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Random elements are defined with reference to a random experiment as functions
whose values depend on the result of the experiment. These elements can take
values in any measured space. They are called real random variables if the measured
space is the real line. A finite family of random variables is a random vector. A
denumerable family is a random sequence, taking values in a denumerable power
of the real line. Finally, a family of random variables indexed by a continuous set
of parameters is a stochastic process, taking values in any general measured space.
This volume is dedicated to both random sequences indexed by integers—such as
martingales and Markov chains—and random processes indexed by the positive real
line—such as Poisson, Markov, and semi-Markov processes. We present all these
random elements in order of increasing difficulty, together with notions necessary
to their use in applied probability fields. For this purpose, we consider reliability
linked to the lifetime of living or industrial systems, entropy linked to information
theory, and stationarity and ergodicity linked to signal theory, together with some
simulation methods.

The primary target of this book are students studying mathematics at university
and PhD students in applied mathematics; in this regard, it can serve as a course at
master’s and PhD level in applied probability. Further, it is conceived as a support for
all researchers and engineers dealing with stochastic modeling issues. Note that this
volume is a free translation of the second of our two volumes published in French
by Vuibert, Paris, which are in their third edition. We have made it as much self-
contained as possible. Still, for avoiding cumbersome definitions and statements,
basic notions of a first course of probability, including some integration and measure
theory and present in our first volume, are presupposed.

Each chapter is illustrated with a great number of examples and exercises with
their solutions. These are intended to serve as solutions of classical problems in
probability, complements to the main text, and introduction to more applied fields.
Their levels go from mere application of theoretical notions to elaborated problems.
A table of notation and a detailed index are given for easy reference. A classified
bibliography is presented for further reading, going from theoretical to applied
fields.

First, classical notions of probability on random sequences are given. Then,
conditioning, martingales, and Markov chains are detailed, together with an
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vi Preface

introduction to the random processes theory, indexed with either discrete or
continuous time. Finally, jump Markov and semi-Markov processes are investigated.
Application is proposed in many fields of applied probability, such as reliability,
information theory, production, risk, seismic analysis, and queueing theory.

The book is organized as follows:

We present in Chap. 1 basic notions of probability theory, related to studying
independent random sequences. We provide many tools necessary to their investi-
gation, from probabilistic tools, such as independence of sequences of events and
distributions of sums of random variables, to analytical tools, such as moment
transforms of all kinds or entropy. We recall basic definitions and notions on
classical distributions through examples. We also present elements of stochastic
topology with the different types of convergence of random sequences: almost sure,
in mean, in quadratic mean, in probability, and in distribution. We prove different
laws of large numbers and central limit theorems.

We present in Chap. 2 the conditional distributions and expectation in order of
increasing complexity, together with many examples of practical determination.
Then, we investigate the main properties of stopping times and of discrete-time
martingales, including the stopping time theorem and many classical inequalities
and convergence results. A section is dedicated to the celebrated linear model.

We present in Chap. 3 the discrete Markov chains. We investigate their main
properties in great detail, illustrated by numerous typical examples. Then, we apply
them especially to reliability and to branching processes theory.

We present in Chap.4 an introduction to the theory of stochastic processes,
mainly through the investigation of their most classical families: jump processes,
stationary and ergodic processes, processes with independent increments such as
the Brownian motion, point processes with the examples of renewal and Poisson
processes, autoregressive time series, etc.

Finally, we present in Chap.5 jump Markov processes and semi-Markov pro-
cesses with discrete state spaces. Application to reliability, biology, and queues is
realized in particular through exercises with detailed solutions.

Caen, France Valérie Girardin
Compiegne, France Nikolaos Limnios
April 2018
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N Set of natural numbers {0, 1, 2, ...}

Z Set of integers {..., —2,—1,0,1,2,...}
Q Set of rational numbers

R Set of real numbers

[a, b] Set of natural numbersa <n <b

la, b[ Set of real numbersa < x < b

[a, b] Set of real numbersa < x < b

R Extended real line [—o0, +00]

Ry Set of nonnegative numbers [0, +o0[

C Set of complex numbers

Re z Real part of the complex number z

Imz Imaginary part of the complex number z
i Square root of —1, i.e., i2=-1

E* Set of all elements of E but 0

oE Boundary of the set £

E% Interior of E

|E| Cardinal of E

]_[?: 1 Ei Cartesian product of the sets Eq, ..., Ej,
E" Order n Cartesian product of E

EN Set of sequences of elements of E

n! Factorial n

(IZ ) Binomial coefficient

avb Maximum of the real numbers a and b
anb Minimum of the real numbers a and b
Sab Kronecker’s symbol; equal to 1 if a = b, 0 otherwise
X — x(;“ x tends to xg, with x > xg

X = Xy x tends to xg, with x < xgo

[x] Integer part of x

Axy Increment of the sequence (x,),

i.e., Ax, = X, — Xn_1
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Positive part of f, that is max(f, 0)
Negative part of f, that is max(— f, 0)
Set of continuous functions on I C R
Set of n times differentiable functionson I C R
Small o of x at xg € R, i.e.,, limy_ y,0(x)/x =0
Large O of x at xp € R,
ie, limy_yx, O(x)/x =c,withc e R
Equivalent functions at xg € R,
ie, limy .y f(x)/g(x) =1
¢ € R is an approximated value of f(x)
Limit of the function f at 400
Superior limit of the sequence of functions ( f;),
ie., lim f;(x) = inf,>¢ SUPg >, Jr(x)
Inferior limit of (f;,),
ie., lim f, (x) = sup,>¢ infg>, fi(x)
d-Dimensional column vector with components 1
Row vector
Column vector
Scalar product of v = (x1, ..., x4) and
w=Y1,...,Yq), 1., <V, W >= Zflzl Xi Vi
Euclidean norm of v = (x1, ..., x4),
e ol = 0 i)'/
Linear subspace spanned by vy, ..., v,
d-Dimensional identity matrix
Determinant of the matrix M
Transpose of M
Diagonal matrix whose i-th coefficient is a;
Jacobian of the function ¢ at u € R?
Sample space of a random experiment
Outcome of a random experiment
Complement of a subset A of Q2
Indicator function of a subset A of 2
o-Algebra
o-Algebra generated by a family C

Notation



Notation

B(E)
P(€2)

"

Sw

A

Ad

P

(Q, F,P)
Q! Fi
Fon
®;l:l]P)i
per

a(f)
o(fi,iel)
(f € B)
(@< f<D
(f €dx)

[ fdu

LP(Q2, F, 1)

LP(Q, F, 1)

£y
n<Ly

Var X
B(p)
B(n, p)
B_(r, p)
Gg(p)
P)

xi

Borel o-Algebra of the topological space E

Set of all subsets of €2

Positive measure

Dirac measure at @

Lebesgue measure on R

Lebesgue measure on RY, ford > 1

Probability measure

Probability space

Product of the o-Algebras Fi, ..., Fy

Order n product of F

Product of the probabilities Py, ..., P,

Order n product of P

o-Algebra generated by the measurable function f

o-Algebra generated by the collection {f; : i € I}

Inverse image of B by f

Inverse image of [a, b[ by f

Short for (x < f < x +dx)

Lebesgue integral of the function f
with respect to the measure p

Set of F-measurable functions whose
p-th power is p-integrable

Set of the equivalence classes for the relation of
a.e. equality in LP (2, F, )

L?-norm

The measure u is absolutely continuous
with respect to the measure v

Almost everywhere

Almost surely

Random variable

(Probability) distribution of X

The variable X has the distribution P

X and Y have the same distribution

(Cumulative) distribution function of X

Density function of the variable X

Expectation (mean) of the variable X

Variance of X

Bernoulli distribution

Binomial distribution

Negative binomial distribution

Geometric distribution

Poisson distribution



Xii

U(a, b)
N, o)

y(a, b)
x2(n)
En, )
EM)
C(a)

X

Yx

Mx

hx

R

S(P)
S(X)
S(X)

Cov (X, Y)
PX.Y
X1,...,X2)
Cov(X,Y)
fxg
kD
Ng(M, T)

iid.

(Xn)

(Q, F, PN
lim A,

lim A,
CP(x, P)

p.s.
—

P
—

L
—

LP
—

P(B | A)
P(A|G)

Uniform distribution on the interval [a, b]
Gaussian distribution with mean

w € R and variance 62 € Ry
Gamma distribution
Chi square distribution with n degrees of freedom
Erlang distribution
Exponential distribution
Cauchy distribution
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Random sequences are understood here as real random processes indexed by dis-
crete time. Advanced notions on sequences of real random variables are presented.
Apart for their intrinsic value, they are thought as a tool box for the other chapters.
They will be completed in Chap. 4 by definitions and properties common to all real
random processes, either indexed by continuous or by discrete time.

More precisely, we first give the basic notions of probability linked to the
structural probabilistic concept of independence, leading to develop independent
random sequences.

We define the functional tools of use for studying random variables, such as
generating functions, characteristic functions, Laplace transforms, or entropy. We
detail the main properties of classical sums of random variables, leading to define
random sums. So doing, we recall the main properties of the classical distributions,
through many examples.

We briefly define the main types of convergence of random sequences: almost
sure, in mean, in probability, in distribution. We present the weak and strong large
numbers laws and central limit theorems, that constitute the most remarkable results
of the classical probability theory. They are proven under weak hypothesis, and
completed by some basic large deviations results.

For simplifying notation, mainly random variables are considered. Note that
most results extend to random vectors, inter alia, by considering them as random
sequences indexed by a finite set.

1.1 Denumerable Sequences

A probability space (2, F, P) is composed of the set 2 of all possible issues of a
random experiment, of a o-algebra F defined on €2, and of a probability IP defined
on the measurable space (2, F).

© Springer Nature Switzerland AG 2018 1
V. Girardin, N. Limnios, Applied Probability,
https://doi.org/10.1007/978-3-319-97412-5_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97412-5_1&domain=pdf
https://doi.org/10.1007/978-3-319-97412-5_1

2 1 Independent Random Sequences

A o-algebra is a subset of the set P(£2) of all subsets of €2 that is closed under
complement and countable union. Its elements—including  and @—are called
events.

An application P: F — R} is a probability if it is a positive measure with total
mass equal to 1. In other words, P(€2) = 1, and for any sequence (A,) of pairwise
disjoint events

JP( U A,,) =Y P(Aw).

n>0 n>0

Events with probability zero are said to be null. A property satisfied with probability
one is almost sure (a.s.) while it is said to be satisfied almost everywhere (a.e.) for
general measures.

Random sequences are rigorously defined through denumerable products of
probability spaces.

Definition 1.1 Let (2, ) be a measurable space, QN the set of sequences of
elements of €2, and 7r; the projection on the i-th coordinate, for i € N.

The infinite product space (2, F )N is the measurable space @Y, o ({nf1 F),ie
N}), where

o7 N(F)ieN) =
c({Ag X+ XA xQ2xQx---: Aj e F,i=0,...,n, n e N})

is the o -algebra generated by the infinite cylinders constructed on the rectangles of
F® forn € N. A

Theorem 1.2 (Kolmogorov Theorem) For any probability space (2, F,P), a
unique probability P®N defined on (2, F)N exists such that

n
PEN(Ag x - x Ay x @ x @ x--) =[[P(AD.  (Ao.....Ay) € F".
=0

The obtained probability space is called the infinite product space and denoted by
(Q, F,P)N.

We will denote by B(RR) the Borel o-algebra of R, that is the o -algebra generated
for example by the intervals ] — oo, x] for x € R.

A real random variable is a measurable function X : (22, F,P) — (R, B(R)),
such that X ~!(B) e F for all Borel sets B € B(R). Its distribution Py is the image
probability of P by X, characterized by the values Px (] — oo, x]), that define its
distribution function Fx(x) = P(X < x) = Px(] — 00, x]) for x € R. The set
X~ (B(R)) is a o-algebra on Q, called the o-algebra generated by X and denoted
by o (X); it is the smallest o -algebra that makes X measurable.



1.1 Denumerable Sequences 3

A random vector (X1, ..., Xq) : (2, F,P) — (R, B(R?)), with dimension
d, is a finite family of d real random variables, or a random variable taking values in
R, Tts distribution is characterized by the values P(x,, . x,)(]—o00,x1] x -+ x] —
00, x4]) for (x1,...,x4) € R4 1t is also characterized by its marginal distributions
IE"(XI.1 ,,,,, Xi,) forall1 <iy,...,iyandn <d.

A real random sequence (X,) = (X;,)neN is a denumerable family of real random
variables. It is also a random variable taking values in the set of all sequences of
real numbers RN = {(x0,x1,x2,...) : x, € R,n € N}. For any fixed w € Q, the
application defined on N by n — X, (w) is called a trajectory or realization of the
sequence.

By definition, the image probability of P®N by (X,,) is characterized by its value
for infinite cylinders. In other words, the distribution of (X,,) is characterized by its
finite marginal distributions IE"(XI.1 ,,,,, X;,) for all iy,...,i, and n € N. Therefore,
two random sequences (X,) and (Y,) have the same distribution if and only if
X0, ..., Xn) ~ Yo, ..., Y, foralln € N.

Let ;v and v be two nonnegative measures on a measure space (2, F). The
measure p is said to be absolutely continuous with respect to v (or u < v) if
u(A) =0forall A € F suchthat v(A) = 0.

Theorem 1.3 (Radon-Nikodym) Let i and v be two o -finite measures on (2, F).
If u < v, then a nonnegative Borel function f: (2, F,v) — Ry, B(R})) exists
such that

/L(A):/dﬂ:/fdv, AeF.
A A

The v-a.e. defined function f is unique. It is referred to as the density (or Radon-
Nikodym derivative) of u with respect to v and is typically denoted by f = du/dv.
If h is a p-integrable function, then [, hdp = [ hfdv.

A d-dimensional random vector X is said to be absolutely continuous if its
distribution is absolutely continuous with respect to the Lebesgue measure A on
RY, that is if a nonnegative Borel function fy: RY — R, exists such that
dPx(x) = fx(x)dx,orif

Eh(X)] =/ h(x) fx (x) dx,
R4

for all bounded Borel functions 4. The function fyx is called the (probability) density
(function) of the random variable X.

> Example 1.4 (Gaussian Variables, Vectors and Sequences) A random variable X
has a Gaussian (or normal) distribution with parameters m € R and 0> € R if its
density on R is

1 e*(xfm)z/Zaz.

V2ro



4 1 Independent Random Sequences

We will write X ~ N(m,02?). If m = 0 ans 62 = 1, it is said to be standard
Gaussian. If o = 0, it reduces to the Dirac distribution &,, at m, and said to be
degenerated.

A d-dimensional random vector (X1, ..., Xyz) is called a Gaussian vector if all
the linear combinations of its coordinates are Gaussian variables, in other words if
S aiX; ~ N(mg,02), foralla = (ai, ..., aq) € RY, where (m,, 0.2) depends
on a. If (Xq,...,Xy) is a Gaussian vector, then all X1,..., X; are Gaussian
variables and, for any linear or affine function f : R — R, the image f(X) is
a d’-dimensional Gaussian vector.

A random sequence (X,) such that (X;, ..., X;,) is a Gaussian vector for all
i1,...,iqg and d € N* is called a Gaussian sequence. <

The expectation is the mean value of a random variable. Its rigorous definition is
based on the definition of Lebesgue integral with respect to the probability.

Definition 1.5 Let (2, F, IP) be a probability space.

1. Let X be a nonnegative random variable. The expected value of X is defined by

EX:/X@MM@
Q

when this quantity is finite, and as £ X = 400 otherwise.
2. Let X be a random variable. Set X™ = sup(X,0) and X~ = —inf(X, 0). The
expected value (or mean) of X is defined by

EX=EXT-EX"™

when both expected values are finite. If one is finite and the other is not, then
E X = 400 (or —o00). If none are finite, the expected value of X is not defined.

The transfer theorem allows an integral on €2 to be transformed into an integral
on R by using the image probability, that is the distribution of the variable.

Theorem 1.6 (Transfer) Let X be a random variable and let h : R —> R be a
Borel function. If h o X is integrable, then

uémm@mmszman=Ahuwwuy

The variance of a random variable X is more often of use than its second order
moment E (X?).

Definition 1.7 The variance of a square integrable random variable X is defined as

VarX = E[(X — E X)?].
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The variance is a dispersion parameter: the closer to its mean are the values of X,
the smaller is its variance. Note that X is said to be centered if E X = 0 and standard
if, moreover, Var X = 1. The following formula is often of use for computing
variances.

Proposition 1.8 (Konig’s Formula) Var X = E (X?) — (E X)?.
Proof Since expectation is linear,
E[(X —EX)’] = E[X?+ (EX)*> — 2XE X]
=E (X% + (EX)?> - 2(E X)(E X),
and the result follows. m|

Let us now state without some of the most classical theorems of integration
theory for a measure space (2, F, i).

Theorem 1.9 (Lebesgue Monotone Convergence) Let (f,) be an increasing
sequence of nonnegative Borel functions converging (-a.e. to a function f. Then

Jo fad converges to [, fdpu.
Note that the limit f need not be finite.

Theorem 1.10 (Fatou’s Lemma) Let (f,,) be a sequence of nonnegative Borel
functions. Then

/ lim frdu < lim/ fadpt.
Q Q

Theorem 1.11 (Lebesgue Dominated Convergence) Let (f,) be a sequence of
Borel functions such that f, — f u-a.e. and |f,| < g u-a.e. for all integers n.
Then f is integrable and [ fudu converges to [o fdu. Moreover [ | fu — fldu
converges to Q.

This result applies to integrals depending on real parameters as follows.
Proposition 1.12 Ler f : I x Q2 —> R be a function, where I is any interval of R.

1. (Continuity) If f(t, -) is measurable for all t € I, if f(-, ) is continuous at to
p-a.e., and if | f(t, w)| < g(w) p-a.e. fort € I, where g is some p-integrable
function, then t —> fQ f(t, w)du(w) is continuous at t.

2. (Differentiability) If f (¢, -) is integrable for all t € I, if f (-, w) is differentiable

on I p-a.e, and if ‘%J; (t,a))‘ < g(w) fort € I p-a.e, where g is some
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w-integrable function, then %]; (t,-) is integrable, fQ f(, w)du(w) is differen-
tiable, and

d _ of
0 /Q ft 0)dp(w) = /Q o (. 0)du ).

The following result, easily proven for step functions, then for nonnegative
functions and finally for general functions by difference of nonnegative functions,
is the basis of the transfer theorem stated above.

Theorem 1.13 Let (2, F, u) be a measure space, h: @ —> Q' a measurable
function and ' = p o h™' the image measure of i by h. Let f: Q' — R be a
Borel function. Then

f (fohdu= [ fdu'
Q Q/

The following result is one of the most famous concerning multi-dimensional
functions.

Theorem 1.14 (Fubini) Let (2, F, u) and (', F', v) be two measure spaces. If
f:(QxQ, FxF,u®v) — (R, B(R)) is a Borel function, then both partial
functions f(-, ") and f(w, -) are measurable on their respective spaces.

If moreover f is nonnegative or . ® v-integrable, then

f[ f(w,x)d(,u@v)(w,w’):/ (f f(a),a)’)dv(a)’))d,u(a))
QxQ/ Q Q/

- /Q (/Qf(a), a/)d,u(w))dv(a/).

The next change of variables formula is especially convenient for computing dis-
tributions of functions of random variables. Let us recall that a C!-diffeomorphism
is a continuously differentiable mapping ¥ whose inverse is continuously differen-
tiable too. Its Jacobian is

ax1 x4
Jyu) =det| :

0 i d )
Wy - OV )

a¢l(u)..' 8Wl(u)

Note that Jy,—1 (u) = 1/Jy (' (w)).

Theorem 1.15 (Change of Variable Formula) Let Dy and D, be two open sets
of RY. Let f: Dy —> RY be a Borel function. Let : Dy —> D, be a C'-
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diffeomorphism with Jacobian Jy (u). The function x —> f(x) is integrable on
D, if and only if the function u —> f o Y (u)|Jy (u)| is integrable on D1, and we
have

f(x)dx =/ foy)lJy (u)ldu. (1.1)
Dy Dy

Ford = 1 and Dy = [a, b], this amounts to the well-known formula

¥ (b) b
/W) f(X)dX=/ foy)y (u)du. (1.2)

Let us now present shortly the spaces L?, that constitute a natural framework for
many of the notions investigated in this book.

Let (2, F, u) be any measure space, with p a positive measure. Let p be a
positive integer. The linear space of F-measurable real-valued functions whose p-
th power is p-integrable is typically denoted by £ (€2, F, n). The quantity

1/p
Ifllp = <[Q If(w)l”du(w)>

is referred to as the LP-norm. The space £*($2, F, u) is defined as the set of all
JF-measurable functions f whose sup-norm is finite, where

I flloo =supfx =0 : u(lf] = x) > 0}
=inf{x >0 : u(lfl =x) =0} < +o0. (1.3)

If f and g are pu-integrable and if f = g p-ae., then [, fdu = [, gdu, and
hence || - ||, is a semi-norm on L7 (2, F, u), for p € N". Note that the triangular
inequality is given by Minkowski’s inequality.

Consider the equivalence relation defined on L7 (2, F, u) by f ~ g if the two
functions are equal almost everywhere (a.e.), thatis u({w € Q: f(w) # g(w)}) =
0. The value of || /|| , depends only on the class of f. The quotient space is typically
denoted by

LP(Q, F,p) =LY (Q, F, w)/~,
or simply L” when no ambiguity may arise. Each class is identified to one of its

elements, and hence, speaking of w-a.e. equality remains possible in L. We will
say that a function is L? if its p-th power is integrable, that is if || f ||, < +oo.

Proposition 1.16 If 1 (2) < +o00, then LP C L? foralll < p < p' < +o0.

In particular, the above inclusion holds true for any probability measure u.
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All L? spaces for p > 1 are Banach spaces. Moreover, L>(2, F, i), equipped
with the scalar product < f, g >2= fQ fgdu is a Hilbert space.
Similar definitions for sequences follow.

Definition 1.17 Let (X,,) be any real random sequence. The sequence is:

* integrable (square integrable, L? for p € N*, nonnegative, discrete,. ..) if each
of the random variables X,, is integrable (square integrable, L? for p € N*,
nonnegative, discrete,. .. );

* equi-integrable if sup,~o E[1(x,>~5) | Xul]l — 0, N — +00;

e LP-bounded if supn>0ﬂXn||p < +00.

> Example 1.18 Let (X,) be a random sequence. If X € L' is such that |X,| < X
almost surely for all n > 0, then

E1(x,>mIXnll <E[Lx>mX], n=>0,

meaning that (X,,) is equi-integrable. <

1.1.1 Sequences of Events

Inferior and superior limit events constitute a key to the investigation of sequences
of events.

Definition 1.19 Let (2, F, P) be a probability space and let (A,) be a sequence of
events. The set of all w € €2 belonging to infinitely many A,, that is

limA, = ﬂ UAk
n>0k>n

=’we§2:leAn(a))z—l—oo]:{a)eQ:Vn,EIan,a)eAk},

n>0

is called the superior limit of (A;), or limsup.
The set of all the w € 2 belonging to all A, but perhaps a finite number, that is

limA, = U ﬂAk

n>0k>n

=iwe§2 : leAn(a))<~|—oo}={a)€Q A, Vk >0, o€ Ay,

n>0

is called the inferior limit of (A,), or liminf.



1.1 Denumerable Sequences 9

Properties of Superior and Inferior Limits of Events

1. imA, C limA,.

2. A sequence (A,) is said to converge, if lim A, = lim A,, then denoted by
lim A,. In particular, if (A,) is increasing, then lim A,, = U,>0A,. Indeed, for
an increasing sequence, w belongs to U,>0A, if and only if it belongs to some
given A,,; hence it belongs to infinitely many A, (for all n > ng), and so to all
but perhaps the first np — 1 ones. Symmetrically, if the sequence is decreasing,
then lim A, = Np>04,.

. If the A, are pairwise disjoint, then lim A, = @.

4. Let (A,) and (B,) be two sequences of events. For union, lim(A, U B,) =

lim A, U lim B,,. For intersection, we only have

W

limA, Nlim B, C lim(A, N B,) C lim A, Nlim B,,.

5. lim A, and lim A, are complementary in €2: they are disjoint and their union is
Q. In other words,

imA, = (A=) A=) JAr=lima4,.

n>0k>n n>0k>n n>0k>n

6. P(lim A,) < limP(A,) < limP(A,) < P(im A,). The first inequality comes
from considering the increasing sequence C, = Mi>, Ak and the second from
considering the decreasing sequence B;,, = Uy>, Ak.

1.1.2 Independence

The independence of denumerable sequences of events or of random variables is
based on the independence of sequences of o-algebras.

Definition 1.20 Let (G,) be a sequence of o -algebras included in . The sequence
is said to be independent if all finite subcollection is constituted of (mutually)
independent o -algebras, that is if for all {G,,, :k =1,..., N} C (Gy),

P(By, N---NByy) =P(By,)...P(Byy), Bu €Gnys-oos Buy € Gay-

The definition applies to finite families of events. If two subsets are independent,
then their generated o -algebras are also independent. For sequences of o -algebras,
this is precisely stated by the associativity principle.

Proposition 1.21 (Associativity Principle) Ler (G,) be an independent sequence
of o-algebras included in F. Let Iy and I, be two disjoint subsets of N. Then, the
two o -algebras generated by (Gy)ner, and by (Gu)ner, are independent.
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Definition 1.22 Let (G,) be a sequence of o -algebras included in F. The o -algebra

L= ﬂo(ng)

n>0 k>n
is called the asymptotic o -algebra of (G,).

The events of £ are referred to as asymptotic events. If the index sequence is
regarded as a time sequence, the asymptotic events depend only on the events
posterior to time 7, and this for all integers n.

Theorem 1.23 (Kolmogorov’s Zero-One Law) Let (G,) be an independent
sequence of o-algebras included in F. Every asymptotic event of (G,) is either
almost sure (a.s.) or null.

Proof Let us set F, = o0 (Ur=,Gk). For any integer n, the o-algebra G,_1 is
independent of (Gi)r=n. So, by the associativity principle, it is independent of 7,
and hence also of £ = Ny>0F;.

Since £ is independent of Gi for all integers k, it is also independent of F,, =
o (Ug=nGrk) for all n, again by the associativity principle. Hence it is independent
of £L = N,>0F;,. Therefore, every event L of L is independent of itself, P(L) =
P(LN L) =P(L)P(L), thatis P(L) =0 or 1. ]

The independence of finite or denumerable sequences of events is equivalent to
the independence of their generated o -algebras.

Definition 1.24 A sequence of events (A,) is said to be independent if the sequence
of their generated o-algebras is independent, that is if every finite subsequence is

constituted of independent events.

The condition
n
P(AiN---NA)=]]P(A). neN.
i=1

can be proven to be sufficient. Considering the decreasing sequence B, = Ni<, A,
for n € N, and taking the limits then yields

Pl A ] =]]P@n.

n>0 n>0
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Borel-Cantelli lemma says that lim A,, is either an almost sure or a null event.
This is a particular case of Kolmogorov zero-one law. Due to its paramount
importance in applications, we present a specific proof.

Theorem 1.25 (Borel-Cantelli Lemma) Let (A,,) be a sequence of events.

1 Ifznzo P(A,) < +o0o, then P(lim A,) = 0.
2. If 3,50 P(An) = +o0 and if (Ay) is independent, then P(lim A,) = 1.

Proof

1. By definition, lim A, = N,>0(Uk>,Ak), SO

0 < P(imA,) < IP’( U Ak) <Y P(A. neN.

k>n k>n

The series whose general term is P(A;,) converges, SO Zk>n IP(Ay) tends to zero
when 7 tends to infinity, and the result follows. -

2. We know thatlim A, = lim A, = U,>0 Mk>, Ak. Set B, = Mg>, A, forn € N.
Since the sequence (B,) is increasing, we have P(limA,) = P(U,>0B,) =
lim;,—, 4 oo P(By). The event B, can be decomposed into an intersection of
independent events, under the form

Bn=<kr=_1Ak)m<kaAk), N>n+1.

So P(By) = P(Nu<k<NAr)P(Nik>nAk). Since the Ay are independent, we
have P(Nyzk=n—140) = [[ie, P(Ax) and P(Ne=nyAr) < 1, so P(B,) <

N-1[1—P(Ag)]. Since 1 —x < e~ for all nonnegative x, we have 1 —P(Ag) <
exp[—P(Ax)] for k € N from which it follows that

N—-1
0 < P(B,) < expl— ) P(A)].
k=n

The series whose general term is P(A) diverges, and hence Z;{V:_nl P(Ay) tends
to infinity when N tends to infinity. Therefore P(B,) = O, for all n. Finally,
P(lim A,) =0 =1 —P(im A,) and the result follows. |

Independence of random sequences also relies on independence of o -algebras.
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Definition 1.26 A random sequence (X,) is said to be independent if the corre-
sponding sequence of generated o -algebras (o (X,,)) is independent, that is if every
finite subsequence is constituted of independent variables.

Independence of Xy, ..., X, for all n can be proven to be sufficient.

An independent sequence of random variables each of which obeying the same
distribution P is referred to as i.i.d. (independent identically distributed) with
(common) distribution P. We will say that two sequences are independent if all their
finite subsequences are independent, and that a random variable X and an indepen-
dent random sequence (X,,) are independent if the sequence (X, Xo, X1, ...) is an
independent random sequence.

Definition 1.27 Let (2, F, P) be a probability space. Let F = (F;,) be a sequence
of o-algebras F,, C F.If F, C Fn41 for all n, then F is called a filtration (or
history) of F. We will set Foo = 0 (Up>0Fn).

In particular, if (X,) is a random sequence, then the sequence of generated o -
algebras (o (Xx, 0 < k < n)) is called the natural filtration (or internal history) of
the sequence, and the o-algebra N, >00 (X,, Xp+1, .. .) 18 its tail o-algebra.

The next result appears as a corollary of Kolmogorov’s zero-one law.

Corollary 1.28 Every event of the tail o-algebra of an independent random
sequence has probability either zero or one.

> Example 1.29 (Convergence of Series) Let (X,) be an independent random
sequence. Then the series whose general term is X,, either diverges or converges
almost surely. Indeed, the event “ano X, converges” belongs to the tail o-algebra
of (Xy,). <

Finally, the next definitions will also be of use in the following.

Definition 1.30 Let F = (F,) be a filtration of F and let (X,) be a random
sequence. The sequence is said to be F-adapted if X, is F,-measurable for all
n; it is said to be F-predictable if X, is F,,—1-measurable.

1.2  Analytic Tools

We detail in this section the analytic tools useful for investigating random variables,
sums and sequences: generating functions for discrete variables, characteristic
functions linked to Fourier transform, Laplace transform, Cramér transform. These
analytic transforms characterize distributions, and thus are involved in many aspects
of the determination of limits of random sequences. Thanks to their property
of converting convolution into product, they are also essential in determining
distributions of sums.
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We also introduce Shannon entropy linked to uncertainty, with the notion of
entropy rate especially suited to denumerable random sequences.

1.2.1 Generating Functions

First, the generating function is classically defined for random variables taking
integer values.

Definition 1.31 Let X be a random variable taking nonnegative integer values. The
generating function of X is defined by

gx() =E@™) = ZIP’(X =n)t".

n>0
Properties of Generating Functions

1. gx(¢) is finite at least for ¢t € [—1, 1], because gx is an entire series whose
convergence radius is at least equal to 1.

2. gx(0) =P(X =0) and gx (1) = 1. Moreover, gx(¢) € [0, 1] fort € [0, 1].

3. gx belongs to C*(] — 1, 1]), with g(”)(O) = n!P(X = n) forn > 0, and hence
gx characterizes the distribution of X.

4. gx is a convex function—at least on ] — 1, 1[, because g% (s) = ) ,.,n(n —

DP(X = n)s" 2 is nonnegative.

> Example 1.32 (Generating Functions of Classical Distributions) The Bernoulli
distribution, with parameter p, is the distribution of experiments with two issues.
Let X ~ B(p),suchthat P(X = 1) = p = 1 — P(X = 0). We compute gx (t) =
pt+1—pforallt e R.

The Poisson distribution, with parameter A, is the distribution of rare events. Let
Y ~ P(A), such that P(Y = n) = ¢ *A"/n! for all n € N. We compute

gr(t) = Zt" P(Y =n) =e* Z (tk) =D eR.

n>0 n>0

The negative binomial distribution with parameters r € N* and p € [0, 1], is
the distribution of the r first successes in the repetition of an experiment with two
issues. Let Z ~ B_(r, p), such that P(X = r + k) = (r+k l)p (1 — p)k, for all
k > 0. We compute

k—1
82,0 =Y P(Zr =1+l = p't’ Z<r+ ) d= 7

k>0 =0 T (U —qoy

rtr

3

defined for |t| < 1/q, whereg = 1 — p. <
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The so-called generating functions generate moments of random variables as
follows.

Proposition 1.33 Ler X be a random variable taking integer values. Let gx denote
its generating function. Then E X = lim,_, |- g (¢).

If moreover E X is finite, then Var X = g’ (1)[1 — g% ()] + lim,_, |- g% (¢).
Proof We compute g (1) = E XX = > nP(X = n)t"~1 and hence gy
converges to a (possibly non finite) limit, when r — 17; by continuity, X (w)tX@~!
converges to X (w) for all w, so the first equality holds.

In the same way, g (1) = E[X (X — Dt* 2], so

111{1 & =E[X(X -1D]=EX?> -EX,
t—>1-

and the conclusion follows. O

> Example 1.34 (Moments of Poisson Distributions) Let X ~ P(A). We compute

gx =) I"PX=m)=ey (@) nl =0

n>0 n>0
The generating function is two times differentiable on R, with g (1) = Agx (¢) and
gy = A2g(1). Hence, due to Proposition 1.33, E X = gy (1) = Agx(1) = A, and
Var X = gx"x (1) + gy (1) — [gy (D> = 32gx (1) + 4 — A% = i. <

Note that if E X! is finite and if g\ " is differentiable from the left at 1, then
the factorial moments of X are given by

EX(X=1D...(X=n+D]= lim g ).
—1-

1.2.2 Characteristic Functions
The Fourier transform is used in probability theory as follows.

Definition 1.35 Let X be a random variable. The characteristic function of X is the
Fourier transform ¢y of its distribution, that is

ox() =E ("), teR,

where i2 = —1.
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Main properties of characteristic functions derive from properties of Fourier
transforms of measures.

Properties of Characteristic Functions

1. ¢x(0) =1 and |px(t)| < 1forall t € R.

2. The characteristic function characterizes the distribution: two variables with the
same characteristic function have the same distribution.

3. If X has a density f, then gy is the Fourier transform fof fx,

ox(1) = f(1) = /R fx(x)e™dx,

because the distribution Py has density f with respect to Lebesgue measure
on R.

4. p_x(t) = px(—1) = px(¢) so gx takes values in R if and only if X is symmetric,
and then ¢y is an even function.

5. Qax+b(t) = ™oy (ar) foralla € R* and b € R.

D> Example 1.36 (Characteristic Function of Binomial Distributions) Let X ~
B(n, p), a binomial distribution with parameters n € N* and p € [0, 1], that takes
the integer values k € [0, n]] with probability P(X = k) = (Z)pk(l — p)" . The
binomial distribution is in particular the distribution of a repetition of independent
Bernoulli experiments. We compute

px(t) =) ™ (Z)pk(l —p)" T =1Ipe + (- pl,
k=0

a well-defined quantity for all r € R.
For n = 1, we get the chars_icteristic function of a Bernoulli distribution with
parameter p, thatis px (t) = pe'’ + (1 — p). N

The following result derives from Fourier’s inversion formula.

Proposition 1.37 If ¢x is integrable, then X has a density with respect to the
Lebesgue measure, say fx, given by

1 .
fx(x) = o /Ref’”‘(px(t) dt, A —a.e..

> Example 1.38 (Characteristic Function of Gaussian Distributions) Let X have
the standard Gaussian distribution A/(0, 1). Then, by definition,

1 : 2
@) = / e /2 gx.
X V27 Jr
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Differentiating with respect to ¢ yields

1 : 1 .
¢3((t)=J2n Aéixe”xefxz/zdx = —JZNtAe”xexz/zdx = —tox(1).

Therefore, ¢x is solution of the differentiable equation ¢’ = —r¢ with ¢(0) = 1,
and hence ¢x (1) = e 2,
IfY ~ N(m, c?), then

1 i 2952 1 . . 2
ey(t) = ol1y = (y—m)?/20 dx = eltm pl10X p—x°/2 dx
«/27'[0’ /]R \/27.[ R

. . _ 22
— eltm(px(O'l‘) — itm =0t /2’

forall r € R. <

The moments of an integer valued random variable can be deduced from its
generating function. Similarly, under conditions, the moments of a general random
variable can be deduced from its characteristic function.

Theorem 1.39 Let X be a random variable. If E (|X|") < 400, then px € C"(R),
and (pg(m)(t) = i"E (X"e"X), for 1 < m < n. In particular, E (X™) = i’”(p&m)(O).

Proof Proof by induction. The equality holds true for n = 0. Assume that
E (|X|"*") < +oc. By induction, ¢ (1) = [ x"¢/*dPx (x).
If h # 0, then

1 no .
R
Let us set gj, (x) = x"[!XU+N) _ ¢/'X]/h and G(x) = x"'r. We have
1 nyixh
lgn(x)] < | lx"[le"*" — 11,

but |¢!*" —1| < |xh|, so that |g,| < |G|. Hence, the dominated convergence theorem
applies for & tending to zero and yields

(pgl'i‘l)(t) — / txneitxd]IDX(x) —F (XneitX),
R

and the result is proven. Finally, for t = 0, we get E (X™) = im(pgfm) 0). |
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Moreover, Taylor-Young formula yields

px) =3 EXH+o™.
k=0

If ¢x is indefinitely differentiable at O, then [E (| X|*) < +o0, for all integers n. On
the contrary, ¢x may be n-times continuously differentiable on R while E (X™) is
not finite for all m € [1, n].

> Example 1.40 (Moments of Gaussian Distributions) If X ~ N(0,02), its

.. . . 2.2
characteristic function is @y (f) = e~ 1 /2.

We compute by induction (p§(2"+1)(0) = 0 and

9$"0) = (=1)"0¥2n — 1)2n —3)...3.1, n >0,

Theorem 1.39 yields that E (X*"*1) = 0 and E (X?*) = 2" (2n)!/n!2". <

1.2.3 Laplace Transforms
Laplace transform is classically defined for nonnegative random variables.

Definition 1.41 Let X be a nonnegative random variable. The Laplace transform
¥x of X is defined by

Yx(@) =E@E ), 1eR,.

The definition carries over to possibly negative random variables, but the support of
Yx would then be an interval of R possibly reduced to {0}.

The Laplace transform of a random variable X is the Laplace transform ¥ p of
its distribution Px. The transform log ¥p, is sometimes referred to as the cumulant
generating function.

The Laplace transform is related to the characteristic function through ¥x () =
¢x(—it), and, when X is integer valued, to the generating function through ¥ x (¢) =
gx (7). Therefore, Laplace transform also characterizes distributions.

Properties of Laplace Transforms

1. ¥x(0) = 1.
2. If X has density fx, then ¢y is the Laplace transform of f,

bx (1) = /R Fr(oe " dx.

3. Yax(t) = Yx(at) foralla € R% and x5 () = e P9y (¢) forall b € R.
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No simple inversion formula exists, but Laplace transforms of the classical
distributions are tabulated.

> Example 1.42 (Laplace Transforms of Classical Distributions) A random vari-
able X has a gamma distribution with parameters a € R’ and b € R if its density
is

ba

“bx a—1
1_‘(a)e xR, (v),

where
+o00
I'la) = / e *xldx.
0

Laplace transforms of Poisson distribution P(A) and gamma distribution y (a, A)
are linked through

log ¥y (t) = a(logyrp) ' (1), t €R.

Indeed, on the one hand, if X ~ y(a, A),

A8 +00 Otr) 1
1= DA dx,
Vx (1) F(a)/o e x x

Fort < b, using the change of variable u = (A + 1)x, we get

px = /+°°eu u! du—( * )
T r@ O+na T \agr)

On the other hand, if X ~ P (1), then

—nt —t
]//'X(t) :Ze_)‘)\'ne'n =e—)nZ ()\.e )n Zek(e—t_l)’
n

! n!
n=0 n>0

which induces (log 1//73)’1(1‘) = log[A/(A +1)].
Binomial and negative binomial distributions are similarly linked through their
Laplace transforms. <

Moments can be deduced from Laplace transforms. The following result can be
proven by induction from the definition.

Proposition 1.43 IfE (X") < 400 for n € N* then yx is n-times differentiable
at 0, with B (X") = (=1)"y P (0) and E (X"e~X) = (—1)"y " (1).
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An indefinitely differentiable function ¢ : Ry — R is said to be completely
monotonous if (—1)"y ™ () is nonnegative for all n. We state the next result without
proof.

Proposition 1.44 A function v : Ry — R is the Laplace transform of a
nonnegative random variable if and only if is completely monotonous.

> Example 1.45 (Laplace Transforms of Exponential Distributions) A distribution
y(1,1) is called an exponential distribution—denoted by £(X), with density
re MR + (x). Exponential distributions model accurately lifetimes of radio-active
substances or of electronic components, thanks to their absence of memory property.

The completely monotonous function t —> A /(A + t) is the Laplace transform
of the exponential distribution with parameter A. <

1.2.4 Moment Generating Functions and Cramér Transforms

Together with the characteristic function and the Laplace transform, the so-called
moment generating function also yields moments of random variables.

Definition 1.46 The moment generating function My of a random variable X is
defined by

Mx(1) = E (),
for all real numbers ¢ such that this quantity is finite.

The moment generating function is defined on an interval Iy of R, possibly reduced
to {0}. This is a convex function, indefinitely differentiable when Iy # {0}. Its name
comes from the following result proven by induction using the definition.

Proposition 1.47 If My is defined on [—ty, ty] with ty > O, then X has finite
moments of all orders, with E (X") = M&")(O). Moreover, M)((n)(l) = E(x"eX),
and

Mx(t) = Z ;'IE(X").

n>0" "

> Example 1.48 (Moment Generating Functions of Binomial Distributions) Let
X ~ B(n, p). We have

n

Mx (1) = Zetk(’;)ﬁk(l —-p)" = —=p+pe),

k=0

and hence M'(t) = npe' (1 — p + pe’)"!, so that EX = np. N
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The Cramér transform relies on the moment generating function.

Definition 1.49 Let X be a non constant random variable such that My is defined
on Iy # {0}. The Cramér transform hy : Ix —> R of X is defined by

hx(t) = sup[ut —log Mx(u)].

uely
Properties of Cramér Transform

1. hyx is convex, as the supremum of affine functions.

2. hyx is nonnegative, because hyx (t) > ut — log Mx (u) for all u, in particular for
u=0.

3. The minimum value of hy is 0, obtained at r+ = E X. Indeed, by Jensen’s
inequality, Mx(u) > e“EX, so uEX — logMx(u) < O for all u; hence
hx(EX)=0and hx(t) > hx(EX).

> Example 1.50 (Cramér Transform of the Standard Normal Distribution) Let
X ~ N(0, 1). We have

1
Mx(t) = o /Retxe—x2/2 dx = et2/2’

and hence hx (t) = sup, g (ut — u?/2) =12/2, forallr € R. See Fig. 1.1 fort = 3.
<

The following inequalities bound the distance between a random variable and its
expected value.

Theorem 1.51 (Chernoff) If Ix =R, for all (a, b) € R?, then
P(X = a) < exp[—hx(a)] and P(X <b) < exp[—hx(D)].
Clearly, these inequalities are mainly interesting fora > E X and b < E X.

Proof We have (X > a) = (/X > ¢'%) for all t € R*, and hence by Markov’s
inequality,

P(X > @) = P! > o) < X0 _ martionitxo o g
e

from which the first inequality derives. The second can be proven similarly. O
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20+

15+

v=log M(u)

104

v=3u /// _5

Fig. 1.1 Cramér transform of distribution N'(0, 1) atz = 3

1.2.5 From Entropy to Entropy Rate

Entropy measures the quantity of information contained in a random system, that is
to say the uncertainty of a random phenomenon.

> Example 1.52 (Information Theory) A source of information produces randomly
sequences of symbols drawn from a given set. The source is said to be without
memory if each occurring symbol does not depend on the preceding one. A source
is modeled by the set of all possible sequences and is identified to a probability
space. For a discrete source, the sample space is called the alphabet, outcomes are
letters, and events are words. <

Definition 1.53 Let Q@ = {w; : i € I} be a discrete sample space and let P be a
probability on (2, P(R2)). Set p; = P({w;}). The Shannon entropy (or quantity of
information) of P is defined by

S(P)=—Y_ pilogpi,

iel

with the convention 0 log 0 = 0 and for any base of logarithm.
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The quantity of information linked to A € P(2) is — log P(A); especially, P
associates to each outcome w; the quantity of information — log p; and S(P) is the
mean of these quantities, weighted by their probability of occurrence.

The same procedure operates on a partition A = (A;)?_, of any sample space £2;
then, the system (A, P) associated with the entropy S(A, P) = S(p1,..., pn) =
— Y7, pilog p; is considered, where p; = P(A;).

Properties of Shannon Entropy

1. S(P) = 0, with equality if p;, = 1 for some i, since p; € [0, 1].

2. (Continuous) S(py, ..., py) is continuous with respect to each p;.

3. (Symmetric) S(p1, ..., pn) = S(Ps(1), .- Po)) for any permutation o of
{1,...,n}.

4. (Maximum) For a finite space, the entropy is maximum for the uniform
probability. Indeed, S(1/n, ..., 1/n) = logn and

1

n n
1
S(Pl,---,Pn)—log"=—Zpi10gpi+logn =Z;P510gnpl_-
i=

i=1

Since log x < x — 1 for any positive real number x, we get

n
1
S(pt,--., pn) —logn < E Di (np- — 1) =0.
1

i=1

5. (Increasing) S(1/n, ..., 1/n) increases with n; indeed the uncertainty of a
system increases with the number of its elements.
6. (Additive) For p, = > )" qx,

q1 q
S(plv7pn711q171qm):8(p171pﬂ)+pn8< EEEEE] m)
Pn Pn

Indeed,
S(pl,---apn—laQb---,Qm)_S(pl’---,[’n)z

m m m
a
= palogpn— ) qrlogqr=pn ) ), o8P = > axlogagx
k=1 k=1 " k=1

m
qk 9k q1 q
= —pn E log :pn8< e m)
=1 Pn DPn DPn Pn

A functional satisfying 1., 3. and 4. or 1., 2. and 4. can be proven to be the
Shannon entropy up to a multiplicative constant (depending on the chosen base of
logarithm). These conditions are linked to the physical interpretation of the concept
of entropy.
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> Example 1.54 (Binary Systems) Suppose a system contains two elements.

If P(A)) = 1 — P(Ay) = 1/200, then S(A, P) = 0.0215 (for the natural
logarithm). Guessing which of the two events occurs is easy.

If P(A;) =1— P(A) = 1/20, then S(A, P) = 0.101, prediction is less easy.

If P(A]) =1 — P(Ap) = 1/2, then S(A, P) = 0.693, uncertainty is maximum
and prediction impossible. The uncertainty is maximum for a uniform distribution
of the events. <

The uniform probability has maximum entropy among all probabilities defined
on a finite set. Further, the method of maximum entropy consists of choosing among
all probabilities satisfying a finite number of constraints the solution that maximizes
the entropy—meaning the one modelling the most uncertain system.

Further, the entropy of a discrete random variable X taking values {x; : i € I} is
the (Shannon) entropy of X is that of its distribution, that is

S(X) ==Y P(X =x)logP(X = x;).

iel

> Example 1.55 (Entropy of a Geometric Distribution) A negative binomial distri-
bution B_(1, p) is called a geometric distribution G(p), modelling for instance the
first success in an infinite coin tossing game.

The entropy of a random variable X ~ G(p), such that P(X = k) = p(1 — p)k_1
fork > 1,is

—> " pg"log(pg" ") = —plogp Y " q"" = plogg Y (k — )g*!
=1 k=1 k=1

1 q
—logp — logg,

p
whereg =1 — p. <
Many of the properties of the entropy of random variables derive from the properties
of entropy of probabilities. In particular, the entropy of a random variable X taking
N values is maximum, equal to log N, for a uniform distribution.

The notion of Shannon entropy extends to random variables with densities.

Definition 1.56 Let X be a random variable with density fx that is positive on
I C R. The entropy of X is the entropy of its distribution, or

S(X) = E[-log fx(X)] = — [I fx(@) log fxw)du.
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> Example 1.57 (Entropy of Exponential Distributions) The entropy of a random
variable X ~ £()) is

/ re* log(he ™) dx = log A /
Ry

re M dx — A/ xie M dx =logh +1,
R, R,

because/ fx(x)dx =1and EX = 1/A. <
Ry

For continuous random variables, the entropy S(X) can be negative or infinite.
Thus, the notion of maximum can be considered only under constraints; maximum
entropy methods can be developed in this context.

> Example 1.58 (Maximum Entropy) The maximum of S(X) fora < X < b,
where a < b are fixed real numbers, is obtained for a variable with uniform
distribution U (a, b); its value is log(b — a).

The maximum of S(X) for X > 0 and E X = a, where a is a fixed positive real
number, is obtained for a variable with exponential distribution £(1/a); its value is
log(ea).

The maximum of S(X) for EX = 0 and E (X?) = o2, where o2 is a fixed
positive real number is obtained for a variable with normal distribution A/ (0, o2);
its value is log(\/Znea).

The proof of these results is based on the Lagrange multipliers method. Their

extension to random vectors is presented in Exercise 1.6. <
The entropy of a random vector (X1, ..., X;) is the entropy of its distribution,
that is

S(X1,...,X,) = —ZP(XO =X0,..., Xp = xn) 0g P(Xo = x0, . .., Xn = Xn),

if X,, takes values in a discrete set £ C R for all n, where the sum is taken on all
(X1,...,xy) € E", and

S(Xl,...,Xn)=—/f(xo,...,xn)logf(xo,...,xn)dxo...dxn,
1

if (X1, ..., X») has adensity f, positiveon / C R".

Definition 1.59 Let X = (X,,) be a random sequence. If
1
S(X1,...,Xn) — S(X), n— +oo,
n

the limit S(X) is called the (Shannon) entropy rate of the sequence.
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Note that if S(X) is finite, then S(X) = inf S, (X)/n.

> Example 1.60 Among the random sequences with the same sequence of covari-
ance matrices, the maximum entropy rate is obtained for a Gaussian sequence; see
Exercise 1.6. <
D> Example 1.61 The entropy rate of an i.i.d. random sequence with distribution P
is equal to the entropy of P. Indeed, one can show by induction that the entropy of
the sequence up to time #n is n times its entropy at time 1. <
1.3  Sums and Random Sums

Sums of a random number of random variables are called random sums. Their
properties are based on the properties of the sums of a fixed number of random
variables.

1.3.1 Sums of Independent Variables

The determination of the distributions of sums of random variables or vectors is
based on the notion of convolution.

Definition 1.62 The convolution of two elements is defined as follows.

1. Let f and g be two nonnegative or integrable Borel functions defined on R. The
convolution of f and g is the function defined on R by

fxglx) = /Rf(x —ygydy = /Rf(y)g(x —ydy, xeR.

2. Let u and v be two measures on (R, B(R)), with d > 1. The convolution of 1
and v is the measure u * v on R defined by

uxv(B) = /]RZ 1p(x + y)du(x)du(y), B € B(R).

Point 2. applies to bounded Borel functions #: R — R under the form

/ h(z)du *xv(z) = / hix + y)du(x)dv(y). (1.4)
R R2

Proposition 1.63 If i and v are absolutely continuous with respect to the Lebesgue
measure A on R, with respective densities f and g, then | * v has the density f x g
with respect to A.
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Proof Indeed,

f h@dp s v(z) L f / hix 4+ ) () dxg()dy
R RxR

= [ 0] [ 1= soy]az.
R R

(1) according to (1.4). |
Properties of Convolution

1. Convolution is commutative, associative and distributive with respect to addition.

2. If f e L' and g € L?, with p > 1 then f * g is A-a.e. finite, belongs to L”, and
ILf =gl =N fNlgllp.

3. The Fourier (Laplace) transform of the convolution product of two elements is
the usual product of their Fourier (Laplace) transforms.

The convolution of two discrete measures takes the form of a sum. Let i and v
be two measures defined on a countable space 2 = {w, : n € N} with respective
values (wy,) = pp and v(wy,) = v,. Their convolution is given by

n
(xv)n =) vk, n €N, (1.5)
k=0

The generating function of the convolution of two elements is the product of their
generating functions.
An example of indefinitely divisible distribution will be given in Exercise 1.3.

Definition 1.64 A probability measure—or distribution—P on (R, B(R)) is said

to be indefinitely divisible if for all » € N, a probability measure Q, exists on
(R, B(R)) such that P is the order n convolution of Q,, in other words P = Q" =

Qn - % Qn.

