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Abstract. Credit default prediction is a topic of great importance in
lending industry. Just like many real-world applications, the dataset in
the task is often class-imbalanced and noisy, degrading the performance
of most machine learning methods. In this paper, we propose an exten-
sion of Factorization Machines, named RobustFM, to address the prob-
lem of class-imbalance and noisiness in the credit default prediction task.
The proposed RobustFM employs a smoothed asymmetric Ramp loss
function, into which truncation and hinge parameters are introduced to
facilitate noise tolerance and imbalanced learning. Experimental results
on several real credit datasets show that RobustFM significantly outper-
forms state-of-the-art methods in terms of F-measure.
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1 Introduction

Credit default, generally refers to failure to pay interest or principal on a loan
when due, is a primary potential source of risk in lending business. Distinguish-
ing credit applicants with high default risk from credit-worthy ones has been
identified as a crucial issue for risk management in financial institutions. Over
the last decades, researchers and practitioners have sought to develop credit
models using modern machine learning techniques [1] for their ability to model
complex multivariate functions without rigorous assumptions for the input data.

Despite encouraging successes in recent studies, accurate predictive analysis
of credit default through using machine learning techniques is by no means a
trivial task. Many of the challenges stem from the fact that the data in the task,
i.e., samples of credit applicants, is generally imbalanced and noisy. Defaults,
which are often of more focused interests in the credit default prediction task,
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would only hit a small segment of credit customers in a real credit business [2].
This results in a heavily skewed class distribution of credit data. In addition,
credit data is collected from loan records of financial institutions; however, due to
privacy issues, system malfunctions or even human error, historical loan records
are often incomplete or erroneous, making the credit data noisy. Therefore, in
order to facilitate responsible decision-making for credit granting, the problems
of class-imbalance and noisiness in credit data should be fully addressed.

Factorization machines (FM), proposed by Rendle [3] in the context of recom-
mendation system, is a novel predictive model that maps a number of predictor
variables to some target. The advantages FM offers over traditional classification
approaches is that it provides a principled way to model second-order (up to arbi-
trary order in theory) variable interactions in linear complexity. FM has shown
great promise in a number of prediction tasks, such as context-aware recommen-
dation [4,5] and click-through rate prediction [6-8]. However, the potential of
exploiting FM in credit risk evaluation has been little investigated so far. We
argue that FM is powerful in credit default prediction task for at least the follow-
ing reasons. First, for the task of credit default prediction, the combinations of
predictor variables (e.g., family, age, and salary), usually much more discrimina-
tive than single ones, can be naturally modeled through variable interactions in
FM. Second, FM embeds features into a low-rank latent space such that variable
interactions can be estimated under high sparsity; thus FM can be viewed as a
favored formulism for tackling sparse credit data.

In this work, we explore the use of FM for credit default prediction, with an
emphasis on the class-imbalanced and noisy natural of credit data. We incorpo-
rate a new non-convex loss function into the learning process of FM and give rise
to a novel Robust Factorization Machines (RobustFM) model that enhances
FM for prediction under class-imbalance and noisiness settings. The new non-
convex loss function is essentially a smoothed asymmetric Ramp loss [9] with
additional degrees of freedom to tolerate the noise and imbalanced class distribu-
tion of credit data. Unlike convex loss functions used in traditional FM, the new
loss function is upper bounded so as to enhance the robustness of the learning
procedure. Furthermore, asymmetric margins are introduced to push learning
towards achieving a larger margin on the rare class (defaulters).

The rest of the paper is organized as follows. In Sect. 2, we present preliminar-
ies of this work, including Credit Default Prediction and Factorization Machines.
We then present the details of the proposed RobustFM in Sect.3. Experiment
results are shown in Sect. 4. Finally, we review related work and conclude the
paper in Sects. 5 and 6, respectively.

2 Preliminary

2.1 Credit Default Prediction

In point view of machine learning, the credit default prediction task is gener-
ally formalized as binary classification. Formally, each credit applicant is rep-
resented by a set of features (e.g., applicant’s age, monthly income, education,
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employment and loan purpose), denoted as x € R?, where d is the number of
features. Each credit applicant belongs to either of the two classes with a label
y € {41, —1}. In this work, we use +1 and —1 to denote credit applicants with
high default risk (hereafter, bad applicants) and low default risk (hereafter, good
applicants), respectively.

