due to mechanical disruption of the
cell wall and membrane resulting from insect
feeding, abrasion, or other means of wounding.
Most maize-infecting viruses are transmitted by
Hemipteran insects, but maize chlorotic mottle
virus (MCMV) and wheat mosaic virus (WMoV,
the causal agent of High Plains disease) are
transmitted by thrips or beetles and mites,
respectively (Cabanas et al. 2013; Nault et al.
1978; Stenger et al. 2016). Some viruses can also
be transmitted through seed (Albrechtsen 2006),
but well-documented rates of seed transmission
are low for maize-infecting viruses (Johansen
et al. 1994). In general, virus diseases occur
when a source of virus and competent vectors
occurs together with a susceptible host under
suitable environmental conditions. Agronomic
approaches to virus disease control include
chemical control of insect vector populations,
adjusting planting dates to avoid vectors,
removal of weedy virus reservoirs and crop
rotation. However, strong genetic resistance to
most maize-infecting viruses has been identified,
providing an economically sound, environmen-
tally sustainable approach for disease control.

For the past 50 years, several viruses have
caused, and continue to cause, significant agri-
cultural problems in maize. Viruses in the family
Potyviridae, primarily maize dwarf mosaic virus
(MDMV) and sugarcane mosaic virus (SCMV),
cause disease on maize everywhere the crop is
grown (Stewart et al. 2016). Maize streak, caused
by the geminivirus, maize streak virus (MSV), has
been known for more than 100 years across
sub-Saharan Africa, where it continues to cause
significant food insecurity (Martin and Shepherd
2009). The rhabdovirus maize mosaic virus
(MMV) was identified as a pathogen in 1960
(Herold et al. 1960), but the disease caused by the
virus has been known for centuries in the tropics
and sub-tropics where its planthopper vector is
prevalent (Brewbaker 1979; Brewbaker 1981;
Lapierre and Signoret 2004). The fijiviruses,
maize rough dwarf virus (MRDV), and rice

black-streaked dwarf virus (RBSDV), first
emerged in Europe in the late 1940s (Lapierre and
Signoret 2004). These viruses continue to cause
crop losses there and in China, where agronomic
practices facilitate large populations of virulifer-
ous vectors. In South America, the related fiji-
virus, Mal de Rio Cuarto virus (MRCV)
(Bonamico et al. 2010; Lapierre and Signoret
2004), also causes problems for farmers and seed
producers. Disease caused by all of these viruses
is controlled, at least to some extent, with resistant
or tolerant maize hybrids and cultivars.

The recent emergence of two virus diseases
is currently of concern. The most important is
maize lethal necrosis (MLN), which results
from the synergistic interaction of maize
chlorotic mottle virus (MCMV) with another
virus, usually from the family Potyviridae
(Niblett and Claflin 1978). MLN was first
described in the 10–70s in Kansas and Nebraska
in the USA, where it caused significant but
localized problems. Since 2011, however, MLN
has rapidly emerged in sub-Saharan East Africa
where it can cause up to 100% losses of maize
crops (Mahuku et al. 2015; Wangai et al. 2012).
MLN has also recently emerged and spread in
China, Taiwan and Ecuador (Deng et al. 2014;
Quito-Avila et al. 2016; Xie et al. 2011).
Disease emergence has been closely tied to the
presence of the MCMV vector, maize thrips
(Frankliniella williamsii Hood), and to multiple
annual maize crops (Cabanas et al. 2013;
Mahuku et al. 2015). High Plains disease caused
by WMoV was first discovered in the 1990s on
maize in the US Midwest (Jensen et al. 1996).
WMoV continues to cause important disease in
wheat, and seed and sweet corn (Stewart et al.
2016). The disease causes problems for seed
companies and maize breeders due to a potential
for seed transmission (Jensen et al. 1996) that
has led to phytosanitary restrictions to seed
movement.

In model systems, we have some under-
standing of the molecular and genomic interac-
tions among the host plant, viral pathogen, and
insect vector that lead to virus susceptibility or
resistance, but we are just beginning to define
these events in cereal crops like maize.
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12.2 Genome Sequencing
for Virus Diagnostics
and Characterization

