
Semi-supervised Feature Selection Based
on Logistic I-RELIEF for

Multi-classification

Baige Tang1 and Li Zhang1,2(B)

1 School of Computer Science and Technology & Joint International Research
Laboratory of Machine Learning and Neuromorphic Computing, Soochow University,

Suzhou 215006, Jiangsu, China
bgtang@stu.suda.edu.cn, zhangliml@suda.edu.cn

2 Provincial Key Laboratory for Computer Information Processing Technology,
Soochow University, Suzhou 215006, Jiangsu, China

Abstract. The semi-supervised Logistic I-RELIEF (SLIR) algorithm
has been proposed for feature selection, which can handle both labeled
and unlabeled data to perform feature selection. However, SLIR can only
deal with binary problems. To remedy it, this paper presents a multi-
classification semi-supervised Logistic I-RELIEF (MSLIR) algorithm for
feature selection. Based on SLIR, MSLIR designs a novel scheme to cal-
culate the margin vectors of unlabeled samples. Experimental results
demonstrate the efficiency and effectiveness of our algorithm.
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1 Introduction

High-dimensional data, such as DNA microarray data, medical data, and satellite
remote sensing data, may contain irrelevant information, which generally exists
in machine learning and pattern recognition. It is meaningful to use feature
selection or feature extraction as a pre-processing way for reducing the nega-
tive influence of irrelevant data. Feature selection, as a dimensionality reduction
technology makes great contributions to saving storage space and reducing the
computational cost. Therefore, feature selection is widely applied to many learn-
ing tasks.

Feature selection methods can be categorized into three groups: supervised,
unsupervised and semi-supervised methods. Supervised feature selection meth-
ods include RELIEF-based methods [1–3], Fisher criterion-based methods [4,5],
etc. RELIEF is one of the most effective feature selection algorithms, which
finds a weight vector for features by maximizing the margin between the differ-
ences of given samples and their nearest neighbors in two classes. The features
with larger weights could be selected to perform classification tasks. The vari-
ants of RELIEF have been proposed, such as Logistic I-RELIEF (LIR) [1] and
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RELIEF-F [3]. Supervised feature selection methods require a large amount of
labeled data which is hard to obtain. It is difficult for supervised feature selec-
tion methods to choose features that are distinguishable from few labeled data
in the training dataset. Therefore, many unsupervised feature selection methods
have been proposed [6–8], which can effectively utilize unlabeled data. However,
these methods ignore the information contained in labeled data, so they cannot
identify the discriminative features well [7].

The semi-supervised feature selection methods can achieve better perfor-
mance since they make full use of the labeled and unlabeled data. Common meth-
ods include the clustering-based method [9], locality sensitive-based method [10],
local discriminative information-based method [11], semi-supervised Logistic I-
RELIEF method (SLIR) [12], forward method [13,14], multi-objective optimiza-
tion method [15], spectral analysis method [16], and so on. This paper focuses
on the RELIEF-based methods. In SLIR, labeled data are used to maximize the
distance between samples in different classes, while the unlabeled data samples
are used to extract the geometric structure in a data space [12]. SLIR is the first
and successful variant of RELIEF in semi-supervised learning. However, SLIR
can only deal with binary problems and cannot effectively solve the multi-class
problems.

To solve this issue, we propose a multi-classification semi-supervised Logistic
I-RELIEF (MSLIR) algorithm for feature selection based on SLIR. Under the
semi-supervised learning framework, RELIEF-based methods need to consider
how to compute the margin vector of an unlabeled sample. MSLIR designs a
novel scheme to calculate the margin vectors of unlabeled samples for multi-
classification problems.

The rest of paper is arranged as follows. Section 2 briefly introduces related
work include Logistic I-RELIEF and semi-supervised Logistic I-RELIEF. We
propose multi-classification semi-supervised Logistic I-RELIEF algorithm in
Sect. 3. Experimental results are presented in Sect. 4. The paper is concluded
in Sect. 5.

2 Related Work

This section mainly introduces two algorithms: LIR and SLIR, where SLIR is
an extended algorithm of LIR.

2.1 Logistic I-RELIEF

In I-RELIEF, neighbors of a given sample in the original feature space is incon-
sistent with the nearest neighbors in the weighted feature space, so LIR proposes
a new probabilistic model to calculate the distance between samples and their
neighbors.

