
DeepRSD: A Deep Regression Method
for Sequential Data

Xishun Wang1(B), Minjie Zhang2, and Fenghui Ren2

1 Bitmain Technologies Inc., Beijing, China
xw357@uowmail.edu.au

2 School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia

{minjie,fren}@uow.edu.au

Abstract. Regressions on Sequential Data (RSD) are widely used in
different disciplines. This paper proposes DeepRSD, which utilizes sev-
eral different neural networks to result in an effective end-to-end learn-
ing method for RSD problems. There have been several variants of deep
Recurrent Neural Networks (RNNs) in classification problems. The main
functional part of DeepRSD is the stacked bi-directional RNNs, which is
the most suitable deep RNN model for sequential data. We explore sev-
eral conditions to ensure a plausible training of DeepRSD. More impor-
tantly, we propose an alternative dropout to improve its generalization.
We apply DeepRSD to two different real-world problems and achieve
state-of-the-art performances. Through comparisons with state-of-the-
art methods, we conclude that DeepRSD can be a competitive method
for RSD problems.

Keywords: Sequential data · Deep recurrent neural network
Alternative dropout · Regression

1 Introduction

In many regression problems, the predictor variables come from sequential data.
For instance, predicting the hourly energy demand given weather forecasting in
each hour, or estimating the valence of a facial expression from a video (sequence
of images). Similar problems are widely seen in different disciplines. In this paper,
we name these problems as Regressions on Sequential Data (RSD). RSD can be
formally defined as follows.

y = fθ(X), (1)

where fθ is a transformation parameterized by θ, X = [x1,x2, · · · ,xT] is a T ×N
matrix, representing T steps and N predictor variables (features) in each step,
and y can be a scalar or a T -dimension vector (a simple structured output).

X. Wang—Work done in University of Wollongong. Now the author is in Bitmain
Technologies Inc.

c© Springer Nature Switzerland AG 2018
X. Geng and B.-H. Kang (Eds.): PRICAI 2018, LNAI 11012, pp. 113–125, 2018.
https://doi.org/10.1007/978-3-319-97304-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97304-3_9&domain=pdf

114 X. Wang et al.

The challenge of RSD is how to simultaneously model the (complex) features
in each step and the temporal information. Gradient boosting [3] is an effective
method to handle complex features, but it cannot naturally model temporal
information. People have to make extra effort to encode temporal information
when using gradient boosting. Continuous conditional random fields [16] can
simultaneously model step features and temporal information, but it is relatively
weak to deal with complex features. Feature engineering or other models are
introduced [21] to compensate its weakness.

In this paper, we propose DeepRSD to solve the RSD problem. DeepRSD
takes advantages of several variants of neural networks to construct an effective
end-to-end learning method. In the family of neural networks, Recurrent Neu-
ral Networks (RNNs) [17] gain the capacity of modeling sequential data. There
have been some variants of deep RNN [7,14] in discrete problems. We deeply
study different deep RNNs and choose stacked bi-directional RNN (Bi-RNN) to
represent the sequential data X efficiently. The stacked Bi-RNNs can learn not
only the temporal transitions, but also the complex relations in the heteroge-
neous step feature xi through its nonlinear representations. As a result, stacked
Bi-RNNs outperforms other deep RNNs in RSD problems.

It is challenging to train DeepRSD for two reasons. (1) RNN itself is hard
to train. (2) Comparing to classification problems, the input and output are
both unbounded in regression. We explore several conditions for a plausible
training, including data preprocessing, initializations and preventing gradient
vanishing/exploding for RNN. More importantly, we deeply study the dropout
for stacked Bi-RNNs. The previous dropout methods do not work in DeepRSD.
Instead, we propose an alternative dropout to effectively improve the generaliza-
tion of DeepRSD. We also provide an explanation of alternative dropout through
visualizations.

