
5Markov and Semi-Markov Processes

This chapter is devoted to jump Markov processes and finite semi-Markov pro-
cesses. In both cases, the index is considered as the calender time, continuously
counted over the positive real line. Markov processes are continuous-time processes
that share the Markov property with the discrete-time Markov chains. Their future
evolution conditional to the past depends only on the last occupied state. Their
extension to the so-called semi-Markov processes naturally arises in many types of
applications. The future evolution of a semi-Markov process given the past depends
on the occupied state too, but also on the time elapsed since the last transition.

Detailed notions on homogeneous jump Markov processes with discrete (count-
able) state spaces will be presented. Some basic notions on semi-Markov processes
with finite state spaces will follow, illustrated through typical examples.

5.1 JumpMarkov Processes

We will investigate in this section mainly the jump Markov process. Since a jump
Markov process is a Markov process which is constant between two successive
jumps, we will first present some basic notions on Markov processes with continu-
ous time.

Thereafter, X = (Xt)t∈R+ will denote a process defined on a stochastic basis
(�,F , (Ft )t∈R+,P), taking values in a finite or enumerable set E. The filtration
will be supposed to be the natural filtration of the process, even if, of course, X can
satisfy the Markov property below with respect to a larger filtration.

5.1.1 Markov Processes

A stochastic process is called a Markov process if its future values given the past
and the present depend only on the present. Especially, processes with independent
increments—Brownian motion, Poisson processes—are Markov processes.
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216 5 Markov and Semi-Markov Processes

Definition 5.1 A stochastic process X = (Xt)t∈R+ , with state space E, is called
a Markov process—with respect to its natural filtration (Ft )t∈R+ if it satisfies the
Markov property

P(Xs+t = j | Fs) = P(Xs+t = j | Xs) a.s.,

for all non-negative real numbers t and s and all j ∈ E.

The Markov property can also be written

P(Xs+t = j | Xs1 = i1, . . . , Xsn = in,Xs = i) = P(Xs+t = j | Xs = i),

for all n ∈ N, all 0 ≤ s1 < · · · < sn < s, 0 ≤ t , and all states i1, . . . , in, i, j in E.
If moreover the above conditional probability does not depend on s, then

P(Xs+t = j | Xs = i) = Pt (i, j), i ∈ E, j ∈ E and s ≥ 0, t ≥ 0,

and the process X is said to be homogeneous with respect to time.
We will study here only homogeneous processes. The trajectories t −→ Xt(ω)

will be assumed to be continuous on the right for the discrete topology, with a.s.
finite limits on the left; such a process is said to be cadlag. Similarly to Markov
chains, the distribution of X0 is called the initial distribution of the process, and we
will set Pi (·) = P(· | X0 = i) and E i (·) = E (· | X0 = i).

� Example 5.2 (Process with Independent Increments) Any continuous-time pro-
cessX = (Xt )t∈R+ with independent increments and taking values in Z is a Markov
process. Indeed, for all nonnegative real numbers s and t ,

P(Xs+t = j | Fs ) =
∑

i∈Z
P(Xs+t = j,Xs = i | Fs)

(1)=
∑

i∈Z
1(Xs=i)P(Xs+t − Xs = j − i | Xs)

=
∑

i∈Z
P(Xs+t = j,Xs = i | Xs) = P(Xs+t = j | Xs).

Note that we can also write

P(Xs+t = j | Fs) =
∑

i∈Z
E [1(Xs=i)1(Xs+t−Xs=j−i) | Fs]

(1)=
∑

i∈Z
1(Xs=i)E [1(Xs+t−Xs=j−i)]. (5.1)

(1) because Xs is Fs -measurable and Xs+t − Xs is independent of Fs .



5.1 JumpMarkov Processes 217

The random variable defined in (5.1) is measurable for the σ -algebra generated
by Xs , so is equal to P(Xs+t = j | Xs), and the process satisfies the Markov
property. �

Proposition 5.3 The past and the future of a Markov process are independent given
the present, that is, for all A ∈ Ft = σ(Xs, s ≤ t) and B ∈ σ(Xs, s ≥ t),

P(A ∩ B | Xt) = P(A | Xt)P(B | Xt) a.s..

Proof We compute

P(A ∩ B | Xt) = E [E (1A1B | Ft ) | Xt ] = E [1AE (1B | Ft ) | Xt ]
= E [1AE (1B | Xt) | Xt ] = E [1A | Xt ]E (1B | Xt)

= P(A | Xt)P(B | Xt),

where all equalities hold a.s. ��

Definition 5.4 AMarkov process X is said to satisfy the strong Markov property if
for any stopping time T adapted to X and all s ≥ 0, on (T < +∞),

P(XT +s = j | FT ) = PXT (Xs = j) a.s.,

where FT = {A ∈ F : ∀n ∈ N, A ∩ (T = n) ∈ Fn} is the σ -algebra of events
previous to T . Then, the Markov process is said to be strong.

Theorem 5.5 Let X be a strong Markov process, with state space E. If f :
ER+ −→ R

d+ is a Borel function and T is a finite stopping time for X, then

E i (f ◦ X ◦ θT | FT ) = EXT (f ◦ X), a.s., i ∈ E.

where θs is the shift operator such that Xt ◦ θs = Xt+s .

Proof For a function f ◦ X = f (Xt1, . . . , Xtn) with 0 ≤ t1 < · · · < tn.
We compute

E i[f (Xt1+T , . . . , Xtn+T ) | FT ] =
=

∑

(i1,...,in)∈en

Pi (Xt1+T = i1, . . . , Xtn+T = in | FT )f (i1, . . . , in).
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Thanks to the strong Markov property,

Pi (Xt1+T = i1, . . . , Xtn+T = in | FT ) =
= Pi (Xtn+T = in | Xtn−1+T = in−1) . . .Pi (Xt1+T = in | XT )

= Pi (Xtn = in | Xtn−1 = in−1) . . .PXT (Xt1 = in)

= PXT (Xt1 = i1, . . . , Xtn = in),

Therefore,

E i[f (Xt1+T , . . . , Xtn+T ) | FT ] = EXT [f (Xt1, . . . , Xtn)],

and the result follows. ��

5.1.2 Transition Functions

Definition 5.6 A Markov process X is said to be a (pure) jump Markov process if,
whatever be its initial state, it evolves through isolated jumps from state to state, and
its trajectories are a.s. constant between the jumps.

To be exact, a jump time is a time where a change of state occurs. If (Tn) is the
sequence of successive jump times of a jump Markov process X, for all n ∈ N, we
have Tn < Tn+1 if Tn < +∞ and Tn = Tn+1 if Tn = +∞, and

Xt = XTn, Tn ≤ t < Tn+1, Tn < +∞, n ≥ 0.

A typical trajectory of such a process is shown in Fig. 5.1.
Clearly, any jump Markov process is a strong Markov process.

States

Times

.............

0 = T0(ω) T1(ω) T2(ω) T3(ω) T4(ω)

1

2

3

4

5

Fig. 5.1 A trajectory of a jump Markov process
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Definition 5.7 A jumpMarkov process is said to be regular, or non explosive, if for
any initial state, the number of jumps in any finite time interval is a.s. finite.

Let ζ = supn≥1 Tn be the time duration of the process, a random variable taking
values in R+. If P(ζ = +∞) = 1, the process is regular; otherwise, that is if
P(ζ < +∞) > 0, it is explosive.

For regularity criteria, see Theorem 5.31 and Proposition 5.33 below. The next
example explains the phenomenon of explosion.

� Example 5.8 Let (Xn) be a sequence of independent random variables with
exponential distributions with parameters (λn). Setting S = ∑

n≥1 Xn, we have

P(S = +∞) > 0 if and only if
∑

n≥1

1

λn

= +∞.

Indeed, if P(S = +∞) > 0, then
∑

n≥1 1/λn = E S = +∞, and

E (e−S) = 1∏
n≥1(1 + 1/λn)

≤ 1∑
n≥1 1/λn

yields the converse. �

Definition 5.9 Let X be a homogeneous jump Markov process. The family of
functions defined on R+ by t −→ Pt(i, j) = P(Xt+h = j | Xh = i), for i

and j in E, are called the transition functions of the process on E.

We will denote by Pt the (possibly infinite) matrix (Pt (i, j))(i,j)∈E×E , and consider
only processes such that P0(i, i) = 1.