A assume that the input dataset is D = {(xn, yn)}Nn=1 ⊂ RI × {+1,−1},
where xn is a labeled sample and yn is its label, I is the number of original
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features, and N is the number of samples. Here, we discuss the binary problem:
+1 and −1 represent positive and negative classes, respectively.

The optimization problem of LIR can be described as:

min
w

N∑

n=1

log(1 + exp(−wT zn)) + λ‖w‖1

s.t. w ≥ 0 (1)

where ‖ · ‖1 is the 1-norm, w is the feature weight vector which represents the
importance of features, λ ≥ 0 is a regularization parameter to avoid overfitting,
and zn is the margin vector of the sample xn which can be written as follows:

zn =
∑

xi∈Mn

P(xi = NM(xn)|w)|xn − xi|

−
∑

xi∈Hn

P(xi = NH(xn)|w)|xn − xi| (2)

where Mn = {xi|(xi, yi) ∈ D, yi �= yn, i = 1, . . . , N},Hn = {xi|(xi, yi) ∈ D, yi =
yn, i = 1, . . . , N},P(xi = NM(xn)|w) and P(xi = NH(xn)|w) are the probabili-
ties that the sample xi is the nearest miss and the nearest hit of xn, respectively,
NM(xn) represents the nearest miss of sample xn and NH(xn) represents the
nearest hit of sample xn.

2.2 Semi-supervised Logistic I-RELIEF

On the basis of Logistic I-RELIEF algorithm, Sun et al. [12] extended Logistic
I-RELIEF to semi-supervised learning. Due to the introduction of unlabeled
samples, the calculation for the margin vectors of unlabeled samples needs to be
revised.

We are given a labeled sample set Dl = {(xl
i, y

l
i)}Li=1(yi ∈ {±1}) and an

unlabeled sample set Du = {xu
i }Ui=1. For a given labeled sample xl and unlabeled

sample xu, let their margin vector be zl and zu, respectively. Since xl is a labeled
sample, its margin vector zl can be computed as Eq. (2). Fortunately, zu has
the same absolute value, regardless of which class the sample xu belongs to.
Therefore, zu can use the same way of computing zn. SLIR can be cast into the
following optimization problem:

min
w

‖w‖1 + α

L∑

i=1

log(1 + exp(−wT zli)) + β

U∑

i=1

exp(−(wT zui )2/δ)

s.t. w ≥ 0 (3)

where δ is the kernel width, zli is margin vector of sample xl
i, zui is margin

vector of sample xu
i , α and β represent the contribution of labeled and unlabeled

samples to the cost function (3), respectively. Then (3) can be solved by using
the gradient descent method.
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3 Semi-supervised Logistic I-RELIEF for
Multi-classification

SLIR can only deal with bianry problems. To solve this issue, we propose the
MSLIR algorithm for multi-classification based on SLIR. Given a labeled sample
set Dl = {(xl

i, y
l
i)}Li=1 with yl

i ∈ {1, 2, . . . , c} and the class number c, and an
unlabeled sample set Du = {xu

i }Ui=1, the goal of MSLIR is to find feature weights
for multi-classification tasks under the semi-supervised situation. There are L+U
samples in total (L � U). MSLIR designs a novel scheme to calculate the margin
vectors of unlabeled samples, based on which MSLIR can be formulated as an
optimization problem similar to SLIR. In the following, we discuss MSLIR in
detail.

3.1 Calculation of Margin Vectors

MSLIR requires to calculate margin vector for each sample including labeled and
unlabeled one. The margin vector zli of the labeled sample xl

i can be expressed
as follows:

zli =
∑

xl
k∈Mi

P(xl
k = NM(xl

i)|w)|xl
i − xl

k|

−
∑

xl
k∈Hi

P(xl
k = NH(xl

i)|w)|xl
i − xl

k| (4)

where the set Mi = {xl
k|(xl

k, y
l
k) ∈ Dl, y

l
k �= yl

i, i = 1, . . . , L, yl
i = {1, . . . , c}}

contains all labeled samples that have different labels from xl
i, the set Hi =

{xl
k|(xl

k, y
l
k) ∈ Dl, y

l
k = yl

i, i = 1, . . . , L} contains all labeled samples that have
the same labels as xl

i.
For the multi-classification problem, the sample xu

i in the data set Du may
belong to any class, hence, the calculation of the margin vectors of unlabeled
samples needs to be redefined. Suppose that we assign a temporary label to the
unlabeled sample xu

i . Then we can calculate the candidate margin vector (zui )j

of the unlabeled sample xu
i with the assigned label j as follows:

(zui )j =
∑

xl
k∈M

j
i ,yk �=j

P(xl
k = NMj(xu

i )|w)|xu
i − xl

k|

−
∑

xl
k ∈H

j
i ,yk=j

P(xl
k = NHj(xu

i )|w)|xu
i − xl

k| (5)

where M
j

i = {xl
k|(xl

k, y
l
k) ∈ Dl, y

l
k �= j, k = 1, . . . , L, j = 1, . . . , c} is the sample

set that contains all labeled samples whose label is not equal to j, and H
j

i =
{xl

k|(xl
k, y

l
k) ∈ Dl, y

l
k = j, k = 1, . . . , L} is the sample set that contains all labeled

samples whose label is equal to j.
Which is the possible margin vector of the sample xu

i among the c candidate
margin vectors? Without any apriori information, we consider the candidate
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margin vector which has the greatest inner product with the feature weight
vector w as the possible one. Then zui can be determined by:

zui = arg max
j=1,...,c

wT (zui )j (6)

3.2 Optimization Problem and Algorithm Description

After the margin vectors of labeled and unlabeled samples are defined, MSLIR
is to solve the following optimization problem:

min
w

‖w‖1 + α
L∑

i=1

log(1 + exp(−wT zli))

+ β

U∑

i=1

log(1 + exp(−wT zui ))

s.t. w ≥ 0 (7)

where α ≥ 0 and β ≥ 0 are the regularization parameters that control the impor-
tance of labeled and unlabeled samples, respectively. By comparing (3) and (7),
we find that there are two differences between them. First, the calculation way
of zui is different. In (3), calculating zui does not consider the label of xu

i . Con-
trary, the calculation of zui takes into account the possible label of xu

i . Second,
(7) uses the same logical regression form for both labeled and unlabeled samples
to ensure the symmetry of labeled and unlabeled samples.

In order to facilitate calculation, we convert the optimization problem (7)
to an unconstraint optimization problem. Let w = [v2

1 , . . . , v
2
I ]

T and v =
[v1, . . . , vI ]. The optimization formula (7) can be rewritten as:

min
v

J = ‖v‖22 + α

L∑

i=1

log(1 + exp(−
I∑

d=1

v2
dz

l
id))

+ β

U∑

i=1

log(1 + exp(−
I∑

d=1

v2
dz

u
id)) (8)

where zli = [zli1, . . . , z
l
iI ]. In order to solve formula (8), we use the gradient descent

method. The derivation of J to v can be written as follows:

∂J

∂vk
= 2vk − α

L∑

i=1

exp(−∑I
d=1 v2

dz
l
id)(2vkz

l
ik)

1 + exp(−∑I
d=1 v2

dz
l
id)

− β

U∑

i=1

exp(−∑I
d=1 v2

dz
u
id)(2vkz

u
ik)

1 + exp(−∑I
d=1 v2

dz
u
id)

(9)

Let Q1 =
∑L

i=1
exp(− ∑I

d=1 v2
dz

l
id)(vkz

l
ik)

1+exp(− ∑I
d=1 v2

dz
l
id)

and Q2 =
∑U

i=1
exp(− ∑I

d=1 v2
dz

u
id)(vkz

u
ik)

1+exp(− ∑I
d=1 v2

dz
u
id)

,
the update formulation for each dimension can be described as:

vk ← vk − η(vk − αQ1 − βQ2) (10)
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Algorithm 1. MSLIR
Input: Labeled dataset Dl = {(xl

i, y
l
i)}L

i=1 ⊂ RI × {1, 2, . . . , c}; unlabeled
dataset Du = {xu

i }U
i=1 ⊂ RI , regularization parameters α and β, the

iteration number T , and the stop criterion θ.
Output: Feature weight w.

1 begin
2 Initialization: Set w(0) = [1, 1, . . . , 1]T , t = 1, ρ = 1;
3 while t ≤ T && ρ > θ do

4 Compute zli by (4), i = 1, . . . , L;

5 Compute (zui )j by (5), j = 1, . . . , c and find zui by (6), i = 1, . . . , U ;
6 Solve formula (7) using the gradient descent method to find v;

7 Compute w(t) = [v2
1 , . . . , v2

I ]
T ;

8 ρ = ‖w(t) − w(t−1)‖;
9 t = t + 1;

10 end
11 w = w(t);
12 Output w.

13 end

where η is the learning rate. The pseudo-code of MSLIR is shown in Algorithm1.
The algorithm alternatively modifies the weight vector until convergence.