The distribution of a sum of independent random variables is obtained as the
convolution of their distributions.

Theorem 1.65 Let X1, ..., X, be n independent random variables. We have

1. ]PX1+~~~+Xn = ]P)Xl koeeek PX,,~

2. If, moreover, all X1, ..., X, have densities fi, ..., fu, then their sum Z?Zl X;
has a density too, say f, with f = fi x---* f,.

Proof For two variables.

1. The result is an immediate consequence of the definition of convolution.
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2. Let h: R — R be any bounded Borel function. We have
E[h(X1 + X2)] = //2 h(x1 + x2)dPx, x,)(x1, x2)
R
= //Rz h(x1 4 x2)dPx, (x1)dPx, (x2)

1
Q[ naex, «Pr,
(1) by (1.4). Applying Theorem 1.63 yields the conclusion. O

> Example 1.66 (Sums of Gamma Distributed Variables) For n € N*, a distribu-
tion y (n, 1) is called an Erlang distribution £(n, A). The distribution £(1, 1) is just
an exponential distribution £(A).

Let Xy, ..., X, be i.i.d. random variables with distribution £(1), and set S; =
X1+ -+ Xg, for 1 < k < n. The density of Sy can be computed by iterated
convolution. An alternative method comes from noting that the density of (X1,
oo Xp) s )\"e*MM“ﬂn)nRi(xl, ..., Xy). Thus, the density of (S, ..., S,) is
)»"67“"]1(0<s1<...<sn), easily obtained through the linear change of variables s; =
X1, =X1+Xx2,...,.8 =x1+ -+ x5.

The distribution of S, follows by taking the marginal distribution, that is

()\'S)n_l )\'e—)nt

IS =y,

Ir, (s),
sayinf that S, ~ E(n, 1).

Similarly, if X ~ y(aj,b) and Y ~ y(ay, b) are independent, then X + Y ~
y (a1 + az, b).

The distribution £(k, 1/2) is called a chi-squared distribution X2(2k), the
distribution of the square of random variable with a standard normal distribution.
If X ~ x2(m) and Y ~ x2(n) then X + Y ~ x2(m + n). If X; and X, are two
i.i.d. standard normal variables, then X % and X% are i.i.d. with distribution Xz(l), o)
X?+ X3~ x2(2). <

The distribution of the sum of discrete independent variables is also given by
the convolution of their distributions. For example, for two random variables taking
integer values, (1.5) becomes

IP’(X—i—Y:n):ZIP’(X:k,Y:n—k):ZIP’(X=k)]P’(Y=n—k).
k=0 k=0
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The variance of the sum of any variables can be written in terms of variances and
covariances of the variables. The covariance of two random variables X and X> is

Cov (X1, X2) =E[(X1 —EX1)(X2 — EX»)],

and the variance of X is simply Var X = Cov (X, X). If Cov (X1, X2) = 0, then
X1 and X are said to be uncorrelated.

Proposition 1.67 Ler Xy, ..., Xg be random variables with finite variances. We
have

Var Zd:X,- = Zd:VarX,- + Z(Cov (X, X;).
i=1 i=1 i#j
If moreover X1, ..., X4 are uncorrelated, then
Var (X1 +---+ Xg) =Var X; + --- + Var X,.
In particular, for two variables,
Var (X1 4+ Xp) = Var X| 4+ Var X, + 2Cov (X1, X>»).
Proof We prove the proposition for two variables. We develop

Var (X1 + X2) =E (X1 + X2 —E(X1 + X2)1?) =
=E[X]—EX)?*+EX2—EX2)?+2E(X; —EX)(X2 —E X2)].

The case of uncorrelated variables follows immediately. O

The generating function, the Laplace transform and the characteristic function
transform densities of sums into products of transforms, and characterize distribu-
tions. Thanks to both these properties, the distribution of sums of random variables
can be determined by using ordinary product of functions instead of convolution.

Theorem 1.68 Let X1, ..., X, be independent random variables.

1. The characteristic function of their sum is the product of their characteristic
functions.

2. If X1, ..., X, are nonnegative, the Laplace transform of their sum is the product
of their Laplace transforms.

3. If Xu, ..., X, take integer values, the generating function of their sum is the
product of their generating functions.
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In particular, for i.i.d. variables,

gy, x, () =lgx,(O]" and @y x, (1) =lex,O]", 1€R.
Proof

1. For two random variables with densities f and g,
Frg) = / S f % g(x)dx = / e / f@x = y)g(y)dydx
R R R
) / g(y)ei’ydy/ flx — eV ax
R R
=3 fR fe™du =g f(@).

(1) by Fubini’s theorem.
2. can be proven in the same way.
3. For two variables,

gx,+x,(1) = E(1H%2) = E(*DE (™) = gx, (1 gx, (1),
for all + € R for which these quantities are finite. O

> Example 1.69 (Distributions of Sums of Discrete Distributions) Let X ~ P(A)
and Y ~ P(u) be two independent variables. Let us show that X + Y ~ P(A 4+ )
by using two different methods:

First, by convolution,

n n k n—k
A
P(X +Y = n) - ZP(X = k)]P)(Y =n —k) = Ze*)\ ¥ efl/v(ljv_ k)'
k=0 k=0 ' " .
—(p) n
e Y\ k n—k _ =Gy A+ 1)
- o ;} (k))\ o= nl

Second, the generating function of X + Y characterizes the distribution. Indeed,
using Example 1.34, we compute

gX—i—Y(t) — ]E (tXtY) — E (tX)E (tY)ze)n(t—l)e,LL(t—l) — e()»-l—,u)(t—l)’

that is the generating function of a distribution P(A + ).
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Let X ~ B(n, p) and Y ~ B(m, p) be two independent binomial variables.
Using Example 1.36, we get

gx+y @) =I[pt+ A —=p)"[pt+ (1 —p)" =[pt+ (1 —pI"™, teR,

and hence X +Y ~ B(m + n, p). Similarly, if X ~ B_(ry, p) and Y ~ B_(r2, p)
are independent, then X + Y ~ B_(r; + r2, p). <

> Example 1.70 (Distributions of Sums of Normal Distributions) Let X ~
N(@my, 012) and Y ~ N(ma, 0'22) be two independent variables. Using
Example 1.38, the characteristic function of X 4 Y is
Oxiy (1) = etmlefalztz/Zetmzefazztzﬂ _ et(m1+m2)ef(012+022)t2/27 teR,
and hence X +Y ~ N(m| +ma, o} + 0}).
This does not carry over to dependent variables, as the following example shows.

Let X1 ~ N(0, 1). Let ¢ ~ B(1/2) take values in {—1, 1} and be independent of
X1.Set X, = ¢X4. We have

PXp =x) =PX1=x,e=D+P(-X1 =x,e=-1

1 1
= ZP(XI =x)+ ZP(—Xl <Xx).

Since the standard Gaussian distribution is symmetric, —X; ~ A/ (0, 1), and hence
X, ~ N(0,1) too. Moreover, since ¢ and X; are independent, we compute
Cov (X1, Xp) = ]E(eX%) = E(@E (X%) = 0, so X; and X, are uncorrelated
and Gaussian. Still, for instance P(X; + X, = 0) = P(e = —1) = 1/2, showing
that the distribution of X| + X» is not Gaussian. <

Further, note that a normal random variable can be shown to decompose into a
sum of i.i.d. variables only if these variables also have normal distributions.

> Example 1.71 (The Stable Family of Cauchy Distributions) A random variable
X has a Cauchy distribution C (o) with parameter o > 0 if it has the density f(x) =
; azofﬂ on R, with median zero and infinite expected value.

Using characteristic functions, one can easily show that if X and Y are two
ii.d. variables with Cauchy distribution C(«), then aX + bY has also a Cauchy

distribution C((a + b)w); this is an example of a stable distribution. <

1.3.2 Random Sums

Randomly indexed random variables often appear in applications.
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Definition 1.72 Let (S,) be a random sequence defined on a probability space
(2, F,P). Let N be an almost surely finite random variable defined on the same
space and taking integer values. The randomly indexed variable defined by & —
SN (w) (w) is denoted by Sy .

Randomly indexed sums are especially considered, that is Sy = ZIN=1 X;, where
S, = X1+ ---+ X, for a random sequence (X,) and an integer valued random
variable N.

The above results extend to random sums as follows.

Proposition 1.73 Let (X,) be an ii.d. random sequence; let P denote its dis-
tribution, with distribution function F, mean M and variance s*. Let N be an
almost surely finite random variable independent of (X,) and taking positive integer
values, let m denote its expected value and o2 its variance. Then:

1. Sy has expected value mM and variance s2m + M*(0? + m?).
2. The distribution function of Sy is

Fs), (x) = Z F*®W ()P(N = n).

n>1

3. The Laplace transform (characteristic function) of Sy is the composition of the
generating function of N and of the Laplace (Fourier) transform of P.

4. If X, takes integer values, the generating function of Sy is the composition of
the generating functions of N and P.

Proof

1. We compute

ESy =E[ Y Tv=nSu| = D Ellvn il
n>1 n>1
Moreover, N and S, are independent, so

ESy = ZP(N =nES, = ZP(N =nnEX; = (EN)EX,) =mM.

n>1 n>1

Similarly, E(S%) = Y,-; P(N = n)E(S?). Since E(52) = nVarX; +
n(E X1)%, we get

E(53) = s2[ S nP(N = n)] + M2[ S BN = n)]

n>1 n>1

= s’EN + M*E (N?).
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Since E (NZ) =0o? +m?, we get Var Sy = sZm + M2(02 + m2).
We compute

P(Sy <s)=) P(Sy <s.N=n)=) P(S, <s)PN =n),

n=1 n>1

from which the result follows by Point 2. of Theorem 1.65.
According to Theorem 1.68, s, (t) = ¥p(1)", so

Ysy () =Y Ele" " Iyopl =Y E( PN =n)

n>1 n>1
= Z Yp()"P(N =n) = gn(yp(1)).
n>1

Similarly, s, () = g (P(1)).
We have

P(Sy=k) =Y P(N=n,S, =k =Y PN =nP(S, =k).

n>1 n>1

According to Theorem 1.68, gs, (s) = gp(s)", so

gsy(s) =Y P(Sy =k)s* =) PN =n) Y P(S, = hk)s*

k>1 n>1 k>1
=Y P(N =n)gs,(s) = Y _P(N =n)gp(s)",
n>1 n>1

or gsy (s) = gn(gp(s)).

O

Definition 1.74 Let (X,,) be ani.i.d. random sequence with distribution P. Let N ~
‘P (1) be independent of (X;,). The compound Poisson distribution is defined as the

distribution of the random sum Sy = Zflvzl X,,; we will write Sy ~ CP(A; P).

D> Example 1.75 Suppose that the number of accidents per year in a certain type of
factory has a Poisson distribution with parameter A and that the probability of one
or more casualties per accident is p. Let us determine the distribution of the number
of casualties per year.
We have gy (s) = e*¢~D and X,, ~ B(p), so gx, (s) = ps + 1 — p. According
to Proposition 1.73, gs, (s) = =D 50 Sy ~ P(pr). Thus we have shown that
the compound Poisson distribution CP(X; B(p)) reduces to the ordinary Poisson
distribution P(pA).

<
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1.3.3 Random Walks

Random walks are random sequences defined as sums, which are not i.i.d. but have
i.1.d. increments.

Definition 1.76 Let (X)) be an i.i.d. random sequence taking values in Z. Let Sy be
a random variable also taking values in Z, and independent of (X,,). The sequence
(Sy,) of random variables

Si=S+X1+---+X,, n>1,

is called a random walk.

When X,, ~ B(p) for all n, the random walk is called a Bernoulli random walk.
When X, takes only the values —1 and 1, the random walk is said to be simple, and
symmetric if P(X,, = —1) = P(X,, = 1).

A trajectory of a simple random walk is shown in Fig. 1.2.

An equivalent definition of random walks will be given in Chap.3 in terms of
Markov chains. An example of a random walk is given in Exercise 1.8. The next
example will allow us to give a simple construction of the Brownian motion in
Chap. 4.

Fig. 1.2 A simple random walk trajectory
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> Example 1.77 A coinis tossed every T seconds, or, equivalently, an i.i.d. random
sequence (&,) with distribution P(¢, = 1) = p = 1 — P(§, = —1) is considered.
Then

n
Sp=s Z;jT,
=1

where s € R% and T € N* are fixed, is a random walk taking the values (2k — n)s
fork € {0, ..., n} with P[S, = (2k —n)s] = (})p*(1 — p)"~.
For instance, taking p = 1/2, we have ES,, = 0 and Var S, = ns?.
A particular case (for s = T = 1) is studied in details in Exercise 1.9. <

1.4  Convergence of Random Sequences

The basis of stochastic topology is presented here, that is the main types of
convergence of random sequences: almost sure, mean, quadratic mean, probability,
and distribution. We also prove the weak and strong large numbers laws and the
central limit theorem under weak hypothesis.

1.4.1 Different Types of Convergence

We define in this section the four main types of convergence of random sequences,
together with some practical criteria of convergence. All the random variables are
supposed to be defined on a probability space (€2, F, P).

Definition 1.78 A random sequence (X},) is said to converge to a a random variable
X when n tends to infinity:

* almost surely or with probability 1, denoted by X, 25 X, if Pllw € @ :
Xn(w) — X(w)}] =1.

* in probability, denoted by X, i) X,ifforalle > 0, P(|X,,— X| > ¢) converges
to zero.

* in distribution, denoted by X, 2) X, if E[h(X,)] converges to [E [h(X)] for all
bounded continuous functions 2 : R — R.

e in LP-norm with 0 < p < 400, denoted by X, L—p> X, if X,, € LP for all
neN, X e L? and || X, — X||, converges to zero.

Note that all above notions of convergence is dependent on the considered
probability P.

The convergence in L”-norm is the topological convergence of the space
LP(Q, F,P) equipped with the norm || X]|, = (f |X|PdP)/P. Convergence in
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L'-norm is referred to as convergence in mean, and convergence in L*-norm as
convergence in quadratic mean.

The limit random variable X is almost surely unique for the almost sure, proba-
bility and L? convergences. Only distributions are involved for the convergence in
distribution: a sequence can indifferently be said to converge to a distribution or to a
random variable, but this random variable is not unique, as shown by the following
example. The variables of the sequence and their limit in distribution may even be
defined on different probability spaces.

> Example 1.79 Let X be a random variable taking values in 1, 1}, with P(X =
—1) = P(X = 1) = 1/2. Set X, = X for all n. The random sequence (Xj)
converges in distribution to X but also to any Y such that P(Y =0) =P(Y = 1) =
1/2, and more generally to any random variable with distribution 5(1/2). <

The definitions of the different type of convergence for a sequence of d-
dimensional vectors are similar, by replacing the difference X, — X by a norm
of this quantity, for example the Euclidean norm

d
1Xy = XN = | D [Xuli) — X (DI,

i=1

Thus, the convergence of a sequence of random vectors is equivalent to the
convergence of the sequences of its coordinates for all types of convergence but
convergence in distribution. Indeed, convergence in distribution of a sequence of
vectors induces convergence of the sequences of its coordinates but convergence of
all linear combinations is necessary for the converse to hold.

The links between the different convergences are shown by the following
diagram.

a.s.

U
L= PP s L' sP, p>p>1.
U
L

Some practical criteria simplify proofs of convergence.

First, (X,,) converges almost surely to X if the event (X;, —> X) has probability
1. Hence (X,) converges almost surely if and only if P(lim X, = limX,) =
1. Thus, thanks to Borel-Cantelli lemma, the following result says that an i.i.d.
sequence (X,) will converge almost surely to X if ), P(|X, — X| > &) < 400
forall ¢ > 0. -
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Proposition 1.80 A random sequence (X;) converges almost surely to a variable
X ifand only if P(Iim | X,, — X| > ¢) =0 forall ¢ > 0.

Proof We have

X, — X) =
={w € Q : VN, 3n such thatif k > n then | Xy (w) — X (w)| < 1/N}

= (U NUXk = XI < 1/N) = [ lim(1X,, — X| < 1/N).

N>1n>0k>n N>1 "

The sequence of events lim,, (| X, — X| < 1/N) is decreasing. Their intersection has
probability one if and only if all events have probability one, that is if P(lim(| X, —
X| < ¢) =1, or, by taking complements, if P(lim | X,, — X| > ¢) =0, forall ¢ > 0.

O

Any Cauchy sequence for the convergence in probability is a convergent
sequence because R is a complete topological space. In other words, if

Ve > 0,Va >0, AN(a,e), n,m > N(a,e) = P(|X, — Xn| > ¢) <a,

then a random variable X exists such that P(]X, — X| > &) converges to zero.
Similarly, for a.s. and L? convergences, Cauchy sequences are convergent.

Convergence in distribution of sequences of random variables is a property of
strong convergence of their distributions. Since the generating function, charac-
teristic function and Laplace transform all characterize distributions, convergence
criteria follow.

Theorem 1.81 Let (X,,) be a sequence of random variables.

If the sequence of characteristic functions of X,, converges to the characteristic
function of a random variable X, then (X,) converges in distribution to X.

If the sequence is nonnegative valued, the criterion also holds true for Laplace
transforms. If the random sequence takes integer values, the criterion holds true for
generating functions.

Moreover, the characteristic function gives a criterion of convergence in distribu-
tion that requires no previous knowledge of the limit.

Theorem 1.82 (Lévy’s Continuity) Let (X,) be a sequence of random variables.
If the sequence of characteristic functions of (X,) converges to a function g
continuous at 0, then g is the characteristic function of a random variable, say
X, and (X;) converges in distribution to X.

A similar criterion can be stated for nonnegative variables with the Laplace
transform.
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1.4.2 Limit Theorems

Numerous criteria of convergence of weighted sums of random variables exist. Here
are presented some which are both interesting by themselves, and necessary to the
proof of the strong law of large numbers. A large numbers law is a theorem giving
conditions under which ) 7_, (X;/n)—Y_7_, E (X;/n) converges to zero. It is weak
if convergence holds in probability and strong if convergence is almost sure. All
following convergence results mainly concern sums of i.i.d. random variables.

Theorem 1.83 (Kolmogorov Inequality) Let Xi,..., X, be independent cen-
tered random variables with finite variances okz. Then, for all ¢ > 0,

n 0_2
Pmax(IXul, ... | X1+ 4 Xa) > 2] = 0%
&
k=1
Proof Let us define the events E = (max(|Si], ..., [S:]) > ¢) and Ex = (|Sk| >

&|Sil <ei=1,....,k—1)for2 <k <n,where S, = X1+ ---+ X,,. We
compute
E(1gSH) = E(Lg S +E[Lg (S — S0)*1+ 2E[L g Sk (Sy — Si)]

QE (155D +PEOES, — 5.

(1) since 1, and 1, Sy donotdependon S, — Sg = Xg+1 + -+ + X5,
Therefore, E (1 g, S,%) <E(lg, S%), for all k. Moreover, |Sx| > ¢ on Eg, so

1 1
P(E) = LEgS) = HEALSD.

Finally, since E = (max(|Si], ..., |Sz|) > ¢) is the disjoint union of the Ej, we
have

1 1 1
P(E)=) P(E) < ) EdgS)= ,E1S) < ,ES).
k>0 k>0

The conclusion follows because E (S%) =Vars§, = Zzzl 0. |

Proposition 1.84 [f (X,) is an i.i.d. sequence such that ), .| Var X,, is finite, then
anl X, converges almost surely.

Proof Let us show that (X; 4 - - - 4+ X,,) is an almost surely Cauchy sequence, i.e.,
that for any ¢ > 0,

]P’[U(anH ot Xpim| > g)] — 50, n— +oo.

m>1
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We compute

P (Xat1 -+ Xninl > )] =

m

N

=1

P max (Xpet+ -+ Xpsnl) > e
1<m<N

1
=

—~
~
—_—

82Var (Xnt1 + - + Xntn).
(1) by Kolmogorov inequality.

Finally, Var (X,41 + - - - + Xpqn) = Zmzl Var X, 4+, converges to 0 when n
tends to infinity as the rest of a convergent series. O

The following admitted lemma is necessary to the proof of Kolmogorov criterion
below.

Lemma 1.85 (Stochastic Kronecker Lemma) Ler (X,,) be a random sequence
such that anl X, is almost surely finite. If (uy,) is an increasing sequence of real

. . . 1 n
numbers converging to ll’lﬁnlty, then n Zi:l I/ll'Xl' converges a.s. to zero.

Proposition 1.86 (Kolmogorov Criterion) Let (X)) be an independent random
sequence such that

> Var (X) < 4o0. (1.6)
n

Then
1 & ,
Y (X —EX) =5 0.
n
i=1

Proof Set Y, = X,/n. Since ) , ., Var(¥, — EY,) < +oo, by applying
Proposition 1.84, the series Zn>1(Yn — EY,) converges almost surely to Y.
Necessarily EY = 0, and hence Y is almost surely finite.

Applying the stochastic Kronecker lemma to (Y, — E Y;,) with u,, = n yields the
conclusion. O

If (1.6) is not satisfied, then the result does not hold any more. Similarly, indepen-
dence of the variables X,, with equality of means is not sufficient, as shown by the
following example.

> Example 1.87 Let (X,) be an independent sequence such that P(X,, = —n) =
1—1/n2=1—-P(X, =n—nd).
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Then E X,, = O for all » > 1, but (X,,/n) converges almost surely to —1, and
hence 7| X;/n can converge almost surely to no finite random variable. <

On the contrary, Kolmogorov criterion induces the almost surely convergence of
weighted sums of i.i.d. variables.

Theorem 1.88 (Strong Law of Large Numbers) If (X,) is an integrable i.i.d.
sequence, then

1
n(X1+---+Xn)ﬁ>EX1.

If moreover the sequence is square integrable, convergence also holds in quadratic
mean.

Proof We can suppose with no loss of generality that the variables are centered. Set
X:; = Xn]1(|Xn\§n)- Since (Xn) is i.i.d.,

D PG # Xa) = ) PUXul > n) = ) P(X1| > n).

n>1 n>1 n>1
Since anl P(1X1| > n) < E|X]|, by Borel-Cantelli lemma,
P(X} # X, infinitely often) = 0.

For proving the searched convergence, it is enough to prove that the sequence
(3>°7—y X¥/n) converges almost surely to 0. We have

ZVar (i?;> < Z nlz]E(X:Z),

n>1 n>1

with

1 1 ¢
2 B =30 0 Y B D 1 <ixyj=m)]

nzl n=1" m=1
1
2
=Y EIXD* Ln-1<x,<m] Y 42
m>1 nzm

Comparing >, (1/n%) to f1+°°x_2dx, we get that a nonnegative constant K
exists such that

X K
> Var ( n") < Y E[IXtlI Xt Ln—t1<ix,12m)]

m
n>1 m>1

1
<Kk) LB XL n1cixizm] = KE1Xa] < +oo.

m>1
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Thus, by Kolmogorov criterion, Y 7_; (X ¥ —EX])/n converges almost surely
to 0. But EX; = E[X11(x,)<n)] converges to O by the dominated convergence
theorem, and hence, by Cesaro Lemma, the sequence y ;_; E X ¥/n also converges
almost surely to 0, and the conclusion follows.

For square integrable variables, it remains to prove that X,, converges to 0 in L,
where X, = Y "_; X;/n. We compute

1 @ 1 1

B = Y EXD+Y EXX)= 3 EXDH= EX.
i=1 i#j i=1

Therefore, E (|X,|%) converges to 0. |

Moreover, if X; is not integrable, then the sequence (Z?=1 X;/n) is divergent,
thanks of the next proposition.

Proposition 1.89 If (X,) is an ii.d. random sequence such that the random
sequence (Y_'_, X;i/n) converges almost surely, then (X,) is integrable.

Proof We have—see Exercise 1.1,

E(X1]) < Y P(X1|>n) = Y P(X,| > n).

n=0 n>0

If (377, X;/n) converges almost surely, then (X,/n) converges to 0 almost
surely. Since the variables are independent, Borel-Cantelli induces that necessarily
anlp(lXﬂ >n) < +oo. O

The weak law of large numbers for i.i.d. sequences appears as a corollary of the
strong one, because almost sure convergence implies convergence in probability.

Corollary 1.90 (Weak Law of Large Numbers) If (X,) is an integrable i.i.d.
random sequence, then

1 P
n(X1+---~I-Xn)—>EX1-

The following result is more general, the random sequence is not required to be
i.i.d., but only to have two finite moments.

Theorem 1.91 Let (X,) be a random sequence such that E(X,) = m, and
Var (X,) = o7, where (m,, 02) € R x R* forall n. If

1 n
nzVar (; Xk) — 0,
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then

1 — P
; Z(Xk —my) — 0.
k=1

Proof Letus set Y, = Y ;_,(Xx —my)/n forn > 1. These random variables are
centered, with variance

2
1 ¢ 1 Z
2y _ -
E,) =E [n > Xk —mk):| = ,Var (Z Xk) :
k=1 k=1
Therefore, thanks to Chebyshev’s inequality,

1 n
P(Y,l>e) < , ,Var (Z Xk),

k=1

from it follows that P(|Y;| > &) converges to 0. O

> Example 1.92 (Frequencies and Probabilities) Let (X,) be an i.i.d. random
sequence with distribution P. The random variables 1(x,ep) are i.i.d. too for all
Borel sets B. The mean of their common distribution is P(B). The law of large
numbers yields

P(B . 1 z":ﬂ ! number of i < n suchthat X; € B
( ) B n—}I-Ii-loo n 4 . (XieB) = n—ll—}-loo n ’
1=
This result bring a mathematical justification to the estimation of probabilities by
frequencies. <

The law of large numbers extends to i.i.d. random sums as follows.

Theorem 1.93 Let (X,,) be an integrable i.i.d. random sequence. Let (N,) be a
random sequence taking values in N*, almost surely finite for all n and converging
to infinity when n tends to infinity. If (X,) and (N,) are independent, then

1 .
N (X1+---~I-XN")£>EX1, n — +00.

n

Proof Set S,, = X1 + - - - 4+ X,,. The strong law of large numbers induces that S, /n
converges almost surely to E X, or

S,
Ve >0, d3n. e N, n>n, = | " —EX;| <e, as.
n
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Since N, converges almost surely to infinity, some n, > 0 exists such that if
n > ng then N, > n, almost surely; the conclusion follows. |

Central limit theorems are of paramount importance as well in probability theory
as in statistics. The simplest one is a weak convergence result.

Theorem 1.94 (Central Limit) Let (X,) be an i.i.d. square integrable random
sequence. Then

Jn<X1+~-~+X

n

" —EXl) 2, N, Var X)).

Proof Set X, = Y _"_, X;/n. The characteristic function of \/n X, is

¢ ux, ) =E [exp(f}n XZ;XI)] = ¢x, (jn>"

We can suppose all variables centered. Set Var X| = o'>. We have cpg(l 0) =0
and 903/(1(0) = —o?, so, using Taylor’s formula, ox,(t//n) = 1 — o212 /2n +
O (1/n). Therefore,

10g@ /,x, (1) = nlogex, (t/+/n) = nlog[1 — o’?/2n + O(1/n)],

2.2
and ¢ X (¢) convergesto e 7! /2, for all real numbers ¢.
The conclusion follows because the latter is the characteristic function of the
distribution A/ (0, 02). ]

The weak central limit theorem extends to random sums as follows. A more
general statement for random processes—called Anscombe theorem, will be proven
in Chap. 4.

Theorem 1.95 Let (X,) be an integrable i.i.d. random sequence. Let (N,) be a
random sequence taking values in N*, almost surely finite for all n, and converging
to infinity when n tends to infinity.

If (X,,) and (Ny,) are independent, then

1 D
N X1+ + Xn,) — N(@©,VarX;), n— +oo.
n

The following admitted result is a strong convergence result. For simplifying
notation, we state it only for standard variables.
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Theorem 1.96 (Almost Sure Central Limit Theorem) If (X,,) is an i.i.d. random
sequence such that £ X1 = 0 and Var X1 = 1, then

n

1 1 X e+ X
Z ]llfoox]< e k)ﬁﬂb(xx x €R,
logn — k ' JVk

where ® is the distribution function of the standard Gaussian distribution N (0, 1).

Setting S, = X1 + --- + X, the weak central limit theorem says that for any
continuous bounded function 2 : R — R, when #n tends to infinity,

1
E [h(n_l/zS,,)] — 2n/h(x)e_x2/2dx
R

while the strong one says that

1

n
1 a.s. 1 2
h(k= V%S /h 24,
logn Z k ( W= 27 (x)e o

k=1 R

The following result gives extremes for the speed of convergence in the limit central
theorem, by bounding it. Note that it is a divergence result.

Theorem 1.97 (Law of Iterated Logarithm) If (X,) is an i.i.d. square integrable
random sequence, then

li \/n(Xn_EXl)

im 1 and tim Y0 EXD
VVar X14/2loglogn

1m =
VVar X14/2loglogn
where X, =Y '_, Xi/n.

Let (X,) be an i.i.d. square integrable random sequence and set S, = Y | X;.
According to the law of large numbers, S, & nlE X1, and, according to the central
limit theorem, S, —nlE X; = o(nl/ 2) when 7 tends to infinity. Of course, the order of
the deviation between S, and nE X can be more than n!/2 for some n. The theory
of large deviations investigates the asymptotic behavior of the quantity P(|S, —
nE X1| > n%) for @ > 1/2. The next result, for « = 1, is the simplest of the
so-called large deviations theorems.

Theorem 1.98 (Chernoff) Let (X,) be an iid square integrable random
sequence and let h denote its Cramér transform. Let a be a nonnegative real
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number. If the moment generating function M of X, is finite on an interval I # {0},
then

P( 1+t dn a> < e Mhmta) -y e N, (1.7)
n

n

Xi4+...4 X
IP’( Pt n—m<a>§enh(’”“), n e N*, (1.8)

Proof We prove the theorem for centered variables.

Set S, = X1+ --- 4+ X;. According to Chernoff’s inequality, P(S,, < an) <
e hsn(10) Moreover, since Mg, (u) = E(e"5) = E([T_, X)) = Mu)", by
definition

hs,(na) = sup[nau — log Ms, (u)] = suplnau — nlog M(u)] = nh(a).

uel uel

The inequality (1.7) follows. The inequality (1.8) can be proven in the same way.
O

> Example 1.99 (A Large Deviation Inequality for the Normal Distribution) If
(X,,) is a standard Gaussian sequence, Example 1.50 says that A(r) = r*>/2. Hence

P<X1+---+Xn

)
>a>§e nat/2 - p e N¥,
n

with a similar inequality for P[(X1 +--- + X,,)/n < a]. <

1.5 Exercises

V Exercise 1.1 (An Alternative Method for the Computation of Moments) Let
X be any nonnegative random variable.

1. Show that for every p > 1 such that E (X?) is finite,

E(XP) = / ptPIP(X > 1) dt. (1.9)
Ry
2. Show that
Y PX>n+1)<EX <) P(X>n).
n>0 n>0
3. Show that

Z}P’(X >n) <EX < Z}P’(X > n).

n>1 n>0
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Solution

1. By the transfer theorem, P(X > t) = ft+°° dPx(x). Hence
+00
p/ tPIP(X > 1) dt =/ / ptP APy (x) dt
R+ R+ t
() t -1 — P — p
= pt dtdPx(x) = xPdPx(x) =E(X7).
R, Jo R,

(1) by Fubini’s theorem.
2. Suppose that X is almost surely finite—otherwise the result is obvious, with all
infinite quantities. By 1.,

+o00 n+1
IEX:/ P(X>t)dt=2/ P(X > t)dt.
0 n

n>0

Clearly,

n+1
ZIP’(X>n+1)=Z/ P(X >n+ 1)dt

n>0 n>0
n+1
and Z]P’(X>n):2/ P(X > n)dt.
n>0 n>0 n

SinceP(X >n+1) <P(X >t) <P(X >n)foralln <t < n+ 1, the result
follows.
Note that for an integer valued variable we get EX = > _(P(X > n), a
formula often of use in applications. -
3. We compute

ZJP(in)=ZP[U(i5X<i+1)]=ZZP(i5X<i+1)

n>1 n>l i>n n>1i>n
i
=Y Y Pi<X<i+th=) Pi<X<i+li
i>1 n=1 i>1

or

Y PX=n) <) E[XLi<x<isn] <EX.

n>1 i>1

Finally, P(X > n) > P(X > n) so that 2. yields the second inequality. A
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V Exercise 1.2 (Superior Limits of Events and Real Numbers) Let (X,) be any
random sequence.

1. Set lim X,, = inf,>0 supy-, Xx. Show that lim(X, > x) = (lim X,, > x) for all
x eR.

2. The sequence is supposed to be i.i.d. Show that the distribution function F of
lim X, takes values in {0, 1}. Show then that lim X,, is almost surely constant,
equaltoxg =inf{x e R : F(x) =1}.

3. Show that lim X, is measurable for the tail o-algebra of the natural filtration of
(X»,) and prove again that lim X, is almost surely constant.

Solution

1. By definition, lim(X,, > x) = Ny>0 Uk>n (X, > X), so is a measurable event.
We have

w € im(X, > x) & Vn, 3k > n, Xj(0) > x & Vn, sup;., Xp(@) > x
< infy, supy., Xk (@) > x & lim X, (0) > x
< w € (lim X, > x).

2. Borel-Cantelli lemma implies that P(lim(X, > x)) = 0 or 1 for all real numbers
x. According to 1., F(x) = P(lim X,, > x) = 0 or 1 too. Further

P(im X, = x0) = F(xo) = lim F(xo—1/m=1-0=1.

3. Using 1. yields (lim X, > x) = Ny>0A,, where A, = Ug>, (X > x). Clearly,
A, € 0(Xy, Xn+1, - ..). The sequence (A,) is decreasing, so N,>0A, is a tail
event, and the conclusion follows from Corollary 1.28. A

V Exercise 1.3 (Indefinitely Divisible Distributions) Let (X,) be an i.i.d. ran-
dom sequence with distribution P. Let N ~ P(A) be a random variable independent

of (X,).SetSp =0and S, =) 7, X; forn > 1.

1. Determine the distribution of Sy, denoted by 7; p.
2. Show that the Fourier transform of 7r;_p can be written

@m;. p (1) = exp [/ (" — 1)dM(X)} ,
R

where M depends on A and P.
3. Show that 7 p is indefinitely divisible for A € R? .
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Solution

1. By Definition 1.74, the random sum Sy has a compound Poisson distribution.
Precisely,

m.p(B) =) P(Sy € B.N=n)=Y P(S, € B)P(N =n)

n=0 n>0

)\‘n
= e P*(B),
n!

n>0

where P*® = §, a Dirac distribution at 0.

2. By Proposition 1.73, the characteristic function of Sy is the composition of the
generating function of N and of the Fourier transform ¢p () = fR e P(dx)
of P. We compute

_ [hopO" -
(pm,P(t) =e )\Z = ¢ Mimer®l

n!
n>0

= exp [—)\ /Ra - e”x)P(dx):| = exp UR(e"”‘ - 1)M(dx)j| ,

with M = AP.

3. Since the Fourier transform characterizes the distribution and transforms
convolution product into usual product, we get w3 p = (750, p)*™, for all
n e N, A

V Exercise 1.4 (Extension of the Fourier Transform) Let M be a measure on
(R, B(R)) such that

/(|x| A DM (dx) < +00.
R
Show that the function
M(t) = exp [/ ('™ — 1)M(dx)}
R

is well-defined for all ¥ € R—even if M is not a finite measure.

Solution We compute

/(eitx — 1)M(dx) :/ (" — 1)M(dx)~|—/ (" — 1M (dx)
R O<|x|<1

[x[=1

=14J.
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On the one hand,
. ikthk
1] 5/ et — 1|M(dx)=/ 3 |M(ax)

0<|x|<1 o<ll<t ' 1= k!

Ik
f/ > 'X'M<dx)=f (e = D)lx|M(dx),
0<lx|<1 ¢ k! 0<|x|<1

or || < Cf0<m<1 |x|M(dx).
On the other hand,

|J| < / |ei’x|M(dx) = M(dx) =2M(R\] — 1, 1]).
[x[>1

[x]=1
The conclusion follows. A

V Exercise 1.5 (Total Cost of a Component) A component that is essential
for the continuous running of a machine is automatically and instantaneously
replaced at each failure by a new identical one. The time life of the component
is exponentially distributed with parameter A.

1. Suppose each replacement costs b Euros. The rate of devaluation of the Euro
is assumed to be constant and equal to a > 0. Compute the mean total cost of
failures.

2. The updated cost of of each failure at time # > 0 is now assumed to be given by a
nonnegative function g defined on R.. Compute the mean total cost of failures.

3. Deduce 1. from 2.

Solution

1. Let (T;,),en+ denote the sequence of the failure times of the components. We
have T, = X| + --- + X,,, n > 1, where (X,,) is the i.i.d. with distribution £ ()
random sequence of the times between two successive failures.

The cost of the n-th failure is b exp(—aT,) in updated Euros, so the total cost
of the failuresis C =), _; bexp(—aT,) and the mean total cost can be written

EC=E(Y be™)=bY E( ™

n>1 n>0

S i I

n>1 n>1



1.5 Exercises 49

2. The cost of the n-th failure is g(7,), and the mean total cost is EC =
> n=1Eg&(Ty). Since T, ~ y (n, 1), we compute

+o00 +00 ()\t)"_l N
E g(T») =/ g(1) fn (1) dt =/ g(1) e 'dt,
0 0 (n— 1!
SOEC =1 [y g(t) dt.
3. Setting g(1) = be™, we get EC = Ab [ ™" dt = Ab/a. A

V Exercise 1.6 (Maximum of Entropy Under Constraints)

1. Compute the entropy of a non degenerated centered Gaussian vector X ~
N, (0, '), with variance-covariance matrix I' such that det I" # 0.

2. Show that among the centered n-dimensional random vectors whose variance-
covariance matrix is equal to I', the maximum of entropy is obtained for the
Gaussian vector X.

Solution

1. The density of a non-degenerated Gaussian vector X~ N, (0,T)is
1
fz(x) = 2m)"/*(det )~ 1/2 exp[— 2x’r—lx], x e R".
Thus its entropy is
e 1 -1
S(X) = 2[11 log(27) + log(detT) + | xT xf;((x)dx].
Rll
Let TrM = )_7_, M;; denote the trace of an n-dimensional matrix. We compute

f AT hxfr(x)dx = E(X'T7IX) = E[Tr(X'X)I ™)
]Rn
= TEX'X)I ] =Tr(C'T") = n.

Therefore, S(X) = log[«/(2me)" detT'].
2. For any n-dimensional random vector X with density f, we can write

Sz(x)

SX) = 1
(X) fRnfm oz )

dx —f f @) log fz(x) dx = (i) + (ii).
Rn

On the one hand, since logx < x — 1 for all positive x, we obtain

o &) _
+ *(z)gfw f(x)[f(x) l]dx_O.
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On the other hand,
(ii) = ;[n log(27) + log(detT) + /R T xf(x) dx].
If E(X’'X) = TI', we obtain in the same way as in 1.,
/n T xf(x)dx =Tr('T™") = n.

Thus, (ii) =S ()~( ) and the conclusion follows. A
V Exercise 1.7 (Convergence of Non Integrable Variables)

1. Let (X;;) be an i.i.d. random sequence. Let P denote its distribution and ¢ its
characteristic function. Set Y;, = (X;, + Y,—1)/n forn > 1, with Yy = Xo/2.
a. Write Y, in terms of X; with 0 <i < n.
b. Write the characteristic function ¢,, of Y, in terms of ¢ and n.
2. Suppose P is the Cauchy distribution C(1).
a. Let Z be a random variable with a symmetric exponential distribution with
parameter o > 0, with density defined by f(z) = ae™*?l/2 on R. Determine
the characteristic function of Z and then the characteristic function of a
random variable with Cauchy distribution C ().
b. Show that (¥;,) converges in distribution to the same distribution.
c. Study the convergence in distribution of the sequences (X,) and (7},) defined

Solution

1. a. Clearly, ¥, = >0, X; /2"~ +1.
b. Since according to 1l.a., X,, and Y,_; are independent, Theorem 1.68 and
properties of characteristic functions jointly imply that

t t
90(0) = 901, 1x020) = 8u-1(5)(3)-
from which it follows that ¢, (t) = [[/_ ¢ (/2" 1*1) = 1‘[7;} ¢(t/27) for
allt € R.
2. a. We compute

o oo o .
t — i1z OlZd / 1tz —C{Zd
oz (1) 2/78 5€ z+2 Rf 5€ z

o o (X2

T2(t4a) 200—a) o412
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Since the function 1 —> «?/(a® +12) is integrable, Fourier’s inversion
formula yields

o

el — ! /e_”z o dt.
2 27 R (X2+t2

Therefore the characteristic function of a Cauchy distribution C(«) is ¢ () =
aeell,

b. We compute

ntlo ntl ‘ aagp
() = H¢<2j) =[le"™ = eXp(_ 2 21)‘
j=1 j=1 j=l1

Since Z;’:i (1/27) is a geometrical series that converges to 1 when n tends to
infinity, (Y;,) converges in distribution to a Cauchy distribution C(1).

c. The sequence (X,) is not integrable, so neither the strong law of large numbers
nor the limit central theorem apply. Nevertheless,

¢y, (1) = ¢<;>n = (e—\t/n|)" =e 1l teR.

The sequence (X,,) converges in distribution to the same Cauchy distribution.

On the contrary, ¢7,(f) = ¢(@t//n)" = eVl for all ¢. Hence T,
converges to the function 1 o). Since this function is not continuous at zero, it
is not a characteristic function and (7},) cannot converge in distribution. A

V Exercise 1.8 (The Ballot Theorem—A Random Walk)

1.

An urn contains a bowls bearing number 0 and b bowls bearing number 2, where
a > b. All the bowls are drawn at random and without replacement. Let X; be
the random variable equal to the number of the bowl drawn at the i-th drawing,
fori € [1,n], wheren = a + b.

a. Compute the expectation of S,, = > i~ X; form € [1, n].

b. Show that for all ' € [0, b],

PSpm <m, m=1,...,n|8p=20)=P(Sy <m, m=1,...,2b|Sy, =2b).
c. Show by induction using b. that

PSSy <m, m=1,...,n| S, =2b)=1—2b/n. (1.10)
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2. Application: two candidates A and B are confronted in a ballot. Candidate A
wins. Compute the probability that A has led the ballot all along the counting of
the votes.

Solution

1. a. Since P(S,, = 2b) = 1, we have E S,, = 2b. Moreover, the variables X; are

exchangeable—thatis (X, ..., X;) ~ (X;,, ..., X;,) forall (i1, ...,i,), so
EX; =ES,/n = 2b/n. Therefore, E S, = 2bm/n.

b. We know that S, = 2b. Hence, if Sy, = 2b’, then necessarily, S, < m for all
m € [[n, 2b + 1], from which the desired equality follows.

c. For (1.10) to hold for n = 1, it is necessary that a = 1 et b = 0 and so
PX;<1)=P(X;=0)=1.
Suppose (1.10) holds for all m < n. On the first hand,

PSSy, <m, m=1,...,n) =
b

= Z]P’(Sm <m,m=1,...,n| Sy =2b"P(Sy = 2b),
b'=0

and on the other hand, since P(S,, = 2b) = 1, we have
PSS, <mm=1,....n) =P(S, <m,m=1,...,n|S, =2b).
Using the induction hypothesis for n = 2b, we get
PSSy <m, m=1,...,2b| Sy =2b")=1-10'/b.

Thus,

—~

b
PSm <m,m=1,...,n) D Z(l —b'/b)P(Sop =2b") =1 —E Sp,/2b
b'=0
2b
@y
n
(1) by 1.b. and (2) by 1.a. The proof is complete.

2. Representing the votes by the bowls in the urn, and their counting as the drawing
of these bowls, the searched probability is (@ — b) /(a + b) where a is the number
of votes for A and b that for B. An illustration is shown in Fig. 1.3.

Note that (S;,) is an example of a random walk. A

V Exercise 1.9 (A Simple Random Walk) A coin is tossed indefinitely. Let p €
]0, 1]\ {1/2} be the probability of obtaining heads at one toss. Let S, be the random
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Fig. 1.3 Tllustration of the ballot theorem

variable equal to the number of heads less the number of tails in n tosses. We set
So = 0.

1.
. Compute P(S,, = 0), depending on the parity of n.
. Let N = |{n € N* : §, = 0}| be the number of times when the trajectory cuts

4.

Show that S, is a simple random walk.

the time axis. Show that the expected value of N is finite.
Compute P(lim(S, = 0)).

Solution

. It is enough to take in Definition 1.76 the random variable X, equal to 1 if the

result of the n-th toss is heads and —1 otherwise.

. Set A, = (S, = 0). Clearly, P(A2,+1) = 0, and we can write Ay, = “X; =1

for n indices i among the first n”, so P(Ay,) = (2’1")[7" 1 -p).

. We can write N = ano 14,,50EN = ano P(A,). Moreover,

P(A2n+2)

=4p(1 — p).
P(Aay) p(1 —p)

Since this quantity is less than one, the series is convergent.
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4. By Definition 1.19, lim A, is the set of all the trajectories cutting the time axis
an infinite number of times. The series with general term P(A,) converges, so,
thanks to Borel-Cantelli lemma, P(lim A,) = 0. Therefore the trajectory will
almost surely cut the time axis only a finite number of times.

The above recurrence problem for p = 1/2 will be investigated below in
Example 3.36. A

V Exercise 1.10 (Convergence of the Maximum) Let F be a distribution func-
tion. Set § = inf{x € R : F(x) = 1}, with the convention inf @ = +oo0.

1. Let (X;) be an i.i.d. random sequence with distribution £(1). Compute S and the
distribution function F,) of X(,). Show then that X,y converges almost surely
to S.

2. Same questions for the convergence in distribution of an i.i.d. random sequence
(Y,,) with density f(y) = a(l — y)*"'1j0.1;(y), for & € N*,

Solution

1. Since F(x) = 1 — e **, we have S = +o00. We compute F,)(x) = P(X| <
X,...,Xp <x)=Fx)". Forall ¢ > 0,

S PXp<el=Y Fer= O =1y

_ Y
1 1 1— F(e) e

Borel-Cantelli lemma thus yields P[lim(X(,) < €)] = 0, meaning that (X))
converges almost surely to § = 4-00.

2. We have F(y) = [1 — (1 — »)*I110,13(y) + 1}1,4+00[(y). Hence FX(n) = F"
converges to 11, 4o0[, that is to the distribution function of the Dirac distribution
81. Finally, we check that § = 1. A

V Exercise 1.11 (Convergence in Probability and in Mean) Let (X,) be an
integrable random sequence converging in probability to some random variable X.
Set X, = min(X,, X).

1. Show that (X),) converges in probability to X.

2. Suppose X is integrable. Show that X, converges to X in mean.

3. Suppose moreover that E X, converges to [E X. Show that X,, converges to X in
mean.
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Solution
1. We have
P(X, — X| > &) =P(1X, — X| > ¢, X, < X) <P(X, — X| > ¢),

and this quantity converges to zero by assumption.
2. Wehave 0 < X, < X, so0 |X, — X| = X — X, is integrable.

E|X), - X| =E[(X = X)1x-x;<e)] + ELX — X)) (x—x1>¢)]
= (i) + (ii).

On the one hand, (i) converges to 0. On the other hand, set A, = (X — X, > ¢).
ThenP(A,) convergesto O by 1.,s0 1 4, converges almost surely to 0, and X1 4,
too. Since X1 4, < X and X is integrable, the dominated convergence theorem
applies to show that (ii) converges to 0. Finally, X/, converges to X in mean.

3. Let us set X, = max(X,, X). We have EX) + EX, = EX, + E X. Since
E X/ converges to E X by 2., and E X,, converges to E X by assumption, we
get that E X converges to E X. The conclusion follows because E |X,, — X| =
EX, — X)).

Note that the dominated convergence theorem does not apply to the sequence
(X, — X), which explains why the result had to be proven first for (X},). A

V Exercise 1.12 (Equi-Integrability and Convergence) Let (X,) be an inte-
grable random sequence. A random sequence (X ) is said to be uniformly integrable
if

E(Lay|X,l) — Ouniformlyinn, N — o0,

for all sequence of events (A ) such that P(A y) converges to zero when N tends to
infinity.

1. a. Show that (X,) is equi-integrable according to Definition 1.17 if and only if
it is bounded in L' and uniformly integrable.
b. Extended Fatou’s lemma. Show that if (X,,) is equi-integrable, then

E (lim X,,) < imE X, < imE X, < E (lim X,,).

2. Show that:
a. if (X,) is equi-integrable and converges almost surely to X, then X is
integrable and E X, converges to E X.
b. if (X,) is equi-integrable and converges in probability to X, then X is
integrable and E X, converges to E X.
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c. if an integrable sequence (X,) converges in probability to X € L', and if
some Y € LP exists such that | X, | < Y a.s. for all n, then (X,) converges to
XinL'

d. if (|X,|?) is equi-integrable and converges in probability to X, then X,
converges to X in L?-norm for all p > 1. (Use the inequality (x + y)? <
2P=1(xP 4+ yP), true for all nonnegative real numbers x and y).

e. if an L? random sequence (X,) converges in probability to X € L?, and if
some Y € LP exists such that | X, | < Y a.s. for all n, then (X,) converges to
Xin L? for p > 1.

Solution

1. a. Suppose that (X,) is bounded in L' and uniformly integrable. Thanks to
Markov’s inequality, for all N € N*,

1 1
P(Xal > N) < | EIXal < SWpE|Xp| — 0, N = o0,

n>0
so, using the uniform continuity, (X,) is equi-integrable.

Conversely, let Ny be such thatif N > Ny, then E [1(x,~n)|X|] < 1. We
can write

E(Xnl) = E[Lx,>Nnp) | Xnl] + E[L(x, <Nl Xnl] < 1+ No,
so the sequence (E (] X, |)) is bounded in L'.Let Ay € F and ¢ > 0. Then

ElaylXnll =E[Layn,>m | Xall FE[Layncx,<n | Xall
<E[1x,>m|Xnl]+ NiP(AN) <e,

if Ny satisfies E[1(x, >~ Xnl] < &/2and P(An) < €/2Nj.
b. Fatou’s lemma yields

EdimX,) <E[lmLx,>—nX,] <ImE[1x,>—nX.]
We can write
EXp, =E[Lx,<-nXnl +E[Lx,>-nXal
Due to equi-integrability, | [1(x, <—n)X,]| converges to 0 when N tends to
infinity, so lim,, £ [1x,>_x)X,] converges to limE X,.

Therefore, E (lim X,) < limE X,,. The second inequality can be proven in
the same way.
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2. a. According to 1.a., the sequence is bounded in L', say by M. Hence, thanks to
Fatou’s lemma again,

E(X]) = limE (| X,]) < M < 4o0.

The convergence of E X, to E X is an immediate consequence of 1.b.

b. If (E X,) did not converge to E X, ¢ > 0 would exist such that |[EX, —
E X| > & for an infinite number of n, that is for a subsequence of (X). This
subsequence would converge in probability to X, so a subsequence converging
almost surely to X would exist. This contradicts 2.a.

c. According to Example 1.18, a sequence that is bounded by an integrable
variable is equi-integrable.

d. According to 2.b., X? is integrable and E (| X,|?) converges to E (|X|?).
Moreover, the sequence (| X,|?) is equi-integrable, and hence, according to
1.a.,is bounded in L!. Since

1Xn = XIP < (1Xul + 1XDP < 22711017 + 1X1P),
the sequence (|X, — X|?) is boundedin L!. Let A € F. We have
E(L4lXy — X|7) <277 [E L] X,|7) + E (La|X|P)].

Since (X)) is equi-integrable, it is uniformly integrable. Therefore, (| X, —
X|?) is also uniformly integrable, hence equi-integrable. Moreover, it con-
verges in probability to 0. Then, according to 2.b., E (| X,, — X|?) converges
to 0 when #n tends to infinity.

e. From 2.d., it is sufficient to prove that (|X,|?) is equi-integrable. Set M =
sup,~o E[1X,|”]. For all ¢ > 0, some N exists such that |x|P~1 > M/e for
all real number x > N. For this N, we have

p
E(XaP) | _

&
E[Lax, -0 Xal SE[ | LaxmlXal?] =701 e <

and the conclusion follows. A
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In this chapter, conditional distributions and expectations are presented, following
steps of increasing difficulty. Conditional distributions are first supposed to exist,
which is true for all random variables taking values in RY. Still, conditional
expectation is defined in the most general case. A section is dedicated to determining
practically conditional distributions and expectations, and another to the linear
model in which a random phenomenon is assumed to be linearly related to other
simultaneously observed phenomena.

Then, main properties of stopping times are given; they are interesting by
themselves and will constitute a useful tool in studying martingales thereafter, and
Markov chains in the next chapter. The discrete time martingale theory is based
on conditional expectation. The fundamental properties of martingales are detailed,
among which the stopping theorem, some remarkable inequalities and different
convergence theorems, especially for square integrable martingales.

