
4Continuous Time Stochastic Processes

A stochastic process represents a system, usually evolving along time, which
incorporates an element of randomness, as opposed to a deterministic process.

The independent sequences of random variables, the Markov chains and the
martingales have been presented above. In the present chapter, we investigate more
general real stochastic processes, indexed by T ⊂ R, with t ∈ T representing the
time, in a wide sense. Depending on the context, when T = N or R+, they are called
sequences of random variables—in short random sequences, stochastic processes
with continuous or discrete time, signals, times series, etc.

First, we generalize to stochastic processes the notions of distributions, distri-
bution functions, etc., already encountered in the previous chapters for random
sequences. Then, we study some typical families of stochastic processes, with
a stress on their asymptotic behavior: stationary or ergodic processes, ARMA
processes, processes with independent increments such as the Brownian motion,
point processes—especially renewal and Poisson processes, jump Markov processes
and semi-Markov processes will be especially investigated in the final chapter.

4.1 General Notions

We will first define general stochastic elements, and then extend to stochastic
processes notions such as distributions, stopping times, and results such as the law
of large numbers, central limit theorem.

Let (�,F) and (E, E) be two measurable spaces. In probability theory, a
measurable function X : (�,F) −→ (E, E), that is such that X−1(E) ⊂ F , is
called a stochastic element.

The stochastic elements may take values in any measurable space. If E = R (Rd,

d > 1, RN = R × R × · · · , RR), then X is a real random variable (random vector,
random sequence or stochastic process with discrete time, stochastic process with
continuous time).
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176 4 Continuous Time Stochastic Processes

It is worth noticing that even in the general theory of stochastic processes, T is
typically a subset of R, as we will assume thereafter. For any fixed ω ∈ �, the
function t −→ Xt(ω) is called a trajectory or realization of the process. The value
of this function is determined by the result of a random phenomenon at the time t

of its observation. For example, one may observe tossing of a coin, the fluctuations
of the generations of a population, the day temperature in a given place, etc. If the
trajectories of the process are continuous functions (on the left or on the right), the
process itself is said to be continuous (on the left or on the right).

In general, if (E, E) = (RT,B(RT)), where T is any convenient set of indices,
a stochastic element can be represented as a family of real random variables X =
(Xt)t∈T. It can also be regarded as a function of two variables

X : � × T −→ R

(ω, t) −→ Xt(ω)

such that Xt is a real random variable defined on (�,F) for any fixed t . If T is
a totally ordered enumerable set (as N or R+), then X is called a time series. If
T = R

d , with d > 1 or one of its subsets, the process is a multidimensional process.
If E = (Rd)T, with d > 1, it is a multivariate or vector process.

The canonical space of a real process X = (Xt)t∈T with distribution PX is
the triple (RT,B(RT),PX). Generally, we will consider that the real stochastic
processes are defined on their canonical spaces.

Note that a function θs : RT −→ R
T is called a translation (or shift) operator

on R
T if and only if θs(xt ) = xt+s for all s, t ∈ T and all x = (xt ) ∈ R

T. When
T = N, θn is the n-th iterate of the one step translation operator θ1 (also denoted by
θ , see above Definition 3.21).

A stochastic process X defined on (�,F ,P) is said to be an Lp process if Xt ∈
Lp(�,F ,P) for all t ∈ T, for p ∈ N

∗. For p = 1 it is also said to be integrable,
and for p = 2 to be a second order process.

Here are some classical examples of stochastic processes, the sinusoidal signals,
the Gaussian processes, and the ARMA processes.

� Example 4.1 (Sinusoidal Signal) For the process defined by

Xt = A cos(2πνt + ϕ), t ∈ R,

ϕ is called the phase, A the amplitude and ν the frequency. These parameters can
be either constant or random. For instance, if A and ν are real constants and ϕ is a
random variable, the signal is a monochromatic wave with random phase. �

� Example 4.2 (Gaussian White Noise) Let (εt )t∈Z be such that εt ∼ N (0, 1) for
all t ∈ T and E (εt1εt2) = 0 for all t1 �= t2. The process (εt ) is called a Gaussian
white noise. �
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� Example 4.3 (Gaussian Process) Let X = (Xt)t∈T be such that the vector
(Xt1, . . . , Xtn) is a Gaussian vector for all integers n and all t1, . . . , tn. The process
X is said to be Gaussian. �

Definition 4.4 A sequence of random variables X = (Xn)n∈Z is called an auto-
regressive moving-average process with orders p and q , or ARMA(p, q), if

Xn +
p∑

i=1

aiXn−i = εn +
q∑

j=1

bjεn−j , n ∈ Z,

where ε is a Gaussian white noise, p and q are integers and a1, . . . , an and
b1, . . . , bq are all real numbers, with ap �= 0 and bq �= 0.

This type of processes is often used for modeling signals. If q = 0, the process
is said to be an auto-regressive process, or AR(p). This latter models for example
economical data depending linearly of the p past values, up to a fluctuation—the
noise. If a = −1 and p = 1, it is a random walk. If p = 0, the process is said to be
a moving-average process, or MA(q).

The ARMA processes can also be indexed by N, by fixing the value of
X0, . . . , Xp, as shown in Exercise 4.1.

� Example 4.5 (MA(1) Process) Let ε be a Gaussian white noise with variance
σ 2 and let (Xn) be a sequence of random variables such that Xn = bεn−1 + εn,

for n > 0, with X0 = ε0. The vector (X0, . . . , Xn) is the linear transform of the
Gaussian vector (ε0, . . . , εn), and hence is a Gaussian vector too, that is centered.
For n ≥ 1 and m ≥ 1,

Cov (Xn,Xm) = b2
E εn−1εm−1 + b(E εn−1εm + E εnεm−1) + E εnεm

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if |n − m| ≥ 2,

bσ 2 if |n − m| = 1,

(b2 + 1)σ 2 if n = m.

Finally, we compute Var X0 = σ 2, Cov (X0,X1) = bσ 2 and Cov (X0,Xm) = 0
for all m > 1. �

Definition 4.6 Let (�,F) be a measurable set.

1. If Ft is a σ -algebra included in F for all t ∈ T, and if Fs ⊂ Ft for all s < t ,
then F = (Ft )t∈T is called a filtration of (�,F). Especially, if X = (Xt )t∈T is
a stochastic process, the filtration F = (σ (Xs; s ≤ t))t∈T is called the natural
filtration of X.
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2. A stochastic process X is said to be adapted to a filtration (Ft )t∈T if for all t ≥ 0,
the random variable Xt is Ft -measurable.

Obviously, every process is adapted to its natural filtration. For investigating
stochastic processes, it is necessary to extend the probability space (�,F ,P) by
including a filtration F = (Ft )t∈T; then (�,F ,F,P) is called a stochastic basis.
Unless otherwise stated, the filtration will be the natural filtration of the studied
process.

Theorem-Definition 4.7 Let F be a filtration.
A random variable T : (�,F) → R+ such that (T ≤ t) ∈ Ft , for all t ∈ R+, is

called an F-stopping time. Then, the family of events

FT = {A ∈ F : A ∩ (T ≤ t) ∈ Ft , t ∈ R+}

is a σ -algebra, called the σ -algebra of events previous to T .

A stopping time adapted to the natural filtration of some stochastic process is said
to be adapted to this process. The properties of the stopping times taking values in
R+ derive directly from the properties of stopping times taking values in N studied
in Chap. 2. Note that for any stopping time T , and for the translation operator θs for
s ∈ R+, we have (T ◦ θs = t + s) = (T = t).

Definition 4.8 Let X = (Xt)t∈T be a stochastic process defined on a probability
space (�,F ,P), where T ⊂ R.

1. The probability PX = P ◦ X−1 defined on (RT,B(RT)) by

PX(B) = P(X ∈ B), B ∈ B(RT),

is called the distribution of X.
2. The probabilities Pt1,...,tn defined by

Pt1,...,tn(B1 × . . . × Bn) = P(Xt1 ∈ B1, . . . , Xtn ∈ Bn),

for t1 < · · · < tn, ti ∈ T, are called the finite dimensional distributions of X.
More generally, the restriction of PX to R

S for any S ⊂ T is called the marginal
distribution of X on S.

3. The functions Ft1,...,tn defined by

Ft1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn),

for t1 < · · · < tn, ti ∈ T and xi ∈ R, are called the finite dimensional distribution
functions of X.
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� Example 4.9 (Finite Dimensional Distribution Functions) Let X be a positive
random variable with distribution function F . Let X be the stochastic process
defined by Xt = X − (t ∧ X) for t ≥ 0. Its one-dimensional distribution functions
are given by

Ft (x) = P(Xt ≤ x) = P(Xt ≤ x,X ≤ t) + P(Xt ≤ x,X > t)

= P(0 ≤ x,X ≤ t) + P(X − t ≤ x,X > t)

= F(t) + F(t + x) − F(t) = F(t + x), x ≥ 0,

for t ≥ 0, and its two-dimensional distribution functions are

Ft1,t2(x1, x2) = F((x1 + t1) ∧ (x2 + t2)) + F((x1 + t1) ∧ t2)

+F(t1 ∧ (x2 + t2)) − 2F(t1 ∨ t2), x1 ≥ 0, x2 ≥ 0,

for t1 ≥ 0 et t2 ≥ 0. �

For a given family of distribution functions, does a stochastic process on some
probability space exist with these functions as distribution functions? The answer
may be positive, for instance under the conditions given by the following theorem,
which we state without proof.