Properties of Transition Functions

1. 0 ≤ Pt(i, j) ≤ 1 , for all i and j in E and t ≥ 0, because Pt (i, ·) is a probability.
2.

∑
j∈E Pt(i, j) = 1, for all i ∈ E and t ≥ 0, because E is the set of all values

taken by X.
3. (Chapman-Kolmogorov equation)

∑

k∈E

Pt(i, k)Ps(k, j) = Pt+s(i, j), i, j ∈ E, s ≥ 0, t ≥ 0.

4. If limt→0+ Pt (i, j) = δij for all i ∈ E, the process is said to be stochastically
continuous. If this property is satisfied uniformly in i, the transition function (or
semi-group) is said to be uniform.

Thanks to Chapman-Kolmogorov equation, the family {Pt : t ≥ 0} equipped
with the composition PtPh = Pt+h is a semi-group. Indeed, the operation is
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commutative and associative, and I (the identity |E| × |E|-matrix) is a neutral
element; on the contrary, in general, a given element has no inverse in the family,
which therefore is not a group.

� Example 5.10 (Birth Process) Let X be a stochastic process with state space
E = N and transition function such that, when h → 0+,

Ph(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

λih + o(h) if j = i + 1,

1 − λih + o(h) if j = i,

0 otherwise,

This is indeed a transition function satisfying the four above properties.
If, for instance, λi = λ/i, then Pt is uniform; on the contrary, it is not uniform if

λi = iλ. If λi = λ for all i, the process is a Poisson process. �

The following proposition is a straightforward consequence of both the com-
pound probabilities formula and Markov property.

Proposition 5.11 For all n ∈ N, all nonnegative reals 0 ≤ t0 < t1 < · · · < tn, and
all finite sequence of states i0, i1, . . . , in, we have

P(Xt1 = i1, . . . , Xtn = in | Xt0 = i0) = Pt1−t0(i0, i1) . . . Ptn−tn−1(in−1, in),

and

P(X0 = i0,Xt1 = i1, . . . , Xtn = in) = α(i0)Pt1(i0, i1) . . . Ptn−tn−1(in−1, in),

where α denotes the initial distribution of the process.

Thus, the finite-dimensional distributions of a jump Markov process are character-
ized by its initial distribution and its transition function.

We state without proof the next result, necessary for proving the following one.

Theorem 5.12 (Lévy) For all given states i and j , Pt (i, j) is either identically
null, or never null on R+.

Proposition 5.13 Let Pt be the transition function of a jump Markov process.

1. If some t > 0 exists such that Pt (i, i) = 1, then Ps(i, i) = 1 for all s ∈ R+.
2. | Pt+ε(i, j) − Pt (i, j) |≤ 1 − P|ε|(i, i) for all t ≥ 0 and (i, j) ∈ E × E, and

hence Pt (i, j) is uniformly continuous with respect to t .
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Proof

1. Let t > 0 be such that Pt (i, i) = 1. Then, for any s < t ,

0 = 1 − Pt(i, i) =
∑

j �=i

Pt (i, j) ≥ Pt−s(i, i)Ps(i, j) ≥ 0.

But, thanks to Lévy’s theorem, Pt−s(i, i) > 0, so Ps(i, j) = 0 for all j �= i, and
hence Ps(i, i) = 1.

For s > t , it is sufficient to choose n such that s/n < t for getting Ps(i, i) ≥
[Ps/n(i, i)]n ≥ 1.

2. Let ε > 0. We deduce from

Pt+ε(i, j) − Pt (i, j) =
∑

k �=i

Pε(i, k)Pt (k, j) − Pt (i, j)[1 − Pε(i, i)]

that

−[1 − Pε(i, i)] ≤ −Pt (i, j)[1 − Pε(i, i)] ≤ Pt+ε(i, j) − Pt(i, j)

≤
∑

k �=i

Pε(i, k)Pt (k, j) ≤
∑

k �=i

Pε(i, k) ≤ 1 − Pε(i, i),

and hence

| Pt+ε(i, j) − Pt (i, j) |≤ 1 − Pε(i, i). (5.2)

Replacing t by t − ε in the above inequality for 0 < ε < t , we get

| Pt−ε(i, j) − Pt (i, j) |=| Pt (i, j) − Pt−ε(i, j) |≤ 1 − Pε(i, i). (5.3)

The result follows from (5.2) and (5.3). ��

5.1.3 Infinitesimal Generators and Kolmogorov’s Equations

The transition function of a Markov process is identified from its generator through
the Kolmogorov’s equations.

Definition 5.14 The (infinitesimal) generator A = (aij )(i,j)∈E×E of a Markov
process X is given by the derivative on the right of the transition function Pt at
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time t = 0, or

aij = lim
t→0+

Pt (i, j) − I (i, j)

t
,

where I is the identity matrix.

These quantities are always well-defined, but when i = j they may be equal to
−∞. The generator of a Markov process is such that aij ≥ 0 for all i �= j and∑

j∈E aij = 0 for all i. We set ai = −aii ≥ 0.

Definition 5.15 A state i is said to be stable if 0 < ai < +∞, instantaneous if
ai = +∞, absorbing if ai = 0, and conservative if

∑
j∈E aij = 0.

A generator—or the associated process—of which all states are stable (instanta-
neous, conservative) is said to be stable (instantaneous, conservative).

At each passage in a stable state, the process will spend a.s. a non null and finite
time. On the contrary, it will a.s. jump instantaneously from an instantaneous state.
Finally, reaching an absorbing state, the process will remain there forever.

We state without proof the next result.

Theorem 5.16 Let X be a jump Markov process.

1. The trajectories of X are a.s. continuous on the right if and only if no
instantaneous states exist.

2. If E is finite, then no instantaneous states exist.

� Example 5.17 (Birth Process on N) The generator of this process is

aij =

⎧
⎪⎪⎨

⎪⎪⎩

λi if j = i + 1,

−λi if j = i,

0 otherwise,

for all integers i and j . Hence it is a conservative process. �

Theorem 5.18 (Kolmogorov’s Equations) If X is regular, then the transition
functions t −→ Pt(i, j) are continuously differentiable on R

∗+ for all states i and
j , and satisfy the equations

P
′
t (i, j ) =

∑

k∈E

aikPt (k, j) and P
′
t (i, j ) =

∑

k∈E

Pt (i, k)akj .
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In matrix form, the above equations become

d

dt
Pt = APt and

d

dt
Pt = PtA, (5.4)

and are respectively called backward and forward Kolmogorov’s equations.

Proof We prove only the second part of the theorem for a finite E.
We deduce by differentiating with respect to s the Chapman-Kolmogorov

equation that

P ′
s+t (i, j ) =

∑

k∈E

P ′
s (i, k)Pt (k, j),

or, when s → 0+,

P ′
t (i, j ) =

∑

k∈E

aikPt (k, j).

The second equation is obtained symmetrically. ��

The definition of uniformisable processes is necessary for stating the following
result.

Definition 5.19 A jump Markov process is said to be uniformisable if

sup
i∈E

ai < +∞.

The next result is a straightforward consequence of the theory of linear differential
equations.

Theorem 5.20 When the process is uniformisable, the common solution of Kol-
mogorov’s equations (5.4) is

Pt = etA = I +
∑

k≥1

tk

k!A
k. (5.5)

Numerous methods for computing numerically the above solution of Kol-
mogorov’s equations exist: direct computation of the series (5.5) truncated at a
certain value of k, uniformisation—see Example 5.51 below, Laplace transform,
determination of the eigen-values and eigen-vectors, . . .
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Fig. 5.2 Graph of the
conservative process of
Example 5.21 0 1

μ

λ

� Example 5.21 Consider a conservative process with two states, say E = {0, 1},
with generator

A =
(−λ λ

μ −μ

)
,

with λ > 0 and μ > 0 (Fig. 5.2). The two eigen-values of the generator A are
s1 = 0 and s2 = −λ−μ, and (1, 1)′ and (λ,−μ)′ are two associated eigen-vectors.
Therefore,

etA = QDQ−1,

where

Q =
(
1 λ

1 −μ

)
, Q−1 = 1

λ + μ

(
μ λ

1 −1

)
and D =

(
1 0
0 e−(λ+μ)t

)
.

