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Abstract. In real applications, multi-view clustering with incomplete
data has played an important role in the data mining field. How to
design an algorithm to promote the clustering performance is a challeng-
ing problem. In this paper, we propose an approach with learned graph
to handle the case that each view suffers from some missing information.
It combines incomplete multi-view data and clusters it simultaneously by
learning the ideal structures. For each view, with an initial input graph,
it excavates a clustering structure with the consideration of consistency
with the other views. The learned structured graphs have exactly c (the
predefined number of clusters) connected components so that the clus-
tering results can be obtained without requiring any post-clustering. An
efficient optimization strategy is provided, which can simultaneously han-
dle both the whole and the partial regularization problems. The proposed
method exhibits impressive performance in experiments.

Keywords: Incomplete multi-view data · Clustering
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1 Introduction

In many real applications, data are often coming from multiple sources or with
multiple modalities becoming multi-view data, which have attracted extensive
attention in the data mining field [1,7,14]. Observing that multiple views usually
provide each other with complementary and compatible information, integrating
them together to get better performance becomes natural [6,14]. However, in real
applications, it is often the case that some or even all of the views suffer from
some missing information [12,19]. For example, in speaker grouping, the audio
and visual appearances represent two views and some speakers may miss audio or
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visual information. Another example is document clustering, different language
versions of a document can be regarded as multiple views, but many documents
may not be translated into each language. Therefore, it is necessary to explore
how to integrate such incomplete multi-view data. In this paper, we focus on
multi-view clustering with incomplete data. Exiting approaches for this task can
be divided into two categories: completion methods [2,13] and subspace methods
[12,20].

Completion methods are based on matrix completion. For example, singular
value decomposition imputation [2] first uses the eigenvalues to apply a regres-
sion to the complete attributes of the instance, to obtain an estimation of the
missing value itself, and then applies conventional multi-view clustering methods
[7,10] to derive the clustering results. The difference among different completion
methods [7,9,10] is that they complete the incomplete data according to differ-
ent principles. Their performances are usually unsatisfactory when the data are
missing block-wise [12].

In recent years, some subspace methods to handle this case have been pro-
posed. Partial multi-view clustering (PVC) [12] first divides the partial examples
into two blocks and then executes non-negative matrix factorization (NMF) [11]
to learn a low-dimensional representation for each multi-view data. Incomplete
multi-modal visual data grouping (IMG) [20] can be regarded as a version of
PVC, which requires that the low-dimensional representations conform to a self-
learning manifold structure. Other methods such as [17,18] can also be classified
into this category. Although these methods have achieved good performance,
there is still room to improve. Most of them are based on NMF, which is aimed
at learning the latent low-dimensional representations of data rather than clus-
tering data. As a result, they must utilize a post-clustering such as K-means and
spectral clustering to obtain the clustering results. Besides, they assume that
the shared data in different views have exactly the same representation in the
latent space, which may lead to a negative effect on the intrinsic inner structure
of each individual view.

In this paper, with the goal to learn cluster structures directly, we propose
the Structured Graph Learning (SGL) method to manipulate incomplete multi-
view data and group them simultaneously. For each view, our SGL excavates a
structured graph to combine the partial and the complete examples. To establish
interaction between the different views, we naturally constrain the subgraphs
corresponding to the shared data (in different views) to be close. Thus to some
extent, we maintain the intrinsic structure of each individual view, as well as the
consistency between different views. By improving the mechanism of the graph
learning, the graph matrixes learned by our method have ideal structures-exactly
c connected components, so that the clustering results can be derived from these
graphs without requiring any post-clustering. Besides, we propose an efficient
optimization strategy to solve our formulated problem. Experimental results on
real benchmark data sets validate the advantages of our method.
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2 The Proposed SGL

For the convenience of presentation, we take two-view data for illustration. As we
can see from following formulations, extension to any number of views is direct.
For example, most simply, we can separate the multiple views into pairs and
then solve all the two-view problems. For input data, each column is a data and
each row is an attribute. The feature dimensions of view 1 and view 2 data are d1
and d2, respectively. Input data [X(1)T ,X(2)T ]T ∈ R

(d1+d2)×n3 , X̂(1) ∈ R
d1×n1

and X̂(2) ∈ R
d2×n2 denote the examples appearing and only appearing in both

views, view 1 and view 2, respectively. X(1) ∈ R
d1×n3 denotes the shared data in

view 1, and X(2) ∈ R
d2×n3 denotes the shared data in view 2. We assume that

X1 ∈ R
d1×(n3+n1) = [X(1), X̂(1)], X2 ∈ R

d2×(n3+n2) = [X(2), X̂(2)], so that the
n-th (∀n ≤ n3) columns of X1, X2 belong to the same example, while the rest
columns of them contain no common example. Figure 1 illustrates the notations.