Given a training set D = D) U D7) € R4 x {+1,—1}, in which D™
and D) denote a set of historical bad and good credit applicants, respectively.
In general, |[D)| < |D()|. The goal of credit default prediction is to learn
a function f : R +— {+1,—1}, which is capable of classifying a new credit
applicant into one of the two classes.

2.2 Factorization Machines

Factorization Machines (FM) takes as input a real valued vector x € R?, and
estimates the target by modelling pairwise interactions of sparse features using
low-rank latent factors. The model equation of FM is formulated as:

7(x;0) —wo+ija:J+Z Z (Vj,vjr)xjz (1)

J=17'=j+1
where the parameters © have to be estimated are:
wo €ER; weRY V=(v, - ,vq) € RP?

In Eq.1, the first two items on the right-hand-side are linear combinations
of each features with weights w; (1 < j < d) and global bias wg, and the last
item on the right-hand-side is pairwise feature interactions using a factorized
weighting schema w;;, = (v;,vj) = > 1_, Vjk - vjrk, where v; is factor vector of
the j-th feature. Feature factors in FM are commonly said to be low-rank, due
to p < d.

In addition to theoretical soundness of low-rank feature factorization, FM
is also practically efficient for its linear prediction time complexity. Computing
pairwise feature interaction directly requires time complexity of O(d?); however,
it has been shown that the pairwise feature interaction in FM can be computed
in O(pd) using the equivalent formulation of Eq.1 [3]:

d 1 p d 2 d
9(x;0) = wo + Z wiTi+ 5 Z Zvjkxj - Z vl (2)
j=1 k=1 j=1 j=1

The model parameters © of FM can be estimated through minimizing empir-
ical risk over training set D, together with regularization of parameters:

Op(© | Z Ly, 5(x:0)) + > Agb? (3)

(x y)ED )
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where £(y,q) is the loss function to evaluate the disagreement of the predic-
tion value § with the actual label y. Without confusion, we sometimes use g to
represent the prediction g(x; ©) in the rest of the paper.
For binary classification, the most widely adopted loss function in FM is
Logistic loss: )
glogit (ya @) =In (1 + e—yy)

Despite effectiveness in various prediction tasks, FM still suffers from the
curse of learning from imbalanced and noisy data. When the one class vastly
outnumbers others, the learning objective in Eq. 3 can be dominated by instances
from the major class. As such, FM tends to be overwhelmed by the major class,
ignoring the minor, yet important ones, which is bad applicants in credit default
prediction task. Furthermore, the Logistic loss, as convex loss functions, gives
high penalties to those misclassified samples far from the origin, increasing the
chances of outliers having a considerable contribution to the global loss. Thus
the parameters estimated through optimizing Eq. 3 may be inevitably biased by
outliers in noisy datasets, leading to a suboptimal predictive model that attempts
to account for these outliers.

In this work, instead of Logistic loss, we incorporate into FM a new smoothed
asymmetric Ramp loss allowing for class-dependent and up-bounded penalties
for misclassified instances. This results in RobustFM, a new extension of FM
that addresses imbalanced and noisy class distribution simultaneously, greatly
improving the accuracy of credit default prediction under real-world scenarios.

3 Smooth Asymmetric Ramp Loss

Ramp loss, a non-convex loss function proposed by Collobert [9], is essentially
a “truncated” version of Hinge loss used in support vector machines:

11—y ifyg<ny
Cr(y,g;7) = 1—yy ify<yyp<1
0 if yg > 1

Intuitively, Ramp loss is constructed by flattening Hinge loss when the so-
called functional margin yg smaller than a predefined parameter v < 0. In other
words, a fixed non-zero penalty 1 —~y, rather than linear penalty 1 — yy in Hinge
loss, is applied to the samples mistakenly predicted far away from the origin
(ie., yg <7).

Studies have proven Ramp loss’s superiority over Hinge loss in terms of
robustness to noisy labels [10,11]. However, Ramp loss applies a unified penalty,
either 1 —~ or 1 —yy, to all samples no matter to which class they belong. Similar
as Logistic loss and Hinge loss, the empirical risk based on Ramp loss will be
dominated by negative instances if the class distribution is highly imbalanced.
Ramp loss thus still suffering from imbalanced class distribution.