Increasingly, next-generation sequencing
(NGS) approaches are being used to identify
viruses and characterize their populations in
plants. Because most plant-infecting viruses have
RNA genomes (and viruses with DNA genomes
still make RNA transcripts), RNA-Seq approa-
ches have been favored for these analyses. For
maize, NGS was used to identify MCMV and
SCMV in MLN-affected plants (Adams et al.
2013) and was subsequently used to demonstrate
sequence homogeneity and diversity among
MCMV and SCMV populations, respectively, in
MLN-affected maize (Mahuku et al. 2015). NGS
was also used to identify Johnsongrass mosaic
virus (JGMV) in samples from Kenya and
Uganda, and further experiments demonstrated a
role for this virus in causing MLN (Stewart et al.
2017). A new polerovirus, tentatively named
maize yellow mosaic virus, was identified in
southwestern China using NGS (Chen et al.
2016) and was subsequently found in maize from
southeastern China, Ecuador, and sub-Saharan
Africa (Bernreiter et al. 2017; Palanga et al.
2017; Wang et al. 2016, Stewart et al. unpub-
lished results). Similarly, a genome sequence
related to fungal totiviruses was identified in
maize (Chen et al. 2016). The clear utility of
NGS for defining virus sequences and their
diversity in crops indicates that this platform will
become increasingly valuable as a diagnostic
tool. However, the biological and epidemiologi-
cal roles of the identified viruses must still be
characterized to determine the role(s) of specific
viruses identified by NGS in disease.

12.3 The Genetics of Virus
Resistance in Maize

With few exceptions, maize inbred lines with
strong virus resistance have been identified. In
these lines, virus inoculation produces no or few
symptoms. Importantly, the virus is excluded
from or is found at significantly reduced titer in

systemic plant tissues. An important exception to
this is MCMV. For this virus, tolerant maize
inbred lines developing few or no symptoms
after inoculation with MCMV have been identi-
fied, but the virus is present at high titer in sys-
temic tissues in these lines (Jones et al. 2018).
Resistance has been associated with both domi-
nant genes, such as those for resistance to poty-
viruses, and quantitative trait loci (QTL) with
additive or dominant gene action, such as those
for resistance to maize chlorotic dwarf virus
(MCDV), maize rayado fino virus (MRCV), or
maize mosaic virus (MMV) have been identified
(Redinbaugh and Zambrano Mendoza 2014).
Here again, MCMV is an exception, with a major
QTL that have recessive character having been
identified in two populations (Jones et al. 2018).
Major QTL generally account for more than 20%
of the phenotypic variation for resistance,
although this is highly dependent on the popu-
lation. Minor QTL, accounting for less than 10%
of the phenotypic variance, have also been
identified for resistance to several viruses.

12.3.1 Genetics of Potyvirus
Resistance in Maize

Resistance to viruses in the Potyviridae has been
investigated in US, European, Chinese, and
tropical germplasm (reviewed in Redinbaugh and
Pratt 2008; Pratt and Gordon 2006; Liu et al.
2009b). A strong correlation between MDMV
and SCMV susceptibility was found among 122
European (Kuntze et al. 1997) and 155 U.S. and
tropical (Jones et al. 2007) maize inbreds. Only
three European lines (D21, D32, and
FAP1360A) displayed complete resistance to
SCMV and MDMV. The US line Pa405 and the
Caribbean line Oh1VI are both completely
resistant to MDMV, SCMV, and wheat streak
mosaic virus (WSMV; Louie et al. 1991; Zam-
brano et al. 2014). Although minor gene resis-
tance to these viruses has been identified in some
lines, major loci for resistance have been identi-
fied in three genomic regions in all germplasm
tested. Resistance to MDMV in Pa405 is con-
ferred by a dominant resistance gene, Mdm1,
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which mapped to the short arm of chromosome
(chr.) 6 (McMullen and Louie 1989). Two or
three genes involved in resistance to SCMV were
identified in different crosses, and two dominant
major resistance genes, Scmv1 and Scmv2, were
mapped on the short arm of chr. 6, and near the
centromere of chr. 3, respectively (Melchinger
et al. 1998). These resistance genes interact
epistatically and are simultaneously required for
expression of complete resistance to SCMV.
Scmv1 provides resistance at all developmental
stages, and Scmv2 is expressed at later stages of
plant development (Xia et al. 1999). Pa405 car-
ries three genes for resistance to WSMV: Wsm1
on the short arm of chr. 6, Wsm2 near the cen-
tromere of chr. 3, and Wsm3 on the long arm of
chr. 10 (McMullen et al. 1994). Thus, Mdm1,
Scmv1, and Wsm1 map to the same location, as
do Scmv2 and Wsm2.