The computational complexity of MSLIR includes three parts: the calculation
of the margin vectors for both labeled and unlabeled samples, and the solution
to the optimization problem (8). In MSLIR, the computational complexity of
solving (8) and calculating the margin vectors for labeled samples are identical
to SLIR. The computational complexity of calculating the margin vectors for
unlabeled samples is O(cdLU) in MSLIR. For the same task, SLIR has the
computational complexity of O(dLU). In a nutshell, MSLIR has a compared
complexity with SLIR.

4 Experiments

In this section, we evaluate the performance of the proposed MSLIR algorithm
on one artificial dataset and eight UCI datasets [17]. The compared methods
include LIR, SLIR and RELEIF-F. In each dataset, we added 100 irrelevant
features to each sample, which are independently sampled from zero-mean, unit-
variance Gaussian distribution, then we normalize these irrelevant features with
the original data. All the experiments are implement in MATLAB R2013a on a
PC with an Inter Core I5 processor with 4 GB RAM.

4.1 Artificial Dataset

We conduct experiments on the “ThreeCircles” dataset to verify the ability of the
proposed algorithm in feature selection. There are 3 classes in the “ThreeCircles”
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(d) Weight estimated by MSLIR

Fig. 1. “ThreeCircles” dataset (a) training dataset for LIR, (b) training dataset for
MSLIR, feature weights estimated by (c) LIR and (d) MSLIR.

dataset, as shown in Fig. 1(a) and (b). In Fig. 1(a), each class has 51 labeled
samples. In Fig. 1(b), each class also has 51 labeled samples as Fig. 1(a), and
additionally 3450 unlabeled ones. LIR and MSLIR are conducted to compare
the performance in feature selection. In MSLIR, let regularization parameters
α = 6 and β = 3. Let kernel width δ = 8 for MSLIR and LIR.

In Fig. 1(c), LIR fails to identify the useful feature since the weight of the
first feature is equal to zero. Figure 1(d) shows that the first two features selected
by MSLIR has the highest weights and the weights of other noisy features are
nearly zero. The results in Fig. 1(c) and (d) indicate that MSLIR can successfully
identify the first two useful features using labeled and unlabeled data.

4.2 UCI Datasets

In this section, we use eight UCI datasets to verify the performance of algo-
rithms. The eight UCI datasets include Wine, Vehicle, Yeast, Iris, Wdbc, Heart,
Pima and Sonar datasets, of which the first four datasets are multi-class ones,
and the rest are two-class ones. The datasets are randomly divided into inde-
pendent training and test subsets, where training subsets contain labeled and
unlabeled data. Semi-supervised methods use both labeled and unlabeled data,
and supervised methods only use labeled data. The data information is sum-
marized in Table 1, where “#Training” and “#Test” represent the number of
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Table 1. Information of four UCI datasets.

Data sets #Training #Test #Feature #Class

#Labeled #Unlabeled

Wine 10 40 128 13(100) 3

Vehicle 30 170 646 18(100) 4

Yeast 178 250 1056 8(100) 10

Iris 20 30 100 4(100) 3

Heart 40 130 100 13(100) 2

Wdbc 20 149 400 30(100) 2

Pima 20 148 600 8(100) 2

Sonar 20 38 150 61(100) 2
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Fig. 2. Classification accuracy of MSLIR, RELIEF-F and LIR on UCI datasets, (a)
Wine, (b) Vehicle, (c) Yeast and (d) Iris.

training samples and test samples, respectively. The total number of “#Labeled”
and “#Unlabeled” data is equal to the number of training samples. “#Feature”
represents the dimension of dataset.

The classifier utilized in our experiments is support vector machine (SVM).
The Gaussian kernel parameter and regularization parameter of SVM are deter-
mined by the grid search method, where both parameters vary from 2−10 to
210.
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Multi-classification Datasets. We compare the proposed feature selection
algorithm with RELIEF-F and LIR, which both are supervised algorithms for
solving multi-classification problems. We use the cross-validation method to
select parameter α and β in MSLIR. The regularization parameter and learning
rate in LIR follow the setting in [1]: λ = 10 and η = 0.03. Experiments are imple-
mented on the Wine, Vehicle, Yeast and Iris datasets, each of which is randomly
partitioned 10 times. We report the average results. The curves of the average
classification accuracy vs. the n top-ranked features are shown in Fig. 2, where n
is the original feature dimension of datasets. In Fig. 2(a), (b) and (c), the classifi-
cation accuracy of the three algorithms also gradually increases as the number of
selected features increases, which indicates that the useful features are gradually
found. We can see that SMLIR is always better than LIR and RELIEF-F, which
may indicate LIR and RELIEF-F algorithms contain noise features. In Fig. 2(d),
MSLIR achieves the best classification accuracy when one feature is used, and
LIR and RELIEF-F need two features. Obviously, MSLIR has a significantly
higher performance than the other two algorithms. The best average accuracy
and the corresponding standard deviation are given in Table 2. We can observe
that MSLIR has a great improvement on Wine and Vehicle datasets.