Theorem 4.10 (Kolmogorov) Let (Ft1,...,tn), for t1 < · · · < tn in T, be a family
of distribution functions satisfying for any (x1, . . . , xn) ∈ R

n the two following
coherence conditions:

1. for any permutation (i1, . . . , in) of (1, . . . , n),

Ft1,...,tn(x1, . . . , xn) = Fti1 ,...,tin
(xi1, . . . , xin );

2. for all k ∈ �1, n − 1�,

Ft1,...,tk,...,tn(x1, . . . , xk,+∞, . . . ,+∞) = Ft1,...,tk (x1, . . . , xk).

Then, there exists a stochastic process X = (Xt )t∈T defined on some
probability space (�,F ,P) such that

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = Ft1,...,tn(x1, . . . , xn).

For stochastic processes, the notion of equivalence takes the following form.

Definition 4.11 Let X = (Xt )t∈T and Y = (Yt )t∈T be two stochastic pro-
cesses both defined on the same probability space (�,F ,P) and taking values in
(Rd,B(Rd)). They are said to be:
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1. weakly stochastically equivalent if for all (t1, . . . , tn) ∈ T
n, all (B1, . . . , Bn) ∈

B(Rd)n and all n ∈ N
∗,

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P(Yt1 ∈ B1, . . . , Ytn ∈ Bn). (4.1)

2. stochastically equivalent if

P(Xt = Yt ) = 1, t ∈ T. (4.2)

Then, Y is called a version of X.
3. indistinguishable if

P(Xt = Yt ,∀t ∈ T) = 1. (4.3)

The trajectories of two indistinguishable processes are a.s. equal. This latter property
is stronger than the two former ones; precisely

(4.3) �⇒ (4.2) �⇒ (4.1).

The converse implications do not hold, as the following example shows.

� Example 4.12 Let Z be a continuous positive random variable. Let X and Y
be two processes indexed by R+, defined by Xt = 0 for all t and Yt = 1(Z=t ).
These two processes are stochastically equivalent, but not indistinguishable. Indeed,
P(Xt �= Yt ) = P(Z = t) = 0, for all t ≥ 0, but P(Xt = Yt ,∀t ≥ 0) = 0. �

Definition 4.13 A stochastic process X = (Xt)t∈R is said to be stochastically
continuous at s ∈ R if, for all ε > 0,

lim
t→s

P(|Xt − Xs | > ε) = 0.

Note that stochastic continuity does not imply continuity of the trajectories of the
process.

Most of the probabilistic notions defined for sequences of random variables
indexed by N in Chap. 1 extend naturally to stochastic processes indexed by R+.

Definition 4.14 Let X be a stochastic process. The quantities

E (X
n1
t1

. . . X
nd
td

), d ∈ N
∗, ni ∈ N

∗,
d∑

i=1

ni = n,

are called the order n moments of X, when they are finite.
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Especially, EXt is called the mean value at time t and Var Xt the instantaneous
variance. The latter is also called power by analogy to the electric tension Xt in a
resistance, for which E (X2

t ) is the instantaneous power.
The natural extension of the covariance matrix for finite families is the covariance

function.

Definition 4.15 Let X be a stochastic process. The function RX : T × T −→ R

defined by

RX(t1, t2) = Cov (X1,X2) = E (Xt1Xt2) − (EXt1)(EXt2),

is called the covariance function of the process.

4.1.1 Properties of Covariance Functions

1. If RX takes values in R, then X is a second order process, and Var Xt = RX(t, t).
2. A covariance function is a positive semi-definite function. Indeed, for all

(c1, . . . , cn) ∈ R
n, since covariance is bilinear,

n∑

i=1

n∑

j=1

cicjRX(ti, tj ) = Cov (

n∑

i=1

ciXti ,

n∑

j=1

cjXtj )

= Var
( n∑

i=1

ciXti

)
≥ 0.

3. For a centered process,

RX(t1, t2)
2 ≤ RX(t1, t1)RX(t2, t2),

by Cauchy-Schwarz inequality.

The moments of a stochastic process are obtained by averaging over �. They are
called space averages. Another notion of average exists for processes, on the set of
indices T; here we take T = N for simplification.

Definition 4.16 Let X = (Xn)n∈N be a second order random sequence. The random
variable

X = lim
N→+∞

1

N

N∑

n=1

Xn,
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is called the time mean of X and the random variable

X(m) = lim
N→+∞

1

N

N∑

n=1

XnXn+m

is called the (mean) time power of X on m ∈ N
∗. Limit is taken in the sense of

convergence in mean square.

The time mean is linear as is the expectation. If Y = aX + b, then Y(m) =
a2X(m) as for the variance. In the next section, we will make precise the links
between space and time averages.

The different notions of convergence defined in Chap. 1 for random sequences
indexed by N extend to stochastic processes indexed by R+ in a natural way. The
next extension of the large numbers law has been proven for randomly indexed
sequences in Theorem 1.93 in Chap. 1; the next proof is an interesting alternative. It
is then completed by a central limit theorem.

Theorem 4.17 Let (Xn) be an integrable i.i.d. random sequence. If (Nt)t∈R+ is a
stochastic process taking values in N

∗, a.s. finite for all t , independent of (Xn) and
converging to infinity a.s. when t tends to infinity, then

1

Nt

(X1 + · · · + XNt )
a.s.−→ EX1, t → +∞.

Proof Set Xn = (X1 + · · · + Xn)/n for n ≥ 1. By the strong law of large numbers,
Xn converges to EX1 almost surely, that is on � \ A, where A = {ω : Yn(ω) �→
EX1}. Note that (XNt (ω)(ω)) is a sub-sequence of (Xn(ω)), and set B = {ω :
Nt(ω) �→ ∞} and C = {ω : XnNt (ω)(ω) �→ EX1}. Then C ⊂ A ∩ B, and the
proof is completed. ��

Theorem 4.18 (Anscombe) Let (Xn)n∈N∗ be an i.i.d. random sequence with
centered distribution with finite variance σ 2. If (Nt )t∈R+ is a stochastic process
taking values in N

∗, a.s. finite for all t , independent of (Xn) and converging to
infinity a.s. when t tends to infinity, then

1

σ
√

Nt

(X1 + · · · + XNt )
D−→ N (0, 1), t → +∞.

Proof Set Sn = X1 + · · · + Xn. We have

E (eitSNt /σ
√

Nt ) = E

( ∑

n≥1

eitSn/σ
√

n1(Nt=n)

)
=

∑

n≥1

P(Nt = n)E (eitSn/σ
√

n),
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so

|E (eitSNt /σ
√

Nt ) − e−σ 2t2/2| ≤
∑

n≥1

P(Nt = n)|E (eitSn/σ
√

n) − e−σ 2t2/2|.

On the one hand, due to the central limit theorem, Sn/σ
√

n converges in distribution
to a standard Gaussian variable, so, for all ε > 0, we obtain |E (eitSn/

√
n) −

e−σ 2t2/2| < ε for n > nε . Therefore,

∑

n>nε

P(Nt = n)|E (eitSn/σ
√

n) − e−t2/2| ≤ εP(Nt > nε) ≤ ε.

On the other hand,

nε∑

n=1

P(Nt = n)|E (eitSn/σ
√

n) − e−t2/2| ≤ 2P(Nt ≤ nε),

and the result follows because Nt converges to infinity and P(Nt ≤ nε) tends to zero
when t tends to infinity. ��

Results of the same type can be stated for more general functionals, as for example
the ergodic theorems.

4.2 Stationarity and Ergodicity

We will study here classical properties of processes taking values in R. First, a
stochastic process is stationary if it is invariant by translation of time, that is to say
if it has no interne clock.

Definition 4.19 Let X = (Xt)t∈T be a stochastic process. It is said to be strictly
stationary if

(Xt1, . . . , Xtn) ∼ (Xt1+s , . . . , Xtn+s), (s, t1, . . . , tn) ∈ T
n+1.

� Example 4.20 (Some Stationary Sequences) An i.i.d. random sequence is sta-
tionary. An ergodic Markov chain whose initial distribution is the stationary
distribution is stationary. �

Ergodicity, a notion of invariance on the space �, has been introduced for Markov
chains in Chap. 3. It extends to general random sequences as follows.
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Definition 4.21 A random sequence (Xn) is said to be strictly ergodic:

1. at order 1 if for any real number x the random variable

lim
N→+∞

1

N

N−1∑

n=0

1(Xn≤x)

is constant;
2. at order 2 if for all real numbers x1 and x2 the random variable

lim
N→+∞

1

N

N−1∑

n=0

1(Xn≤x1,Xn+m≤x2)

is constant for all m ∈ N.

Since P(Xn ≤ x) = E [1(Xn≤x)], a random sequence is ergodic at order 1 (order 2)
if the distributions of the random variables Xn (pairs (Xn,Xn+m)) can be obtained
by time average.

� Example 4.22 (Markov Chains) Any aperiodic positive recurrent Markov chain
is ergodic, as seen in Chap. 3. �

� Example 4.23 The stochastic process modeling the sound coming out of a tape
recorder, with null ageing but parasite noise, is ergodic. Indeed, the observation of
one long-time recording is obviously similar to the observation of several short-time
recordings. This process is also obviously stationary. �

The following convergence result is of paramount importance in statistics. We
state it without proof.

Theorem 4.24 (Ergodic) If (Xn) is a strictly stationary and ergodic random
sequence and if g : R −→ R is a Borel function, then

1

N

N−1∑

n=0

g(Xn) −→ E g(X0), N → +∞.

In ergodic theory, the strict stationarity and ergodicity of a stochastic process are
expressed using set transformations.

Let (E, E, μ) be a measured set. A measurable function S : E → E is called a
transformation of E; we denote by Sx the image of an element x ∈ E and we set
S−1B = {x ∈ E : Sx ∈ B}, for B ∈ E .

