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Abstract. Clustering is a fundamental task that has been utilized in
many scientific fields, especially in machine learning and data mining. In
clustering, dissimilarity measures play a key role in formulating clusters.
For handling categorical values, the simple matching method is usually
used for quantifying their dissimilarity. However, this method cannot
capture the hidden semantic information that can be inferred from rela-
tionships among categories. In this paper, we propose a new clustering
framework for categorical data that is capable of integrating not only the
distributions of categories but also their mutual relationship information
into the pattern proximity evaluation process of the clustering task. The
effectiveness of the proposed clustering algorithm is proven by a com-
parative study conducted on existing clustering methods for categorical
data.
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1 Introduction

Clustering is a common method that is widely used in a variety of fields. Clus-
tering groups data into clusters. For each cluster, objects in the same cluster
are similar between themselves and dissimilar to objects in other clusters [1].
Clustering techniques can be classified into two main classes: hierarchical clus-
tering and partitional clustering [2]. In fact, partitional methods have shown
their effectiveness for solving clustering problems with scalability. Among them,
the k-means [3] is probably the most well-known and widely used method. How-
ever, one inherent limitation of this approach is its data type constraint, as the
k-means technically can only work with numerical data type.

During the last decade or so, several attempts have been made in order
to remove the numeric data only limitation of k-means to make it applicable
to clustering for categorical data. Particularly, some k-means like methods for
categorical data have been proposed such as k-modes [4], k-representatives [5], k-
centers [6] and k-means like clustering algorithm [7]. Although these algorithms
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use a similar clustering fashion to the k-means algorithm, they are different in
defining cluster mean or dissimilarity measure for categorical data.

Furthermore, measures to quantify the dissimilarity (similarity) for categori-
cal values are still not well-understood because there is no coherent metric avail-
able between categorical values thus far. Several methods have been proposed
for encoding categorical data as numerical values such as dummy coding (or
indicator coding) [8,9]. Particularly, they use binary values to indicate whether
a categorical value is absent or present in a data record. However, by treating
each category as an independent variable in that way, many important features
and characteristics of categorical data type such as the distribution of categories
or their relationships may not be taken into account.

Moreover, the significance of considering those information in order to quan-
tify the dissimilarity between categorical data has been proven by several previ-
ous studies [7,10]. Especially, in the field of clustering with categorical data, most
previous works have unfortunately neglected the semantic information poten-
tially inferred from relationships among categories. In this research, we propose
a new clustering algorithm that is able to integrate those kinds of information
into the clustering process for categorical data.

Generally, the key contribution of this work is threefold:

– First, we extend an existing measure for categorical data to a new dissimilarity
measure that is suitable for solving our problem. The measure is based on the
conditional probability of correlated attributes values to include the mutual
relationship between categorical attributes.

– Then, we propose a new categorical clustering algorithm that takes account of
the semantic relationships between categories into the dissimilarity measure.

– Finally, we carry out an extensive experimental evaluation on benchmark data
sets from UCI Machine Learning Repository [11] to evaluate the performance
of our proposed algorithm with other existing methods in term of clustering
quality.

The rest of this paper is organized as follows. In the Sect. 2, related work
is reviewed. In the Sect. 3, a new clustering algorithm for categorical data is
proposed. Next, the Sect. 4 describes an experimental evaluation. Finally, the
Sect. 5 draws a conclusion.

2 Related Work

The conventional k-means algorithm [3] is one of the most often used cluster-
ing algorithms. It has some important properties: its computational complexity
is linearly proportional to the size of datasets, it often terminates at a local
optimum, its performance is dependent on the initialization of the centers [12].
However, working only on numerical data restricts some applications of the
k-means algorithm. Specifically, it cannot process directly categorical data - a
popular data type in many real life applications nowadays.
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To address this limitation, several k-means like methods have been proposed
for clustering task with categorical data. In 1997, Huang proposed k-modes and
k-prototypes algorithms [4,13,14]. The k-modes [4] uses the simple matching
measure to quantify the dissimilarity between categorical objects. It uses the
modes to represent clusters, and a frequency-based method to update modes in
the clustering process. The mode of a cluster is a data point whose attribute
values are assigned by the most frequent values of the attribute’s domain set
appearing in the cluster. The k-modes first selects k initial modes (one for each
cluster) from a data set X. Then, it allocates each object in X to a cluster whose
mode is the nearest to that object based on the simple matching dissimilarity
measure, and updates the mode of the cluster after each allocation. Next, it
retests the dissimilarity of objects against the current modes after all objects
have been allocated to clusters. Finally, it repeats the assignment step until no
object has changed clusters after a full cycle test of the whole data set X.