One way to address the class-imbalance problem is to apply class-dependent
penalties to the training errors. We introduce new parameters in Ramp loss to
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control the degree of penalty for positive and negative classes, and construct an
asymmetric Ramp (aRamp) loss:

Wy iy <~y
Car(y, 537,770 = 07 W gy ity <y < W (y e {+1,-1})
0 if yg > 7

There are three parameters in asymmetric Ramp loss: v (y < 0) is truncation
parameter that decides the point to flatten the loss function; 7(+) and 7(=) are
the hinge parameters for false negative and false positive errors, respectively. In
general, 7(t) > 7(=) > 1 since false negative error is considered more serious
than false positive error in imbalanced classification problems.

One should note that the asymmetric Ramp loss is not differentiable at the
truncation point (3 = ) and the hinge points (y§ = 7)), whereas smoothness
is a desired property for gradient-based optimization techniques, e.g., stochas-
tic gradient descent and alternating coordinate descent, which have been widely
used for training FM. Motivated by the smoothing mechanism adopted in design-
ing Huber loss [12], we make use of smooth quadratic function to approximate
the asymmetric Ramp loss at the non-smooth points. More specifically, we derive
a smooth asymmetric Ramp (saRamp) loss as follows:

T = ifyg<y—24
a2
T(y)—yﬁ—w ify =6 <yj<y+o
baar(y, 957, 7, 7,8) = ¢ 7 — g ify+d<yg<t® -5
W 15— yi)?
(71—6?41/) i) 5 <yg <) 4
0 if yj>7Y 44

The saRamp loss is quadratic for small interval around the truncation point
[y — 6,7 + 6] and the hinge point [r®) — § 7 4 §], and linear for other
values. Figurel illustrates the aRamp loss and saRamp loss with different
interval length d. Tt is easy to verify that lims_ .o fsar (v, 9;y, 7P, 7(),6) =
Lar (Y, T5 s (), T(_)). We omit the proof due to brevity. In practice, we set § =
0.1. Without ambiguity, we briefly denote saRamp loss fear (v, §;7, 7P, 70, 8)
as lsar (Y, §) hereafter.

The derivative of the saRamp loss w.r.t. the functional margin can be easily
derived as follows:

0 if yg<vy—9
e N R EY RS
WSS?WZ —1 ify+8<yj<r® 0 (4)
" LT A8y zg‘y@ if 7@ —§ <yg<r® 45

0 if yg>7W 46
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aRamp Loss
........... saRamp Loss (6=0.5)
TENG | e saRamp Loss (6=1.0)

Fig. 1. Asymmetric Ramp loss and smooth asymmetric Ramp loss

4 Parameter Estimation

To solve the highly non-convex problem in Eq. 3 in a large scale, iterative opti-
mization methods are usually preferred, due to the simplicity nature and flexi-
bility in the choices of loss function. In this work, we employ Stochastic Gradient
Descent (SGD), one of the most popular optimization method in factorization
models, to estimate the parameters of RobustFM. Simply put, SGD updates
parameters iteratively until convergence. In each iteration, an instance (x,y) is
randomly drawn for training data D, and the update is performed towards the
direction of negative gradient of the objective w.r.t. each parameter 6 € ©:

B DO (5 1 (OF1))
9t = gt=1) _ . ( { vyge (5)

where 7 > 0 is the learning rate of gradient descendent.
Plugging the learning objective Eq.3 into Eq.5, we derive the parameter
updating formula:

g — glt=1) _ . (Wsaa(y, z)éz; o) 2A99<t—1)>

Applying the chain rule to Eq.4 yields the derivative of the saRamp loss
w.r.t. model parameters:

8€saR(y7g) _ 8€saR(yvg) . 8(7!@)
06 o(yi) o0

y (L 1) Gy -6 < yg <+

_ —y~g—§ Ify+s<yg<t® -6
_y_“’“;#.% IFr® 5 <yj<r® 45
0 Otherwise
where % is the partial derivatives of model equation of FM w.r.t. each param-

eters. According to Eq. 2, it can be written as follows:
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9

7:1

81110

9

— =z, (1<j<d

awj x]( S7= )

9y ‘

v, =a; Y vy (1<j<d1<k<p)

J'#J

Given the above equations, the parameter estimation procedure for
RobustFM is summarized in Algorithm 1. Note that, for each instance, the
runtime complexity of Algorithm 1 remains the same as traditional FM, i.e.,
O(p-Np(x)) where Ny(x) denotes the number of non-zero features of the instance.
Even so, the learning procedure of RobustFM is more computational efficient
than that of traditional FM, because Algorithm 1 only iterates over the instances
with non-zero gradient (line 5) whereas all instances in training data are to be
handled in each iterations of traditional FM learning procedure.