We denote the initial graphs constructed from X1 and X2 as A1 ∈
R

(n3+n1)×(n3+n1) and A2 ∈ R
(n3+n2)×(n3+n2) respectively. And we denote the

learned graphs that best approximate A1 and A2 as S1 ∈ R
(n3+n1)×(n3+n1) and

S2 ∈ R
(n3+n2)×(n3+n2) respectively. We denote the initial graphs that correspond

to X(1) and X(2) as Ā1 ∈ R
n3×n3 and Ā2 ∈ R

n3×n3 respectively. Thus Ā1 and Ā2

are the subgraphs of A1 and A2 respectively. And we denote the learned graphs
that correspond to X(1) and X(2) as S̄1 ∈ R

n3×n3 and S̄2 ∈ R
n3×n3 respectively.

Thus S̄1 and S̄2 are the subgraphs of S1 and S2 respectively. Figure 2 illustrates
the learned graphs S1 and S2.

Fig. 1. Notations of data.

For each individual view, we aim to excavate its intrinsic clustering struc-
ture. Motivated by [16], which is effective in learning clustering structure with
complete single-view data, we intend to learn the ideal structured graph from
the initial graph. Given initial affinity matrixes A1 and A2 constructed from
X1 and X2 respectively, we can learn the graph matrixes S1 and S2 that best
approximate A1 and A2 respectively. Following are the elementary objectives:

min∑
j s1ij=1,sij≥0

‖ S1 − A1 ‖2F , (1)

min∑
j s2ij=1,sij≥0

‖ S2 − A2 ‖2F . (2)
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Fig. 2. Learned graphs S1 and S2. S1 and S2 are corresponding to X1 and X2 respec-
tively. S̄1 and S̄2 are corresponding to X(1) and X(2) respectively.

Here we append the constraints
∑

j s1ij = 1 and
∑

j s2ij = 1 (∀i) to avoid the
case that some rows of S1 or S2 are all zeros, and to make S1 and S2 to be
comparable at the same scale.

For each view, according to Eq. (1) (or Eq. (2)), we can learn a graph to
explore and maintain the inner structure of each view. Further, we aim to
bridge different views, for which it is natural to take into account the consis-
tency between the shared data in different views. For S̄1, we can not only learn
from Ā1, but also S̄2. For S̄2, we can not only learn from Ā2, but also S̄1. Thus
we have the following objective function:

min
S1,S2

‖ S1 − A1 ‖2F + ‖ S2 − A2 ‖2F +μ ‖ S̄1 − S̄2 ‖2F
s.t.

∑

j

s1ij = 1, s1ij ≥ 0,
∑

j

s2ij = 1, s2ij ≥ 0,
(3)

where μ > 0 is a parameter that balances the first two terms and the last term.
To make the learned graphs have ideal structures directly for clustering tasks,

we introduce the following property [4,15]:

Property 1. The number of connected components in the graph with the simi-
larity matrix S is equal to the multiplicity c of the eigenvalue zero of LS .

LS ∈ R
n×n in Property 1 is the Laplacian matrix of the nonnegative similarity

matrix S, i.e. LS = DS − (ST + S)/2 (where DS is the degree matrix defined as
a diagonal matrix whose i-th diagonal element is

∑
j (sij + sji)/2).

Given a graph with graph matrix S, Property 1 indicates that if rank(LS) =
n − c, then this graph contains c connected components and each component
corresponds to a cluster. We can obtain clustering results from the learned graph.
Thus the problem (3) can be improved to the following problem:

min
S1,S2

‖ S1 − A1 ‖2F + ‖ S2 − A2 ‖2F +μ ‖ S̄1 − S̄2 ‖2F
s.t.

∑

j

s1ij = 1, s1ij ≥ 0, rank(LS1) = n1 + n3 − c,

∑

j

s2ij = 1, s2ij ≥ 0, rank(LS2) = n2 + n3 − c,

(4)
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which is equivalent to the following optimization problem for large enough values
of both λ1 and λ2:

min
S1,S2

‖ S1 − A1 ‖2F +2λ1

c∑

i=1

σ1i(LS1)+ ‖ S2 − A2 ‖2F

+ 2λ2

c∑

i=1

σ2i(LS2) + μ ‖ S̄1 − S̄2 ‖2F

s.t.
∑

j

s1ij = 1, s1ij ≥ 0,
∑

j

s2ij = 1, s2ij ≥ 0.

(5)

Here, σ1i(LS1) and σ2i(LS2) denote the i-th smallest eigenvalue of LS1 and LS2

respectively. Noting that σ1i(LS1) ≥ 0(∀i) and σ2i(LS2) ≥ 0(∀i), therefore when
λ1 and λ2 are large enough,