The k-prototypes [13] is a combination of k-means and k-modes approaches to
cluster objects with mixed numeric and categorical attributes. The k-prototypes
can be divided into three steps: initial prototype selection, initial allocation
and re-allocation. The first process randomly selects k objects as the initial
prototypes for clusters. The second process assigns each object to a cluster and
updates the cluster prototype after each assignment. The reallocation process
updates prototypes for both the previous and current clusters of the object.
Consequently, it iterates reallocation process until all objects are assigned to
clusters and no object has changed clusters.

In 2004, San et al. proposed a k-means like algorithm named k-representatives
[5]. The k-representatives applies the Cartesian product and union operations for
the formation of cluster centers based on the notion of means in the numerical
setting. In addition, it uses the dissimilarity based on the relative frequencies of
categorical values within the cluster and the simple matching measure between
categorical values. The algorithmic structure of k-representatives is formed in
the same way as the k-modes [4].

Recently, Chen and Wang proposed a kernel-density-based clustering algo-
rithm named k-centers [6]. The k-centers uses kernel density estimation method
to define the mean of a categorical data set as a statistical center of the set.
It incorporates a new feature weighting in which each attribute is automati-
cally assigned with a weight to measure its individual contribution for the clus-
ters. More recently, Nguyen and Huynh proposed the k-means like clustering
framework [7]. This method extends k-representatives by replacing the simple
matching measure with an information theoretic-based dissimilarity measure and
adding a new concept of cluster centers.

3 The Proposed Clustering Algorithm

In this section, we propose a new clustering algorithm, namely RICS, that can
integrate the mutual relationship information between categorical attributes into
the clustering process. Details of the proposed algorithm are presented in two
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parts. The first part refers to significant elements of a k-means like clustering
algorithm. The second part introduces a new dissimilarity measure for categorical
data. Before going into the details of the clustering algorithm, we first introduce
some notations that will be used in the rest of this paper.

3.1 Notations

Given a categorical data set X that contains n instances described by d
attributes. The notations used in the rest of this paper are presented in the
following.

• An attribute of X is denoted by Aj , j ∈ {1, . . . , d}. For each Aj , its domain is
denoted by dom(Aj). Moreover, each value of Aj is denoted as al (or simply
a) with l ∈ {1, . . . , |dom(Aj)|}.

• An instance of X is presented as a vector x = [x1, . . . , xd] where the value of
x at an attribute Aj is denoted as xj , j ∈ {1, . . . , d}.

• The frequency of al ∈ dom(Aj) is denoted as P (al) and calculated by

P (al) =
count(Aj = al|X)

|X| (1)

similarly, for al ∈ dom(Aj) and al′ ∈ dom(Aj′) we have

P (al, al′) =
count((Aj = al) and (Aj′ = al′)|X)

|X| (2)

3.2 k-Means Like Clustering Framework

The clustering method proposed in this paper basically follows the k-means
like clustering scheme as studied in [7]. Specifically, it still reserves the general
procedure of the k-means but includes a modified concept of cluster centers based
on the work of Chen and Wang [6] and a weighting method for each categorical
attribute as well.