To show the advantages of DeepRSD, we insist to construct a universal model
with an end-to-end learning manner to solve actual problems. We demonstrate
the performance of DeepRSD in AMS solar energy prediction contest on Kag-
gle1. To the best of our knowledge, DeepRSD gets the best result evaluated by
Kaggle server. We further evaluate DeepRSD on a dataset of electricity demand
prediction, from NPower Forecasting Challenge 20162. It is found that DeepRSD
is still competitive even though the dataset is small. We also make general com-
parisons of DeepRSD and other state-of-the-art methods to demonstrate the
effectiveness of DeepRSD.

The contributions of this paper are in three aspects: (1) We propose DeepRSD
using several variants of neural networks for RSD problems and explore several
conditions to reliably train DeepRSD. (2) We propose alternative dropout to
effectively improve the generalization of DeepRSD. (3) We apply DeepRSD to
two real-world problems and achieve state-of-the-art performances.

1 https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest.
2 https://www.npowerjobs.com/graduates/forecasting-challenge. Data are publicly

available. Competition results are also published on this webpage.

https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest
https://www.npowerjobs.com/graduates/forecasting-challenge

DeepRSD: A Deep Regression Method for Sequential Data 115

2 Designs of DeepRSD

In this section, the standard RNN is briefly reviewed at first, and then the
architecture of DeepRSD is illustrated. In the following, we discuss how to choose
a proper activation function for DeepRSD. We also describe alternative dropout
in detail.

2.1 RNN Review

As RNN is the core module for DeepRSD, we have a brief review of standard
RNN [17]. For the input sequence x1,x2, · · · ,xT , each in R

N , RNN computes a
sequence of hidden states h1,h2, · · · ,hT , each in R

M , and a sequence of predic-
tions ŷ1, ŷ2, · · · , ŷT , each in R

K , by iterating the equations

hi = ϕh(Whxxi + Whhhi−1 + bh) (2)
ŷi = ϕy(Wyhhi + by) (3)

where Whx,Whh,Wyh are weight matrices, bh, by are bias terms, and ϕh, ϕy

are activation functions. Equation 2 defines the input-to-hidden layer and Eq. 3
defines the hidden-to-output layer.

2.2 The Overall Architecture

Figure 1(a) illustrates the overall architecture of DeepRSD. We describe the net-
work layers and their functions from bottom to top. DeepRSD consists of three
modules: input processing module, main functional module and output process-
ing module.

Input processing module includes the input layer and the Network-In-
Network (NIN) layer [10]. The input layer is at the bottom, where sequential
features are fed into DeepRSD. On the top of the input layer is the NIN layer
that reduces the dimension of features using a linear activation function. The
NIN layer contributes to accelerating the training process; meanwhile, NIN layer
does not affect the precision of final predictions.

Main functional module is a stack of Bi-RNN layers with different sizes.
RNN is suitable to model sequential data because it introduces hidden layer
to encode the temporal information. Bi-RNN [8] can effectively represent the
correlations, and has been widely used to model sequential data. The structure
of Bi-RNN is illustrated in Fig. 1(b). The stacked Bi-RNNs supply sufficient
nonlinearities for the sequence and also for step feature xi. Even the features
in xi are heterogeneous and have complex functional relationships, the stacked
Bi-RNNs can learn to represent them automatically.

Output processing module is a step-wise dense layer that outputs the
predicted value at each step. In Fig. 1(a), we show the unrolled T dense layers,
corresponding to the T predictions. The T predictions can also be added up for a
scalar prediction if necessary. Therefore, the final output y can be a T -dimension
vector or a simple scalar.