So, finally,

Pt = etA = 1

λ + μ

(
μ λ

μ λ

)
+ e−(λ+μ)t

λ + μ

(
λ −λ

−μ μ

)
,

that is a closed-form expression. �

5.1.4 Embedded Chains and Classification of States

Let us begin by showing that the exit time of a given state of a Markov process
has an exponential distribution. The nature of the parameter and its connection
with the generator of the process will be specified later in Corollary 5.27. Note
the exit time of i is also the sojourn time in i (before first exit), or the hitting time of
E\{i}.

Proposition 5.22 If the state i is not an absorbing state, then the exit time of i

has an exponential distribution with respect to Pi , with parameter λi depending
on i.
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Proof Let T1 denote this first jump time. If θs denotes the shift operator, then T1 ◦θs

is the time of the first jump after time s, and we have

Pi (T1 > s + t) = Pi (T1 > s, T1 ◦ θs > t) = E i[Pi (T1 > s, T1 ◦ θs > t | Fs)]
= E i [1(T1>s)Pi (T1 ◦ θs > t | Fs )]
(1)= E i [1(T1>s)Pi (T1 > t)] = Pi (T1 > s)Pi (T1 > t).

(1) by the Markov property.

Set R(t) = Pi (T1 > t). The above equation can be written R(s + t) = R(s)R(t),
for all nonnegative reals s and t . This is Cauchy functional equation on R+, whose
solution is well-known to be an exponential function, precisely

R(u) = Pi (T1 > u) = e−λiu1R+(u),

with λi ≥ 0; in other words, T1 ∼ E(λi). ��

Note that the expected sojourn time in an instantaneous state is null.

Proposition 5.23 The random variables T1 and XT1 are independent with respect
to Pi for all non absorbing i ∈ E.

Proof Let B denote a subset of E\{i}. We have

Pi (XT1 ∈ B, T1 > s) = E i[Pi (XT1 ◦ θs ∈ B, T1 > s | Fs)]
= E i[1(T1>s)Pi (XT1 ◦ θs ∈ B | Fs)]
= Pi (T1 > s)Pi (XT1 ∈ B),

if s > 0. ��

Now, let us consider the sequence of random variables (Jn) defined by

Jn = XTn, n such that Tn < +∞.

This is the sequence of the successive states visited by the process X. Clearly, it is
defined up to the explosion of the process—if explosion occurs; in this regard, it is
said to be minimal.

Theorem 5.24 For all n ∈ N, all i, j ∈ E and all t ≥ 0, we have:

1. P(Jn+1 = j, Tn+1 − Tn ≤ t | FTn) = P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn);
2. P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i) = Pi (XT1 = j)(1 − e−λi t ).

3. Moreover, the sequence (Jn) is a Markov chain.
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Proof

1. We compute

P(Jn+1 = j, Tn+1 − Tn ≤ t | FTn) = P(XTn+1 = j, Tn+1 − Tn ≤ t | FTn)

(1)= P(XTn+1 = j, Tn+1 − Tn ≤ t | XTn).

(1) by the strong Markov property.
2. Since P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i) = P(XTn+1 = j, Tn+1 − Tn ≤ t |

XTn = i), we have

P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i) = (1)= Pi (XT1 = j, T1 ≤ t)

(2)= Pi (XT1 = j)Pi (T1 ≤ t)

(3)= Pi (XT1 = j)(1 − e−λi t ).

(1) by homogeneity, (2) by independence of XT1 and T1 and (3) by Proposi-
tion 5.22.

3. Letting t go to infinity in 2. yields the result. ��

The chain (Jn) is called the embedded Markov chain of the process, with transition
function P defined by P(i, j) = Pi (XT1 = j); see Corollary 5.27 below
for a closed-form expression. We check that P(i, j) ≥ 0, P (i, i) = 0 and∑

j∈E P(i, j) = 1.
The sojourn times in the different states are mutually independent given the

successive states visited by the process. Applying iteratively Theorem 5.24 and
Proposition 5.22 yields the following closed-form expression.

Corollary 5.25 For all n ∈ N
∗, all i0, . . . , in−1 ∈ E, all k = 1, . . . , n, and all

tk ≥ 0, we have

P(T1 − T0 ≤ t1, . . . , Tn − Tn−1 ≤ tn | Jk = ik, k ≥ 0) =
= P(T1 − T0 ≤ t1 | J0 = i0) . . .P(Tn − Tn−1 ≤ tn | Jn−1 = in−1)

=
n−1∏

k=0

(1 − e−λik
tk+1).

Theorem 5.26 (Kolmogorov’s Integral Equation) For any non absorbing state i,

Pt (i, j) = I (i, j)e−λi t +
∑

k∈E

∫ t

0
λie

−λisP (i, k)Pt−s (k, j)ds, t ≥ 0, j ∈ E.
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For an absorbing state i, the above theorem amounts to Pt (i, j) = I (i, j).

Proof We have

Pt (i, j) = Pi (Xt = j, T1 > t) + Pi (Xt = j, T1 ≤ t).

We compute Pi (Xt = j, T1 > t) = I (i, j)e−λi t and

Pi (Xt = j, T1 ≤ t) = E i [Pi (Xt = j, T1 ≤ t | FT1)]
= E i [1(T1≤t )PXT1

(Xt−T1 = j)]

=
∫ +∞

0
1]0,t ](s)

∑

k∈E

Pk(Xt−s = j)Pi (T1 ∈ ds,XT1 = k)

=
∫ t

0

∑

k∈E

Pt−s(k, j)P (i, k)λie
−λisds. �

We can now link the distribution of the first jump time to the distribution of the
hitting time of the complementary set of i, in other words compute the transition
matrix P of the embedded chain in terms of the generator of the jump Markov
process.

Corollary 5.27 For any state i, we have λi = ai . If i is non absorbing, then

P(i, j) = Pi (XT1 = j) =
{

aij /ai if j �= i

0 if j = i.
(5.6)

Proof According to Proposition 5.13, the transition function is continuous with
respect to t . Differentiating the Kolmogorov’s integral equation yields

P ′
t (i, j ) = −λie

−λi t I (i, j) + P(i, j)λie
−λit . (5.7)

Thus, for t → 0+ and i = j , we get aii = −λi , and, for t → 0+ and i �= j , we get
aij = P(i, j)ai . ��

Equation (5.7) implies that aij = −aiI (i, j) + aiP (i, j), or under matrix form,

A = diag(ai)(P − I). (5.8)

The above corollary yields the stochastic simulation of a trajectory of a jump
Markov process in a given interval of time [0, T ]. Indeed, the method presented
in Sect. 3.1.1 applies to the embedded chain, and simulation of the sojourn times
amounts to simulation of the exponential distribution as follows.
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1. Let x0 be the realization of a random variable J0 ∼ α. n := 0. T0(ω) := 0.
2. n := n + 1. Let Wn(ω) be the realization of an E(axn−1)-distributed random

variable. Tn(ω) := Tn−1(ω) + Wn(ω).
3. If Tn(ω) ≥ T , then end.
4. Let Jn(ω) be the realization of a random variable whose distribution is given by

(5.6); set xn := Jn(ω).
5. Continue at Step 2.

� Example 5.28 (Birth Process (Continuation of Example 5.10)) The transition
matrix of the embedded chain of a birth process is given by

P(i, j) =
{
1 if j = i + 1,

0 otherwise.

The sojourn times have exponential distributions with parameters λi . �

The following example is an application of Markov processes to reliability.
Another example is presented in Exercise 5.4.

� Example 5.29 (Cold Stand-by System) A cold stand-by system generally con-
tains one component (or sub-system) functioning and one or several components
(or sub-systems) in stand-by, all identical. The stand-by component is tried when the
functioning component fails, and then begins working successfully or not according
to a given probability.

Consider a stand-by system with two components. When the functioning com-
ponent fails, the stand-by component is connected through a switching device.
This latter commutes successfully with probability p ∈]0, 1]. The failure rate
of the functioning component is λ. The failure rate of the stand-by compo-
nent is null. This system can be modelled by a Markov process with three
states:

state 1: one component works, the second is in stand-by;
state 2: one component is failed, the second works;
state 3: either both components or one component and the commutator are

failed.

The repairing rate between state 3 and state 2, and between state 2 and state 1 is
μ; the direct transition from state 3 to state 1 is impossible; see Fig. 5.3.