In four separate studies, near-isogenic lines
(NIL) carrying the Scmv1 and Scmv2, or Wsm1,
Wsm2, and Wsm3 genes in various combinations,
were tested for their responses to potyvirus spe-
cies and isolates (Jones et al. 2011; Lubberstedt
et al. 2006; Stewart et al. 2013; Xing et al. 2006)
(Table 12.1). Inoculation of isogenic homozy-
gous lines carrying resistance or susceptibility
alleles derived from FAP1360A at Scmv1 or
Scmv2 with the Seehausen isolate of SCMV
(SCMV-Gr) and an Israeli isolate of MDMV
(MDMV-MD) indicated that single gene was
insufficient for resistance to either virus (Xing
et al. 2006). The F7RR/RR line carrying both
genes was completely resistant to SCMV-Gr, the
Ohio isolate of MDMV (MDMV-OH),
MDMV-MD, and the Ohio isolate of WSMV
(WSMV-OH) (Lubberstedt et al. 2006). How-
ever, this line was susceptible to the Ohio SCMV

Table 12.1 Responses of lines carrying resistance loci on chromosomes 6, 3, and 10 to inoculation with potyvirus
isolatesa

Chrd Virus isolatee

S recurrent
parent

R sourceb Linec 3 6 10 M-OH M-It M-MD S-OH S-Gr J-Tx Sr W

F7 FAP1360A F7RR/RR ✓ ✓ Rf S R S R – – R

F7RR/SS ✓ S S S S S – – –

F7SS/RR ✓ R S S S V – – –

F7 control S S S S S – – S

Oh28 Pa405 Oh28RR/RR/SS ✓ ✓ R R – R R R R R

Oh28SS/RR/RR ✓ ✓ R – – S – R R R

Oh28SS/RR/SS ✓ R S – S R R R R

Oh28RR/SS/SS ✓ S S – S S S S R

Oh28SS/SS/RR ✓ S – – S – S S R

Oh28 control S S – S S S S S
aThe results presented are summarized from Jones et al. (2011), Lübberstedt et al. (2006), Stewart et al. (2013), Xing
et al. (2006)
bThe potyvirus resistant inbred line used as donor parent to generate near-isogenic lines. F7 and Oh28 were the
potyvirus susceptible lines used as recurrent parents
cNear-isogenic lines (NIL) with resistance loci introgressed from the indicated resistance source. The superscripts xx/yy
and xx/yy/zz indicate the presence of resistance (R) or susceptible (S) alleles on chr. 3 (x), 6 (y), and 10 (z)
dChromsome; the check marks indicate the presence of resistance loci from chromosome 3, 6, or 10
eThe virus isolate tested. M-OH maize dwarf mosaic virus (MDMV) Ohio isolate; M-It MDMV Italian isolate; M-MD
MDMV Israel isolate; S-OH sugarcane mosaic virus (SCMV) Ohio isolate; S-Gr SCMV Seehausen isolate; J-Tx
Johnsongrass mosaic virus Texas isolate; Sr sorghum mosaic virus Texas isolate; W WSMV Ohio isolate; Wo wheat
mosaic virus Kansas isolate
fR resistant; S susceptible; V variable, expressing resistance at 7 dpi and susceptibility at 14 dpi; – not tested

188 M. G. Redinbaugh et al.



isolate (SCMV-OH) and an aggressive isolate of
MDMV from Italy (MDMV-It). Lines carrying
Scmv1 alone (F7SS/RR) provided resistance to
MDMV-OH and early resistance to SCMV-Gr,
but the Scmv2 gene alone (F7RR/SS) did not
provide any resistance. NIL carrying the Wsm1
gene from Pa405 (Oh28SS/RR/SS) were resistant to
MDMV-OH and SCMV-Gr, but not MDMV-It
or SCMV-OH. However, lines carrying both
Wsm1 and Wsm2 (Oh28RR/RR/SS) were resistant
to all potyviruses tested. These results suggest
that the Pa405-derived allele on chr. 6 (Wsm1) is
stronger than the allele from FAP1360A
(Scmv1). Although the patterns of resistance are
similar for FAP1360A- and Pa405-derived iso-
genic lines, these two inbred lines are only dis-
tantly related (Xu et al. 2000).

Although NIL homozygous for Wsm1 were
completely resistant to MDMV-OH, epistatic
resistance from Wsm2 and Wsm3, or closely
linked genes, was detected in NIL heterozygous
forWsm1 (Jones et al. 2011). NIL carryingWsm1
were resistant to JGMV and sorghum mosaic
virus (SrMV), and neither Wsm2 nor Wsm3
provided resistance on their own. Any of the
three genes, Wsm1, Wsm2, or Wsm3, provided
complete resistance to WSMV (McMullen et al.
1994). Together the results suggest that poty-
viruses and potyvirus isolates can vary in their
virulence against the resistance genes on chr.
3 and 6, and indicate a relative virulence of
(SCMV-OH * MDMV-It) > (SCMV-
Gr * MDMV-
OH * JGMV * SrMV) > WSMV. With the
significant genomic sequence diversity among
these viruses, it is of interest to identify the virus
factors that influence virulence to determine
whether conserved nucleotide or protein
sequences, or conserved three-dimensional
structures play roles in virus species and isolate
virulence.