3.2.1 Representation of Cluster Centers
Let C = {C1, . . . , Ck} be the set of k clusters of X, for any two different clusters
Ci and Ci′ we have

Ci ∩ Ci′ = ∅ if i �= i′and X =
k⋃

i=1

Ci (3)

Furthermore, for each cluster Ci, the center of Ci is defined as

Vi = [vi1, . . . , vij , . . . , vid] (4)

where vij is a probability distribution on the domain of an attribute Aj that is
estimated by a kernel density estimation function K.

vij = [p(a1), . . . , p(a|dom(Aj)|)] (5)
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where
p(al) =

∑

a∈dom(Aj)

fi(a)K(a|λj) (6)

with fi(a) is the frequency probability of an attribute value a in the cluster Vi.

fi(a) =
count(Aj = a|Vi)

|Vi| (7)

Moreover, consider σij as the set that contains all available values of attribute
Aj that exist in cluster Vi

σij = {a, a ∈ dom(Aj)|Vi} (8)

then the kernel function K(a|λj) to estimate the probability of those attribute
values in cluster Vi is defined as

K(a|λj) =

{
1 − |σij |−1

|σij | λj if a = al

1
|σij |λj if a �= al

(9)

where λj is the smoothing parameter for Cj and has the value range of [0, 1]. In
order to select the best parameter λj , the least squares cross validation (LSCV)
method [6] is utilized. In the case a /∈ σij , K(a|λj) value is set to 0.

Finally, from (4)–(6), we have the general formulation to compare the dis-
similarity between a data instance x ∈ X and a cluster center Vi described as
below.

D(x, Vi) =
d∑

j=1

d(xj , vij) =
d∑

j=1

∑

a∈dom(Aj)

p(a) × dis(xj , a) (10)

where dis(xj , a) is the measure to quantify the dissimilarity between two values
of an attribute Aj . Detailed information about this measure will be described in
Subsect. 3.3.

3.2.2 Weighting Scheme for Categorical Attributes
A weighting model is also applied for categorical attributes as studied in [15].
Generally, a larger weight is set to attributes that have a smaller sum of within
cluster distances and vice versa. More details of this method could be found
in [15].

Consequently, we have a vector of weights W = [w1, . . . , wd] that is assigned
to each attribute where each wj ≤ 1 and

∑d
j=1 wj = 1.

Then, the weighted dissimilarity measure between a data instance x and a
cluster center Vi could be defined as

Dw(x, Vi) =
d∑

j=1

wj × d(xj , vij) (11)
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Based on these definitions, the clustering algorithm now aims to minimize
the following objective function:

J(U, V,W ) =
k∑

i=1

n∑

g=1

d∑

j=1

ui,g × wj × d(xj , vij) (12)

subject to ⎧
⎪⎨

⎪⎩

∑k
i=1 ui,g = 1 1 ≤ g ≤ n

ui,g ∈ {0, 1} 1 ≤ g ≤ n, 1 ≤ i ≤ k∑d
j=1 wj = 1 0 ≤ wj ≤ 1

(13)

where U = [ui,g]n×k is the partition matrix. The algorithm for the k-means like
clustering framework is described in Algorithm 1.

Algorithm 1. k-means like clustering framework [7]
Input: Data set X = {x1, ..., xn}
Output: Optimized clusters C = {C1, ..., Ck}
1: Initialize centers for k clusters V = [V1, ..., Vk].
2: Initialize weights W = [w1, ..., wd] and set λ = 0 for each attribute.
3: do
4: Keep V and W fixed, generate U to minimize the distances between objects

and cluster centers using Eq. (11).
5: Keep U fixed, update V using Eq. (5) and Eq. (6).
6: Generate W using formulas from [15].
7: while partitions still change.

3.3 A Context-Based Dissimilarity Measure for Categorical Data

In order to quantify the dissimilarity between categorical values, we extend the
similarity measure proposed in [16] that could be able to integrate not only
the distribution of categories but also their mutual relationship information.
Specifically, the dissimilarity measure considers the amount of information to
describe the appearances of pairs of attribute values rather than single values
only. However, instead of considering all possible cases, only pairs of attributes
that are highly correlated with each other are selected.

3.3.1 Correlation Analysis for Categorical Attributes
For the purpose of selecting highly correlated attribute pairs, the interdepen-
dence redundancy measure proposed by Au et al. [17] is adopted to quantify the
dependency degree between each pair of attributes. Specifically, the interdepen-
dence redundancy value between two attributes Aj and Aj′ is computed as in
the following formula.