The generator of the process is

A =
⎛

⎝
−λ pλ (1 − p)λ

μ −(λ + μ) λ

0 μ −μ

⎞

⎠ ,
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Fig. 5.3 Graph of the 3-state
Markov process of
Example 5.29
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and

P =
⎛

⎝
0 p (1 − p)

μ/(λ + μ) 0 λ/(λ + μ)

0 1 0

⎞

⎠

is the transition matrix of its embedded chain. �

Let us now state some criterion linked to regularity.

Proposition 5.30 For a uniformisable jump Markov process, the probability of
more than one jump occurring in a time interval [0, h] is o(h) when h → 0+,
uniformly in i ∈ E.

Proof We have

Pi (T2 ≤ h) = Pi [T1 + (T2 − T1) ≤ h] ≤ Pi (T1 ≤ h, T2 − T1 ≤ h)

and

Pi (T1 ≤ h, T2 − T1 ≤ h) = E i [Pi (T1 ≤ h, T2 − T1 ≤ h | FT1)]
= E i [1(T1≤h)Pi (T2 − T1 ≤ h | FT1)]
(1)= E i (1(T1≤h)[1 − exp(−aXT1

h)])
≤ E i [1(T1≤h)(1 − e−ah)] ≤ (1 − e−ah)2 = o(h),

where aXT1
= aj on the event (XT1 = j) and a = supi∈E ai < +∞.

(1) by Proposition 5.22. ��

The following two criterion for a jump Markov process to be regular are stated
without proofs.
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Theorem 5.31 A jump Markov process is regular if and only if one of the following
conditions is fulfilled:

1. (Reuter’s condition of explosion) the only bounded nonnegative solution of the
equation Ay = y is the null solution.

2.
∑

n≥1 1/aJn = +∞ a.s., where aJn = aj on the event (Jn = j).

� Example 5.32 (Birth Process (Continuation of Example 5.10)) If
∑

i∈E 1/ai is
infinite, the birth process is regular; if the sum is finite, it is explosive. �

Proposition 5.33 The process is regular if one of the two following conditions is
fulfilled:

1. The process is uniformisable.
2. Its embedded chain is recurrent.

Thus, a finite (such that |E| < +∞) process is regular.
As for Markov chains, the states of a jump Markov process are classified

according to their nature, and a communication relation can be defined. Recall that
T1 denotes the first jump time of the process.

Definition 5.34 Let i ∈ E. If Pi (sup{t ≥ 0 : Xt = i} = +∞) = 1, the state i is
said to be recurrent. Otherwise, that is if Pi (sup{t ≥ 0 : Xt = i} < +∞) = 1, it is
said to be transient.

If i is recurrent, then either μi = E i (inf{t ≥ T1 : Xt = i}) < +∞ and i is said
to be positive recurrent, or μi = +∞ and i is said to be null recurrent. The quantity
μi is called the mean recurrence time to i.

If all states are positive recurrent, the process is said to be positive recurrent too.
Such a process is regular.

Theorem 5.35 A state is recurrent (transient) for the jump Markov process if and
only if it is recurrent (transient) for its embedded Markov chain.

Proof The absorbing case is clear. If i is recurrent and not absorbing, then sup{t ∈
R

∗+ : Xt = i} = +∞, a.s.
If N = sup{n ∈ N

∗ : XTn = i} was a.s. finite, then TN+1 would be finite too,
hence a contradiction.

Similar arguments yield the converse and the transient case. ��

If i and j are two states in E, then i is said to lead to j if Pt (i, j) > 0 for
some t > 0. If i leads to j and j leads to i, the states i and j are said to be
communicating. The communication relation is an equivalence relation on E. If all
states are communicating, the process is said to be irreducible.
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Considering the embedded Markov chain, the following result is clear.

Corollary 5.36 Recurrence and transience are class properties.

5.1.5 Stationary Distribution and Asymptotic Behavior

The stationary measures are linked to the asymptotic behavior of the jump Markov
processes, exactly as for Markov chains. Note that measures and distributions are
represented for finite state spaces by line vectors.

Definition 5.37 Let X be a jump Markov process, with generator A and transition
functionPt . A measure π on (E,P(E)) is said to be stationary or invariant (forA or
X) if πPt = π for all real numbers t ≥ 0. If, moreover π is a probability measure,
it is called a stationary distribution of the process.

For uniformisable processes, stationary measures are solutions of a homogeneous
linear system.

Proposition 5.38 If the process is uniformisable, a measure π is stationary if and
only if πA = 0.

Proof Thanks to (5.5) p. 223, π = πPt is equivalent to

π = π
(
I +

∑

k≥1

t t

k!A
k
)

= π + π
∑

k≥1

t t

k!A
k, t ≥ 0.

This is satisfied if and only if

∑

k≥1

tk

k!πAk = 0, t ≥ 0,

or πAk = 0 for all k, from which the result follows. ��

� Example 5.39 (Cold Stand-by System (Continuation of Example 5.29)) The
stationary distribution of the Markov process modeling the cold stand-by system
is solution of πA = 0. In other words,

π(1) = 2μ2

d
, π(2) = 2λμ

d
, π(3) = λ(λ + μ − pμ)

d
,

where d = 3λμ − pμλ + 2μ2 + λ2. �
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Definition 5.40 A measure (or distribution) λ on E is said to be reversible (for A

or X) if

λ(i)aij = λ(j)aji, i ∈ E, j ∈ E. (5.9)

Proposition 5.41 All reversible distributions are stationary.

Proof If λ is reversible then summing both sides of (5.9) on i ∈ E, we get∑
i∈E λ(i)aij = 0, and hence, according to Proposition 5.38, λ is stationary. ��

The stationary distributions of the process X and its embedded chain (Jn) are not
equal, but they are closely linked.

Proposition 5.42 If π is the stationary distribution of the process X and ν the
stationary distribution of the embedded chain (Jn), then

π(i)ai = ν(i)
∑

k∈E

akπ(k), i ∈ E,

Proof We deduce from both πA = 0 and (5.8) p. 227 that πDP = πD,
where D = diag(ai). Therefore, πD is an invariant measure of P , and hence
ν = πD/

∑
i∈E aiπ(i). ��

� Example 5.43 (Continuation of Example 5.21) This two-state process has a
reversible distribution satisfying the equations π(0)λ = π(1)μ and π(1) +
π(2) = 1, so

π(0) = μ

λ + μ
and π(1) = λ

λ + μ
.

This distribution is stationary for the process. �

Definition 5.44 An irreducible jump Markov process whose all states are positive
recurrent is said to be ergodic.

Note that the embedded Markov chain of an ergodic jump Markov process is not
ergodic itself in general, as shown in the next example.

� Example 5.45 (Continuation of Example 5.21) An irreducible two-state jump
Markov process is ergodic, but its embedded chain is never ergodic because it is
2-periodic. �

The entropy rate of an ergodic jump Markov process has an explicit expression
given by the following result that we state without proof.
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Proposition 5.46 Let X be a jump Markov process with generator (aij ) and
stationary distribution π . Its entropy rate is

H(X) = −
∑

i∈E

π(i)
∑

j �=i

aij log aij +
∑

i∈E

π(i)
∑

j �=i

aij ,

if this quantity is finite.

The Lagrange multipliers method yields that the jump Markov process with finite
state space E having the maximum entropy rate is that with a uniform generator.

The next result leads to characterize the asymptotic behavior of an ergodic jump
Markov process in the following two theorems.

Lemma 5.47 If X is an ergodic Markov process with stationary distribution π ,
then the mean recurrence time of any state i ∈ E is given by

μi = 1

aiπ(i)
.

Proof The embedded chain (Jn) is an irreducible and recurrent Markov chain. By
Proposition 5.42, its stationary distribution ν is given by ν(j) = π(j)aj for all
j ∈ E.

Suppose Jn starts from state j . The expectation of the first jump time—or mean
sojourn time in j—is 1/aj . Further, the expectation of the number of visits of (Jn)

to state i before return to j , is ν(j)/ν(i) = π(j)aj/π(i)ai; see Theorem 3.44 and
Proposition 3.45.

Therefore

μi =
∑

j∈E

π(j)aj

π(i)ai

1

aj

= 1

π(i)ai

for all states i ∈ E. ��

Theorem 5.48 Let X be an ergodic jump Markov process. For all states i and j ,
we have

Pt (i, j) −→ 1

ajμj

= π(j), t → +∞,

where μj is the mean recurrence time of state j .

