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Abstract. In the past few years, deep convolutional neural networks
(CNN) have shown great superiority and also been the first choice in
semantic segmentation. However, the pooling layers in the CNN cause
the increasing loss (mainly positioning structure details) which is not
favourable for segmentation. Moreover, the vast majority of previous
studies only utilize the color or textural information of the image, with-
out considering the depth information which is helpful for segmentation.
In this paper, we propose a novel and effective end-to-end network for
semantic segmentation namely Depth-guided Parallel Convolutional Net-
work (ParallelNet). Compared to previous work, the contribution of our
ParallelNet is that we have taken advantages of the mutual benefit and
strong correlations between depth information and semantic information,
which are combined to guide scene semantic segmentation. Besides, we
utilise a new method to obtain the depth information of the image by
calculating the correlation distance with L1-norm between left and right
feature maps, thus, we just need to input the RGB images instead of RGB
images and encoded 3D images in some conventional methods. Further-
more, we apply the concept of our ParallelNet to the current popular
networks by exploiting the guidance of the depth information and trans-
fer their learned representations with fine-tuning. The extensive exper-
iments on the popular dataset Cityscape exhibit that our ParallelNet
outperforms the original methods.

1 Introduction

Recently, semantic pixel-wise segmentation has been one of active research top-
ics, since it has a very wide range of applications, including autonomous driv-
ing, three-dimensional reconstruction etc. Image semantic segmentation can be
regarded as the cornerstone of image understanding technology, which plays a
significant role in autonomous systems. Early approaches [24,28] which mostly
dependent on low-level vision cues of image pixels have quickly been substituted
by popular machine learning algorithms [21,23,26]. Especially, when deep con-
volution neural networks (CNN) were applied to object classification [15,25,27]
with a great success, more and more researchers start to exploit CNN features to
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solve other structured prediction problems [10,14]. To the end, a series of CNN
based semantic segmentation methods have been proposed, and the accuracy of
image semantic segmentation is repeatedly refreshed.

Fig. 1. An illustration of the framework of our proposed network, which contains two-
parallel VGG branches to extract RGB features. The block namely CFB is exploited to
calculate depth information, which is then combined with the RGB features to obtain
the final results.

Most semantic segmentation methods based on CNN come from a common
ancestor: Fully Convolutional Networks (FCN) [19]. FCN extended the well-
known classification networks to dense pixel-wise labelling through convolution-
alization. Its results, though very inspiring, is rough. This is mainly because the
pooling layers reduce the spatial resolution of the feature maps, which results in
the loss of positioning structure detail information. The increasingly lossy image
feature representation is unfavourable for segmentation in which structural infor-
mation is vital. In order to solve this limitation, various approaches have been
proposed. One [1,22] is the encoder-decoder architecture, another [3,5,6] exploits
dilated convolution. In addition, some studies [2,4,31] apply conditional random
fields as post-processing to obtain detailed prediction.

These above methods are all committed to capturing and storing boundary
information. And these networks do have superior performance in delineating
boundaries. However, the effect is less than satisfactory when the networks dis-
tinguish the certain indeterminate areas or the categories with geometric dis-
tinction. This is primarily because most of the current semantic networks only
extract color or textual features of images, which only contains 2D information,
while some 3D geometric information may be lost in RGB-only features and
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there will still be uncertainty for recognizing objects. Therefore, incorporating
3D scene information into 2D information is helpful for scene semantic segmenta-
tion as the 3D scene information can provides additional structural information
to compensate the lossy structural representation in 2D images.

Depth as a type of 3D scene information is important in realistic scenarios.
Depth information and semantic information have strong correlations and mutu-
ally beneficial: objects or pixels nearby with same depth have great opportunity
to have the same semantic meanings. Besides, the Depth information provides
rich and relatively accurate position information, which plays as an auxiliary
guiding role in semantic segmentation.