12.3.2 Resistance to Other Viruses
in Other Families

In contrast to the potyviruses, which are easily
mechanically transmitted under greenhouse and

field conditions, many of the other important
maize-infecting viruses must be transmitted using
insect vectors, or more specialized techniques like
agro-infiltration (Boulton et al. 1989) or vascular
puncture inoculation (Louie 1995). Despite the
difficulties associated with assessing phenotypic
responses for obligately insect-vectored viruses,
the genetics of resistance to at least eight virus
diseases caused by potyviruses and eleven other
virus species has been characterized (Redinbaugh
and Zambrano Mendoza 2014). With our rapidly
evolving resources for genotyping maize popula-
tions (Elshire et al. 2011; Ganal et al. 2011),
genetic characterization of resistance has become
limited only by our ability to develop populations
and the ability to implement phenotypic analyses.
Increasingly, genotyped association mapping
populations, including the nested association
mapping population, are available to researchers
(Flint-Garcia et al. 2005; McMullen et al. 2009;
Romay et al. 2013). These populations may prove
invaluable for identifying virus resistance loci in
maize, if a sufficient proportion of the population
carries virus resistance.

Virus resistance loci have been found on nine
of the ten maize chromosomes. By estimating the
physical positions of markers for virus resistance
QTL on the B73 v3 genome, results of previous
studies were combined to identify nine clusters of
virus resistance loci on chr. 1, 2, 3, 6, 8, and 10
(Table 12.2). While the same QTL for a given
virus may have been identified in a number of
studies (reviewed in Redinbaugh and Zambrano
(2014), the positions of only the most well-defined
QTL for each virus were included in Table 12.2.

Five of the resistance QTL are associated with
a single virus, and three of these are for resis-
tance to maize streak virus (MSV), which is the
only DNA virus currently causing disease prob-
lems in maize. These are found in bins 1.06,
2.06, and 3.09 (Nair et al. 2015; Welz et al.
1998). The other two individual QTL are for
tolerance to MCMV and resistance to maize
stripe virus (Dintinger et al. 2005; Jones et al.
2018). One of the resistance locus clusters (chr.
8) includes only QTL for two highly related
fijiviruses in the family Reoviridae, suggesting
this locus might also be unique.
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Table 12.2 Overlapping virus resistance loci in maize

Chra Bin Midpoint (Mb)b Range (Mb) Virusc Familyd References

1 1.03 52.1 ± 3.2 41.1–67.7 MMV
MRCV

Rhabdoviridae
Reoviridae

Zambrano et al. (2014)
DiRenzo et al. (2004)

2 2.02 60.6 ± 5.6 8.0–199.9 MRCV
RBSDV
MSpV
MCMV

Reoviridae
Reoviridae
Phenuiviridae
Tombusviridae

Martin et al. (2010)
Luan et al. (2012)
Dinterger et al. (2005)
Jones et al. (2018)

2.08 222.3 ± 5.1 211.2–231.5 MFSV
MMV
MSpV

Rhabdoviridae
Rhabdoviridae
Phenuiviridae

Zambrano et al. (2014)
Zambrano et al. (2014)
Dinterger et al. (2005)

3 3.05 122.5 ± 22.7 56.8–161.2 WSMV
SCMV
MDMV
MMV
MSpV
WoMV
MSV
MCDV

Potyviridae
Potyviridae
Potyviridae
Rhabdoviridae
Phenuiviridae
Fimoviridae
Geminiviridae
Secoviridae

McMullen et al. (1994)
Ding et al. (2012)
Zambrano et al. (2014)
Ming et al. (1998)
Dintinger et al. (2005)
Lubberstedt et al. (2006)
Welz et al. (1998)
Jones et al. (2004)

4 4.08 212 ± 28.8 187.5–246.9 MRCV
MSV
MCDV

Reoviridae
Geminiviridae
Secoviridae

Bonamico et al. (2012)
Welz et al. (1998)
Jones et al. (2004)

6 6.01 27.3 ± 10.4 8.3–71.2 WSMV
MDMV
SCMV
MCDV
WMoV
MFSV
MMV

Potyviridae
Potyviridae
Potyviridae
Secoviridae
Fimoviridae
Rhabdoviridae
Rhabdoviridae

McMullen et al. (1994)
Zambrano et al. (2014)
Liu et al. (2017)
Zambrano et al. (2014)
Lubberstedt et al. (2006)
Zambrano et al. (2014)
Zambrano et al. (2014)

6.05 153.5 ± 4.0 148–157 MSV
MCMV

Geminiviridae
Tombusviridae

Pernet et al. (1999)
Jones et al. (2018)