116 X. Wang et al.

Fig. 1. The overall architecture of DeepRSD

Stacked Bi-RNNs, the main functional module in DeepRSD, is designed cater-
ing the characteristics of RSD problems. In discrete problems, Pascanu et al. [14]
discussed how to construct deep RNN and proposed three variants of deep RNN,
which are deep input-to-hidden, deep hidden-to-output and deep transition net-
works. Graves [6] used RNN with stacked hidden layers to generate sequences.
Much effort in RNN is made to handle long dependency in sequences in discrete
problems, while in RSD, we aim to model the sequential information as well
as the functional relationships among step features. For many RSD problems
in practice, the sequential data is not so long that a standard hidden layer is
adequate to handle the dependencies, thus no necessary to introduce deep tran-
sitions. In the stacked Bi-RNNs, there are dense connections in input-to-hidden
and hidden-to-output layers, which supply plenty of nonlinearities to encode the
heterogeneous step features. We tried deep input-to-hidden and deep hidden-
to-output networks, and neither of them worked as well as stacked Bi-RNNs in
our experimented datasets. The advantages of stacked Bi-RNNs over other deep
RNNs are further shown in experiments in Subsect. 4.1.

2.3 Activation Function

For the nonlinear activation function, we use leaky rectified linear unit (leaky
ReLU) [1], shown in Eq. 4.

ϕ(x) =
{

x if x > 0
αx if x ≤ 0 (4)

DeepRSD: A Deep Regression Method for Sequential Data 117

For RNN, traditional activations–sigmoid or hyperbolic tangent functions, which
have saturated zones, may lead to the gradient vanishing problem [15]. ReLU [12]
is advantageous since (1) it alleviates the vanishing gradient and (2) it offers a
simple gradient computation. However, it often makes DeepRSD diverge. When
using leaky ReLU, we can train DeepRSD more reliably. For the above reasons,
we choose leaky ReLU as the activation function for DeepRSD.

2.4 Alternative Dropout

Dropout [19] has been a simple and effective way to improve the generalization
of feed-forward neural networks. However, people struggle to develop effective
dropout for RNN. Zaremba et al. [22] applied dropout to the input and hidden-
to-output but not to the transition layer in RNN. Gal et al. [4] proposed a
theoretically grounded dropout to the hidden layer in RNN and got improved
performance. These methods work effectively for discrete problems. However,
they do not work in DeepRSD.

Considering the structure of stacked Bi-RNNs, we propose a special dropout
scheme. For the standard RNN shown in Fig. 1(c), we apply dropout between
the input-to-hidden and hidden-to-output layers, while for the stacked second
Bi-RNN, this dropout is applied alternatively. To be specific, dropout is applied
only to the forward RNN for the first Bi-RNN. For the stacked second Bi-RNN,
dropout is applied to the backward RNN. Dropout is applied alternatively in the
forward and backward directional RNNs, so we name this dropout scheme as
alternative dropout.

For the stacked Bi-RNNs, the alternative dropout between input-to-hidden
and hidden-to-output layer is crucial to improve generalization. We supply a pos-
sible explanation for alternative dropout. We assume that the input-to-hidden
layer of forward RNN outputs a vector in range [a, b]. The hidden-to-output
layer is simplified as an identity map. If we do not apply any dropout, Bi-RNN
sums the outputs of each direction and thus gives an output range of approx-
imate [2a, 2b] (the output range of two RNNs should be similar). For dropout
with a keep rate γ (γ < 1), to keep the invariance of expectation, we re-scale
the vector and lead to an inflated approximate range [a/γ, b/γ] (Re-scaling is
the default manner in dropout [19]). If dropout with a keep rate γ is applied to
both directions, the output range of Bi-RNN will be [2a/γ, 2b/γ]. In contrast, for
alternative dropout, the output range of Bi-RNN will be [a/γ + a, b/γ + b]. We
can see that the dropout on both directions lead to a larger fluctuation range
than alternative dropout. The large fluctuations may bring difficulty to opti-
mization algorithms to find a good local minimum. We experiment and visualize
alternative dropout in Subsect. 4.1 to support our explanation.