2.1 Conditioning

First, basic probabilities conditional to events are presented, and then they are
extended to conditioning with respect to any o -algebra. Conditional distributions
follow. Conditional expectation is first defined as the expectation of the conditional
distribution, and then extended in terms of projection. Relations between condi-
tioning and independence are highlighted, and practical methods of computation of
conditional distributions are given.
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60 2 Conditioning and Martingales

2.1.1 Conditioning with Respect to an Event

Let (2, F7,P) be a probability space. Let B € F be an event with positive
probability. The formula

_P(ANB)
P(A | B) = B(B) @2.1)

is well-known to define a probability P(- | B) on (2, F), called probability
conditional on B.

If X is an integrable random variable, by definition, the expectation of X
conditional on B is its expectation with respect to the probability conditional on
B, that is

E(X | B) :f X (w)P(dw | B).
Q

Therefore, it shares all properties of ordinary mean. Its practical computation relies
on the following formula.

Proposition 2.1 If X is an integrable random variable and B an event with positive
probability, then

E(X1g) 1

BXIB="pp) = po)

/ X (0)dP(w). 2.2)
B

Proof For X = 14, where A € F, (2.2) is satisfied thanks to Definition 2.1.

For an elementary variable X,, = Z?:l a;14,, where all the A; are events, (2.2)
is also satisfied, due to the linearity of expectation.

Any nonnegative variable X is the increasing limit of a sequence (X,) of
elementary variables. Hence, the monotone convergence theorem induces that
E(X,|B) /E(X|B)and E(X,1p) / E(X1p).

Finally, for any real random variable X, the conclusion follows by considering
the difference of nonnegative variables X = X+ — X ™. O

Conditioning with respect to an event B can be regarded as conditioning with
respect to the o-algebra generated by B, by defining a real random variable, called
conditional probability with respect to o (B) (or B), and such that, for any A € F,

P(A| B) ifwe B,

PlA o (B)](w) = : ,
IP(A | B) otherwise.
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Thus, for any real random variable X, a real random variable called conditional
expectation with respect to o (B) (or B) is also defined by setting

E(X|B) ifweB,

E[X [o(B)(w) = : ,
E(X | B) otherwise.

We will now extend these notions to conditioning with respect to any o -algebra
included in F.

2.1.2 Conditional Probabilities

First, let us consider a partition 5 = {Bj, ..., B,} of Q into events with positive
probabilities. If the event B; was known to have occurred, then the probability of
an event A conditional on B would naturally be P(A N B;)/P(B;). Therefore, the
probability of A conditional on 3 can be set as

n

P(A | B)@) =)

i=1

PAN B")]lB,.(a)), we Q.
P(B;)

So is defined the conditional probability P(A | B). This random variable is o (B)-
measurable and satisfies

/ P(A | B)dP =P(ANB), BebhB.
B

Moreover, E[P(A | B)] = P(A).
This leads to the following definition of the probability P(A | G) conditional on
any given o-algebra G included in F.

Definition 2.2 Let G be a o-algebra included in F. Let A be any event. The

conditional probability of A with respect to G is a G-measurable random variable,
say P(A | G), satisfying

/IP’(A | G)dP =P(ANB), Beg.
B

The conditional probability obviously depends on the probability P. Moreover, since
it is a random variable, it is only defined a.s.

> Example 2.3 The conditional probability P(A | {@, }) is a constant random
variable taking the value P(A). <
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An alternative definition of the conditional probability, more easy to use in
practice, is given by the following result.

Theorem 2.4 The conditional probability P(A | G) is the orthogonal projection
of the random variable 14 € L*(2, F,P) on L*(2, G, P), meaning that P(A |
G) is the class in L>(2, F,P) of all the G-measurable random variables Y €
EZ(Q, F, P) such that

EYZ)=E1,Z), ZeL*Q,6P).

Proof The above property is obviously satisfied for Z = Y !_, a;14,, with all
ai € Rand A; € G. We proceed then as usual for any nonnegative variable Z
and conclude for any Z € L?(2, G, P) by considering Z = Z+ — Z~. O

> Example 2.5 If G = o(B;,i € I), where {B; : i € I} is a partition of Q into
events with positive probabilities, then

P(AN B;
PAIG =) (P(B.) 15,

iel

Indeed, since the random variable Y = P(A | G) is G-measurable, we can write
Y =3}, ailp,, withall ; € R. Therefore,

P(A N B;) = f YdP = a;P(B),

B;
and hence,
PAIB) =a =y, [ PalGa.
P(Bi) J,
Since P(A N B;) = P(A | B;)P(B;), the conclusion follows. <

Theorem 2.6 Let (2, F, P) be a probability space. If G is a o-algebra included in
F, then:

1.PQ|G =1as.;
2. forany A € F, we have 0 <P(A | G) < 1la.s.;
3. for any sequence (A,) of pairwise disjoint events of F, we have

IP’( Al 9) =Y P4y 1G) as..

n>0 n>0
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Proof
1. For all B € G, we have fBIP’(Q | §)dP = P(BN Q) = P(B), and hence
P(Q2|G) =1as.
2. SetC={we:PA|G(w) > 1}. We have
PO = [ B4 1G1dP =PUNO).
c

from which a contradiction arises if P(C) > 0.
3. For all B € G, we have

| Sorangar =Y [ r, e
B B

n>0 n>0
_ gp(An N B) ZP[<anJ0An> n B].

So, Zn>0 P(A, | G), which is obviously G-measurable, is indeed the probability

of U,>0A, conditional on G. o

As we have already remarked, for any given sequence (A;), Point 3. is satisfied
only a.s., say on 2\ N(A,) with P[N(A,)] = 0, and not for all . The function
A — P(A | G)(w) is not a probability on F for all  in general, but only on F\ N
where N is the union of all N(A,), for all the sequences of events of F. Since this
union is not countable for general o-algebras F, the event N may have a positive
probability. If P(- | G)(w) is a probability for any w € €2 then it is said to be a
regular conditional probability.

Proposition 2.7 Let G be a o-algebra included in F. If C € F and if A € G, then
P(ANC|G)=P(C|G14as.

Setting above C = Q and A € G, we obtain P(A | G) = 14 a.s.

Proof For all B € G, we have on the one hand,

/B]P’(AﬂC | G)dP =P(ANCNB),
and on the other hand,

/B 14P(C | G)dP =P(ANCNB),

from which the result follows. O
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It remains to prove that the conditional probability does exist. For all nonnegative
random variable X defined on (€2, F, IP), the quantity

w(B) =/ XdP, Beg, (2.3)
B

clearly defines a measure u on (2, G, P) taking values in Ry. This measure is
absolutely continuous with respect to P and its Radon-Nikodym derivative is a
G-measurable random variable. Finally, for X = 14, A € F, Radon-Nikodym
theorem and (2.3) jointly yield that

fP(A|g)d]P>=M(B)=/]lAd]P:P(AnB), Beg,
B B

which proves the existence of a random variable satisfying the properties of
Definition 2.2.

A conditional probability can also be regarded as a particular case of a transition
probability (or Markov kernel) between two measurable spaces.

Definition 2.8 Let (2, F) and (E, £) be two measurable spaces. A function 7 :
Q x & — [0, 1] such that 7 (w, .) is a probability on (E, &) for almost all w €
Q and 7 (., A) is an F-measurable function for all A € &, is called a transition
probability from Q to £.

> Example 2.9 Let f @ (2 x E, F ® £) — (R, B(R)) be a nonnegative
measurable function and let i be a nonnegative measure on (E, £) such that

f flow,)du@) =1, weQ.
E

Clearly, the formula 77 (w, A) = [, f(®, »')du(e") defines a transition probability
from Q to £. Moreover, 7 (w,.) is absolutely continuous with respect to u, with
density f(w, -). <

Suppose now that (E, &) = (22, F).
Definition 2.10 Let G be a o-algebra included in F. A transition probability from
Q to Q is called a conditional probability with respect to G if, for any A € F, the
random variable 7 (-, A) is a version of the conditional probability P(A | G), that is
iftn(,A) =P(A | §)() P-as.

2.1.3 Conditional Distributions

Let (2, ) be a measurable space. Let P denote the set of all probabilities on
(R4, B(RY)). Let Q :  —> P be a function; in other words Q(w) is a probability
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on (R?, B(R?)) for all w € €. We will denote by O(w, B) the measure by Q(w) of
any Borel set B € B(RY).

In order to regard Q as a random variable, P has to be equipped with a o-algebra.
We will consider the measurable space (P, H), where H is the o-algebra generated
by the functions defined on P by P —> P(B) forall B € B (RY).

Definition 2.11 Let (2, F) be a measurable space. Any measurable function from
(Q, F) into (P, H) is called a random distribution (or probability) on (R, B(R%)).

This notion of random probability allows us to define the conditional distribution of
arandom variable with respect to a o -algebra included in F.

Definition 2.12 Let X : (22, F,P) — (R?, B(RY)) be a random variable and G a
o-algebra included in F. A function Q : Q2 x B(R?) —> P is called a conditional
distribution of X given G if for all given B € B (Rd), the variable Q(-, B) is equal
to the conditional probability given G of the event (X € B).

The conditional distribution function and the density of the conditional distribution
are defined similarly.

Definition 2.13 Let X = (X1,..., X4) : (Q, F,P) — (R4, B(R%)) be a random
vector and let G be a o-algebra included in F.

A function F : © x R —> [0, 1] is called a conditional distribution function
of X given G if F(w, ) is a distribution function for all @ € €, and if for all
x=(x1,...,Xq) e R4,

F(.,x)=P(X; <x1,..., X0 <x4]G) as..

A nonnegative Borel function ¢ defined on (2 x R, F ® B(R?)) is called a
conditional density of X given G if the function Q defined on Q x B(R?) by

O(w, B) =/q(w,x)dx
B

is a conditional distribution of X given G.

It can be proven that for all real random variable X, conditional distributions
and distribution functions exist with respect to any o-algebra G included in F.
They are not uniquely defined but are all versions of the same random variable;
in other words, if both Q; and Q> are conditional distributions of X given G, then
01(, B) = Q»2(-, B) a.s. forall B € G.

When F (o, x) is a distribution function on R¢ for any w € Q and F(w, x) =
P(X < x | G), then it is said to be a regular distribution function of X given G.
Any random variable X taking values in RY, or more generally in a Borel space,
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has a regular distribution function with respect to any G C F. The same applies to
characterize regular conditional distributions Q(w, B).

2.1.4 Conditional Expectation

When an integrable random variable X has a regular conditional distribution

function given the o-algebra G C F, say F(w, x), the conditional expectation of
X given G is defined as the usual expectation, by setting

EX | G)(w) = f xF(w,dx),
R
or, using the regular conditional distribution,
EX |9 (w) =/ X(@)0(w,do).
Q

When this conditional distribution does not exist, the conditional expectation of
a random variable can still be defined, under some conditions. In both cases, the
conditional expectation shows valuable interpretation in terms of projection.

Definition 2.14 Let X be a random variable defined on (2, 7, P) and let G be a
o-algebra included in F.
If X is nonnegative, the conditional expectation of X with respect to G is the G-

measurable random variable denoted by E (X | G), taking values in R and defined
by

/ E(X | G)dP = / XdP, Ceg. 2.4)
C C

If X is real valued, and if
max(E(X" |G),E(X™ | G)) < +00 as., (2.5)
the conditional expectation of X given G is defined as
EX|GO=EX"|G-EX |9.

In case min(E (X | G),E(X™ | G)) < +oo ass., then E (X | G) may be defined
with an infinite value.

Note that E (X | G) satisfies (2.4) in both above cases. Also, if X is G-measurable,
thenE(X | G) = X.
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Since this carries over to random vectors coordinate by coordinate without
change, we will study only the case of real random variables.

As shown in the next example, the definition of the conditional expectation is not
limited to integrable variables, but, if X is integrable, then it satisfies condition (2.5)
and

/EXdP:EX:[XdIP’ and /IEXd]P’:O:/XdIP’,
Q Q Q Q

sothat E (X | {0, Q}) = EX.

D> Example 2.15 Let X be any real random variable defined on (2, F, ) such that
EXT = +4ooand E X~ = +o00. We have

EX|FH=EXT|FH-EX |FH=X"-X =X

On the contrary, the expectation of X, that is its conditional expectation given the
o-algebra {@, Q}, is not defined, and X is not integrable. <

Proposition 2.16 Condition (2.4) is equivalent to

E@ZX)=E[ZE(X | )], (2.6)
for any G-measurable random variable Z.
In particular, due to Theorem 2.4, we have E (14 | G) = P(A | G).

Proof The direct implication is evident for an indicator function, then we follow the
usual procedure, passing to general G-measurable variables via G-measurable step
functions and nonnegative variables.

The converse is obtained by setting Z = 1¢. O

The method used above for proving the existence of the conditional probability
works for proving the existence of the conditional expectation satisfying (2.4). We
will rather show it through the orthogonal projection in L? for square integrable
variables. For this, we need a linear algebra lemma, which we state without proof.

Lemma 2.17 Let H be a Hilbert space and let G C H be a closed subset. For all
x € H, there exists a unique y € G (called the orthogonal projection of x on G)
such that for all z € G, we have (x — y,z)g = 0and ||x — y||3, < ||x — z||%1.

Theorem 2.18 The conditional expectation of an integrable random variable exists
with respect to any o -algebra included in F, and is almost surely unique.
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Proof First suppose that X € L>(Q2, F,P). Let G C L*(Q, F, P) be the set of all
G-measurable functions in Lz(Q, F, P). This set is isomorphic to Lz(Q, Gg,P), so
it is a closed set.

Let Y be the orthogonal projection of X on G; thanks to Lemma 2.17, Y satisfies
(2.6), so due to Proposition 2.16, E(X | G) =Y.

Suppose now that X is nonnegative. Set X, = X An.The sequence (X,) is square
integrable. Let Y, be the projection of X, on G. Let Z be a nonnegative bounded
G-measurable variable. If n > m, then X,, — X,, is nonnegative too, so that

E[ZY, = Yu)]=E[Z(Xy — Xn)] = 0.

Set Y = sup, Y,. We have E (ZY,) = E (ZX,), and by increasing limit of the
sequence (E (ZY;,)), weobtain E (ZY) = E(ZX),sothatE(X | G) =Y.
If Z is not bounded, taking Z,, = Z A n yields the result.

Finally, the result is proven for a general variable X via the usual decomposition
X=Xt-X". ]

> Example 2.19 (Quadratic Approximation) If X € L?, then E (X | G) is the
projection of X on G, that is the closest variable in G to X in the sense of least
squares, in mathematical words

IX-EX QI3 <IX-Zl3 Zeg,
also called the quadratic approximation of X by G. See Fig. 2.1 for an illustration. <

> Example 2.20 (Generated Sub o-Algebras) If B is closed under finite intersec-
tions and generates G, then Y = E (X | G) if and only if Y is G-measurable and
E(X1p) =E (Y1p), forany B € B.

In particular, if G = o(B), then any G-measurable function Z can be written
Z = a)lp + az1l . The conditional expectation Y of X given G can be written
Y =bilp + bl g withE(X1p) = b1P(B) and E (X1 ) = bIP(B), so that

E(X1p) E(X1,)
E(X|G) = P(B)B s 1_]1»(2) 5

Fig. 2.1 Conditional

X .
expectation—Example 2.19 /

L*(9)
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When G = o(By, ..., By), where {By, ..., B,} is a partition of Q into events
with positive probabilities, we obtain similarly

"\ E(X1p,
EXI0 =) g, 1

i=1

When G = o (B, n > 1), where (B,) is a sequence of pairwise disjoint events with
positive probabilities, then

E(X1p,)

EX19=2 b,

n>1

1s,.

Since for each @ € €2 only one term of this sum is not null, this random variable is
well defined. <

Many properties of the conditional expectation are similar to the properties of
expectation.

Properties of Conditional Expectation
Let X and Y be two nonnegative or integrable real random variables and let G be a
o -algebra included in F.

1. (Positive) If X > Y as,then E(X | G) > E(Y | §) a.s. In particular, if X is
nonnegative, then its conditional expectation is nonnegative too—but may take
infinite values.

2. (Linear) For any (a, b) € R?, we have

E@X+bY |G =aE(X |G)+bE(Y |G) as.

3. (Monotone convergence theorem) If 0 < X,, /' X, then

E(X,19) /EX]9).
4. (Fatou’s lemma) If X, is nonnegative for n € N, then

E (imX, | §) <lim E (X, | §).

5. (Dominated convergence theorem) If (X,) converges a.s., and if |X,| < Y,
where Y is integrable, then

E( lim X,|G) = lim E(X,|§G), as.andin L'
n—-+00 n—-+00
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6. (Jensen’s inequality) If ¢ : I —> R, where [ is an interval of R, is a convex
function such that ¢ (X) is integrable, then

pEX19) <ElpX) gl as.
For example, if X € L?, with 1 < p < 400, we have
EX 9P <E(X|"]G).
This yields |E(X | G)| < E(]X]| | G), inducing that E[|E (X | G)|] < E (| X)).
The conditional expectation has also some specific properties.
Theorem 2.21 Let G’ be a o-algebra included in G. We have
EE(X |9 |G1=EX|G) as.
In particular,
E[E(X |G]l=EX as., 2.7)
which, for G = {@, Q}, yields again E (X | G) = E X a.s.

Note that, due to the properties of projection, this theorem is obvious if the
variables are square integrable.

Proof Suppose that X is nonnegative. Let Z be a variable that is G'-measurable, and
hence also G-measurable. Set V =E (X | G) and U = E(V | G). By definition of
the conditional expectation, E (ZU) = E(ZV) =E[ZE (X | G)] = E(ZX).

If X is an integrable random variable, the conclusion follows as usual through
X=Xt-X". ]
Proposition 2.22 If X is G-measurable and if XY satisfies (2.5), then

EXY |G =XE{X |G a.s.

In particular, if X is G-measurable, then E (X | G) = X a.s.

Proof For nonnegative X and Y.
If Z is G-measurable, then Z X is G-measurable, so

EIZX)EY |OI=E[(ZX)Y]=E[Z(XY)]=E[ZE(XY | §)] as.,

by definition of the conditional expectation. O



2.1 Conditioning 71

The definition of conditional variance for variables having a conditional distribu-
tion is dimilar to the definition of conditional expectation.

Definition 2.23 Let X be a random variable defined on (€2, F, IP) and let Q be its

conditional distribution given a o -algebra G included in F. The conditional variance
of X given G, denoted by Var (X | G), is the random variable defined by

Var (X | §)(0) = /R[x ~EX | 9)(@)] 0, dx),

for any w such that E (X | G)(w) is finite.

The conditional version of the well-known Konig’s formula Var (X) = E (X 2y~
[E (X)]? reads

Var(X |9)=EX* |G- [EX |9P =E(X -EX |9 |G as.
Proposition 2.24 (Total Variance Theorem) If X is square integrable, then
Var (X) = E[Var (X | §)] + Var[E(X | §)]. (2.8)
Proof We can write
VarX =E((X -E(X |§+EX |G —EX).

Since E Z = E[E (Z | G)] for any variable Z, we have

E(X -EX |9 =E[E(X -EX |9 |§]=E[Var(X | §)]
and

E(E(X |G -EX) =E[E(X |G —E[E(X | §)*] = Var[E (X | §)].

Finally,

E(X -EX |DIEX |G —EX]
=E(X-EX|DIEX |9 -EX]|G)
=E[X-EX |9 |GIEX |G -EX],

because E (X | G) — E X is G-mesurable. The result is proven since E[X — E (X |
G) | G] = 0 by definition and linearity of E (X | G). O
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Until the end of the section, we will study the particular case of the conditioning
with respect to a o -algebra generated by some random variable 7', thatis G = o (T).
WewillsetE[X | o(T)]=E (X | T),and more generally E [X | o (T}, ..., Ty)] =
EX|T,...,T,).

Proposition 2.25 If X and T are two random variables, then E(X | T) = ¢(T)
if and only if the Borel function ¢ satisfies E[Xg(T)]=E [¢(T)g(T)] for any Borel
function g, or equivalently E [ X1 (7<p)|=El@(T)1(rcp)] for any Borel set B.

Proof Any o (T)-measurable variable Z can be written Z = g(7T') for a Borel func-
tion g, from which the result follows by definition of the conditional expectation.

O
Definition 2.26 Let X and T be two random variables and let Q denote the
conditional distribution of X given T. The conditional distribution of X given

(T = t) is the transition probability 7 from R to R satisfying for any Borel sets
A and B,

P(X € B,T € A) = / n(t, B)YdPr (1), (2.9)
A

where Pr is the distribution of 7. We will write 7 (¢, B) = P(X € B | T =1t).
Proposition 2.27 Let X and T be two random variables. A transition probability

7 from R to R is the conditional distribution of X given (T = t) if and only if for
any bounded Borel function h,

EhX)|T]= / h(x)z(T, dx) a.s..
R
Proof Due to (2.9), the equality

E[r(X)g(T)] = /Rzg(t)h(X)ﬂ(t, dx)dPr (1)

is directly satisfied for indicator functions, and then is proven to hold for a general
bounded Borel function g as usual.
The converse is obtained by setting 7(X) = 1 (xep) and g(T) = L(rea). |

We will denote E (X | T = t) the expectation of the conditional distribution of
X given (T =1).

Corollary 2.28 If X and T are two random variables and if ¢ is a Borel function,
thenE(X | T) = o(T) ifand only if E(X | T = t) = ¢(t) for any real number t.
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Proof This is a direct consequence of Proposition 2.27, since E(X | T = t) =
Jgxm(t,dx). O

The conditional expectation can also be determined independently of the condi-
tional distribution as shown in the next example.

> Example 2.29 Let X and Y be independent random variables with the same
distribution y(1,1). The T = X + Y ~ y (2, 1); see Example 1.66.
Let us determine the conditional expectation of X given 7. We are looking for

¢ such that for all bounded Borel function g, we have E [g(T)X] = E [g(T)¢(T)].
We compute

t
E[g(T)X] = // g(x—l—y)xe_(”)’)dxdy:/ / gWe'ududt
R% Rr.Jo

(z”/ p(g()te™ dt = E[g(T)p(T)].

Ry
Since (1) is satisfied for ¢ (¢) = fot udu/t =t/2,weobtain E(X | T) =T/2 a.s.
This result could have been guessed without knowing the distribution of the

variables, as shown in Exercise 2.3 below.
In the same way, for all bounded Borel function /, we have

t
Eh(X)|T =1t] = :fo h(u) du,

so that the conditional distribution of X given (T" = ¢) is uniform over [0, ¢]. <

2.1.5 Conditioning and Independence
The probabilistic notions of dependence and conditioning are obviously linked.

Theorem 2.30 If a random variable X defined on (2, F,P) and a o-algebra G
included in F are independent, then E(X | G) = E X a.s.

Proof Let Z be a G-measurable random variable. We have
EXZ2)=EX)EZ) =E[(EX)Z],
and since E X is a.s. constant, it is G-measurable. m]

Even if two random variables are independent, their conditional expectations may
not be, as shown in the next example.
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> Example 2.31 Suppose that (S, T) ~ N2(0, ). Set X =S+ T andY = S —
T. Then (X, Y) is a Gaussian vector and Cov (X,Y) = 0, so that X and Y are
independent. SLIE(X | ) =S=E( | S) as. <

Nevertheless, conditional expectation gives a criterion of independence.

Theorem 2.32 Two random variables X and Y are independent if and only if for
all bounded Borel function h,

Er(X) | Y]I=E[R(X)] as..
In particular, if X and Y are independent, then E (X | Y) = E X a.s.

Proof The variables X and Y are independent if their generated o-algebras are
independent. Therefore, if Z is o(Y)-measurable, then Z is independent of any
variable h(X), so

E[Zh(X)] = (E Z)(E[r(X)]) = E(ZE[R(X)]).
Conversely,

ELf(MhX)] =E(fXE[RX) [ Y])
=E(f(MERX)]D) =E[fM]E[AX)].

Since this holds true for any bounded Borel functions f and h, X and Y are
independent. O

Corollary 2.33 If G| and G, are two independent o -algebras included in F and
if X is an integrable random variable such that o (X, G1) and G, are independent,
then

E[X oG, 0)]I=EX|G) as.

Proof By definition 0 (G, G2) = o ({B1 N By : B; € G;}). So, using Example 2.20,
it is sufficient to consider the indicator functions 15,ng, = 15,15,. We have

E[1515EX | 6] L E[14E (X1s | G)]

@ E(1p,)E[E (X1p, | G1)]

3
QE (15,)E (X15,) =E (1, 15,X).
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(1) because B; € Gj, (2) because G; and G, are independent, and (3) by (2.7)
p. 70. O

This corollary is often of use in applications, as shown in the next example.

> Example 2.34 Let (X,) be an i.i.d. integrable sequence. Let us determine the
conditional expectation of X; given o (S, Sy+1,...), where §, = Z?:l X;.
Corollary 2.33 applies to the random variable X = X; and the o-algebras
g1 = o(Sy) and Gy = o(Xp41, Xuy2,...). Since 0(G1, G2) = o (Su, Su+1,---),
o (X, G1) and G, are independent, it follows that

E[X1 | 0(Sn, Sut1,-- )1 =E[X1 | 0(Sp)] as.
Since the variables X; are i.i.d., we have
n
D EXi|S)=ES|S) =S5 as.
i=1
andalsoE (X; | $y) =E (X1 | Sy) as.fori =1,...,n.
Finally E (X1 | ;) = Su/n. <

The conditional independence of o -algebras is defined as follows. The condi-
tional independence of events or of variables follows straightforwardly through the
generated o -algebras.

Definition 2.35 Let (2, F, P) be a probability space and let G, G;, and G, be o-
algebras included in F. Then G; and G are said to be conditionally independent
with respect to G if

P(ANB |G =PA|GPB|G as, AecG, Beg.

2.1.6 Practical Determination

Different methods are here detailed for determining the conditional distribution and
expectation of a variable with respect to another.

For Discrete Random Variables
Since elementary techniques are sufficient in the discrete case, we only give one
example.
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> Example 2.36 Let X and Y be two independent random variables such that X ~
P@A)and Y ~P(n). Wehave T = X + Y ~ P(L + u). Hence, we compute

P(X =k.Y =1 —k)
PX=kIT=0=""pxiy—y

e Mk ey tk 1!
K (=K e=GHO (4 )t

- 1— , 0<k<t,
k) \r+pu A

Therefore, the conditional distribution of X given (7" = ¢) is a binomial distribution
B(t, 1/ 0.+ ).

Hence, E(X | T =¢t) =x/(A+wpn)andVar (X | T =1t) = Aut/(A ~|—,u)2, SO
that E(X | T) = AT/(A + ), and Var (X | T) = AuT /(A + p)>. <

For Random Variables with a Joint Density

Proposition 2.37 If X and Y are two random variables such that (X,Y) has a
density f, then the conditional distribution of X given (Y = y) has a density too,
given by

fx.y)  fxy)

Py =" ) T Fey)dx

if fy(y) # 0 and 0 otherwise.
Proof Let g and h be two bounded Borel functions. We have
E00s] = [[ h00) 7 ) dxdy

= //th(X)g(}’)fxw(x | ) fr () dxdy.

So by Fubini’s theorem,

E[r(X)g(¥)] = /Rg(y) [/Rh(X)fxw(x I y)dX} Jr(ydy.

and the result follows from Fubini’s theorem and Proposition 2.27.
If fy(y) =0o0n E C R, one can consider R\ E. O

If both the conditional distribution and the marginal distribution are known, the
distribution of the pair can be determined. This can be generalized to any finite
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number of random variables. For instance, for three variables, we have

fxyz(,y,2) = fx frix(y 1 x) fzix.r@ | x,y).

> Example 2.38 In Example 2.29, let us determine the density of (X, T'). For any
bounded Borel function 4,

Eh(X,T)] = //2 h(y,x + y)e O dxdy = //2 h(x,t)e 1o (x) dxdt,
R R

so that f(x, 1) = e 1o, (x)1r, (¢).

Since T ~ y(2,1), we have fr(r) = te”'1g,(¢), and hence fx;r(x | 1) =
I/, (x)1g, (t), and hence E(X | T = t) = f(;(x/t) dx, from which we
deduce againthat E(X | T) = T/2 ass. <

For a Random Variable with a Density and a Discrete Random Variable
Proposition 2.39 Let X be a random variable with density fx and let T be a
discrete random variable taking values {t; : k € K}.

1. If the distribution of X and the conditional distribution of T given (X = x) are
known, then the distribution of (T, X) is given by

]P’(T:t,XeB):/]P’(T:th:x)fX(x)dx.
B

2. IfP(T =t,X € B) = [ f(t,x)dx forany B € B(R), then
a. the conditional distribution of T given (X = x) is given by

) fx)

P(T=t|X=x)= = ;
b. the conditional distribution of X given (T = t) has the density

ft, x)
f]R f(t,x)dx'

Proof By definition, P(T =1 | X = x) = E[L(7— | X = x] = ¢(x), with

fxir(x [ 1) =

E[lxepylir=n] = E[L(xenyp(X)], B e BR).

It follows that P(T =1, X € B) = [ ¢(x) fx (x) dx, which proves 1.

Point 2. is a straightforward consequence of Theorem 2.37, by interpreting
f(t,x) as the density of (T, X) with respect to >, _x 8;, ® A, where &, is the
Dirac measure at #; and A is the Lebesgue measure on R. O
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> Example 2.40 Let X be a discrete random variable taking integer values and let
Y be a nonnegative random variable. Suppose that

t n
P(X =n,Y <1) :/ ’Be—(oz+/3)y (ay) dy,
0

n!

for some positive real numbers « and S. Let us determine the conditional distribu-
tion of X given (Y = y). We have

P(Y<t)=) P(X=nY <1)

n>0
o t
/ 3 y) Be— @By — / Be P dy,
n>0 0
and hence Y has the distribution £(8). Moreover,
nge—(@+B)y sy n
PX=n|Y=y)= (@y)pe /n! =e (@) ,
Be=hy n!
meaning that the conditional distribution of X given (¥ = y) is the Poisson
distribution P(ay). Hence, the conditional expectation of X given Y is aY. <

Vector and Gaussian Cases
Proposition 2.41 Let T and Z be two independent random vectors. Let X = Z +
g(T), where g is a Borel function. The conditional distribution of X given (T = t)
is that of Z + g(t), or

EX|T=t)=EZ|T=1)+g).
Proof For random variables.

For any bounded Borel function &, E [A(X)g(T)] = E[h(Z + g(T))g(T)], that
is to say

E0s D] = [[ G+ gwnedprodpz
= [ 0| [ 1+ swrars@)| arr
R R

=/g(t) [/ h(z)dPZ+g(t)(Z)i| dPr (1),
R R

and Proposition 2.27 yields the result. O
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When the variables constitute a Gaussian vector, the conditional distribution follows
straightforwardly.

Proposition2.42 If (X, T) ~ Ny(m,T) with X : @ — RP, T : Q — R?
and detT" # 0, then the conditional distribution of X given (T = t) is a Gaussian
distribution

N, (JEX +Cov(X,T) 7' (t —ET), Ty — Cov (X, T)I'y' Cov (T, X)).

Proof For p =q = 1.

Set Z = X — AT, where A = Cov (X, T)/VarT. The vector (T, Z) is a
Gaussian vector, and hence, since the variables Z and T are uncorrelated, they are
independent. Moreover,

2
Cov (X, T)IE T and VarZ =VarX — Cov(X, T) .
VarT VarT

EZ=EX -

Due to Proposition 2.41, the conditional distribution of X given (T = ¢) is a
Gaussian distribution with expectation EX + Cov(X,T)(t — ET)/VarT and
variance Var X — Cov (X, T)?/VarT. |

2.2 The Linear Model

In the linear model, the studied random variable Y is assumed to be linked (up to
some additive error) by a linear relation to d other random variables X7, ..., X4 that
are simultaneously observed. The model is said to be simple ifd = 1. If d > 1, itis
multiple. If the random variables X ; are continuous, the model is called a regression
model; a particular case is the Gaussian linear model in which (X1,..., X4, 7Y) is
supposed to form a Gaussian vector.

Let Y be a square integrable random variable. First, the expectation of Y is its
orthogonal projection in L? on the subspace of constant random variables, that is
the best approximation of Y by a constant in the sense of least squares. Note that the
standard deviation oy is the lengthof Y —EY in L?. Letnow X1, ..., Xz also be
square integrable random variables, with covariance matrix I'x.

The conditional expectation of Y given (Xi,...,Xy), thatis Z = E(Y |
X1,..., Xq), satisfies

EL(Y -2 <E(Y - g(X1,.... X)),
for any bounded Borel function g. It is the best approximation in the sense of the

L?-norm of Y by some function of (X7, ..., X4), called the minimum mean square
error predictor. It is also the projection of ¥ on the sub-space Sp(X1, ..., X4) in L.
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Fig. 2.2 Tllustration of the
linear model

Second, Y is to be approximated by a linear function of X1, ..., X4; see Fig. 2.2,
in which d = 1. The projection Ys = M + 27:1 aj X has to satisfy the (normal)
equations

(Y —Ys, 1) =0, (2.10)
(Y —Ys, X;)=0, forj=1,...,d.
Since the scalar product is that of centered variables in L2, defined by
<X, Y>=EX-EX)(Y —EY),
(2.10) implies M =EY — Z‘j:l oK X ;, from which we deduce that
d
(Y —Ys, X;)=(Y —BY = ) a;(X; —E X)), X}).
i=1
Due to (2.10), (Y —EY — Zle a;i(X; —EX;), EX;) =0, so we also have
d
(Y—EY—ZOQ(X,- ~EX),X; —EX;)=0
i=1

or, in matrix form,

o] Cov (Y, X1)
x| | = : ,
oy Cov (Y, Xy)
where 'y is the covariance matrix of the vector X = (X, ..., Xg). If X is not

degenerated—that is if Iy is invertible, then

@i, ..., a7) = (Cov (Y, X1),...,Cov (Y, Xg)) Tg'.
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This defines the best linear approximation of Y by (X1, ... Xy) in the sense of the
L?-norm or least squares.

Moreover, if (Y, X1, ..., X4) is a Gaussian vector, then ¥ — Yy is independent
of all the X, and

d d
IYI3=1Y =Y aiXil3+ 11> i Xill3.
i=1 i=1

so the Pythagorean theorem holds true.

> Example 2.43 (Regression Line) Let Y and X be two square integrable random
variables. The best linear approximation of Y by X is Ys = o X + m, where

Cov(X,7Y)
o= and m=EY —aEX. (2.11)
Var X
The line with equation
Cov(X,Y)
=EY —-EX
y + Var X (x )

is called the regression line of ¥ given X.
This line is the one around which the distribution of (X, Y) is concentrated; in
other words,

/Rz(y —ax — m)zdP(X,y)(x, y)

is minimum on R? for o and m given by (2.11).
An example of a regression line is shown on Fig. 2.3. <

The next result is a straightforward consequence of Theorem 2.42. Nevertheless,
we give here a direct proof.

Theorem 2.44 If (X,Y) is a Gaussian vector, the best quadratic and linear
approximations of Y by X are equal.

In other words, the conditional expectation of ¥ given X is a linear function of X.

Proof Leta and m be given by (2.11) p. 81.Set Y = aX +m + ¢.

We know that o X + m is the orthogonal projection of ¥ on Sp(1, X),soEe =0
and E e X = 0. Moreover, (X, Y) is a Gaussian vector, so (X, €) is a Gaussian vector
too. Since ¢ and X are uncorrelated, they are independent, and hence, E (¢ | X) =
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Fig. 2.3 A regression line

E e = 0 a.s., from which we deduce that
EX | X)=E@X+m+e¢e|X)=aX+m.

The above equation holds a.s. O

2.3  Stopping Times

In order to investigate stopping times and then martingales, it is first necessary to
extend the Kolmogorov probability space (€2, F, P) by adding to it a filtration F =
(F2)n>0, an increasing sequence of o-algebras included in F. This constitutes a
stochastic basis B = (2, F, F, P), also called filtered space.

A stopping time is a random variable which does not depend on the “future”.

Definition 2.45 Let F = (F,) be a filtration of F. A stopping time for F (or F-
stopping time) is a random variable T taking values in N and satisfying (T < n) €
JFn foralln € N.

Note that the condition (T < n) € F, is equivalent to either (T = n) € F, or
1 (7=n) is F,-measurable, for all n € N.



2.3 Stopping Times 83

> Example 2.46 Any constant random variable 7', that is equal to some m € N, is
a stopping time.
Indeed, (T =m) =Q € Fyyand (T =n) =@ € F, forall n # m. <

Theorem-Definition 2.47 Let T be an F-stopping time. The set Fr = {A € F :
Vn e N, AN(T = n) € F,} is a o-algebra, called the o-algebra of the events
previousto T.

Proof Let A € Fr. We can write A = U,>0A N (T = n), so that A =
Np=0A N (T = n) € Fr.If moreover A,, € F for all m, we get

UAm=U[(UAm)ﬂ(T=n)]=U[UAmﬂ(Tzn)],

m>0 n>0 m>0 m>0 n>0

and hence U,,>0A,, € Fr. |

2.3.1 Properties of Stopping Times

1. If S and T are two stopping times, then S + 7, S AT and S v T are stopping
times; indeed:

(S+T:n)=U(S:i)ﬂ(T=n—i)e}',,;
i=0
SAT =n) = =nUT <n) e Fy;

SvT <n=<nN(T <n)eF,.

In particular, if 7 is a stopping time and k € N, then T +k and T Ak are stopping
times.

2. If (T,) is a sequence of stopping times, then both sup, .o 7, and inf,>¢ 7, are
stopping times, because for instance (sup,.o 7, < n) = hnZO(Tn <n).

3. If S and T are stopping times such that S < T, then Fs C Fr; indeed, if
A e Fs,then AN(T <n) =[AN(S <n)]N (T < n) is the intersection of
elements of F,.

A stopping time for the natural filtration (0(X;,0 < k < n)) of a random
sequence (X)) is said to ba a stopping time for (X,).

> Example 2.48 (Hitting and Exit Times) Let (X,) be a random sequence taking
values in R? and let B € B(R?).

The variable T = inf{n € N : X, € B} is called the hitting time of B. This is a
stopping time for (X,). Indeed,

(T=n)=(X1¢B,...Xp_1 ¢ B, X, €B),



84 2 Conditioning and Martingales

and (X; ¢ B) € Fi, (X, € B) € F, and F; C Fiy fori € [1,n — 1], so that
(T =n) € F,. Note that T may also be called first passage time, depending on the
kind of process under study.

On the contrary, the exit time from B, thatis S = sup{n € N : X,, € B}, is not
a stopping time for (X,,), because clearly,

S=n=X1€8B,....X,€B, Xnt1¢ B)
does not belong to F,. <

If T is a stopping time for a random sequence (X, ), the random sequence (X7 xp)
is said to be stopped at time 7.

Proposition 2.49 If T is an F-stopping time and if (X,) is a random sequence for
the same filtration F, then the variable X117 <y o0 is Fr-measurable.

In particular, this induces that X717 40 is a real random variable.

Proof Let B € B(R). We have
(T =) N (X7 L(7<400) € B) = (T =) " (X, € B) € Fi,
N¢J (XT]I(T<+00) € B) € Fr. O

Proposition 2.50 (Wald’s Identity) If T is a stopping time with finite mean for an
i.i.d. integrable random sequence (X,), then

EXo+---+Xr) = EX)ET).

Note that this holds true also for any variable T independent of (X}), as stated in
Proposition 1.73.

Proof For nonnegative variables.
Set S, = Xo+ --- + X,,. We have

n
ESr=) E []l(rzn) in] 2YE [Xi ZLT:M];
n>0 i=0 i>0 nxi

(1) by Fubini’s theorem. Therefore

ESr =) E[Xilgsnl=) P(T = DEX; = EXo)(ET),

i>0 i>0

because (T > i) = (T <i) € 0(Xo, ..., X;—1), and hence 1(r>;) is independent
of X;. m|
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24  Discrete-Time Martingales

The casino players call martingales what mathematicians call submartingales. The
origin of the mathematical sense dates back to Ville (1939). Their systematic study
is due to Doob in the 1950s.

2.4.1 Definitions and Properties

A random sequence is a martingale if the conditional expectation of its future value
given its past and present values is equal to its present value. Submartingales (super-
martingales) are the stochastic analogous of increasing (decreasing) functions.

Definition 2.51 Let B = (2, F, F, P) be a stochastic basis. A random sequence
(X,) defined on (2, F, P) is:

1. an F-martingale (or martingale adapted to F) if all following three conditions are
satisfied:
a. X, is F-adapted (X, is F,,-measurable for n € N).
b. X, is integrable for n € N.
c. E(Xy41 | Fn) = X, forn e N.
2. an F-submartingale if it satisfies a., b. and > in c.
3. an F-supermartingale if it satisfies a., b. and < in c.

Note that condition c. is equivalent to E (X,4+1 — X,, | /) = 0 foralln € N, and
alsoto E (1pX,+1) = E(1pX,), for all B € F,. The sequence (X, — X,—1) is
called a martingale difference.

A martingale is both a submartingale and a supermartingale. Thanks to the
properties of conditional expectation, if (X,) is a martingale adapted to some
filtration F, then it is a martingale adapted to its own natural filtration.

If (X,,) is a martingale, then E X,, = E X for n € N. Thus, one can write E X
instead of E X,.

> Example 2.52 (Random Walk) Let (&,) be an i.i.d. random sequence each of
which with expectation m. The random walk (S,) = (3_/_, &) is a submartingale
for the natural filtration of (§,) if m > 0, a martingale if m = 0 and a
supermartingale if m < 0. Indeed,

ESuit | F)=EE ++ &1 | F) L&+ 48 +E G | Fo),

2
(—_) Sn +E&1 =S, +m;

(1) because &; is J,-measurable fori = 1, ..., n, and (2) because F;, and &,4 are
independent.
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Note that if m = 0 and E&? = o2, then
E(S21 | Fa) = B[Sy + &) | Fal = 2+ EE2 = S2 407

therefore, E[S, — (n + 1)o? | F,]l = S,% — no?, and the sequence (S,% —no?) is
also a martingale.

Interpretation in terms of game: consider that £; denotes the winnings at the i-th
game, and S, the total winnings after the n-th game. The sequence (§,) is i.i.d., with
P&, =1)=pandPE,=—-1)=1—p,sothat E§, =2p — 1.

If (S,) is a submartingale (that is if p > 1/2), then E (§,41 | F») > 0; hence,
knowing all games up the n-th one, the expectation of winnings at the (n + 1)-th
game is nonnegative.

Note that (Z,) = (S, — n(2p — 1)) is a martingale for any p. <

> Example 2.53 (A Martingale at the Casino) A player bets 1 euro at the first
game; if he loses, he bets 2 euros at the second game, and so on 2k euros at the k-th
game. He stops playing as soon as he wins at one game. At each game, he either
loses or wins with probability 1/2. This strategy leads him to leave the casino with
positive winnings. Indeed, when he will stop playing at the random time N—time
of first gain, he will have won 2V — (1 +2 422 4 ... 4 2V~1) = 1 euro.

If X,, denotes the random variable equal to the winnings of the player after the
n-th game, we have

X — X, — 2" with probability 1/2,

"7\ X, + 2" with probability 1/2,
if he has lost until the n-th game. Hence E (X,,+1 | F,) = X;, where (F,) is the
natural filtration of (X,,), that is a martingale.

We know that N ~ G(1/2),and E(|X,|) < 1 +2+ 2%+ ... +2""! 50 the
expectation of loss is >, o (1 +2+ 224 ... 4 2]‘_2)(1/2)]‘ = +00. Therefore, the
strategy followed by the player is valuable only if his initial fortune is much larger
than that of the casino. <

> Example 2.54 (Product Martingale) Let (Y,) be a nonnegative independent
random sequence such that EY,, = 1, for alln > 1. Let (X,;) be defined by Xo = 1,
and X, = [[;_; Yx. We have

E(Xn | Jrn—l) = IE(Xn—lyn | Jrn—l) = Xn—lE(Yn | Jrn—l) = Xn—la

and hence (X,) is a martingale adapted to the natural filtration F of (Y,) (or of
(Xn)). <

> Example 2.55 (Conditional Expectation) Let X be an integrable real random
variable defined on (2, F, IP) and let F be any filtration of F. The sequence (X,)
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defined by X,, = E (X | F,) is an F-martingale. Indeed, since (F},) is an increasing
sequence, we have

EXpt1 | Fo) =E[EX | Far) | Fal = E(X | Fa) = X

Such a martingale is said to be regular. <

> Example 2.56 (Radon-Nikodym Derivatives) Let P and Q be two probabilities
defined on a measurable space (€2, F) and let F be a filtration of F. Let P, and
0, denote the restrictions of P and Q to JF;, respectively, and suppose that Q,
is absolutely continuous with respect to P,. Let (X,) be the sequence of random
variables (Radon-Nikodym derivatives) defined on (€2, F, P) by

_dQ,

X - ’
" dp,

n>1.

We have
E(MaXn) = On(A) = On(A) =EMaXy), A€ Fy, m<n,

s0 (Xp) is an F-martingale. <
Properties of Martingales

1. If (X;) is an F-martingale, then E(X,, | F,) = X, for all n < m, since
E[E (X | FprD) | Fpl =E(Xp | Fp) foralln < p <m.

2. The set of all martingales adapted to a given filtration is an R-linear space.

3. If (X,) is a submartingale, then (—X,) and (X ,‘f ) are supermartingales; indeed,
if E(Xy41 | Fn) = X, then first E (—X,41 | F) < —X,, and second either
E(X | F)=0< X5 orE(X | F) = E X1 | Fa) < X, < X

4. If (X,) is a submartingale and ¢ : R — R s a convex function such that ¢ (X,)*
is integrable for all n, then (¢(X,)) is a submartingale. This property derives
from Jensen’s inequality through

Elo(Xnt1) | Fal = ¢ (B (Xny1 [ Fn)) = @(Xn).

In particular, if (X,) is a submartingale, then both (X ,21) and (| X, |) are submartin-
gales.

5. If (X) and (Y;) are submartingales, then their maximum (X, V Y;) is a
submartingale. Indeed, for all A € F,,, both the events A} = AN (X, < Y,) and
Ay = AN (X, >Y,) are also in F,, and we can write

E[Ta(Xn VY] =E 4, Yy) +E L4, Xn)
SE@a Y1) + E @4, Xng1)
=K [Ta(Xnt1 V YD)
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In the same way, if (X,) and (Y,) are supermartingales, then their minimum
(Xn NYy) is a supermartingale too.

Definition 2.57 Let (X,,) be an F-martingale and (Y,,) an F-predictable sequence—
Y, is F,—1-measurable for n € N. The sequence defined by

(Y o X)n = ) Vie(Xk = Xp—1), (2.12)
k=1

is called the discrete stochastic integral (or martingale transform) of (¥},) by (X},).

Theorem 2.58 If (X,) is an F-martingale and (Y,) a bounded F-predictable
sequence, then ((Y o X)) is an F-martingale.

Proof Since |Y,(w)| < K for all n and w,

E(I(Y « X)u]) < D E[Y(Xx — Xx-D)|] < 2K Y E(IXi]) < +o,
k=1 k=1

meaning that the sequence is integrable, and
E[Y e X)nt1 — (Y 0 X)u | Ful = ViE (Xpy1 — X | Fi) =0,
from which the result follows. |

> Example 2.59 (Coin Tossing) Let us consider an infinite coin tossing game in
which the result of the n-th tossing is associated with a random variable &, with
probability 1/2 of either winning or losing the stake. The random sequence (& )x>1
is i.i.d. and takes values in {—1, 4+1}. The stake Cj, at the n-th tossing is function of
the results &1, ..., &,—1 of the n — 1 preceding tossings, so that the sequence (Cy)
is predictable.

The random sequence (S;) defined by So =0and S, =& +---+§, forn > 1,
is a random walk on Z.

The winnings of the player at the n-th tossing are C,,§, = C,, (S, — Sp—1). The
cumulated winnings of the first n tossings are the discrete stochastic integral (C e
S)n. Moreover, since (5,) is a martingale by Example 2.52, ((CeS),) is a martingale
too. <

A random sequence is L? (for a finite p > 1) if E (|X,lf|) < +oo forn € N, and
bounded in L? if sup,-o E (| X»|?) < +00.
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Theorem 2.60 (Doob’s Decomposition) Let (X,) be an integrable F-adapted
sequence. Its Doob’s decomposition is

Xy =Xo+Y,+ A, (2.13)

where (Y,,) is an F-martingale and (A,) an F-predictable sequence, both equal to
zero at 0.

The sequence (X,) is an F-submartingale if and only if (A,) is nonnegative and
increasing.

If (Xy) is a an F-submartingale and is bounded in L', then (A,) converges a.s.
and in mean to an a.s. finite variable A .

The sequence (A,) is called the compensator of (X,). Tl}is decomposigon is a.s.
unique, in the sense that if X, = X9+ Y, + A,, then Y, =Y, and A, = A, a.s. for
alln € N.

Proof 1f (2.13) holds true, then

E(Xn — Xn-1 | ]:nfl) = E(Yn - Y | ]:,1,1) +E(An —An | ]:,1,1)
— A, — A, (2.14)

from which we deduce by induction that

n
Ap=) EXi— X1 | Fio1) as..
k=1

This relation defines (A,), with Ap = 0, and then the sequence ¥, = X,, — A, is
indeed a martingale.

If moreover (X,,) is a submartingale, then (2.14) says that A, — A, > 0 a.s,,
for all n; since Ag = 0, we obtain A, > 0 for all n.

Finally, E A, = E X,, —E X, and hence |E A,| < sup,~.; E (|X,|)+E Xo. Thus,
the bounded increasing sequence (A,) converges to a variable As,. Thanks to the
Lebesgue monotone convergence theorem, [E A, converges and A is integrable.

O

> Example 2.61 Let (X,) be an i.i.d. random sequence with distribution P, taking
values in a measurable space (E, £). Let g be an integrable real function defined on
(E, £). Then the sequence (V) defined by

Y, = (gg(xo —n/EgdP)

is a martingale adapted to the natural filtration of (X}).
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This open doors to the computation of integrals by means of series. <

Theorem 2.62 (Krickeberg’s Decomposition) Any bounded in L' martingale is
the difference of two nonnegative martingales.

Proof For Xy = 0.

By Doob’s decomposition of the submartingale (| X, |), we obtain | X, | = Y, +
Ay, with A, converging a.s. to a variable A,. The two nonnegative martingales are
(Zp) and (Z,, — X)), where Z, = Y, + E(Ax | F1n)-

We have Z, — |X,| = E(Axx — An | F») and (A,) is an increasing sequence
converging to Ao, so that Z,,—| X, | > 0. Therefore Z,, is nonnegative and Z, > X,,.

Both the sequences (E (A | F5)) and (Y;) are martingales so their sum (Z,)
is a martingale. Since the difference of two martingales is a martingale, (Z, — X,)
also is a martingale. O

2.4.2 Classical Inequalities

Several inequalities are useful tools for studying martingales. Let us present some
of the most remarkable ones.

Theorem 2.63 (Doob’s Maximal Inequality) If (X,) is a submartingale, then

1
Pmax(X,,, ..., Xy,) > a) < aEX,'l"l, a>0, ng <nj.

Proof For nonnegative variables X,.

Let us consider the events F,, = (inf{m € [no,n1] : X, > a} = n) forn € N.
We have F = U,L,  F, = (max(Xp, . .., Xp,) > a). If o € F,, then X,,(®) > a,
and hence

ni ni
aP(F) =a ) P(F) < ) E(FXy)
n=no n=no

M
=< ]E(]]-FX}’H) =< ]Ean-

(1) because (X,) is a submartingale, so that E (1f, X,) < E (1f, X»,), forn < nj.
O

Theorem 2.64 (Hoeffding’s Inequality) If (X,) is an F-martingale and if (uy) is
a sequence of real numbers such that | X, — Xpn—1 |< un a.s. forn € N, then

22
P( X, — Xo |= x) SZGXP(—Q/M), x>0.
i=1%i
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Proof We deduce from Markov’s inequality that
P(X, — Xo > x) < " E (exp[6(X, — X0)]), 6 > 0.
We can write
expl6(X, — Xo)] = expl6(Xu—1 — X0) exp(8AX,,),
where AX, = X, — X;,—1. Thanks to the convexity of x —> e for A > 0,
27 < (1 —x)e ™+ (1 +x)e", |x|<1. (2.15)

This inequality, applied to any random variable X such that P(|X| < 1) = 1 and
E (X | Fo—1) = 0 for all n, gives

—A 4 LA
IE(e)‘X)< ¢ 2+e <e)‘2/2

where the right-hand inequality is obtained by comparison of the coefficients of A>"
in the series associated with the exponentials. Applying to A X, /u, yields

E (expl0 (X, — X0)] | Fn—1) = expl0(Xn—1 — X0)]E [exp(0 AX}) | Fn—1]
< expl0(X,_1 — Xo)] exp(62u?/2).