Proof Thanks to Chapman-Kolmogorov equation, Pnh(i, j) = (Ph)
n(i, j) for any

fixed h > 0 and n ∈ N. Thanks to the ergodic Theorem 3.50, we know that
(Ph)

n(i, j) converges to π(j) when n tends to infinity.
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For any ε > 0, some integer N exists such that

|Pnh(i, j) − π(j)| ≤ ε/2 for all n ≥ N.

From Lévy’s theorem, for any t ≥ 0, some h > 0 exists such that

|Pt+h(i, j) − Pt (i, j)| ≤ 1 − Ph(i, i) ≤ ε/2.

Thus, for nh ≤ t < (n + 1)h and n > N , we get |Pt(i, j) − Pnh(i, j)| ≤ ε/2.
Finally,

|Pt (i, j) − π(j)| ≤ |Pt(i, j) − Pnh(i, j)| + |Pnh(i, j) − π(j)| ≤ ε,

and the result follows. ��

Theorem 5.49 (Ergodic) If X is an ergodic jump Markov process, then, for all
states i and j ,

1

t

∫ t

0
1(Xu=i)du−→π(i), t → +∞, Pj − a.s.

Proof Let (Wn) denote the i.i.d. sequence of successive sojourn times and let Ni(t)

be the number of visits in the time interval ]0, t] to a given state i. Then

W1 + · · · + WNi(t)−1

t
≤ 1

t

∫ t

0
1(Xu=i)du ≤ W1 + · · · + WNi(t)

t

or

W1 + · · · + WNi(t)−1

Ni(t) − 1

Ni(t) − 1

t
≤ 1

t

∫ t

0
1(Xu=i)du (5.10)

and

1

t

∫ t

0
1(Xu=i)du ≤ W1 + · · · + WNi(t)

Ni(t)

Ni(t)

t
. (5.11)

Thanks to Theorem 4.17,

W1 + · · · + WNi(t)

Ni(t)

a.s.−→ EW1 = 1

ai
.

Thanks to Proposition 4.59,Ni(t)/t converges a.s. to 1/μi . The result follows from
inequalities (5.10) and (5.11) for t tending to infinity. ��



5.1 JumpMarkov Processes 235

Therefore, for ergodic jump Markov processes, if g is a real function defined on
E, the time mean is equal to the space mean of the function, that is

1

t

∫ t

0
g(Xu)du =

∑

i∈E

g(i)
1

t

∫ t

0
1(Xu=i)du−→

∑

i∈E

g(i)π(i), t → +∞, Pj −a.s.,

provided that
∑

i∈E |g(i)|π(i) < +∞.
Thanks to the dominated convergence theorem, the following result is clear.

Corollary 5.50 IfX is an ergodic jump Markov process, then, for all states i and j ,

1

t

∫ t

0
Pu(j, i)du −→ π(i), t → +∞.

� Example 5.51 (Uniformisation method) Using the stationary distribution pro-
vides a numerical method for solving Kolmogorov’s equations for an ergodic
process.

Let X be an ergodic uniformisable process, with stationary distribution π , with
a = supi∈E ai < +∞. The matrix Q = I + a−1A is stochastic. We compute

Pt = etA = eta(Q−I ) = e−at eatQ = e−at
∑

n≥0

(at)n

n! Qn.

Let  be the E ×E-matrix defined by (i, j) = π(j), for all i and j . We can write

Pt =  + e−at
∑

n≥0

(at)n

n! (Qn − ).

The system πA = 0 is equivalent to πa(Q − I) = 0, or to πQ = π . Thus, Q has
the same invariant distribution π as Pt . Therefore, Qn −  converges to zero when
n tends to infinity.

If α is a distribution on E, one can show that

sup
t≥0

‖αPt − αPt (k)‖ −→ 0, k → +∞,

where

Pt (k) =  + e−at
k∑

n=0

(at)n

n! (Qn − ).

Note that the truncating level k can be chosen such that the error is bounded for
some t by an ε, and then it will be bounded for all t ≥ 0. �
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5.2 Semi-Markov Processes

This section is dedicated to the investigation of semi-Markov processes, mainly with
finite state spaces. The semi-Markov processes constitute a natural generalization
of the Markov and renewal processes. Their future evolution depends on both the
occupied state and the time elapsed since the last transition. This time, called local
time, is measured by a watch that comes back to zero at each transition. Of course, if
the watch is considered as an integral part of the system—in other words if E ×R+
becomes the state space (where E is the state space of the semi-Markov process),
then the process becomes a Markov process.

5.2.1 Markov Renewal Processes

In order to define semi-Markov processes, it is easier first to define Markov renewal
processes.

Definition 5.52 Let (Jn, Tn)n∈N be a process defined on (�,F ,P) such that (Jn)

is a random sequence taking values in a discrete set E and (Tn) is an increasing
random sequence taking values in R+, with T0 = 0. Set Fn = σ(Jk, Tk; k ≤ n).
The process (Jn, Tn) is called a Markov renewal process with discrete state space
E if

P(Jn+1 = j, Tn+1 − Tn ≤ t | Fn) = P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn) a.s.,

for all n ∈ N, all j ∈ E and all t ∈ R+.

If the above conditional probability does not depend on n, the process is said to
be homogeneous, and we set

Qij (t) = P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i) (5.12)

for all n ∈ N, i ∈ E, j ∈ E and t ∈ R+. The family Q = {Qij (t); i, j ∈
E, t ∈ R+} is called a semi-Markov kernel on E and the square matrix Q(t) =
(Qij (t))(i,j)∈E×E is a semi-Markov matrix.

We will study here only homogeneousMarkov renewal processes with finite state
spaces, say E = {1, . . . , e}.

The process (Jn, Tn) is a two-dimensional Markov chain, with state space E ×
R+; its transition function is the semi-Markov kernel Q. Letting t go to infinity in
(5.12) shows that (Jn) is a Markov chain with state space E and transition matrix
P = (P (i, j)) where

P(i, j) = lim
t→+∞ Qij (t), i, j ∈ E.
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� Example 5.53 The following processes are Markov renewal processes:

1. For a renewal process, only one state is visited—say E = {1}, and Q(t) =
Q11(t) = F(t), which is a scalar function.

2. For an alternated renewal process, E = {1, 2}, P(1, 2) = 1, P(2, 1) = 1 and

Q(t) =
(

0 F(t)

G(t) 0

)
;

see Exercise 4.4 below for further details on this process. �

Definition 5.54 The stochastic process Z = (Zt )t∈R+ , defined by

Zt = Jn if Tn ≤ t < Tn+1

is called the semi-Markov process associated with the Markov renewal process
(Jn, Tn).

The process Z is continuous on the right. Clearly Jn = ZTn , meaning that (Jn) is
the sequence of the successive states visited by Z. As for Markov processes, (Jn) is
called the embedded chain of the process.

The initial distribution α of Z (that is the distribution of Z0) is also the initial
distribution of (Jn). Knowledge of both α and the kernel Q characterizes the
distribution of Z.

Properties of Semi-Markov Kernels

1. For all i, j ∈ E, the function t −→ Qij (t) is a defective distribution function
on R+. On the contrary, Hi(t) = ∑

j∈E Qij (t) for t ≥ 0 defines the distribution
function of the total time spent by Z in [0, t] at i, called sojourn time. We will
write H(t) = diag(Hi(t))i∈E , and denote by mi the mean sojourn time in state
i, that is mi = E i (T1) = ∫ +∞

0 (1 − Hi(t)) dt.

2. Qij (t) = P(i, j)Fij (t), where Fij (t) = P(Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j) is
the distribution function of the time spent by Z in state i conditional on transition
to state j .

3. P(Jn = j, Tn ≤ t | J0 = i) = Q
∗(n)
ij (t) for n > 0, where Q

∗(n)
ij is the n-th

Lebesgue-Stieltjes convolution of Qij , that is

Q
∗(n)
ij (t) =

∑

k∈E

∫ t

0
Qik(ds)Q

∗(n−1)
kj (t − s), n ≥ 2,

with Q∗(1) = 0 and Q
∗(0)
ij = δij .
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� Example 5.55 (Kernel of a jump Markov process) For a jump Markov process—
with generator (aij ), the sequences (Jn) and (Tn) are Pi-independent. We obtain
from Theorem 5.24 that

Qij (t) = Pi (J1 = j)(1 − e−ai t ) = aij

ai

(1 − e−ai t ), i �= j ∈ E,

and Qii(t) = 0 for t ∈ R+, where ai = −aii = ∑
j �=i aij . �

Let Nj (t) be the number of visits of Z to state j in the time interval ]0, t],
and set N(t) = (N1(t), . . . , Ne(t)). Note that the Markov renewal process may
alternatively be defined from the process N = (N(t))t∈R+ .