3 Training and Inference

We first set the cost function for DeepRSD. For regression problems, Mean
Square Error (MSE) and Mean Absolute Error (MAE) are widely used. As MAE

118 X. Wang et al.

is more robust to very large or small values, we use MAE as the cost function
for DeepRSD. If the output y is a T -dimension vector, the cost function can be
written as:

C(θ) =
1

ST

S∑
i

T∑
i

|yi − ŷi|, (5)

where S is the total number of sequence samples, and θ is parameters to be
learned (see Eq. 1). If y is a scalar, the summation

∑T
i can be omitted.

DeepRSD is hard to train for several reasons. Comparing to classification
problems, the inputs and outputs are both unbounded in regression problems,
which may lead to divergence in the training of DeepRSD. Moreover, improper
initializations will result in divergence or invalid learning in deep networks.
Besides, there are gradient vanishing/exploding problems in (deep) RNN, which
may hamper the training process. In our study, we find the conditions in Table 1
are necessary to ensure a plausible training.

Table 1. Conditions for DeepRSD training

Condition Description

Data preprocessing Normalize and trim data

Initializations Introduce proper initializations for RNN

Gradient vanishing preventing Use leaky ReLU activation

Gradient exploding preventing Use gradient clipping

Data Preprocessing. Sutskever et al. [20] pointed out it is essential to nor-
malize data (both inputs and outputs) to obtain a reliable training for RNN. We
follow this rule and normalize the inputs and outputs for DeepRSD. We further
trim the extreme values to result in a bounded region [−a, a]. If we set a = 5,
the extreme values outside the 5σ region of Gaussian will be trimmed.

Initializations. Initializations are critical to ensure the convergence of RNN
[20]. We use Gaussian and orthogonal initializations [5,18] for the stacked Bi-
RNNs. A correct scale of Gaussian is essential for a plausible training. For nor-
malized data, we find σ = 0.01 is a good scale to ensure convergence.

Gradient Vanishing Preventing. RNN is difficult to train because they suffer
from gradient vanishing/exploding problems [15]. We use leaky ReLU activation
to prevent vanishing gradients(see Subsect. 2.3).

Gradient Exploding Preventing. We simply use gradient clipping [15] to
prevent gradient exploding for RNN.

Applying the above conditions, DeepRSD can be trained reliably. We resort to
mini-batch Stochastic Gradient Decent (SGD) with Nesterov’s momentum [13],
with learning rate decay [20], to train DeepRSD. We also try other optimization
algorithm, such as Adadelta [23] and Adam [9], but the results are not so good
as SGD with Nesterov’s momentum. Therefore, we recommend to use SGD with
Nesterov’s momentum to train DeepRSD.

DeepRSD: A Deep Regression Method for Sequential Data 119

Inference in DeepRSD can be quite efficient. As DeepRSD introduces
dropout, we simply employ the inference process of dropout networks to pre-
dict y [19].

4 Experiment

DeepRSD is evaluated on two different real-world problems from data science
competitions. We apply DeepRSD to the AMS solar energy prediction problem
to predict a scalar value. We further evaluate DeepRSD on an electricity demand
prediction problem, where the output is structured.

For both problems, we used DeepRSD to construct a universal end-to-end
learning model. We used the same conditions in training for the two problems.
In data preprocessing, the data were normalized to standard Gaussian. We set
the bound for trimming, a = 5. To cope with the gradient vanishing problem,
DeepRSD used leaky ReLU activation with a leakiness α = 0.15, For gradient
exploding, DeepRSD used gradient clipping to normalize the gradients if their
norm exceeded 1.0 [15]. In initializations, for the transition matrix Whh in the
RNN layer, DeepRSD used orthogonal initialization [18] with a gain (1 + α2)

1
2 .

For the input-to-hidden weight matrix Whx, DeepRSD used Gaussian distribu-
tion with 0 mean and 0.01 standard variance to initialize it.

4.1 Evaluations on AMS Solar Energy Prediction Contest

The objective of the problem is to predict the daily incoming solar energy at
98 Oklahoma Mesonet sites [11]. Detail information can be found on Kaggle’s
website (see footnote 1).