A set B of E is said to be S-invariant if μ(S−1(B)) = μ(B). The collection of
S-invariant sets constitutes a σ -field, denoted by J . The function S is said to be
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μ-invariant if the elements of E are all S-invariant. The transformation is said to be
strictly ergodic if for all B ∈ E,

S−1(B) = B �⇒ μ(B) = 0 or 1.

The following convergence result, stated without proof, is also called the
pointwise ergodic theorem.

Theorem 4.25 (Birkhoff) Let μ be a finite measure on a measurable set (E, E).
If μ is S-invariant for some transformation S : E → E, then, for all μ-integrable
functions f : (E, E, μ) → R,

1

n

n−1∑

i=0

f (Six) −→ f (x) μ − a.e., x ∈ E,

where f : E → R is a μ-integrable function such that f (x) = f (Sx) μ-a.e., and
∫

E

f (t)dμ(t) = 1

μ(E)

∫

E

f (t)dμ(t).

If, moreover, S is ergodic, then

f (x) =
∫

E

f (t)dμ(t), a.e..

Note that if μ is a probability, then by definition, f is the conditional expectation of
f given J , or f = E (f | J ). If S is ergodic, then f = E f a.s.

� Example 4.26 (Interpretation in Physics) Let us observe at discrete times a
system evolving in an Euclidean space E.

Let x0, x1, x2, . . . be the points successively occupied by the system. Let S

transform the elements of E through xn = Sxn−1, for n ≥ 1. Let Sn denote the
n-th iterate of S, that is xn = Snx0. Thus, the sequence (x0, x1, x2, . . . , xn, . . . ) can
be written (x0, Sx0, S

2x0, . . . , S
nx0, . . . ) and is called an orbit of the point x0 (or

trajectory).
Let f : E → R be a function whose values f (x) express a physical measure

(speed, temperature, pressure, etc.) at x ∈ E. Thanks to former experiments, the
measure f (x) is known to be subject to error and the empirical mean [f (x0) +
f (x1) + · · · + f (xn−1)]/n to give a better approximation of the true measured
quantity. For n large enough, this mean is close to the limit

lim
n→+∞

1

n

n−1∑

i=0

f (Six),

which should be equal to the true physical quantity. �



186 4 Continuous Time Stochastic Processes

Any stochastic process X = (Xt )t∈T on (�,F ,P), taking values in E, can be
considered as defined by

Xt(ω) = X(Stω), ω ∈ �, t ∈ T,

where X : � → E is a random variable and {St : � → � : t ∈ T} is a group
of transformations. If T = N, then Sn is the n-th iterate of some transformation
S : � → �. Clearly, the process is strictly stationary if

P((St )
−1(A)) = P(A), A ∈ F , t ∈ T,

and is strictly ergodic at order 1 if

∀A ∈ F , (St )
−1(A) = A, t ∈ T �⇒ P(A) = 0 or 1.

Any real valued process X = (Xt)t∈T can be defined on its canonic space
(RT,B(RT),PX) by setting

Xt(ω) = ω(t), ω ∈ R
T, t ∈ T.

Strict stationarity thus appears as a property of invariance of the probability PX with
respect to translation operators, that is PX ◦ θ−1

t = PX for all t ∈ T, or

PX(θ−1
t (B)) = P(B), B ∈ B(RT), t ∈ T.

Strict ergodicity can be expressed using θt -invariant sets. Precisely, the process is
ergodic if

∀B ∈ B(RT), θ−1
t (B) = B, t ∈ T �⇒ PX(B) = 0 or 1.

For a real stationary and integrable random sequence (Xn), Birkhoff’s ergodic
theorem yields

1

n

n−1∑

i=0

Xi
a.s.−→ X = E (X0 | J ),

where J is the σ -field of θ1-invariant sets. For an ergodic sequence—such that θ1-
invariant events have probability 0 or 1, the limit is X = EX0.

Note that, according to Kolmogorov 0–1 law, any i.i.d. sequence is stationary and
ergodic.

Further, the entropy rate of a random sequence has been defined in Chap. 1.
The entropy rate of a continuous time stochastic process indexed by R+ is defined
similarly.
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Definition 4.27 Let X = (Xt)t∈R+ be a stochastic process such that the marginal
distribution of X = (Xt )t∈[0,T ] has a density pX

T with respect either to the Lebesgue
or to the counting measure, for all T . The entropy up to time T of X is the entropy
of its marginal distribution, that is

HT (X) = −E log pX
T (X).

If HT (X)/T has a limit when T tends to infinity, this limit is called the entropy rate
of the process and is denoted by H(X).

The next result, stated here for stationary and ergodic sequences is of paramount
importance in information theory. Note that its proof is based on Birkhoff’s ergodic
theorem.

Theorem 4.28 (Ergodic Theorem of Information Theory) Let X = (Xt )t∈T,
with T = R+ or N, be a stationary and ergodic stochastic process. Suppose that
the marginal distribution of X = (Xt)t∈[0,T ] has a density pX

T with respect to the
Lebesgue or counting measure, for all T . If the entropy rate H(X) is finite, then
− log pX

T (X)/T converges in mean and a.s. to H(X).

Explicit expressions of H(X) for jump Markov and semi-Markov processes will
be developed in the next chapter.

Other notions of stationarity exist, less strict and more convenient for applica-
tions; we define here only first and second order stationarity.

Definition 4.29 A second order process X is said to be weakly stationary:

1. to the order 1 if EXt1 = EXt2 = mX for all (t1, t2) ∈ T
2.

2. to the order 2 if, moreover, RX(t1, t2) = RX(t1 + τ, t2 + τ ) for all τ ∈ T and
(t1, t2) ∈ T

2.

The mean and the variance of Xt are then constant in t , but the Xt do not
necessarily have the same distribution.

� Example 4.30 (Sinusoidal Signal (Continuation of Example 4.1)) Let X be as
defined in Example 4.1. Suppose that ν is constant, and that ϕ ∼ U[−π, π] and A

are independent variables. Then EXt = 0 and RX(t1, t2) = E (A2) cos[2πν(t1 −
t2)]/2; hence, this sinusoidal signal is second order stationary. Clearly, it is not
strictly stationary. �

For a second order process, stationarity induces weak stationarity. If X is a
Gaussian process, the converse holds true. Indeed, then E (Xt1, . . . , Xtn) = M is
constant and the covariance matrix �Xt1 ,...,Xtn

is a matrix valued function of the
differences tj − ti . The distribution of (Xt1, . . . , Xtn) depends only on M and �.
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Further, the covariance function of a weakly stationary process can be written
RX(t1, t2) = rX(t2 − t1), where rX is an even function of only one variable, called
the auto-correlation function of the process. The faster X fluctuates, the faster rX
decreases.

If X is a second order process, the Cauchy-Schwarz inequality yields |rX(t2 −
t1)| ≤ rX(0). The function rX is positive definite; if, moreover, it is continuous,
then it has a spectral representation—by Bochner’s theorem, meaning that it is the
Fourier transform of a bounded positive measure. For example, if T = R (Z),

rX(t) =
∫

�

eiλtμ(dλ)

where � = R ([0, 2π]) and μ is called the spectral measure of the process. If μ

is absolutely continuous with respect to the Lebesgue measure, its density is called
the spectral density of the process. The term “spectral” designs what is connected to
frequencies.

Then the integral representation of the process follows—by Karhunen’s theorem,

Xt =
∫

�

eiλtZ(dλ),

where Z is a second order process with independent increments—see next section,
indexed by �.

� Example 4.31 (White Noise) Let ε = (εn)n∈Z be a stationary to the order 2
centered process, with Var εn = 1 and

E (εnεm) = 0 =
∫ 2π

0

1

2π
eiλ(n−m)dλ, m �= n.

Therefore, the spectral density of ε is constant. All the frequencies are represented
with the same power in the signal, hence its name: white noise, by analogy to white
light from an incandescent body. �

� Example 4.32 (ARMA Processes) An MA(q) process X is obtained from a white
noise ε by composition with the function f (x1, . . . , xn) = ∑q

k=1 bkxn−k , called
linear filter. We compute E (XnXn+m) = ∑q

k=1 bkbm+k . The spectral density of X
is obtained from that of ε, that is

hX(λ) = 1

2π

∣∣∣
q∑

k=1

bke
−ikλ

∣∣∣
2
.
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In the same way, an AR(p) process Y is obtained by recursive filtering of order p

from ε, and

hY(λ) = 1

2π

∣∣∣
q∑

k=1

ake
−ikλ

∣∣∣
−2

.

Finally, the spectral density of an ARMA(p, q) process Z is

hZ(λ) = 1

2π

| ∑q

k=1 bke
−ikλ|2

| ∑p

k=1 ake−ikλ|2 ,

for λ ∈ [0, 2π]. �

Just as strict stationarity, strict ergodicity is rarely satisfied in applications, and
hence weaker notions of ergodicity are considered.

Definition 4.33 A random sequence (Xn) is said to be:

1. first order (or mean) ergodic if the random variable X is a.s. constant.
2. second order ergodic if, moreover, for all τ ∈ R, the random variable X(m) is

a.s. constant.

Mean ergodicity is satisfied under the following simple condition.

Proposition 4.34 A random sequence (Xn) is first order ergodic if and only if its
covariance function RX is summable.

Proof For a centered sequence X.
We compute

E

( 1

N

N−1∑

n=0

Xn

)2 = 1

N2

N∑

n=1

N∑

m=1

RX(n,m)

If the sequence is first order ergodic, 1
N

∑N
n=1 Xn converges in L2 to a constant, so

N−1∑

n=0

N−1∑

m=0

RX(n,m) < +∞.