8 8.07 173.1 168.6–173.1 RBSDV
MRCV

Reoviridae
Reoviridae

Luan et al. (2012)
Bonamico et al. (2012)

10 10.05 130.4 ± 8.6 86.4–137.5 MRFV
MNeSV
MCMV
BYDV
WSMV
MDMV
SCMV
MCDV
MSV
MSpV

Tymoviridae
Tombusviridae
Tombusviridae
Potyviridae
Potyviridae
Potyviridae
Potyviridae
Secoviridae
Geminiviridae
Phenuiviridae

Zambrano et al. (2014)
Zambrano (2013)
Jones et al. (2018)
Horn et al. (2015)
McMullen et al. (1994)
Zambrano et al. (2014)
Zhang et al. (2013)
Jones et al. (2004)
Pernet et al. (1999)
Dintinger et al. (2005)

aChr chromosome
bPhysical position in the B73 v3 genome
cMMV maize mosaic virus;MRCVMal de Rio Cuarto virus; RBSDV rice black-streaked dwarf virus;MSpV maize stripe
virus; MCMV maize chlorotic mottle virus; MFSV maize fine streak virus; WSMV wheat streak mosaic virus; SCMV
sugarcane mosaic virus; MDMV maize dwarf mosaic virus; WMoV wheat mosaic virus; MSV maize streak virus; MCDV
maize chlorotic dwarf virus; MRFV maize rayado fino virus; MNeSV maize necrotic streak virus
dFamily the virus family
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The major clusters of virus resistance loci
include the regions of the potyvirus resistance
clusters on chr. 3, 6, and 10 (Redinbaugh and
Zambrano Mendoza 2014). These regions also
carry loci for resistance to several fungal patho-
gens (Wisser et al. 2006) (Table 12.2). In addition
to potyviruses, these clusters encode resistance to
5, 4, and 7 other viruses, respectively. Two clus-
ters of virus resistance genes are present on chr. 2.
One, in bin 2.02, includes QTL for resistance to
three viruses in two different families (Di Renzo
et al. 2004; Jones et al. 2018; Luan et al. 2012;
Martin et al. 2010; Zambrano et al. 2014). In the
other, overlapping QTL provides resistance for the
rhabdoviruses MMV and MFSV and the tenui-
virus MSpV (Dintinger et al. 2005; Zambrano
et al. 2014). Similarly, clusters on chr. 4 and 6
(bin 6.05) confer resistance to two or three viruses
in different virus families. The virus species within
each cluster have little or no sequence identity,
have different tissue specificities, and employ
different replication and translation strategies.

Germplasm carrying strong resistance to one
group of viruses in these clusters is not neces-
sarily resistant to other types of viruses. For
example, inbred line Pa405 is strongly resistant
to potyviruses and WMoV; however, it is highly
susceptible to a number of other viruses for
which resistance loci are present on chr. 3, 6, and
10 including MCDV, MMV, MFSV, MNeSV,
and MRFV. Because most resistant inbred lines
used in these mapping studies carry resistance to
a limited range of virus families, it seems likely
that single loci are not responsible for providing
resistance to all viruses within a cluster.

The inbred line Oh1VI was developed from
an open-pollinated Virgin Island population as
highly resistant to MCDV (Louie et al. 2002) and
was subsequently found to be highly resistant to
MDMV, SCMV, and WSMV (Jones et al. 2007).
Further study indicated the line is highly resistant
to MRFV, MMV, MFSV, and MNeSV and
somewhat tolerant of MCMV (Zambrano et al.
2013; Mahuku et al. 2015; Jones et al. 2018).
The virus resistance present in Oh1V1 was
mapped to the same clusters previously identified
in comparisons of mapping studies using diverse
maize germplasm (Fig. 12.1). Further studies to

fine-map virus resistance in these clusters in
Oh1VI are ongoing. The results of these studies
could provide opportunities to examine roles for
a “birth and death” model, in which individual
genes in multigene families are created by gene
duplication and may later become inactivated or
deleted from the genome, for virus resistance
genes (Nei and Rooney 2005) or to identify
unique mechanisms for virus resistance (Gomez
et al. 2009).