Solutions Using DeepRSD. We use DeepRSD to construct one universal
model for the 98 Mesonet sites. For each Mesonet site, we extract the weather
data from its neighbouring four GEFS grids. We also supply the distances of the
Mesonet site to its neighbouring four grids. Besides, we add the temporal and
the Mesonet site specific information. All the above information is combined to
be a step feature with 77 variables. The raw features are input to DeepRSD,
without any feature engineering. DeepRSD uses alternative dropout to improve
its generalization. DeepRSD not only learns the transitions in weather forecast-
ing sequences, but also hiddenly learns to approximate the weather states at the
Mesonet site from the heterogeneous features.

The hyperparameters were set using random search [2], followed by handcraft
tuning. The input dimension was 77 for the input layer. The output dimension
of NIN layer was 64, reducing the input dimension by 16.9%. DeepRSD intro-
duced 4 stacked Bi-RNN and dense layers, with the size 128, 224, 128 and 16.
The following dense layer had an output dimension of 1. The last layer was a
mean-pooling layer to output the daily production. The dropout rate for both
forward and backward RNN before the summation was 0.3, and the drop rate
of alternative dropout was 0.5. Dropout was applied in the first 3 layers of the
stacked Bi-RNNs.

120 X. Wang et al.

Test Results. Table 2 shows DeepRSD’s result measured by MAE and the
top three results in the Kaggle competition. We can see that GBDT is the
dominant method that holds the top three places in the past competition. The
top three methods used complex feature engineering, post-processing or model
combinations to improve the results [11]. In contrast, DeepRSD simply averaged
10 differently trained models and got an MAE of 2.10M.

Table 2. Ours and the top three results in the Kaggle contest

Solution MAE (MW) Method

1st Place 2.11 GBDT

2nd Place 2.13 GBDT

3rd Place 2.16 GBDT

Ours 2.10 DeepRSD

Comparing DeepRSD to Other Deep RNNs. In this experiment, we com-
pare the performance of deep RNNs. Besides stacked Bi-RNNs, we also con-
structed deep input-to-hidden (DeepIH) network and deep hidden-to-output
(DeepHO) network. We used DeepIH and DeepHO to replace stack Bi-RNNs
in the architecture of DeepRSD. The other parts of DeepRSD stayed the same.
Besides, we also use standard RNN and multi-layer dense neural networks (DNN)
as the baseline.

The configurations of DeepRSD stayed the same as introduced in the second
paragraph in Sect. 4. The configurations of DeepIH and DeepHO were optimized
by random search [2]. DeepIH used two dense layers, with size 32 and 32, for
each time step; and two RNN layers, with size 192 and 128. DeepHO used two
RNN layers with size 128 and 128, followed by two dense layers with size 128 and
64. The DNN had 4 dense layers, with size 128, 256, 192 and 128. The standard
RNN had a size of 128. The performances of the five different RNNs are shown
in Fig. 2.

In Fig. 2, we use standard RNN and DNN as the baseline. RNN obtains an
MAE of 2.20 MW, and DNN obtains an MAE of 2.21 MW. Though DNN is a
deep network that has 4 layers, it does not utilize the temporal information,
and therefore has a low performance. Comparing to the two baselines, DeepIH,
DeepHO and DeepRSD make significant improvements on this problem.

We then analyze the three deep RNNs in detail. For DeepIH, it first uses
dense networks to represent step features, and then input the representations into
RNN. For DeepHO, it first represents features using two layers of RNNs, and then
uses dense network to refine the output of RNN. In contrast, DeepRSD, which
uses stacked Bi-RNNs, always combines the nonlinear representations of step
features and temporal information. We can see that DeepRSD has advantages
over DeepIH and DeepHO in Fig. 2. That is the reason we choose stacked Bi-
RNNs for sequential data regression.