∑c
i=1 σ1i(LS1) = 0 and

∑c
i=1 σ2i(LS2) = 0, so that

the constraint rank(LS1) = n1 + n3 − c and rank(LS2) = n2 + n3 − c in the
problem (4) will be satisfied. Thus, the problem (5) is equivalent to the problem
(4). According to Ky Fan’s Theorem [5], we have

c∑

i=1

σ1i(LS1) = min
F1∈R(n1+n3)×c,FT

1 F1=I
Tr(FT

1 LS1F1),

c∑

i=1

σ2i(LS2) = min
F2∈R(n2+n3)×c,FT

2 F2=I
Tr(FT

2 LS2F2),

(6)

where F1 and F2 are the intermediate variables. Thus the problem (5) is further
equivalent to the following problem:

min
S1,F1,S2,F2

‖ S1 − A1 ‖2F +2λ1Tr(FT
1 LS1F1)+ ‖ S2 − A2 ‖2F

+ 2λ2Tr(FT
2 LS2F2) + μ ‖ S̄1 − S̄2 ‖2F

s.t.
∑

j

s1ij = 1, s1ij ≥ 0,
∑

j

s2ij = 1, s2ij ≥ 0,

F1 ∈ R
(n1+n3)×c, FT

1 F1 = I, F2 ∈ R
(n2+n3)×c, FT

2 F2 = I,

(7)

where both parameters λ1 and λ1 are large enough to guarantee that the sums
of the c smallest eigenvalues of both LS1 and LS1 are equal to zero.

According to Eq. (7), note that different from previous graph-based methods,
our graphs are learned, which are learned from both the initial graphs and the
consistency between different views. Besides, Eq. (7) is designed to cluster data
points directly by learning graphs with structures which are ideal for clustering.
From the learned structured graph, we can obtain clustering results of each view
directly. Then by making a simple best one-to-one map between the clustering
results of X(1) and X(2), the final clustering results can be derived.

Since the problem (7) is not convex and the regularization is added on the
partial elements of the graph matrixes, it seems difficult to solve. We propose
an efficient algorithm to solve this problem in the next section.
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3 Optimization Algorithms

When S1 and S2 are fixed, optimizing F1, F2, the problem (7) becomes

min
F1∈R(n1+n3)×c,FT

1 F1=I
Tr(FT

1 LS1F1), (8)

min
F2∈R(n2+n3)×cFT

2 F2=I
Tr(FT

2 LS2F2). (9)

The optimal solution of F1 and F2 is formed by the c eigenvectors of LS1 and
LS2 respectively corresponding to their c smallest eigenvalues.

When F1, F2 and S2 are fixed, optimizing S1, the problem (7) becomes

min
S1

‖ S1 − A1 ‖2F +2λ1Tr(FT
1 LS1F1) + μ ‖ S̄1 − S̄2 ‖2F

s.t.
∑

j

s1ij = 1, s1ij ≥ 0,
(10)

where S1, A1 ∈ R
(n3+n1)×(n3+n1) and S̄1, S̄2 ∈ R

n3×n3 .
The problem (10) is equal to

min∑
j s1ij=1,s1ij≥0

∑

1≤i,j≤n3+n1

(s1ij − a1ij)2 + λ1

∑

1≤i,j≤n3+n1

s1ij(f1i − f1j)

+μ
∑

1≤i,j≤n3+n1

(s̄1ij − s̄2ij)2.
(11)

We can solve the following problems separately for each i since the problem (11)
is independent for different i.

Update the first n3 rows of S1(1 ≤ i ≤ n3). For each i, we denote
v1ij = f1i − f1j . Then the problem (11) becomes

min∑
j s1ij=1,s1ij≥0

n3∑

j=1

(s1ij − a1ij)
2 +

n3+n1∑

j=n3+1

(s1ij − a1ij)
2 + λ1

n3∑

j=1

s1ijv1ij

+ λ1

n3+n1∑

j=n3+1

s1ijv1ij + μ

n3∑

j=1

(s1ij − s̄2ij)2.

(12)

For each i, we denote s1i = [s̄1i, ŝ1i], v1i = [v̄1i, v̂1i] and a1i = [ā1i, â1i]. s̄1i,
v̄1i and ā1i contains and only contains the first n3 elements of the vector s1i,
v1i and a1i respectively. ŝ1i, v̂1i and â1i contains and only contains the last n1

elements of the vector s1i, v1i and a1i respectively.
The problem (12) can be written in vector form as

min
sT1i1=1,s1i≥0

‖
√

1 + μs̄1i − (ā1i − 1
2
λ1v̄1i + μs̄2i)√
1 + μ

‖2
2 + ‖ ŝ1i − (â1i − 1

2
λ1v̂1i) ‖2

2 .(13)
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We denote c1 = ā1i − 1/2λ1v̄1i +μs̄2i, c2 = â1i − 1/2λ1v̂1i, b1 = [c1, c2]. U1 is
a diagonal matrix whose first n3 diagonal elements are all 1 + μ, and the others
are all 1. Then the problem (13) becomes

min
sT1i1=1,s1i≥0

s1U1s
T
1 − 2s1b1. (14)

This problem can be solved by algorithm in [16].
Update the last n1 rows of S1(n3 < i ≤ n3+n1). When n3 < i ≤ n3+n1,

denoting v1ij = f1i − f1j , the problem (11) becomes

min∑
j s1ij=1,s1ij≥0

∑

j

(s1ij − a1ij)
2 +

∑

j

s1ijv1ij . (15)

The problem (15) can be written in vector form as

min
sT1i1=1,s1i≥0

‖ s1i − (a1i − 1
2
λ1v1i) ‖22 . (16)

This problem can be solved with an effective iterative algorithm [8], or solved
by the solution with a similar form as Eq. (30) in [16]

When F1, F2 and S1 are fixed, optimizing S2 is similar to optimizing S1. We
omit the detailed process.