Algorithm 1. PARAESTIMATE
Input: Training set D

Output: Model parameters ©

1: Initial model parameters: wo < 0; w < (0,--- ,0); V ~ N(0,0.1);
2: repeat

3: for (x,y) € D do
4 Predict current instance as §(x; ©)
5 if v =0 <y-9(x;0) < 7% 4+ then
6: Update wo, w and V according to Eq. 5.
7 end if
8
9:

end for
until convergence

5 Experiments

5.1 Experimental Settings

Datasets. Several real-world credit datasets, including four public datasets and
one private dataset, are used for empirical evaluation of the proposed RobustF'M.
A summary of the five datasets is illustrated in Table 1.

Australian, German and Taiwan are public credit datasets available from
UCI Machine Learning Repository that have been widely used in the literature.
SomeC'redit is the dataset of Kaggle competition Give Me Some Credit that
aims to predict the probability of future financial distress of loan borrowers.
Besides these public datasets, we used a private dataset, denoted as SD-RCB,
in this experiment. The dataset is sourced from a regional bank of China which
provides micro-credit services to self-employed workers and farmer households.
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In total, more than 50 thousands historical credit records are collected from
the credit scoring system of the bank. The attributes of each credit records
include custom demographics, credit application information, historical repay-
ment behavior, and etc.

From Tablel, it has to be noted that the number of defaulters is always
less than that of non-defaulters in all these datasets, and the default rate is
even less than 10% in SomeCredit and SD-RCB, the two large-scale real-world
credit datasets. This provides practical evidence of class-imbalance problem in
real-world credit default prediction tasks.

Table 1. Statistics of credit datasets

Dataset #samples | #attributes | Default rate (%)
Australian® 690 |14 44.5
German” 1,000 |20 30.0
Taiwan® 30,000 |23 22.1
SomeCredit? | 150,000 | 10 6.7
SD-RCB 54,893 46 9.2

®http://archive.ics.uci.edu/ml/datasets/
statlog+(australian+credit+approval)
Phttps://archive.ics.uci.edu/ml/datasets/
statlog+(german+credit+data)
“https://archive.ics.uci.edu/ml/datasets/
default4-of+credit4-card+-clients

dhttps:/ /www.kaggle.com/c/GiveMeSomeCredit

Evaluation Measures. In order to compare the performance among different
approaches, we employ the following three types of measures in this experiment:

— Accuracy (Acc). Accuracy aims to evaluate the correctness of categorical
.. 1 N
predictions: Ace = « > ;_1 Iy, 2sgn(sn)]

— Brier Score (BS). Most classifiers give probabilistic predictions § = p(£1|x),
rather than category predictions § = +1, making Accuracy calculated in an
unnatural way — a categorical prediction can be only inferred by assigning
a manually-tuned threshold to raw predictions. Unlike Accuracy, Brier Score
aims to evaluate the correctness of the raw probabilistic predictions: BS =
& S i — luilxi)?

— Precision (Pre), Recall (Rec) and F-measure (F;). One important shortage
of Acc and BS is that a classifier is evaluated without taking into account the
variations between classes. However, in the credit default prediction tasks, the
correctness of predictions on defaulters is much more important than that on
non-defaulters. We thus employ three performance measures: Precision, Recall
and F-measure. Essentially, Precision and Recall measure the type-I error
(non-defaulter classified as defaulter) and the type-II error (defaulter classified


http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/c/GiveMeSomeCredit
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as non-defaulter), respectively, and F-measure is the harmonic average of
Precision and Recall.

Baselines. To verify the advantage of the proposed RobustFM, we compare
it with several state-of-the-art credit default prediction models. First, the most
widely used classification techniques in the task of credit default prediction [1],
including logistic regression (LR), neural networks (NN) and support vector
machines (SVM), are selected as baselines. Second, the traditional FM, as well
as its extensions with traditional Hinge loss and Ramp loss, are applied to the
task of credit default prediction and selected as baselines.

5.2 Performance Evaluation

In this experiment, five-fold cross validation is performed on each dataset and
the average performance on the five folds is reported. Table 2 presents the exper-
imental results and comparisons on each dataset.