DeepRSD: A Deep Regression Method for Sequential Data 121

Fig. 2. The performance comparisons of different networks

Analysis of Alternative Dropout. In this experiment, we compare and ana-
lyze three dropout ways for DeepRSD. The first way is naive dropout, where
dropout is only applied in the input projection and output projection [22]. The
second way is variational dropout, where dropout is applied to the hidden layer
besides the input and output projections [4]. The third way is the proposed
alternative dropout. The three dropout methods are applied to DeepRSD with
the same other configurations.

The MAEs and epochs to converge are shown in Table 3 for the three dropout
methods. Without any dropout, DeepRSD achieves an MAE of 2.17 MW.
Though different dropout rates have been tried, naive dropout and variational
dropout do not improve the generalization of DeepRSD. Moreover, variational
dropout converges very slow, up to 40 epochs. Alternative dropout effectively
enhances the generalization of DeepRSD by near 2%. In discrete problems, net-
works with dropout will consume more training time. This is also seen in regres-
sion problems in Table 3. DeepRSD without dropout converges in 4 epochs, while
DeepRSD with alternative dropout converges in 6 epochs.

Table 3. Comparisons of different dropout ways

Methods MAE (MW) Epoches to converge

No dropout 2.17 4

Naive dropout 2.17 6

Variational dropout 2.17 40

Alternative dropout 2.13 6

We intuitively explain the alternative dropout via data visualizations. When
the network was near convergence in training, we collected the output of the first
step of the third Bi-RNN. The output was sampled every 100 mini-batches from
batch 30000 to 35000. In the same manner, we visualized the output using naive

122 X. Wang et al.

dropout. The visualization of alternative dropout and naive dropout are shown
in Fig. 3a and b, respectively. We can see that the outputs are consistent for the
alternative dropout in Fig. 3a, while the outputs fluctuate in the naive dropout in
Fig. 3b. The inconsistency and fluctuations in traditional dropout bring difficulty
for the optimization algorithms, resulting in a poor local minimum. Even though
we decrease the dropout rate, naive dropout does not work well. In contrast,
alternative dropout provides a mild dropout way for stacked Bi-RNNs.

(a) Alternative dropout (b) Traditional dropout

Fig. 3. Data visualization of dropout

4.2 Evaluations on Electricity Demand Forecasting Competition

The task of this competition is to predict the future power demand in every half
hour according to weather data. Detail information can be found on NPower
Demand Forecasting Challenge website (see footnote 2).

Solutions Using DeepRSD. We use DeepRSD to model this sequential data
prediction problem. The extracted raw features include weather feature, tempo-
ral feature, and calendar feature, 13 variables in total. We use a data sequence
with length 48, which corresponds to electricity usages of half hour in a day.
This competition used Mean Absolute Percentage Error (MAPE) for the final
score, while we can still use MAE as the cost function to train DeepRSD.

In this problem, the hyperparameters for DeepRSD were set as follows. The
input dimension was 13. DeepRSD introduced 2 stacked Bi-RNNs with the size
16 and 16. The following dense layer had an output dimension of 1. The final
output was a 48-dimension vector. DeepRSD used alternative dropout with a
drop rate of 0.2.

Results and Comparisons. We compare the performance of DeepRSD with
the winning methods and several state-of-the-art methods in this competition.
The results, measured by MAPE, are shown in Table 4.

DeepRSD: A Deep Regression Method for Sequential Data 123

Table 4. Evaluation results of the two rounds in NPower Forecasting Challenge 2016.

Model MAPE in round 1 MAPE in round 2

1st Place 3.14% 7.13%

2nd Place 6.43% 4.89%

3rd Place 7.84% 7.48%

ARIMA 8.95% 8.77%

SGCRF 5.83% 6.64%

GBDT 5.40% 4.97%

DeepRSD (4.88 ± 0.21)% (4.56 ± 0.20)%

The evaluations are based on a rolling forecasting mode, same as the competi-
tion. The top three methods did not employ complex machine learning methods,
but relied heavily on feature engineering3. ARIMA is employed as the baseline
model, which is not as competitive as the top three methods.