12.4 Virus Resistance Genes
in Maize

12.4.1 Scmv1

Following the identification of major resistance
loci, Scmv1 and Scmv2, tremendous efforts have
been made to fine-map the two genes with
mapping populations derived from the European

MMV 

1 

MMV 
MFSV 

2 

MCMV 

Poty 
MCDV 

3 
Poty 

WMoV 
MCDV 
MFSV 
MMV 
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Poty 
MRFV 

MNeSV 
MCDV 

10 

Fig. 12.1 Virus resistance in maize inbred line Oh1VI.
The physical positions of markers associated with Oh1VI
virus resistance QTL were determined by comparison to
the B73 genome of research published. The positions of
six gene clusters on five maize chromosomes are indicated
by grey bars. The triangles indicate the mean position for
identified QTL peaks. Potyvirus includes maize dwarf
mosaic virus, sugarcane mosaic virus, and wheat streak
mosaic virus
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cross FAP1360A � F7 (Xu et al. 1999; Dussle
et al. 2003; Yuan et al. 2004; Ingvardsen et al.
2010), Chinese maize inbred lines (Lü et al.
2008; Zhang et al. 2003), and tropical germplasm
(Wu et al. 2007). Linkage mapping with three
segregating populations finally assigned Scmv1
to a 59.21 kb region of chr 6 containing three
predicted genes (Tao et al. 2013). Candidate
gene-based association mapping revealed that
ZmTrxH, encoding an atypical h-type thiore-
doxin, was most likely to be the candidate for
Scmv1 (Tao et al. 2013; Leng et al. 2015). Inbred
lines lacking the resistant allele of ZmTrxH
were highly susceptible to SCMV. ZmTrxH was
validated as Scmv1 through a transgenic comple-
mentation assay, and ZmTrxH transcript abun-
dance was demonstrated to be closely associated
with resistance to SCMV. Intriguingly, ZmTrxH
alleles from both resistant and susceptible lines
shared identical coding/proximal promoter
regions, but varied in their upstream regulatory
regions. In contrast to more than 30 other thiore-
doxins encoded by the maize genome, ZmTrxH
has an atypical WNQPS structure within the
thioredoxin active-site motif, in which the two
canonical cysteines found in the other thioredox-
ins are replaced by asparagine (N) and serine
(S) in both the resistant and susceptible alleles
(Liu et al. 2017). This change renders ZmTrxH
unable to reduce disulfide bridges, the typical
activity of thioredoxins; however, the ZmTrxH
protein has a strong molecular chaperone-like
activity. Thioredoxins have previously been
implicated in virus infection and resistance, with
the silencing of a maize m-type thioredoxin
enhancing systemic infection of SCMV (Shi et al.
2011). In addition, overexpression of a Nicotiana
benthamaniana h-type thioredoxin conferred
resistance to tobacco mosaic virus and cucumber
mosaic virus, two (+)-strand RNA viruses from
different families (Sun et al. 2010). ZmTrxH is
dispersed in the cytoplasm and suppresses viral
accumulation without eliciting the SA- or
JA-mediated pathogen defense signaling pathway
associated with R-gene-mediated resistance (Liu
et al. 2017). These results shed new insight into
plant viral defense mechanisms and define a

process which is obviously different from that
conferred by NB-LRR-type R genes.

12.4.2 Scmv2

Using a large isogenic mapping population,
Scmv2 was mapped to an interval of 1.34 Mb on
chr 3, covering four predicted genes possibly
involved in virus movement (Ingvardsen et al.
2010). Later, Scmv2 was fine-mapped to an
interval of 196.5 kb with two predicted genes,
encoding an auxin-binding protein (ABP1) and a
Rho GTPase-activating protein, as candidate
genes for Scmv2 (Ding et al. 2012). Candidate
gene-based association mapping revealed a sig-
nificantly associated marker 207FG003 in the
Scmv2 region (Leng et al. 2015). Combined
genome-wide association study (GWAS) and
linkage analyses revealed four genes at Scmv2,
and one of them, encoding ABP1, was the most
likely candidate for Scmv2 (Li et al. 2016). The
native ABP1 gene, including 1.7 kb of the pro-
moter region and 1 kb downstream of the coding
region, was isolated from the resistant line
FAP1360A and used for functional complemen-
tation assay (Leng et al. 2017). Susceptible
genotypes at the Scmv2 locus were complemented
by transgenic full-length ABP1 to confer resis-
tance, while downregulation of ABP1 by RNAi
resulted in susceptible plants. Sequence variation
in the ABP1 promoter region resulted in higher
expression that was associated with SCMV
resistance. The ABP1 protein has no effect on
SCMV replication, but it most likely confines
systemic viral infection by directly interacting
with Rubisco small subunit (RbCS) (Leng et al.
2017). Thus, the well-characterized gene ABP1
confers resistance to a potyvirus in plants.

Previous studies have implicated interactions
between the chloroplast and viral proteins in the
development of disease. In particular, interac-
tions between potyvirus coat proteins and
chloroplast components have been identified
(reviewed in Zhao et al. 2016). The RbCS protein
has been implicated in resistance to tomato
mosaic virus conferred by the Tm-22 gene
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product, which interacts with the viral movement
protein to prevent systemic virus movement
(Zhao et al. 2013).