Taking expectation, we obtain by induction

E (expl0(X, — Xo)]) < E (exp[0(Xn—1 — X0)]) exp(62u /2)
1 n
< exp 62 Z ”,2 .
<2 i=1 )

Therefore
1 n
P(X, — Xo > x) < exp(—ex +,0° Zu;?), 6> 0.
i=1

The value § = x/ >, u! minimizes the right-hand side of the above inequality,
SO

2/2
P(X, —X0>x)<exp< 5 y ), x > 0. (2.16)
i=1
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We could show similarly that

X exp| — , x>0. 17
0 Zi_—l u;
T'he final inequality is obtained by putting together (2.17) to (2.16). |

We state without proof the next inequality.

Theorem 2.65 (Doob’s L? Inequality) If (X,) is an L?-martingale and p > 1,
then

p

(E [max(X1, ..., X,)"1)"/" = b [E(X,1M)]"".

In order to state the last inequality, first we need to define crossing times. Let
(Xn)n>1 be a random sequence. Let a < b be two real numbers. Set Ty = inf{k >
0 : Xy < a}, and then, supposing that 7>, for some n > 0 is defined, set

Topy1 = inffk > Toy, : Xp > b} and Touqo = inflk > Topy1 @ Xi < al.

In other words, the times T,,, for n > 0, are the successive times at which the
sequence (X,,) crosses the interval [a, b]. They are called the crossing-times at level
(a, b), and are stopping times. Note that 7,, may take infinite values.

Let us define for m > 0, the sequence of the numbers of crossing times at level
(a, b) of (X,,), that is

Un(a,b) =|{n € N : nisoddand T,, < m}|,

meaning that 2U,, (a, b) variables of the sequence (7},) belong to [0, m], precisely
the variables Ty, T1, . . ., T2y, (a,p)—1-

The sequence (U (a, b)) is increasing. Setting in = (X, —a)", we have
Upn(a,b) = ﬁm(O, b — a) for all a < b, where ((7,,,) denotes the sequence of
the numbers of crossing times at level (0, b — a) of ()?n).

Lemma 2.66 (Doob’s Crossing Time Theorem) Let (X,,) be a random sequence
and let a < b be two fixed real numbers. For any integer m > 0:

1. if (X,,) is a submartingale, then

EX,, —a)t
EUn(a, by < ~m =7
b—a
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2. if (X,) is a supermartingale, then

E (X —a)~

EUn(a,b) <
b—a

Proof

1. Forafixedm > 0, set ¥, = X7,nm forn > 0. Three cases may occur.
Ifk > Uy(a, b), then Yo, 1 = Yo = X,,, which induces Yo;_1 — Yo = 0.
If k = Uy(a, b), then Yo, 1 > b and Yo, = X;;; > a, which induces b — a <
Yok—1 — Yo + (Xw —a) ™.
If k < Uy(a,b), then Y1 > b and Yy < a, which induces b —a <
Yop—1 — Yox.
Putting all together yields

Un(a.b) Un(a.b)
Z (b—a) < Xy —a)" + Z (Yor—1 — Yok),
k=1 k=1

or equivalently,

U (a,b)

(b—a)Un(a,b) < Xm—a)' + > (Yu1—Ya). (2.18)
k=1

Set G, = o (Yo, Y1,...,Y,). Wehave E[Y,,41 — Y, | G4,] = 0, forn € N,
meaning that (Y,),>0 is a submartingale.

Since E (Yox—1 — Y2k) < 0, we obtain by taking expectation of both sides
of (2.18),

(b —a)EUp(a,b) <E Xy —a)T,

and the conclusion follows.
2. can be proven similarly. O

2.4.3 Martingales and Stopping Times

A martingale is characterized by the formula E (X, | F,) = Xman. Questions
arise: does this equality remains valid for two stopping times 7" and § instead of the
two constants n and m? Is the sequence (Xr,) still a martingale for a sequence of
stopping-times (7;,)? The answers lie in the stopping and the sampling theorems,
under certain conditions.



94 2 Conditioning and Martingales

Theorem 2.67 (Stopping) Let (X,) be an F-martingale (submartingale). If S and
T are two F-stopping times such that:

1. max(E (|1 X7)), E (|1 X5])) < 400,
2. imE[|X, |1 (7om] =0 and imE[|X,|1(s>n)] =0,

then
Xsar =E(X7 | Fs), (=) P—as. (2.19)

Proof We will write for simplification E (X1,4) = E (X; A) for any variable X and
any event A.

For proving (2.19), it if sufficient to show that for any A € Fg, we have

E[Xr; AN =D =E[Xs; AN =T)],
or, equivalently, that for any n > 0,
E[XT; AN <T,S=n]=E[Xs;ANS <T,S=n)].

Set B, = AN (S =n) € F,,. We have

E[Xn; By N(T 2 )] =E[Xpn; Bo N(T =n)] +E[Xy; B, (T =n+ D],
and,since B, N (T >n+1) € F,,

ElXu; BN (T 2n+ D] =E[E (X1 | Fu); Ba N (T = n+1)]
=E[Xnt+1; B. N (T =n+ D).

Therefore

E[Xn; B N (T 2 n)] =
=E[Xy; By N (T =n)] + E[Xyt1; Bo N (T =n +1)]

+ E[Xut1; Ba N (T = n+2)]
=E[X7r;BaN (1 <T <n+ DI+E[Xuy2: B, N (T >n+2)]

=E[X7;BaN(n =T <n+m)]+E[Xnym: B. V(T >n+m],
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and hence
E[X7; B,N(n <T <n+m)]=E[X,; B,N(n < T)]|-E[X,,; B.(T > n+m)].
In other words,

ElXr;B,N(n=T)]=

= Im(E [Xp; By N (n = T)] = E[Xp; Ba V(T > n +m)])

=E[X,;;Bp,N(n<T)]|—lmE[X,,; BN (T >n+m)]
m

LR (X, B,N(n < T

(1) due to Assumption 2., by the decomposition X; = 2X,:r — | Xk|. The result
follows. O

Doob’s crossing time theorem induces via the sampling theorem—stated without
proof—that for an increasing sequence of stopping times (7,,), the sequence (X7,)
is also a martingale under certain conditions.

Definition 2.68 Let (X,) be a random sequence and let (7,) be an increasing
sequence of finite stopping times. The sequence (X7, ) is called a sampling of (X,).

Theorem 2.69 (Sampling) Let (X)) be a martingale (respectively submartingale,
supermartingale) adapted to a filtration (F,,) and let (X1,) be a sampling of (X,).
If X1, is integrable for all n and if

imE[|IXy[Lr,>m] =0, neN, (2.20)

then the sequence (Xt,) is a martingale (respectively submartingale, supermartin-
gale) adapted to the filtration (Fr,,).

The hypothesis of the sampling theorem are obviously satisfied if 7, = f(n)
where f is an increasing deterministic function of n, and also under the following
conditions

Proposition 2.70 The hypothesis of the sampling theorem are satisfied under any
of the following two conditions:

1. 3k € RY such that |X,| < k a.s, n e N.
2. Vn e N, 3k, € Nsuch that T,, < k, a.s.
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Proof SetY, = Xr,.
1. We have

(Yl > b = JT =i, 1Xi] > b < | J(xil > b,

i>0 i=0

thus, P(|Y,| > k) =0or |Y,| <ka.s.,andhence E|Y,| < k < +o0.
Moreover, (T, > N) \( (T, = +o0) so that P(T,, > N) \( P(T, = +o0) =
0 because T}, is a.s. finite, and 0 < E [1(7,> Ny | Xy|] < kP(T, > N).
2. We can write ¥,, = Z{Zo]l(Tnzi)Xi’ 5o |Y,| < Zf"zo |X;| and hence E |Y,| <
Y EIXi| < 4o00.

Finally, if N > k,,, we have E [1(7, >~ 5| X,|] = 0. O
Corollary 2.71 Let T be a stopping time for a random sequence (Xy). If (X,)
is a martingale (respectively submartingale, supermartingale), then the sequence
stopped at time T, that is (X1 an), is a supermartingale (respectively submartingale,
supermartingale).

Proof Since the variables T A n are bounded stopping times, condition 2. with k,, =
n of Proposition 2.70 is satisfied, and the sampling theorem yields the conclusion.

O

The stopping theorem also induces the following inequality. The proof uses
sequences stopped at time 7.

Theorem 2.72 (Doob’s Martingale Inequality) Let (X,) be an F-submartingale
and let 6 be a positive constant.

1. We have
1 n 1 +
Plmax(X1, ..., Xn) = 0] < QE[XH Limax(x;....x)=0)] < Q]EXH . neN.
2. If X, is nonnegative for alln € N, then, forall 1 < p < +o0,
p
| max(Xi, ..., Xp)llp < b1 1 Xl p-

Proof

1. SetTy = inf{n e N : X,, > 6} for6 > 0. On the one hand, the stopping theorem
induces that E X7, », < E X,. On the other hand,

EX, =E[Xuly<n)] + E[XpnL(gyon] = 0P(Ts < n) + E[XuL(gy>n)],



2.4 Discrete-Time Martingales 97
hence, if we set Xf = max(X1, ..., X,),
. )
OP(X, 2 0) < 0P(Ty <n) <E[X,(1 — L(gy>n)] = E[Xul(ry<m)]
@) N
< EXplix:g) <EX,.

(1) and (2) because (X* < 0) C (Ty > n).
2. By the transfer theorem, P(X > t) = t+°° dPx(x), and hence

+o0
p/ PIPX > ) dt = / / ptP =L dPy (x) dt
R+ R+ t
) Tl
=/ / pt? dtdIPX(x)zf xPdPyx(x) = E(XP).
Ry Jo Ry

(1) by Fubini’s theorem.
Therefore

400
IX:5 =ELX)HP] = / pxP7'P(X} > x) dx,
0
hence
wqp D e p—2
X1y < px* T E [ Xy l(xp>0)]dx,
0

+00 p
= EI:X,,/ ﬂ(x:Zx)pxp_z dX] = » 1E[Xn(X:)p_l]
0 _

@ p p—1
=< p_1||Xn||p||X:;”p :

(1) by 1. and (2) by Holder’s inequality, and the result follows. O

2.4.4 Convergence of Martingales

Different results of convergence of martingales will be stated, under conditions of
integrability. The square integrable martingales will be specifically inverstigated in
the next section.

The proof of Doob’s convergence theorem requires the following criterion: a
submartingale (X,) is bounded in L' if and only if sup,.oE X < +4oc. This is
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equivalent to the definition sup, -y E (| X,,|) < +00, because
EX}' <E|X,|=2EX —EX, <2EX] — EX,.

Theorem 2.73 (Doob’s Convergence) Any bounded in L' martingale, super-
martingale or submartingale converges a.s. to an integrable variable.

Proof For a submartingale (X,).
If (X,,) did not converges a.s., then necessarily P (lim X, < lim Xn) > 0. Since
Q is dense in R, rational numbers a and b would exist such that

P (limX,, <a<b< lirnX,,) > 0. (2.21)

The sequence (Uy(a, b)) of numbers of crossing times at level (a, b) of (X,) is
an increasing sequence. Set U (a, b) = lim,,_, 1 U, (a, b), possibly infinite. On
the one hand, if (2.21) is satisfied, the probability that the total number of crossing
times at level (a, b) of (X,) be infinite is positive, so the expectation of U (a, b)
is infinite. On the other hand, since the submartingale (X)) is bounded in L, the
submartingale (X;") is bounded too. Thus, thanks to Doob’s inequality,

EX,—a)™" - IEX,T +a <400

EU,(a,b) <
n(a,b) = b—a -~ b—a

(2.22)

Since (Uy(a, b)) is nonnegative and increasing, the dominated convergence theorem
induces that E U, (a, b) /" EUx(a, b), so

su EXF+a
EUs(a, b) < Pnz0=%n T4 o o
b—a
and a contradiction arises.
Therefore, (X;) converges a.s. to some X. Thanks to Fatou’s lemma,

E|X] < supE[|X,[] < +oo,

n>0
so X is integrable. O

Theorem 2.74 (L? Convergence) Let p €]1, +oo[. Any bounded in LP martin-
gale (or nonnegative submartingale) converges a.s. and in L?-norm.

Proof If the martingale (X,,) is bounded in L”, then it is boundedin L' so converges
a.s. by Doob’s convergence theorem.

Exercise 1.12 shows that if a random sequence is a.s. bounded and converges a.s.,
then it converges in L. O

Theorem 2.75 A martingale converges in mean if and only if it is regular.
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Exercise 1.12 shows this condition to be equivalent to equi-integrability of the
martingale.

Proof Let (X,) be a martingale converging in mean. Then E |X,| < E|X| +
E|X — X,|, so (X,,) is bounded in L! and, thanks to Doob’s convergence theorem,
converges a.s.

Since (X,) is a martingale, E (X, ,,|F,) = X, for all m > n. Therefore
E(ZXn+m) = E(ZX,) for all F,,-measurable variable Z, and letting m tend to
infinity gives E (ZX) = E (ZX,), meaning that X,, = E (X|F,).

Conversely, let X be an integrable variable defined on (2, F,P) and let F be a
filtration of F. Set X,, = E (X | F;,). We have E | X,,| < E |X]|, so (X}) is bounded
in L' and, thanks to Doob’s convergence theorem again, converges in mean. O

2.4.5 Square Integrable Martingales

Square integrable martingales are involved in many applications, as the statistical
study of lifetimes or branching processes.

Definition 2.76 A martingale whose every element is square integrable is called a
square integrable martingale (or L2-martingale).

We will denote all square integrable martingales by (M,,).
> Example 2.77 (Conditional Expectation) Let X be a random variable in
L?(2, F,P) and let F be a filtration of F.

The sequence (M) = (E(X | F3)) is an Lz-martingale; indeed,

EMpi1 | Fn) =E[EX | Foy) | Fal = E(X | Fp) = My,

andE (X | F,) € L2 <
Properties of Square Integrable Martingales
1. If (M},) is an Lz-martingale, then (M,%) is a submartingale; indeed

E (M2, | Fp) — M2 = E[(Mys1 — My)? | Fu] = 0.

2. The increases AM, = M, — M, _; of a square integrable martingale (M) are
not correlated, so are orthogonal in L?. Indeed, for any m > n,

E (AMnAMm) = E[E (AMnAMm | ]'—m—l)]
= IE[A]unE (AMm | ]:m—l)],

and E (AM,, | Fn—1) = 0.
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Using property 1. and Doob’s decomposition theorem, we can write M,% =
X, + (M),, where the sequence (X;) is an F-martingale and ((M),) is the
compensator of (M,%). This is an increasing F-predictable sequence called the
quadratic characteristic (or predictable quadratic variation) of (M, ). Moreover,

n
(M), =Y E[(AM)* | Fiil.
k=1
> Example 2.78 (Sum of L?-variables) Let (Y,,) be an i.i.d. sequence of centered

square integrable random variables. Set My = 0and M,, = Y1 +---+ Yy, forn > 1.
The sequence (M},) is an Lz-martingale for the natural filtration (F;) of (Y},), and

(M), =Y ELAM)? | Fiil

k=1

n
= ZE(YkZ | Fie1) = VarY; +--- + Var ¥, = Var M,,.
k=1

Therefore, the quadratic characteristic of (M},) is a constant random variable equal
to its variance. <

> Example 2.79 (Continuation of Example 2.61) The compensator of the sequence
(Ynz) is the sequence defined by

2
(Y%, =n (/ g*dP —/ gdP)
E E

foralln > 1. <

Theorem 2.80 (Kolmogorov’s L?-martingale Inequality) Ler (M,) be an L*-
martingale. Then

1
Plmax((Mil, ... M) 2 0] < ), E(Mf?), n €N, 6> 0.

Proof The random variable T = inf{k € N : |Mj| > 6} is a stopping time. Thanks
to Markov’s inequality,

1
Plmax(|Mi], ..., IMpl) = 0] = P(IM7pnl = 6) < QZE(lMTAnlz)-

Both T An and n are stopping times, and T An < n, so Mran = E (M, | Fran),
thanks to the stopping theorem.
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Moreover, since Mt A, is square integrable, because M, is. Taking conditional
expectation reduces L2-norms, and hence E (| M7, |%) < E (|M,]?). |

Proposition 2.81 Let (M,,) be an L*-martingale.
1. (M,) is bounded if and only if

ZE[(AMn)z] < +00.

n>1

2. If My = 0, then (M,) is bounded if and only if ((M),) converges a.s. to an
integrable variable.

Proof

1. Since M,, = Mo + Y _y_; AMj, the Pythagorean theorem induces that

E(M;) =E(Mg) + Y _E[(AM)?],
k=1

and the conclusion follows.
2. Doob’s decomposition of (M,%) gives E (M,%) = [E ((M),), from which the direct
implication derives. Point 1. yields the converse. O

If the square integrable martingale is bounded, the quadratic mean convergence
and the regularity again hold true.

Theorem 2.82 (Strong Convergence) Let (M,) be a bounded in L? martingale
adapted to a filtration (F,,). Then M, converges a.s. and in quadratic mean to some
square integrable Foo-measurable random variable M, moreover M,, = E (M |

Fu) foralln € N.

Proof First, if (M,) is bounded in L2, it is bounded in L!. Thanks to Doob’s
convergence theorem, My, = lim,,_, {50 M, exists a.s.
Second,

n+m

E[(Mpsm — M) 1= Y E[(My — My_1)*]
k=n+1

and Fatou’s lemma for m tending to infinity together induce that

E[(Moo — My)*1 < Y E[(M — Mi1)?].
k>n+1
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Moreover, M, = E(M,, | F,) forallm > n, and E (- | F;,) is a continuous
operator on L2, so taking the limit yields M, = E (M | F). O

The last theorem, stated without proof, represent a large numbers law and a central
limit theorem for martingales.

Theorem 2.83 Let (M,,) be an L*>-martingale and (ay) a sequence of real numbers
increasing to infinity. If (M), /a, converges in probability to a positive limit o*, and

if
1 " 2 a.s.
D ELMi — M) Ljag -ty 26 fan) ) — O
R
forall ¢ > 0, then

M, M,
" 950 and J" £ N, 0.

an dn

2.5 Exercises

V Exercise 2.1 (Random Sum of Random Variables) Let Sy = Z,ivzl Xy, for
n > 1, be a random sum, with the notation of Definition 1.72 in Chap. 1.

1. Determine the conditional expectation of Sy given N and prove again Proposi-
tion 1.73.
2. Determine the conditional distribution of N given (Sy = s).

Solution

1. Wehave E(Sy | N =n) =E(S,) =nE X, and hence E (Sy | N) = NE X.
Therefore

ESy =E[ESy | N)]=E[NEX] = (EN)EX)).
2. We know from Theorem 2.4 that P(N =n | Sy = 5) = ¢(s) if
E[Lsyen)yliv=n] = E[Lisyen)@(Sn)]l, B € B[R).

On the one hand,

E[Lsyepylin=m] =P(N =n,5, € B) =P(N = n)/ fs,(s)ds,
B
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and on the other hand,
E[1(syen)9(Sn)] = / @(s) fsy (s)ds.
B

Therefore, P(N = n | Sy = s) = P(N = n) fs, (s)/ fsy (). A

V Exercise 2.2 (Compound Poisson Distribution in Insurance) Let S7 be the
total amount of money paid by an insurance firm in an interval of time I = [0, T].
Suppose that all the accidents occur independently and cannot be simultaneous.
Suppose also that the number of accidents in / is finite.

Let us cut / into n regular intervals I!. Let N’ be the random variable equal to
zero if no accident occurs in I”" and to one otherwise; let X” be the total amount of
money paid by the firm in /7 and let p'} be the probability of accident in 7 J” Let P
denote the conditional distribution of X ;’ given (N 7 = 1) for any large n.

1. Write St as a function of the other variables.

2. Suppose that Z?:l p;f converges to A € R* and that Z?zl(p;fﬂ converges to
zero when n tends to infinity. Show that St has a compound Poisson distribution.

3. Application: p;f = 1/n, with P a Bernoulli distribution 5(p) with p €]0, 1].

Solution

1. Let S, = Z;': 1 X ’]’ We will suppose that n is large enough for the probability
that two accidents occur in the same I to be zero, and hence St = S,,.
2. Let us determine the Laplace transform of S,. We know by Theorem 1.68 that

Vs, (1) = ]_[7:1 Ilfx;z (t). We compute
Vxn (1) = E@ ™) =1- P} +E (e | NT =1)pt=1-pil—yp®)]

For x > 0, we have —log(l — x) = x + x2[1 + &(x)], where e(x) < 1 for
0 < x < x¢. By assumption, p'! converges to zero when n tends to infinity, so
maxj<;<p p;f < x0/2 for n large enough. By definition of the Laplace transform,
1T —p (D] < 2, thus,

—log s, (1) = [1—yp(O] Y pi+1=yp02 Y (P [+e(1—Yp(1)]pM)]
j=1 j=1
and

[ —yrOF Y (P + &l — yp®]p)] — 0, n — +o0,
j=1
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and s, (¢) converges to exp(A[yp (t) — 1]), which is known by Proposition 1.73
to be the Laplace transform of the compound Poisson distribution CP(A, P).
3. As in Example 1.75, we obtain St ~ P(p). A

V Exercise 2.3 (Conditional Expectation) Let X and Y be two independent
variables with the same distribution P.

1. Determine the conditional expectation of X given X + Y.
2. Suppose that P is the standard normal distribution. Determine the conditional
expectation of | X| given X2 4 Y2, and then that of X given X2 + Y2,
Solution
1. Wehave E(X | X +Y) = (X +Y)/2, because
X+Y=EX+Y | X+V=EX|X+YV)+EXY |X+Y).

2. We know from Proposition 2.25 that E (| X| | X2 +7Y?) = o(X?+Y?) if for any
Borel function 2 : R — R,

E[h(X? + YHe(X* 4+ Y3 = E[h(X? + Y?)|X]].
On the one hand,

E[h(X* + Y)p(X? + Y] =

) ) 5 5 o= (2 yD)/2
=// h(x™ + y)e(x” + y7) dxdy
R2 27

2 o212 ,
Z/ / h(r*)p(r?) rdrd@:/ hrH e e™ Prdr,
R4+J0 2 R,

because fozn d® = 27. On the other hand,

e~ 0A)/2

2w

2 e—r2/2
= / f h(r?)r| cos 6| rdrdf
Ry JO 2

2
Qe " /2
Q / heHr2 = ar.
Ry 7

E[h(X?+Y?)|X]|] = //zh(xz—i-yz)lxl dxdy
R
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(1) because fozn | cosf|df = 4. Hence q)(rz) = 2r/m. This leads to
2 2 2 2 2
E(X| | X*+77) = VX2 472

On the contrary, E (X | X2 4+ Y?) = 0 because fozn cosfdo = 0. A

V Exercise 2.4 (Characteristic Function and Conditioning) Let X and Y be two
random variables such that Y ~ N (m, «?) and E (¢/'X | Y) = e /24itY

1. a. Determine the characteristic function of X and then its distribution.
b. Same question for (X, Y).

2. Determine E (X|Y) and show that X — Y and Y are independent.

3. a. Determine the conditional distribution of X given (Y = y).
b. Same question for Y given (X = x).
c. Give the conditional expectation of ¥ given X.

Solution

1. a. We compute

ox(0) =E[E ("X | 1)] = ™Ry (1) = oM=L,

s0 X ~ N(m, 0% + a?).
b. In the same way,

bx.r)(t.5) =E[E @ XY | ¥)] = e Phy(s +1)

; 2 N2 22 2
Zetm(s+t)e (o°+a)t /2€ acs /2€ o st’

so (X,Y) is a Gaussian vector with expectation (m,m)’ and covariance
matrix
0.2 4 012 012
r= ’ ) )
o o

2. Thanks to Theorem 2.42,

Cov (X, Y)Y + EXVarY —Cov(X,V)EY _y

E(X|Y)= Var ¥

SinceEX =EY =m,wehave E(X — Y) = 0and

Cov(X—Y,Y) =E[(X-Y)Y]1=E(XY)-E(¥?) =E[YE(X | V)]-E (¥Y?),
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and hence Cov (X — Y,Y) = 0. Since (X — Y, Y)’ is the linear transform of
the Gaussian vector (X, Y)’, it is a Gaussian vector too, so X — Y and Y are
independent.
3. a. Thanks to Theorem 2.42, the conditional distribution of X given (Y = y)isa
Gaussian distribution

% EX — Cov(X,Y)(y — EX)’VaIX ~ Cov(x, Y)? .
Var X Var X
Since Cov (X, Y) = «?, it follows that the distribution of X given (Y = y)is
N(y,o?).
b. Using again Theorem 2.42, the distribution of Y given (X = x) is

mao? + xa? oo’
02~|—052 ’ 62~|—(x2 ’

c. This gives straightforwardly

2 0[2

EY|X) =
( | ) 62+052+02+052

the desired conditional expectation. A

V Exercise 2.5 (Time of First Success or of First Failure) Let (X,) be an i.i.d.
random sequence with distribution B(1/2). Set N,, = inf{k e N : X4 = 0}.

1. Show that for all fixed n € N, the variable N, is a stopping time for the filtration
(0(Xo0s - -+ » Xntm))meN-

2. Compute the probability that NV, will be infinitely often equal to zero.

3. Same question for the value 1—consider the sequence (Na,).

Solution

1. The variable N, counts the number of ones before the first zero in the sequence
(Xy) after time n. Since

WNp=m)=Xo=1,..., Xpym-1=1,Xpym =0),

N,, is a stopping time.

2. The event “N, is infinitely often equal to zero” is lim(N,, = 0), according to
definition 1.19. We have (N,, = 0) = (X, = 0) and the sequence of these events
is independent. Moreover, P(X, = 0) = 1/2, so the series with general term
P(N, = 0) diverges. We deduce from Borel-Cantelli lemma that the searched
probability is equal to 1.
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3. Since the sequence pf events (N, = 1) = (X, = 0,X,4+1 = 1)is not
independent, the procedure of the above question does not apply.

On the contrary, the sequence of events (N2, = 1) is independent. Since
P(Ny, = 1) = 1/4, the series with general term P(Ny, = 1) diverges and
Pllim(Ny, = 1)] = 1. Finally lim(N», = 1) C lim(N,, = 1), hence the searched
probability is 1 too.

Thus, N, takes a.s. infinitely often both values zero and one. A

V Exercise 2.6 (Stochastic Version of the Travelling Salesman Problem) Let
(Xy) and (Y;) be two i.i.d. random sequences with uniform distribution on [0,1].
Consider the n points P; = (X1, Y1), ..., P, = (X,, Y;) distributed at random into
the unit rectangle [0, 1]°. Let D, be the minimum distance necessary to join these
points.

1. Write D,, in terms of the permutations o € S, of [1, n].

2. Set Fp, = o(X1,..., Xi; Y1,...,Yx) fork > 1 and Fy = {@, Q). Let Z; =
E[D, | Fx] for 0 < k < n. Show that (Z;) is a martingale adapted to (F%).

3. Deduce from above questions above an upper bound for the difference between
D, and its mean value—use Hoeffding’s inequality.

Solution

1. The path linked to a permutation o € S;; is (Py (1), - - -, Py (n)), and the associated
distance is

n—1

d(@) =Y I1Psit1) = Poll + 1 Pony = Poiy I,
i=1

where || - || denotes the Euclidean norm. Thus, D, = infs, d (o).
2. Clearly, Zp = E Dy and Z, = D,. By definition, Z; is Fi-measurable, with
E Z; = E D, < 2+/2n and
E(Zk | Fx-1) =E[E(Dy | Fi) | Fk—1] = E(Dn | Fr-1) = Zg-1-

3. Let Dﬁ be the random variable equal to the minimum length of the path
connecting all the n points but the k-th. Clearly,

Df <D, <Df 2Ly, k<n,

where Ly is the shortest distance from the point Py to one of the points
Pry1, ..., Py. Thus,

E (DX | Fic1) < Ziot < B(DY | Fiot) +2E (Li | Fie1)
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and
E (DX | Fi) < Zi <E (DX | Fi) +2E (Lg | Fi).

Since E(Dﬁ | Fr) = IE(D’; | Fr—1), we get from above inequalities that
|Zx — Zi—1| < 2max{E (Lg | Fr—1), E(Lr | Fr)} < 2/2. Finally, Hoeffding’s
inequality gives

P(|Dy, — E Dy = x) < 2exp(—x?/(2v/2n)).

A much better bound, of the order of 26:xp(—C)c2 /logn), can be obtained
by studying the distribution of the minimum distance. Note that the problem of
identifying the shortest path through a set of points is a classical one in operational
research. A
V Exercise 2.7 (Bin Packing) Let us consider objects whose sizes are represented
by an i.i.d. sequence (X,) with distribution supported in [0, 1]. Bins with size 1
are available. Let B, be the minimum number of bins necessary to pack the first n

objects. Set Yy = E (B, | Fi) where (Fy) is the natural filtration of (Xy).

1. Show that (Y;,) is a martingale.
2. Show that P(| B, —EB,, |> x) < 2e—x*/2n

Solution

1. Clearly, Yy = E B, and Y, = B,. By definition, Yj is F-measurable, EY; =
E B, <nand

E @y | Fi-1) = E[E(B | Fo) | Fi1]l =E By | Fi-1) = Y1

2. Let B,’f be the random variable equal to the minimum number of boxes necessary
to pack all objects but the k-th one. Obviously,

BY<B,<B*+1, k<n.
Hence
E(Bf | Fie1) < Vi1 <E(Bf | Fior) +1
and

E(BX | Fo) < Yi <E(BY | Fo) + 1.
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Since E(B,’j | Fx) = E(B,’j | Frx—1), we deduce from above inequalities that
|Yx — Yk—1| < 1. Then Hoeffding’s inequality gives the searched inequality. A

V Exercise 2.8 (About the Stopping Theorem) Let (X,) be an F-martingale and
let T be an F-stopping time.

1. Suppose for this question that 7 < ¢. Show that E (X; | F7) = Xr without
using the stopping theorem.

2. Suppose for this question that 7 is a.s. finite, that X7 is integrable, and that
E[IX,|1(7>n)] converges to zero. Show that E X7 = [E Xj.

3. Suppose that X, converges in mean to some variable X. Set

X on (T =n),
Xt = ’
X on (T = +00).

Suppose that X7 is integrable. Show that E X7 = E X.

4. Let (Y,) be a random sequence adapted to F. Show that (Y},) is a martingale if
and only if EY7 = E Y for all bounded stopping time 7 .

Solution

1. Let A € Fr. We have

E(X1a) =Y ElXdana=pl =Y EEXLanw=p | Fp))

p=t p<t
=Y EX,lanr=p] =E[Y X,Lana=p| = EXrla),
p=t P=t

SOE(X[ | ]:T) = XT.

2. Since T is a.s. finite, X71(7<,) converges a.s. to X7. Moreover, | X7 1(r<p)| <
|X7| which is integrable. The dominated convergence theorem yields that
E[X71(r<n)] converges to E X7. We compute

EXran) =E[XrLirn] +E[XpyL(7>n], n €N,
so [E X1, converges to EX7. Since T A n is a bounded stopping time for any
fixed n, the stopping theorem yields E X7, = E X, and the conclusion follows.

3. We can write E X7 = E[X71(7=100)] + E[X71(7<400)]. We have

EXo=EX7an) = E[XrTlqan] + E[XyL(r2m], neN,
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and we can show as in 2. that E[X717.,)] converges to E[X71(7<400)].
Moreover,

L!
X1L(r2n) — X171 (1=400) = XL (7=100),

so E[X71 (7> ] converges to E[X1(r=1o0)], and the conclusion follows.

4. The direct implication is given by the stopping theorem. For showing the
converse, let us consider A € F, and the stopping times 71 = nl4 and T, =
nl, + (n+1)14, for any fixed n. By assumption, E Y7, = E (¥, 14) = E Yj and
EYpr = E(Ynt11a4) + E(Y,1,) = EYy. Therefore, E (Y,1114) = E (Y1 4),
or E (Y41 | Fn) = Y, by definition of the conditional expectation. A

V Exercise 2.9 (Martingales and a.s. Convergence) Let (X,,) be an i.i.d. random
sequence with exponential distribution with parameter 1. Let (¢,,) be an i.i.d. random
sequence, independent of (X},), and such that P(¢1 = 1) = P(¢; = —1) = 1/2.
Let F,, be the o-algebra generated by (¢1, ..., &4, X1,...,Xp) forn > 1, with Fop =
{0, Q}. Let p €]1, 2[. Set

n
M, = ZSi(Xl +-+X)7VP ne N
i=1

1. Show that (M,,) is a martingale adapted to (F;,).
2. Show that

E (M, — M))* < f x7P(1—e¥)dx, neN,
Ry

and then that (M,,) converges a.s.
Solution Set S, = X| +--- + X,,.

1. We have |&;| = 1 for any i, so B [M,| < Y7_, E(S, /7). Since S, ~ y(n, 1),
the variable M, is integrable and it is clearly J;,,-measurable. Finally,

E (Mt | Fo) = My +E (S, 1 ensr | Fa) = My + E(S, 17 | Fa)(Eenpr),

and E ¢, 41 = 0, so (M,) is indeed a martingale.
2. Since IE(sl.z) =1/2+1/2 =1, we have

E (M, — M;)? = IE(Z 51/1’) Z]E(sz)E(S 2/py

i=2

—Zf 2 BT
i — 1)l



2.5 Exercises 111

noiol
= /R+ xfz/p(z (ix_ 1)!)6‘7)6 dx

i=2
5/ x7¥P(1 — e ¥)dx.
Ry

Moreover, f]lh x7%/P(1 — e~*)dx is finite for | < p < 2, hence the sequence

(M, — M,) is bounded in L2, so in L'. Since M is integrable, (M) is bounded
in L! too. Theorem 2.73 induces that (M,,) converges a.s. A

V Exercise 2.10 (Martingales and Characteristic Functions) Let (X,) be an
i.i.d. random sequence with distribution A/(0, 1) and let (a,) be a sequence of real
numbers. Set M, = a1 X1 + - -- + a, X, forn € N*.

1.

2.
3.

Show that (M,) is a martingale adapted to the natural filtration (F,) of the
sequence (Xp).

Determine the characteristic function of M}, and its limit when # tends to infinity.
Show that if > ., a% = 0% < +o0, then (M,) converges a.s. to a random
variable M. Determine the distribution of M.

4. Show that if anl a% = +o00, then (M,,) is not a.s. convergent.
Solution
1. For any n € N, M}, is J,-measurable and is integrable. Moreover,

IE(Zun+l | Fo) =EM, | Fn) +an+lE(Xn+l | Fn)
=EWM, | Fn) + ant1E(Xpy1) = My,

. We have
n . n
o, (1) = [ [ E(e7"4%)) = exp(—1* Y " a?/2).
j=1 Jj=1
If anlag = o2, then ¢um, (t) converges to exp(—t202/2). Otherwise, it

converges to zero for all # # 0 and ¢, (0) converges to 1.

. In this case,

n n
EM; =E()_aiX)* <) afEX] <o?,
i=1 i=1

and hence (M,,) is a bounded in L? martingale. Hence, (M,,) converges a.s. to a
random variable M, and by 2., we obtain that M ~ N (0, 02).

. If (M},) converged a.s. to a variable M, then ¢, would converge to ¢ps, which

would be continuous. Hence a contradiction with 2. A
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This chapter investigates the homogeneous discrete-time Markov chains with
countable—finite or denumerable—state spaces, also called discrete. Markov chains
generalize sequences of independent random variables to variables linked by a sim-
ple dependence relation. They model for example, phase transitions of substances
between solid, liquid and gaseous states, passages of systems between up and down
states, etc. A random sequence (X, ), N is a Markov chain if its future values depend
on its previous values only through its present value, the so-called Markov property.
The index 7 is interpreted as a time, even when it is the n-th trial or step in a process.

First we present basic results and typical examples of Markov chains. Then we
define and compute their entropy rate, and finally we present many applications to
reliability and to the theory of branching processes.

3.1 General Properties

Markov chains are characterized by their transition functions. Basics on these func-
tions are presented together with numerous examples. Relations between Markov
chains and martingales or stopping times are then detailed. Finally, classification of
states and definition of stationary distributions lead to study the asymptotic behavior
of the chains.

3.1.1 Transition Functions with Examples

Thereafter, (X,),en Will be a sequence of random variables defined on a probability
space (€2, F, P) and taking values in a countable set E C R9, referred to as a—
discrete—state space.

The future of a Markov chain depends on its past only through its present, in
other words, a Markov chain satisfies the Markov property.
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Definition 3.1 (Markov Property) A random sequence (X,) is a Markov chain if

PXny1=JjlXo=i0, X1 =i1,..., Xn1=ip-1,Xp =10) =
= ]P)(Xn+l =J | Xn = i)a

for all i, j,ig,i1,...,in—1 in E, and all n € N, provided that P(Xo = ig, X1 =
i1y .oy Xpo1 =ip-1, X, =1) #0.

If the transition probability P(X,+1 = j | X, = i) = P(i, j) does not depend
on the index n, the chain is said to be homogeneous or to have stationary transition
probabilities.

We will study only homogeneous Markov chains.
The function (i, j) — P(i, j), defined on E x E, is referred to as the transition
function of the chain. Indeed,

P(Xy11 € A| Xo=io..... Xp-1 =in1, Xy =)= »_ PG, )),
jeA

and the function P: (E, P(E)) —> [0, 1] defined by P(i, A) = ZjeA P(,j)isa
transition probability from E to E. The quantity P (i, j) is the transition probability
from i to j and P = (P (i, j)) jeg? 1s the—possibly infinite—transition matrix.
The distribution p of Xg is the initial distribution of the chain. We set (i) = n({i}),
define P, (A) = ZieE uw()P(A | Xo = i), and denote by & ;, the mean associated
with the probability P,. If u = §;, with i € E, we set IP; instead of IPs; ; specifically
P;(A) =P(A | Xo =1i).

Definition 3.2 The n-step transition function P" of a Markov chain is given by the
probabilities that the chain goes from one state to another in n steps, namely,

P, j) =PXmin=j | Xm =) =PXn=jXo=1i), m=0,n=1,

where P'(i, j) = P(i, j) and, by convention, P°(i,i) = 1 and P°(i, j) = O for
i #j.

For any function % defined on E, we denote by Ph the function defined on E by
Ph(i) = ZjeE P, j)h(j). If Ph = h, then h is said to be harmonic; in this case,
P"h = h for all n.

The Markov property can be stated as

E[h(Xny1) | Ful = E[h(Xp11) | Xu] = Ph(Xy), as.

for all bounded functions 2 : E — R.
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Properties of Transition Functions

1. The function j —> P(i, j) defines a probability on (E, P(E)) for alli € E;
indeed, 0 < P(i, j) < 1 and ZjeE P(i, j) = 1, because the chain remains in
E. Remaining in i is considered as a virtual transition. Precisely, a jump time is
a time when a change of state occurs.

2. (Chapman-Kolmogorov equation) For all i and j in E and all integers m and
n, we have

Y PG KP (K, j) = PTG ).
keE

Indeed,
PG, j) = P(Xnym = J | Xo=1)

1 . .
QS PKpm = j Xn =k | Xo = 1)
keE

2 . . .
DS PKm = j | X =k, Xo = DP(X, =k | Xo = 1)
keE

DS Pk HPGL .

keE

(1) par the formula of total probability, (2) by the compound probabilities
theorem and (3) by the Markov property.

3. When E is a finite set, Point 2. shows that P" is the n-th power of the matrix P
for the ordinary matrix product; more generally, P" P = P+t — pmpn,

Random sequences satisfying Chapman-Kolmogorov equation are not all
Markov chains, as shown in Exercise 3.3.

> Example 3.3 (Transmission of a Binary Message Among a Population) At each
step, the received message is well transmitted with probability 1 — p, with 0 <
p < 1. The state space is E = {0, 1}, coding the binary message. Suppose that the
original message is 0, that is P(Xy = 0) = 1. Then
PXp=1[Xp1=D=PX, =0| X1 =0)=1-p,
PXy=0]Xp1 =) =PX, =1[X,-1=0)=p,

()
p l—p

and hence
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By induction, we get
1 1—2p)* —
2\11 2 -1 1

1 (1—=2p)
]P(Xn=0)=2—|—( 2”).

which yields

Regardless of the original message and probability p, the probability of receiving
after a large number of steps either this message or its opposite is the same, precisely,

1
P"—>2<H), n — 400,

as shown in Fig. 3.1. <

The above simple example illustrates some of the issues linked to Markov chains
theory: convergence, limit distribution (meaning the distribution of X, when n tends
to infinity), lack of memory—especially of the initial distribution. The following one
illustrates modeling by Markov chains.

> Example 3.4 (Moran’s Reservoir) A reservoir with capacity ¢ € N* units of
volume is observed at integer times n. In the time interval [n,n + 1[, a random
quantity of water, equal to Z, unities of volume, enters the reservoir. When the
capacity of this reservoir is reached, the exceeding quantity is lost by overflowing.
Atthe end of [n, n+1[, one unit of water, if available, leaves the reservoir. Clearly, if
X, denotes the level of water in the reservoir at time n, then the level at time n + 1 is

Xpv1 =Xy +2Zn — 1)+ A(c—1).

1/2

0

Fig. 3.1 Transmission of a message—Example 3.3, p = 1/2
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If the variables Z, are assumed to be nonnegative and i.i.d. with common
distribution P(Z,, = k) = pg, then (X,) is a Markov chain with state space

E ={0,1,...,c— 1} and transition matrix
0 1 2 - ¢c—2 c¢c—1
0 po+p1 p2 p3 - pe1 he
1 Po p1 P2 o Pe=2 he-i
2 0 po p1r - DPc-3 hcfZ
c—2 0 o o ... P1 hy
c—1 0 o o ... Po hy

where h; = Zizk pi for 1 < k < c. The graph of (X,) for ¢ = 5 is given in
Fig.3.2. Note that ¢ could be considered as a state of the chain, but then only X
could take this value. <

Let us now detail some classical types of Markov chains.

> Example 3.5 (Random Walk) A random walk (see Definition 1.76) is a Markov
chain with state space E = Z and transition function P given by

PG, j)=p(j—i), G J) ez

for some function p : Z — [0, 1].
When p(1) = p = 1 — p(—1), with p € [0, 1], the random walk is said to be
simple and we have

p if j=i+41,
P, j)=31—pifj=i—1,
0 otherwise.

Its graph is given in Fig.3.3. A trajectory of a simple random walk is shown in
Fig. 1.2 in Chap. 1.

Fig. 3.2 Moran’s
reservoir—Example 3.4,
c=5
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Fig. 3.3 Graph of a simple random walk—Example 3.5

The probability of return to i in n steps is
2n+1,: 2n s - 2n n n
P (i,i)=0 and P“"(i, i) = p"d—py, nx=L (3.1)
n

One can show by induction and using the properties of the binomial coefficients that
the probability of going from i to j in n steps is

PG ) = ((n . jn_ i)/2>p(n+j—i)/2(1 _ )2 i i = 2m = 0,

and is null otherwise. <

> Example 3.6 (Birth and Death Chain) A Markov chain is a birth and death chain
if its state space is £ = N and its transition function is tridiagonal, that is

piifj=i+1,
iy daifi=i—1
P E Y i =i,

0 otherwise,

fori > 0and j > 1. When ¢; = 0 (p; = 0) for all i, the chain is a pure birth (death)
chain.

This chain models various physical and biological phenomena, such as growing
of populations, evolution of identical systems with failures and repairs, decay of
radio-active substances, etc.

If E =N, withr; =0, and P(0,1) = 1, the chain is called a Harris Markov
chain. If £ = Z, withr; =0, p; = p and g; = 1 — p for all i, the chain is a simple
random walk.

Birth and death chains are often considered with finite state spaces. If £ =
{1,...,N}, with p; = 1 —i/N, gi = i/N and r; = 0, the chain is called an
Ehrenfest model and is used in thermodynamics; if ; = 0, p; = p, ¢; = g, for all
i but po = 0 and gy = 0, the chain is the gambler’s ruin chain. <

The finite dimensional distributions of a Markov chain are completely specified
by its transition function and initial distribution.



3.1 General Properties 119

Proposition 3.7 Let (X,,) be a Markov chain with transition function P and initial
distribution . We have

P(Xg € Ag, X1 € Ay,..., Xp € Ay) =

= Z Z Z w(io) P(io, i1) - - P(in—1, in). (3.2)

ig€EAQi1E€EA] in€Ay

foralln > 1 and subsets Ag, A1, ..., A, of E.

If we set Ag = Ay = - = A,_1 = E and A, = A in (3.2), we obtain the
distribution of X, namely
P(X, € A) = puP"(A) =) Y u()P" (. j). (3.3)
i€eE jeA

Proof Applying the compound probabilities theorem and the Markov property
yields the result. For example,
P(Xo =io, X1 = i1, X2 =1i2) =
=P(Xy =iz | Xo =io, X1 = i)P(X1 =x1 | Xo =i0) P(Xo = io)
=P(Xo =iz | X1 = i)P(X1 =11 | Xo = io) P(Xo = io)

= w(io) P(io, i1) P (i1, i2),
gives the distribution of (X¢, X1, X2). O

Conversely, any sequence of random variables taking values in a discrete set E
and satisfying (3.2) for some distribution p and function P is a Markov chain, with
initial distribution p and transition function P. The next result is even more general.

Theorem 3.8 (Canonical Construction) If E is a countable set, i a probability
on E and P a transition function on E, then a probability space can be defined on
which a discrete Markov chain exists taking values in E, with initial distribution |1
and transition matrix P.

Proof Set @ = EN and F = P(E)®N. Relation (3.2) defines a probability P on the
infinite cylindrical sets Ag X A1 X --- X A, X E x --- of (2, F).
Let X,, denote the projection on the n-th element, defined by

Xn(w) = Xy(wo, w1, ..., 04, ...) = wy.

The sequence (X,) is a Markov chain on (€2, F,P) that fulfills the required
conditions. O
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The above constructed chain is said to be canonical and (EN, P(E)®N, P) is
referred to as the canonical space.
The periodicity is a major characteristic of states of Markov chains.

Definition 3.9 Set d; = g.c.d{n € N* : P"(i,i) > 0} fori € E, with the
conventiond; = +oo if P"(i,i) = 0foralln > 1.

If 1 < d; < +o00, then i is said to be periodic with period d;. If d; = 1, then i is
said to be aperiodic.

A Markov chain with only aperiodic states is said to be aperiodic. A state i € E
such that P(i,i) = 1 is said to be absorbing. When the chain reaches an absorbing
state, it remains there forever.

Proposition 3.10 [f the initial distribution of the chain is §;, for a non absorbing
statei € E, then:

1. the sojourn time in state i—that is the time spent by the chain in i before leaving
it—has a geometric distribution with parameter 1 — P (i, i);
2. the probability for the chain to jump to state j when it leaves state i is

P@, /11— P@, D))
Proof
1. Let n; denote the sojourn time in state i. For any & > 1, we have
Pini=k)=Pi(Xmt1 =i, Xntk—1 =0 Xnak =1/ Xp—1 =1, Xy = i)
= Y PG.i)...PG.DPG, j) = PG [1 = PG ).
JEE\i}
2. Fori # j,
Pi(Xp41 = j | Xn =i, X1 #10) =

_Pi(Xn+1=jaXn=i)_]P)i(Xn+1=j|Xn=i)_ P(i,j)
Pi(Xp =i, Xpr1 #1)  PiXpp1 #i| Xn=10) 1=PGi)

by definition of conditional probabilities. O

The matrix with entries Q(i, j) = P(, j)/[1 — P(i, )], fori # j is the transition
matrix of the embedded Markov chain defined at the jump times of (X,); see
Exercise 3.8.

D> Example 3.11 The sojourn time in i of a birth and death chain has the distribution
G(1 —r;) if r; > 0. It is constant and equal to one unit of time if r; = 0. <
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Trajectories of a Markov chain in a time interval [0, 7] can be generated by jump
times and visited states, using Proposition 3.10, through the algorithm:

1. Let i be the initial state of the chain: Xo(w) = i.
n:=0.j:=i. Sy(w) := Wy(w) =0.

2.n:=n+1.

3. Let W, (w) be the realization of a G(1 — P(J, j))-distributed random variable.
Sp(w) 1= Sp—1(w) + Wy ().

4. Let K (w) be the realization of a variable taking values in E'\ {j}, with distribution
P(K =k)=P(j,k)/[1 =P, D] J=K).

5. If S, > t, then end.

6. Continue at Step 2.

Note that if the initial distribution of the chain is not §;, Step 1 consists in its
realization following some simulation method.

Multidimensional chains are defined and investigated in a similar way. Let us
give two typical examples of two-dimensional chains.

> Example 3.12 (Product Markov Chain) Let (X,) and (Y;) be two independent
Markov chains, with respective state spaces Ey and Ey, initial distributions ,uX
and ,uY, and transition functions PX and PY. The sequence (Z,) = ((Xn, Yn)) is
a Markov chain with state space E = Ex x Ey, initial distribution u = pu* ® u"
and transition function given by

P(G, j), (k, D)) = PXG, k)PY(j, 1), (,j) € Ex x Ey, (k,]) € Ex x Ey.

Since P[Zp = (i, j)] = P(Xo = )Py = j), the Markov property is clearly
satisfied and

PG, ), (kD) =P[Z1 = (k,]) | Zo = (i, )]
=PX1=k,Y1=1|Xo=1i,Yo=))
=PX1=k| Xo=DPY1=1]|Yo=)).
The product can be generalized to any number of independent Markov chains. <

> Example 3.13 Let (X,) be a Markov chain and set Z, = (X,, X,—1). Let us
prove that (Z,) satisfies the Markov property. Set j = (j2, j!) and iy = (i,%, i,i) for
k=0, ...,n, with necessarily i,! = i,f_l fork=1,...,n.Then

P(Zn—i-l = | Zo=i0, ..., Zn—1 = in—1, Zn = ip) =

.2 .1 ) .1 2
=PXyp1=j 1 Xo=ip, X1 =15,..., Xpn1=1,, X = z,,)(S,-%jl
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n’

(D . . .
= P(Xup1 = j | Xoo1 =iy, Xo = i2)82 )1
=PXpp1 =5 Xn=j | Xno1 =i}, Xy =i2) = P(Zny1 = j | Zn = in).

(1) by the Markov property applied to (X,,)—keeping X,—1 =i ,{ in order to get Z,
back.

The transition function P of this two-dimensional chain (Xn, X5—1) is given by
Pk, D), G, j)) = P(j,i)8; fori, j,k,lin E.

Note that the transition function P of the other two-dimensional chain
(Xn_1, Xp) is given by P((k, 1), (i, j)) = P(, j)&; fori, j,k,lin E.

This extends easily to the k-dimensional chain Z, = (X, ..., X;—) for any
fixedk > 1. <

3.1.2 Martingales and Markov Chains
The Markov property can be expressed as a martingale property.

Theorem 3.14 A random sequence (X) is a Markov chain with transition function
P if and only if for any bounded function h : E —> R, the random sequence (M)
defined by

n—1
M, = h(Xy) — h(Xo) — Z[Ph(Xk) — h(Xp)] (3.4)
k=0

is a martingale for the natural filtration (F;) of (Xy).

Proof Taking conditional expectation of both sides of (3.4) yields

n—1
E (My | Fa1) = E[h(Xy) | Fao1]l = h(Xo) = Y [Ph(Xy) — h(X)].
k=0
Moreover,
n—1
—h(X0) = Y [Ph(Xx) — h(Xp)] =
k=0
n—2
= —h(Xo) — Ph(Xp—1) + h(Xpn—1) — Z[Ph(Xk) —h(Xi)]
k=0

= —Ph(Xn-1) + My—1.
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Therefore, E [h(X,) | Fn—1] = Ph(X,—1) is equivalent to the martingale property
E[Mn |]:n71] =M, . O

Clearly, (M,) is square integrable, from which we deduce the following result on
its quadratic characteristic.

Proposition 3.15 If (X,) is a Markov chain with transition function P, then the
quadratic characteristic of the martingale (M,,) defined by (3.4) is the compensatory
of the sub-martingale (M,%), namely

n—1

(M) = [PR*(Xy) — (Ph(Xx))*].
k=0

Proof The quadratic characteristic of (M) is

(M), =Y E[(AM)* | Fiil.
k=1

We have AMy = My — My_1 = h(Xy) — Ph(Xy—1) and
E[(AM)? | Fi1l =
= E[h*(Xg) — 2h(Xg) Ph(X—1) + (PR(X3—1))* | Fi—1]
= E[h*(Xk) | Fie1] — 2Ph(Xk—D)E [h(Xk) | Fie1] + [PR(Xi—1)1?
= Ph*(Xi—1) — [PR(Xx—1D)]*,

from which the result follows. O

The harmonic functions of a Markov chain are also characterized by a martingale
property.