Definition 5.56 The function

t −→ ψij (t) = E iNj (t) =
∑

n≥0

Q
∗(n)
ij (t)

is called a Markov renewal function; we will write ψ(t) = (ψij (t))(i,j)∈E×E .

We compute

ψij (t) = I (i, j)1R+(t) +
∑

k∈E

Qik ∗ ψkj (t),

or, under matrix form,ψ(t) = diag(1R+(t))+Q∗ψ(t). This equation is a particular
case of the Markov renewal equation

L(t) = G(t) + Q ∗ L(t), t ∈ R+,

where G (given) and L (unknown) are matrix functions null on R− and bounded on
the finite intervals of R+. When it exists, the solution takes the form

L(t) = ψ ∗ G(t), t ∈ R+.

We assume here that none of the functions Hi, for i ∈ E, is degenerated (that is
Hi(t) �= 1(t≥0)).

Definition 5.57 The transition function of Z is defined by

Pt (i, j) = P(Zt = j | Z0 = i), i, j ∈ E, t ∈ R+,

and we will write in matrix form P(t) = (Pt (i, j))(i,j)∈E×E .
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Proposition 5.58 The transition function P(t) of Z is solution of the Markov
renewal equation

P(t) = diag(1 − Hi(t)) + Q ∗ P(t). (5.13)

Proof We have

Pt (i, j) = P(Zt = j | Z0 = i) = Pi (Zt = j, T1 > t) + Pi (Zt = j, T1 ≤ t).

Since Pi (Zt = j, T1 > t) = [1 − Hi(t)]I (i, j) and

Pi (Zt = j, T1 ≤ t) = E i

[
Pi (Zt = j, T1 ≤ t | FT1)

]

= E i

[
1(T1≤t )PZT1

(Zt−T1 = j)
]

=
∑

k∈E

∫ t

0
Qik(ds)Pt−s (k, j),

(5.13) follows, under matrix form. ��

The unique solution of (5.13) is given by

P(t) = [I − Q(t)]∗(−1) ∗ [I − H(t)], (5.14)

where [I − Q(t)]∗(−1) = ψ(t) = ∑
n≥0 Q∗(n)(t).

5.2.2 Classification of States and Asymptotic Behavior

Let (T j
n )n∈N be the sequence of successive times of visit of the semi-Markov process

Z to state j ∈ E. It is a renewal process, possibly modified. Thus, T j
0 is the time

of the first visit to j and Gij (t) = P(T
j
0 ≤ t | Z0 = i) is the distribution function

of the time of the first transition from state i to state j . If i = j , then T
j

0 = 0,

and hence Gjj (t) = P(T
j

1 ≤ t | Z0 = j) is the distribution function of the time
between two successive visits to j . We have

ψjj (t) =
∑

n≥0

G
∗(n)
jj (t),

and for i �= j ,

ψij (t) =
∑

n≥0

Gij ∗ G
∗(n)
jj (t) = Gij ∗ ψjj (t).
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The expectation of the hitting time of j starting from i at time 0 is

μij =
∫ +∞

0
(1 − Gij (t)) dt, i, j ∈ E. (5.15)

When i = j , it is the mean return time to i.
As for Markov processes, two states i and j are said to be communicating if

Gij (+∞)Gji(+∞) > 0 or if i = j . The communication relation is an equivalence
relation on E. If all states are communicating, the process is said to be irreducible.

Definition 5.59 If Gii(+∞) = 1 or ψii(+∞) = +∞, the state i is said to be
recurrent. Otherwise, it is said to be transient.

If i is recurrent, then either its mean return time μii is finite and i is said to be
positive recurrent, or it is infinite and i is said to be null recurrent.

A state i is said to be periodic with period h > 0 if Gii is arithmetic with period
h. Then, ψii(t) is constant on the intervals of the form [nh, nh + h[, where h is the
largest number sharing this property. Otherwise, i is said to be aperiodic. If all states
are aperiodic, the process is said to be aperiodic. Note that this notion of periodicity
for semi-Markov processes is different from the notion of periodicity seen in Chap. 3
for Markov chains.

The following result is a straightforward consequence of Blackwell’s renewal
theorem applied to the renewal process (T i

n).

Theorem 5.60 (Markov Renewal) If the state i is aperiodic, then for any c > 0,

ψii(t) − ψii(t − c) −→ c

μii

, t → +∞. (5.16)

When i is periodic with period h, the result remains valid if c is a multiple of h.
We state the next result without proof.

Theorem 5.61 (Key Markov Renewal) If (Jn) is irreducible and aperiodic, if ν

is an invariant measure for P and if mi < +∞ for all i ∈ E, then for all direct
Riemann integrable real functions gi defined on R+ for i ∈ E,

∫ t

0
gi(t − y)ψji(dy) −→ ν(i)

< ν,m >

∫ +∞

0
gi(y)dy, t → +∞.

Thus, thanks to the key Markov renewal theorem and (5.14) p. 239, we get

π(j) = lim
t→+∞ Pt (i, j) = ν(j)mj

< ν,m >
, i, j ∈ E,

which defines the limit distribution π of Z.
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The entropy rate of a semi-Markov process has an explicit form under suitable
conditions. It is given by the next proposition stated without proof.

Proposition 5.62 Let Z be a semi-Markov process such that

Qij (t) =
∫ t

0
qij (x)dx, with

∫

R+
qij (t)| log qij (t)|dt < +∞, i, j ∈ E.

If mi < +∞ for all i ∈ E, then

H(X) = −1

< ν,m >

∑

i,j∈E

ν(i)

∫ +∞

0
qij (x) log qij (x)dx.

� Example 5.63 (Analysis of Seismic Risk) We consider here two simplified mod-
els. The intensity of an earthquake is classified according to a discrete ladder of
states in E = {1, . . . , N}. The process Z = (Z(t))t∈R+ is defined by Z(t) = i for
1 ≤ i < N if the intensity of the last earthquake before time t was f ∈ [i, i + 1[
and finally Z(t) = N if f ≥ N .

For a time predictable model, it is assumed that the stronger is an earthquake,
the longer is the time before the next occurs. The stress accumulated on a given
rift has a minimum bound. When a certain level of stress is reached, an earthquake
occurs. Then the stress decreases to the minimum level; see Fig. 5.4. The semi-
Markov kernel of Z is then

Qij (t) = ν(j)Fj (t), t ∈ R+.

For a slip predictable model, it is assumed that the longer is the time elapsed
since the last earthquake, the stronger is the next one. The stress has a maxi-
mum bound. When this level is reached, an earthquake occurs. Then the stress
decreases of a certain quantity; see Fig. 5.4. The semi-Markov kernel of Z is

min

time

stress

max

time

stress

Time predictable model Slip predictable model

Fig. 5.4 Two semi-Markov models for seismic risk analysis
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then

Qij (t) = ν(j)Fi(t), t ∈ R+.

In both cases, since Fij depends only on one of the two states i and j , necessarily
the probability ν is the stationary distribution of the embedded chain of the process.
If the functions Fi are differentiable for all i ∈ E, the entropy rate of the process
can be computed explicitly.

For the slip predictable model,

H(Z) = −1

< ν,m >

∑

i,j∈E

ν(i)

∫

R+
ν(j)fi(t) log[ν(j)fi(t)] dt.

Since
∫

R+
ν(j)fi(t) log[ν(j)fi(t)] dt = ν(j) log[ν(j)] + ν(j)

∫

R+
fi(t) log[fi(t)] dt,

we get

H(Z) = −1

< ν,m >

∑

i∈E

ν(i)
[
log ν(i) +

∫

R+
fi(t) log fi(t) dt

]
.

Similar computation for the time predictable model yields the same formula.
�

Other applications of semi-Markov processes, linked to reliability, will be studied
in Exercises 5.5 and 5.6.