12.4.3 Other Potential Virus
Resistance Genes

Recessive virus resistance genes in plants have
previously been associated with mutations in
translation factors (Robaglia and Caranta 2006),
and recessive alleles of eIF4e confer virus resis-
tance in several hosts (Diaz-Pendon et al. 2004;
Gomez et al. 2009). In this resistance mechanism,
the protein produced from the recessive allele fails
to interact with the virus and recruit the viral RNA
to cap-binding complex. In addition, eIF4e has
been shown to move from cell to cell, with some
alleles of eIF4e preventing cell-to-cell movement
of the potyvirus, pea seed-borne mosaic virus
(Gao et al. 2004). Within the larger genome
region of chr. 3 that carries QTL for resistance to
MCDV, MMV, and MRFV in the multi-virus-
resistant inbred line Oh1VI, the B73 genome
encodes two genes for the translation factor eIF4e
(Zambrano et al. 2014). However, these eIF4e
genes are not within the Scmv2 regions identified
in fine-mapping studies (Ding et al. 2012; Ing-
vardsen et al. 2010; Leng et al. 2017). The
recessive character of the MCMV tolerance QTL
that mapped to chr 6 in maize inbreds KS23-5 and
KS23-6 could be associated with a translation
factor. Genes encoding elongation factor 1 alpha
(eEF1A) are present on chr 6. In several plant
virus systems, eEF1A interact with viral replicases
and are thought to recruit viral RNAs to the
replication complex (Sanfacon 2015). Further
research is needed to determine whether transla-
tion factors play any role in virus resistance in
maize.

Although other virus resistance genes remain
to be identified from maize, pathogen-derived
resistance in transgenic maize expressing viral
RNAs derived from MCDV, SCMV, and MSV
has resistance to these viruses (Liu et al. 2009a;
McMullen et al. 1996; Shepherd et al. 2007;
Shepherd et al. 2014; Zhang et al. 2013).

In addition, maize expressing an E. coli ribonu-
clease specific for double-stranded RNA had
increased resistance to RBSDV (Cao et al. 2013).

12.5 Genomic and Transcriptomic
Responses to Viruses in Maize

Information on the responses of susceptible and
resistant maize to virus inoculation is accumu-
lating. In dicots, inoculation with viruses has
been shown to increase cellular stress and
defense gene expression, alter expression of
genes regulating development and hormone
responses, and increase expression of genes
involved in RNAi (reviewed in Whitham et al.
2006). For maize, the transcriptomic and pro-
teomic responses of resistant and susceptible
plants to infection with SCMV, MDMV, and
RBSDV have been studied. Despite the differ-
ences in these viruses—the potyvirus (SCMV
and MDMV) genomes are monopartite,
single-stranded, positive sense RNA, and the
RBSDV genome is multipartite, enveloped,
double-stranded RNA—there are common
themes in the responses of susceptible and
resistant maize. Similar to dicots, increased
levels of defense genes were noted in maize
inoculated with potyviruses or RBSDV up to 9
and at 50-day post-inoculation, respectively
(Cassone et al. 2014; Jia et al. 2012; Li et al.
2011; Shi et al. 2006; Uzarowska et al. 2009; Wu
et al. 2013a; Zhou et al. 2016). However, dif-
ferences in both specific transcripts/proteins that
accumulated and the timing of their accumulation
were noted between resistant and susceptible
maize inbreds, with the responses generally
being of greater magnitude and/or faster in
resistant plants. Other virus-related changes
included expression of genes associated with
carbohydrate and energy metabolism, protein
degradation, signal transduction, hormone syn-
thesis and response, and cell wall development.

Transcripts of genes with functions in RNA
interference (RNAi), the pathways used by many
organisms to regulate gene expression and virus
infections, accumulated in both RBSDV- and
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SCMV-inoculated maize. In experiments to
characterize siRNA associated with RBSDV
infection, inoculation of susceptible maize
resulted in accumulation of gene-specific tran-
scripts for dicer (Dcl1, 2, 3a), argonaute (Ago1a,
1b2, 18a) and RNA-dependent RNA polymerase
(Rdr6) (Li et al. 2017). Experiments to charac-
terize siRNA in susceptible maize after SCMV
inoculation revealed upregulation of Dcl2 and
Ago2, but downregulation of Dcl4 (Xia et al.
2014). Dcl2 accumulated in susceptible maize
inoculated with SCMV, MCMV or both viruses
(MLN), with significantly higher levels of tran-
script in MLN-inoculated plants, but expression
of other Dcl genes was either not affected or
reduced by virus inoculation (Xia et al. 2016). In
this system, Ago2A and Ago18a accumulated in
virus inoculated plants, with patterns similar to
Dcl2. In contrast, the highest levels of Ago1a, 1b,
and 1c transcripts were found in
SCMV-inoculated plants (Li et al. 2017). In
Arabidopsis, Ago2 and Dcl2 are required to
control viral infections caused by adapted viruses
(Zhang et al. 2012). Although the roles of
specific Dcl and Ago genes have not been defined
in maize, Dcl2 appears to be required for efficient
intercellular movement of the virus-induced gene
silencing (VIGS) signal in N. benthamiana (Qin
et al. 2017). While at least some members of the
Dcl, Ago and Rdr families co-localize with the
observed clusters of virus resistance loci in
maize, the relationship between these genes and
resistance is not known.