Proposition 3.16 Let (X,) be a Markov chain with state space E and transition
matrix P. A function h: E — R is harmonic for P if and only if (h(X,)) is a
martingale for the natural filtration (F,) of (Xp).

Proof We have E [h(Xy,) | Fn—1] = E[h(X,) | X,,—1]. If h is harmonic, then

E[h(Xn) | Xp—1 =il = ZP(Xn =Jj | Xn—1 =Dh())
JEE
= Z P@, Hh(j) = Ph(i) = h(i),

JEE

or E[A(Xy) | Fn—1] = h(Xp-1).
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Conversely, if (h(X,)) is a martingale, then E [A(X1) | Xo] = h(X(). We obtain
E[h(X1) | Xo] = Ph(Xo) as above, from which it follows that E[h(X) | Xo =
i]="h(@) = Ph(i)foralli € E. O

3.1.3 Stopping Times and Markov Chains

Markov chains and stopping times are linked especially through the strong Markov
property. In other words, the strong Markov property is an extension to stopping
times of the Markov property for integers. Moreover, all discrete Markov chains

satisfy the strong Markov property.

Theorem 3.17 (Strong Markov Property) Let (X,) be a Markov chain. Let T be
an a.s. finite stopping time of (X,). Forall A € F,

P(X1, XT41,...) € A | Fr]l =Px,;[(Xo, X1,...) € A] a.s.
Note that this property holds true for any stopping time 7" on the event (T < +00).
Proof 1t is sufficient to prove that for any C € Fr,
E [1cP(X7 = x0, X741 = x1, ... | F1)] =E [LcPx, (Xo = x0, X1 = x1,...)].
We compute

E [1cP(Xr = x0, X741 = X1, ... | Fr)] =

= ZE [Len@=nP(Xn = x0, Xng1 = X1, ... | Fn)]

n>0

and
E [Len@=nP(Xn = x0, Xnq1 = x1, ... | F)] =
@
= E [Lenm=mP(Xn = x0, X1 = x1, ... | Xp)]
2
PR [Len@=nPx, (Xo = x0, X1 =x1,...)].
(1) by the weak Markov property and (2) by homogeneity. O

The strong Markov property is often used for either hitting or return times.

Definition 3.18 Let (X,) be a Markov chain with state space E. Leti € E. The
random variable 7; = inf{n € N* : X, = i} is called the (first) return time to
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state i. If P(Xg = i) = 1, then T; is called the recurrence time to i. The random

variable 7 = inf{n € N : X,, = i} is called the hitting time of i. By convention,

inf@ = +o0.

Proposition 3.19 The return time T; is a stopping time of (X,,) for anyi € E.

Proof We have T; > 1. Moreover, (T; = 1) = (X1 =1i),
(’I;Zn)z(xl5éla-7Xn—15élaXn=l) nzza

and (T; = +00) = (X, #i,n > 1). Thus T; is a stopping time of (X,). |

Corollary 3.20 IfY, = X144, then, conditional to the event (T; < +00), (Y,,) isa

Markov chain with initial distribution §; and transition function P. Moreover, (Yy)

is independent of X, for alln < T;.

The above corollary of the strong Markov property is often used under the form

Pj[T; < +00, h(X14) € Bl = Pj(T; < +00)P;[h(X1,4n) € BI,

where (i, j) € E X E, B € B(R),n € Nand h : E — R is some function.
An alternative stating of the Markov property holds in terms of operators.

Definition 3.21 The function 6 : QY — QN defined by

0(w) = 0(wo, w1, ...) = (w1, w2, ...)
is called the one step translation (or shift) operator.
We denote by 6 the k-th iterate of 6 for k > 1: 6 = 6 o 6_1, where 8] = 6
and 6 is the identity on V. For instance, for any random sequence (X,,), we have
Xn(0(w)) = Xpy1(w) for all w € Q, and also 1(x,=) o & = 1(x,,,=i), for all
k>1landalln > 0.

For any stopping time 7', set

_ ) 6y(@) on (T =n),
Or(w) = {5 on (T = +00),

where @ denotes some point added to 2. The Markov property can be written

Ei(foXo0,|Fn)=Ex,(f oX),
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and the strong Markov property becomes
Ei(foXo0r | Fr)=Ex;(f oX),

for all bounded functions f: EN — R.

3.2 Classification of States

Any state of a Markov chain can be characterized either as recurrent or as transient.
The distinction is fundamental for investigating the asymptotic behavior of the
chain.

Leti € E and j € E with j # i. The time spent by the chain at i
in [I,n] is N = >}_; L(x,=i). The total time spent by the chain at i is
Ni = Y 4~ L(x,=i). The number of transitions from i to j in one step in [1, n]
is NZ = ZZ=1 ]]'(Xk—lzi,Xk:j)’ with N,'j = Zkzl ]l(kalzi,Xk:j). Both random
variables N; and N;; take values in N. Let g;; = P;(T; < +00) = Pi(N; > 1)
denote the probability of visiting state j, starting from state i.

Definition 3.22 If p;; = 1, theni is said to be recurrent (or persistent). Otherwise—
if 0ii < 1, then i is said to be transient.

If i is recurrent then either m; = E;T; < +oo and i is said to be positive
recurrent, or m; = +00 and i is said to be null recurrent.

A state i is recurrent if, assuming the chain starts at 7, it will eventually return to i
with probability one. An absorbing state is clearly a positive recurrent state.

> Example 3.23 (Gambler’s Ruin Problem) Suppose the initial fortune of a gam-
bler is k and the initial fortune of the casino is N — k. The gambler either wins or
loses one euro at each bet with probability p €]0, 1[ and ¢ = 1 — p, respectively.
This experiment is modelled by a birth and death chain taking values in [0, N,
with transition matrix given by P(i,i +1) = p=1—- P@,i —1) =1 — ¢ and
P0,0)=P(N,N) =1.

The states 0 and N are absorbing. All other states are transient, because the
probability of passage from i to either 0 or N is positive. The time before absorption
is 7 = inf{n € N* : X,, = 0 or N}. The event “The gambler is ruined” corresponds
to the absorption of the chain in 0. Thus, the probability of the gambler’s ruin is
ur = P(X; = 0| Xo = k) and the probability of the casino’s ruin is 1 — ug. We
have ug = 1, uy = 0 and uy = pug+1 + qui—1 forall 1 < k < N — 1. Therefore,
(ux) is a Fibonacci’s sequence. Setting r = g/ p, we get

k_rN
y fp#q,
ur = 1—r
k_ N_

if p=1/2.
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The mean duration of the game can be computed similarly by determining E (7 |
Xo = k) = vy, that satisfies 1 + pvg4+1 + qup—1 = vk. <

Lemma 3.24 Forall (i, j) € E x E and m € N*¥, we have
Pi(N; = m) = 0ijol; " (3.5)
Proof Let us prove the result by induction on m.
For m = 1, by definition, P;(N; > 1) = g;;. Let us suppose that (3.5) holds
true for some m > 1 andletn; < ny < --- < ny < np41 denote the m + 1 first

times of visit to state j. Setting F,, = {[n1,nm] : 1 <nj < -+ < ny < 400}, we
get

Pi(N; >m+1) = > Pi(Xn, = Jyovvs Xnpy = J)-

(1, 1) € Fpt1
Since
]P)i(an = ja ey Xan = J) = Pi(an = ja ey Xnm = J.)Pj(Xan—nm = J)a

by the Markov property and the compound probabilities theorem, it follows
that

Pi(Njzm+1) = Y PiXp =j.....Xp, =) Y Pi(Xp =)
n1,eeesim) EFm k>1

= ]P,’(Nj > m)]P’j(Tj < +00)
@ -
= 0ij0 o).
(1) by the induction hypothesis. O

Definition 3.25 Let (X,) be a Markov chain with state space E and transition
matrix P. Let«a €]0, 1]. The function

U=1+aP +a’P> 4. +a"P" + ..
from E x E to R is called the «-potential of (X,,), or P.

The function U is referred to as the potential of the chain and is typically denoted
by U.
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Proposition 3.26 We have

BN i
v =N TR (3.6)
L+E;N; ifi=],
and fori # j we also have U (i, j) = 0;; U (], J).
Proof By definition,
UG, )= P"G,j) =) PiXy=j) =) Eillx,=p)
n>0 n>0 n>0
from which (3.6) derives. Hence, for i # j,
UG, ) =B Y e | =Ei| 3 vz
n>1 n=T;
@ ..
= Ei[]l(Tj<+oo)]Ej[ Z ]l(Xn:j)] =0ijU(J, J).
nsz
(1) by Markov property. O

Recurrence and transience are equivalent to the following simple conditions.
Theorem 3.27

A. The three following propositions are equivalent:
1. The state i € E is recurrent.
2. Pi(N; =+00) = 1.
3. 1 PG, 1) = +o0.

B. The three following propositions are equivalent:
1. The state i € E is transient.
2. Pi(N; = +00) =0.
3. 1 PG 1) < Ho0.

If i is transient and u = §;, then N; is G(1 — ;) distributed, with respect to P;.

Proof Since (N; > m) is a decreasing sequence of events, we deduce from
Lemma 3.24 that

Pi(N; = 4+00) = mgrjrloo Pi(N; = m) = lim of}

m— 400

__ ) 0if g;; < 1, transient state,
T 1if oii = 1, recurrent state.
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Moreover,

BNy =) Pi(N;=m) =) of

n>0 n>0

_ja- Q,~,-)_l < 400 if gj; < 1, transient state
"l +oo if g;; = 1, recurrent state,

and A and B follow.
Suppose now that i is transient. Using Lemma 3.24, we get

Pi(N; = k) = Bi(N; > k) —Bi(N; > k+ 1) = of, — 05" = ok (1 — i)

In other words, N; is geometrically distributed with parameter 1 — o;;. O

Theorem 3.28 Let j € E be a recurrent state. Leti # j belong to E. Then, either
0ji =0andthenP;j(N; =0) =1, or¢j; =1 and then P;(N; = +00) = 1 and i
is recurrent too.

Proof Suppose that ¢j; = IP;(T; < +00) > 0. Since j is recurrent, the chain visits
Jj infinitely often and the number N’ (i) of visits to i, between the (n — 1)-th and
n-th return to j, is well-defined for n > 1. Due to the strong Markov property, the
sequence (N J" (i)) is i.i.d. with respect to the probability P;.

Moreover N; = ano N]’?(i), with Nl.o(j) = 0. Since P;(T; < +00) > 0, we
have IP; (Ni1 > 1) > O and hence ]P’j[N;' (i) = 1] > 0. Using Borel-Cantelli Lemma,

we obtain IP; [lim(N J" (@) = 1)] = 1, so that the chain returns infinitely often to i
from j, or P;(N; = +o00) =1, and finally P; (T; < +o00) = 1.

In other words, P;(T; < +o00) is equal either to zero or to one. If P;(T; <
+00) = 0, clearly, P;(N; =0) = 1.

It only remains to show that i is recurrent when P;(7; < +o00) = 1. Indeed,
P;(N; = +o0) = P;(T; < +oo, Ny; = +00), where ¥, = Xr,1,. Using the
strong Markov property, this can be written 1 = IP;(T; < +00) P;(N; = +00),
thus P; (N; = +o0) = 1. O

In addition to the recurrent or transient nature of the states, the possibility to pass
from one state to another in a finite number of steps is a fundamental property of
Markov chains.

Definition 3.29 Leti and j belong to E. If P"(i, j) > O for some n, then j is said
to be attainable from i, or i — j.If bothi — j and j — i, the states i and j are

said to communicate, or i <> j.

Note that n cannot be null if i # j.
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Proposition 3.30 Distinct states i and j communicate if and only if they satisfy
ijoji > 0.

Proof We have

Pi(T; < +00) = ]P’i[ U(Tj = n)]

n>0
= ZP"(TJ' =n) (3.7)
n>0
=Y Pi(Xx#j, 1<k<n—1, X, =j).  (338)
n>0

If g;; > 0, we deduce from (3.7) that some n € N exists such that P; (T; = n) > 0.
ButP;(T; =n) <P;(X, = j)and P;(X,, = j)=P"(i, j), and hence P" (i, j) > 0.
Conversely, if P"*(i, j) = Oforall n € N, then

Pi(Xp #j.1<k<n—1X,=j)=0.

We deduce from (3.8) that P;(T; < +00) = 0; in other words, i and j do not
communicate. |

The relation of communication <> is clearly an equivalence relation on E. It is
reflexive, i <> i, since Po(i, i) = 1 and symmetric, i < j <= j < i, by
symmetry of the definition of the relation <>. Finally it is transitive, i <> j and j <
k imply i < k, because P"™ (i, k) > P"(i, j)P"(j, k) > 0 and P" " (k, i) >
P" (k, ))P™ (j,i) > 0).

Therefore, E is the disjoint union of the equivalence classes of the relation. All
the elements of a given class are communicating and communicate with no state out
of the class. Recurrence and transience are class properties.

Proposition 3.31 All the states of a given class of the relation of communication
are of the same nature, either transient, or positive recurrent, or null recurrent.

The class itself is correspondingly said to be either transient, or positive recurrent,
or null recurrent.

Proof Leti and j be two elements of the same class. Some integers m and n exist
such that P™(j,i) > 0 and P"(i, j) > 0. Forall r € N,

PYTM iy = PG, PTG P D,
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thus

ZPn+r+m(l"l') > P"(i, ])Pm(],l)ZPr(]v]) (3.9)

r>0 r>0

We have E;N; > Y. P"7 (i) and E;N; = Y, P"(j,j). If jis
recurrent, then [E jN; = 400, and hence E; N; = +00, meaning that i is recurrent
too. If i is transient, then E;N; < 400, and hence (3.9) yields E ;N; < +o0,
meaning that j is transient too. O

A Markov chain with only recurrent (transient) states is said to be recur-
rent (transient). A Markov chain with only communicating states is said to be
irreducible; it has exactly one communication class and is either recurrent or
transient.

> Example 3.32 (A Simple Random Walk—Continuation of Example 3.5) By (3.1)
p. 117 and Stirling’s formula, we compute

2n ~ [4p(1 —p)I"
P20, 0) = Jrn

Clearly 4p(1 — p) < 1 for all p € [0, 1] with equality only if p = 1/2. From
Theorem 3.27, the state O is recurrent if Zn>0 P"(0,0) is finite—if p=1/2, and is
transient otherwise—if p % 1/2. B

The chain is irreducible, and hence is be either recurrent or transient, depending
on the nature of 0. <

Definition 3.33 A subset C is said to be closed if P; (X1 € C) = 1 foralli € C.

A closed set is also said to be final since once the chain reaches such a set, it never
exits. If a closed set contains only one state, this is necessarily an absorbing state.

Proposition 3.34 All recurrent classes are closed.

Proof Let C be a class that is not closed. Some state i € C exists leading to some
j € C, that does not lead to i.

Hence some m > 1 exists such that P;(X,, = j) > 0. Since j does not lead
to i and P;(T; < +o00) < 1, the probability to visit i infinitely often is less than
1: i is necessarily transient. Therefore, by Proposition 3.31, the class C is transient
itself. m|

We state the next result without proof.
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Theorem 3.35 An irreducible Markov chain is positive recurrent if and only if the
system of equations

Y PG jxj=xi. i€k, (3.10)
jeE
has a solution x = (x;)icg that is absolutely summable—such that ZieE |xi| <

+o0o—and is not null. Moreover, this solution is unique up to a multiplicative
constant, and all the x; have the same sign.

This system can be written in matrix form Px = x. If E is finite, then the column
vector x = 1 is an eigenvector of the matrix P, it is absolutely summable and
the chain is positive recurrent. Finite chains will be specifically studied below in
Sect. 3.5.

> Example 3.36 (A Simple Random Walk—Continuation of Example 3.5) For p =
1/2 this Markov chain is irreducible and recurrent.

Solving the system (3.10) yields x; = 1 for all i € Z. This solution is not
summable, and hence the simple random walk is null recurrent. <

3.3  Stationary Distribution and Asymptotic Behavior

Stationary distributions are an essential tool in the investigation of the asymptotic
behavior of Markov chains.

Definition 3.37 A positive measure A defined on E is said to be stationary or
invariant for the Markov chain (X, )—or for its transition function P—if

Y MOPG, ) =2()), JjE€E.
icE
Moreover, if X is a probability, it is referred to as a stationary distribution, typically

denoted by 7.

The above relation can be written AP = A, where A = (A(i));ck is a line vector.
Clearly, any measure stationary for P is stationary for P¥, for any k € N*. If the

initial distribution of the chain is 7, a stationary distribution for P, then X, has the

distribution 7 for any n: the sequence is stationary in terms of distribution.

> Example 3.38 (A Binary Markov Chain) Let (X,) be a Markov chain with two

states, with transition matrix
l—-a «
P - ( ) '
B 1-p
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where 0 < ¢ < 1 and 0 < B < 1. The stationary distribution of (X,) is
characterized by the relations

{ (1 =o)7(0) + B (1) = 7(0)
7(0)+x(1)=1.

Therefore, 7 (0) = /(¢ + B) and 7 (1) = /(¢ + B). <
> Example 3.39 (A Stationary Distribution for the Chain of Example 3.13) If
7w = (w(i)) is a stationary distribution for (X}), then 7, defined by 7 (i, j) =

T ()P, j), for (i, j) € E? isa stationary distribution for (X,,_1, X,). Indeed, =
satisfies

> w(k)P(k,i)P(i, j) =7(i)PG.j). i.j€E,
keE

or Y y.ner2 Tk, D& P(i, j) = F(i, j): in other words 7P =7.
Moreover, 3 yep2 (@i, j) = 1. <

Definition 3.40 A measure A on E is said to be reversible for the Markov chain
(X,,)—or for its transition function P—if

AMDP3U, j)=A()P(j,i), i,jekE.

A reversible measure is clearly stationary, because it satisfies

Y AOPG ) =Y ADPG.D =) Y PG, D) =A()), jeE.

icE icE icE
Moreover, it may be easier to determine, as shown in the next example.

> Example 3.41 (Birth and Death Chain—Continuation of Example 3.6) If m is a
reversible distribution for this chain, then

n()pi =7+ Dgiy1, i>=0. (3.11)

Setting

yi= 0PN S and =1,
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Relation (3.11) yields w (i) = w(0)y;. Suppose that ZiZO yi < +00. Summing both
sides of the above equality on i yields 1/ (0) = Zizo y;. Therefore

"o iz,
Zizo%'

and 7 is the stationary distribution of the chain. <

n(i) =

When n tends to infinity, a Markov chain visits only its recurrent states. In other
words, P" (i, j) tends to O for all transient j.

Theorem 3.42 [fi and j are recurrent states, then,

a.s. a.s. . .
N/n — 1/m; and Nj;/n — P(i, j)/mi, n— oo,
where m; = E;T; is the mean recurrence time to i, with the convention that 1/ +

oo =0.

Proof Let T]" denote the time of the n-th visit to i, forn > 1. Letu, = T" — Tl.’“1

denote the time between two successive visits to i for n > 1, with ug = 0. We have
n NT+1

N/
T.' =n<T,' ,or

Due to the strong Markov property, (u,) is an i.i.d. sequence. Since (N/") tends to
infinity a.s. when n tends to infinity, Theorem 1.93 induces that

NI
T, ”1+"'+”N,-" a.s.

= —> Eu; = m;.

N N
In the same way,
T wit e tug wt e tunn NP4 g
= ! = ! . e EZ =m;,
N" N N'+1 N

1 1 1

and hence N;'/n convergesa.s. to 1/m;.
The same argument applied to the two-dimensional Markov chain (X,_1, X,,)
yields that Ni"j /n converges a.s. to P(i, j)/m;; see Example 3.13. O

Theorem 3.43 If 7 is stationary for (X,), then w(i) = 1/m; for any recurrent
state i.
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Proof Since Nl.” < n for all i and all n, Theorem 3.42 and the dominated
convergence theorem jointly yield for any recurrent j,

EjNf 1

n m;

, n— 4o00.

Since r is stationary,

w(i) =Y w(HPG.D), k=1,

JEE
and hence
n
nw(i) =Y w(j) Y PG.i)=Y_ m(HE;N}.
jeE k=1 jeE
Therefore
: E;N} 1 1
n(i) = Zn(]) . — Zn(])mi =
JEE JjeEE
the searched result. O

The expectation of the number of visits to any state before return to a fixed state,

. T; . .. .
that is IE ; N,/ for all states i and j, yields a stationary measure for any recurrent
chain and a stationary distribution for any irreducible positive recurrent chain.

Theorem 3.44 Let (X,) be a recurrent Markov chain with state space E. For any
j € E, the measure \J defined on E by M (i) = IEle.Tj is stationary for (X,,).
If, moreover, (X,,) is irreducible, then 0 < A (i) < +o0 foralli € E.

Proof Let j € E andi € E. We have
Wiy =E ;N =3 Pj(Xy =in < T)).
n>1

We compute

Pi(Xp=i,n<Tj)) =Y Pi(Xy=i,Xy1 =k,n<T))
keE

= Z]Pj(xn,l =k,n<T))P(k, ),
keE
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. P T; T;—1 . . i
andsince A/ (i) =E ;N,;” =K ;N;” " fori # jand A/ (j) =1, we get

Mi)y=Y Pk, )Y Pj(Xy1 =k,n <T))

keE n>1
. Ti—1 Ny
=Y Pk, HE;N," =" Pk, )1l (k),
keE keE

and A/ is stationary for P.

If the chain is irreducible, for all i, there exist some n > 0 and m > 0 such that
P"(i, j) > 0 and P™(j,i) > 0. The measure A/ is stationary for P" so A/(j) >
AJ ()P (i, j) and A/ (i) is finite.

Finally, for mg = inf{m € N* : P™(j,i) > 0}, the probability of visiting i
before returning to j is positive, that is to say A/ (i) > 0. O

The next two results are stated without proofs.

Proposition 3.45 If A is a stationary measure for an irreducible recurrent Markov
chain (X,), then

MO iy = E;N, (. j)eExE.
A(J)
Corollary 3.46 If A is a stationary measure for a recurrent Markov chain (X,),
then:

either M(E) = +00 and m; = +o0,

or M(E) < +o00 and (X,) has a unique stationary distribution w, with m; =
1/ (i), foralli € E.

Therefore, only three types of state spaces exist for irreducible chains: either all
the states are transient, or all the states are null recurrent, or all the states are positive
recurrent and then the chain has a unique stationary probability.

If E is not irreducible, then it can be divided into two disjoint subspaces,
E; containing transient states and E, containing recurrent states. Moreover, the
recurrent classes (Cy) of the chain constitute a partition of E,, as shown in Fig. 3.4.

Fig. 3.4 State space
decomposition
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If the states of Cy for k > 1 are numbered from |[Cy| + --- + |Cr—1] + 1 tO
|C1] 4+ - -+ 4+ |Ckl, the transition matrix P of (X,) can be written

B Q1 02 0s3...
oOoP O O ...
p=]100 P~ 0 ...
00 0 P;...

where Py is the transition matrix of the restriction of (X,) to Cy, B the matrix
of the transitions from E; to E; and Qj the matrix of the transitions from E,
to Cy.

Moreover, let m; denotes the stationary distribution for the restriction of (X,) to
Cy and set

M= (0|am |azma]| ...)
where the partition is associated with E;, Ci, Ca, .... Then II is a stationary
distribution for (X,,) for all (ax) such that oy > 0 and Zkzl o = 1, as illustrated

in the next example.

> Example 3.47 Let (X,;) be a Markov chain with transition matrix

050401 0 0 0 0 0 O
0306 01 0 0 0 0 0 O
0 0 0601010101 0 O
0 0 0 06040 0 0 O
P=]1 0 0 0 04060 0 0 0],
0 0 0 0 0 06020 02
0 0 0 0 0 0306010
0 0 0 0 O O O 0505
0o 0 0 0 003 0 0 07

as shown in Fig.3.5. Then E = {1,...,9}, with E, = {1,2,3}, C; = {4,5} and
Cy, = {6,7,8,9}, from which we deduce that 7(1) = (1/2,1/2) and n(2) =
(30/73,15/73,3/73,25/73). One may check that

@ o0y Pata, 733(1 —a), 32(1 - a))

I1 =
(0’0’0’2’2’73 73

is indeed a stationary distribution for the chain for any « € [0, 1]. <
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Fig. 3.5 Graph of the chain
of Example 3.47

Definition 3.48 A positive recurrent aperiodic state is said to be ergodic.

An irreducible Markov chain with at least one ergodic state—and hence, with only
ergodic states—is said to be ergodic.

Definition 3.49 Let (X,) be a Markov chain with transition matrix P. Let i belong
to E. If

P"(i, j) — 7'(j), n— 400, j€E,

for some probability 7/ on E, this probability is called a limit distribution of the
chain.

Note that a Markov chain can have several stationary distributions and several
limit distributions, as shown in Example 3.57 below. On the contrary, an ergodic
chain has a unique limit distribution, equal to its stationary distribution.

Theorem 3.50 (Ergodic) If (X,) is an ergodic Markov chain with transition
function P and state space E, then its stationary distribution is the unique limit
distribution of the chain, and

P"(i, j) — 7w(j), n— +oo, i,j€EE.

Proof Let u denote the initial distribution of (X,). Let (¥;) be an ergodic Markov
chain, independent of (X,), with the same state space E and transition function
P—and hence the same stationary distribution 7, but with initial distribution v.
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The two-dimensional sequence (Z,) = (X, Y,) is also an ergodic Markov
chain. Clearly, its initial distribution is & ® v, its transition function Q is given
by Q((, j), (i, j')) = P(i,i")P(j, j') and its stationary distribution is 7 ® 7.

Letusset T = inf{n > 0: X, = Y,} =inf{n > 0: Z, = (j,j), j € E} and
P=P®P. Wehave P, (X, = j, T <n) =Pugv(Yy = j, T < n), thus

PuXn=)) =PuevXn=Jj. T =n) +Pugv(Xn = j, T >n)
< Py(Yy = j) + Pugu(T > n).
In the same way,
Py(Yn = J) = Pu(Xn = j) + Pueu(T > n).
The two above inequalities jointly imply that
B (Xn = ) = Py(Yy = )| < Pugu(T > n).

Since Py, (T > n) converges to 0 when n tends to infinity, we get for u = §; and
V=m

IPi(Xn = j) —7(j)| — 0, n— +oo,
and the result follows. O

The ergodic theorem can also be stated in the following way.

Theorem 3.51 If (X,,) is an ergodic Markov chain, with stationary distribution 7,
and if g - E — Riis such that ) ;. w(i)|g(i)| is finite, then

¢
. D e(Xi) =5 " w(igli), n— foo.
k=1 icE

Finally, the following result states that the Shannon entropy rate of an ergodic
Markov chain is the sum of the entropies of the transition probabilities (P (i, j)) jeE
weighted by the probability of occurrence of each state according to the stationary
distribution of the chain.

Proposition 3.52 The entropy rate of an ergodic Markov chain X = (X,) with
transition matrix P and stationary distribution w is

H(X) =Y 7)) PG, j)log PG, j),

ieE jeE

if this quantity is finite.
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Proof Using (3.2) p. 119, the marginal distribution of (Xo, ..., X,) is

[ @0, xm) = 1 (x0) P(x0, 1) -« P (-1, Xn),
)

1 ¥ 1 1
— log f,X (X0, ..., Xa) = — logu(Xo) = ) log P(X¢-1, X¢)
n n n =l

= (@) + @i0).
When n tends to infinity, (i) tends to 0. Since the two-dimensional chain (X,—1, X,,)

is ergodic, with stationary distribution (7 (i) P (i, j))—see Example 3.39, we deduce
from Theorem 3.51 that

(i) <= =Y 7)Y P, j)log PG, j).

icE JjeE
The expression of the entropy rate follows from Definition 1.59. O

> Example 3.53 (Entropy Rate of a Two-State Chain) The entropy rate of the chain
of Example 3.38 is

HX)= 7 [=plogp—(1—p)log(l — p)]
p+q

p
+ [=qlogg — (1 = g)log(1 —¢)].
r+q
This entropy rate is shown on Fig. 3.6 as a function of p and q. <

34 Periodic Markov Chains

We will assume throughout this section that the Markov chain is irreducible. We
will denote by d; the period of state i € E; see Definition 3.9.

Theorem 3.54 Ifi and j are communicating states, then d; = d;.

Proof By definition, P% (i, i) > 0. Since i <> j, two integersn > O and m > 0
exist such that P" (i, j) > 0 and P™(j, i) > 0. Hence

prtditn(i iy > PM(j, i) PY G, i) P" (i, j) > 0.
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aidonue

Fig. 3.6 Entropy rate of a two-state chain

In the same way, P"+"+24i(j, j) > 0 so that d; is a divisor of n +m + 2d; — (n +
m + d;) = d;. Therefore, d; < d;. By a symmetric argument, d; < d;, and the
conclusion follows. O

Thus, periodicity is a class property; in other words, if i belongs to a class C and
is periodic with period d;, then all other states j € C are periodic, with the same
period d; = d; = d. Therefore, if an irreducible Markov chain has one periodic
state with period d, then all its states are periodic with period d; the chain is then
said to be d-periodic.

The state space E of a d-periodic chain can be divided into d disjoint subsets,
say Eo, E1, ..., Eq—1, in such a way that each transition leads from a state of E,
to a state of Ep4q,for p=0,1,...,d — 1 (with E; = Ep). These sets are referred
to as the cyclic classes of the chain. Using these classes, investigating a d-periodic
Markov chain (X;) reduces to investigating an aperiodic chain, as shown in the
following proposition. It amounts to observing (X,,) at times n = md form € N.

Proposition 3.55 Let (X,,) be a d-periodic Markov chain with transition function
P and cyclic classes Ey, ..., Eq_1.

1. The sequence (Yy,) of random variables defined by
Y =Xma, meN,

is an aperiodic Markov chain with transition function Q = P,
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2. The classes Ey, ..., Eq—1 are closed sets for Q. Moreover, they are irreducible

for Q—or (Yy,).
Proof
1. We have
PYpy1=j | Yo=io, Y1 =i1,.... Y1 =im—1,Ym =1) =

=PXm+na=Jj 1 Xo=i0, Xa =11,..., X(mn—1)d = im—1, Xma = 1)
=PXminya =Jj | Xma =1) =P¥mt1=j | Y =1),

and hence (Y,,;) is a Markov chain. Since
PXn+d = J | Xma =) = PG, ),
its transition function is Q. For any state i,
ged{meN: Q"G i)>0}=gcd{meN: P™3 i) >0}

1
= gcd{neN: P'(i,i) >0} =1,

so (Yy,) is aperiodic.
2.Ifi € Ep, and Q(i, j) # 0, then, by definition of the cyclic classes, j €
Epima = Ep, 5o Ep is closed.
Let both i and j belong to E,. Since (X,,) is irreducible, some n € N* exists
such that P" (i, j) > O; since i and j belong to E, necessarily n = md, with
m > 0. Thus, P’”d(i, j) > 0,0r Q" (i, j) > 0,and hencei — j.In a symmetric
way, j — i. Therefore E), is irreducible. m|

Theorem 3.56 Ler (X)) be a positive recurrent irreducible d-periodic Markov

chain, with stationary distribution w. Let Eo, E1, ..., Eq—1 denote its cyclic
classes. Foralli € Ep and j € E;, with0 < p,q <d — 1, set

q—p ifg > p,

r=rij = .
d—p+q ifq<p.

Then

P"H (i, j) —> dn(j), n— +oo.



3.4 Periodic Markov Chains 143

Proof We have

PYI G, jy =Y PTG, kP (K, j), i€E, jeE,
keEy

Since ZkeEq P"(i,k) = 1foralli € E, by definition of r, it is sufficient to prove
that

Pk, j) = Q"(k, j) — dn(j), k, j€Ey n— oo, (3.12)

and then applying the dominated convergence theorem will prove the result.
Every transition is from a state of E; to a state of Eg ;. Therefore
ZZGE P(k,1) = 1forall k € E,, and thus, by Fubini’s theorem,
q+1

Y mmPk =) wk).
leEq+) keEy keEy

Since 7 is a stationary distribution of (X,,),

Yo Y wakPk = > 7).

l€Egy1 keEy leEg

Both above relations imply that

Y owtky=c, 0<g=<d-—1,
keEy

and thus ¢ = 1/d, because the chain has d cyclic classes.
The distribution 7 is stationary for (X,,), hence for Q; moreover, Q(k, h) = 0 if
k € E;and h ¢ E,. Therefore

> wk)Qk,h) =m(h), heE,,

keEy

and (d7 (k))keE, 1s a stationary distribution for the restriction O of Q to Ep X E).
This transition matrix @, is aperiodic and, thanks to Proposition 3.55, irreducible.
Using the ergodic theorem yields (3.12), and the result follows. O

D> Example 3.57 (An Ehrenfest Chain with Four States) Let us consider the
Ehrenfest chain with four states—say E = {0, 1, 2, 3}, and transition matrix

01 0 0
p_|13 0230
02/3 0 1/3

0 0 1 O
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This chain is 2-periodic, because

1/3 0 2/3 0
2| 079029
2/9 0 7/9 0
02/30 1/3

Its cyclic classes are Eg = {0, 2} and E; = {1, 3}. Solving # P = m, we determine
its stationary distribution, that is # = (1/8,3/8,3/8, 1/8). The transition matrix
of the chain (Y},), defined by Y;, = Xo,, form > 0,1is QO = P2, so (Y, is an
aperiodic chain but is not irreducible. Restricted either to Ej or to Ep, the chain
(Yy) is ergodic, with respective transition matrices

_(1/32/3 ~(7/92/9
Q°_<2/97/9) and Q1_<2/31/3)’

and stationary distributions (7, 7;) = (1/4,3/4) and (7w}, 7}) = (3/4,1/4).
Normalizing the vector (1/4,3/4,3/4,1/4) gives the stationary distribution of
(Xn), precisely (1/8,3/8,3/8,1/8).

Finally, by Theorem 3.56, for » = 0,

1/4 0 3/4 0
0 3/4 0 1/4
1/4 0 3/4 0 |
0 3/4 0 1/4

p n — 400,

and forr =1,

0 3/4 0 1/4
pw+l | 1/4°0 3/4°0
0 3/4 0 1/4 |
1/4 0 3/4 0

n — 400.

The graphs of (X},) and of (Y,) are shown in Fig. 3.7.

chains of Example 3.57, (X,,) 0 o 9 e

top and (Y;,) bottom
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3.5 Finite Markov Chains

Thanks to their specific properties, finite chains are easier to study than the general
ones. Note that Markov chains encountered in reliability theory are generally finite,
the two-state case being especially pertinent for modeling reliability processes.

3.5.1 Specific Properties

A Markov chain (X;) whose state space E is finite is said to be finite. Its transition
function is represented by a finite matrix P. Due to the properties of the transition
probabilities, its entries are nonnegative and the sum of each row is equal to one.
Such a matrix is said to be stochastic.

A stochastic matrix having a power without null entries is said to be regular.
An aperiodic finite Markov chain can be proven to be irreducible if and only if its
transition matrix is regular.

Theorem 3.58 Ifits state space E is finite, then the chain has at least one recurrent
Sstate.

Proof Let j € E; andi € E. Since E;N; = Y, P"(i, j) is finite, P"(i, j)
tends to zero when n tends to infinity. If E contained only transient states, then
ZjeE P"(i, j) would tend to 0 too; the matrix P is stochastic, so ZjeE P"(i, j) =
> jer Pi(Xy = j) = 1, which yields a contradiction. O

Therefore any irreducible finite chain is necessarily recurrent. Since its transition
matrix is stochastic, 1 = (1,...,1)" is one of the eigenvectors of the matrix,
associated with the eigenvalue 1. Thus 1 is solution of the system (3.10) p. 131
and is absolutely summable; Theorem 3.35 implies that any irreducible finite chain
is positive recurrent, so has a unique stationary distribution—by Corollary 3.46.

Proposition 3.59 For a finite Markov chain, P; (X, € E;) tends to 1 when n tends
to infinity, fori € E.

In other words, the chain will almost surely reach the set of recurrent states and will
remain there forever.

Proof Since E is finite, if P(Xy = i) = 1 for a transient i, then there exists n; > 1
such that P;(X,, € E,) > 0. Hence, p = P(Xy € E, | Xo € E;) > 0, where
M = sup;cg, ni.

Therefore, P(Xy € E; | Xo € E;) = 1 — p, and by the strong Markov property,

P(Xem € Er | Xo € E) = (1 — p)f — 0, &k — +oo,

which yields the result. O
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Fig. 3.8 Graph of the chain
of Example 3.60

(D
cc o

Note that the proof shows that the result holds true for any chain, as soon as E; is
finite.

> Example 3.60 Let (X,) be a Markov chain with state space E = {1, 2, 3} and
transition matrix

0.109 0
P=1040402
0.6 0 04

Its graph is given in Fig.3.8. All the states are communicating, the chain is
irreducible and finite, so is recurrent thanks to Theorem 3.58. Its limit distribution
satisfies w P = 7, that is

0.177(1) 4 0.47(2) + 0.67(3) = (1)
0.97(1) + 0.47(2) = 7(2)
0.277(2) 4+ 0.47(3) = 7 (3).

with 7 (1) + 7(2) + 7(3) = 1. Thus, (7 (1), 7(2), 7(3)) = (1/6,1/2,1/3). <«

Proposition 3.61 A distribution 1 is stationary for a finite chain (X,) if and only
if w is a limit distribution of (X;,).

Proof The direct sense holds true for any ergodic discrete chain thanks to the
ergodic theorem.
Conversely, let v be a limit distribution of the chain. We have

N . T . n—1,. .
7(j)= lim P (z,J)—ngglwkEZEP (i )Pk, J)

- anr&o P i, k) Pk, j) = Zn(k)P(k, ).

keE keE

Since E is finite, inverting sum and limit is possible. O
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> Example 3.62 Let (X,) be a finite Markov chain with state space E. Suppose its
transition matrix P is doubly stochastic, meaning that both its columns and rows
sum to one. Clearly, the uniform distribution on E is a stationary—and limit—
distribution of the chain. <

The rate of convergence of a transition matrix to its limit is exponential.

Proposition 3.63 If (X,) is a finite aperiodic irreducible Markov chain with
transition matrix P and stationary distribution 7w, then P" tends with exponential
rate to the matrix I, where T1(i, j) = n(j), for (i, j) € E X E.

Proof Since (X,,) is irreducible and aperiodic, P is regular and some r € N exists
such that o = min(; jyegxg P (i, j) > 0.

Let (¥;,) be an ergodic Markov chain independent of (X,), with the same state
space, say E = {1, ..., N} and the same transition matrix P. Let us suppose that
7 is the initial distribution of (Y}), so that it is the distribution of Y}, for all n. Set
s = [n/r] forn > r. We have

PupXi #Yi,i <n) <Py pXi #Y;:, i=r2r...,51r) <

= Py (Xr # YO)Pejy(Xor # Yor | X #Y,) - (3.13)
Py Xer Z Ysr | Xer Y, t =1,...,5 = 1).

We compute

P(X, =Y, | Xo=k Yo=j) =Y PuplX,, ¥,) = (,i)]
ieE
N
= > Pk, j))P"(i,i) = No* > 0,
i=1
and hence P j(Xr # Yr) = 1 =Py (X, =Y) <1 - NQ2. Since the same is
true for all the other terms of (3.13), we get

P jy(Xi # Yi,i <n) < (1 - No*)'.
Moreover, P(kﬁj)(X,‘ # Yi,i <n)= ]P)(k,j)(T(,',,') > n), where T(,',,') denotes the

hitting time of state (i, i) of the two-dimensional chain (X,, ¥,,). Since = is the
distribution of Y,, for all n, the result follows. m]
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> Example 3.64 Let (X,) be a Markov chain with state space £ = {1..., N} and
transition matrix P = (1 — 6)I + 011, where 6 € [0, 1], I is the N x N-identity
matrix and I1(i, j) = 7 (j) for all i, for a given probability = on E.

Let us prove that 7 is the stationary distribution of (X,,). It is sufficient to prove
that 7 is the limit distribution of the chain. Since I12 = I1, we get

P'=(1-0)"T+[1—(1—-6)"]II.
Hence P” tends to I1 with geometric rate, equal to (1 — 6)". <

If the chain (X,,) has both transient and recurrent states, then its transition matrix
P can be written as

E, E,
P — Q B El ,
0 AJE,
where E, C E is the set of recurrent states, and E; C E the set transient states. The
potential matrix U of Q,

U=1+Q+0*+ - 4+0"+--- (3.14)
with coefficients in R, is referred to as the fundamental matrix of (X;,).

Theorem 3.65 Let (X,,) be a reducible finite Markov chain. Let T = inf{n € N :
X, € E,} be the hitting time of E,, and let Q be the restriction of P to E; x E;.
Then:

1. Q" tends to the null matrix when n tends to infinity;

2. 1 — Qisnon singularand U = (I — Q)™ !;

3. E;T =e;(I — Q)fll‘E,\for anyi € E;, wheree; = (0,...,0,1,0,...,0) is
the i-th line vector of the canonical basis of RIEt1.

Proof

1. Set hil = ZjeE, Q"(i,j) forn € Nandi € E. Then, for all i € E;, some
n € N* exists such that 4!, > 0. Since

=Y Y Q"G00 )< Yy Q"0 =h,

JEE, LeE; LeE;

the sequence (h!) is decreasing in n. Therefore, some n; and C; exist such that
h;,, < C; < 1, forall n > n;. Thus, since E; is finite, some C independent from
i exists such that b}, < C < 1.
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Hence, for a given n,

Ropin = > 3 0™, 0Q" (L, j) < Chi,, < C"FL.

JjEE; LeE;

Moreover, C"*! tends to zero when m tends to infinity. The sequence (hi) is
decreasing and has a subsequence (4},,,)men tending to zero, hence tends to zero
too. Since

0"k =) 0" HQUL k) <H_,

JEE:

Q" tends to the null matrix.
2. Since Q" tends to the null matrix, for n large enough, all the eigenvalues of
I — Q" are different from zero, so this matrix is non singular. We deduce from

[-Q"=U-QU+Q+---+ 0"
that
0 # det(I — Q") = det(] — Q)det(/ + Q +---+ Q" 1),
and hence
I+0+-+0"'=U-07'U-0".
We get U = (I — Q)~! by letting n go to infinity in the above equality and using

Point 1.
3. Foralli € E;, we have

E,T =) Eilllix,=jl=) EiT|Xi=)PGJ.
JEE JjeE

We compute for recurrent states

D E(T| X1 =)PG, j)= ) PG j),

jEEr jEEr

and for transient states

Y EAT | X1 =j)PGj)= )Y Ei(T+DPG, )

JEE; JEE;

=Y E;TPG.j)+ Y PG.j).

JEE; JEE;
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Thus, E; T = 1+ ZjeE, E TP, j), or, in matrix form, L = 1jg,) + OL,
where L = (E1T, ..., IE|Et|T)’, that is (/jg,| — Q)L = 1;g,|. Since the matrix
I\g,; — Q is non singular, the result follows. m]

A fundamental matrix can also be defined for any ergodic finite Markov chain (X},),
with transition matrix P and stationary distribution 7. Let IT be the matrix with all
lines equal to 7, that is [1(7, j) = 7 (j). The matrix

Z=[~-P-m!

is referred to as the fundamental matrix of the ergodic chain (X,).

Theorem 3.66 The fundamental matrix of an ergodic finite chain satisfies

Z=1+) (P"—T.

n>0

Proof Since P" tends to II, letting n tend to infinity in pp = pp¥ —
prtlpn — p2ntl yields that [IP = PIT = T2 = 11, so that

n n—1
n n
P_n}’l: _1 n—kpknn—kzpn+ ( ) _1 n—kHZPn_l—[.
( ) k§=0 <k>( ) kE=O ¢ ) D

Therefore (P — IT)" tends to 0, and the result follows. |

Since P1y = 1y, the value 1 is always an eigenvalue of P. If the chain is regular,
it can be proven to be the unique eigenvalue of the matrix with modulus one.

Proposition 3.67 The modulus of the eigenvalues of the transition matrix of a
Markov chain are less than or equal to 1.

Proof Set E = [1, N] and consider the norm ||a|| = max;<;<y |a;| on C". For all
aeCV,

N N
Pa :max‘ Pi,'a-‘<[max Pi,'][max a-],
|Pall = max. ; i, aj| < l<i<N; (i, )| max ail

and 27:1 P(i, j) = 1foralli,so that || Pa| < |lal.
For Pa = Aa, we get |A| < 1. m|

Assume that P has N distinct eigenvalues 1 = A1 > Xy > --- > Apn.
Let x1, ..., xy denote the right eigenvectors and yi, ..., yy the left eigenvectors
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associated with the eigenvalues A1,..., Ay of P. Set O = (x1,...,xy) and
D = diag(A;). We have P = QD 0! and therefore P" = QD" Q~!. This implies
that

N N )\n
P = MA; = ko eyl 3.15
l;kk ;<styk>kyk (3.15)

where < xi, y¢ > denotes the scalar product of x; and yi, and xk.y,’C their matrix
product.

If |Ax| < 1, then A} tends to O when n tends to infinity. Since this holds true for
k > 2 if the chain is ergodic, we obtain by the spectral representation (3.15) that P"
tends to Aj—with geometric rate A}, so A} = I1.

3.5.2 Application to Reliability
The goal is here to investigate the stochastic behavior of Markovian systems with
failures—break-down or illness—by observing them along time. The term system

is very large and includes technological or economic systems, or living organisms.

> Example 3.68 (Some Typical Systems Studied in Reliability Theory)

1. the functioning time of a lamp with one or several bulbs;

2. an individual, for whom failure may mean illness or death;

3. careers of individuals, for whom failure may mean unemployment;

4. fatigue models: materials (pieces of chain, wire or cable) subject to stress, up to
break. <

In order to make the investigation easier, we suppose the system starts operating
at the time ¢ = 0. Reliability is here investigated for a Markovian system observed at
integer times n € N. The associated techniques are naturally linked to Markov chain
theory, while for investigating the case of continuous-time observations (r € Ry )
the theory of continuous-time Markov processes presented below in Chap. 4 will be
necessary.

Let T be the random variable equal to the lifetime of the system, taking values in
N. The failure rate is defined by

h(n) =P(T =n|T = n),
where, necessarily, 0 < h(n) < 1 forn € N and the series with general term A (n) is
divergent.

The distribution of T is given by

fm)=P(T =n)=[1-hO)][1 —h(D)]...[1=hn—1]h(n).
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The reliability of the system is defined by
Rn) =P(T >n)=[1—-hO)][1—-hrD)]...[1=h(#n)].
Therefore,

h(n) = Fm) , n>0.

R(n—1)
> Example 3.69 (A Binary Unit) Suppose a binary component starts operating at
time n = 0. Let its lifetime be geometrically distributed, with parameter p €]0, 1.
At each failure, the component is replaced by an identical new one. The switching
time (time for replacement) is a geometrically distributed random variable too, with
parameter g €]0, 1[.

Let X,, be the random variable equal to O if the component is functioning at time
n and equal to 1 otherwise. The sequence (X,) is a Markov chain with state space
E = {0, 1} and transition matrix

P:(l_p p )
g l-gq
We compute

n
Pn=<1—p p ) _ 1 (qp>+(1—17—q)” ( p —p)_
q9 l-—gq p+tqg\qp p+q -9 q
Let i denote the initial distribution of the chain. The distribution of X, is given by
(3.3) p. 119, that is

P (X, =0) = w(©)P"(0,0) + n(1)P"(1,0)
7 (I-p—q)

g 0 - 1 E}
ptg ptg [pu(0) —qu(D)]

and P (X, =1)=1-Pu(X, =0). <

Even when a complex system—with several units and several states—is studied,
it is often sufficient to determine whether the system is in an operating state or in
a failed one. In this aim, E is divided into two subsets, U and D. The subset U
contains the functioning states (up-states), and D contains the failed ones (down-
states). The reliability of this binary model is given by

R(n) =P(Xx e U,kef0,....,n}), n=>0.
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Suppose the sequence (X,) of the states visited by the system is a Markov chain
with finite state space E, transition matrix P, and initial distribution p. Then the
lifetime of the system is the hitting time of D, that is

T =min{n >0 : X, € D},
where min @ = +o0. Matrices and vectors have to be divided according to U and

D. Without loss of generality, wecanset U = {1,...,m}and D = {m+1,..., N},
and thus write & = [, u2] and

p— (Pll Plz) .
Py Py
The reliability of the system is then
R(n) = w1 P 1. (3.16)
We deduce from Theorem 3.65 that

ET =) E[TLxe=nl= Y P(Xo=)E;T = uL,
ieU ieU

where L = (ET,...,E,,T) = (I — P;;)"'1,,. Thus,
ET = ui(I — Pi1)" '1,. (3.17)
The variance of the lifetime 7 is Var; T = V(i) — (L(i))?, where
V=[E(T), .. .ExT)'=U =P U +2Pud = Pi) . (3.18)
> Example 3.70 (Continuation of Example 3.60) Let (X,) be the Markov chain
modeling the behavior of a system with three states, with transition matrix P and

initial distribution © = (1, 0, 0). Assume that states 1 and 2 are the up-states and
state 3 is the down-state, namely U = {1, 2} and D = {3}. Under matrix form, the

reliability is
R = w1 Py = 1,0y (O 09 e
A =0 0404) 1)

where 1 = (u(1), «(2)). The mean functioning time is

—1
) 0.9 —0.9 1y _25
ET = I — P 11 = 1’0 - .
pi(l = P~ 1y = ( )<_0.4 0.6> <1> 3
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Note that, due to the spectral representation (3.15) p. 151, the reliability tends to
zero with geometric rate [(5 + 3+/17)/20]", given by the largest eigenvalue of P;.
<

3.6 Branching Processes

Branching processes are a particular type of Markov chains. They model for exam-
ple the emission of electrons by some substance, queuing problems, radioactive
chain reactions, the survival of a genetic characteristic along generations, etc.
Historically, they have been developed for investigating the transmission of family
names along generations.

We are interested in the offspring of one given individual, called generation O,
that gives birth to t children. Assume that the random variable t takes values in N,
with offspring distribution P(t = k) = py, mean ju, variance o> and generating
function g.

Definition 3.71 Let X, be the size of the population at the n-th generation and let
r]’? denote the number of children of the j-th individual of the n-th generation. In
n

other words, X, = Z;{:II 7]
to 0.

If (‘L'/'.')(n’ j)eN*xn* 18 i.i.d. with the same distribution as 7, the random sequence
(Xp) is called a Galton-Watson process.

1 forn > 1, with X¢ = 1, where empty sums are set

This definition is related to the assumption that each individual gives birth to
descendants independently of the others. Moreover, we will assume that po ¢ {0, 1}
and p; ¢ {0, 1} so that the process is not trivial. We will also assume that o2 is
finite. Trajectories of branching processes are shown in Fig. 3.9 for different usual
distributions of 7.

Theorem 3.72 The generating function of a Galton-Watson process (X,) is
8x,(t) = g°" (1), its mean is u"* and its variance is

o2 T
Var X, = 1—pn .
no? ifu=1

Proof We have E(tX» | X,_; = h) = 8sh_ o1 (1) = g()", from which we
J=17)

deduce that gx, (t) = E [g(t)X"*l] = gx,_,(g(t)), and, by induction, that gx, (f) =
gOn (t).

We know by Proposition 1.33 that E X, = g (1). Since we compute gy (1) =
g;(nil (g(2))g'(¢), we get that g;(n 1) = g;(nil (), and thus, by induction, E X,, =
.
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Fig. 3.9 Several trajectories of branching processes
The variance can be computed in the same way, using the second derivative of
8Xy- O

From the expression of the mean, we deduce that the population increases in
mean if u > 1, and this characterizes the supercritical case. It decreases if © < 1,
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and this characterizes the subcritical case. When p = 1, the process is said to be
critical.

The probability of extinction of the population before time n is u, = P(X, =
0) =P(T <n),whereT = inf{n € N : X, = 0}. By definition, u, = gx,(0) =
£°"(0). The probability that the population dies out at the n-th generation is

P(T=n)=P(T <n) —P(T <n—1)=g"0) — g°" (0.

> Example 3.73 (A Binary Galton-Watson Process) If po = g, p1 = p with p +
q = 1, then g(s) = g + ps, and hence gy, (s) = 1 — p" + ps. Therefore, the
probability of extinction at the n-th generation is P(T = n) = p"~! — p”, that is to
say T ~ G(1 — p). <

The overall probability of extinction of the population is 0 = P(X,, —> 0). Since
(X, =0) C (Xyt1 = 0), we have (X, — 0) = J,,»0(X» = 0). Thus o is the
limit of the sequence (u,), and hence is a fixed point of g, precisely the smallest
solution of the equation g(¢) = ¢. The function g is strictly convex, with g(1) = 1
and g(0) = P(t = 0) > 0. The slope of the graph of g at 1 is given by g’(1) = u.
If w <1,thenpo = 1,and,if u > 1, then 0 < ¢ < 1, as shown in Fig. 3.10. When
u = 1, the population will die out with probability one; this shows that the mean is
not always a good estimator of the behavior of a random variable.