Recently, some approaches have exploited multi-model feature fusion for
semantic segmentation [9,12,29], most of these methods use RGB-D images as
inputs, and apply two CNN branches to extract RGB and Depth features respec-
tively, and then simply fuse the features from two branches. However, the learned
feature representations using raw depth images with CNN is not rich. In order to
effectively exploit the pre-trained network with fine-tuning to learn stronger fea-
tures, the depthmap is encoded with three channels: horizontal disparity, height
above ground, and angle with gravity (HHA [11]), which are computed from the
original disparity map, and the disparity map should be calculated in advance,
while the stereo images pairs are relatively more accessible.

Besides, inspired by Binocular Stereo Vision [13,17,20], which is based on
the parallax principle that exploits two images obtained from different views
and obtains the three-dimensional geometric information of the object by cal-
culating the positional deviation between corresponding points of the image, we
present a novel method to obtain the depth features of the image by calculat-
ing the correlation distance with L1-norm between image feature pairs, thus, we
just need to input the RGB images instead of RGB images and HHA in those
conventional methods.

In order to continue to exploit the learned rich representations of CNN pre-
trained on RGB images with fine-tuning directly, as well as take the benefit
from depth to segmentation, we design a Depth-guided Parallel Convolutional
Network (ParallelNet) to incorporate depth features calculated from the RGB
image pairs in the network into RGB features to improve segmentation accuracy.
The framework of our ParallelNet is illustrated in Fig. 1. We utilize the Depth
information of the image, which is combined with semantic information to guide
scene semantic segmentation. Our network contains two-parallel VGG branches
for extracting RGB features of the left and right image respectively. These two
VGG branches share weights. Then several cascaded depth and RGB features
fusion blocks (CFB) are exploited to obtain the final results. The CFB is crucial
to our network. It consists of three vital blocks: the depth determination module
(DDM), element-wise summation and concatenation. The DDM is essential for
calculating the depth feature information. This block is inspired by the Binocular
Stereo Vision with two inputs. The inputs are RGB features of the left and right
image of a certain level. Then, perform the element-wise summation on the
output of the DDM and the previously refined feature computed from the last
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CFB, followed by concatenation which connects the summed results with the
current level of the RGB feature. The CFB adaptively trains the RGB features
of the image pair to effectively fuse the complementary features in depth and
RGB modalities, while combing the high-level and low-level feature to finer the
results. In this architecture, discriminative RGB and depth features in different
level can be availably trained and fused, while retaining the advantage of skip
architecture. Since the depth information is calculated inside the network, we
can train the network end-to-end. It should be noted that, although we input
image pairs, the left network branch is the main branch and the right branch is
just an auxiliary branch to help obtain the depth information, the segmentation
ground-truth is the left image in the supervised training process. We apply the
concept of our ParallelNet to the current popular networks, and the extensive
experiments on the popular dataset Cityscape [7] show that our parallel network
can improve the performance over the original methods.

To sum up, the contribution of this paper mainly has the following three
points:

(1) We propose a novel ParallelNet with RGB image pairs as input that exploits
the advantage of the mutual benefit and strong correlations between depth
and semantic information, which are combined to guide scene semantic seg-
mentation.

(2) Inspired by Binocular Stereo Vision, we present an innovative module
namely DDM which enables efficiently obtaining the depth information from
the RGB images inputs instead of RGB images and HHA inputs in some
previous methods.

(3) The experiments on the popular dataset Cityscape show that our method
can improve the performance over the convolutional methods especially on
these categories such as fences, Pole which have clear depth distinction.

2 Related Work

Since a great success in object classification employing deep CNN [15,25,27], a
majority of studies on semantic segmentation have exploited deep CNN. Fully
Convolutional Networks (FCN) [19] is the common ancestor of most current
semantic segmentation methods. The advantage of FCN is that it employs the
existing CNN as powerful visual models to learn hierarchies of features. FCN
extended the well-known classification networks (AlexNet [15], GoogleNet [27],
and the VGG [25]) into fully convolutional networks by replacing the last fully
connected layers with convolutional layers, and produced feature maps instead
of classification scores.