R(Aj , Aj′) =
I(Aj , Aj′)
H(Aj , Aj′)

(14)
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where I(Aj , Aj′) denotes the mutual information [18] between attribute Aj and
Aj′ and H(Aj , Aj′) is their joint entropy value. We have the formulas for those
measures as the followings.

I(Aj , Aj′) =
|dom(Aj)|∑

p=1

|dom(Aj′ )|∑

q=1

P (ajp, aj′q) ∗ log
P (ajp, aj′q)

P (ajp) ∗ P (aj′q)
(15)

H(Aj , Aj′) = −
|dom(Aj)|∑

p=1

|dom(Aj′ )|∑

q=1

P (ajp, aj′q) ∗ log P (ajp, aj′q) (16)

According to Au et al. [17], the interdependency redundancy measure has the
value range of [0, 1]. A large value of R implies a high degree of dependency
between attributes.

For each attribute Aj , in order to select its highly correlated attributes, a
relation set is defined and denoted as Sj . Specifically, Sj contains attributes
whose the associated interdependency redundancy values with Aj are larger
than a specific threshold γ.

Sj = {Aj′ |R(Aj , Aj′) > γ, 1 ≤ j, j′ ≤ d} (17)

3.3.2 New Dissimilarity Measure for Categorical Data
For integrating the relationship information that is contained in the set Sj , the
conditional probability of correlated attributes values is utilized to include the
mutual relationships between categorical attributes. In particular, to quantify
the similarity between categorical values of attribute Aj , the following measure
is implemented.

sim(xj , x
′
j) =

∑

Aj′∈Sj

∑

a∈dom(Aj′ )

1
|Sj | × 1

|dom(Aj′)| × 2 × log P ({xj , x
′
j}|a)

log P (xj |a) + log P (x′
j |a)

(18)
It could be easily seen that the similarity measure in Eq. (18) have the value

range of [0, 1]. Specifically, when xj and x′
j are identical, their similarity degree

is equal to 1. Then, the dissimilarity measure between two values of an attribute
that is used in Eq. (10) could be defined as below.

dis(xj , x
′
j) = 1 − sim(xj , x

′
j) (19)

The extended dissimilarity measure defined in Eq. (19) satisfies the following
conditions:

1. dis(xj , x
′
j) ≥ 0 for each xj , x

′
j with j ∈ {1, . . . , d}

2. dis(xj , xj) = 0 with ∀j ∈ {1, . . . , d}
3. dis(xj , x

′
j) = dis(x′

j , xj) for each xj , x
′
j with j ∈ {1, . . . , d}.

For reducing the computational time of the proposed algorithm, the rela-
tion set of each attribute is generated in advance. Moreover, the dissimilarity
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between attribute values is also precomputed and cached in a multi-dimensional
matrix for later used. Finally, details of the RICS algorithm are described in
the Algorithm 2.

Algorithm 2. RICS clustering method
Input: Data set X = {x1, ..., xn}
Output: Optimized clusters C = {C1, ..., Ck}
1: Generate relation set Sj for all attributes Aj using Eq. (14)-(17).
2: Precompute dissimilarity value dis(al, al′) for all al, al′ ∈ dom(Aj) with j ∈
{1, ..., d} using Eq. (18), (19).
3: Initialize centers for k clusters V = [V1, ..., Vk].
4: Initialize weights W = [w1, ..., wd] and set λ = 0 for each attribute.
5: do
6: Keep V and W fixed, generate U to minimize the distances between objects

and cluster centers using Eq. (11).
7: Keep U fixed, update V using Eq. (5) and Eq. (6).
8: Generate W using formulas from [15].
9: while partitions still change.

4 Experimental Evaluation

To evaluate the efficiency of the newly proposed algorithm, we conduct a com-
parative experiment on commonly used clustering methods for categorical data.
Specifically, we contrast our new proposed clustering framework RICS with the
implementation of k-modes [4], k-representatives [5] and k-means like clustering
framework [7]. Furthermore, for each algorithm, we run 300 times per dataset.
For the threshold value γ, it is practically found that with γ = 0.1 we could
achieve general good results. Also, the value of parameter k is set equal to the
number of classes in each dataset. The final results for three evaluation metrics
are calculated by averaging the results of 300 running times.