> Example 3.74 (A Supercritical Galton-Watson Process) The evolution of a bio-
logical population is described by a Galton-Watson process, with offspring proba-
bilities po = 1/4, p1 = 1/4 et pp = 1/2. We compute © = 5/4, a supercritical
case. Further, the generating function is given by g(¢) = 1/4+1/4+1%/2.1f Xo = 1,
the probability of extinction is the smallest solution of 1/4 — 3t/4 4 t*>/2 = 0, that

isp=1/2.
Note that for Xo = N, where N € N* is a fixed integer, the probability of
extinction becomes (1/ )N, <

0 P 1 0 1

Fig. 3.10 The different critical cases of a Galton-Watson process
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The total population issued from one given individual, thatis N = ano Xy, 18
also of interest. If & > 1, then N is clearly infinite. Otherwise, the total population
at the n-th generation, that is N,, = ZZ:O X, tends to N, and

gn, (1) = gxo(Dgyn_ x, () =185n_ x, (1) = 18(gN,_, (1)),

hence gy () = tg(gn (¢)) by taking limits. This functional equation can be proven to
have only one solution when ¢ is fixed. Moreover, 0 < gy (f) < o with gy (1) = 0.
Therefore, if o = 1, then Zkzo]P’(N =k)=1.Thus, EN =1/(1—pn)ifu < 1.

> Example 3.75 (Branching Process with Geometric Distribution) Suppose T has
a geometric distribution on N with parameter ¢ = 1 — p, thatis P(t = k) = pg* for
k>0and u = p/q. Wehave g(s) = q/(1 — ps). This homographic transformation
has two fixed points, 1 and ¢/ p, and hence

g(s)—gl/p) _ 1 s—aq/p
g&)—g) p s—1 -

It follows that

§"()—glq/p) _ 1 s—q/p
g —g)  pt s

9
or

Pt —q" - (p"*1 q" Vps

if p#1/2,

n+1 n+1 _ n _an

= q")ps

gx,(s) s _%S _
n+1—ns if p=1/2.

Therefore, the probability of extinction up to the n-th generation is

pn _qn
4 it _ a1 HPF /2
P(X,=0)=g""0) =1 B —4
if p=1/2,
ol itp=1/
and gy (s) satisfies px2 — x 4+ gs = 0, or gy (s) = (1 £ /1 —4pgs)/2p. <

The Galton-Watson process is a Markov chain with state space N, initial state 1
and transition matrix P given by the convolution of its birth distribution; in other
words,

PG, )= D Pu-oph i #0,
Yiciki=j
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with P(0,0) = 1 and P(0, j) = O for j # 0. The extinction problems thus appear
as problems of absorption in state 0.

Moreover, the process is a martingale if 4 = 1, a submartingale if © > 1 and a
supermartingale if u < 1.

Proposition 3.76 The sequence (X, /™) is a square integrable martingale for its
natural filtration and converges a.s. and in mean square.

Proof We have E (X, | Xo,..., Xn—1) = E (X, | X;,—1). We compute

k
EXn | Xp=h) =) B~ | Xo1 =k) = kp,

i=1

and hence E (X, | Xo, ..., Xy—1) = uXu—1, 80 (M,) = (X, /") is a martingale.
Moreover, E (M,%) < o2/u(u — 1) for all n, so (M,) is L2-bounded. We deduce
from the theorem of strong convergence of square integrable martingales that (M},)
converges a.s. and in L?. O

The Galton-Watson process can be generalized to involve immigration or
emigration factors. A spatial—geographical—repartition of the individuals may
also be considered, for example in investigating the successive generations of a
population of plants.

3.7 Exercises

V Exercise 3.1 (Visit Times) Let (X,) be a Markov chain with state space E. Let
T!' = inf{k > Tl."f1 : Xy = i} be the time of the n-th visit to a recurrent state
i € E, with T! = T;—see Definition 3.18.

Prove that ]P’,-(T;l < +00) = (0i;)"—see Definition 3.22 (setting ¥, = X7,4,
may be of help).

Solution We have

Pi(I? < +o0) = Y Pi(T;=n.T=n+m).

n>1,m>1

Thanks to the strong Markov property, (Y¥;) is a Markov chain with the same
transition function as (X,). Let Tl.Y denote the time of the first visit of (¥,) to state
i. We compute

BTy =n, T =n+m) L BT =n, T} = m)

2
L p.(T; = )Py (1Y =m)

3
D p, (17 = n)P;(T; = m).
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(1) by the strong Markov property, (2) by Corollary 3.20 and (3) because both chains
have the same transition function. Thus,

Pi(T7 < +00) = Y PBi(Ti =m)Pi(T; = m)

n>1,m>1
=D PiTi=n) ) Pi(T; =m) = B(T; < +00)*.
n>1 m>1
The result follows by induction. A

V Exercise 3.2 (Chapman-Kolmogorov Equation) Let (2, P(€2), P) be a prob-
ability space, with

Q={1,1,1),2,2,2),3,3,3)}U{(w1, w2, w3) : wr €{1,2,3}, o # ws}

and the uniform probability P({w}) = 1/9, for all w € Q.

Let X1, X7 and X3 be defined on (2, P(2), P) and take values in E = {1, 2, 3},
with X, (w1, w3, w3) = w,, for n = 1,2, 3. The random variables X4, X5 and
X are constructed independently of X, X, and X3 by setting X, (w1, w2, w3) =
wn—3, forn = 4,5, 6. The whole sequence (X,),>1 is then constructed recursively
similarly.

1. Study the dependence relations between X1, X, and X3.
2. Show that (X,) satisfies the Chapman-Kolmogorov equation.
3. Is (X,;) a Markov chain?

Solution

1. Since P(X,, =i) = 1/3and P(X,, =i, X, = j) = 1/9, the events X1, X2, X3
are pairwise independent. They are not mutually independent, because the values
of X1 and X determine uniquely the value of X3.

2. The Chapman-Kolmogorov equation is clearly satisfied. For instance, for n = 2,

1 1 1 1
=PXi,H= PG kPEk, j) = )
; (i, ) ;;:f @ RPK )=+ o+

3. From1l.,wegetP(X3 =k | X1 =i, X2 =j) #P(X3 =k | X, = j), therefore
(X},,) is not a Markov chain.

To satisfy the Chapman-Kolmogorov equation is not a sufficient condition for a
random sequence to be a Markov chain. A

V Exercise 3.3 (A Markov Chain Defined by a Recursion Relation) Let (X;,)
be a random sequence taking values in £ and let (¢,,) be a random sequence taking
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values in F. Both E and F are assumed to be denumerable. The two sequences
are linked by the recursion relation X, 11 = ¢(Xp, €,41), for all n > 0, where
o: ExF — E.

1. If, for all n > 0, g,41 is assumed to be independent of Xo, ..., X,—1 and of
€1, ..., &y given X,,, show that (X;,) is a Markov chain.

2. If, moreover, the conditional distribution of ¢, given X,, is independent of n,
show that the chain (X,) is homogeneous.

Solution
1. We compute

P(Xn+1 =J | XOa ceey Xn) = ]P)[()D(Xna 871-‘1—1) = J | XOa L) X}’l]

= Z]P)(En+l =k | Xo,..., X)L, 0=)
keF

=Y Plent1 =k | X)Lipx, =)
keF

=Plo(Xn, ent1) = j | Xul =P(Xpnq1 = j | Xn).

2. We deduce from the third equality above that the chain is homogeneous if
P(ey+1 = k | Xp,) is independent of n. A

V Exercise 3.4 (A Production System) Suppose a production system is modelled
by a Markov chain (X,,) with state space E and transition matrix P. Let g : E —>
R4 be some function. The rate of production 7, = g(X,) of the system changes
according to its state. The demand of product is given by a sequence of positive real
numbers (d,,).

1. Determine the mean demand not satisfied in the interval of time [1, NJ.

2. Application to the Markov chain of Example 3.70, with g = (1,0.6,0),
supposing a constant demand of 0.8 by time unit, with N = 10, and u =
(1,0,0).

Solution

1. The demand not satisfied at time n is Z,, = [g(X,,) — d,]™, with mean value

EZy=Y > u@P"G )lg() —dul” = uP"G,

ieE jeE
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where G, = ([g(j) —duy]7;j € E) is a column vector. Set Cy = 22;1 Zy.
The mean demand not satisfied in [1, N] is

N
ECy =) uP"Gy.

n=1

2. We compute E C19 = 0.1. A

V Exercise 3.5 (Harmonic Functions and Markov Chains) Let (X;) be an
irreducible Markov chain. Show that (X,,) is transient if and only if a bounded not
constant function 2 : E — R and a state ig € E exist such that Ph(i) = h(i) for
all i # ip.

Solution If the chain is transient, /2 can be defined as follows: h(ig) = 1 and (i) =
Oiio for i # io; see Definition 3.22. Indeed, (i) = Ph(i) for i # ip. The function
is clearly bounded and not constant because the chain is transient.

Conversely, if such a function % exists, it can be supposed to be nonnegative.
Set ¥, = X7; an- The transition function of (¥,) is P’, with P'(i, j) = P(, j)
for all j if i # ip and P’(ip,ig) = 1. Hence, h is harmonic for P’. Thanks to
Proposition 3.16, E;[h(Y,)] = k(i) for all i. If (X,,) was recurrent, we would have

0iip = 1 for all i and (Y¥,;) would be absorbed in iy a.s.—that is ¥, % ip. Using
the dominated convergence theorem, E ;[4(Y})] would tend to A (ip), for all i, and
hence & would be constant, a contradiction. A

V Exercise 3.6 (Martingales and Markov Chains) Let (X,) be a Markov chain
with state space E = [0, N] and transition matrix P, and let F denote the natural
filtration of (X,,). States 0 and N are supposed to be absorbing, all other states are
transient.

1. Let T = inf{fn € N : X,, = 0 or N} be the hitting time of the set {0, N}. Show
that T is a stopping time of F and that T is a.s. finite.

2. Leth : E —> R, be an harmonic function for P.
a. Deduce from the computation of E {[#(X7 A, )] that

E;[h(Xr)l=h(@) ie E\{0,N}.

b. Deduce P; (X7 = 0) and P; (X7 = N) from the computation of E ;[A#(X7)]
in another way.

Solution
1. Set F ={0,N}.Wehave (T =n)=(X; ¢ F,i=1,....n—1D)NX, e F) e

Fu,hence T is a stopping time of F. Moreover, E is finite and all the states but 0
and N are transient, and hence T is a.s. finite.
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2. a. The variable T A n is a bounded stopping time for all integers n and, thanks to
Proposition 3.16, (h(X,)) is a martingale; using the stopping theorem, we get

Eilh(X7an)] = Ei[h(X0)] = h().

The sequence (X7an) converges a.s. to X7, so (h(Xran)) converges to
h(Xr). Since the state space E is finite, /& is bounded on E. Thanks to the
dominated convergence theorem, (E;[A(X7A,)]) converges to E;[h(XT)],
and the result follows.

b. We can also write

Ei[h(X7)] = hO)Pi(XT =0) + h(N)P; (X7 = N),
and we know that P; (X7 = 0) 4+ P; (X7 = N) = 1. Therefore,

h(i) — h(N)

Pi(Xr =0) = 1(0) — h(N)’

and P;(Xr =N)=1—-DP;(Xr =0). A

V Exercise 3.7 (Communication Classes) Let (X,) be a Markov chain with finite
state space E = [1, 8] and transition matrix

0x00
* 0 %0
* 000
0000
00=x0
0000
000 %
0x00

0
*
0
0
0
*
*
0

C OO0 ¥ ©O o
O % oo oo o o
*¥ OO0 O OO ¥ %

where the stars stand for the non null coefficients of the matrix (Fig.3.11).
Determine the communication classes and the nature of the states of (X},).

Solution The sum of the coefficients of each line of P is one, hence P(3,3) =
P(5,5) = 1. States 3 and 5 are absorbing and communicate with no other state.
Since Pg(Tg < +00) =1 — P(6,2) = 0, state 6 is transient. We compute
P7(T7 = +00) =P7(X1 =6 0r X1 =2)
=P7(X1 =6) +P7(X1 =2)
=1-P,7 >0,
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Fig. 3.11 Graph of the chain
of Exercise 3.7

@\/@)

and hence 7 is transient. In the same way, P2(T> = +00) = Pa(X] # 2) =1 —
P(2,2) > 0, and hence 2 is transient. States 2, 6, and 7 communicate with no other
state.

We compute

Pi(Ty = 4+00) =P1(X, =8,n > 0) = lim P(1,8)P(8, 8)",

with 0 < P(8, 8) < 1, and hence P (T} < +00) = 1, and 1 is recurrent. Moreover,
P(1,4) > Oand P(4,1) > 0 so that 1 < 4 and 4 is also recurrent. Finally,
Pg(X, = 1) =Pg(X1 =4) = P(8,4) > 0and P(1,8) > 0,s01 <> 8 and 8 is
recurrent too.

Thus, the recurrent states are 1, 3, 4, 5 and 8; the other states are transient. The
communication classes are {1, 4, 8}, {2}, {3}, {5}, {6} and {7}. A

V Exercise 3.8 (Embedded Chain) Let (X,) be a Markov chain with transition
matrix P with no absorbing state. Let S;,+1 = min{n > §,, : X, # Xg, }, with
So = 0, be the jump times of (X,). Set ¥, = X5, form > 0.

1. Show that (Y,,,) is a homogeneous Markov chain and give its transition matrix Q.
2. Show that (X},) is irreducible if and only if (Y3,) is irreducible.
3. If (X;,) has a stationary distribution 7, determine a stationary measure for (¥;,).

Solution

1. Clearly, the times (S,) are stopping times of (X,). By the strong Markov
property, a.s.,

PYm+1=Jj Yo, Y1,...,Yn) =]P’(Xsm+1 =j| Xsy, X515, Xs,,)

=P(Xs,0 =J | Xs5,) =PVy1 = Jj | Vi),
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and hence (Y,) is a Markov chain. Similarly, the chain is homogeneous because
PYpi1=Jj | Ym=10) =P(Xs,,, =Jj | X5, =0).
By definition, if i # j, then

QG )= PiXy=j.Si=n) =Y Pi(X,=j| 5 =nPi(S =n).

n>1 n>1
On the one hand, P; (S1 = n) = P(I, i)"’l[l — P(i, i)]. On the other hand, for
J#i
PiXn=JjIS1=n)=PiXp=j|Xo=1,....,Xn-1=10,Xn #1)
_]Pl(XO:la-aXn—lzlaXn:J)_ P(laJ)
Pi(Xo=1i,...,Xn—1=10,Xn #10) 1—P(@,i)

Since Y, P(i, )" ' =[1— P, )], we get

PG, /ML= PG, 0] ifj#i,

Q(I’J)Z{o ifj =i,

2. Clearly, fori # j, P(i, j) > Oif and only if Q(i, j) > 0, and the result follows.
3. LetA(i) = (i)[1 — P(i,i)] fori € E. Forall j € E, we compute

> ADQG, ) = Y PG ) = [ Y w@ PG )] =2 ()PGL )
i€k i#j i€k
= 7(j) =72 ()P (. J) = A()),

and hence A is a stationary measure for Q. A

V Exercise 3.9 (Birth and Death Chains) Let (X,) be a birth and death chain
with the notation of Example 3.6. Assume that P(Xo = 0) = 1.

1. For this part, E = {2, —1,0, 1,2}, thus gy + 1 = p_2 +r_—2 = 1.
a. Assume that ro = go = p1 = q2 = 0, with all other p;, ¢;, and r; being
positive. Classify the states and give the communication classes of the chain
(Fig.3.12).

Fig. 3.12 Graph of the chain
of Exercise 3.9, 1. a @ 3
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. Assume that p; = 1/2 forallx € E\{—2,2}andr; = O forall x € E.
Show that the chain is irreducible, recurrent, and periodic, and determine its
stationary distribution.

2. Forthispart, E =Zandr; =0, p; = p, qi =q,foralli € Z, with0 < p < 1.
SetY, =X, — X,,_1 forn € N*, and Yy = X).

a. Check that (X,) is a simple random walk.
b. Show that for all n € N*, Y, takes values in {—1, 1}, with P(Y,, = 1) = p.
c. Show that Y, and Y, 1 are independent for all n € N*.
d. Show that Y, is independent of (Yy, ..., ¥,—1) foralln € N*.
Solution
1. a. The transition matrix of (X;,) can be written

r-op—2 0 00
g-1r-1 p-1 00

P = 0 0 0 poO
0 0 ¢qg nO
0O 0 0 01

We know that p; + g; +r; = 1 forall i, so r, = 1 and 2 is absorbing.
Starting at —1, if the chain reaches state 0, it will never come back to —1,
and hence

I =011 =P_1(T-1 = +00) =P_1 (X1 = 0) €]0, 1,

and —1 is transient. Moreover, P(—1, —2)P(—2, —1) > 0so —2 < —1 and
—2 is transient, too.

We have 1 — 011 = Pi(T71 = +00) = P1 (X, = 0,n > 0). We compute
Pi(Xy =0,....X, =0 = P(1, O)P”_l(O, 0). The sequence of events
(X1 =0,..., X, = 0) is decreasing with limit (X,, = 0,n > 0). Therefore,
1 — o011 = limy 4 P(l,O)P"‘l(O, 0) = 0, and hence 1 is recurrent.
Moreover, P(1,0)P(0, 1) > Ohence 1 <> 0 and O is recurrent.

Finally, 0 <> 1 and —1 <> —2, so the partition of E in communication
classes is E = {—2, —1} U {0, 1} U {2}. Note that E; = {—2, —1} and that
E, ={0,1} U{2}.

b. The transition matrix of (X,) is

01 0 0 0
120 120 0
P=]|01/20 1/2 0
0 0 1/2 0 1/2
00 0 1 0
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Fig. 3.13 Graph of the chain m\
of Exercise 3.9, 1. b 9-0 V\_/@

All the states communicate so the chain is irreducible (Fig. 3.13). Since the
state space is finite, it is positive recurrent. We compute

120 1/2 0 0
0 3/4 0 1/4 0
PP=|1/40 12 0 1/4
0 1/4 0 3/4 0
0 0 1/2 0 1/2

Therefore the chain is periodic, with period 2. Its stationary distribution is
given by the vector m = (a, b, ¢, d, e), witha +b+c+d + e = 1, satisfying
nP =m,or

b=2a, 2a+c=2b, b+d=2c, c+2e=2d, d=2e.

Thus 7w = (1/8,1/4,1/4,1/4,1/8).
2. a. Since P(i, j) = 0if |i — j| > 1, the sequence (X,) is a simple random walk.
b. Clearly, Y,, takes values in {—1, 1} for all n. We have

Py =1)=PXy— Xyt =D =) PXy =i, Xpm1 =i — D).
i€Z

We compute
PXp =i Xp1=i—-DPXy—1 =i -1 =P>i - LLDOPXp—1 =i -1,

and hence P(Y,, = 1) = P(i — 1,i) = p.
c. We can write

PYpt1 =LY, =1)=PXys1 —Xu=1, Xy —Xp—1=1)

=Zp(xn+1 —i4+2, Xp=i+1, Xp_1 =i).
i€’

We compute P(X, =i+ 1| X,—1 =i)= P(@,i + 1), and

PXpp1=i+2|Xp=i+1, X1 =1)
—PXpy1 =i +2| Xn=i+1)=PG+1,i+2).
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The compound probabilities theorem implies that

P(Xps1=i4+2, Xp=i+1, Xn_1=i)=
=Pl +1,i +2)PG, i+ DP(Xy_1 = i) = p*P(Xp_1 = i).

Therefore,

P(Yyp1 =1 Y,=1) = p* Y P(X,1 =i) = p* = PV, =DP(¥, = 1).
i€’

d. Let us prove this point by induction. First,

P(Y1 = y1, Yo = yo) = P(X1 = y1 + yo | Xo = yo)P(Xo = yo)
= P(y0, yo + yDPXo = yo)

_JPPo=yo) ify1=1,
qP(Yo = yo) ify1=-1,

and P(Yp = 1) =p=1—-PYy = —1) = 1 — ¢, hence Yy and Y are
independent. At step n, we have

]P)(Yl’l:y}’ls"'vYO:yO):
=PYo=yu |l Y1 =Yu-1,---, Yo = y0)PYo1 = yu—1, ..., Yo = yo0),

but X; = Yo ¥j and ¥, = X, — X3 ¥;. Thus,

P(Y, =Yn | Yoy =yn—1,---,Y0=y0) =

n n—1
=P(Xn =Y ¥l Xo1 =) ... Xo =yo)
j=0 j=0

n—1 n
= P(Zyj, Zyj),
j=0  j=0
by the Markov property, and

if y, =1,

n—1 n p
P(Zy,-,Zyj)z g ify.=—1,
j=0j=0 0 otherwise.

Therefore, P(Y, = y» | Yu-1 = Yn-1,..., Y0 = yo) = P(¥Y, = y,). Since
Yo, ..., Y,—1 are independent by the induction hypothesis, the result follows. A
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V Exercise 3.10 (An Alternative Method for Determining Stationary Distribu-
tions) Let (X,) be a Markov chain with finite state space £ = {1,..., e} and
transition matrix P.

1. Show that a probability measure 7 on E is a stationary distribution of (X,,) if and
only if 7(I — P + A) = 1,, where A is the ¢ x e matrix whose all coefficients
are equal to 1, and 7 is a line vector.

2. Deduce from 1. that if (X},) is irreducible, then I/ — P + A is invertible.

3. Application: give an alternative method for determining the stationary distribu-
tion of an irreducible finite Markov chain.

Solution

1. Since 7 is a probability, A = 1), and hence 7 (I — P + A) = 1, is equivalent
toxr(I — P) =0, thatistor P = 7.
2. It is enough to show that if (I — P + A)x = 0 for x € R, then x = 0.
This equation and 1. jointly imply that 0 = 7 (/ — P+ A)x = 0+ Ax, hence
Ax = 0. Therefore, (I — P)x = 0 or Px = x, hence P"x = x, foralln > 1. So
Zflv:l P"x = Nx, and the ergodic theorem yields 7x = x, or x; = ), w(i)x;
for all j, and then x = c1,.
Relations x = c1, and Ax = 0 together imply that 1,c1, = 0, hence ¢ = 0
and finally x = 0.
3. The stationary distribution of the chain is solution of the linear system (I — P’ +
A’ =1,. A

V Exercise 3.11 (A Cesaro’s Sum) Let P be a finite stochastic matrix.

1. Set V,, = 3", P*/n. Show that the sequence (V) has a convergent subse-
quence. Let IT denote its limit.

2. Show that each line of IT is a stationary distribution of P.

3. Show that (V},) converges to IT.

Solution

1. Since P is stochastic, V;, is also stochastic, for all n. The coefficients of P, and
hence the coefficients of V,, belong to [0, 1], which is a compact set. Therefore,
(V) has a convergent subsequence, say (V, j).

2. Since IT is the limit of (an),

1 nj+1

MP= lim V, P= lim Y P‘=PI,
J—>—+oo j—+oonj =
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hence an P — an tends to ITP — IT. Also,

1
Vo, P=Vy, = (P —P)— 0, j— +oo,
-y

and hence I[TP = I1 = PII.

3. If another subsequence (V) was converging to another matrix Q, we would
get as above I1V,, = V,,,IT = I1 so [1Q = QII = II and, in the same way,
QI =TI1Q = Q, so I1 = Q. Therefore, (V,) converges to II.

Thus, for a finite Markov chain, even if P” has no limit, the weighted sum always
converges. A

V Exercise 3.12 (Inspection of a Computer) The inspection of a computer on
board is made by the astronauts at times #; = kt, for k € N* and a fixed t > 0.
No possibility of repair exists. Inspection can report either of the following results:
perfect functioning, minor failures that do not hinder the global functioning of the
system, major failures that hinder the development of experiments, or complete
failure that makes the spaceship ungovernable.

This is modelled by a Markov chain (Fig.3.14). The computer is supposed
to be in perfect state at the beginning of the flight—at time + = 0. During
preceding flights, the probabilities of passage from one state to the other between

Fig. 3.14 Graph of the chain
of Exercise 3.12

0.1 0.1
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two successive inspections have been estimated by the matrix

0.80.10.1 0
0 0.80.10.1
0 0 090.1
0 0 0 1

1. Give the state space, the initial distribution and the nature of the states. Is the
chain irreducible?

2. Compute the mean number of inspections before complete failure occurs.

3. If t = 50, and if the flight lasts 1000h, compute the probability that the
astronauts will come back on earth.

4. Determine the rate of convergence of the reliability to 0.

Solution

1. We have E = {1,2,3,4}and P(Xo = 1) = 1. State 4 is absorbing and the other
states are transient. The chain is not irreducible, but is clearly aperiodic.

2. The state space can be divided into two subsets, that is £ = U U D =
{1,2,3} U {4}. The lifetime 7 of the system is the hitting time of state 4.
From (3.17) p. 153, we get

1

1-08 —0.1 —0.11Y)\ [1
ET =(100) 0 1-0.8 —0.1 1] =15
0 0 1-09 1

3. The searched probability is the reliability at time 1000/50 = 20, that is,
according to (3.16) p. 153,

20

0.80.10.1 1
R(20)=(100)| 0 0.80.1 1 | =0.2316.
0 009 1

4. According to (3.15) p. 151, the rate of convergence is given by the largest
eigenvalue of the matrix Pjp, thatis (0.9)". A

V Exercise 3.13 (Generating Function of the Galton-Watson Process) With the
notation of Sect. 3.6, show without using conditional expectation that the generating
function of a Galton-Watson process (X,) satisfies gx, = g¥ .
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Solution We compute

171

h
P(Xy=k) =Y P(X, =k Xyo1 = h) = Z]P’(Zr 1=k X, 1=h>
h=>0 h=0  j=I
h
- ZP(ZT;H - k)]P’(Xn_l = h),
h=0 =1

from which we deduce that

h
gx,(t) = ZZH‘P(Z o - )JP’(X,, | = h).
k>0 h>0
But
h
Ztk]P’(th'.'_l - k) = gy 1) = ()",
k>0 j=1
and hence

gx, () =Y g®"P(X,1 = h) = gx,_, (1)),
h>0

and by induction gx, (1) = g°"(t).

A

V Exercise 3.14 (Maximum Likelihood Estimator of a Markov Chain) Let
(Xn)nen be a Markov chain with finite state space E = [1, d], transition matrix

= (P(i, j))i,jer and initial distribution p.

Suppose that one trajectory of (X,) is observed in the time interval [0, m], say

(X()aXla MR Xm)~

1. Give the likelihood of this m 4 1-sample—that is not i.i.d.

2. Determine the maximum likelihood estimator of the transition matrix P.

Solution

1. The likelihood function of the m + 1-sample is

Ln(0, X0, -, Xm) = n(Xo) [ | PXa—1, X0) = n(Xo) [] PG HNi™.

k=1 i,jeE
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2. The parameter to be estimated is 6 = (8;;) € R@=D where 0;; = P(, j) for
1 <i<dandl < j <d — 1.Letus define

m m—1
Nij(m) = Z Lyx, =i x,=j} and N;(m)= Z Tix,=i}-
k=1 k=0

The log-likelihood function is

Lm(0) =log L, (0, Xo, ..., Xm) =logu(Xp) + Z Nij(m)log P(i, j),
i,jeE

precisely

d d—1 d—1

Ln(@)=log n(Xo)+ D _ | D Nij(m)log P(i. j)+Nig log [1— > PG, k)}
i=1 \j=1 k=1

We obtain from the equations

0 Nij(m)  Nia(m) _

£ (0) = 0,
00;; " 0i; ia
first that
N.
Nijmy = N4 g (3.19)
Oid
and then, by summing over j, that
d Nia(m)
Ni(m) =Y Njj(m)= "' ,
i (m) Z ym ="
j=1
or @d = N;q(m)/N;(m). Hence, we get using (3.19),
. N::
g, ="M i <a
Ni(m)
We check that
32 Nij N;
(@) = ij (m) ia (m) <

36; T PG )Y PGA?
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So, the maximum likelihood estimator of P is
R Nij(m) . )

Puti, j) = { Niemy 1T Nim) >0

0 if Nl‘ (l’l’l) = 07

forl <i,j <d. A
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A stochastic process represents a system, usually evolving along time, which
incorporates an element of randomness, as opposed to a deterministic process.

The independent sequences of random variables, the Markov chains and the
martingales have been presented above. In the present chapter, we investigate more
general real stochastic processes, indexed by T C R, with ¢ € T representing the
time, in a wide sense. Depending on the context, when T = N or R, they are called
sequences of random variables—in short random sequences, stochastic processes
with continuous or discrete time, signals, times series, etc.

First, we generalize to stochastic processes the notions of distributions, distri-
bution functions, etc., already encountered in the previous chapters for random
sequences. Then, we study some typical families of stochastic processes, with
a stress on their asymptotic behavior: stationary or ergodic processes, ARMA
processes, processes with independent increments such as the Brownian motion,
point processes—especially renewal and Poisson processes, jump Markov processes
and semi-Markov processes will be especially investigated in the final chapter.

4.1 General Notions

We will first define general stochastic elements, and then extend to stochastic
processes notions such as distributions, stopping times, and results such as the law
of large numbers, central limit theorem.

Let (2, F) and (E, &) be two measurable spaces. In probability theory, a
measurable function X : (Q, F) — (E, &), that is such that X" 1() c F, is
called a stochastic element.

The stochastic elements may take values in any measurable space. If E = R (R9,
d>1,RN=RxRx---, RR), then X is a real random variable (random vector,
random sequence or stochastic process with discrete time, stochastic process with
continuous time).
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It is worth noticing that even in the general theory of stochastic processes, T is
typically a subset of R, as we will assume thereafter. For any fixed w € €, the
function t — X, (w) is called a trajectory or realization of the process. The value
of this function is determined by the result of a random phenomenon at the time ¢
of its observation. For example, one may observe tossing of a coin, the fluctuations
of the generations of a population, the day temperature in a given place, etc. If the
trajectories of the process are continuous functions (on the left or on the right), the
process itself is said to be continuous (on the left or on the right).

In general, if (E, &) = (RT, B(RT)), where T is any convenient set of indices,
a stochastic element can be represented as a family of real random variables X =
(Xt)teT- It can also be regarded as a function of two variables

X:QxT— R
(w,1) — X;(w)

such that X; is a real random variable defined on (€2, F) for any fixed ¢. If T is
a totally ordered enumerable set (as N or R ), then X is called a time series. If
T = R9, withd > 1 or one of its subsets, the process is a multidimensional process.
IfE = (R? )T, with d > 1, it is a multivariate or vector process.

The canonical space of a real process X = (X;);eT with distribution Px is
the triple (RT, B(RT), Px). Generally, we will consider that the real stochastic
processes are defined on their canonical spaces.

Note that a function 6; : RT —> RT is called a translation (or shift) operator
on RT if and only if 6;(x;) = x;4, forall s,z € T and all x = (x;) € RT. When
T = N, 6, is the n-th iterate of the one step translation operator ; (also denoted by
6, see above Definition 3.21).

A stochastic process X defined on (€2, F, P) is said to be an L? process if X; €
LP(Q, F,P) forallt € T, for p € N*. For p = 1 it is also said to be integrable,
and for p = 2 to be a second order process.

Here are some classical examples of stochastic processes, the sinusoidal signals,
the Gaussian processes, and the ARMA processes.

> Example 4.1 (Sinusoidal Signal) For the process defined by
X; = AcosQQnvt +¢), t€eR,

@ is called the phase, A the amplitude and v the frequency. These parameters can
be either constant or random. For instance, if A and v are real constants and ¢ is a
random variable, the signal is a monochromatic wave with random phase. <

> Example 4.2 (Gaussian White Noise) Let (g;);cz be such that &, ~ N(0, 1) for
allt € T and E (¢,&1,) = O for all 11 # 1,. The process (¢;) is called a Gaussian
white noise. <
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> Example 4.3 (Gaussian Process) Let X = (X;);eT be such that the vector
(X4, ..., Xs,) is a Gaussian vector for all integers n and all 71, . . ., #,. The process
X is said to be Gaussian. <

Definition 4.4 A sequence of random variables X = (X,),cz is called an auto-
regressive moving-average process with orders p and g, or ARMA(p, q), if

p q
Xn + Zaan—i =g+ ijsn—j, n e,
i=1 j=1

where ¢ is a Gaussian white noise, p and ¢ are integers and ay,...,a, and
by, ..., by are all real numbers, with a, # 0 and b, # 0.

This type of processes is often used for modeling signals. If g = 0, the process
is said to be an auto-regressive process, or AR(p). This latter models for example
economical data depending linearly of the p past values, up to a fluctuation—the
noise. If a = —1 and p = 1, it is a random walk. If p = 0, the process is said to be
a moving-average process, or MA(g).

The ARMA processes can also be indexed by N, by fixing the value of
Xo, ..., Xp, as shown in Exercise 4.1.

> Example 4.5 (MA(1) Process) Let ¢ be a Gaussian white noise with variance
o2 and let (X5) be a sequence of random variables such that X, = be,—1 + &5,
forn > 0, with X9 = &g. The vector (Xo, ..., X,) is the linear transform of the
Gaussian vector (&g, ..., &,), and hence is a Gaussian vector too, that is centered.
Forn>1landm > 1,

Cov (Xy, Xm) = szSn—ISm—l +bEen—16m +Eepem—1) + Eepen
0 if [n —m| > 2,

= { bo? if[n —m| =1,
b2+ Do? ifn=m.

Finally, we compute Var Xg = 02, Cov (Xo, X1) = bo? and Cov (Xg, X;m) = 0
forallm > 1. <

Definition 4.6 Let (2, F) be a measurable set.

1. If F; is a o-algebra included in F for all ¢t € T, and if 7y C F; forall s < ¢,
then F = (F;)ser is called a filtration of (€2, F). Especially, if X = (X;)ser 1S
a stochastic process, the filtration F = (0 (Xs;s < t)):eT is called the natural
filtration of X.
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2. A stochastic process X is said to be adapted to a filtration (F; ), if forall ¢ > 0,
the random variable X, is F;-measurable.

Obviously, every process is adapted to its natural filtration. For investigating
stochastic processes, it is necessary to extend the probability space (2, F, P) by
including a filtration F = (F;)seT; then (2, F, F, P) is called a stochastic basis.
Unless otherwise stated, the filtration will be the natural filtration of the studied
process.

Theorem-Definition 4.7 Let F be a filtration.
A random variable T : (2, F) — Ry such that (T <t) € F;, forallt e Ry, is
called an F-stopping time. Then, the family of events

Fr={AeF : ANT <t)e Fi, t e Ry}
is a o-algebra, called the o-algebra of events previous to T .

A stopping time adapted to the natural filtration of some stochastic process is said
to be adapted to this process. The properties of the stopping times taking values in
R4 derive directly from the properties of stopping times taking values in N studied
in Chap. 2. Note that for any stopping time 7', and for the translation operator 6 for
seRy,wehave (Tobs =t+s5)=(T =1).

Definition 4.8 Let X = (X;);eT be a stochastic process defined on a probability
space (2, F,P), where T C R.

1. The probability Px = P o X~ ! defined on (RT, B(RT)) by
Px(B) =P(X € B), B e B®RD),

is called the distribution of X.
2. The probabilities PP, . ,, defined by

,,,,, (Bl X ... x By) =P(Xy € By,..., Xy, € By),
fort; < --- < t,,t; € T, are called the finite dimensional distributions of X.
More generally, the restriction of Px to RS for any S C T is called the marginal
distribution of X on S.

3. The functions F;, . ;, defined by

Fiootn 1, o x0) =P(Xyy <x1,.00, Xy, < X0),

n

fort; <--- <t,,t; € Tand x; € R, are called the finite dimensional distribution
functions of X.
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> Example 4.9 (Finite Dimensional Distribution Functions) Let X be a positive
random variable with distribution function F. Let X be the stochastic process
defined by X; = X — (t A X) for ¢t > 0. Its one-dimensional distribution functions
are given by
Fr(x)=PX; <x)=PX; <x, X <)+ P(X; <x,X >1)
=PO<x,X<H)+PX—-t=<x,X>1)
=Ft)+ F(t+x)— F@t)=F(t+x), x>0,

for t > 0, and its two-dimensional distribution functions are

Fiin(x1,x2) = F((x1 + 1) A (2 + 1) + F((x1 + 1) A f2)
+FMH A2 +12)— 2F(t V), x1>0,x>0,

fortyy > 0ettr > 0. <

For a given family of distribution functions, does a stochastic process on some
probability space exist with these functions as distribution functions? The answer
may be positive, for instance under the conditions given by the following theorem,
which we state without proof.

Theorem 4.10 (Kolmogorov) Let (Fy, . ;) forti < --- < t, in T, be a family
of distribution functions satisfying for any (x1,...,xn) € R" the two following
coherence conditions:
1. for any permutation (i1, ...,in) of (1,...,n),

Fl‘l,m,tn (xl, e xn) = Ft,'l ,,,,, ti, (xil P xi,,);
2. forallk € [1,n — 1],

Ft];“wtk;“wtll ()C1, ey Xk +OO, ceey +OO) = Ftlsmatk ()Cl, ey Xk).

Then, there exists a stochastic process X = (X;)ieT defined on some
probability space (2, F, P) such that

P(Xy = x1,..0, Xiy = x0) = Fiy g, (15000, X)),

n

For stochastic processes, the notion of equivalence takes the following form.

Definition 4.11 Let X = (X;);er and Y = (¥;);eT be two stochastic pro-
cesses both defined on the same probability space (2, F, P) and taking values in
(R4, B(R?)). They are said to be:
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1. weakly stochastically equivalent if for all (¢, ...,t,) € T", all (By,..., By) €
B(R?Y)" and all n € N*,

P(Xs € B1,..., Xy, € By) =P, € By, ..., Y, € By). 4.1)
2. stochastically equivalent if
PX;=Y)=1, teT. 4.2)

Then, Y is called a version of X.
3. indistinguishable if

P(X, =Y,,VteT) =1. 4.3)

The trajectories of two indistinguishable processes are a.s. equal. This latter property
is stronger than the two former ones; precisely

43) = 4.2) = “4.1).
The converse implications do not hold, as the following example shows.

D> Example 4.12 Let Z be a continuous positive random variable. Let X and Y
be two processes indexed by R, defined by X; = 0 for all r and ¥; = 1(z—).
These two processes are stochastically equivalent, but not indistinguishable. Indeed,
P(X; #Y;) =P(Z=1t)=0,forallt > 0,but P(X; =Y;,Vt > 0) =0. <

Definition 4.13 A stochastic process X = (X;);cpr is said to be stochastically
continuous at s € R if, for all £ > 0,

tlim P(X; — Xs| > ¢) =0.
—S

Note that stochastic continuity does not imply continuity of the trajectories of the
process.

Most of the probabilistic notions defined for sequences of random variables
indexed by N in Chap. 1 extend naturally to stochastic processes indexed by R .

Definition 4.14 Let X be a stochastic process. The quantities
d
E(X;' ... X1, deN n eN. > n=n,

i=1

are called the order » moments of X, when they are finite.
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Especially, E X; is called the mean value at time ¢ and Var X, the instantaneous
variance. The latter is also called power by analogy to the electric tension X; in a
resistance, for which E (X tz) is the instantaneous power.

The natural extension of the covariance matrix for finite families is the covariance
function.

Definition 4.15 Let X be a stochastic process. The function Rx: T x T — R
defined by

Rx(t1, ) = Cov (X1, X2) =E (X, X1,) — (E X¢)(E Xyy),

is called the covariance function of the process.

4.1.1 Properties of Covariance Functions
1. If Rx takes values in R, then X is a second order process, and Var X; = Rx (¢, t).

2. A covariance function is a positive semi-definite function. Indeed, for all
(c1,...,cy) € R", since covariance is bilinear,

ZZC’C/RX(t”t/) = (COV(ZC,X, , Zc/th

i=1 j=1
n
=Var<ZCini> >0
i=1

3. For a centered process,
Rx(11,)* < Rx (11, 1) Rx (12, 12),
by Cauchy-Schwarz inequality.
The moments of a stochastic process are obtained by averaging over 2. They are
called space averages. Another notion of average exists for processes, on the set of

indices T; here we take T = N for simplification.

Definition 4.16 Let X = (X)), en be a second order random sequence. The random
variable

X= 1 X,
N»H}rlooNZ "
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is called the time mean of X and the random variable

N

1

X(m) = lim X, X

( ) N> oo N Z nan+m
n=1

is called the (mean) time power of X on m € N*. Limit is taken in the sense of

convergence in mean square.

The time mean is linear as is the expectation. If Y = aX + b, then Y(m) =
a*X(m) as for the variance. In the next section, we will make precise the links
between space and time averages.

The different notions of convergence defined in Chap. | for random sequences
indexed by N extend to stochastic processes indexed by R in a natural way. The
next extension of the large numbers law has been proven for randomly indexed
sequences in Theorem 1.93 in Chap. 1; the next proof is an interesting alternative. It
is then completed by a central limit theorem.

Theorem 4.17 Let (X,,) be an integrable i.i.d. random sequence. If (Ny)ser, is a
stochastic process taking values in N*, a.s. finite for all t, independent of (X,) and
converging to infinity a.s. when t tends to infinity, then

1 5.
N(X1+.-.+XN,)2>EX1, t — +o0.
t

Proof Set X, = (X1 +---+ X,)/n forn > 1. By the strong law of large numbers,
X, converges to E X almost surely, that is on Q2 \ A, where A = {w : Y, (w) /4
[E X1}. Note that (X, (w)(w)) is a sub-sequence of (X, (w)), and set B = {w :
Ni(w) 4 oo} and C = {w : X;N;(w)(w) 4 E X 1}. Then C C AN B, and the
proof is completed. O

Theorem 4.18 (Anscombe) Let (X,),ent be an ii.d. random sequence with
centered distribution with finite variance o2 If (Nt)ier, is a stochastic process
taking values in N*, a.s. finite for all t, independent of (X,) and converging to
infinity a.s. when t tends to infinity, then

1 D
Xi+--+ Xn,) — N(@©,1), 1— +oo.
a\/Nt( 1 Ny) O, D

Proof Set S, = X1+ --- + X;. We have

E(eitsN,/GJN,) — E(Zeitsn/GJnll(Nt:n)) — ZP(M = n)E (eitS,,/or\/n)’

n>1 n>1
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SO

|]E (eitSNt/a\/Nt) _ e—Gzt2/2| S Z]P)(N[ — I’l)|E (eitSn/aJn) _ e—azt2/2|.

n>1

On the one hand, due to the central limit theorem, S,, /o /n converges in distribution

to a standard Gaussian variable, so, for all ¢ > 0, we obtain |IE(e”S"/*/”) —
2.2

e~ 1"/2| < g forn > n,. Therefore,

3 PN, = n)[E (@Y7 — ¢ < 6PN, > n,) <.

n>ng

On the other hand,

ng
S PN, = m)[E (€"$/oV) — e P < 2B(N; < no),

n=1

and the result follows because N; converges to infinity and P(N; < n,) tends to zero

when ¢ tends to infinity. O

Results of the same type can be stated for more general functionals, as for example
the ergodic theorems.

4.2  Stationarity and Ergodicity

We will study here classical properties of processes taking values in R. First, a
stochastic process is stationary if it is invariant by translation of time, that is to say
if it has no interne clock.

Definition 4.19 Let X = (X,);cT be a stochastic process. It is said to be strictly
stationary if

1

Xt oeos Xo) ~ KXty ooy Xop)s (ut1, o ty) € T
> Example 4.20 (Some Stationary Sequences) An ii.d. random sequence is sta-
tionary. An ergodic Markov chain whose initial distribution is the stationary

distribution is stationary. <

Ergodicity, a notion of invariance on the space €2, has been introduced for Markov
chains in Chap. 3. It extends to general random sequences as follows.
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Definition 4.21 A random sequence (X,,) is said to be strictly ergodic:

1. at order 1 if for any real number x the random variable

1 N-1
lim 1
n=0
is constant;
2. at order 2 if for all real numbers x; and x, the random variable

N-1

. 1
Nl_l)I;I‘rloo N Z;) ]l(anxqun+m§x2)
n=|

is constant for all m € N.

Since P(X, < x) = E[1(x,<x)], a random sequence is ergodic at order 1 (order 2)
if the distributions of the random variables X,, (pairs (X,, X+, )) can be obtained
by time average.

> Example 4.22 (Markov Chains) Any aperiodic positive recurrent Markov chain
is ergodic, as seen in Chap. 3. <

D> Example 4.23 The stochastic process modeling the sound coming out of a tape
recorder, with null ageing but parasite noise, is ergodic. Indeed, the observation of
one long-time recording is obviously similar to the observation of several short-time
recordings. This process is also obviously stationary. <

The following convergence result is of paramount importance in statistics. We
state it without proof.

Theorem 4.24 (Ergodic) If (X,) is a strictly stationary and ergodic random
sequence and if g : R —> R is a Borel function, then

N—1

1

N E g(Xn) — Eg(Xo), N — +oo.
n=0

In ergodic theory, the strict stationarity and ergodicity of a stochastic process are
expressed using set transformations.

Let (E, £, ) be a measured set. A measurable function S : E — E is called a
transformation of E; we denote by Sx the image of an element x € E and we set
ST'!B={x e E:SxeB},forBek.

A set B of £ is said to be S-invariant if /,L(S_l(B)) = wu(B). The collection of
S-invariant sets constitutes a o-field, denoted by 7. The function § is said to be
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p-invariant if the elements of £ are all S-invariant. The transformation is said to be
strictly ergodic if for all B € £,

S7'(By=B = u(B)=0orl.

The following convergence result, stated without proof, is also called the
pointwise ergodic theorem.

Theorem 4.25 (Birkhoff) Let u be a finite measure on a measurable set (E, £).
If i is S-invariant for some transformation S : E — E, then, for all u-integrable
functions f : (E, &, u) —> R,

n—1

i Zf(Six) — f(x) m—ae., x€E,
i=0

where f : E — R is a u-integrable function such that f(x) = f(Sx) p-a.e., and

1

d =
/Ef(t) pu(t) W(E)

f FOdR@).
E

If, moreover, S is ergodic, then

f) = /E FOdu®), ae.

Note that if p is a probability, then by definition, f is the conditional expectation of
fgivenJ,or f =E(f|J).If Sis ergodic, then f = E f a.s.

D> Example 4.26 (Interpretation in Physics) Let us observe at discrete times a
system evolving in an Euclidean space E.

Let xg, x1, x2, ... be the points successively occupied by the system. Let S
transform the elements of E through x, = Sx,_, forn > 1. Let $” denote the
n-th iterate of S, that is x, = S"xo. Thus, the sequence (xg, x1, x2, ..., X5, ...) can
be written (xg, Sxo, S2x9, ..., 8"x, .. .) and is called an orbit of the point xo (or
trajectory).

Let f : E — R be a function whose values f(x) express a physical measure
(speed, temperature, pressure, etc.) at x € E. Thanks to former experiments, the
measure f(x) is known to be subject to error and the empirical mean [ f (xg) +
f(x1) + -+ f(xn—1)]/n to give a better approximation of the true measured
quantity. For n large enough, this mean is close to the limit

1n—l
. i
Jim ’§0f(S x),
1=

which should be equal to the true physical quantity. <
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Any stochastic process X = (X¢);eT on (2, F, P), taking values in E, can be
considered as defined by

X/(0) = X(Sw), weQ, teT,

where X : Q — E is a random variable and {S; : 2 — Q :t € T} is a group
of transformations. If T = N, then §,, is the n-th iterate of some transformation
S : 2 — Q. Clearly, the process is strictly stationary if

P((S)™'(A) =P(A), AeF, 1€T,
and is strictly ergodic at order 1 if
VAeF, (S)'(A)=A,1eT = P(A)=0orl.

Any real valued process X = (X;);eT can be defined on its canonic space
[RT, B(RT), Px) by setting

X/(w)=w(@), wecRT reT.

Strict stationarity thus appears as a property of invariance of the probability Px with
respect to translation operators, that is Px o 9,_1 =Px forallt € T, or

Px(6, ' (B)) =P(B), BeBR"Y), reT.

Strict ergodicity can be expressed using 6;-invariant sets. Precisely, the process is
ergodic if

VB e BRY), 6'(B)=B,1eT = Px(B)=0orl.

For a real stationary and integrable random sequence (Xj), Birkhoff’s ergodic
theorem yields

1 n—1
a.s.
D Xi = X =EXo| ),
i=0

where J is the o-field of 81-invariant sets. For an ergodic sequence—such that 6;-
invariant events have probability 0 or 1, the limitis X = E X.

Note that, according to Kolmogorov 0—1 law, any i.i.d. sequence is stationary and
ergodic.

Further, the entropy rate of a random sequence has been defined in Chap. 1.
The entropy rate of a continuous time stochastic process indexed by R is defined
similarly.
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Definition 4.27 Let X = (X;),egr, be a stochastic process such that the marginal
distribution of X = (X;);¢[0,7] has a density p)T( with respect either to the Lebesgue
or to the counting measure, for all 7. The entropy up to time 7 of X is the entropy
of its marginal distribution, that is

Hr (X) = —E log p¥ (X).

If Hy (X)/ T has a limit when T tends to infinity, this limit is called the entropy rate
of the process and is denoted by H(X).

The next result, stated here for stationary and ergodic sequences is of paramount
importance in information theory. Note that its proof is based on Birkhoff’s ergodic
theorem.

Theorem 4.28 (Ergodic Theorem of Information Theory) Let X = (X;);eT,
with T = Ry or N, be a stationary and ergodic stochastic process. Suppose that
the marginal distribution of X = (X;):e[0,1] has a density p)T( with respect to the
Lebesgue or counting measure, for all T. If the entropy rate H(X) is finite, then
—log p)T( (X)/T converges in mean and a.s. to H(X).

Explicit expressions of H(X) for jump Markov and semi-Markov processes will
be developed in the next chapter.

Other notions of stationarity exist, less strict and more convenient for applica-
tions; we define here only first and second order stationarity.

Definition 4.29 A second order process X is said to be weakly stationary:

1. to the order 1 if E X, = E X;, = mx forall (11, 2) € T.
2. to the order 2 if, moreover, Rx(t1,t) = Rx(t; + t,t» + 7) forall T € T and
(t1, 1) € T2

The mean and the variance of X; are then constant in ¢, but the X; do not
necessarily have the same distribution.

> Example 4.30 (Sinusoidal Signal (Continuation of Example 4.1)) Let X be as
defined in Example 4.1. Suppose that v is constant, and that ¢ ~ U[—m, 7] and A
are independent variables. Then E X; = 0 and Rx(t1, ) = E (A?) cos[2mv(t; —
12)]/2; hence, this sinusoidal signal is second order stationary. Clearly, it is not
strictly stationary. <

For a second order process, stationarity induces weak stationarity. If X is a
Gaussian process, the converse holds true. Indeed, then E (X;, ..., X;,) = M is
constant and the covariance matrix I'yx, . x, is a matrix valued function of the
differences ¢; — ;. The distribution of (X;,, ..., X;,) depends only on M and I'.
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Further, the covariance function of a weakly stationary process can be written
Rx(t1, ) = rx(t — t1), where rx is an even function of only one variable, called
the auto-correlation function of the process. The faster X fluctuates, the faster rx
decreases.

If X is a second order process, the Cauchy-Schwarz inequality yields |rx (2 —
t1)] < rx(0). The function rx is positive definite; if, moreover, it is continuous,
then it has a spectral representation—by Bochner’s theorem, meaning that it is the
Fourier transform of a bounded positive measure. For example, if T = R (Z),

rx(t) = / ™ ju(dh)
A

where A = R ([0, 2]) and pu is called the spectral measure of the process. If
is absolutely continuous with respect to the Lebesgue measure, its density is called
the spectral density of the process. The term “spectral” designs what is connected to
frequencies.

Then the integral representation of the process follows—by Karhunen’s theorem,

X; = / eMZ(dh),
A

where Z is a second order process with independent increments—see next section,
indexed by A.

> Example 4.31 (White Noise) Let € = (g,),ecz be a stationary to the order 2
centered process, with Vare;,, = 1 and

2 1 )
E (gpem) = 0 = / MM m #£ .
0 2

Therefore, the spectral density of € is constant. All the frequencies are represented
with the same power in the signal, hence its name: white noise, by analogy to white
light from an incandescent body. <

> Example 4.32 (ARMA Processes) An MA(q) process X is obtained from a white
noise € by composition with the function f(xi,...,x,) = ZZ:I brx,_k, called
linear filter. We compute E (X, X,,1,,) = ZZ: | bkbmk. The spectral density of X
is obtained from that of &, that is

1 d —ikA 2
hx () = zn‘Zbke ‘ .
k=1
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In the same way, an AR(p) process Y is obtained by recursive filtering of order p
from €, and

1 d —ika| 72
G = ‘ > age ‘
k=1

Finally, the spectral density of an ARMA(p, q) process Z is

LI e
27 | Zlf:l akefik)\|2 ’

for A € [0, 27]. <

hz (L) =

Just as strict stationarity, strict ergodicity is rarely satisfied in applications, and
hence weaker notions of ergodicity are considered.