Although the results achieved by FCN is very encouraging, there are still
some drawbacks. The first limitation is the low resolution of the feature maps due
to the max pooling and sub-sampling, which leads to the results coarse. In order
to solve this limitation, some approaches have been proposed. One [1,22] is an
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encoder-decoder architecture. Another [3,5,6] exploits astrous convolution, also
named dilated convolution, which enlarges the receptive field in a exponential
expansion way with no loss of resolution. Moreover, some researches [2,4,31]
combine conditional random fields (CRF) into deep CNNs as post-processing to
improve the segmentation accuracy.

Another limitation is the ensemble of multi-scale feature. FCN [19] exploited
a skip architecture to combine what and where to obtain the finer prediction.
To fully utilize global and local image-level features, Liu et al. [18] certified that
global average pooling with FCN is efficient. Lin et al. [16] presented RefineNet
that modified higher-level features by exploiting lower-level features via residual
connections and achieved great increase. PSPNet [30] utilized the ability of global
context information by integrating the contexts of different regions to generate
good quality segmentation results.

Recently, some approaches utilizing depth information for segmentation have
been studied. They extended the RGB based Convolutional networks to RGB-D
situation. Early fusion method [8] was just concatenating depth into RGB chan-
nels as four-channel input. Later fusion method [19] added the two predictions
computed by the two modalities. The architecture proposed by Wang et al. [29]
is a network for deconvolution of multiple modalities. However, its training pro-
cess included two stages, it can’t be a end-to-end network. Moreover, in order to
exploit the pre-trained network with fine-tuning to extract richer features, the
depthmap should be encoded to a 3D image called HHA. In contrast, our pro-
posed end-to-end architecture exploits the learned rich representations of CNN
pre-trained on RGB images with fine-tuning directly and, as well as takes the
benefit from depth to segmentation with the RGB images input.

3 Methodology

Our ParrelleNet benefits from the strong correlation and complementarity of
depth and semantic information. We apply the concept of ParrelleNet to current
popular networks FCN [19], Deeplab [5], PSPNet [30]. We mainly take FCN as
basic network as an example to introduce our ParallelNet in detail. The other
two variants are also introduced.

Our proposed ParallelNet’s framework based on FCN is showed in Fig. 1. Our
network contains two-parallel VGG branches to extract RGB features of different
levels from bottom to up on the left and the right image respectively. The two
VGG branches share weights. Following that, we employ several cascaded depth
and RGB features fusion blocks (CFB) to get the final prediction with the skip
architecture. CFB is the key to our network. The details of these modules will
be elaborated in this section.

3.1 The Depth Determination Module (DDM)

An illustration of the depth determination module (DDM) is shown in Fig. 2.
Given RGB features of the left and right images at certain level from the CNN,
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first we fix the left RGB feature maps, then we use a novel right − shift − n,
s.t.0 < n < m operation to represent that the right feature maps are moved
parallel n pixels to the right to match the corresponding points in the left feature
maps. m is the depth level we set in advance. Then do the Correlation Distance
Calculation (CDC) by L1-norm between the left and the new right feature maps
obtained after right−shift−n, which generates a depth feature map. It is worth
noting that the process of obtaining the first depth feature map don’t perform
the right − shift − n, but perform the CDC directly on the left and right RGB
feature maps. Repeat the above processes for m times to finally receive m depth
feature maps. Last, concatenate all the depth feature maps to get the depth
information.

Specifically, let h×w×g represents the spatial size of the given RGB feature
maps and let Fl, Fr denote the left and right RGB feature maps respectively. Fl,
Fr are both h × w matrix, l(x,y) is a g-dimensional vector of the (x, y) position
of the left RGB feature maps. Every element in the l(x,y) is the feature value
l(x,y)i of the ith s.t.1 ≤ i ≤ g RGB feature map at (x, y) position. So does r(x,y).
In this case,

l(x,y) = [l(x,y)1 , l(x,y)2 , . . . , l(x,y)i , . . . , l(x,y)g ] (1)

Fl =

⎛
⎜⎝

l(1,1) . . . l(1,w−n) l(1,w−n+1) . . . l(1,w)

... l(x,y)
...

...
...