Update the first n3 rows of S2(1 ≤ i ≤ n3). When 1 ≤ i ≤ n3, the
problem (7) becomes

min
sT2i1=1,s2i≥0

s2U2s
T
2 − 2s2b2, (17)

where b2 = [c3, c4], U2 is a diagonal matrix whose first n3 diagonal elements are
all 1+μ, and the others are all 1, c3 = (ā2i−1/2λ2v̄2i+μs̄1i), c4 = â2i−1/2λ2v̂2i.

Update the last n2 rows of S2(n3 < i ≤ n3+n2). When n3 < i ≤ n3+n2,
the problem (7) becomes

min
sT2i1=1,s2i≥0

‖ s2i − (a2i − 1
2
λ2v2i) ‖22 . (18)

The algorithm is provided in Algorithm 1, in which for each data point, we
only update the nearest k similarities in S in order to reduce the complexity of
updating S, F significantly. This technique makes our method applied on data
sets with very large scale.
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Algorithm 1. SGL
1: Input: A1, A2, μ, large enough λ1, large enough λ2.
2: Initialize: F1 formed by the c eigenvectors of LA1 corresponding to the c smallest

eigenvalues, F2 formed by the c eigenvectors of LA2 corresponding to the c smallest
eigenvalues.

3: repeat
4: For each i, update the i-th row of S1 by solving the problems (14)(16).
5: Update F1 by solving the problems (8).
6: For each i, update the i-th row of S2 by solving the problems (17)(18).
7: Update F2 by solving the problems (9).
8: until convergence
9: Output: S1 with c connected components, S2 with c connected components.

4 Discussion

4.1 Convergence Analysis

Property 2. The Algorithm 1 will monotonically decrease the objective of the
problem in each iteration, and converge to a local optimum of the problem.

The brief idea in proving this theorem is summarized as follows. The Algo-
rithm 1 converges because the objective function value of Eq. (7) decreases as
iteration round increases. In detail, with fixed S1 and S2, optimal F1 and F2 can
be obtained by solving the problems (8) and (9) respectively, which will reduce
the objective function value, and with fixed F1 and F2, we can get optimal S1 and
S2 by solving the problems (14) (16) and (17) (18) respectively, which will also
reduce the objective function value. In summary, the Algorithm 1 will converge
to a local optimum of the problem (7).

4.2 Computational Time

Since SGL is solved in an alternative way, we calculate their total computa-
tional complexity by analyzing the computational complexity in solving cor-
responding alternative optimization problems. The Algorithm 1 of SGL can
be divided into three alternative optimization problems. The problems in
Eqs. (8) and (9) updating matrix F1 and F2 respectively can be solved by
eigen-decomposition, and the computational complexity is O((n1 + n3)3) and
O((n2 + n3)3) respectively. Therefore, the total computational complexity of
this procedure is O(max{(n1 + n3)3, (n2 + n3)3}).

The problems in Eqs. (14) and (16) to update S1 row by row are the subprob-
lems of (10). The problem in Eq. (14) can be solved by Lagrange Multiplier and
Newton’s method, of which the computational complexity is O((n1 + n3) × n3).
The problem (16) can be solved by an efficient iterative algorithm [8], and the
computational complexity is O((n1 + n3) × n1). Therefore, the total computa-
tional complexity of this step is O((n1 + n3)2).
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The problems in Eqs. (17) and (18) to update S2 are similar to Eqs. (14) and
(16) respectively, and the total computational complexity is O((n2 + n3)2).

As a result, the total computational complexity of SGL is O(T × max{(n1 +
n3)3, (n2 + n3)3}), where T is the number of iterations. Obviously, cubic time
complexity is caused by spectral decompositions. But in our algorithm, the
Laplacian matrixes on which we implement spectral decompositions is sparse.
Besides, nowadays there are many other novel alternative efficient methods han-
dling spectral decomposition.

5 Experiment

5.1 Data Sets

MSRCv1 is comprised of 240 images in 8 class in total. Two pairs of visual
features are extracted: 256 Local Binary Pattern(LBP) and 512 GIST noted as
MSRCv1GC, 1302 CENTRIST and 200 SIFT noted as MSRCv1CS. Iono-
sphere is composed of 351 free electrons in the ionosphere observed by a system
in Goose Bay, Labrador. The data can be divided into two classes: “Good”
are those showing evidence of some type of structure in the ionosphere. “Bad”
returns are those that do not. Caltech101-7 contains 441 objective images in
7 categories as whole. We extract two features from each image data, includ-
ing 200 SIFT and 32 Gabor texture. Handwritten numerals (HW) contains
2000 images data points for 0 to 9 digit classes and each class has 200 data
points. We select 216 profile correlations (FAC) and 76 Fourier coefficients of
the character shapes (FOU) for our clustering. WebKB is comprised of 1051
pages collected from four universities. Each page has 2 views: 334 citation view,
and 2949 content view. Statistics of the data sets are summarized in Table 1.