Definition 4.33 A random sequence (X},) is said to be:

1. first order (or mean) ergodic if the random variable X is a.s. constant.

2. second order ergodic if, moreover, for all T € R, the random variable X(m) is
a.s. constant.

Mean ergodicity is satisfied under the following simple condition.

Proposition 4.34 A random sequence (Xy) is first order ergodic if and only if its
covariance function Rx is summable.

Proof For a centered sequence X.
We compute

1 N—1 2 1 N N
E(, X_(j)x) = 2 2 O Rx(nm)

n=1 m=1

If the sequence is first order ergodic, ]1, Zflvzl X, converges in L? to a constant, so

IN—
Z Rx(n,m) < +o00.

||[\12

Conversely, if Rx is summable,

N—-1N-1

ZZRX(nm)—>O N — +oo.

n=0 n=0

1
N2

and the sequence is first order ergodic. O



190 4 Continuous Time Stochastic Processes

Stationarity and ergodicity are not equivalent, as shown by the following
examples.

> Example 4.35 A process X constant with respect to ¢, equal to some random
variable V, is obviously stationary. Since X = V/, it is first order ergodic only if V
is a.s. constant.

By linearity of integration, the sum of two ergodic processes is ergodic too. The
sum of two independent second order stationary processes is second order stationary
too. On the contrary, the sum of two dependent second order stationary processes is
not stationary in general.

Finally, let X be a process and let V be a random variable independent of X. If X
is stationary, the processes (V X;) and (X; + V) are stationary too; on the contrary,
if X is ergodic, (V X;) and (X; + V) are ergodic too only if V is a.s. constant. <

If the process is only weakly stationary and ergodic, the ergodic theorem does not
hold in general. Still, the following result holds true. In this case, the mean power is
equal to the instantaneous power.

Proposition 4.36 If (X,) is stationary and ergodic to the order 2, then EX, = X
forn € Nand X(m) = rx(m) + X2 a.s. form € N.

Proof The random variable X is a.s. constant, and all the X, have the same
distribution, so E X, = X by linearity. In the same way, since EX,, = E X, ,, =X
and rx(m) = E (X, Xn+m) — E X, E X,,1,, does not depend on n, we can write

2

1 N-1 1 N-1
xm) = Y B (X Xogm) — (N ;)X) ,

n=0
and rx(m) = X(m) — X_ as. 0
Thus, the moments of the marginal distributions of weakly stationary and ergodic
sequences appear to be characterized by time averaging, that is by the knowledge
of one—and only one—full trajectory. This explains the importance of ergodicity in
the statistical study of marginal distributions.

4.3  Processes with Independent Increments

Numerous types of processes have independent increments, among which we will
present the Brownian motion, Poisson processes, compound Poisson processes, etc.
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Definition 4.37 Let X = (X;);eT be a stochastic process adapted to a filtration
(Ft),where T=RorT =N.

1. The process is said have independent increments if for all s < ¢ in T, the random
variable X; — X is independent of the o -algebra Fy.

2. The process is said to have stationary increments if the distribution of X, — Xj,
fors < tin T, depends only on t — s.

3. A process with independent and stationary increments is said to be homogeneous
(with respect to time).

When T = N and X is a process with independent increments, the random variables
Xi9o Xt; — X195 .- +» Xy, — Xi,_, are independent for all » € Nand fp < #1 <

- < ty. Since X, = Z?ZI(X,- — Xi_1), knowing a process with independent
increments is equivalent to knowing its increments. If X is a homogeneous process,
then necessarily, Xo = 0 a.s.

Let us now present a typical process with independent increments, the Brownian
motion. It is an example of Gaussian, ergodic, non stationary process, with
independent increments. A trajectory of a Brownian motion is shown in Fig. 4.1.

Definition 4.38 The process W = (W;);cRr, taking values in R, with independent
increments and such that Wy = 0, and for all 0 < #1 < 1,

Wtz - th NN(Oa t2 - tl)a

is called a standard Brownian motion (or Wiener process) with parameters v and o2,

0.5

0.0 A

-1.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4.1 A trajectory of a Brownian motion
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The process W = (W;);er, taking values in R, with independent increments and
such that Wy = 0, and for all 0 < 11 < 17,

Wy, — Wiy ~ N(w(ta — 1), (12 — 11)),

is called a Brownian motion with drift parameter v and diffusion parameter 2.

Considering the random walk (S,) of Example 1.77, with p = 1/2, yields an
elementary construction of a Brownian motion. Indeed, setting

X =Swur;, teRy

defines a continuous time process. If t = nT, then E X; = 0 and Var X; = tsz/T.
Let now ¢ be fixed. If both s and T tend to O, then the variance of X; remains fixed
and non null if and only if s ~ /T

Let us set s> = o>T where 62 € R?* and define a process W by

Wi(w) = TligloX[(w), teRy, we Q.

Taking the limit yields E W; = 0 and Var W; = ot.

Let us show that W, ~ A(0, o%t) by determining its distribution function at any
weR . Setr =w/sand T = t/n. If w and ¢ are fixed and T tends to 0, since
s ~ VT, we getr ~ /n. Since P[X,7 = (2k—n)s] = (}) p* (1 — p)" ¥, we obtain
by applying de Moivre-Laplace theorem

r/J/n 1

2
P(S, <rs)~ f e "2 ds,
" —00 \/27‘[
or, since 7/ /n = w/volt,
w/No2t 1
P(W, < w) ~ / e 1,
—00 «/27'[

Let us show that if 0 < #; < £, < t3, then W, — W;; and W;; — W,, are
independent. If 0 < n; < ny < n3, then the number of “heads” obtained between
the n1-th and the n>-th tossings is independent of the number of “heads” obtained
between the n>-th and n3-th tossings. Hence S,,, — S, and S,,;, — S, are independent,
and taking the limit yields the result.

Finally, let us compute the covariance function of W. If #; < 1, then W;, — W},
and W;, — Wy are independent. But Wy = 0, so

]E [(Wt2 - Wt])Wl‘l] = []E (Wt2 - Wt])]E Wt] = 0
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Since we also have E[(W;,, — W;)W,] = EW,W,,) — E (W,zl), we obtain
E (W, W;) = EW? =011, or Rw(t1,12) = 0(11 A1p).

Note that X, /+/n = Sinr1/+/n gives an approximation of W; that can be simulated
as a sum of Bernoulli variables.

4.4 Point Processes on the Line

A point process is a stochastic process consisting of a finite or enumerable family
of points set at random in an arbitrary space, for example gravel on a road, stars in a
part of the sky, times of occurrences of failures of a given system, positions of one
of the basis A, C, G, T of an DNA sequence, etc.

In a mathematical sense, a point can be multiple. Even if the space to which
the considered points belong can be any topological space, we will here consider
RY, for d > 1. After some general notions on point processes we will present the
renewal process and the Poisson process on R .

4.4.1 Basics on General Point Processes
The point processes are naturally defined through random point measures.

Definition 4.39 Let 1 be a measure on (R, B(R?)) and let (x;);c; be a sequence
of points in R?, with I ¢ N. If

/L:Z(Sxiy

iel

and if u(K) < +oo for all compact subsets K of R4, then p is called a point
measure on R¥.

A point measure is a discrete measure. The multiplicity of x € R? is u({x}).
When 1({x}) = 0 or 1 for all x € R?, then y is said to be simple. If u({x}) = 1 for
all x € RY, the measure (A) is equal to the number of points belonging to A, for
all A € B(RY).

Definition 4.40 A function i : Q x B(RY) — R such that u(w, -) is a point
measure on R? for all @ is called a random point measure on R9.

When p(w, {x}) = 0 or 1 for all ® and x, the random measure w is also said to be
simple.
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> Example 4.41 Let n points in R? be set at random positions X1, ..., X,. A
random point measure on R is defined by setting for all A € B(R?),

1(A) =) 8x,(A),
i=1

the random number of points belonging to A. <

> Example 4.42 Let (T,),en+ be the sequence of times in Ry of failures of a
system. Then setting for all s < 7 in R,

uls. 1) =Y 87, ([s. 1]),

i>1

the random number of failures observed in the time interval [s, ¢], defines a random
point measure on R . <

Let M, (Rd) denote the set of all point measures on R4,
Definition 4.43 A function N : Q@ x B(RY) — M » (R9) such that N(-, A) are
random variables for all A € B(RY) is called a point process.
The variables N (-, A), taking values in N, are called the counting random
variables of the point process N, and the measure m defined by
m(A) =E[N(, A)], A eBRY,

is its mean measure.

Each point process N is associated with the random point measure p defined by

n(, A) = /ﬂAdM = N(, A).

It is said to be simple if m is simple.

Thus, N(w, A) counts the number of points of the process belonging to A for the
outcome w € 2. Note that m(A) can be infinite even when N (-, A) is a.s. finite.

If m has a density A : RY — Ry, that is m(dx) = A(x)dx or P[N(-,dx) =
1] = A(x)dx, or

m(A):/A(x)dx, A € B(RY),
A

then the function A, called the intensity of the process N, is locally summable—
meaning that A is integrable over all bounded rectangles of R,
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Let us present some properties of integration with respect to a point measure.
Let f : R? — R be a Borel function and y a point measure on R?. The integral
of f with respect to u is

nif) = / fdp = Z/ fds = "85(f) =) f(x).
R? ier VR iel iel

The mean is
EN(f) = f fdm,
Rd

and the Laplace functional associated with N is defined as

Ly(f)=E (eXP [— /1;1 JENC, dX)D .

Especially, if f is positive and if N = anl 8x,, then

Ly(f) =E (exp| = D" £ x0)]).

n>1

The Laplace functional characterizes the distribution of a point process. Indeed,
the distribution of a point process N is given by its finite-dimensional distributions,
that is by the distributions of all the random vectors (N (-, A1), ..., N(-, A)) for
n>1land Ay,..., A, € B(Rd). The function

LN<Xn:s,-]lAi> —E (exp [ - Xn:s;N(~, A,-)])

i=1 i=1

is precisely the Laplace transform of the distribution of (N (-, A1), ..., N(:, Ay))
that characterizes its distribution.

4.4.2 Renewal Processes

Renewal processes are punctual processes defined on R, modeling many experi-
ments in applied probability—in reliability, queues, insurance, risk theory. .. They
are also valuable theoretical tools for investigating more complex processes, such as
regenerative, Markov or semi-Markov processes. A renewal process can be regarded
as a random walk with positive increments; the times between occurring events are
ii.d. It is not a Markovian process but a semi-Markov process, that is studied by
specific methods.
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Xi(w)Xp(w) Xnlw)
So(w) =0 Sl (w)Sz(w) Sn,fl(w) Sn (UJ)
t

Fig. 4.2 A trajectory of a renewal process, on (N; = n)

Definition 4.44 Let (X,) be an i.i.d. sequence of positive variables. Set
So=0 and S, =X1+---+Xn, n>1 4.4)

The random sequence (S,) is called a renewal process. The random times S, are
called renewal times. The associated counting process is defined by N = (Ny)ser,
where

Ny =) Ao(Sy) =inf(n > 0:S, <1}, teRy. (4.5)

n>0

Generally, (X)) is the sequence of inter-arrival times of some sequence of events,
and N; counts the number of events in the time interval [0, 7]. Note that (N; = n) =
(Sp—1 <t < §;) and that Np = 1. A trajectory of a renewal process is shown in
Fig.4.2.

When each of the variables X, has an exponential distribution with parameter A,
the counting process N is called a Poisson process with parameter A, in which case
itis usual to set Ny = O; the Poisson processes will be especially investigated in the
next section.

A counting process can also be regarded as a simple point process. Indeed,

N(,A) = ZSSn (A), AeBRy), (4.6)

n>0
defines a point process, and we obtain for A = [0, 7],
NI‘:N('a [Oat])a tZO

D> Example 4.45 (A Renewal Process in Reliability) A new component begins
operating at time Sy = 0. Let X denote its lifetime. When it fails, it is automatically
and instantly replaced by a new identical component. When the latter fails after a
time X», it is renewed, and so on.

If (X,,) is supposed to be i.i.d., then (4.4) defines a renewal process (S,) whose
distribution is that of the sum of the life durations of the components. The counting
process (Ny);er, gives the number of components used in [0, ¢], of which the last
component still works at time ¢. <
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The expectation of the counting process at time ¢ (or expected number of
renewals), is

m(@t) =EN, =) P(Sy <0,

n>0

and m is called the renewal function. If the variables X, are not degenerated, this
function is well-defined. Therefore, we will suppose thereafter that F/(0) < 1, where
F is the distribution function of X,. The distribution function of S, is the n-th
Lebesgue-Stieltjes convolution of F, that is

F*™ () = f F*=D¢ — x)dF(x),
Ry
with F*O(r) = 1g, () and F* (1) = F(¢), so that

m(t) = Z F*™ 1), teRy. 4.7

n>0
The mean measure m of the point process (4.6) is given by
m(A) =EN(,A), AeBRy),

and we have m(t) = m ([0, t]) pour t € R,. Note that we use the same notation for
both the renewal function and the mean measure.

When F is absolutely continuous with respect to the Lebesgue measure, the
derivative of the renewal function A(f) = m/(¢) is called the renewal density (or
renewal rate) of the process.

Proposition 4.46 The renewal function is increasing and finite.

Proof For all s > 0, we have N;ys > Ny, so m is increasing.
Assume that F(¢) < 1 forz > 0. Then F*™ () < [F(¢)]" for all n, and hence

1

2
MO S THFO+FOF +0

so m(t) is finite. The general case is omitted. |

Relation (4.7) implies straightforwardly that m (¢) is a solution of

t
m() =1 +/ m(t —x)dF(x), teR;.
0
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This equation is a particular case of the scalar renewal equation
h=g+Fxh, (4.8)

where /i and g are functions bounded on the finite intervals of R . The solution of
this equation is determined by use of the renewal function m, as follows.

Proposition 4.47 If g: Ry — R is bounded on the finite intervals of R, then

(4.8) has a unique solution h: R, — R that is bounded on the finite intervals of
R, given by

t
h(t) =mx*g(t) = / gt = x)dm(x),
0

where m is defined by (4.7), and extended to R_ by 0.

Proof We deduce from (4.7) that
Fx(msxg)=Fxg+FPxgt...=mxg—g.

Thus, m * g is a solution of (4.8).

Suppose that k: Ry — R is another solution of (4.8) bounded on the finite
intervals of R. Then h — k = F « (h — k). Since F*™ tends to zero when n tends
to infinity and k — & is bounded, it follows that 1 — k = F*M & (h — k) and hence
k=h. |

Many extensions of renewal processes exist.

If Sop is a nonnegative variable not identically zero, independent of (X,,) and with

distribution function Fy different from the renewal distribution function F', then the
process (.5,) is said to be delayed or modified. When

Fo(x) = l/x[l—F(u)]du, x >0,
w Jo

the delayed renewal process is said to be stationary.
Definition 4.48 Let (Y,) and (Z,) be two i.i.d. nonnegative independent random
sequences, with respective distribution functions G and H. The associated process
defined by

So=0 and S, =S,.1+Y.+Z,, n>1,

is called an alternated renewal process.
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Y1 (w) Y2 (w) Yg(w)

i) 2 () L Zs(e) |

OZSO(LU) Sl(w) Sz(w) Sg(u})

Fig. 4.3 A trajectory of an alternated renewal process

Such an alternated renewal process (S;) is shown to be a renewal process in the
sense of Definition 4.44 by setting X, = Y, + Z, and F = G * H. A trajectory of
an alternated renewal process is shown in Fig. 4.3.

Still another extension is the stopped renewal process, also called transient
renewal process.

Definition 4.49 Let (X,) be an i.i.d. random sequence taking values in R, with
defective distribution function F. The associated renewal process defined by (4.4)
is called a stopped renewal process.

The life duration of this process is T = Zflv:l X,,, where N is the number of events
at the stopping time of the process, defined by

(N=n)= (X1 <+00,..., X,y <+00, X1 = +00).

> Example 4.50 If N has a geometric distribution on N* with parameter ¢, then the
distribution function of T is

Fr) =Y F*™)1 -9 q.

n>1

Indeed, P(N = n) = (1 — ¢)" !¢ for n > 1, and the distribution function of T
follows by Point 2. of Proposition 1.73. <

> Example 4.51 (Risk Process in Insurance) Let u > 0 be the initial capital of an
insurance company. Let (S,) be the sequence of times at which accidents occur,
and let N = (N;) denote the associated counting process. Let (¥;;) be the sequence
of compensations paid at each accident. The capital of the company at time ¢ is
U =u-+ct— ZQJ;I Y,, where c is the rate of subscriptions in [0, 7]. A trajectory
of such a process is shown in Fig. 4.4. The time until ruin is 7.

The linked problems are the ruin in a given time interval, that is P(U; < 0)
with limit P(lim;,—, 1 o U; < 0), and the mean viability of the company, that is
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Ylj(w) :
“ Ya(w) |
/Yg(w) :
Yi(w)
Xl(w) XQ(OJ) Xg(w) X4(w) :
0 S1(UJ) SQ(UJ) Sg(w) S4(w)

Fig. 4.4 A trajectory of a risk process

EU;, > 0. Different approaches exist for solving these issues, involving either
renewal theory or martingale theory. Note that a particular case of risk process,
the Cramér-Lundberg process, will be presented in the next section. <

Renewal process can also be considered in the vector case. Another extension
will also be studied below, the Markov renewal process.

4.4.3 Poisson Processes

The renewal process whose counting process is a Poisson process is the most used
in modeling real experiments. We keep the notation of the preceding section.

Definition 4.52 If X,, ~ £(}) for n € N*, the counting process N = (N;);er,
defined by (4.5) p. 195 for t € R, with Ny = 0, is called a homogeneous Poisson
process with intensity (or parameter) A.

Thanks to the absence of memory of the exponential distribution, the probability
that an event occurs for the first time after time s + ¢ given that it did not occur
before time ¢ is equal to the probability that it occurs after time s. More generally,

the following result holds true.

Theorem 4.53 A Poisson process N with intensity A is homogeneous—with inde-
pendent and stationary increments—and satisfies Ny ~ P(At) fort € Ry.

Proof Let us show first that N; ~ P(\t) for all + > 0. We have

P(Ny = k) =P(Sk = 1) = P(Sk41 = 0).
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According to Example 1.66, S, ~ y(n, 1), so

X 1 n—1 A k
P(S, < x) =/ Ae Ml dr =1 —e*“Z( *) ,
o (n—1)! ~ K

and hence P(N; = k) = e M (x)* /k!.
Let us now show that the increments of the process are independent. We begin
by determining the joint distribution of N, and N, for 0 <s < t.

P(Ny =k, N, =n) =

=P(Sr <s5 < Sk+1, Sy <t < Sn—i—l)

1 —x
= / ]l[xk,le[(s))»"Jr e x”“]l]xmxnﬂl(t)dxl coedXng
n+1

where E, = {0 < x1 < --- < x,,}. Thus, by Fubini’s theorem,
P(Ng =k, Ny =n) =

+00
= / Lo [OA Ly toof (D)dx1 - .. dxy / re Ml dx,
t

=A"e—“/ Ly 1) Ly oo (Ddx1 . . dxy
E,

Y Sk (t — s)nfk
k! (n —k)!

=)»"ef)‘t/ dxl...dxk/ dxpi1...dx, =\'e ,
E F

where £E = {0 < x1 < - <xx <stand F = {s < X441 < -+ < x5 < t}.
Therefore,

OO L XY

P(N; =k Ny =Ny =D =e¢ ™" n

and the result follows. O

Note that Theorem 4.53 can also be taken as an alternative definition of the
Poisson process, under the following form.

Definition 4.54 A stochastic process N = (N;);er, is a homogeneous Poisson
process if it is a process with independent and stationary increments such that N; —
Ny ~P(A(t —s)) forallt > s > 0.
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Indeed, the associated renewal process can be defined by So = 0 and then S,
recursively though the relation (N; = n) = (S, < t < Sp+1). Setting X,, =
Sy — Sp_1, we get P(X| > t) = P(N; = 0) = e~*, and hence X| ~ £(1).

The Poisson process can also be defined more qualitatively, as follows.

Definition 4.55 A stochastic process N = (N;);er, is a Poisson process if it is a
process with independent increments such that t —> N, () is for almost all w an
increasing step function with jumps of size 1.

Let us now define the compound Poisson process.

Definition 4.56 Let N be a (homogeneous) Poisson process. Let (¥;,) be an i.i.d.
random sequence with finite mean and variance, and independent of N. The
stochastic process & defined on R by

N
=) Y, >0, (4.9)
n=1

with & = 0if N, = 0, is called a (homogeneous) compound Poisson process.
The compound Poisson process has independent increments.

> Example 4.57 (Cramér-Lundberg Process) With the notation of Example 4.51,
we suppose here that (Y),) is i.i.d. with distribution function G with mean p and that
N is a homogeneous Poisson process with intensity A independent of (Y¥},). Thus, the
process & defined by (4.9) is a homogeneous compound Poisson process, and (U;)
is called a Cramér-Lundberg process.

We compute EU; = u + ct — EN,EY] = u + ct — Aut. This gives a condition
of viability of the company, namely ¢ — A > 0. The probability of ruin before time
tisr(t) =P(U; <0) =P(& > u + ct). Since the distribution function of & is

n n

P& =0 =Y P(D ¥isxNo=n)=)P(} ¥ =x)PN =n
n>0 i=1 n>0 i=1
= Ze*’\’ ()Z!)n G* ™ (x),

n>0

we get

A"
r(t) = Z e M ( n') G* ™ (u + ct).
n>0 ’
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The probability of ruin of the company—in other words the probability that the life
duration T of the process is finite—is

P( lim U, <0)=P(T < 4o00) = lim r(t),
t——+o0 ——+0o0

but this quantity remains difficult to compute under this form. <

4.4.4 Asymptotic Results for Renewal Processes

All throughout this section, (S,) will be a renewal process such that 0 < p =
E X1 < +o00, with counting process (N;);cr, - Recall that m(z) = E N; defines the
renewal function of the process, and that we suppose F(0) < 1, where F is the
distribution function of X,,.

Proposition 4.58 The following statements hold true:

1. S, tends a.s. to infinity when n tends to infinity.
2. S, and N; are a.s. finite for alln € Nandt € RY.
3. N; tends a.s. to infinity and m(t) tends to infinity when t tends to infinity.

Proof

1. The law of large numbers implies that S, /n tends a.s. to u, so S, tends a.s. to
infinity.
2. Since (S, <t) = (N; > n + 1), it derives from Point 1. that N; is a.s. finite.
Moreover, (S, < +00) = N_(X; < +o0) forn € N¥, and X, is P-a.s.
finite, so S, is a.s. finite for all n € N*,
3. We compute

P( lim N; < +00) = P[Up=1(X, = +00)] < Y P(X, = +00) = 0.
t— 400

n>1

Therefore, N; tends a.s. to infinity, from which it follows that m(¢) tends to
infinity. O

Proposition 4.59 The following convergence holds true,

1 as. 1
N, — , t— +4o0.
t I

The induced convergence of m(t)/t to 1/p is known as the elementary renewal
theorem.
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Proof Thanks to the law of large numbers, S, /n tends a.s. to . Moreover, N; is
a.s. finite and tends a.s. to infinity when ¢ tends to infinity. Thanks to Theorem 4.17,
Sn,/N; tends a.s. to u, and the inequality

S, t Sn+1 N +1
< <
Ny T N N+1 N

yields the result. O

> Example 4.60 (Cramér-Lundberg Process (Continuation of Example 4.57)) We
have

Ny
1 u N; 1
U, = — X,.
gor= g te tN,nz_:l"

According to Proposition 4.59, N;/t tends to 1/A. Hence, thanks to Theorem 4.17,
U/t tends a.s. to ¢ — /A when ¢ tends to infinity. <

The next result is an extension of the central limit theorem to renewal processes.
Theorem 4.61 If0 < 0> = Var X| < 400, then

Ny —t
Pt/ i>./\/'(0, 1), t— +oo.

Vie?/ud

3 /N, 1
)
o2\t pu
We compute P(Z, < x) = P(N; < 1/u+xy/ta2/u3). If n; denotes the integer part
of t/u + xy/ta2/u3, then

Proof Set

Sy, — t—
Mthx):P(Sn,zt):P( ny nzM> ntﬂ>.

oJn; T o

By the central limit theorem, (S, — n;1)/0 \/n; tends in distribution to a standard
Gaussian variable. Moreover, n; ~ x\/ to2/u3+1t/u when t tends to infinity. Hence

t—nu ~ —x\/toz/u and o /n; = o/t/p,s0 (t —n;u)/o/n; = —x, and the
conclusion follows. O
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We state without proof the following two renewal theorems. A distribution
function F is said to be arithmetic with period § if the distribution is concentrated
on{xo+ndé : n € N}.

Theorem 4.62 (Blackwell’s Renewal) If F is a non arithmetic distribution func-
tion on Ry, then, forall h > 0,

m(t) —m(t —h) — h, t — +oo. (4.10)
w

If F is arithmetic with period §, the above result remains valid provided that % is a
multiple of §.

> Example 4.63 (Poiison Process) 1In this case, F(t) = (1 — e‘“)ll]R+ (1), whose
Laplace transformis F'(s) = A/(A+s). Moreover, Ny = 0, so the Laplace transform
of m is

- R
m(t)=;(F(s)) =) ="

Inverting Laplace transform yields m () = At. Thus, the relation m () —m(t —h) =
Ah holds for all ¢ > h. <

In order to state the key renewal theorem, let us introduce the direct Riemann
integrable functions.

Definition 4.64 Let g be a function defined on R .. Let m, (a) denote the maximum
and m,, (a) the minimum of g on [(n — 1)a, na], for alla > 0. Then g is said to be
direct Riemann integrable if ), m,(a) and }_,. m,(a) are finite for all a > 0
and if limg—0 Y ooy m, (a) = limg—0 > oo my(a).

D> Example 4.65 Any nonnegative, decreasing function integrable over R is direct
Riemann integrable. Indeed, we get

> “(ma(a) —m, (@) < g(0).

n>1

Any nonnegative function integrable over R and with a compact support is also
direct Riemann integrable. <

Theorem 4.66 (Key Renewal) If Fis a non arithmetic distribution function on R
and if g : Ry —> Ry is direct Riemann integrable, then

t +00
/ gt —x)dm(x) — ! / gx)dx, t— +oo. 4.11)
0 nJo
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If F is arithmetic with period & and if } ;. g(x + k) < +oo, then

8
m* g(x +nd) — Zg(x + k8), n — +oo.
k>0

Note that Blackwell’s renewal theorem and the key renewal theorem are equivalent
in the sense that (4.10) and (4.11) are equivalent.

For stopping renewal processes, the key renewal theorem takes the following
form.

Proposition 4.67 Let F be a defective distribution functionon Ry. If g : Ry —>
R is direct Riemann integrable and such that g(400) = limy_, 1 o g(t) exists, then
the solution of the renewal equation (4.8) p. 198 satisfies

g(+00)

h(t) =mxg(t) — , — +00,
q

where ¢ = 1 — F(+00).

Proof According to Proposition 4.47, h(t) = m x g(t). According to relation (4.7)
p- 197, the limit of m(¢) when ¢ tends to infinity is

1 1

1+ F(400) + F(4+00)” + | F(+00) g

9

and the result follows. O

> Example 4.68 (Cramér-Lundberg Process (Continuation or Example 4.57)) Let
us determine the probability of ruin of the Cramér-Lundberg process. Set {(u) =
P(T = 400) =1 —P(T < +00), where T is the time of ruin of the process. We
compute

+0o0 u+-cs
((”)2/ / P(Sy eds, Y1 €dy, T o0y = 400)
0 0
+0o0 u+-cs
= / / P(S1 € ds)P(Y1 €dy, T o605 = 400 | S1 =)
0 0
+o0 u+cs
= / ]P)(Sl € ds)/ P(T (o) OS = 400 | Sl =y, Yl — y)]P)(Yl IS dy)
0 0

+0oo u+cs
= / )\e_)‘sds/ C(u+cs —y)dG(y).
0 0
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By the change of variable v = u + cs, we get

—+00 v
cu) = AO/ e_)‘O(”_“)dv/ (v —Y)dG(y) = roe™g(u),
u 0

where

+00 v
g = [ [ roe 0 Pavew - »aG o).
u 0
and A9 = XA/c. Differentiating this relation gives

¢’ () = hoe*" [Rog ) + g’ ()] = Aot (u) — 20G * L (u) = Aol — Gl ¢ (u).

Integrating the above differential equation on [0, «] yields

¢(u) =¢(0) +)»o/0 Cu =y —=G6Hyldy, u=0. (4.12)

This equation is a renewal equation with defective distribution function with density
L(y) = rl[l — G(y)], where L(4+00) = Ao < 1. The case L(4+00) = 1 is
excluded because then ¢ (#) = O for all u € R.. Thanks to the key renewal theorem
for stopped renewal processes,

()
or, finally, since ¢ (400) = 1,
A
co=1-""
c

This allows the computation of ¢ («) for all u € R through (4.12).

We have considered only nonnegative Yj. The result remains valid for any
variable Y7: it is sufficient to take —oo and u + c¢s instead of 0 and u + cs as bounds
of the second integral in the above computation of ¢ (u). <

4.5 Exercises

V Exercise 4.1 (The AR(1) Process on N) Let (g,),cn be a white noise with
variance 1. Let a €] — 1, 1[. An AR(1) process on N is defined by setting X,, =
aX,_1+ &, forn > 0and X¢ = &.

1. a. Write X,, as a function of &g, ..., &, and determine its distribution.
b. Determine the characteristic function of X,,.
c. Give the distribution of (Xo, ..., X,).
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2. Show that:
a. (X,) converges in distribution and give the limit.
b. (Xo + ---+ X,)/n converges in probability to 0;
c. (Xo+ -+ X,)/+/n converges in distribution; give the limit.

Solution

1. a. Forn > 1, we have X,, = Z'Il,:la”_”el,, and hence E X,, = 0 and

1 — g2 +D)
VarX, =a” +---4+a>+1= )
1—a
b. Since (eq,...,&,) is a Gaussian vector, X, is a Gaussian variable, so the

characteristic function of X, is

ox, (1) = exp(_ 1 — g2m+D 2)

1 —a?
c. The vector (X, ..., X;) is a linear transform of the standard Gaussian vector
(e1, ..., &n), sois a Gaussian vector too, with mean (0, . . ., 0) and covariance

matrix given by
J+k

J
Cov (X, Xj0) = E(X;X 40 =E [ (Y al™Pe,) () al7z,)]
p=0 q=0

J 2(j+1)
1 —a¥
— gk 20 _ k
=a E at= . . e

2. a. Clearly, ¢y, (¢) tends to exp[—t2 /(1—a*)],s0 X, converges in distribution to
a random variable with distribution A/(0, 1/(1 — a?)).
b. We compute

1 Xo 1 a1y
n(X0+"'+Xn): ) +nz;(aX,;1+8i):nZ;Xi+nZ£8i
i= = =

a a 1 &
n(Xo+---+Xn>—an+nZ;si.
1=

We know that X, ~ AN(0, (1 —a?>®*D)/(1 —a?)), so X,/n converges to
0 in probability. Moreover, by the strong law of large numbers, Y _&;/n
converges a.s. to 0. Therefore, (1 — a)(Xo + - - - + X,)/n converges to 0 in
probability, and hence (Xo + - - - + X;)/n too.
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c. In the same way, by the central limit theorem, ) ;_ &; //n converges in dis-
tribution to A/(0, 1), so (1 —a)(Xo+- - -+ X,)/+/n too, from which it follows
that (Xo + - - - + X,,)/+/n converges in distribution to (0, 1/(1 — a)?). A

V Exercise 4.2 (Generalization of AR and MA Processes) Let (y,) be a
sequence of i.i.d. standard random variables. Let 6 €] — 1, 1[.

1.SetV, =y +0y+---+60""1y, forn e N*.
a. Show that V,, converges in square mean—use the Cauchy criterion.
b. Set V.=3,.,6"!y;. Show that V, tends a.s. to V.
2. Let Xo be a random variable independent of (y;). Set X,, = 0X,—1 + y;, for
n>1.
a. Show that V,, and X,, — 60" X have the same distribution forn > 1.
b. Let p denote the distribution of V. Compute the mean and the variance of p.
Show that X, tends in distribution to p.
c. Assume that Xo ~ p. Show that X, ~ p for all n.

Solution
1. a. We have

E (Vi — Vitm)? = E O Y1 + -+ 0"y )?

n—1
= OPUE () +2) 0" O E (i Yme )
i=0 i<j

so that E (V,,, — Vn+m)2 = Z?;ol §2m+1) which converges to 0.
b. According to Proposition 1.80, it is sufficient to show that P(lim |V,, — V| >
g) = 0, or, using Borel-Cantelli lemma, that ano PV, — V| > ¢) is finite

for all ¢ > 0.
Chebyshev’s inequality gives P(|V, — V| > &) < E[(V, — V)?]/%.
Moreover,
2 1 5 ) 92n
E[(Vn - V) ] :E[(9"+ yn+2+9n+ yn+3+...) ]: 1_92’

soP(|V, = V]| >¢) < 92"/(1 — 92)82, and the sum of the series is finite.
2. a. We can write X,, — 0" Xy = 9"71)/1 ~+ -+ ++60yu—_1+ yn, from which the result
follows, because all the y; have the same distribution.
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b. The sequence (V,) converges to V in square mean—so also in mean, hence
EV =lim, 4 EV, =0and

n
VarV =E(V?) = Jim E (V}) = im Z;e?'E WA
i=
b 1T 6% 1

Tacheo 102 162
Since X, — 6" Xy ~ V,, we can write X,, = 0"Xy + U,, where U, is
a variable with the same distribution as V,,. Therefore, (U,) converges in
distribution to p too, and since (8" Xo) converges a.s. to 0, (X,,) converges

in distribution to p.

c. We have Xg ~ V50 60X ~ 3 _ 0" yy1 or 80X ~ 3, 0"y,. Since
Y1 ~ Yo, it follows that X; ~ Zn>0 0" yp; since y,, ~ yn+f for all n, we
obtain X| ~ Zn>0 0" Yn+1, that isX] ~V ~ p. The result follows by

induction.
Note that if p = A(0, 1) and y;, ~ N (0, 1), then X,, is an AR(1) process
and (V;,) is an MA(n — 1) process on N. A

V Exercise 4.3 (Sinusoidal Signals and Stationarity) Let X be the stochastic
process defined in Example 4.1. The variables v, A and ¢ are not supposed to be
constant, unless specifically stated. The variable ¢ takes values in [0, 27 [.

1. Assume that A = 1 and ¢ ~ U (0, 27).
a. Show that if v is a.s. constant, then X is strictly stationary to the order 1.
b. Show that if v is continuous with density f and is independent of ¢, then X is
weakly stationary to the order 2; determine its spectral density 4.
2. Suppose that v and ¢ are constant.
a. Give a necessary and sufficient condition on A for X to be weakly stationary
to the order 1.
b. Can X be weakly stationary to the order 2?
c. Let S = X + Y. Give a necessary and sufficient condition on A and B for §
to be weakly stationary to the order 1, and then to the order 2.
3. Suppose that v is a.s. constant, that A is nonnegative and that A and ¢ are
independent.
a. Give a necessary and sufficient condition on ¢ for X to be weakly stationary
to the order 1 and then 2.
b. Give a necessary and sufficient condition on ¢ for X to be strictly stationary
to the order 1.
c. Let Z be the stochastic process defined by

Z; = Acos(vt + ¢) + Bsin(vt 4+ ¢),
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where ¢ ~ U(0,2m) is independent of A and B. Show that Z is weakly
stationary to the order 2.

Solution

1. a. Setting ¥ = vt + ¢, we obtain X;4+,; = cos(vt + ). Since ¢ ~ U[O0, 2]
and vt is constant for a fixed t, we have ¢ ~ U[vt, vt + 2], and hence
Xt ~ Xt+-[.
b. Wehave E X; = 0and 2E (X; X;+;) = E (cos[v(2t + 1) +2¢]) +E [cos(vT)].
We compute

E (cos[v(2t + ) 4+ 2¢]) =
= E (cos[v(2t + 7)])E [cos2e)] — E (sin[v(2t + 7)) E [sin(2¢)] = 0,

and E [cos(2¢)] = E [sin(2¢p)] = 0, so X is weakly stationary to the order 2,
with r(t) = fR cos(At) f(A)dA. Since r is even and real,

r(t) = / e hO)dL = / 2cos(AT)h(L)dA,
R R,

and hence h(X) = [f(—A) + fF(M)]/4.
2. a. We have E X; = [cos(vt)]E A, so X is weakly stationary to the order 1 if and
only if A is centered.

b. We compute 2E (X; X;4+;) = [cos(2vt + vT) + cos(vt)]E (A2). This is a
function of 7 only if E (A%) = 0, that is to say if A is null. Then the signal
itself is null.

c. Therefore, E S; = [cos(vt)]E A + [sin(v¢)]E B, which is constant in ¢ if and
only if A and B are centered. Moreover,

E (8Si+7r) = (Var A + Var B) cos(vt) + (Var A — Var B) cos(2vt + vr1)
+Cov (A, B) sin(2vt + v1),
so S is weakly stationary to the order 2 if A and B are uncorrelated and have
the same variance.
3. a. We have E X; = [cos(v?)E (cos ¢) — sin(vt)E (sin ¢)]E A, which is constant

int if E (cos ¢) = E (singp) = 0. Similarly,

2E (X Xr40) =

= [cos(vT) + cos(vt + vT)E (cos 2¢) — sin(2vt + vT)E (sin 2¢)|E (Az)

so X is weakly stationary to the order 2 if K (cos¢) = E(sing) = 0 and
E (cos2¢) = E (sin2¢) = 0.
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b. The variables X, = A cos(vt + ¢ + vt) and X; = A cos(vt + ¢) have the
same distribution if (A, ¢ + vt) ~ (A, @) for all t. This condition is fulfilled
if and only if ¢ ~ U(0, 27r) and is independent of A.

c. Since E[cos(vt + ¢)] = E[sin(vr + ¢)] = 0, the process is centered. Set
X; = Acos(vt + ¢) and Y; = B sin(vt 4 ¢). We have

E (ZtZt+r) =E (XIXI+'L’) +E (Yth+r) +E (XthJrr) +E (YIXI‘+'L')'

We compute 2E (X;X;+;) = cos(vr)E (A% and 2E(Y; Yiq:) =
cos(v7)E (B2), and also 2E (X:Yi4¢) = sin(wt)E(AB) = —2E (Y} X;4+¢),
so Z is indeed weakly stationary to the order 2. A

V Exercise 4.4 (Alternated Renewal Process and Availability) Consider a com-
ponent starting operating at time So = 0. When it fails, it is renewed. When the
second fails, it is renewed and so on. Suppose the sequence of time durations (X,,)
of the successive components is i.i.d. and that of the replacing times (Y;) is also
i.i.d. and is independent of (X,,).

1. Show that (S;), defined by So = 0and S, = S,—1 + X,, + Y, forn > 1,isa
renewal process.
2. a. Write the event E;=“the system is in good shape at time ¢ as a function of
(X») and (Sy).
b. Infer from a. the instantaneous availability A(z) = P(E;).
c. f EX| +EY; < 400, compute the limit availability A = lim;— 40 A(2).

Solution

1. The sequence (7,) = (X, + Y,) is i.i.d., and, according to Definition 4.44, (S,)
is indeed a renewal process.
2. a. We can write

Eo= =0 J[ UG =00 G > 1= 5]

n>1

b. Let F and G denote the respective distribution functions of X and Y;. The
distribution function of 7T}, is

t
Ht)=F*xG(t) = / F({t—x)dG(x), t=>0.
0
Therefore, setting R(¢) = 1 — F(¢),

A() =P(E) =P(X1 > 1)+ Y P(Sy <1, Xng1 > 1 — Sp).

n>1
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We compute
P(Sp =1, Xnt1 > 1= 8p) = E[Ls5,<nP(Xng1 > 1 = S | Su)]
= /O R = WAH ).
Thus

t
A(r) = / R(t — y)dM(y) = R % m(t),
0

where M(1) = Y, H*™ (1) and m(t) = 1g, (1) + M(t). Finally, the key
renewal theorem yields

EX

A= lim AQ@) = ,
t—+00 EX+EY

Note that the same problem will be modelled by a semi-Markov process in
Exercise 5.5. A

V Exercise 4.5 (Poisson Process) The notation is that of Sect. 4.4.3.

1. Set U, = S,/n, forn € N*. Show that (U,) and (n'/>(AU, — 1)) converge in
distribution and give the limits.

2. Set V,, = N, /n, for n € N*. Determine the characteristic function of V,,. Show
that (V,,) and ((n/2)Y%(V, — 1)) converge in distribution; give the limits.

Solution

1. Thanks to the law of large numbers, U,, converges a.s. to 1/A, and, thanks to the
central limit theorem, n'/2(AU, — 1) converges in distribution to the standard
normal distribution.

2. We compute

E (™M) = e P(N, = k) =M ) Gaeyt _ e HI=¢"),
k!
k>0 k>0
Hence ¢y, (1) = e—ind—e) converges to ¢/**, and V), converges in distribution
to A. Moreover, Z, = /n(V, — A)/vA = Ny/~/nx — «/nk, so ¢z, W) =
exp[—An(l — e"/NmRyY iy /nA], which converges to e*/2 and Z, converges
in distribution to the standard normal distribution. A
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V Exercise 4.6 (Superposition and Decomposition of Poisson Processes)

1.

Let N and N be two independent Poisson processes with respective intensities
A > 0 and pu > 0. Show that the process K, defined by K; = N; + N;, is a
Poisson process, called superposition. Give its intensity.

. Let N be a Poisson process with intensity A > 0, whose arrivals are of two

different types, A and B, with respective probabilities p and 1 — p independent of
the arrivals times. Show that the counting process M = (M;);cr, of the arrivals
of type A is a Poisson process. Give its intensity.

Solution

1. We can write K; — Ky = (N; — Ny) + (ﬁ, — ﬁs), so K is indeed a process with

independent increments. Moreover,

P(K; =n) =Y PN = m)P(N, =n —m)

m=0

_ Xn: oM o)™ e M ()™= — o~ (it [+ w)t]" )

m! (n—m)! n!

m=0

One can show similarly that K,y — K; ~ P((A + u)s). Proposition 4.54
yields that K is a Poisson process, with intensity A + .

. By definition, the process N is the counting process of the renewal process

associated with the sequence of arrivals times of A and B. These times are i.i.d.,
hence in particular the arrivals times of A are i.i.d., and the associated counting
process is M. Moreover,

P(M, = k) = ZP(M, =k | N, = n)P(N; = n)

n>k
n k —k —\t ()‘t)n —pAt (p)‘t)k
- 1— p) =P .
;k(k)p (=py e, =e¢ k!

One can show similarly that M, ; — M; ~ P(pAs) so that M is a Poisson process
with intensity pA. A
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This chapter is devoted to jump Markov processes and finite semi-Markov pro-
cesses. In both cases, the index is considered as the calender time, continuously
counted over the positive real line. Markov processes are continuous-time processes
that share the Markov property with the discrete-time Markov chains. Their future
evolution conditional to the past depends only on the last occupied state. Their
extension to the so-called semi-Markov processes naturally arises in many types of
applications. The future evolution of a semi-Markov process given the past depends
on the occupied state too, but also on the time elapsed since the last transition.

Detailed notions on homogeneous jump Markov processes with discrete (count-
able) state spaces will be presented. Some basic notions on semi-Markov processes
with finite state spaces will follow, illustrated through typical examples.

5.1 Jump Markov Processes

We will investigate in this section mainly the jump Markov process. Since a jump
Markov process is a Markov process which is constant between two successive
jumps, we will first present some basic notions on Markov processes with continu-
ous time.

Thereafter, X = (X;);cr, will denote a process defined on a stochastic basis
(2, F, (Ft)ter,, P), taking values in a finite or enumerable set E. The filtration
will be supposed to be the natural filtration of the process, even if, of course, X can
satisfy the Markov property below with respect to a larger filtration.

5.1.1 Markov Processes

A stochastic process is called a Markov process if its future values given the past
and the present depend only on the present. Especially, processes with independent
increments—Brownian motion, Poisson processes—are Markov processes.
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Definition 5.1 A stochastic process X = (X;);cr,, with state space E, is called
a Markov process—with respect to its natural filtration (F;),cr, if it satisfies the
Markov property

P(Xoqr = j | Fo) = P(Xepr = j | X)) as.,
for all non-negative real numbers ¢ and s and all j € E.
The Markov property can also be written
PXspr =J 1 Xsy =i, ..., X, =in, Xy = 1) =P(Xspy = j | Xy =10),

foralln e N,all0 <s; <--- <5, <s,0<t,and all states iy, ..., i,,i, jin E.
If moreover the above conditional probability does not depend on s, then

P(Xs4e = j | Xy =i) = Pi(i,j), icE,jeEands>0,t>0,

and the process X is said to be homogeneous with respect to time.

We will study here only homogeneous processes. The trajectories t —> X, ()
will be assumed to be continuous on the right for the discrete topology, with a.s.
finite limits on the left; such a process is said to be cadlag. Similarly to Markov
chains, the distribution of Xy is called the initial distribution of the process, and we
willsetP;(-) =P(- | Xo=i)andE;(-) =E(- | Xo =i).

D> Example 5.2 (Process with Independent Increments) Any continuous-time pro-

cess X = (X;);er, with independentincrements and taking values in Z is a Markov
process. Indeed, for all nonnegative real numbers s and ¢,

P(Xsri=j | F) =) PXeps=j. Xy =i|F)

i€Z

@D ..

= Z]l(sti)P(Xert —X;=j—i|Xy)
i€Z

=Y PXopr=j, Xs =i | Xo) =P(Xsr = j | Xy).
i€Z

Note that we can also write

P X5 =j | Fy) = ZE[]I(XS:i)]l(XHt—XS:j—i) | Fil
i€’

1
S Y L= Ex, - x,=j—]- (5.1)
i€Z

(1) because X is Fy-measurable and X4, — X is independent of Fy.
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The random variable defined in (5.1) is measurable for the o -algebra generated
by X, so is equal to P(Xs4; = j | X;), and the process satisfies the Markov
property. <

Proposition 5.3 The past and the future of a Markov process are independent given
the present, that is, forall A € F; = 0 (Xs,s <t)and B € 0(X5,s > 1),

PANB|X,)=PA | X)P(B| X;) a.s.
Proof We compute

P(ANB | X)) =E[EAalp | Fo) | Xl =E[IAEp | F1) | Xi]
=E[MAEp | X)) | Xi ] =E[14 | X;JEp | X)
=P(A | X)P(B | Xy),

where all equalities hold a.s. O

Definition 5.4 A Markov process X is said to satisfy the strong Markov property if
for any stopping time T adapted to X and all s > 0, on (T < 4-00),

P(Xr4s =Jj | Fr) =Px; (X5 =j) as,

where Fr = {A € F : Vn € N, AN (T = n) € F,}is the o-algebra of events
previous to 7. Then, the Markov process is said to be strong.

Theorem 5.5 Let X be a strong Markov process, with state space E. If f :
ER+ Ri is a Borel function and T is a finite stopping time for X, then

Ei(foXob0r | Fr)=Ex,(foX), as.,ickE.
where 0 is the shift operator such that X; o 0y = Xy 4.

Proof Forafunction f o X = f(Xy,..., X)) WithO <f; <--- < .
We compute

EilfXyqr, .-, Xepar) | FTl =

P (X4 =ity ..oy Xy = in | Fr) fU1, ..., in).

Il
1%
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Thanks to the strong Markov property,
]P)i(thJrT = il, ey Xt;z+T = in | ]:T) =
=P Xpqr =in | Xpy_j417 =in-1) ... PiXyy4r =in | X7)
=Pi(Xy, =in | Xy = in—1) ... Pxp (Xyy = in)
ZPXT(thzil,...,Xt =ln)a

n

Therefore,

Ei[f(Xll+Ts '-'7XIn+T) | ]:T] :EXT[f(ths '-'7XI,,)]1

and the result follows. O

5.1.2 Transition Functions

Definition 5.6 A Markov process X is said to be a (pure) jump Markov process if,
whatever be its initial state, it evolves through isolated jumps from state to state, and
its trajectories are a.s. constant between the jumps.

To be exact, a jump time is a time where a change of state occurs. If (7},) is the
sequence of successive jump times of a jump Markov process X, for all n € N, we
have T, < Ty41 if T, < +ooand T;, = Ty if T,, = +00, and

Xi=Xr,, Th<t<Twt1, Tpn<+oo, n=>0.

A typical trajectory of such a process is shown in Fig. 5.1.
Clearly, any jump Markov process is a strong Markov process.

States

5 —

4
3 -
2 — e

1,7

0="Tow) Ti(w) To(w) T3(w) Ty(w) Times

Fig. 5.1 A trajectory of a jump Markov process
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Definition 5.7 A jump Markov process is said to be regular, or non explosive, if for
any initial state, the number of jumps in any finite time interval is a.s. finite.

Let ¢ = sup,>1 T, be the time duration of the process, a random variable taking

values in R;. If P(¢ = 400) = 1, the process is regular; otherwise, that is if
P(¢ < +o00) > 0, it is explosive.

For regularity criteria, see Theorem 5.31 and Proposition 5.33 below. The next
example explains the phenomenon of explosion.

> Example 5.8 Let (X,) be a sequence of independent random variables with
exponential distributions with parameters (1,). Setting S = >, . X,,, we have

. . 1
P(S = 400) > 0 if and only if Z L= +00.

n
n>1

Indeed, if P(S = +00) > 0, then anl 1/Ap =ES = +00, and

1 1
nnzl(l + 1/n) = anl 1/An

yields the converse. <

E (e %) =

Definition 5.9 Let X be a homogeneous jump Markov process. The family of
functions defined on Ry by t — P(i,j) = P(Xyqp = j | Xp = i), for i
and j in E, are called the transition functions of the process on E.

We will denote by P; the (possibly infinite) matrix (P (i, j))(, j)eExE» and consider
only processes such that Py(i, i) = 1.

Properties of Transition Functions

1.0< P(i,j) <1,foralliand jin E and ¢t > 0, because P; (i, -) is a probability.

2. ZjeE Pi(i,j) = 1,foralli € E and t > 0, because E is the set of all values
taken by X.

3. (Chapman-Kolmogorov equation)

Z Pi(i,k)Ps(k, j) = Prys(i, j), i,jeE, s>0,t>0.
keE

4. If lim,_, o+ P, (i, j) = &;j for alli € E, the process is said to be stochastically
continuous. If this property is satisfied uniformly in i, the transition function (or
semi-group) is said to be uniform.

Thanks to Chapman-Kolmogorov equation, the family {#; : ¢ > 0} equipped
with the composition PP, = P;4p is a semi-group. Indeed, the operation is
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commutative and associative, and / (the identity |E| x |E|-matrix) is a neutral
element; on the contrary, in general, a given element has no inverse in the family,
which therefore is not a group.

> Example 5.10 (Birth Process) Let X be a stochastic process with state space
E = N and transition function such that, when h — 0%,

Aih + o(h) ifj=i+1,
Pp(i, j)=11—=XAh+oh) ifj=i,
0 otherwise,

This is indeed a transition function satisfying the four above properties.
If, for instance, A; = A /i, then P; is uniform; on the contrary, it is not uniform if
Ai = iA. If A; = X for all i, the process is a Poisson process. <

The following proposition is a straightforward consequence of both the com-
pound probabilities formula and Markov property.

Proposition 5.11 Foralln € N, all nonnegativereals 0 <ty <t < --- < t,, and
all finite sequence of states iy, i1, ..., iy, we have

]P)(th =if,..., th =iy | Xto = iO) = Ptl—to(io, il) ce Ptn—t,,,l(in—la in),
and

P(Xo =io, Xyy = i1, ..., Xy, = in) = alio) Py (o, 1) - - - Ppy—t,_ (in—1, In),
where « denotes the initial distribution of the process.
Thus, the finite-dimensional distributions of a jump Markov process are character-
ized by its initial distribution and its transition function.

We state without proof the next result, necessary for proving the following one.

Theorem 5.12 (Lévy) For all given states i and j, P,(i, j) is either identically
null, or never null on R4..

Proposition 5.13 Let P; be the transition function of a jump Markov process.
1. If some t > 0 exists such that P;(i,i) = 1, then Ps(i,i) = 1 forall s € R;.