4.1 Testing Datasets

Datasets for the experiment are selected from the UCI Machine Learning Repos-
itory [11]. The chosen 14 datasets contain not only categorical attributes but also
integer and real values. For those numerical values, a discretization tool of Weka
[19] is utilized for discretizing numerical values into equal intervals which are, in
turn, treated as categorical values. In addition, the average dependency degree
of each dataset is computed by averaging the interdependency redundancy val-
ues of all distinct pairs of attributes based on Eq. (14). Main characteristics of
selected datasets are summarized in Table 1.

4.2 Clustering Quality Evaluation

In this research, in order to take advantages of class information in the original
datasets, we take the same approach as [7] by utilizing the following supervised
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Table 1. Main characteristics of 14 datasets from UCI

Dataset Inst. Attr. Classes Data types Avg. dependency degree

Soybean 307 35 19 Categorical 0.153

Hayes-roth 160 5 3 Categorical 0.113

Wine 178 13 3 Integer, Real 0.089

Voting-records 435 16 2 Categorical 0.085

Dermatology 366 33 6 Categorical, integer 0.052

Breast-cancer 286 9 2 Categorical 0.027

Post-operative 90 8 3 Categorical, integer 0.014

Chess 3196 36 2 Categorical, integer 0.010

Tictactoe 958 9 2 Categorical 0.006

Splice 3190 61 3 Categorical 0.003

Car 1728 6 4 Categorical 0

Lenses 24 4 3 Categorical 0

Nursery 12960 8 5 Categorical 0

Balance-scale 625 4 3 Categorical 0

evaluation metrics for assessing clustering results: Purity, Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI).

In particular, let us denote C = {C1, . . . , CJ} as a partition of the dataset
that is generated by the clustering algorithm, and P = {P1, . . . , PI} is the par-
tition which is inferred by the original class information. The total number of
objects in the dataset is denoted by n.

Purity Metric. To compute purity value of a clustering result, firstly, each
cluster is assigned to the class which is most frequent in the cluster. Then, the
accuracy of this assignment is measured by counting the number of correctly
assigned objects and dividing by the number of objects in the dataset. It is
also worth noting that the purity metric could be significantly effected by the
existence of imbalanced classes.

Purity(C,P ) =
1
n

∑

j

max
i

|Cj ∩ Pi| (20)

NMI Metric. The NMI metric provides an information that is independent
from the number of clusters [20]. This measure takes its maximum value when the
clustering partition matches completely the original partition. NMI is computed
as the average mutual information between any pair of clusters and classes.
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NMI(C,P ) =

∑I
i=1

∑J
j=1 |Cj ∩ Pi| log n|Cj∩Pi|

|Cj ||Pi|√∑J
j=1 |Cj | log |Cj |

n

∑I
i=1 |Pi| log |Pi|

n

(21)

ARI Metric. The third metric is the Adjusted Rand Index [21]. Let a be the
number of object pairs belonging to the same cluster in C and to the same
class in P . This metric captures the deviation of a from its expected value
corresponding to the hypothetical value of a obtained when C and P are two
random, independent partitions.

The expected value of a is denoted as E[a] and computed by:

E[a] =
π(C)π(P )

N(N − 1)/2
(22)

where π(C) and π(P ) denote respectively the number of object pairs from the
same clusters in C and from the same class in P . The maximum value for a is
defined as:

max(a) =
1
2
(π(C) + π(P )) (23)

The agreement between C and P can be estimated by the adjusted rand index
as follows:

ARI(C,P ) =
a − E[a]

max(a) − E[a]
(24)

when ARI(C,P ) = 1, we have identical partitions.

4.3 Experimental Results

From the results in Tables 2, 3 and 4, there is no best method for all of the testing
datasets. However, we could see that the proposed clustering framework RICS
has achieved relatively good results comparing with other methods. Specifically,
it performs effectively with highly correlated datasets such as soybean, hayes-
roth, wine and dermatology. Moreover, the average results in all three tables
show that our proposed framework has the best average results.