Table 1. Data sets descriptions

Data sets Size View Cluster Num Feat1 Feat2

MSRCv1GC 210 2 7 256 512

MSRCv1CS 210 2 7 1302 200

Ionosphere 351 2 2 34 25

Caltech101-7 441 2 7 200 32

HW 2000 2 10 216 76

WebKB 1051 2 2 334 2949

5.2 Comparing Methods

Single-view methods V1CLR and V2CLR: With the partial example ratio
being zero, CLR [16] algorithm is executed separately on view 1 and view 2
noted as V1CLR and V2CLR respectively.
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Completion methods CentroidSC and PairwiseSC: Firstly, the partial
examples are completed with the Robust Rank-k Matrix Completion [9] method.
Two co-regularization schemes [10] are proposed to accomplish this work:
Centroid-Based Co-regularization noted as CentroidSC and Pairwise-Based Co-
regularization noted as PairwiseSC.

Subspace methods PVC [12] and IMG [20].
Other method: CGC [3] is aimed to deal with many-to-many instance rela-

tionship, which supports the situation of incomplete views.
We construct the sparse affinity matrixes A1 and A2 by Eq. (35) in [16].

Following [12], we randomly select a ratio of examples to be partial to simulate
the partial view setting, i.e. they only appear in either of the two views while
the remaining ones are described by both views. we evenly assign them to the
two views to simplify the experiment. Each time we randomly select 10% to 90%
examples, with 10% as interval, as partial examples. We repeat such process 10
times and record the average and standard deviation results. For PVC and IMG,
the k-means algorithm is performed to get the final clustering result as in the
original paper. The other clustering methods may be also feasible. We utilize
two standard clustering evaluation metric to measure the multi-view clustering
performance, that is, Clustering Accuracy (ACC) and Normalized Mutual Infor-
mation (NMI). Same as [12], we test all the methods under different Partial
Example Ratio (PER) varying from 0.1 to 0.9 with an interval of 0.1.

5.3 Clustering Result Comparison

Table 2 and Fig. 3 report the ACC and NMI values respectively on various data
sets with different PER ratio settings. From these figures and the table, we make
the following observations and discussions.

In almost all the settings, our method usually outperform both methods exe-
cuted on single complete view (V1CLR and V2CLR) even when the PER ratio
equals 30% , which confirm that our approach synthesizes the information from
both views validly and proposed constraint between the subgraphs correspond-
ing to the same samples (from different views) is effective. As the partial example
ratio PER varies from 10% to 90%, the proposed method usually performs much
better than other multi-view clustering baselines. Particularly, the performance
of our approach improves much compared with the baselines when Per is less
than 40%. And with more missing examples, the performance of all the methods
drops basically.

CentroidSC and PairwiseSC usually perform worst on almost all the data
sets, which may be caused by that matrix completion requires the randomness
of the missing locations, while the data are missing block-wise for the multi-
view incomplete data setting. One may be curious why our method performs
much better than other subspace learning methods. This may be caused by
that their assumption that shared data in different views have exactly the same
representations in the latent space may damage the inner structure of each view
and increase the risk of over-fitting. Besides, our graphs are learned from both
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Table 2. Experimental ACC (the higher the better) results (mean(std)) on six data
sets. The best result is highlighted in boldface. T-Test (statistical significance of T-Test
is 5%) results between our and other algorithms, Win (•) means our performs better.
Lose (⊗) means other algorithm performs better. Tie (�) means that our and other
algorithms cannot outperform each other.

Data sets V1CLRV2CLRPER CentroidSC PairwiseSC PVC IMG CGC SGL

MSRCv1GC .7524 .6619

0.1 .6499(.0399)•.6160(.0598)• .6879(.0191)• .6952(.0182)• .6271(.0487)• .8300(.0430)
0.2 .6030(.0370)•.5752(.0382)• .6510(.0414)• .6749(.0294)• .5924(.0349)• .8238(.0365)
0.3 .5480(.0329)•.5494(.0223)• .6482(.0429)• .6645(.0332)• .5952(.0435)• .8090(.0282)
0.4 .4979(.0354)•.5165(.0296)• .6403(.0246)• .6748(.0445)• .5876(.0664)• .7852(.0313)
0.5 .4568(.0246)•.4619(.0297)• .6302(.0442)• .6564(.0381)• .5986(.0583)• .7657(.0279)
0.6 .4329(.0371)•.4339(.0361)• .5848(.0313)• .6605(.0438)• .5848(.0743)• .7371(.0413)
0.7 .4134(.0296)•.4199(.0318)• .5926(.0407)• .6415(.0470)• .5771(.0436)• .7224(.0440)
0.8 .4014(.0347)•.4043(.0298)• .5758(.0233)• .6250(.0593)• .5652(.0552)• .6810(.0341)
0.9 .3733(.0243)•.3830(.0246)• .4948(.0297)• .5505(.0711)• .5152(.0995)• .6368(.0310)