It can be seen from Table 2 that the proposed RobustFM, compared to base-
line methods, achieves the highest F; score on all the five datasets. We perform
statistical significance test to check whether the improvements are significant.
More specifically, paired t-tests is applied on the predicted results obtained by
RobustFM and the nearest counterpart. The results indicate that the improve-
ments of RobustFM are significant with p-value < 0.05 on datasets German and
Taiwan and p-value < 0.01 on datasets SomeCredit and SD-RCB, marked with
single and double asterisks in Table 2, respectively. In fact, the imbalanced ratio
of the datasets SomeCredit and SD-RCB is much higher than that of others.
The comparison results prove the effectiveness of RobustFM in dealing with
imbalanced data, especially with high imbalanced ratio and large size.

From Table 2, we have the following more observations:

i. Besides Fj, RobustFM achieves the highest Recall on four of the five
datasets. This is in fact favored in real-world credit default prediction tasks
in which missing a true defaulter in predictions is typically perceived as a
more severe error than misclassifying a non-defaulter as a defaulter.

ii. Achieving highest F; doesn’t necessarily result in highest Accuracy and BS.
As a matter of fact, RobustFM only achieves the highest Accuracy on dataset
Awustralian which is a rather balanced dataset of small size. However, it is
well recognized that Accuracy is not suitable for evaluating performances on
class-imbalanced setting.

ili. Among all the baselines, FM-based methods (FM, FM#Hinge, and FMramp)
perform better than most traditional methods (LR, NN, and SVM) in terms
of almost all performance measures. This result coincides with the findings
of previous studies on FM from a variety of tasks such as click-through
rate prediction and context-aware recommendation, and further verifies our
intuition of the advantages of FM when applying to the credit prediction
tasks described before.
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Table 2. Prediction performance of each approaches

Dataset Methods | Ace(%) | BS Pre(%) | Rec(%) | F1(%)
Australian | LR 68.84 0.2976 |72.10 88.25 79.34
NN 67.97 10.2443 | 73.00 |83.76 78.00
SVM 67.97 ]0.2488 |68.14 99.15 80.77
FM 70.69 0.2166 |72.34 89.47 80.00
FM-Hinge | 70.68 0.2325 |71.43 92.10 80.45
FM-Ramp | 72.41 0.2153 | 72.92 92.11 81.39
RobustFM | 73.28 |0.2114 | 72.73 94.74 |82.29
German LR 75.70 |0.2902|62.18 |49.33 54.89
NN 75.30 | 0.3004 |60.56 51.67 55.63
SVM 72.50 0.3464 |53.70 59.67 56.52
FM 74.85 0.3477 | 53.85 60.87 57.14
FM-Hinge | 71.86 0.4123 |49.15 63.04 55.24
FM-Ramp | 74.25 0.4327 |52.63 65.22 58.25
RobustFM | 70.66 | 0.3681 |48.06 80.43 |60.17*
Taiwanese |LR 80.73 |0.2688 |63.51 30.76 41.38
NN 81.06 0.2622 |62.73 35.97 45.64
SVM 79.73 10.2812 |58.61 38.16 44.94
FM 81.96 |0.1668 |65.48 |35.67 46.18
FM-Hinge |81.14 0.1628 | 58.60 44.61 50.65
FM-Ramp |81.26 |0.1932 |59.18 43.96 50.45
RobustFM | 77.78 0.1932 |48.95 55.58 | 52.06*
SomeCredit | LR 93.59 ]0.2002 |55.49 19.29 28.62
NN 93.43 ]0.2004 |52.18 18.30 26.99
SVM 93.58 0.1645 | 55.78 |17.43 26.52
FM 93.76 0.1469 |53.17 23.16 32.26
FM-Hinge |93.67 |0.1238 |55.45 21.25 30.73
FM-Ramp | 93.96 |0.1513 |54.74 24.14 33.50
RobustFM | 93.24 0.1611 |47.20 34.21 |39.67**
SD-RCB LR 52.38 0.5850 |67.82 |15.81 23.55
NN 55.09 |0.4426 |55.90 13.35 20.19
SVM 67.86 |0.4209 |53.19 16.49 24.41
FM 90.19 |0.2989 |37.37 20.73 26.67
FM-Hinge |91.37 | 0.1764  49.71 24.09 32.45
FM-Ramp | 85.83 0.3373 | 26.85 37.54 |31.31
RobustFM | 88.62 0.2561 |34.07 34.45 34.26**
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5.3 Hyper-parameter Study

Compared with traditional FM, there are two additional hyper-parameters:
and ()1, Experiments are performed to study how the prediction performance
of RobustFM is affected by these parameters. More specifically, by fixing one of
the parameters, we vary the other one and record the prediction performance in
terms of Precision, Recall and F (see Fig.2(a) and (b)). Due to space limitation,
only the results on the dataset SomeCredit are reported, and the results on other
datasets are similar.