It is also worth noting that if we take a glance at the purity results in Table 2,
the k-modes appears to outperform k-representatives and k-means like clustering
method, and has a good performance when compared to RICS. However, when
we make a more detailed inspection of the NMI and ARI results, it could be
seen that k-modes actually has poor performances regarding those two more
significant standards, while RICS is still the one that has most of the best
results over the total of 14 datasets.
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Table 2. Purity results for categorical datasets

Data sets RICS k-means like framework k-representatives k-modes

Soybean 0.7176 0.7142 0.7152 0.6099

Hayes-roth 0.3954 0.3953 0.3998 0.4079

Wine 0.9397 0.9214 0.9380 0.7707

Voting-records 0.8770 0.8760 0.8764 0.8581

Dermatology 0.8560 0.8506 0.8593 0.7116

Breast-cancer 0.7028 0.7028 0.7028 0.7028

Post-operative 0.7111 0.7111 0.7111 0.7111

Chess 0.5223 0.5225 0.5222 0.5761

Tictactoe 0.6534 0.6534 0.6534 0.6558

Splice 0.7586 0.7572 0.6159 0.5188

Car 0.7150 0.7059 0.7046 0.7004

Lenses 0.6999 0.6981 0.7018 0.6446

Nursery 0.4449 0.4502 0.4324 0.4704

Balance-scale 0.5779 0.5787 0.5761 0.5496

Average 0.6837 0.6812 0.6721 0.6348

Table 3. NMI results for categorical datasets

Data sets RICS k-means like framework k-representatives k-modes

Soybean 0.7517 0.7473 0.7545 0.6069

Hayes-roth 0.0041 0.0038 0.0011 0.0050

Wine 0.7893 0.7580 0.7941 0.4252

Voting-records 0.5055 0.5002 0.4990 0.4359

Dermatology 0.8551 0.8512 0.8551 0.5735

Breast-cancer 0.0041 0.0040 0.0018 0.0038

Post-operative 0.0146 0.0140 0.0198 0.0243

Chess 0.0006 0.0007 0.0002 0.0187

Tictactoe 0.0346 0.0393 0.0087 0.0206

Splice 0.4620 0.4592 0.2820 0.0473

Car 0.1435 0.1234 0.1213 0.0475

Lenses 0.3444 0.3442 0.3432 0.1880

Nursery 0.0947 0.1038 0.0855 0.0601

Balance-scale 0.0485 0.0491 0.0474 0.0313

Average 0.2895 0.2856 0.2724 0.1777
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Table 4. ARI results for categorical datasets

Data sets RICS k-means like framework k-representatives k-modes

Soybean 0.4642 0.4655 0.4754 0.3748

Hayes-roth −0.0102 −0.0105 −0.0138 −0.0111

Wine 0.8200 0.7721 0.8145 0.4287

Voting-records 0.5642 0.5644 0.5658 0.5119

Dermatology 0.7494 0.7421 0.7389 0.5503

Breast-cancer 0.0018 0.0015 −0.0030 0.0020

Post-operative −0.0105 −0.0113 −0.0110 −0.0178

Chess −0.0001 0.0001 −0.0003 0.0238

Tictactoe 0.0325 0.0380 0.0218 0.0247

Splice 0.3927 0.3900 0.2021 0.0289

Car 0.0555 0.0598 0.0537 0.0239

Lenses 0.2108 0.2075 0.1835 0.0596

Nursery 0.0578 0.0637 0.0559 0.0506

Balance-scale 0.0507 0.0522 0.0505 0.0323

Average 0.2413 0.2382 0.2239 0.1487

5 Conclusion

In this paper, we have proposed a new clustering method for categorical data that
could be able to integrate not only the distributions of categories but also their
relationship information into the quantification of dissimilarity between data
objects. The experiments have shown that the proposed clustering algorithm
RICS has a competitive performance when compared to other popular used
clustering methods for categorical data. For the future work, we are planning to
extend RICS so that it could be used to solve the problem of clustering with
mixed numeric and categorical datasets.
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