MSRCv1CS .6762 .5667

0.1 .6231(.0269)•.6193(.0232)• .6305(.0331)• .5983(.0270)• .5286(.0490)• .7895(.0071)
0.2 .5604(.0328)•.6125(.0423)• .6228(.0367)• .5600(.0244)• .5000(.0231)• .7067(.0415)
0.3 .5521(.0209)•.6036(.0364)• .5823(.0682)• .5628(.0468)• .5667(.0554)• .7210(.0568)
0.4 .5129(.0423)•.5757(.0240)• .5552(.0550)• .5611(.0341)• .5562(.0600)� .6762(.0516)
0.5 .4629(.0352)•.5175(.0395)•.5386(.0735)�.5541(.0731)� .5714(.0288)• .6381(.0297)
0.6 .4525(.0376)•.4859(.0390)• .5550(.0460)• .5570(.0445)� .6067(.0338)� .6390(.0701)
0.7 .4268(.0380)•.4433(.0277)•.5294(.0764)� .5171(.0546)• .5467(.0407)• .6143(.0370)
0.8 .4149(.0321)•.4090(.0208)•.5496(.0269)�.5518(.0550)� .5267(.0605)� .5981(.0300)
0.9 .3972(.0165)•.4017(.0332)• .4605(.0218)• .4890(.0643)• .4990(.0652)• .5848(.0637)

Ionosphere .6097 .5726

0.1 .6407(.0192)•.6397(.0172)• .5832(.0044)• .5983(.0270)• .5286(.0490)• .7179(.0083)
0.2 .6270(.0251)•.6172(.0287)• .5770(.0125)• .5600(.0244)• .5000(.0231)• .7179(.0110)
0.3 .6227(.0351)•.6076(.0379)• .5683(.0075)• .5628(.0468)• .5667(.0554)• .7179(.0252)
0.4 .6101(.0234)•.6180(.0332)• .5693(.0085)• .5611(.0341)• .5562(.0600)• .7174(.0174)
0.5 .5907(.0354)•.5960(.0367)• .5648(.0053)• .5541(.0731)• .5714(.0288)• .7020(.0162)
0.6 .5870(.0331)•.5887(.0260)• .5730(.0088)• .5570(.0445)• .6067(.0338)• .6923(.0225)
0.7 .5744(.0174)•.5855(.0206)• .5794(.0056)• .5171(.0546)• .5467(.0407)• .6917(.0219)
0.8 .5532(.0188)•.5670(.0345)• .5652(.0140)• .5518(.0550)• .5267(.0605)• .6883(.0235)
0.9 .5558(.0351)•.5554(.0382)• .5656(.0049)• .4890(.0643)• .4990(.0652)• .6724(.0309)

CaltechSW .5578 .4671

0.1 .4221(.0339)•.3976(.0197)• .5189(.0258)• .5472(.0118)• .5757(.0280)� .5912(.0137)
0.2 .4011(.0231)•.3926(.0189)• .5128(.0209)• .5243(.0596)• .5508(.0769)� .5821(.0143)
0.3 .3891(.0225)•.3709(.0212)• .4903(.0366)• .5365(.0243)• .5054(.0606)• .5653(.0245)
0.4 .3639(.0266)•.3604(.0201)• .4645(.0241)• .5060(.0670)� .5279(.0636)� .5440(.0364)
0.5 .3506(.0225)•.3457(.0224)• .4325(.0175)• .5033(.0508)�.5086(.0467)� .5075(.0291)
0.6 .3307(.0296)•.3344(.0303)• .4226(.0345)• .4901(.0414)�.5159(.0324)� .4912(.0270)
0.7 .3230(.0262)•.3194(.0265)• .3988(.0274)• .4657(.0530)�.4968(.0644)� .4776(.0196)
0.8 .3205(.0248)•.3251(.0222)• .4053(.0405)• .4546(.0361)• .4649(.0340)� .4794(.0186)
0.9 .3098(.0235)•.3100(.0256)• .3890(.0297)• .4482(.0359)� .4422(.0250)� .4583(.0339)