0.6 0.6

05 T e 05 W

0.4 0.4

o w s M

0.2 0.2
—— Precision Recall ——F1 —e— Precision Recall —=—F1

0.1 0.1

1 1.5 2 25 3 35 4 2 25 3 35 4.5 5 55 6

4
el

T
(a) Varying ~ by fixing 7 = 2.9 (b) Varying ) by fixing v = 3.3

Fig. 2. The effects of hyper-parameters

To choose the truncation parameter v, one may typically start from a num-
ber slightly smaller than 0 and then decrease v to tune the level of learning
insensitivity of RobustFM. From Fig.2(a), it can be seen that the prediction
performance of RobustFM varies slightly when v € (2, 4) and the optimal Fj
score is achieved around v = 3.3. When ~ is getting smaller and smaller, the
robustness of RobustFM is reduced, causing performance to degrade as depicted
in Fig.2(a). Similarly, to choose the margin parameter 7(), one may typically
start from a number slightly larger than 1.0 and increase 7(t). While 7(*) is
increasing, the classification hyperplane is moving towards to the major class.
This process can be illustrated in Fig. 2 in which the Recall increases constantly
as 7(t) increases from 2.0 to 3.0. From Fig.2(b), it also can be seen that the
prediction performance of RobustFM varies slightly when 7(*) € (2, 5) and
the optimal F score is achieved around 7(+) = 2.9. Overall, these experiments
indicate that the proposed RobustFM performs quite steadily with wide-range
values of truncation parameter and margin parameter.

6 Related Work

Credit default prediction has long been a central concern of financial risk man-
agement research. More recently, emerging machine learning techniques, instead

+)

! In practice, the negative margin parameter ) s usually set as 1, thus 7() can be

just viewed as the relative positive margin.
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of simple statistical methods, have been widely applied in the literature. Exten-
sive studies have already demonstrated that machine learning techniques outper-
form classical statistical methods on various credit risk evaluation tasks. Until
recently, almost all of the popular machine learning algorithms, e.g., support vec-
tor machines [13,14], decision tree [15] and neural networks [16,17] have been
employed to construct credit risk model. Recent studies show that ensemble
method that integrates predictions of several individual classifiers is a promising
approach for credit risk modeling. A number of ensemble strategies have been
proposed to construct more powerful credit risk models [18-20].

The class-imbalance problem in credit data has drawn attention in the lit-
erature. Several experimental studies have shown that most machine learning
algorithms (e.g., decision tree, neural networks, and etc) perform significantly
worse on imbalanced credit datasets [21,22]. Recently, A few studies have tried
to tackling the class-imbalance problem in credit data by developing specific
feature selection and ensemble strategies [23].

7 Conclusion and Future Work

In this paper, we propose a novel approach RobustF'M for the credit default pre-
diction task. Compared with existing machine learning based credit risk models,
the main advantage of RobustFM is to address the issues of class-imbalance
and noisiness in the credit data simultaneously. We demonstrate RobustFM’s
effectiveness on credit default prediction task via experimental evaluations on
several real credit application datasets. It can be concluded that the proposed
RobustFM is a worthwhile choice for the credit default prediction task.

Several issues could be considered for future work. For example, there are
additional hyper-parameters in RobustFM that need to be tuned to yield good
predictions. Further study should be continued to apply automated machine
learning techniques to derive the optimal hyper-parameters automatically.

Acknowledgement. This work is partially supported by Natural Science Foundation
of China (61602278, 71704096, 61472229 and 31671588), Sci. & Tech. Development
Fund of Shandong Province (2016ZDJS02A11, 2014GGX101035 and ZR2017TMF027),
the Taishan Scholar Climbing Program of Shandong Province, and SDUST Research
Fund (2015TDJH102).