Increased expression of transcripts for genes
important for photosynthesis has been noted in
some systems. For example, the large subunit of
RuBisCO accumulated in resistant maize inocu-
lated with SCMV (Wu et al. 2013a; Wu et al.
2015). Chloroplast localized ferredoxin V and
thioredoxins was also upregulated (Cao et al.
2012; Cheng et al. 2008; Wu et al. 2015). Taken
together with interactions of SCMV viral pro-
teins with the RuBisCo small subunit and ferre-
doxin (Cheng et al. 2008; Leng et al. 2017), the
results suggest an intimate relationship between
photosynthetic activity and potyvirus infection.

It is perhaps not surprising that similar regu-
lation of only a very limited number of specific

genes or proteins was identified in the experi-
ments outlined above, because of differences in
the viruses, germplasm (including the presence
or absence of resistance), time after inoculation
and even the tissues analyzed. Among the com-
mon threads were increased accumulation of
b-glucanase transcripts in plants inoculated with
either SCMV or MDMV, with higher levels in
resistant lines (Cassone et al. 2014; Shi et al.
2006; Uzarowska et al. 2009). Increased accu-
mulation of transcripts with similarity to
brassinosteroid-insensitive receptor kinase, a
gene with roles in innate immunity and plant
growth, occurred in virus-resistant plants inocu-
lated with MDMV and RBSDV (Cassone et al.
2014; Huot et al. 2014; Jia et al. 2012). Remorin
genes were upregulated in resistant and suscep-
tible MDMV-inoculated plants Cassone et al.
2014, and susceptible SCMV-inoculated plants
(Wu et al. 2013b). Remorin proteins are located
within punctate membrane microdomains and
have been implicated in virus spread in plants
(Konrad and Ott 2015; Raffaele et al. 2009).
While none of these genes has been associated
with a specific virus resistance QTL, the similar
regulation of genes provides a basis for devel-
opment of studies to examine the roles of specific
genes and pathways in virus resistance and sus-
ceptibility in maize.

Changes in the expression of specific genes
have been associated with virus resistance in
maize. As noted above, 100-fold higher expres-
sion of the Scmv1/ZmTrxH gene was associated
with the resistance response in line FAP1360A
relative to susceptible controls (Liu et al. 2017).
Interestingly, an m-type thioredoxin mapping to
chr. 5 was also upregulated in maize inoculated
with SCMV, and silencing of its expression
inhibited SCMV accumulation in maize and
tobacco vein-banding virus in tobacco (Shi et al.
2011). Cao et al. (2012) showed that a
Rho-related GTPase induced during SCMV
infection of susceptible plants is required for
virus infection. Rop genes have been shown to
regulate pathogen resistance including virus
resistance (Sacco et al. 2007; Zhang et al. 2014)
and have been implicated in abscisic acid
responses, development and stress responses
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(Craddock et al. 2012). Elongin C, a transcription
factor that increases transcription elongation by
RNA polymerase II, interacts with the potyviral
genomic protein and is expressed at higher levels
at 4–6 days post-inoculation (Zhu et al. 2014). In
addition, the SCMV HC-Pro interacts with the
transit peptide of the chloroplastic ferredoxin V,
and expression of this gene is downregulated
during SCMV infection (Cheng et al. 2008). The
exact roles of these proteins in enhancing or
suppressing virus infection and their association
with QTL for virus resistance remain to be
determined.

12.6 Conclusions

Improvements in phenotyping plants for virus
resistance, genotyping maize populations, and
functional analysis of candidate genes are likely
to accelerate increased understanding of genes,
proteins, and mechanisms associated with virus
resistance in maize. The recent identification of
the genes underlying Scmv1 and Scmv2 provides
the basis for understanding whether potyvirus
resistance, and resistance to other viruses, is
pleiotropic in maize. Characterization of these
genes will also aid in our understanding of the
mechanisms some isolates use to break resistance
that is critical to understanding the durability of
alleles deployed to control the disease. Our
ability to edit plant genomes will facilitate vali-
dation of the importance of candidate genes in
virus resistance and should aid in the develop-
ment of highly productive, disease-resistant
maize crops.
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