5.3 Exercises

∇ Exercise 5.1 (Birth-and-death Process) The Markov process (Xt )t≥0 with
state space E = N and generator A = (aij ) defined by

aij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λi if j = i + 1, i ≥ 0,

μi if j = i − 1, i ≥ 1,

−(λi + μi) if j = i, i ≥ 0,

0 otherwise,

with μ0 = 0, is called a birth-and-death process. If μi = 0 for all i, the process is a
birth process; if λi = 0 for all i, it is a death process.
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Assume that λiμi+1 > 0 for all i ≥ 0. Give a necessary and sufficient
condition for the process to have a reversible distribution and give then its stationary
distribution.

Solution A reversible distribution π satisfies π(i − 1)λi−1 = π(i)μi for i ≥ 1,
that is

π(i) = λi−1

μi

π(i − 1) = λi−1λi−2

μiμi−1
π(i − 2) = · · · = λi−1 . . . λ0

μi . . . μ1
π(0) = γiπ(0),

where γ0 = 1 and

γi = λ0 . . . λi−1

μ1 . . . μi

, i ≥ 1.

Summing on i ≥ 0 yields

1 =
∑

i≥0

π(i) =
∑

i≥0

γiπ(0).

Therefore, the convergence of the sum
∑

i≥0 γi is a necessary and sufficient
condition for the process to have a reversible distribution. We compute then

π(0) =
(∑

i≥0

γi

)−1
,

and hence

π(i) = γi∑
k≥0 γk

, i ≥ 0.

Thus, according to Proposition 5.41, the reversible distribution is also a stationary
distribution. �

∇ Exercise 5.2 (M/M/1 Queueing Systems) At the post office, only one cus-
tomer can be served at a time. The time of service has an exponential distribution
E(μ). The times of arrivals of the customers form a homogeneous Poisson process
with intensity λ. When a customer arrives, either he is immediately served if the
server is available, or he joins the (possibly infinite) queue. Such a system is called
an M/M/1 queueing system (Fig. 5.5). Let Xt be the random variable equal to the
number of customers present in the post office at time t , for t ∈ R+.
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Arrival Departure
Server

Waiting room

Population of customers

Fig. 5.5 M/M/1 queueing system

1. Show that X = (Xt ) is a Markov process. Give its generator.
2. Determine the stationary distribution π of X, when it exists.
3. The initial distribution of X is assumed to be π .

a. Compute the average number of customers in the post office at a fixed time t .
b. Determine the distribution of the time spent in the post office by a customer.

4. Compute the average time during which the post office is empty, for λ/μ = 1/2.

Solution

1. The process X is a birth-death Markov process with state space E = N and
generator determined by λi = λ, for i ≥ 0 and μi = μ, for i ≥ 1; see
Exercise 5.1 for notation.

2. With the same notation,

γ0 = 1 and γi =
(

λ

μ

)i

, i ≥ 1.

Set a = λ/μ. For a < 1, we have
∑

k≥0 γk = 1/(1 − a), and then—and only
then—X has a stationary distribution π , given by πi = ai(1 − a), for i ≥ 0. In
other words, π is a geometric distribution on N with parameter a.

3. a. When the initial distribution is π , the process is stationary and the expectation
of Xt is the expectation of the geometric distribution G(a), that is EXt =
a/(1 − a).

b. Let W be the total time passed in the system by some given customer, arriving
at time T0. Clearly, the (exit) process (M(t)) of other customers’ exit times,
after T0 and until the customer’s exit, is a homogeneous Poisson process with
intensity μ. We compute

P(W > t) =
∑

n≥0

P(W > t, XT −
0

= n) =
∑

n≥0

P(W > t | XT −
0

= n)P(XT −
0

= n)

=
∑

n≥0

P(Mt ≤ n)π(n) =
∑

n≥0

[
n∑

k=0

e−μt (μt)k

k!

]
an(1 − a) = e−μ(1−a)t ,

meaning that W has an exponential distribution E(μ(1 − a)).
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c. We have EXt = λEW. Note that this formula is a particular case of Little’s
formula, that characterizes ergodic queueing systems.

4. If λ/μ = 1/2, then a = 1/2, and hence π0 = 1/2. Therefore, the post office will
be empty half the time.

See Problem 5.7 for a feed back queue. �

∇ Exercise 5.3 (Epidemiological Models) Consider a population of m individu-
als. Suppose that exactly one individual is contaminated at time t = 0. The others
can then be contaminated and the affection is incurable. Suppose that in any time
length h, one infected individual can infect a healthy individual with probability
αh + o(h) for h → 0+, where α > 0. Let Xt be the number of individuals
contaminated at time t ≥ 0, and let Ti be the time necessary to pass from i

contaminated individuals to i + 1, for 1 ≤ i ≤ m − 1.

1. a. Suppose Xt = i. Compute the probability that only one individual is
contaminated in the time interval [t, t + h]. Show that the probability that
two or more individuals are contaminated in the same time interval is o(h).

b. Show that X = (Xt) is a Markov process; give its state space and generator.
2. Show that Ti has an exponential distribution; give its parameter.
3. Let T be the time necessary for the whole population to be contaminated;

compute its mean and variance.
4. Numerical application: compute an approximate value of the mean of T for m =

6 × 107, α = 6 × 10−8 per day, and h = 1 day.

Solution

1. a. If i individuals are infected, then each individual among the m − i healthy
ones can be contaminated in ]t, t + h] with probability iαh + o(h). Thus,
the probability that one individual among the m − i will be contaminated in
]t, t + h] is

(
m − i

1

)
[iαh + o(h)]1[1 − iαh + o(h)]m−i−1 = (m − i)iαh + o(h).

Similarly, for k ≥ 2,
(

m − i

k

)
[iαh + o(h)]k[1 − iαh + o(h)]m−i−k = o(h).

b. Therefore, (Xt) is a Markov process with state space E = �1,m� and
generator A = (aij )(i,j)∈E×E , where

aij =

⎧
⎪⎪⎨

⎪⎪⎩

(m − i)iα, if j = i + 1,

−(m − i)iα, if j = i,

0, otherwise.
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This process is a birth process, also called Yule process.
2. Proposition 5.22 and Corollary 5.27 together yield that Ti ∼ E(−aii).
3. Since T = T1 + · · · + Tm−1,

E T =
m−1∑

i=1

1

(m − i)iα
.

The variables Ti , for 1 ≤ i ≤ m − 1, are independent, so

VarT =
m−1∑

i=1

1

[(m − i)iα]2 .

4. We compute

E T = 1

mα

m−1∑

i=1

(
1

m − i
+ 1

i

)
≈ 1

mα

∫ m−1

1

(
1

m − t
+ 1

t

)
dt,

and
∫ m−1
1

(
1

m−t
+ 1

t

)
dt = 2 log(m − 1), so E T = 2 log(m − 1)/mα. For the

data, E T ≈ 358 days, around 1 year. �

∇ Exercise 5.4 (Reliability of a Markov System) Consider a system whose
stochastic behavior is modelled by a Markov process, X = (Xt )t∈R+, with finite
state space E = �1, e�, generator A, transition function Pt (i, j), and initial
distribution α. Let U = �1,m� be the set of functioning states and D = �m + 1, e�
the set of failed states, for some m ∈ �2, e − 1�.

1. a. Compute the instantaneous availability A(t) of the system for t > 0; see
Exercise 4.4 for definition.

b. Use a. to compute the limit availability when X is ergodic.
2. Let TD = inf{t ≥ 0 : Xt ∈ D} be the hitting time of the set D of failed states

of X, with the convention infφ = +∞. Consider the process Y with state space
U ∪ {�}—where � is an absorbing state, defined by

Yt =
{

Xt if t < TD,

� if t ≥ TD.

a. Give the initial distribution and the generator ofY, which is a Markov process.
b. Use Y to compute the reliability function of the system, defined by R(t) =

P(TD > t) for t ≥ 0.
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Solution

1. a. The instantaneous availability is

A(t) = P(Xt ∈ U) =
∑

j∈U

P(Xt = j) =
∑

j∈U

∑

i∈E

P(Xt = j,X0 = i)

=
∑

j∈U

∑

i∈E

P(Xt = j | X0 = i)P(X0 = i)

=
∑

j∈U

∑

i∈E

α(i)Pt (i, j) = αPt1e,m = αetA1e,m,

where 1e,m = (1, . . . , 1, 0, . . . , 0)′ is the e-dimensional column vector of
which the first m components are equal to 1 and the e − m others are equal
to 0.

b. Therefore, the limit availability is

A = lim
t→∞ A(t) = α1e,m =

∑

k∈U

π(k).