Conversely, if RX is summable,

1

N2

N−1∑

n=0

N−1∑

n=0

RX(n,m)
L2−→ 0, N → +∞.

and the sequence is first order ergodic. ��
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Stationarity and ergodicity are not equivalent, as shown by the following
examples.

� Example 4.35 A process X constant with respect to t , equal to some random
variable V , is obviously stationary. Since X = V , it is first order ergodic only if V

is a.s. constant.
By linearity of integration, the sum of two ergodic processes is ergodic too. The

sum of two independent second order stationary processes is second order stationary
too. On the contrary, the sum of two dependent second order stationary processes is
not stationary in general.

Finally, let X be a process and let V be a random variable independent of X. If X
is stationary, the processes (V Xt) and (Xt + V ) are stationary too; on the contrary,
if X is ergodic, (V Xt) and (Xt + V ) are ergodic too only if V is a.s. constant. �

If the process is only weakly stationary and ergodic, the ergodic theorem does not
hold in general. Still, the following result holds true. In this case, the mean power is
equal to the instantaneous power.

Proposition 4.36 If (Xn) is stationary and ergodic to the order 2, then EXn = X

for n ∈ N and X(m) = rX(m) + X
2
a.s. for m ∈ N.

Proof The random variable X is a.s. constant, and all the Xn have the same
distribution, so EXn = X by linearity. In the same way, since EXn = EXn+m = X
and rX(m) = E (XnXn+m) − EXnEXn+m does not depend on n, we can write

rX(m) = 1

N

N−1∑

n=0

E (XnXn+m) −
(

1

N

N−1∑

n=0

X

)2

,

and rX(m) = X(m) − X
2

a.s. ��

Thus, the moments of the marginal distributions of weakly stationary and ergodic
sequences appear to be characterized by time averaging, that is by the knowledge
of one—and only one—full trajectory. This explains the importance of ergodicity in
the statistical study of marginal distributions.

4.3 Processes with Independent Increments

Numerous types of processes have independent increments, among which we will
present the Brownian motion, Poisson processes, compound Poisson processes, etc.
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Definition 4.37 Let X = (Xt)t∈T be a stochastic process adapted to a filtration
(Ft ), where T = R or T = N.

1. The process is said have independent increments if for all s < t in T, the random
variable Xt − Xs is independent of the σ -algebra Fs .

2. The process is said to have stationary increments if the distribution of Xt − Xs ,
for s < t in T, depends only on t − s.

3. A process with independent and stationary increments is said to be homogeneous
(with respect to time).

When T = N and X is a process with independent increments, the random variables
Xt0,Xt1 − Xt0, . . . , Xtn − Xtn−1 are independent for all n ∈ N and t0 < t1 <

· · · < tn. Since Xn = ∑n
i=1(Xi − Xi−1), knowing a process with independent

increments is equivalent to knowing its increments. If X is a homogeneous process,
then necessarily, X0 = 0 a.s.

Let us now present a typical process with independent increments, the Brownian
motion. It is an example of Gaussian, ergodic, non stationary process, with
independent increments. A trajectory of a Brownian motion is shown in Fig. 4.1.

Definition 4.38 The process W = (Wt )t∈R+ taking values in R, with independent
increments and such that W0 = 0, and for all 0 ≤ t1 < t2,

Wt2 − Wt1 ∼ N (0, t2 − t1),

is called a standard Brownian motion (or Wiener process) with parameters ν and σ 2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.5

0.0

0.5

Fig. 4.1 A trajectory of a Brownian motion
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The process W = (Wt )t∈R+ taking values in R, with independent increments and
such that W0 = 0, and for all 0 ≤ t1 < t2,

Wt2 − Wt1 ∼ N (ν(t2 − t1), σ
2(t2 − t1)),

is called a Brownian motion with drift parameter ν and diffusion parameter σ 2.

Considering the random walk (Sn) of Example 1.77, with p = 1/2, yields an
elementary construction of a Brownian motion. Indeed, setting

Xt = S[nT ], t ∈ R+

defines a continuous time process. If t = nT , then EXt = 0 and Var Xt = ts2/T .
Let now t be fixed. If both s and T tend to 0, then the variance of Xt remains fixed
and non null if and only if s ≈ √

T .
Let us set s2 = σ 2T where σ 2 ∈ R

∗+ and define a process W by

Wt(ω) = lim
T →0

Xt(ω), t ∈ R+, ω ∈ �.

Taking the limit yields EWt = 0 and Var Wt = σ 2t .
Let us show that Wt ∼ N (0, σ 2t) by determining its distribution function at any

w ∈ R+. Set r = w/s and T = t/n. If w and t are fixed and T tends to 0, since
s ≈ √

T , we get r ≈ √
n. Since P[XnT = (2k−n)s] = (

n
k

)
pk(1−p)n−k , we obtain

by applying de Moivre-Laplace theorem

P(Sn ≤ rs) ≈
∫ r/

√
n

−∞
1√
2π

e−t2/2 dt,

or, since r/
√

n = w/
√

σ 2t ,

P(Wt ≤ w) ≈
∫ w/

√
σ 2t

−∞
1√
2π

e−t2/2 dt.

Let us show that if 0 ≤ t1 < t2 < t3, then Wt2 − Wt1 and Wt3 − Wt2 are
independent. If 0 < n1 < n2 < n3, then the number of “heads” obtained between
the n1-th and the n2-th tossings is independent of the number of “heads” obtained
between the n2-th and n3-th tossings. Hence Sn2 −Sn1 and Sn3 −Sn2 are independent,
and taking the limit yields the result.

Finally, let us compute the covariance function of W. If t1 < t2, then Wt2 − Wt1

and Wt1 − W0 are independent. But W0 = 0, so

E [(Wt2 − Wt1)Wt1] = [E (Wt2 − Wt1)]EWt1 = 0.
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Since we also have E [(Wt2 − Wt1)Wt1 ] = E (Wt2Wt1) − E (W 2
t1
), we obtain

E (Wt2Wt1) = EW 2
t1

= σ 2t1, or RW(t1, t2) = σ 2(t1 ∧ t2).
Note that Xt/

√
n = S[nt ]/

√
n gives an approximation of Wt that can be simulated

as a sum of Bernoulli variables.

4.4 Point Processes on the Line

A point process is a stochastic process consisting of a finite or enumerable family
of points set at random in an arbitrary space, for example gravel on a road, stars in a
part of the sky, times of occurrences of failures of a given system, positions of one
of the basis A, C, G, T of an DNA sequence, etc.

In a mathematical sense, a point can be multiple. Even if the space to which
the considered points belong can be any topological space, we will here consider
R

d, for d ≥ 1. After some general notions on point processes we will present the
renewal process and the Poisson process on R+.

4.4.1 Basics on General Point Processes

The point processes are naturally defined through random point measures.

Definition 4.39 Let μ be a measure on (Rd,B(Rd)) and let (xi)i∈I be a sequence
of points in R

d , with I ⊂ N. If

μ =
∑

i∈I

δxi ,

and if μ(K) < +∞ for all compact subsets K of R
d , then μ is called a point

measure on R
d .

A point measure is a discrete measure. The multiplicity of x ∈ R
d is μ({x}).

When μ({x}) = 0 or 1 for all x ∈ R
d , then μ is said to be simple. If μ({x}) = 1 for

all x ∈ R
d , the measure μ(A) is equal to the number of points belonging to A, for

all A ∈ B(Rd).

Definition 4.40 A function μ : � × B(Rd) −→ R such that μ(ω, ·) is a point
measure on R

d for all ω is called a random point measure on R
d .

When μ(ω, {x}) = 0 or 1 for all ω and x, the random measure μ is also said to be
simple.
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� Example 4.41 Let n points in R
d be set at random positions X1, . . . , Xn. A

random point measure on R
d is defined by setting for all A ∈ B(Rd),

μ(A) =
n∑

i=1

δXi (A),

the random number of points belonging to A. �

� Example 4.42 Let (Tn)n∈N∗ be the sequence of times in R+ of failures of a
system. Then setting for all s < t in R+,

μ([s, t]) =
∑

i≥1

δTi ([s, t]),

the random number of failures observed in the time interval [s, t], defines a random
point measure on R+. �

Let Mp(Rd ) denote the set of all point measures on R
d .

Definition 4.43 A function N : � × B(Rd) −→ Mp(Rd) such that N(·, A) are
random variables for all A ∈ B(Rd) is called a point process.

The variables N(·, A), taking values in N, are called the counting random
variables of the point process N, and the measure m defined by

m(A) = E [N(·, A)], A ∈ B(Rd),

is its mean measure.

Each point process N is associated with the random point measure μ defined by

μ(·, A) =
∫

1Adμ = N(·, A).

It is said to be simple if m is simple.
Thus, N(ω,A) counts the number of points of the process belonging to A for the

outcome ω ∈ �. Note that m(A) can be infinite even when N(·, A) is a.s. finite.
If m has a density λ : Rd −→ R+, that is m(dx) = λ(x)dx or P[N(·, dx) =

1] = λ(x)dx, or

m(A) =
∫

A

λ(x)dx, A ∈ B(Rd),

then the function λ, called the intensity of the process N, is locally summable—
meaning that λ is integrable over all bounded rectangles of Rd .
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Let us present some properties of integration with respect to a point measure.
Let f : Rd −→ R be a Borel function and μ a point measure on R

d . The integral
of f with respect to μ is

μ(f ) =
∫

Rd

f dμ =
∑

i∈I

∫

Rd

f dδxi =
∑

i∈I

δxi (f ) =
∑

i∈I

f (xi).

The mean is

EN(f ) =
∫

Rd

f dm,

and the Laplace functional associated with N is defined as

LN(f ) = E

(
exp

[
−

∫

Rd

f (x)N(·, dx)

])
.