HW .7745 .7020

0.1 .7041(.0060)•.6380(.0169)• .5629(.0204)• .5893(.0403)• .6718(.0527)• .8231(.0049)
0.2 .6631(.0131)•.5924(.0108)• .5649(.0279)• .5341(.0387)• .6318(.0678)• .7862(.0230)
0.3 .6145(.0075)•.5547(.0122)• .5201(.0224)• .5215(.0148)• .6058(.0473)• .7763(.0144)
0.4 .5734(.0067)•.5254(.0080)• .4937(.0123)• .5011(.0513)• .5937(.0708)• .7655(.0101)
0.5 .5325(.0114)•.4964(.0086)• .4601(.0163)• .4835(.0199)• .5674(.0552)• .7613(.0186)
0.6 .5048(.0098)•.4802(.0077)• .4526(.0144)• .4563(.0273)• .5408(.0486)• .7441(.0150)
0.7 .4941(.0105)•.4584(.0088)• .4314(.0159)• .4213(.0088)• .5248(.0304)• .7351(.0165)
0.8 .4892(.0133)•.4429(.0060)• .4184(.0098)• .4041(.0226)• .5096(.0300)• .7267(.0099)
0.9 .4846(.0179)•.4354(.0101)• .4145(.0171)• .3743(.0299)• .4809(.0336)• .7272(.0271)

WebKB .8563 .8249

0.1 .7925(.0081)•.8006(.0126)• .7336(.0063)• .2952(.3154)• .7159(.0426)• .9701(.0030)
0.2 .7824(.0088)•.7812(.0124)• .7291(.0062)• .2846(.3006)• .6830(.0574)• .9678(.0051)
0.3 .7565(.0267)•.7617(.0253)• .7219(.0041)• .3124(.3299)• .6852(.0565)• .9615(.0074)
0.4 .7782(.0112)•.7796(.0098)• .7175(.0148)• .3166(.3343)• .6834(.0568)• .9574(.0097)
0.5 .7723(.0272)•.7692(.0420)• .6993(.0120)• .3364(.3548)• .6728(.0538)• .9006(.0302)
0.6 .7047(.0748)•.7174(.0763)• .6946(.0234)• .3461(.3650)• .6626(.0404)• .8680(.0260)
0.7 .5834(.0134)•.5834(.0134)• .6916(.0170)• .3580(.3779)• .6463(.0527)• .8418(.0231)
0.8 .5568(.0107)•.5568(.0107)• .6737(.0286)• .3532(.3728)• .6422(.0488)• .8092(.0313)
0.9 .5264(.0102)•.5264(.0102)• .6564(.0235)• .3541(.3737)• .6197(.0566)• .7857(.0250)

win\tie\lose 54 \ 0 \ 0 54 \ 0 \ 0 51\ 3 \ 0 46 \ 8 \ 0 43 \ 11 \ 0

the initial graphs and the consistency between views. And the learned graphs
contain ideal clustering structures.

One may be also interested in the reason why our method has a considerable
improvement when PER is high. When PER is high, for most of the subspace
learning methods, it is hard to accurately estimate the common representa-
tion Pc simply from the little common complete data. IMG utilizes a general
global structure to remedy this deviation. However, the global structure over-
looks the specific intrinsic structure of each individual view. Our structures are
more detailed and specific.
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SGL PVC IMG CGC PairwiseSC CentroidSC V1CLR V2CLR
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Fig. 3. The NMI (the higher the better) results for the six data sets. PER (partial
example ratio) is the ratio of partial examples. Partial examples are evenly distributed
to the two views.

5.4 Convergence Study

We experiment on data set MSRCv1 to show the convergence property. The
convergence curves and corresponding NMI performances with PER = 30%
and PER = 70% setting are plotted in Fig. 4. For PER = 30% setting, we
set {λ1, λ2, μ} as {50, 50, 2.0}. For PER = 70% setting, we set {λ1, λ2, μ} as
{50, 50, 9.0}. The objective function during each iteration is drawn in black. We
can see that the value of objective function decreases rapidly with the increasing
of iteration round. Inspiringly, it only takes around 12 rounds to converge. The
NMI value during each iteration is drawn in red, from which we can see 12 round
is enough to get good clustering performance.
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(b) PER = 70%

Fig. 4. Convergence curve of Objective function value and corresponding NMI perfor-
mance curve vs number of iterations of our with PER = 30% and PER = 70% on
MSRCv1GC data set. (Color figure online)
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5.5 Parameter Study

We study parameters on four data sets: MSRCv1GC, MSRCv1SW CaltechSW
and HW. There are three parameters to explore: λ1, λ2 and μ. Following [16], we
determined both λ1 and λ2 in a heuristic way : in each iteration, we computed
the numbers of zero eigenvalues of LS1 and LS2, if one is larger (smaller) than k,
we divide (multiply) it by two (respectively). Following [12], We tune μ for three
different PER 30%, 50% and 70%. As above experiment, we randomly select a
ratio of examples to be partial and repeat such process 10 times to record the
average results. The effect of the parameter μ is showed in Fig. 5.

From Fig. 5, it is easy to see that on all data sets, our method achieves steadily
good performance for NMI with a very large range of μ in all settings, which
validates the robustness of our method. Our method usually has a relatively
good performance when μ is in the range of [2.0, 4.0] for the PER = 30% and
PER = 50% settings, while the best range becomes [7.0, 9.0] for the PER = 70%
setting.
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Fig. 5. Effect of the parameter μ on four data set with three different PER.