References

1. Lessmann, S., Baesens, B., Seow, H.-V., Thomas, L.C.: Benchmarking state-of-the-
art classification algorithms for credit scoring: an update of research. Eur. J. Oper.
Res. 247(1), 124-136 (2015)

2. Pluto, K., Tasche, D.: Estimating probabilities of default for low default portfolios.
In: Engelmann, B., Rauhmeier, R. (eds.) The Basel IT Risk Parameters, pp. 75-101.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16114-8_5

3. Rendle, S.: Factorization machines with libFM. ACM Trans. Intell. Syst. Technol.
(TIST) 3(3), 57 (2012)


https://doi.org/10.1007/978-3-642-16114-8_5

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Robust Factorization Machines for Credit Default Prediction 953

Wang, S., Li, C., Zhao, K., Chen, H.: Learning to context-aware recommend with
hierarchical factorization machines. Inf. Sci. 409, 121-138 (2017)

Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware
recommendations with factorization machines. In: Proceedings of the 34th ACM
SIGIR, pp. 635-644 (2011)

Juan, Y., Zhuang, Y., Chin, W.-S., Lin, C.-J.: Field-aware factorization machines
for CTR prediction. In: Proceedings of the 10th ACM RecSys, pp. 43-50 (2016)
Pan, Z., Chen, E., Liu, Q., Xu, T., et al.: Sparse factorization machines for click-
through rate prediction. In: Proceedings of the 16th IEEE ICDM, pp. 400—409
(2016)

Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. arXiv preprint arXiv:1703.04247

Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability.
In: Proceedings of the 23rd ICML, pp. 201-208 (2006)

Ghosh, A., Kumar, H., Sastry, P.: Robust loss functions under label noise for deep
neural networks. In: Proceedings of the 31th AAAI, pp. 1919-1925 (2017)
Cevikalp, H., Franc, V.: Large-scale robust transductive support vector machines.
Neurocomputing 235, 199-209 (2017)

Zhang, T.: Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In: Proceedings of the 21th ICML, p. 116 (2004)

Hens, A.B., Tiwari, M.K.: Computational time reduction for credit scoring: an inte-
grated approach based on support vector machine and stratified sampling method.
Expert Syst. Appl. 39(8), 6774-6781 (2012)

Danenas, P., Garsva, G.: Selection of support vector machines based classifiers for
credit risk domain. Expert Syst. Appl. 42(6), 3194-3204 (2015)

Nie, G., Rowe, W., Zhang, L., Tian, Y., Shi, Y.: Credit card churn forecasting
by logistic regression and decision tree. Expert Syst. Appl. 38(12), 15273-15285
(2011)

Lisboa, P.J., et al.: Partial logistic artificial neural network for competing risks
regularized with automatic relevance determination. IEEE Trans. Neural Netw.
20(9), 1403-1416 (2009)

Marcano-Cedeno, A., Marin-De-La-Barcena, A., Jiménez-Trillo, J., Pinuela, J.,
Andina, D.: Artificial metaplasticity neural network applied to credit scoring. Int.
J. Neural Syst. 21(04), 311-317 (2011)

Ala’raj, M., Abbod, M.F.: A new hybrid ensemble credit scoring model based on
classifiers consensus system approach. Expert Syst. Appl. 64, 36-55 (2016)

Xiao, H., Xiao, Z., Wang, Y.: Ensemble classification based on supervised clustering
for credit scoring. Appl. Soft Comput. 43, 73-86 (2016)

Xia, Y., Liu, C., Li, Y., Liu, N.: A boosted decision tree approach using bayesian
hyper-parameter optimization for credit scoring. Expert Syst. Appl. 78, 225-241
(2017)

Louzada, F., Ferreira-Silva, P.H., Diniz, C.A.: On the impact of disproportional
samples in credit scoring models: an application to a Brazilian bank data. Expert
Syst. Appl. 39(9), 8071-8078 (2012)

Brown, I., Mues, C.: An experimental comparison of classification algorithms for
imbalanced credit scoring data sets. Expert Syst. Appl. 39(3), 3446-3453 (2012)
Sun, J., Lang, J., Fujita, H., Li, H.: Imbalanced enterprise credit evaluation with
DTE-SBD: decision tree ensemble based on SMOTE and bagging with differenti-
ated sampling rates. Inf. Sci. 425, 76-91 (2018)


http://arxiv.org/abs/1703.04247

	Robust Factorization Machines for Credit Default Prediction
	1 Introduction
	2 Preliminary
	2.1 Credit Default Prediction
	2.2 Factorization Machines

	3 Smooth Asymmetric Ramp Loss
	4 Parameter Estimation
	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Evaluation
	5.3 Hyper-parameter Study

	6 Related Work
	7 Conclusion and Future Work
	References