Especially, if f is positive and if N = ∑
n≥1 δXn , then

LN(f ) = E

(
exp

[
−

∑

n≥1

f (Xn)
])

.

The Laplace functional characterizes the distribution of a point process. Indeed,
the distribution of a point process N is given by its finite-dimensional distributions,
that is by the distributions of all the random vectors (N(·, A1), . . . , N(·, An)) for
n ≥ 1 and A1, . . . , An ∈ B(Rd). The function

LN

( n∑

i=1

si1Ai

)
= E

(
exp

[
−

n∑

i=1

siN(·, Ai)
])

is precisely the Laplace transform of the distribution of (N(·, A1), . . . , N(·, An))

that characterizes its distribution.

4.4.2 Renewal Processes

Renewal processes are punctual processes defined on R+, modeling many experi-
ments in applied probability—in reliability, queues, insurance, risk theory. . . They
are also valuable theoretical tools for investigating more complex processes, such as
regenerative, Markov or semi-Markov processes. A renewal process can be regarded
as a random walk with positive increments; the times between occurring events are
i.i.d. It is not a Markovian process but a semi-Markov process, that is studied by
specific methods.



196 4 Continuous Time Stochastic Processes

S1(ω)S0(ω) = 0 S2(ω) Sn−1(ω) Sn(ω)

X1(ω)X2(ω) Xn(ω)

t

Fig. 4.2 A trajectory of a renewal process, on (Nt = n)

Definition 4.44 Let (Xn) be an i.i.d. sequence of positive variables. Set

S0 = 0 and Sn = X1 + · · · + Xn, n ≥ 1. (4.4)

The random sequence (Sn) is called a renewal process. The random times Sn are
called renewal times. The associated counting process is defined by N = (Nt)t∈R+ ,
where

Nt =
∑

n≥0

1[0,t ](Sn) = inf{n ≥ 0 :Sn ≤ t}, t ∈ R+. (4.5)

Generally, (Xn) is the sequence of inter-arrival times of some sequence of events,
and Nt counts the number of events in the time interval [0, t]. Note that (Nt = n) =
(Sn−1 ≤ t < Sn) and that N0 = 1. A trajectory of a renewal process is shown in
Fig. 4.2.

When each of the variables Xn has an exponential distribution with parameter λ,
the counting process N is called a Poisson process with parameter λ, in which case
it is usual to set N0 = 0; the Poisson processes will be especially investigated in the
next section.

A counting process can also be regarded as a simple point process. Indeed,

N(·, A) =
∑

n≥0

δSn(A), A ∈ B(R+), (4.6)

defines a point process, and we obtain for A = [0, t],

Nt = N(·, [0, t]), t ≥ 0.

� Example 4.45 (A Renewal Process in Reliability) A new component begins
operating at time S0 = 0. Let X1 denote its lifetime. When it fails, it is automatically
and instantly replaced by a new identical component. When the latter fails after a
time X2, it is renewed, and so on.

If (Xn) is supposed to be i.i.d., then (4.4) defines a renewal process (Sn) whose
distribution is that of the sum of the life durations of the components. The counting
process (Nt )t∈R+ gives the number of components used in [0, t], of which the last
component still works at time t . �
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The expectation of the counting process at time t (or expected number of
renewals), is

m(t) = ENt =
∑

n≥0

P(Sn ≤ t),

and m is called the renewal function. If the variables Xn are not degenerated, this
function is well-defined. Therefore, we will suppose thereafter that F(0) < 1, where
F is the distribution function of Xn. The distribution function of Sn is the n-th
Lebesgue-Stieltjes convolution of F , that is

F ∗(n)(t) =
∫

R+
F ∗(n−1)(t − x)dF (x),

with F ∗(0)(t) = 1R+(t) and F ∗(1)(t) = F(t), so that

m(t) =
∑

n≥0

F ∗(n)(t), t ∈ R+. (4.7)

The mean measure m of the point process (4.6) is given by

m(A) = EN(·, A), A ∈ B(R+),

and we have m(t) = m([0, t]) pour t ∈ R+. Note that we use the same notation for
both the renewal function and the mean measure.

When F is absolutely continuous with respect to the Lebesgue measure, the
derivative of the renewal function λ(t) = m′(t) is called the renewal density (or
renewal rate) of the process.

Proposition 4.46 The renewal function is increasing and finite.

Proof For all s > 0, we have Nt+s ≥ Nt , so m is increasing.
Assume that F(t) < 1 for t > 0. Then F ∗(n)(t) ≤ [F(t)]n for all n, and hence

m(t) ≤ 1 + F(t) + [F(t)]2 + · · · ≤ 1

1 − F(t)
,

so m(t) is finite. The general case is omitted. ��

Relation (4.7) implies straightforwardly that m(t) is a solution of

m(t) = 1 +
∫ t

0
m(t − x)dF (x), t ∈ R+.
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This equation is a particular case of the scalar renewal equation

h = g + F ∗ h, (4.8)

where h and g are functions bounded on the finite intervals of R+. The solution of
this equation is determined by use of the renewal function m, as follows.

Proposition 4.47 If g : R+ −→ R is bounded on the finite intervals of R, then
(4.8) has a unique solution h : R+ −→ R that is bounded on the finite intervals of
R, given by

h(t) = m ∗ g(t) =
∫ t

0
g(t − x)dm(x),

where m is defined by (4.7), and extended to R− by 0.

Proof We deduce from (4.7) that

F ∗ (m ∗ g) = F ∗ g + F ∗(2) ∗ g + · · · = m ∗ g − g.

Thus, m ∗ g is a solution of (4.8).
Suppose that k : R+ −→ R is another solution of (4.8) bounded on the finite

intervals of R. Then h − k = F ∗ (h − k). Since F ∗(n) tends to zero when n tends
to infinity and k − h is bounded, it follows that h − k = F ∗(n) ∗ (h − k) and hence
k = h. ��

Many extensions of renewal processes exist.
If S0 is a nonnegative variable not identically zero, independent of (Xn) and with

distribution function F0 different from the renewal distribution function F , then the
process (Sn) is said to be delayed or modified. When

F0(x) = 1

μ

∫ x

0
[1 − F(u)]du, x > 0,

the delayed renewal process is said to be stationary.

Definition 4.48 Let (Yn) and (Zn) be two i.i.d. nonnegative independent random
sequences, with respective distribution functions G and H . The associated process
defined by

S0 = 0 and Sn = Sn−1 + Yn + Zn, n ≥ 1,

is called an alternated renewal process.
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Y1(ω) Y2(ω) Y3(ω)

Z1(ω) Z2(ω) Z3(ω)

0=S0(ω) S1(ω) S2(ω) S3(ω)

...........

...........

...........

...........

...........

...........

Fig. 4.3 A trajectory of an alternated renewal process

Such an alternated renewal process (Sn) is shown to be a renewal process in the
sense of Definition 4.44 by setting Xn = Yn + Zn and F = G ∗ H . A trajectory of
an alternated renewal process is shown in Fig. 4.3.

Still another extension is the stopped renewal process, also called transient
renewal process.

Definition 4.49 Let (Xn) be an i.i.d. random sequence taking values in R+, with
defective distribution function F . The associated renewal process defined by (4.4)
is called a stopped renewal process.

The life duration of this process is T = ∑N
n=1 Xn, where N is the number of events

at the stopping time of the process, defined by

(N = n) = (X1 < +∞, . . . , Xn < +∞,Xn+1 = +∞).

� Example 4.50 If N has a geometric distribution on N
∗ with parameter q , then the

distribution function of T is

FT (t) =
∑

n≥1

F ∗(n)(t)(1 − q)n−1q.

Indeed, P(N = n) = (1 − q)n−1q for n ≥ 1, and the distribution function of T

follows by Point 2. of Proposition 1.73. �

� Example 4.51 (Risk Process in Insurance) Let u > 0 be the initial capital of an
insurance company. Let (Sn) be the sequence of times at which accidents occur,
and let N = (Nt) denote the associated counting process. Let (Yn) be the sequence
of compensations paid at each accident. The capital of the company at time t is
Ut = u + ct − ∑Nt

n=1 Yn, where c is the rate of subscriptions in [0, t]. A trajectory
of such a process is shown in Fig. 4.4. The time until ruin is T .

The linked problems are the ruin in a given time interval, that is P(Ut ≤ 0)

with limit P(limt→+∞ Ut ≤ 0), and the mean viability of the company, that is
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S1(ω) S2(ω) S3(ω) S4(ω)

...
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...
..

Y1(ω)

Y2(ω)
Y3(ω)

Y4(ω)

u

T (ω)

0

X1(ω) X2(ω) X3(ω) X4(ω)

Fig. 4.4 A trajectory of a risk process

EUt ≥ 0. Different approaches exist for solving these issues, involving either
renewal theory or martingale theory. Note that a particular case of risk process,
the Cramér-Lundberg process, will be presented in the next section. �

Renewal process can also be considered in the vector case. Another extension
will also be studied below, the Markov renewal process.

4.4.3 Poisson Processes

The renewal process whose counting process is a Poisson process is the most used
in modeling real experiments. We keep the notation of the preceding section.

Definition 4.52 If Xn ∼ E(λ) for n ∈ N
∗, the counting process N = (Nt )t∈R+

defined by (4.5) p. 195 for t ∈ R+, with N0 = 0, is called a homogeneous Poisson
process with intensity (or parameter) λ.

Thanks to the absence of memory of the exponential distribution, the probability
that an event occurs for the first time after time s + t given that it did not occur
before time t is equal to the probability that it occurs after time s. More generally,
the following result holds true.

Theorem 4.53 A Poisson process N with intensity λ is homogeneous—with inde-
pendent and stationary increments—and satisfies Nt ∼ P(λt) for t ∈ R+.