2. a. For computing the reliability, it is necessary to consider the partition of A and
α between U and D, that is, α = (α1, α2) and

A =
(

A11 A12

A21 A22

)
.

We can write Yt = Xt∧TD , and Y is indeed a Markov process with
generator

B =
(

A11 A121
0 0

)
.

Its initial distribution is β = (α1, b) with b = α21.
b. Let Qt be the transition function of Y. We have

R(t) = P(∀u ∈ [0, t],Xu ∈ U) = P(Yt ∈ U) =
∑

j∈U

P(Yt = j).

We compute for all j ∈ U

P(Yt = j) =
∑

i∈U

P(Yt = j, Y0 = i)

=
∑

i∈U

P(Yt = j | Y0 = i)P(Y0 = i) =
∑

i∈U

α(i)Qt (i, j),

that is R(t) = (α1, 0)Qt1s,m = α1e
tA111m. �
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∇ Exercise 5.5 (A Binary Semi-Markov System and Its Entropy Rate)

1. Model by a semi-Markov process the system of Exercise 4.4.
2. Write the Markov renewal equation and determine the transition function of the

system.
3. Show again the availability results.
4. Assume that X1 (Y1) has a density f (g) and a finite expected value a

(b). Compute the entropy rate of the process. Determine the sojourn times
distributions maximizing this rate.

Solution With the notation of Sect. 5.2.

1. If the functioning states are represented by 0 and the failed states by 1, the system
can be modelled by a semi-Markov process Z defined by

Zt =
∑

n≥0

1(Sn≤t<Sn+Xn+1), t ≥ 0,

with semi-Markov kernel Q given by

Q(t) =
(

0 F(t)

G(t) 0

)
.

2. The transition function Pt satisfies the Markov renewal equation P = I − H +
Q ∗ P, or [I − Q] ∗ P = H, where

H(t) =
(

F(t) 0
0 G(t)

)
.

Its solution is P(t) = [I − Q(t)]∗(−1) ∗ [I − H(t)].
On the one hand,

[I − Q(t)]∗(−1) =
(

1 −F(t)

−G(t) 1

)∗(−1)

= [1 − F ∗ G(t)]∗(−1) ∗
(

1 F(t)

G(t) 1

)

and the renewal function of the alternated renewal process of Exercise 4.4 is

m(t) = [1 − F ∗ G(t)]∗(−1) =
∑

n≥0

(F ∗ G)∗(n)(t).
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On the other hand,

I − H(t) =
(
1 − F(t) 0

0 1 − G(t)

)
.

Finally,

P(t) = m ∗
(

1 F(t)

G(t) 1

)
∗

(
1 − F(t) 0

0 1 − G(t)

)

= m ∗
(

1 − F(t) F ∗ (1 − G)(t)

G ∗ (1 − F)(t) 1 − G(t)

)
. (5.17)

3. Taking as initial distribution (1, 0), we obtain the availability A(t) = P00(t) =
m ∗ (1 − F)(t).

Note that this approach is much more general than the one obtained by
using the alternated renewal process, because all results are given by (5.17). For
example,

A(t) = P01(t) = m ∗ G ∗ (1 − F)(t),

if the system is assumed to be failed at time 0.
4. We compute

< ν,m >=
∫ +∞

0

t

2
[f (t) + g(t)] dt = a + b

2
,

and

2∑

i,j=1

ν(i)

∫ +∞

0
qij (t) log qij (t) dt =

= 1

2

[∫ +∞

0
f (t) log f (t) dt +

∫ +∞

0
g(t) log g(t) dt

]
,

so the entropy rate of Z is

H(Z) = 1

a + b
[I(X1) + I(Y1)].

If f and g are exponential distributions with respective parameters λ and μ,
the entropy rate is

H(Z) = λμ

λ + μ
[2 − log(λμ)],

and is clearly maximum. �
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∇ Exercise 5.6 (A Treatment Station) A factory discharges polluting waste at a
known flow rate. A treatment station is constructed for sparing environment. A tank
is provided for stocking the waste during the failures of the station; this avoids to
stop the factory if the repairing is finished before the tank is full. Both the time for
emptying the tank and the time necessary for the treatment of its content by the
station are assumed to be negligible. The random variable τ equal to the time for
filling the tank is called the delay.

This system is modelled by a semi-Markov process with three states.

1. Give the states and the semi-Markov kernel of the process.
2. Determine the transition matrix and the stationary distribution of its embedded

chain.
3. Give the limit distribution of the process.
4. Assuming that the system works perfectly at time t = 0, determine its reliability

R; see Exercise 5.4 for definition.

Solution

1. The states of the process are the following:

state 1 : the factory is functioning;
state 2 : the factory has been failed shorter than τ ;
state 3 : the factory has been failed longer than τ .

The semi-Markov kernel is

Q =
⎛

⎝
0 F 0

Q21 0 Q23

B 0 0

⎞

⎠ ,

with

Q21(t) =
∫ t

0
[1 − C(x)]dA(x) and Q23(t) =

∫ t

0
[1 − A(x)]dC(x),

where F is the distribution function of the life time of the station, A that of the
repairing time of the station, C that of the delay, and B that of the repairing time
of the factory.

2. The transition matrix of the embedded chain (Jn) is

P =
⎛

⎝
0 1 0
q 0 p

1 0 0

⎞

⎠
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where p + q = 1, with

p =
∫ +∞

0
[1 − A(x)]dC(x).

The stationary distribution of (Jn) is ν = (1/(2+ p), 1/(2 + p), p/(2 + p)).
3. The limit distribution of the process is

π = 1

< ν,m >
diag(ν(i))m = 1

m1 + m2 + pm3
(m1,m2, pm3),

where m1 = ∫ +∞
0 [1 − F(x)]dx, m2 = ∫ +∞

0 [1 − Q21(x) − Q23(x)]dx, and

m3 = ∫ +∞
0 [1 − B(x)]dx.

4. We compute

R(t) = M ∗ [1 − F + F ∗ (1 − F − Q23)](t),

where M(t) = ∑
n≥0(F ∗ Q21)

(n)(t). �

∇ Exercise 5.7 (A Feed Back Queue) Let us consider again the queue of
Exercise 5.2. When a customer arrives, if more than N customers already queue,
then he leaves the system. Moreover, once served, either he comes back queueing,
with probability p ∈]0, 1[, or he leaves the system, with probability 1 − p; see
Fig. 5.6. Let Xt be the random variable equal to the number of customers present in
the post office at time t .

1. Of which type is the semi-Markov process X = (Xt)? Give its semi-Markov
kernel and determine the transition matrix of its embedded chain.

2. Compute the stationary distribution of this chain, the average sojourn times in
each state and the limit distribution of the process.

Solution The number X = (Xt) of customers present in the system is a birth-death
semi-Markov process with state space E = �0, N� and exponentially distributed
sojourn times, that is a Markov process again. The only non-zero entries of its

queue
server

feed back

arrival departure

q
λ μ

input output

Fig. 5.6 A feed back queue—Exercise 5.7
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semi-Markov kernel are

Qi,i−1(t) = μiqi

λi + μi

[1 − e−(λi+μi)t ], 1 ≤ i ≤ N,

Qi,i (t) = μipi

λi + μi

[1 − e−(λi+μi)t ], 1 ≤ i ≤ N,

Qi,i+1(t) = λi

λi + μi

[1 − e−(λi+μi)t ], 0 ≤ i ≤ N − 1,

2. Its mean sojourn times are given bymi = 1/(λi +μi). The stationary distribution
ν of its embedded chain is given by

νi = λ1 . . . λi−1(1 + λi/μi + 1/qi)ν0/μ1 . . . μi−1, 2 ≤ i ≤ N,

ν1 = (1 + λi/μi + 1/qi)ν0,

ν0 =
[ N∑

i=1

λ1 . . . λi−1(1 + 1/qi)/μ1 . . . μi−1

]−1
.

Note that for p = 0, this system amounts to the system described in Exercise 5.2,
for a finite queue, that is an M/M/1/(N + 1) queue. �
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