6 Conclusion

In this paper, we propose a method to handle multi-view clustering problem
in the case that all the views suffer from the missing of some data. Different
from existing approaches, we simultaneously manipulate and cluster incomplete
multi-view data. We excavate and maintain the intrinsic structure of each indi-
vidual view, and establish interaction between the different views through the
shared data. For each view, a graph with exactly c connected components can
be learned so that the clustering results can be derived from graphs without
any post-clustering. To optimize our proposed objective, we provide the solu-
tion which can simultaneously handle both the whole and partial regularization
problem. Experimental results on six real-world multi-view data sets compared
with several baselines validate the effectiveness of our method. In the future, we
will study how to reduce the computational cost of our method.



Incomplete Multi-view Clustering via Structured Graph Learning 111

References

1. Bickel, S., Scheffer, T.: Multi-view clustering. In: Proceedings of the 4th IEEE
International Conference on Data Mining (ICDM), pp. 19–26 (2004)

2. Brand, M.: Incremental singular value decomposition of uncertain data with miss-
ing values. In: Computer Vision - ECCV 7th European Conference on Computer
Vision, pp. 707–720 (2002)

3. Cheng, W., Zhang, X., Guo, Z., Wu, Y., Sullivan, P.F., Wang, W.: Flexible and
robust co-regularized multi-domain graph clustering. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 320–328 (2013)

4. Chung, F.R.: Spectral Graph Theory, vol. 92. American Mathematical Society,
New York (1997)

5. Fan, K.: On a theorem of Weyl concerning eigenvalues of linear transformations i.
Proc. Natl. Acad. Sci. 35(11), 652–655 (1949)

6. Greene, D., Cunningham, P.: A matrix factorization approach for integrating mul-
tiple data views. In: Proceedings of Machine Learning and Knowledge Discovery
in Databases, European Conference, ECML PKDD 2009, pp. 423–438 (2009)

7. Guo, Y.: Convex subspace representation learning from multi-view data. In: Pro-
ceedings of the 27th AAAI Conference on Artificial Intelligence (2013)

8. Huang, J., Nie, F., Huang, H.: A new simplex sparse learning model to measure
data similarity for clustering. In: Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence IJCAI, pp. 3569–3575 (2015)

9. Huang, J., Nie, F., Huang, H., Lei, Y., Ding, C.H.Q.: Social trust prediction using
rank-k matrix recovery. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence IJCAI, pp. 2647–2653 (2013)

10. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In:
Advances in Neural Information Processing Systems 24: 25th Annual Conference
on Neural Information Processing Systems, pp. 1413–1421 (2011)

11. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

12. Li, S., Jiang, Y., Zhou, Z.: Partial multi-view clustering. In: Proceedings of the
28th AAAI Conference on Artificial Intelligence, pp. 1968–1974 (2014)

13. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)

14. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative
matrix factorization. In: Proceedings of the 2013 SIAM International Conference
on Data Mining, pp. 252–260. SIAM (2013)

15. Mohar, B., Alavi, Y., Chartrand, G., Oellermann, O.: The laplacian spectrum of
graphs. Graph theory, combinatorics, and applications 2(871–898), 12 (1991)

16. Nie, F., Wang, X., Jordan, M.I., Huang, H.: The constrained laplacian rank algo-
rithm for graph-based clustering. In: Proceedings of the 30th AAAI Conference on
Artificial Intelligence, pp. 1969–1976 (2016)

17. Shao, W., He, L., Yu, P.S.: Multiple incomplete views clustering via weighted non-
negative matrix factorization with L2,1 regularization. In: Appice, A., Rodrigues,
P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015.
LNCS (LNAI), vol. 9284, pp. 318–334. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23528-8 20

18. Shao, W., Shi, X., Philip, S.Y.: Clustering on multiple incomplete datasets via
collective kernel learning. In: 2013 IEEE 13rd International Conference on Data
Mining (ICDM), pp. 1181–1186. IEEE (2013)

http://arxiv.org/abs/1009.5055
https://doi.org/10.1007/978-3-319-23528-8_20
https://doi.org/10.1007/978-3-319-23528-8_20


112 J. Wu et al.

19. Wang, Q., Si, L., Shen, B.: Learning to hash on partial multi-modal data. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence,
IJCAI, pp. 3904–3910 (2015)

20. Zhao, H., Liu, H., Fu, Y.: Incomplete multi-modal visual data grouping. In: Pro-
ceedings of the 25th International Joint Conference on Artificial Intelligence,
IJCAI, pp. 2392–2398 (2016)


	Incomplete Multi-view Clustering via Structured Graph Learning
	1 Introduction
	2 The Proposed SGL
	3 Optimization Algorithms
	4 Discussion
	4.1 Convergence Analysis
	4.2 Computational Time

	5 Experiment
	5.1 Data Sets
	5.2 Comparing Methods
	5.3 Clustering Result Comparison
	5.4 Convergence Study
	5.5 Parameter Study

	6 Conclusion
	References