Proof Let us show first that Nt ∼ P(λt) for all t > 0. We have

P(Nt = k) = P(Sk ≤ t) − P(Sk+1 ≤ t).
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According to Example 1.66, Sn ∼ γ (n, λ), so

P(Sn ≤ x) =
∫ x

0

1

(n − 1)!λ
ne−λt tn−1 dt = 1 − e−λx

n−1∑

k=1

(λx)k

k! ,

and hence P(Nt = k) = e−λt(λt)k/k!.
Let us now show that the increments of the process are independent. We begin

by determining the joint distribution of Nt and Ns , for 0 ≤ s ≤ t .

P(Ns = k,Nt = n) =
= P(Sk ≤ s < Sk+1, Sn ≤ t < Sn+1)

=
∫

En+1

1[xk,xk+1[(s)λn+1e−λxn+11]xn,xn+1[(t)dx1 . . . dxn+1

where En = {0 < x1 < · · · < xn}. Thus, by Fubini’s theorem,

P(Ns = k,Nt = n) =

=
∫

En

1[xk,xk+1[(s)λn1[xn,+∞[(t)dx1 . . . dxn

∫ +∞

t

λe−λxn+1dxn+1

= λne−λt

∫

En

1]xk,xk+1[(s)1]xn,+∞[(t)dx1 . . . dxn

= λne−λt

∫

E

dx1 . . . dxk

∫

F

dxk+1 . . . dxn = λne−λt s
k

k!
(t − s)n−k

(n − k)! ,

where E = {0 < x1 < · · · < xk < s} and F = {s < xk+1 < · · · < xn < t}.
Therefore,

P(Ns = k,Nt − Ns = l) = e−λs (λs)k

k! · e−λ(t−s) [λ(t − s)]l
l! ,

and the result follows. ��

Note that Theorem 4.53 can also be taken as an alternative definition of the
Poisson process, under the following form.

Definition 4.54 A stochastic process N = (Nt )t∈R+ is a homogeneous Poisson
process if it is a process with independent and stationary increments such that Nt −
Ns ∼ P(λ(t − s)) for all t ≥ s > 0.
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Indeed, the associated renewal process can be defined by S0 = 0 and then Sn

recursively though the relation (Nt = n) = (Sn ≤ t < Sn+1). Setting Xn =
Sn − Sn−1, we get P(X1 > t) = P(Nt = 0) = e−λt , and hence X1 ∼ E(λ).

The Poisson process can also be defined more qualitatively, as follows.

Definition 4.55 A stochastic process N = (Nt)t∈R+ is a Poisson process if it is a
process with independent increments such that t −→ Nt(ω) is for almost all ω an
increasing step function with jumps of size 1.

Let us now define the compound Poisson process.

Definition 4.56 Let N be a (homogeneous) Poisson process. Let (Yn) be an i.i.d.
random sequence with finite mean and variance, and independent of N. The
stochastic process ξ defined on R+ by

ξt =
Nt∑

n=1

Yn, t ≥ 0, (4.9)

with ξt = 0 if Nt = 0, is called a (homogeneous) compound Poisson process.

The compound Poisson process has independent increments.

� Example 4.57 (Cramér-Lundberg Process) With the notation of Example 4.51,
we suppose here that (Yn) is i.i.d. with distribution function G with mean μ and that
N is a homogeneous Poisson process with intensity λ independent of (Yn). Thus, the
process ξ defined by (4.9) is a homogeneous compound Poisson process, and (Ut )

is called a Cramér-Lundberg process.
We compute EUt = u + ct − ENtEY1 = u + ct − λμt . This gives a condition

of viability of the company, namely c−λμ > 0. The probability of ruin before time
t is r(t) = P(Ut ≤ 0) = P(ξt ≥ u + ct). Since the distribution function of ξt is

P(ξt ≤ x) =
∑

n≥0

P

( n∑

i=1

Yi ≤ x,Nt = n
)

=
∑

n≥0

P

( n∑

i=1

Yi ≤ x
)
P(Nt = n)

=
∑

n≥0

e−λt (λt)n

n! G∗(n)(x),

we get

r(t) =
∑

n≥0

e−λt (λt)n

n! G∗(n)(u + ct).
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The probability of ruin of the company—in other words the probability that the life
duration T of the process is finite—is

P( lim
t→+∞ Ut ≤ 0) = P(T < +∞) = lim

t→+∞ r(t),

but this quantity remains difficult to compute under this form. �

4.4.4 Asymptotic Results for Renewal Processes

All throughout this section, (Sn) will be a renewal process such that 0 < μ =
EX1 < +∞, with counting process (Nt )t∈R+. Recall that m(t) = ENt defines the
renewal function of the process, and that we suppose F(0) < 1, where F is the
distribution function of Xn.

Proposition 4.58 The following statements hold true:

1. Sn tends a.s. to infinity when n tends to infinity.
2. Sn and Nt are a.s. finite for all n ∈ N and t ∈ R

∗+.
3. Nt tends a.s. to infinity and m(t) tends to infinity when t tends to infinity.

Proof

1. The law of large numbers implies that Sn/n tends a.s. to μ, so Sn tends a.s. to
infinity.

2. Since (Sn ≤ t) = (Nt ≥ n + 1), it derives from Point 1. that Nt is a.s. finite.
Moreover, (Sn < +∞) = ∩n

i=1(Xi < +∞) for n ∈ N
∗, and Xn is P-a.s.

finite, so Sn is a.s. finite for all n ∈ N
∗.

3. We compute

P( lim
t→+∞ Nt < +∞) = P[∪n≥1(Xn = +∞)] ≤

∑

n≥1

P(Xn = +∞) = 0.

Therefore, Nt tends a.s. to infinity, from which it follows that m(t) tends to
infinity. ��

Proposition 4.59 The following convergence holds true,

1

t
Nt

a.s.−→ 1

μ
, t → +∞.

The induced convergence of m(t)/t to 1/μ is known as the elementary renewal
theorem.
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Proof Thanks to the law of large numbers, Sn/n tends a.s. to μ. Moreover, Nt is
a.s. finite and tends a.s. to infinity when t tends to infinity. Thanks to Theorem 4.17,
SNt /Nt tends a.s. to μ, and the inequality

SNt

Nt

≤ t

Nt

<
SNt+1

Nt + 1

Nt + 1

Nt

yields the result. ��

� Example 4.60 (Cramér-Lundberg Process (Continuation of Example 4.57)) We
have

1

t
Ut = u

t
+ c − Nt

t

1

Nt

Nt∑

n=1

Xn.

According to Proposition 4.59, Nt/t tends to 1/λ. Hence, thanks to Theorem 4.17,
Ut/t tends a.s. to c − μ/λ when t tends to infinity. �

The next result is an extension of the central limit theorem to renewal processes.

Theorem 4.61 If 0 < σ 2 = Var X1 < +∞, then

Nt − t/μ√
tσ 2/μ3

L−→ N (0, 1), t → +∞.

Proof Set

Zt = √
t

√
μ3

σ 2

(
Nt

t
− 1

μ

)
.

We compute P(Zt ≤ x) = P(Nt ≤ t/μ+x
√

tσ 2/μ3). If nt denotes the integer part
of t/μ + x

√
tσ 2/μ3, then

P(Zt ≤ x) = P(Snt ≥ t) = P

(
Snt − ntμ

σ
√

nt

≥ t − ntμ

σ
√

nt

)
.

By the central limit theorem, (Snt − ntμ)/σ
√

nt tends in distribution to a standard
Gaussian variable. Moreover, nt ≈ x

√
tσ 2/μ3+t/μ when t tends to infinity. Hence

t − ntμ ≈ −x
√

tσ 2/μ and σ
√

nt ≈ σ
√

t/μ, so (t − ntμ)/σ
√

nt ≈ −x, and the
conclusion follows. ��
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We state without proof the following two renewal theorems. A distribution
function F is said to be arithmetic with period δ if the distribution is concentrated
on {x0 + nδ : n ∈ N}.

Theorem 4.62 (Blackwell’s Renewal) If F is a non arithmetic distribution func-
tion on R+, then, for all h > 0,

m(t) − m(t − h) −→ h

μ
, t → +∞. (4.10)

If F is arithmetic with period δ, the above result remains valid provided that h is a
multiple of δ.

� Example 4.63 (Poisson Process) In this case, F(t) = (1 − e−λt)1R+(t), whose
Laplace transform is F̃ (s) = λ/(λ+s). Moreover, N0 = 0, so the Laplace transform
of m is

m̃(t) =
∑

n≥1

(F̃ (s))n = 1

1 − F̃ (s)
− 1 = λ

s
.

Inverting Laplace transform yields m(t) = λt . Thus, the relation m(t)−m(t −h) =
λh holds for all t > h. �

In order to state the key renewal theorem, let us introduce the direct Riemann
integrable functions.

Definition 4.64 Let g be a function defined on R+. Let mn(a) denote the maximum
and mn(a) the minimum of g on [(n − 1)a, na], for all a > 0. Then g is said to be
direct Riemann integrable if

∑
n≥1 mn(a) and

∑
n≥1 mn(a) are finite for all a > 0

and if lima→0
∑∞

n=1 mn(a) = lima→0
∑∞

n=1 mn(a).

� Example 4.65 Any nonnegative, decreasing function integrable over R+ is direct
Riemann integrable. Indeed, we get

∑

n≥1

(mn(a) − mn(a)) ≤ g(0).