Table 2. Classification accuracy and standard deviations (%) of SVM using features
selected by MSLIR, LIR and RELIEF-F

Data sets MSLIR LIR RELIEF-F

Wine 88.59± 9.07 84.14 ± 6.38 82.11 ± 8.62

Vehicle 57.97± 4.62 50.22 ± 9.11 42.11 ± 10.69

Yeast 48.55± 14.17 46.59 ± 14.95 44.91 ± 17.41

Iris 96.57± 1.21 96.43 ± 1.21 96.43 ± 1.21

In Fig. 3, we give the feature weights of the three algorithms on the Wine
dataset. We can observe that MSLIR correctly selects relevant features, while
LIR assigns higher weights to some irrelevant features, and RELEIF-F fails to
identify noise data. In summary, MSLIR can handle feature selection problems
for multi-classification under the semi-supervised framework. The supervised
approaches do not remove the noise features well with few labeled data. Because
of the introduction of unlabeled data, MSLIR can effectively eliminate noise
features.

Binary Classification Datasets. We conduct experiments to compare MSLIR
with SLIR and prove that MSLIR is also suitable for binary problems. SLIR is a
semi-supervised feature selection method for solving binary problems. In MSLIR,
the way of parameter setting is the same as the multi-classification case. The
parameters α and β are determined by the cross-validation method in SLIR.
Experiments are implemented on the Heart, Wdbc, Pima and Sonar datasets,



728 B. Tang and L. Zhang

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Feature Index

W
ei

gh
t
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Fig. 3. Feature weights obtained by (a) MSLIR, (b) LIR and (c) RELIEF-F on the
Wine dataset

each of which is randomly divided 10 times and the average accuracy is taken
as the final results.

The results are shown in Fig. 4. In Figs. 4(a) and (c), we can observe that clas-
sification accuracy of MSLIR and SLIR are steady. However, MSLIR is much bet-
ter than SLIR, which indicates MSLIR does not choose noise features. Figure 4(b)
shows that SMLIR reaches the best accuracy when the number of features is 6,
and SLIR when the number of features is 25, which implies that MSLIR chooses
few features to reach the better accuracy. The best average classification accu-
racy and corresponding standard deviations are listed in Table 3. Compared to

Table 3. Classification accuracy and standard deviations (%) of SVM using features
selected by MSLIR and SLIR

Data sets MSLIR SLIR

Heart 83.1± 3.93 79.9 ± 4.04

Wdbc 90.65± 3.15 86.8 ± 5.14

Pima 69.17± 3.90 66.9 ± 3.25

Sonar 70.13± 5.44 67.33 ± 8.38
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Fig. 4. Classification accuracy of MSLIR and SLIR on UCI datasets, (a) Heart, (b)
Wdbc, (c) Pima and (d) Sonar.
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Fig. 5. Feature weights obtained by (a) MSLIR and (b) SLIR on the Sonar dataset

SLIR, the accuracy of MSLIR is improved 3.2%, 3.85%, 2.27% and 2.80% on
Heart, Wdbc, Pima and Sonar datasets, respectively.

Figure 5 shows the distribution of feature weights on the Sonar dataset, we
can see that MSLIR selects relevant features, while SLIR evaluates noise features
higher weights and fails to distinguish relevant features.
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Compared to SLIR, MSLIR can effectively solve the binary problems, and
improve the classification accuracy.

5 Conclusion

In this paper, we propose MSLIR based on SLIR. MSLIR overcomes the draw-
back of SLIR, which can make full use of unlabeled information to select relevant
features on multi-class of data. The results on one artificial dataset demon-
strate that MSLIR can effectively handle noise data. When dealing with multi-
class classification tasks, MSLIR can extract effective features under the semi-
supervised framework compared to supervised methods. For binary classification
problems, MSLIR can achieve better performance than SLIR despite the fact
that both methods are semi-supervised learning ones.
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