The following methods are popular in recent. The overall performance of
SGCRF is comparable to the second place in the competition. The results of
GBDT are close to the first place. DeepRSD achieves the best performance, with
an average MAPE of 4.72%, better than the first place. Besides, DeepRSD only
uses the raw feature without any feature engineering. The results of DeepRSD
fluctuates due to the instability of neural networks, but this can be compensated
by model ensemble.

5 Conclusion

In this paper, we proposed DeepRSD for the regressions on sequential data.
DeepRSD used stacked Bi-RNNs to represent the sequential data. We pointed
out four conditions to ensure a plausible training. We also proposed an alterna-
tive dropout to effectively improve the generalization of DeepRSD. We applied
DeepRSD to two real-world sequential data prediction problems and achieved
state-of-the-art performances. According to the experimental results, DeepRSD
showed two major advantages over other methods. (1) DeepRSD can simultane-
ously represent step features and temporal information. (2) DeepRSD has strong
nonlinear presentation capacity to achieve a good performance without feature
engineering. Therefore, we conclude that DeepRSD can be an effective solution
for regressions on sequential data.

3 http://blog.drhongtao.com/2016/12/winning-methods-from-npower-forecasting-
challenge-2016.html.

http://blog.drhongtao.com/2016/12/winning-methods-from-npower-forecasting-challenge-2016.html
http://blog.drhongtao.com/2016/12/winning-methods-from-npower-forecasting-challenge-2016.html

124 X. Wang et al.

References

1. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions
to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(Feb), 281–305 (2012)

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. arXiv preprint
arXiv:1603.02754 (2016)

4. Gal, Y.: A theoretically grounded application of dropout in recurrent neural net-
works. arXiv preprint arXiv:1512.05287 (2015)

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

6. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

7. Graves, A., Jaitly, N., Mohamed, A.-R.: Hybrid speech recognition with deep bidi-
rectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pp. 273–278. IEEE (2013)

8. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

9. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

11. McGovern, A., Gagne, D.J., Basara, J., Hamill, T.M., Margolin, D.: Solar energy
prediction: an international contest to initiate interdisciplinary research on com-
pelling meteorological problems. Bull. Am. Meteorol. Soc. 96(8), 1388–1395 (2015)

12. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

13. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate O(1/k2). In: Soviet Mathematics Doklady, vol. 27, pp. 372–376 (1983)

14. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent
neural networks. arXiv preprint arXiv:1312.6026 (2013)

15. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: ICML, vol. 28, no. 3, pp. 1310–1318 (2013)

16. Qin, T., Liu, T.-Y., Zhang, X.-D., Wang, D.-S., Li, H.: Global ranking using con-
tinuous conditional random fields. In: Advances in Neural Information Processing
Systems, pp. 1281–1288 (2009)

17. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognit. Model. 5(3), 1 (1988)

18. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120
(2013)

19. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

20. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initial-
ization and momentum in deep learning. In: ICML, vol. 28, no. 3, pp. 1139–1147
(2013)

http://arxiv.org/abs/1412.6830
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1512.05287
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1312.6120

DeepRSD: A Deep Regression Method for Sequential Data 125

21. Wytock, M., Kolter, Z.: Sparse Gaussian conditional random fields: algorithms,
theory, and application to energy forecasting. In: International Conference on
Machine Learning, pp. 1265–1273 (2013)

22. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014)

23. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1212.5701

	DeepRSD: A Deep Regression Method for Sequential Data
	1 Introduction
	2 Designs of DeepRSD
	2.1 RNN Review
	2.2 The Overall Architecture
	2.3 Activation Function
	2.4 Alternative Dropout

	3 Training and Inference
	4 Experiment
	4.1 Evaluations on AMS Solar Energy Prediction Contest
	4.2 Evaluations on Electricity Demand Forecasting Competition

	5 Conclusion
	References