Any nonnegative function integrable over R+ and with a compact support is also
direct Riemann integrable. �

Theorem 4.66 (Key Renewal) If F is a non arithmetic distribution function onR+
and if g : R+ −→ R+ is direct Riemann integrable, then

∫ t

0
g(t − x)dm(x) −→ 1

μ

∫ +∞

0
g(x)dx, t → +∞. (4.11)
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If F is arithmetic with period δ and if
∑

k≥0 g(x + kδ) < +∞, then

m ∗ g(x + nδ) −→ δ

μ

∑

k≥0

g(x + kδ), n → +∞.

Note that Blackwell’s renewal theorem and the key renewal theorem are equivalent
in the sense that (4.10) and (4.11) are equivalent.

For stopping renewal processes, the key renewal theorem takes the following
form.

Proposition 4.67 Let F be a defective distribution function on R+. If g : R+ −→
R+ is direct Riemann integrable and such that g(+∞) = limt→+∞ g(t) exists, then
the solution of the renewal equation (4.8) p. 198 satisfies

h(t) = m ∗ g(t) −→ g(+∞)

q
, t → +∞,

where q = 1 − F(+∞).

Proof According to Proposition 4.47, h(t) = m ∗ g(t). According to relation (4.7)
p. 197, the limit of m(t) when t tends to infinity is

1 + F(+∞) + F(+∞)2 + · · · = 1

1 − F(+∞)
= 1

q
,

and the result follows. ��

� Example 4.68 (Cramér-Lundberg Process (Continuation or Example 4.57)) Let
us determine the probability of ruin of the Cramér-Lundberg process. Set ζ(u) =
P(T = +∞) = 1 − P(T < +∞), where T is the time of ruin of the process. We
compute

ζ(u) =
∫ +∞

0

∫ u+cs

0
P(S1 ∈ ds, Y1 ∈ dy, T ◦ θs = +∞)

=
∫ +∞

0

∫ u+cs

0
P(S1 ∈ ds)P(Y1 ∈ dy, T ◦ θs = +∞ | S1 = s)

=
∫ +∞

0
P(S1 ∈ ds)

∫ u+cs

0
P(T ◦ θs = +∞ | S1 = s, Y1 = y)P(Y1 ∈ dy)

=
∫ +∞

0
λe−λsds

∫ u+cs

0
ζ(u + cs − y)dG(y).
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By the change of variable v = u + cs, we get

ζ(u) = λ0

∫ +∞

u

e−λ0(v−u)dv

∫ v

0
ζ(v − y)dG(y) = λ0e

λ0ug(u),

where

g(u) =
∫ +∞

u

∫ v

0
λ0e

−λ0(v−u)dvζ(v − y)dG(y),

and λ0 = λ/c. Differentiating this relation gives

ζ ′(u) = λ0e
λ0u[λ0g(u) + g′(u)] = λ0ζ(u) − λ0G ∗ ζ(u) = λ0[1 − G] ∗ ζ(u).

Integrating the above differential equation on [0, u] yields

ζ(u) = ζ(0) + λ0

∫ u

0
ζ(u − y)[1 − G(y)]dy, u ≥ 0. (4.12)

This equation is a renewal equation with defective distribution function with density
L(y) = λ0[1 − G(y)], where L(+∞) = λ0μ < 1. The case L(+∞) = 1 is
excluded because then ζ(u) = 0 for all u ∈ R+. Thanks to the key renewal theorem
for stopped renewal processes,

ζ(+∞) = ζ(0)

1 − L(+∞)
,

or, finally, since ζ(+∞) = 1,

ζ(0) = 1 − λμ

c
.

This allows the computation of ζ(u) for all u ∈ R+ through (4.12).
We have considered only nonnegative Y1. The result remains valid for any

variable Y1: it is sufficient to take −∞ and u + cs instead of 0 and u + cs as bounds
of the second integral in the above computation of ζ(u). �

4.5 Exercises

∇ Exercise 4.1 (The AR(1) Process on N) Let (εn)n∈N be a white noise with
variance 1. Let a ∈] − 1, 1[. An AR(1) process on N is defined by setting Xn =
aXn−1 + εn for n > 0 and X0 = ε0.

1. a. Write Xn as a function of ε0, . . . , εn and determine its distribution.
b. Determine the characteristic function of Xn.
c. Give the distribution of (X0, . . . , Xn).
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2. Show that:
a. (Xn) converges in distribution and give the limit.
b. (X0 + · · · + Xn)/n converges in probability to 0;
c. (X0 + · · · + Xn)/

√
n converges in distribution; give the limit.

Solution

1. a. For n ≥ 1, we have Xn = ∑n
p=1 an−pεp, and hence EXn = 0 and

Var Xn = a2n + · · · + a2 + 1 = 1 − a2(n+1)

1 − a2 .

b. Since (ε1, . . . , εn) is a Gaussian vector, Xn is a Gaussian variable, so the
characteristic function of Xn is

φXn(t) = exp
(

− 1 − a2(n+1)

1 − a2 t2
)
.

c. The vector (X0, . . . , Xn) is a linear transform of the standard Gaussian vector
(ε1, . . . , εn), so is a Gaussian vector too, with mean (0, . . . , 0) and covariance
matrix given by

Cov (Xj ,Xj+k) = E (XjXj+k) = E

[( j∑

p=0

aj−pεp

)( j+k∑

q=0

aj+k−qεq

)]

= ak

j∑

l=0

a2l = 1 − a2(j+1)

1 − a2 ak.

2. a. Clearly, φXn(t) tends to exp[−t2/(1−a2)], so Xn converges in distribution to
a random variable with distribution N (0, 1/(1 − a2)).

b. We compute

1

n
(X0 + · · · + Xn) = X0

n
+ 1

n

n∑

i=1

(aXi−1 + εi) = a

n

n−1∑

i=0

Xi + 1

n

n∑

i=0

εi

= a

n
(X0 + · · · + Xn) − a

n
Xn + 1

n

n∑

i=0

εi.

We know that Xn ∼ N (0, (1 − a2(n+1))/(1 − a2)), so Xn/n converges to
0 in probability. Moreover, by the strong law of large numbers,

∑n
i=0 εi/n

converges a.s. to 0. Therefore, (1 − a)(X0 + · · · + Xn)/n converges to 0 in
probability, and hence (X0 + · · · + Xn)/n too.
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c. In the same way, by the central limit theorem,
∑n

i=0 εi/
√

n converges in dis-
tribution to N (0, 1), so (1−a)(X0 +· · ·+Xn)/

√
n too, from which it follows

that (X0 + · · · + Xn)/
√

n converges in distribution to N (0, 1/(1 − a)2). �

∇ Exercise 4.2 (Generalization of AR and MA Processes) Let (γn) be a
sequence of i.i.d. standard random variables. Let θ ∈] − 1, 1[.

1. Set Vn = γ1 + θγ2 + · · · + θn−1γn, for n ∈ N
∗.

a. Show that Vn converges in square mean—use the Cauchy criterion.
b. Set V = ∑

i≥1 θ i−1γi . Show that Vn tends a.s. to V .
2. Let X0 be a random variable independent of (γn). Set Xn = θXn−1 + γn for

n ≥ 1.
a. Show that Vn and Xn − θnX0 have the same distribution for n ≥ 1.
b. Let ρ denote the distribution of V. Compute the mean and the variance of ρ.

Show that Xn tends in distribution to ρ.

c. Assume that X0 ∼ ρ. Show that Xn ∼ ρ for all n.

Solution

1. a. We have

E (Vm − Vn+m)2 = E (θmγm+1 + · · · + θn+m−1γn+m)2

=
n−1∑

i=0

θ2(m+i)
E (γ 2

m+i ) + 2
∑

i<j

θm+i θm+j
E (γm+iγm+j ),

so that E (Vm − Vn+m)2 = ∑n−1
i=0 θ2(m+i), which converges to 0.

b. According to Proposition 1.80, it is sufficient to show that P(lim |Vn − V | >

ε) = 0, or, using Borel-Cantelli lemma, that
∑

n≥0 P(|Vn − V | > ε) is finite
for all ε > 0.

Chebyshev’s inequality gives P(|Vn − V | > ε) ≤ E [(Vn − V )2]/ε2.
Moreover,

E [(Vn − V )2] = E [(θn+1γn+2 + θn+2γn+3 + · · · )2] = θ2n

1 − θ2 ,

so P(|Vn − V | > ε) ≤ θ2n/(1 − θ2)ε2, and the sum of the series is finite.
2. a. We can write Xn − θnX0 = θn−1γ1 +· · ·+ θγn−1 +γn, from which the result

follows, because all the γi have the same distribution.
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b. The sequence (Vn) converges to V in square mean—so also in mean, hence
EV = limn→+∞ EVn = 0 and

Var V = E (V 2) = lim
n→+∞E (V 2

n ) = lim
n→+∞

n∑

i=0

θ2i
E (γ 2

i+1)

= lim
n→+∞

1 − θ2n

1 − θ2
= 1

1 − θ2
.

Since Xn − θnX0 ∼ Vn, we can write Xn = θnX0 + Un, where Un is
a variable with the same distribution as Vn. Therefore, (Un) converges in
distribution to ρ too, and since (θnX0) converges a.s. to 0, (Xn) converges
in distribution to ρ.

c. We have X0 ∼ V so θX ∼ ∑
n≥0 θn+1γn+1 or θX ∼ ∑

n≥1 θnγn. Since
γ1 ∼ γ0, it follows that X1 ∼ ∑

n≥0 θnγn; since γn ∼ γn+1 for all n, we
obtain X1 ∼ ∑

n≥0 θnγn+1, that is X1 ∼ V ∼ ρ. The result follows by
induction.