2| Pye(, j) — Pi(Qi, j) IS 1 = Pg(i,i) forallt > Oand (i, j) € E x E, and
hence P:(i, j) is uniformly continuous with respect to t.
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Proof

1. Lett > 0 be such that P, (i, i) = 1. Then, for any s < ¢,

0=1- P, i)=Y P, j) = P, P, j) > 0.
j#i

But, thanks to Lévy’s theorem, P;_s(i,i) > 0, so Ps(i, j) = Oforall j # i, and
hence Ps(i,i) = 1.
For s > t, it is sufficient to choose n such that s/n < ¢ for getting Ps(i, i) >
[Ps/n(iv l)]n > 1.
2. Let & > 0. We deduce from

Prye(i, j) = Pi(i, j) =Y Peli, ) Pr(k, j) — Po(i, I — Pe(i, )]

ki
that
—[1 = Pe(i, )] < —Pi(i, D11 = Pe(i, )] < Pryeli, j) — PG, )
<Y PG Pk, ) <D Peli k) < 1= Pe(i, i),
ki ki
and hence
| Prie(i, j) = Pi(i, j) 1< 1= Pe(iy i), (5.2)

Replacing ¢ by ¢ — ¢ in the above inequality for 0 < ¢ < ¢, we get
| P—e(i, j) — PG, j) I=1 P(i, ) — Pr—e (i, ) = 1 = Pe(i, i) (5.3)

The result follows from (5.2) and (5.3). |

5.1.3 Infinitesimal Generators and Kolmogorov'’s Equations

The transition function of a Markov process is identified from its generator through
the Kolmogorov’s equations.

Definition 5.14 The (infinitesimal) generator A = (a;;)(, j)eexe of a Markov
process X is given by the derivative on the right of the transition function P; at
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timet =0, or

ajj = lim s

=0t t

where [ is the identity matrix.

These quantities are always well-defined, but when i = j they may be equal to
—o0. The generator of a Markov process is such that a;; > 0 for all i # j and
ZjeE a;j = 0foralli. We seta; = —a;; > 0.

Definition 5.15 A state i is said to be stable if 0 < a; < 400, instantaneous if
a; = +o00, absorbing if a; = 0, and conservative if ZjeE ajj = 0.

A generator—or the associated process—of which all states are stable (instanta-
neous, conservative) is said to be stable (instantaneous, conservative).

At each passage in a stable state, the process will spend a.s. a non null and finite
time. On the contrary, it will a.s. jump instantaneously from an instantaneous state.
Finally, reaching an absorbing state, the process will remain there forever.

We state without proof the next result.

Theorem 5.16 Let X be a jump Markov process.
1. The trajectories of X are a.s. continuous on the right if and only if no
instantaneous states exist.

2. If E is finite, then no instantaneous states exist.
> Example 5.17 (Birth Process on N) The generator of this process is

Ao ifj=i+1,

aij =y—A; ifj=i,

0  otherwise,
for all integers i and j. Hence it is a conservative process. <
Theorem 5.18 (Kolmogorov’s Equations) If X is regular, then the transition

functions t —> P;(i, j) are continuously differentiable on R, for all states i and
J, and satisfy the equations

Pii.j)=Y auP (k. j) and P(i.j)=  Pi.kay.
keE keE
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In matrix form, the above equations become

d d
P, = AP d P, = P/A, 5.4
dt t ¢t an dt t t (5.4)

and are respectively called backward and forward Kolmogorov’s equations.

Proof We prove only the second part of the theorem for a finite E.
We deduce by differentiating with respect to s the Chapman-Kolmogorov
equation that

PG, j) =Y Pl.k)Pi(k, j),
keE

or, when s — 0T,

PG, j) =) anPi(k, j).

keE

The second equation is obtained symmetrically. O

The definition of uniformisable processes is necessary for stating the following
result.

Definition 5.19 A jump Markov process is said to be uniformisable if
supa; < +00.
ieE
The next result is a straightforward consequence of the theory of linear differential

equations.

Theorem 5.20 When the process is uniformisable, the common solution of Kol-
mogorov’s equations (5.4) is

k
t
P=ed =1+ § : k!Ak. (5.5)
k>1

Numerous methods for computing numerically the above solution of Kol-
mogorov’s equations exist: direct computation of the series (5.5) truncated at a
certain value of k, uniformisation—see Example 5.51 below, Laplace transform,
determination of the eigen-values and eigen-vectors, . ..
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Fig. 5.2 Graph of the

conservative process of /’\

Example 5.21

D> Example 5.21 Consider a conservative process with two states, say E = {0, 1},

with generator
<—A A >,
wo—u

with A > 0 and u > 0 (Fig.5.2). The two eigen-values of the generator A are

st =0and sy = —A — u, and (1, 1)’ and (A, —p)’ are two associated eigen-vectors.
Therefore,

etA — QDQ—I ,
where

1 A -1 1 M A 1 0
- - d D= .
© (1—u>’ ¢ )\+M<1 —1> " <06(“’”’)

So, finally,

P = et = 1 (lu)\>+e—(?»+lt)t< A —k)
A\ pa At \—p p )’

that is a closed-form expression. <

5.1.4 Embedded Chains and Classification of States

Let us begin by showing that the exit time of a given state of a Markov process
has an exponential distribution. The nature of the parameter and its connection
with the generator of the process will be specified later in Corollary 5.27. Note
the exit time of i is also the sojourn time in i (before first exit), or the hitting time of

E\{i}.

Proposition 5.22 [f the state i is not an absorbing state, then the exit time of i
has an exponential distribution with respect to P;, with parameter \; depending
oni.
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Proof Let T denote this first jump time. If 65 denotes the shift operator, then 77 o 6
is the time of the first jump after time s, and we have

Pi(T1 >s+1t) =Pi(Th >s5,T100s >1) =E;[Pi(T1 >5,T100s >t | Fs)]
= Ei[1q>5Pi(T1 005 >t | Fs)]
QE L= Pi(T1 > D] = B(T1 > )Pi(T} > 1).
(1) by the Markov property.
Set R(¢t) = P;(T1 > t). The above equation can be written R(s +1) = R(s)R(¢),

for all nonnegative reals s and ¢. This is Cauchy functional equation on R, whose
solution is well-known to be an exponential function, precisely

Ru) =Pi(T1 > u) = ¢ ""1g, (1),
with A; > 0; in other words, T1 ~ E(A;). O
Note that the expected sojourn time in an instantaneous state is null.

Proposition 5.23 The random variables T\ and X1, are independent with respect
to P; for all non absorbing i € E.

Proof Let B denote a subset of E\ {i}. We have

P; (X7, € B,T1 >s) =E;[P;(X7,005 € B,T1 > s | Fy)]
=E;[L7>0Pi(X7, 065 € B | Fy)]
=Pi(Th > 9)Pi(X7, € B),
if s > 0. ]
Now, let us consider the sequence of random variables (J,) defined by
Jp = Xr,, nsuchthat7, < +oo.
This is the sequence of the successive states visited by the process X. Clearly, it is
defined up to the explosion of the process—if explosion occurs; in this regard, it is
said to be minimal.
Theorem 5.24 Foralln € N, alli, j € E and all t > 0, we have:
1. ]P)(Jn+l =j L —T, =<t | ]:Tn) = ]P)(Jn+l =j L —T, =<t | Jn)s

2. PUns1=j, Tt — Ty <t |y =0) =Pi(Xp, = j)(1 — e~ ™),
3. Moreover, the sequence (J,,) is a Markov chain.
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Proof
1. We compute

Phpr1 =7 Ty1 =Ty <t | Fp,) = PXr,y = j, Thr1 — T <t | Fp)

@) .
_P(XT jan+1_TnSt|XT;z)

(1) by the strong Markov property.
2.8ince P(Jp41 = j, Tn1 —Tu <t | Jy=0) =P X7,y = j, Tnt1 —Tn <t |
Xr, = i), we have

. . 1 .
PUpst = jTps1 —Tp <t | Jn=i)= 2 Pi(Xy, = j. Ty < 1)

2
D (xr, = HPT <1)
D pi(Xp, = (1 —e M.

(1) by homogeneity, (2) by independence of X7, and 77 and (3) by Proposi-
tion 5.22.
3. Letting ¢ go to infinity in 2. yields the result. O

The chain (J,) is called the embedded Markov chain of the process, with transition
function P defined by P(i,j) = Pi(X7y, = Jj); see Corollary 5.27 below
for a closed-form expression. We check that P(i, j) > 0,P(,i) = 0 and

ZjeE P, j)=1.

The sojourn times in the different states are mutually independent given the
successive states visited by the process. Applying iteratively Theorem 5.24 and
Proposition 5.22 yields the following closed-form expression.

Corollary 5.25 For alln € N* all iy,...,iy—1 € E, allk = 1,...,n, and all
tr > 0, we have

P —To<ti,.... Ty —Th1 <ty | k=i, k>0) =
=P -To<tul|Jo=io)...P(T) —Tyh—1 <ty | Ju—1 = in—1)

— 1_[(1 Mktkﬂ
Theorem 5.26 (Kolmogorov’s Integral Equation) For any non absorbing state i,

P, j) =10, e~ “+Z/ rie VPG, k)Pi_g(k, j)ds, t>0, j€E.
keE
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For an absorbing state i, the above theorem amounts to P; (i, j) = I (i, j).
Proof We have
PG, )=PiX,=j,T1 >0)+Pi(X, =j,T1 <1).
We compute P; (X, = j, T; > t) = I(i, j)e ' and
PiXe =), T =0) =Ei[Pi(X; =), Th <t | Fp)]

= Ei[lz<nPxqy X1y = J)]

“+00
- /0 10.(5) S B (Xo—g = NPT, € ds, Xz, = )
keE

t
zf > Pk, PG, k)rie " ds.

(I
0 keE

We can now link the distribution of the first jump time to the distribution of the
hitting time of the complementary set of i, in other words compute the transition
matrix P of the embedded chain in terms of the generator of the jump Markov
process.

Corollary 5.27 For any state i, we have A; = a;. If i is non absorbing, then

aij/ai i jF#i
0 ifj=i.

PG, j)=Pi(Xn =) = ! (5.6)

Proof According to Proposition 5.13, the transition function is continuous with
respect to ¢. Differentiating the Kolmogorov’s integral equation yields

P/, j) = —hie M TG, j) + P, j)rie M. (5.7
Thus, fort — 0" and i = j, we geta;; = —A;, and, fort — 0 and i # j, we get
ajj = P(i,j)a,-. O

Equation (5.7) implies that a;; = —a; I (i, j) + a; P(i, j), or under matrix form,
A = diag(a;)(P — I). (5.8)

The above corollary yields the stochastic simulation of a trajectory of a jump
Markov process in a given interval of time [0, T']. Indeed, the method presented
in Sect.3.1.1 applies to the embedded chain, and simulation of the sojourn times
amounts to simulation of the exponential distribution as follows.
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. Let xq be the realization of a random variable Jo ~ «. n := 0. Ty(w) := 0.
.n = n+ 1. Let W,(w) be the realization of an £(ay,_,)-distributed random
variable. T, (w) := T,—1(w) + W, (w).
. If T,,(w) > T, then end.
4. Let J,(w) be the realization of a random variable whose distribution is given by
(5.6); set xp, := J,(w).
5. Continue at Step 2.

N —

W

> Example 5.28 (Birth Process (Continuation of Example 5.10)) The transition
matrix of the embedded chain of a birth process is given by

.. 1 ifj=i+1,
P, j) = ,
0 otherwise.
The sojourn times have exponential distributions with parameters ;. <

The following example is an application of Markov processes to reliability.
Another example is presented in Exercise 5.4.

> Example 5.29 (Cold Stand-by System) A cold stand-by system generally con-
tains one component (or sub-system) functioning and one or several components
(or sub-systems) in stand-by, all identical. The stand-by component is tried when the
functioning component fails, and then begins working successfully or not according
to a given probability.

Consider a stand-by system with two components. When the functioning com-
ponent fails, the stand-by component is connected through a switching device.
This latter commutes successfully with probability p €]0, 1]. The failure rate
of the functioning component is A. The failure rate of the stand-by compo-
nent is null. This system can be modelled by a Markov process with three
states:

state 1: one component works, the second is in stand-by;

state 2: one component is failed, the second works;

state 3: either both components or one component and the commutator are
failed.

The repairing rate between state 3 and state 2, and between state 2 and state 1 is
w; the direct transition from state 3 to state 1 is impossible; see Fig. 5.3.
The generator of the process is

-2 pr (d-=pa
A= n —(+pw 2 ;
0 2 —u
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Fig. 5.3 Graph of the 3-state 1
Markov process of
Example 5.29

pA (1=p)A
n
“
//J\
2 3
\—//V
A
and
0 p (1-p)
P=1u/G+u 0r/(d+p
0 1 0
is the transition matrix of its embedded chain. <

Let us now state some criterion linked to regularity.

Proposition 5.30 For a uniformisable jump Markov process, the probability of
more than one jump occurring in a time interval [0, h] is o(h) when h — 07,
uniformly ini € E.

Proof We have
Pi(<h)=PFi[Nh+(T—T) <hl <Pi(lh =h, T =T < h)
and
Pi(Ty <h,Th—T1 <h) =E;[P;(T1 <h, T, —T1 <h| Fp)]
=EilLlay<nPi(Ta —T1 = h | Fr)]
L E;(Lip, <l — exp(—ax,, 1))

< Eillq<m(l —e ] < (1 —e M2 =o(h),

where ax, = a; ontheevent (X7, = j) and a = sup;.g a; < +o0.
(1) by Proposition 5.22. O

The following two criterion for a jump Markov process to be regular are stated
without proofs.
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Theorem 5.31 A jump Markov process is regular if and only if one of the following
conditions is fulfilled:

1. (Reuter’s condition of explosion) the only bounded nonnegative solution of the
equation Ay =y is the null solution.
2. Y =1 1/ay, = +o0as., where aj, = aj on the event (J, = j).

> Example 5.32 (Birth Process (Continuation of Example 5.10)) If Y, . 1/a; is
infinite, the birth process is regular; if the sum is finite, it is explosive. <

Proposition 5.33 The process is regular if one of the two following conditions is
Sulfilled:

1. The process is uniformisable.
2. Its embedded chain is recurrent.

Thus, a finite (such that |E| < 4-00) process is regular.

As for Markov chains, the states of a jump Markov process are classified
according to their nature, and a communication relation can be defined. Recall that
T1 denotes the first jump time of the process.

Definition 5.34 Leti € E.If P;(sup{t > 0 : X, =i} = 400) = 1, the state i is
said to be recurrent. Otherwise, that is if P; (sup{t > 0 : X; =i} < +00) = 1, itis
said to be transient.

If i is recurrent, then either u; = E;(inf{r > T : X; = i}) < 4+oo and i is said
to be positive recurrent, or u; = 400 and i is said to be null recurrent. The quantity
Wi s called the mean recurrence time to i.

If all states are positive recurrent, the process is said to be positive recurrent too.
Such a process is regular.

Theorem 5.35 A state is recurrent (transient) for the jump Markov process if and
only if it is recurrent (transient) for its embedded Markov chain.

Proof The absorbing case is clear. If i is recurrent and not absorbing, then sup{r €
R% @ X; =i} =400, as.

If N = sup{n € N* : X7, = i} was a.s. finite, then Ty| would be finite too,
hence a contradiction.

Similar arguments yield the converse and the transient case. O

If i and j are two states in E, then i is said to lead to j if P (i, j) > O for
some t > 0. If i leads to j and j leads to i, the states i and j are said to be
communicating. The communication relation is an equivalence relation on E. If all
states are communicating, the process is said to be irreducible.
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Considering the embedded Markov chain, the following result is clear.

Corollary 5.36 Recurrence and transience are class properties.

5.1.5 Stationary Distribution and Asymptotic Behavior

The stationary measures are linked to the asymptotic behavior of the jump Markov
processes, exactly as for Markov chains. Note that measures and distributions are
represented for finite state spaces by line vectors.

Definition 5.37 Let X be a jump Markov process, with generator A and transition
function P;. A measure 7 on (E, P(E)) is said to be stationary or invariant (for A or
X) if w P; = 7 for all real numbers ¢ > 0. If, moreover 7 is a probability measure,

it is called a stationary distribution of the process.

For uniformisable processes, stationary measures are solutions of a homogeneous
linear system.

Proposition 5.38 If the process is uniformisable, a measure 7 is stationary if and
onlyifmA = 0.

Proof Thanks to (5.5) p. 223, m = m P; is equivalent to
A o
n:n(l—i—zk!A ):n—i—nZk!A , t>0.
k>1 k>1

This is satisfied if and only if

(k
k
E TA* =0, >0,
k!
k=1
or w A¥ = 0 for all k, from which the result follows. O

> Example 5.39 (Cold Stand-by System (Continuation of Example 5.29)) The
stationary distribution of the Markov process modeling the cold stand-by system
is solution of r A = 0. In other words,

2u? 2 A+ — pu)
(1) = Z 7(2) = d“, 7(3) = ‘; PR

where d = 3Au — pui +2u? + A% <
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Definition 5.40 A measure (or distribution) A on E is said to be reversible (for A
or X) if

A@ajj =A(jaji, i€k, jekE. (5.9)
Proposition 5.41 All reversible distributions are stationary.

Proof If A is reversible then summing both sides of (5.9) oni € E, we get
Zi <g Mi)a;; = 0, and hence, according to Proposition 5.38, A is stationary. a

The stationary distributions of the process X and its embedded chain (J,,) are not
equal, but they are closely linked.

Proposition 5.42 If 7 is the stationary distribution of the process X and v the
stationary distribution of the embedded chain (J,), then

w(i)a; = v(i) Yy axm(k), i€E,

keE

Proof We deduce from both tA = 0 and (5.8) p. 227 that tDP = nD,

where D = diag(a;). Therefore, m D is an invariant measure of P, and hence
v=aD/Y cpain(i). O
> Example 5.43 (Continuation of Example 5.21) This two-state process has a
reversible distribution satisfying the equations w(0)A = nw(l)u and 7w (1) +
r(2)=1,s0
A
70 = M andn() =
A+u A+

This distribution is stationary for the process. <

Definition 5.44 An irreducible jump Markov process whose all states are positive
recurrent is said to be ergodic.

Note that the embedded Markov chain of an ergodic jump Markov process is not
ergodic itself in general, as shown in the next example.

> Example 5.45 (Continuation of Example 5.21) An irreducible two-state jump
Markov process is ergodic, but its embedded chain is never ergodic because it is
2-periodic. <

The entropy rate of an ergodic jump Markov process has an explicit expression
given by the following result that we state without proof.
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Proposition 5.46 Let X be a jump Markov process with generator (a;;) and
stationary distribution m. Its entropy rate is

HX) = - Y ()Y ajjloga; + Y _ 7)Y _ aij.

i€E J#i icE J#i
if this quantity is finite.

The Lagrange multipliers method yields that the jump Markov process with finite
state space E having the maximum entropy rate is that with a uniform generator.

The next result leads to characterize the asymptotic behavior of an ergodic jump
Markov process in the following two theorems.

Lemma 5.47 If X is an ergodic Markov process with stationary distribution 7,
then the mean recurrence time of any state i € E is given by

1
M amay
Proof The embedded chain (J,,) is an irreducible and recurrent Markov chain. By
Proposition 5.42, its stationary distribution v is given by v(j) = m(j)a; for all
JjEEL.

Suppose J,, starts from state j. The expectation of the first jump time—or mean
sojourn time in j—is 1/a;. Further, the expectation of the number of visits of (J;,)
to state i before return to j, is v(j)/v(i) = m(j)a;j/m(i)a;; see Theorem 3.44 and
Proposition 3.45.

Therefore

w(j)a; 1 1
Hi=Q, n(i)a{ a;  w@)a
jeE Pe !
for all states i € E. m|

Theorem 5.48 Let X be an ergodic jump Markov process. For all states i and j,
we have

1
Pt(laj)—> ZT[(J)a t%_'_ooa
ajij

where i j is the mean recurrence time of state j.

Proof Thanks to Chapman-Kolmogorov equation, Py, (i, j) = (Pr)" (i, j) for any
fixed h > 0 and n € N. Thanks to the ergodic Theorem 3.50, we know that
(Pp)" (i, j) converges to 7 (j) when n tends to infinity.
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For any ¢ > 0, some integer N exists such that
|Pan (i, j) —(j)] <¢&/2 for all n > N.
From Lévy’s theorem, for any t > 0, some & > 0 exists such that
|Prpn(i, j) — P, I < 1= Pp(i,i) <€/2.

Thus, fornh <t < (n+ Dhandn > N, we get |P;(i, j) — Py (@, j)| < ¢&/2.
Finally,

[P (i, j) — (DI < NP, j) — P DI+ [ Pan(s j) — ()] < &,
and the result follows. O

Theorem 5.49 (Ergodic) If X is an ergodic jump Markov process, then, for all
states i and j,

1 t
t[ Lix,=hdu— (i), t— 400, Pj —as.
0

Proof Let (W,) denote the i.i.d. sequence of successive sojourn times and let N; (¢)
be the number of visits in the time interval ]0, ¢] to a given state i. Then

W1-I—---+WN,~(z)1<1/’]1(X .)du<W1+"'+WNi(t)
= w=i =
t

t t
or
W oo+ Whoin—1 Ni(®) — 1 1 [
1+ + Wyo—1 Ni(®) < / 1x, 2 du (5.10)
Ni(t) — 1 ‘ ‘
and
1 [ Wi+ -+ Wn, ) Ni(®)
Tx —pdu < ! . 5.11
/ Gu=n @t = N (1) ‘ G-AD

Thanks to Theorem 4.17,

Wi+ + Wy 1
1+ + W) gEle .
N;i (1) a;

Thanks to Proposition 4.59, N; (¢)/t converges a.s. to 1/u;. The result follows from
inequalities (5.10) and (5.11) for ¢ tending to infinity. |
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Therefore, for ergodic jump Markov processes, if g is a real function defined on
E, the time mean is equal to the space mean of the function, that is

1 [t 1 [
t/o g(Xu)du=Zg(i)t/0 ]l(Xuzi)du—>Zg(i)ﬂ(i), t — 400, Pj—as.,

ieE ieE

provided that ) ", [g(i)|m (i) < +o0.
Thanks to the dominated convergence theorem, the following result is clear.

Corollary 5.50 IfX is an ergodic jump Markov process, then, for all states i and j,
1 t
, / P,(j,i)du — mw(i), t— +oo.
0

> Example 5.51 (Uniformisation method) Using the stationary distribution pro-
vides a numerical method for solving Kolmogorov’s equations for an ergodic
process.

Let X be an ergodic uniformisable process, with stationary distribution 7, with
a = sup;cp a; < +00o. The matrix Q = I +a~'A is stochastic. We compute

n
= oA = @) _ g a3 @ o
0 n!
n>

Let IT be the E x E-matrix defined by I1(i, j) = 7 (j), for all i and j. We can write

(at)"

n!

Pr=Tl+e )"

n>0

(Q" —1).

The system m A = 0 is equivalent to ra(Q — I) = 0, or to 1 Q = m. Thus, Q has
the same invariant distribution 7 as P;. Therefore, Q" — IT converges to zero when
n tends to infinity.

If « is a distribution on E, one can show that

sup laP; —aPi (k)| — 0, k — o0,

t>0

where

k

Pi(k)y=TI+e >

n=0

(at)"

Q" —m.
n.

Note that the truncating level k can be chosen such that the error is bounded for
some ¢ by an ¢, and then it will be bounded for all ¢ > 0. <
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5.2 Semi-Markov Processes

This section is dedicated to the investigation of semi-Markov processes, mainly with
finite state spaces. The semi-Markov processes constitute a natural generalization
of the Markov and renewal processes. Their future evolution depends on both the
occupied state and the time elapsed since the last transition. This time, called local
time, is measured by a watch that comes back to zero at each transition. Of course, if
the watch is considered as an integral part of the system—in other words if £ x R
becomes the state space (where E is the state space of the semi-Markov process),
then the process becomes a Markov process.

5.2.1 Markov Renewal Processes

In order to define semi-Markov processes, it is easier first to define Markov renewal
processes.

Definition 5.52 Let (J,,, T;)nen be a process defined on (€2, F, P) such that (J,)
is a random sequence taking values in a discrete set E and (7},) is an increasing
random sequence taking values in R, with Ty = 0. Set F,, = o (Ji, Tx; k < n).
The process (J,, T,) is called a Markov renewal process with discrete state space
E if

Phst =7 Ths1 =T <t | F) =Phs1 =, Thp1 —Tu <t | Jy)  as,
foralln e Nyall j € Eandallt € R,

If the above conditional probability does not depend on n, the process is said to
be homogeneous, and we set

Qij®) =P(Upt1=J, Thp1 =T =t | Ju=1) (5.12)

foralln € N,i € E, j € Eandt € Ry. The family Q = {Q;;(®); i,j €
E,t € R4} is called a semi-Markov kernel on E and the square matrix Q(t) =
(Qij (1), j)eExE is a semi-Markov matrix.

We will study here only homogeneous Markov renewal processes with finite state
spaces, say E = {1, ..., e}.

The process (J,,, T,) is a two-dimensional Markov chain, with state space E x
R4; its transition function is the semi-Markov kernel Q. Letting ¢ go to infinity in
(5.12) shows that (J,,) is a Markov chain with state space E and transition matrix
P = (P(i, j)) where

P, j) =t_lj§rnoo Qiit), i,jekL.
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> Example 5.53 The following processes are Markov renewal processes:

1.

For a renewal process, only one state is visited—say £ = {1}, and Q(t) =
Q11(t) = F(t), which is a scalar function.

2. For an alternated renewal process, E = {1,2}, P(1,2) =1, P(2,1) = 1 and

(0 Fo),
Qm_(G(r) 0 )

see Exercise 4.4 below for further details on this process. <

Definition 5.54 The stochastic process Z = (Z;);cR, , defined by

Zi=J, if T,<t<Tu

is called the semi-Markov process associated with the Markov renewal process

The process Z is continuous on the right. Clearly J, = Zr,, meaning that (J,) is

the sequence of the successive states visited by Z. As for Markov processes, (J,,) is
called the embedded chain of the process.

The initial distribution o of Z (that is the distribution of Zg) is also the initial

distribution of (J,). Knowledge of both o and the kernel Q characterizes the
distribution of Z.

Properties of Semi-Markov Kernels

1.

For all i, j € E, the function 1 — Q;; () is a defective distribution function
on R. On the contrary, H; () = )_ jeE Qij(¢t) for t > 0 defines the distribution
function of the total time spent by Z in [0, ¢] at i, called sojourn time. We will
write H(t) = diag(H;(t))ick, and denote by m; the mean sojourn time in state
i, thatism; = E;(T)) = [;"°(1 — H; (1)) dt.

- Qij (1) = PG, )Fyj (1), where Fij(t) = P(Tys1 — Ty < 1| Jy = i, Jus1 = j) is

the distribution function of the time spent by Z in state i conditional on transition
to state j.

Py = Ty <t Jo=10) = Q"(t) forn > 0, where Q;*j(") is the n-th

Lebesgue-Stieltjes convolution of Q;;, that is

;" =>" / Q@) Q" Vit —s), n=2,

keE

with 0* = 0 and Qj‘;o) =6ij.
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> Example 5.55 (Kernel of a jump Markov process) For a jump Markov process—
with generator (a;;), the sequences (J,) and (7,) are P;-independent. We obtain
from Theorem 5.24 that

@
= Y-, i#je€E,

Qij (1) =P;i(Ji = 1 —e™ ")

1
and Q;i (1) = 0 fort € Ry, where a; = —aii =3, ; aij. <

Let N;(t) be the number of visits of Z to state j in the time interval ]0, 7],
and set N(t) = (Ni(t),..., N.(t)). Note that the Markov renewal process may
alternatively be defined from the process N = (N (#));eR, -

Definition 5.56 The function

t— Y =E;N;j() =Y 05" ()

n>0
is called a Markov renewal function; we will write ¥ (¢) = (¥ (1)), j)eExE-

We compute

Vij () = 1G, De, (1) + Y Qik * Y (1),

keE

or, under matrix form, ¥ (¢) = diag(1r, (#))+ Q*¥ (¢). This equation is a particular
case of the Markov renewal equation

Lt)y=G@®)+ O*L(t), telR4,

where G (given) and L (unknown) are matrix functions null on R_ and bounded on
the finite intervals of R;. When it exists, the solution takes the form

L(t) =y +G(t), teRy.

We assume here that none of the functions H;, for i € E, is degenerated (that is
H;i(t) # 1¢>0))-

Definition 5.57 The transition function of Z is defined by
P, j))=PZi=j|Zo=1i), i,jeE, teR,,

and we will write in matrix form P(t) = (P (i, j))(, j)cExE-
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Proposition 5.58 The transition function P(t) of Z is solution of the Markov
renewal equation

P(t) = diag(l — H;(t)) + O * P(¢). (5.13)
Proof We have
PG, j))=PZ =jlZo=i)=Pi(Zi=jTH >0)+Pi(Z =) T1 =1).
Since P;(Z; = j, T >t) =[1 — H;(t)]1(i, j) and
Pi(Z=j. i =) =E;[Pi(Z = j. Ty =t | Fr)]

= Ei [ L0 Pzr, (Zi-n = )]

t
-y /O Qit(ds) Py (k. J),

keE

(5.13) follows, under matrix form. |
The unique solution of (5.13) is given by
P(t) =11 = QI*"" V(I - H®), (5.14)

where [I — Q(O1*D = y(1) = Y, Q¥ (0).

5.2.2 Classification of States and Asymptotic Behavior

Let (T,,j )nen be the sequence of successive times of visit of the semi-Markov process
Z to state j € E. It is a renewal process, possibly modified. Thus, Toj is the time
of the first visit to j and G;; (1) = ]P’(Toj <t | Zo = i) is the distribution function
of the time of the first transition from state i to state j. If i = j, then Toj =0,

and hence Gj;(t) = P(T] <t | Zo = j) is the distribution function of the time
between two successive visits to j. We have

v =Y G,
n>0
and fori # j,
Vij(1) =Y Gij* G (1) = Gij 9 (1),

n>0
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The expectation of the hitting time of j starting from i at time O is

“+00
Hij =/ (1—-Gij@)dr, i, jeE. (5.15)
0

When i = j, it is the mean return time to i.

As for Markov processes, two states i and j are said to be communicating if
Gij(+00)Gji(+00) > Oorif i = j. The communication relation is an equivalence
relation on E. If all states are communicating, the process is said to be irreducible.

Definition 5.59 If G;;(+00) = 1 or ¥;;(+00) = +00, the state i is said to be
recurrent. Otherwise, it is said to be transient.

If i is recurrent, then either its mean return time j;; is finite and i is said to be
positive recurrent, or it is infinite and 7 is said to be null recurrent.

A state i is said to be periodic with period & > 0 if G;; is arithmetic with period
h. Then, v;; (¢) is constant on the intervals of the form [nh, nh + h[, where h is the
largest number sharing this property. Otherwise, i is said to be aperiodic. If all states
are aperiodic, the process is said to be aperiodic. Note that this notion of periodicity
for semi-Markov processes is different from the notion of periodicity seen in Chap. 3
for Markov chains.

The following result is a straightforward consequence of Blackwell’s renewal
theorem applied to the renewal process (7}}).

Theorem 5.60 (Markov Renewal) If the state i is aperiodic, then for any ¢ > 0,

c
Yii (t) — it —c) — i’ t — +o0. (5.16)
113
When i is periodic with period 4, the result remains valid if ¢ is a multiple of 4.
We state the next result without proof.

Theorem 5.61 (Key Markov Renewal) If (J,) is irreducible and aperiodic, if v
is an invariant measure for P and if m; < +o0 for all i € E, then for all direct
Riemann integrable real functions g; defined on Ry fori € E,

(i)

<v,m >

t —+0o0
/0 gt —y)jildy) — /O gi(y)dy, t— +oo.

Thus, thanks to the key Markov renewal theorem and (5.14) p. 239, we get

. . . v(j)m; ..
n(j)= lim Pi(i,j)= , 1,j€eE,
t—+400 <v,m>

which defines the limit distribution v of Z.
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The entropy rate of a semi-Markov process has an explicit form under suitable
conditions. It is given by the next proposition stated without proof.

Proposition 5.62 Let Z be a semi-Markov process such that

t
Q,‘j(t) :/ q,-j(x)dx, with / q,-j(t)|logq,-j(t)|dt < 400, i,j e E.
0

Ry

Ifm; < 4ooforalli € E, then

-1 [t
H(X) = > v f qij (x) log gij (x)dx.
<v,m> ijek 0

> Example 5.63 (Analysis of Seismic Risk) We consider here two simplified mod-
els. The intensity of an earthquake is classified according to a discrete ladder of
states in £ = {1, ..., N}. The process Z = (Z(t));cRr, is defined by Z(t) = i for
1 <i < N if the intensity of the last earthquake before time ¢t was f € [i,i + 1[
and finally Z(¢) = Nif f > N.

For a time predictable model, it is assumed that the stronger is an earthquake,
the longer is the time before the next occurs. The stress accumulated on a given
rift has a minimum bound. When a certain level of stress is reached, an earthquake
occurs. Then the stress decreases to the minimum level; see Fig.5.4. The semi-
Markov kernel of Z is then

Qij(1) =v())F;@), teRy.

For a slip predictable model, it is assumed that the longer is the time elapsed
since the last earthquake, the stronger is the next one. The stress has a maxi-
mum bound. When this level is reached, an earthquake occurs. Then the stress
decreases of a certain quantity; see Fig.5.4. The semi-Markov kernel of Z is

stress stress

max

min

time time

Time predictable model Slip predictable model

Fig. 5.4 Two semi-Markov models for seismic risk analysis
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then

Qij(t) =v(HFi(t), teRy.

In both cases, since F;; depends only on one of the two states i and j, necessarily
the probability v is the stationary distribution of the embedded chain of the process.
If the functions F; are differentiable for all i € E, the entropy rate of the process
can be computed explicitly.

For the slip predictable model,

—1 . . .
H(Z) = > i) /R v(j) fi (1) log[v(j) fi (1)1 dt.
+

<v,m> &
i,jeE

’

Since
/R v(j) fi (@) loglv(j) fi(H)]dt = V(j)log[v(j)]Jrv(j)A;{ Ji()logl fi ()] dt,

we get

—1
HZ) = _ ) :v(i)[logv(i)~|—/R ﬁ(t)logﬁ(t)dt].
+

’ icE

Similar computation for the time predictable model yields the same formula.
<

Other applications of semi-Markov processes, linked to reliability, will be studied
in Exercises 5.5 and 5.6.

5.3 Exercises

V Exercise 5.1 (Birth-and-death Process) The Markov process (X;);>o with
state space £ = N and generator A = (a;;) defined by

i ifj=i+1,i>0,

Wi ifj=i—1,i>1,
ai./ = . . . .

—(Ai +upi) ifj=i,i>0,

0 otherwise,

with o = 0, is called a birth-and-death process. If ©; = 0 for all i, the process is a
birth process; if A; = 0 for all i, it is a death process.
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Assume that A;u;4+1 > O for all i > 0. Give a necessary and sufficient
condition for the process to have a reversible distribution and give then its stationary
distribution.

Solution A reversible distribution 7 satisfies 7 (i — 1)A;j—; = w()u; fori > 1,
that is

Aji_ Ai_1Ai— Aill... A
r@i)y="ai-n=""""ri-2 = =" 20) = yi7(0),
i i i —1 Wi«
where 9 = 1 and
AO. . Aj—
Vi = 0 i 1’ i>1
M1

Summing on i > 0 yields

1= "m@) =) ym(0).

i>0 i>0

Therefore, the convergence of the sum ) ,_,y is a necessary and sufficient
condition for the process to have a reversible distribution. We compute then

w0 = () .

i>0
and hence

Vi

(i) = Seon

i>0.

Thus, according to Proposition 5.41, the reversible distribution is also a stationary
distribution. A

V Exercise 5.2 (M/M /1 Queueing Systems) At the post office, only one cus-
tomer can be served at a time. The time of service has an exponential distribution
E (). The times of arrivals of the customers form a homogeneous Poisson process
with intensity A. When a customer arrives, either he is immediately served if the
server is available, or he joins the (possibly infinite) queue. Such a system is called
an M/M/1 queueing system (Fig.5.5). Let X; be the random variable equal to the
number of customers present in the post office at time ¢, fort € R
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Population of customers

Waiting room

Arrival - Departure

Fig. 5.5 M /M/1 queueing system

1. Show that X = (X;) is a Markov process. Give its generator.
2. Determine the stationary distribution v of X, when it exists.
3. The initial distribution of X is assumed to be 7.
a. Compute the average number of customers in the post office at a fixed time 7.
b. Determine the distribution of the time spent in the post office by a customer.
4. Compute the average time during which the post office is empty, for A/ = 1/2.

Solution

1. The process X is a birth-death Markov process with state space E = N and
generator determined by A; = A, fori > 0 and u; = u, fori > 1; see
Exercise 5.1 for notation.

2. With the same notation,

)»i
=1 and 7/,:( ) i>1.
"

Seta = A/u. Fora < 1, we have ) ,_ oy = 1/(1 — a), and then—and only
then—X has a stationary distribution , given by m; = at (1 —a),fori >0.In
other words, 7 is a geometric distribution on N with parameter a.
3. a. When the initial distribution is 7, the process is stationary and the expectation
of X; is the expectation of the geometric distribution G(a), that is EX; =
a/(l1 —a).

b. Let W be the total time passed in the system by some given customer, arriving
at time Tj. Clearly, the (exit) process (M (¢)) of other customers’ exit times,
after Tp and until the customer’s exit, is a homogeneous Poisson process with
intensity p. We compute

P(W >1) =Y P(W >t Xp-=n)= > P(W >t | Xp- =mP(X7- =n)

n>0 n>0

n k
= ZP(M[ < l’l)ﬂ(n) = Z |:Z e—/}.r (NZ‘) :| a"(l _ a) =e—/}.(1—a)t7

n>0 n>0 Lk=0

meaning that W has an exponential distribution £(u (1 — a)).



5.3 Exercises 245

c. We have E X; = AE W. Note that this formula is a particular case of Little’s
formula, that characterizes ergodic queueing systems.
4. If A/ = 1/2,thena = 1/2, and hence y = 1/2. Therefore, the post office will
be empty half the time.
See Problem 5.7 for a feed back queue. A

V Exercise 5.3 (Epidemiological Models) Consider a population of m individu-
als. Suppose that exactly one individual is contaminated at time # = 0. The others
can then be contaminated and the affection is incurable. Suppose that in any time
length A, one infected individual can infect a healthy individual with probability
ah + o(h) for h — 0%, where « > 0. Let X; be the number of individuals
contaminated at time ¢+ > 0, and let 7; be the time necessary to pass from i
contaminated individualstoi + 1,for1 <i <m — 1.

1. a. Suppose X; = i. Compute the probability that only one individual is
contaminated in the time interval [¢, ¢ 4 h]. Show that the probability that
two or more individuals are contaminated in the same time interval is o(h).
b. Show that X = (X;) is a Markov process; give its state space and generator.
2. Show that T; has an exponential distribution; give its parameter.
3. Let T be the time necessary for the whole population to be contaminated;
compute its mean and variance.
4. Numerical application: compute an approximate value of the mean of T form =
6 x 107, @ = 6 x 1073 per day, and & = 1 day.

Solution

1. a. If i individuals are infected, then each individual among the m — i healthy
ones can be contaminated in ]z, ¢ + k] with probability iah + o(h). Thus,
the probability that one individual among the m — i will be contaminated in
Jt,t + h]is

m—i\ . 1 . m—i—1 N
( 1 )[1ah~|—0(h)] [1—iah + o(h)] = (m —iiah + o(h).

Similarly, for k > 2,

(m;J>Uah+OMHﬁl—iah+OMHmik:o@)

b. Therefore, (X;) is a Markov process with state space £ = [I,m] and
generator A = (a;j) (i, j)eExE> Where

(m—i)ie, ifj=i+]1,
aij =4 —(m —i)ia, ifj=i,

0, otherwise.



246 5 Markov and Semi-Markov Processes

This process is a birth process, also called Yule process.
2. Proposition 5.22 and Corollary 5.27 together yield that T; ~ £(—a;;).
3.SinceT=T1+ -+ T—1,

m—1 1
ET = .
; (m—1i)ia

The variables T;, for | <i <m — 1, are independent, so

m—1

1
VarT = Z [ — Dia]?”

i=1

4. We compute

1 "= 1 1 (o 1
ET = Z( .+.>% / ( +>dt,
mo m —1 l mo 1 m—t t

i=1

and flm_l (ml_t + }) dt = 2log(m — 1), so ET = 2log(m — 1)/ma. For the
data, ET ~ 358 days, around 1 year. A

V Exercise 5.4 (Reliability of a Markov System) Consider a system whose
stochastic behavior is modelled by a Markov process, X = (X;);eRr,, with finite
state space E = [l,e], generator A, transition function P;(i, j), and initial
distribution . Let U = [1, m] be the set of functioning states and D = [m + 1, e]
the set of failed states, for some m € 2, e — 1].

1. a. Compute the instantaneous availability A(z) of the system for + > 0; see
Exercise 4.4 for definition.
b. Use a. to compute the limit availability when X is ergodic.
2. Let Tp = inf{t > 0 : X, € D} be the hitting time of the set D of failed states
of X, with the convention inf¢ = 4-00. Consider the process Y with state space
U U {A}—where A is an absorbing state, defined by

XI lft<TD,
Yl‘:
A ift>Tp.

a. Give the initial distribution and the generator of Y, which is a Markov process.
b. Use Y to compute the reliability function of the system, defined by R(¢) =
P(Tp > t) fort > 0.
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Solution

1. a. The instantaneous availability is

2.

a.

AN =PX, e U) =) P(X;=j)=)_ Y P(X;=j,Xo=1i)

jeu jeUieE
=Y Y P(X, =j| Xo=0i)P(Xo=1i)
jeUieE
=Y Y a@Pili, ) =aP ey =ae e,
jeUieE
where 1., = (1,...,1,0,...,0) is the e-dimensional column vector of

which the first m components are equal to 1 and the e — m others are equal
to 0.

. Therefore, the limit availability is

A= lim A1) = allley = > wk).
keU

For computing the reliability, it is necessary to consider the partition of A and
o between U and D, thatis, « = (o1, ap) and

A= (An A12) '
Arl A

We can write ¥; = X;A75, and Y is indeed a Markov process with

generator
A Al
B = .

Its initial distribution is 8 = (a1, b) with b = 1.

. Let Q; be the transition function of Y. We have

R(t) =PMVu e[0,t],X, €U)=PX; €eU) = Z]P’(Yt =Jj).

jeU
We compute for all j € U
P(Y, =j) =Y P(Y;=j Yo=1i)
ieU
=Y P(Yi=j|Yo=iDP(Yo=i)= Y a0 ),
ieU ieU

thatis R(t) = (a1, 0)Q15.m = aje’d111,,. A



248 5 Markov and Semi-Markov Processes

V Exercise 5.5 (A Binary Semi-Markov System and Its Entropy Rate)

1. Model by a semi-Markov process the system of Exercise 4.4.
2. Write the Markov renewal equation and determine the transition function of the
system.
. Show again the availability results.
4. Assume that X1 (Y1) has a density f (g) and a finite expected value a
(b). Compute the entropy rate of the process. Determine the sojourn times
distributions maximizing this rate.

W

Solution With the notation of Sect. 5.2.

1. If the functioning states are represented by 0 and the failed states by 1, the system
can be modelled by a semi-Markov process Z defined by

= Z I(Sn§t<sn+Xn+l)’ t Z 0’

n>0

with semi-Markov kernel Q given by

_ 0 F(r)
QU)‘(G@) 0 )

2. The transition function P; satisfies the Markov renewal equation P = I — H +
Qx* P,or[I — Q]* P = H, where

_(F@® 0
Hm_( 0 G(r))‘

Its solution is P(¢1) = [I — Q()]*V « [I — H(®)].
On the one hand,

(=)
_ *(=1) _ L —F@)
[l — Q)] = (—G(t) ! )

o *(—1) L F@)
== F*G@®] *<G(t) | )

and the renewal function of the alternated renewal process of Exercise 4.4 is

m@t) =[1—F«G@n*Y = Z(F* G (p).

n>0
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On the other hand,

I_H(t):(l—F(t) 0 )

0 1-G@)

Finally,

P(t):m*(l F(t)>*<1—F(t) 0 )
Gt 1 0 1-G@)

:m*< 1—F@) F*(l—G)(t))l 5.17)
Gx(1—F)(1) 1-G@)

3. Taking as initial distribution (1, 0), we obtain the availability A(¢) = Pyo(t) =
mx (1 — F)(1).
Note that this approach is much more general than the one obtained by
using the alternated renewal process, because all results are given by (5.17). For
example,

A(t) = Po1(t) =mx G x (1 — F)(1),

if the system is assumed to be failed at time 0.
4. We compute

00 ¢ b
<v,m>=/ LF() +eyjdr =7

, 2 2
and

2

+o00
> ) /O qij () log i (1) di =
ij=1
1 +0oo +o0
=, [ | fOlog f()dr+ /0 g()log g(1) dr},

so the entropy rate of Z is

1
HZ) =

+b[I(X1) +Z(YD]

If f and g are exponential distributions with respective parameters A and pu,
the entropy rate is

HZ) = " 12— logwl.
P

and is clearly maximum. A



250 5 Markov and Semi-Markov Processes

V Exercise 5.6 (A Treatment Station) A factory discharges polluting waste at a
known flow rate. A treatment station is constructed for sparing environment. A tank
is provided for stocking the waste during the failures of the station; this avoids to
stop the factory if the repairing is finished before the tank is full. Both the time for
emptying the tank and the time necessary for the treatment of its content by the
station are assumed to be negligible. The random variable 7 equal to the time for
filling the tank is called the delay.
This system is modelled by a semi-Markov process with three states.

. Give the states and the semi-Markov kernel of the process.

. Determine the transition matrix and the stationary distribution of its embedded
chain.

. Give the limit distribution of the process.

4. Assuming that the system works perfectly at time ¢+ = 0, determine its reliability

R; see Exercise 5.4 for definition.

N —

O8]

Solution
1. The states of the process are the following:
state 1 : the factory is functioning;
state 2 : the factory has been failed shorter than 7;

state 3 : the factory has been failed longer than 7.

The semi-Markov kernel is

0O F O
O=1 02002 |,
B 0 O

with

t

t
Q21 (1) =/O [1 - C(x)IdA(x) and  Q3(r) =/O [1 - A(x)]dC(x),

where F is the distribution function of the life time of the station, A that of the
repairing time of the station, C that of the delay, and B that of the repairing time
of the factory.

2. The transition matrix of the embedded chain (J,) is

010
P=1qg0p
100
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where p 4+ ¢ = 1, with

+oo
p= fo [1 - A()]dC(x).

The stationary distribution of (J,)isv = (1/2+ p), 1/2+ p), p/2 + p)).
3. The limit distribution of the process is

1 . : 1
7= diag(v(i))m = (my, ma, pm3),
<v,m > my +my + pm3

where mi = [(*°[1 = F()ldx, my = [([1 = Q21(x) — Q23(x)]dx, and
m3 = ["°[1 — B(x)ldx.
4. We compute

RtO)y=Mx[1—-F+ Fx(1—-F — 02)(),
where M(t) = ano(F x 021) ™M (1). A

V Exercise 5.7 (A Feed Back Queue) Let us consider again the queue of
Exercise 5.2. When a customer arrives, if more than N customers already queue,
then he leaves the system. Moreover, once served, either he comes back queueing,
with probability p €]0, 1[, or he leaves the system, with probability 1 — p; see
Fig.5.6. Let X; be the random variable equal to the number of customers present in
the post office at time ¢.

1. Of which type is the semi-Markov process X = (X;)? Give its semi-Markov
kernel and determine the transition matrix of its embedded chain.

2. Compute the stationary distribution of this chain, the average sojourn times in
each state and the limit distribution of the process.

Solution The number X = (X;) of customers present in the system is a birth-death

semi-Markov process with state space E = [0, N] and exponentially distributed
sojourn times, that is a Markov process again. The only non-zero entries of its

feed back

lq

output departure

A server

arrival Input

Fig. 5.6 A feed back queue—Exercise 5.7
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semi-Markov kernel are

Qiio1(1) = A"‘f;.[l — e L <i <N,
1 1

Qi (1) = Af*f;'[l —e T 1 <i <N,
1 1

)\‘.
Qiit1 () = +’ [1—e HiFHd 0<i<N-—1,
i Mi

2. Its mean sojourn times are given by m; = 1/(X; + ;). The stationary distribution
v of its embedded chain is given by

vi = A A1+ A /pi + 1/gi)vo/p1 - .- i1, 2 <i <N,
vi = (I +A;/ui + 1/gi)vo,

N

~1

vy = [ZM i (L +1/g0)/1a -~-Hi71] .
i=1

Note that for p = 0, this system amounts to the system described in Exercise 5.2,
for a finite queue, that is an M/M/1/(N + 1) queue. A
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of a random variable, 4
recurrence time, 230
return time, 240
sojourn time, 233, 237
measurable
function, 2
space, 1

minimum mean square error predictor, 79

modified renewal process, 198

moment, 4

generating function, 19
monochromatic wave, 176
Moran’s reservoir, 116

moving-average process, 177, 188, 209

multidimensional process, 176
multiplicity, 193
multivariate process, 176

natural filtration, 12, 83, 177
negative binomial distribution, 13
norm, 7
normal

distribution, 15

equations, 80
null

event, 11

recurrent state, 126, 230, 240

offspring distribution, 154
operational research, 108
orbit, 185

periodic
Markov chain, 140
state, 120
periodicity, 240
persistent state, 126
point
measure, 193
process, 193, 194
pointwise ergodic theorem, 185
Poisson
distribution, 13
process, 196, 200
positive
measure, 2
recurrent state, 126, 230, 240
potential of a Markov chain, 127
predictable
quadratic variation, 100
sequence, 12
probability, 2
space, 1
product
Markov chain, 121
probability space, 2
production system, 160

quadratic
approximation, 68, 79
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characteristic, 100
quantity of information, 21
queue, 243, 251

Radon-Nikodym
density, 3
theorem, 3
random
distribution, 65
point measure, 193
probability, 65
process, 175
sequence, 1, 3, 175
sum, 31, 102
variable, 2
vector, 3
walk, 33, 52, 85, 117, 131
randomly indexed variable, 30
recurrent
Markov chain, 131
state, 126, 230, 240
regression, 79
line, 81
regular
conditional
distribution, 66
distribution function, 66
probability, 63
Markov process, 218, 229
martingale, 87
matrix, 145
reliability, 48, 151, 152, 169, 196, 228, 246
function, 246, 250
renewal
density, 197
distribution function, 197
equation, 197, 198
function, 197, 238
process, 195, 203, 237, 239
rate, 197
return time, 124
Reuter’s condition of explosion, 230
reversible
distribution, 231
measure, 133
risk process, 200, 206

sampling
of a sequence, 95
theorem, 95

second order random process, 176
seismic risk, 241
semi-Markov

kernel, 236

matrix, 236

process, 236, 237
sequence of

events, 8

random variables, 1
Shannon entropy, 23
shift operator, 125, 176, 178
signal, 175, 177
simple

point measure, 193

random walk, 33
simulation of a

Markov chain, 121

Markov process, 227
sinusoidal signal, 176, 187, 210
sojourn time, 120, 224, 226, 237
space average, 181
spectral

density, 188

measure, 188
square integrable

martingale, 99

random sequence, 8
stable

distribution, 30

Markov process, 222

state, 222
standard, variable, 5
state, 175

space, 113, 175
stationarity, 184
stationary

distribution, 132

measure, 132, 231

process, 183, 186, 187

transformation, 184
stochastic

basis, 82, 178

continuity, 180

convergence, 34

element, 175

integral, 88

Kronecker lemma, 38

matrix, 145

process

with independent increments, 190
with stationary increments, 191

stocastically equivalent processes, 180
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stopped
renewal process, 199
sequence, 84
stopping
theorem, 94, 109
time, 82, 93, 178
strictly stationary process, 210
strong
law of large numbers, 39
Markov property, 124, 126, 217

martingale convergence theorem, 101

subcritical case, 156
submartingale, 85
sum of random variables, 25
supercritical case, 156
superior limit, 9, 46
supermartingale, 85
symmetric
exponential distribution, 50
simple random walk, 33

tail o-algebra, 12
time
of the first success, 106
series, 176
trajectory, 3
random sequence, 3
stochastic process, 175
transfer theorem, 4
transformation, 184
transient

Markov chain, 131

renewal process, 199

state, 126, 230, 240
transition

function, 113, 115, 218, 238

kernel, 64

matrix, 114

probability, 64, 114
travelling salesman problem, 107

uncertainty, 21

uncorelated, 28

uniformisable Markov process, 223
uniformisation method, 235
uniformly integrable sequence, 55

variance, 4
version of a process, 180
visit time, 158

Wald’s identity, 84

weak law of large numbers, 40
weakly stationary process, 210
white noise, 188

Wiener process, 191

Yule process, 246
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