Note that if ρ = N (0, 1) and γn ∼ N (0, 1), then Xn is an AR(1) process
and (Vn) is an MA(n − 1) process on N. �

∇ Exercise 4.3 (Sinusoidal Signals and Stationarity) Let X be the stochastic
process defined in Example 4.1. The variables ν, A and φ are not supposed to be
constant, unless specifically stated. The variable ϕ takes values in [0, 2π[.

1. Assume that A = 1 and ϕ ∼ U(0, 2π).
a. Show that if ν is a.s. constant, then X is strictly stationary to the order 1.
b. Show that if ν is continuous with density f and is independent of ϕ, then X is

weakly stationary to the order 2; determine its spectral density h.
2. Suppose that ν and ϕ are constant.

a. Give a necessary and sufficient condition on A for X to be weakly stationary
to the order 1.

b. Can X be weakly stationary to the order 2?
c. Let S = X + Y. Give a necessary and sufficient condition on A and B for S

to be weakly stationary to the order 1, and then to the order 2.
3. Suppose that ν is a.s. constant, that A is nonnegative and that A and ϕ are

independent.
a. Give a necessary and sufficient condition on ϕ for X to be weakly stationary

to the order 1 and then 2.
b. Give a necessary and sufficient condition on ϕ for X to be strictly stationary

to the order 1.
c. Let Z be the stochastic process defined by

Zt = A cos(νt + ϕ) + B sin(νt + ϕ),
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where ϕ ∼ U(0, 2π) is independent of A and B. Show that Z is weakly
stationary to the order 2.

Solution

1. a. Setting ψ = ντ + ϕ, we obtain Xt+τ = cos(νt + ψ). Since ϕ ∼ U[0, 2π]
and ντ is constant for a fixed τ , we have ψ ∼ U[ντ, ντ + 2π], and hence
Xt ∼ Xt+τ .

b. We have EXt = 0 and 2E (XtXt+τ ) = E (cos[ν(2t +τ )+2ϕ])+E [cos(ντ )].
We compute

E (cos[ν(2t + τ ) + 2ϕ]) =
= E (cos[ν(2t + τ )])E [cos(2ϕ)] − E (sin[ν(2t + τ )])E [sin(2ϕ)] = 0,

and E [cos(2ϕ)] = E [sin(2ϕ)] = 0, so X is weakly stationary to the order 2,
with r(τ ) = ∫

R
cos(λτ)f (λ)dλ. Since r is even and real,

r(τ ) =
∫

R

eiλτh(λ)dλ =
∫

R+
2 cos(λτ)h(λ)dλ,

and hence h(λ) = [f (−λ) + f (λ)]/4.
2. a. We have EXt = [cos(νt)]EA, so X is weakly stationary to the order 1 if and

only if A is centered.
b. We compute 2E (XtXt+τ ) = [cos(2νt + ντ) + cos(νt)]E (A2). This is a

function of τ only if E (A2) = 0, that is to say if A is null. Then the signal
itself is null.

c. Therefore, E St = [cos(νt)]EA + [sin(νt)]EB, which is constant in t if and
only if A and B are centered. Moreover,

E (StSt+τ ) = (Var A + Var B) cos(νt) + (Var A − Var B) cos(2νt + ντ)

+Cov (A,B) sin(2νt + ντ),

so S is weakly stationary to the order 2 if A and B are uncorrelated and have
the same variance.

3. a. We have EXt = [cos(νt)E (cos ϕ) − sin(νt)E (sin ϕ)]EA, which is constant
in t if E (cos ϕ) = E (sin ϕ) = 0. Similarly,

2E (XtXt+τ ) =
= [cos(ντ ) + cos(2νt + ντ)E (cos 2ϕ) − sin(2νt + ντ)E (sin 2ϕ)]E (A2)

so X is weakly stationary to the order 2 if E (cos ϕ) = E (sin ϕ) = 0 and
E (cos 2ϕ) = E (sin 2ϕ) = 0.
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b. The variables Xt+τ = A cos(νt + ϕ + ντ) and Xt = A cos(νt + ϕ) have the
same distribution if (A, ϕ + ντ) ∼ (A, ϕ) for all τ . This condition is fulfilled
if and only if ϕ ∼ U(0, 2π) and is independent of A.

c. Since E [cos(νt + ϕ)] = E [sin(νt + ϕ)] = 0, the process is centered. Set
Xt = A cos(νt + ϕ) and Yt = B sin(νt + ϕ). We have

E (ZtZt+τ ) = E (XtXt+τ ) + E (YtYt+τ ) + E (XtYt+τ ) + E (YtXt+τ ).

We compute 2E (XtXt+τ ) = cos(ντ )E (A2) and 2E (YtYt+τ ) =
cos(ντ )E (B2), and also 2E (XtYt+τ ) = sin(ντ )E (AB) = −2E (YtXt+τ ),

so Z is indeed weakly stationary to the order 2. �

∇ Exercise 4.4 (Alternated Renewal Process and Availability) Consider a com-
ponent starting operating at time S0 = 0. When it fails, it is renewed. When the
second fails, it is renewed and so on. Suppose the sequence of time durations (Xn)

of the successive components is i.i.d. and that of the replacing times (Yn) is also
i.i.d. and is independent of (Xn).

1. Show that (Sn), defined by S0 = 0 and Sn = Sn−1 + Xn + Yn for n ≥ 1, is a
renewal process.

2. a. Write the event Et=“the system is in good shape at time t” as a function of
(Xn) and (Sn).

b. Infer from a. the instantaneous availability A(t) = P(Et ).
c. If EX1 + EY1 < +∞, compute the limit availability A = limt→+∞ A(t).

Solution

1. The sequence (Tn) = (Xn + Yn) is i.i.d., and, according to Definition 4.44, (Sn)

is indeed a renewal process.
2. a. We can write

Et = (X1 > t)
⋃ [ ⋃

n≥1

(Sn ≤ t) ∩ (Xn+1 > t − Sn))
]
.

b. Let F and G denote the respective distribution functions of X1 and Y1. The
distribution function of Tn is

H(t) = F ∗ G(t) =
∫ t

0
F(t − x)dG(x), t ≥ 0.

Therefore, setting R(t) = 1 − F(t),

A(t) = P(Et ) = P(X1 > t) +
∑

n≥1

P(Sn ≤ t, Xn+1 > t − Sn).
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We compute

P(Sn ≤ t, Xn+1 > t − Sn) = E [1(Sn≤t )P(Xn+1 > t − Sn | Sn)]

=
∫ t

0
R(t − y)dH ∗(n)(y).

Thus

A(t) =
∫ t

0
R(t − y)dM(y) = R ∗ m(t),

where M(t) = ∑
n≥1 H ∗(n)(t) and m(t) = 1R+(t) + M(t). Finally, the key

renewal theorem yields

A = lim
t→+∞ A(t) = EX

EX + EY
,

Note that the same problem will be modelled by a semi-Markov process in
Exercise 5.5. �

∇ Exercise 4.5 (Poisson Process) The notation is that of Sect. 4.4.3.

1. Set Un = Sn/n, for n ∈ N
∗. Show that (Un) and (n1/2(λUn − 1)) converge in

distribution and give the limits.
2. Set Vn = Nn/n, for n ∈ N

∗. Determine the characteristic function of Vn. Show
that (Vn) and ((n/λ)1/2(Vn − λ)) converge in distribution; give the limits.

Solution

1. Thanks to the law of large numbers, Un converges a.s. to 1/λ, and, thanks to the
central limit theorem, n1/2(λUn − 1) converges in distribution to the standard
normal distribution.

2. We compute

E (eiuNt ) =
∑

k≥0

eiuk
P(Nt = k) = e−λt

∑

k≥0

(λteiu)k

k ! = e−λt (1−eiu).

Hence φVn(u) = e−λn(1−eiu) converges to eiuλ, and Vn converges in distribution
to λ. Moreover, Zn = √

n(Vn − λ)/
√

λ = Nn/
√

nλ − √
nλ, so φZn(u) =

exp[−λn(1 − eiu/
√

nλ) − iu
√

nλ], which converges to e−u2/2, and Zn converges
in distribution to the standard normal distribution. �
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∇ Exercise 4.6 (Superposition and Decomposition of Poisson Processes)

1. Let N and Ñ be two independent Poisson processes with respective intensities
λ > 0 and μ > 0. Show that the process K, defined by Kt = Nt + Ñt , is a
Poisson process, called superposition. Give its intensity.

2. Let N be a Poisson process with intensity λ > 0, whose arrivals are of two
different types, A and B, with respective probabilities p and 1−p independent of
the arrivals times. Show that the counting process M = (Mt )t∈R+ of the arrivals
of type A is a Poisson process. Give its intensity.

Solution

1. We can write Kt − Ks = (Nt − Ns) + (Ñt − Ñs), so K is indeed a process with
independent increments. Moreover,

P(Kt = n) =
n∑

m=0

P(Nt = m)P(Ñt = n − m)

=
n∑

m=0

e−λt (λt)m

m! e−μt (μt)n−m

(n − m)! = e−(λ+μ)t [(λ + μ)t]n
n! .

One can show similarly that Kt+s − Kt ∼ P((λ + μ)s). Proposition 4.54
yields that K is a Poisson process, with intensity λ + μ.

2. By definition, the process N is the counting process of the renewal process
associated with the sequence of arrivals times of A and B. These times are i.i.d.,
hence in particular the arrivals times of A are i.i.d., and the associated counting
process is M. Moreover,

P(Mt = k) =
∑

n≥k

P(Mt = k | Nt = n)P(Nt = n)

=
∑

n≥k

(
n

k

)
pk(1 − p)n−ke−λt (λt)n

n! = e−pλt (pλt)k

k! .

One can show similarly that Mt+s −Mt ∼ P(pλs) so that M is a Poisson process
with intensity pλ. �
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