...
l(h,1) . . . l(h,w−n) l(h,w−n+1) . . . l(h,w)

⎞
⎟⎠ (2)

Next, we utilize the above formulas to introduce two important parts of our
DDM:

(1) right − shift − n: We do this right − shift − n on the right RGB feature
maps, keeping the left RGB feature maps unchanged. Connect the last n
columns of the original matrix Fr to the left of the remainder. We let F∼

rn

denote the new right RGB feature maps after right − shift − n.

F∼
rn =

⎛
⎜⎝

r(1,w−n+1) . . . r(1,w) r(1,1) . . . r(1,w−n)

...
...

...
... r(x,y)

...
r(h,w−n+1) . . . r(h,w) r(h,1) . . . r(h,w−n)

⎞
⎟⎠ (3)

(2) Correlation Distance Calculation (CDC): We do the CDC on the Fl and
F∼

rn by L1-norm. Assuming that the l(x1,y1) and the r(x1,y1) are the vectors
of the two feature maps in (x1, y1) position, their correlation distance can
be calculated as follows:

d(x1,y1) = ‖l(x1,y1) − r(x1,y1)‖1 =
g∑

i=1

|l(x1,y1)i − r(x1,y1)i | (4)



594 S. Liu and H. Zhang

Fig. 2. A detailed illustration of the depth determination module. For the left and right
feature maps extracted from the CNN, do the right − shift − n operation, followed
by the Correlation Distance Calculation (CDC) to obtain one feature map. Repeat the
two operations for m times. Finally concatenate all the feature maps to get the depth
features.

Based on this, do L1-norm on every corresponding position vector between
Fl and F∼

rn , we can get the nth depth feature map Dn as follows:

Dn =

⎛
⎜⎝

‖l(1,1) − r(1,w−n+1)‖1 . . . ‖l(1,w) − r(1,w−n)‖1
...

...
...

‖l(h,1) − r(h,w−n+1)‖1 . . . ‖l(h,w) − r(h,w−n)‖1

⎞
⎟⎠ (5)

3.2 Cascaded Depth and RGB Features Fusion Block (CFB)

Our proposed efficient cascaded depth and RGB features fusion block (CFB)
is able to fuse the two complementary modalities features and combine coarse
higher-level features with fine lower-level to generate higher-resolution semantic
feature maps with skip architecture.

As shown in Fig. 1, the ith CFB has three inputs (except the first one): the
refined feature maps fi−1 obtained from the previous CFB, the left and right
RGB feature maps Fli , Fri . Fli and Fri are fed into the DDM to get the primary
depth feature maps Di, then the Di is passed through a 3 × 3 convolution layer
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ωi with the number of channels equals to the channels of Fli (Assuming equal
to c), therefore, we obtain the new depth feature maps D∼

i with c channels.
For the remaining input fi−1, we get feature maps Fi−1 of the same resolution
as D∼

i by feeding the fi−1 into a deconvolution layer of stride 2 with c channels.
Following that we perform element-wise summation on Fi−1 and D∼

i, the results
are denoted as Si. Later we concatenate Fli into Si as fi. The output of CFB
block is fi. The entire process can be expressed as follows:

fi = T{Fli , ωi ∗ D(Fli ,Fri) + gi−1 ∗ fi−1} (6)

where the first ∗ represents convolution, the second ∗ denotes deconvolution. The
+ represents element-wise summation. And D(·, ·) indicates the DDM operation,
T (·, ·) indicates concatenation.

Last, the fi are passed through two consecutive convolution layers, followed
by a 1 × 1 convolutional layer with channel dimension 19 to predict the scores
for each class at each location of the final high-resolution feature map.

In CFB, Di obtained from DDM firstly passed through one 3 × 3 convolu-
tional layer, which non-linearly transform the primary depth feature Di to obtain
rich and effective depth features. The output of previous CFB fi−1 provides the
high-level information which includes both depth information and semantic infor-
mation. For the purpose of getting finer prediction fi, the left RGB features Fli ,
the right RGB features Fri , and the previous features fi−1 are embedded with
ωi, D(·) and gi−1. We can also think that the Fli and Fri are used to provide
residual low-level information including depth and RGB information between
fi−1 and fi. It is worth noting that fi is the key value of CFB. The specific
reasons are as follows: First, fi not only fuses depth and RGB features at cur-
rent layer, but also combines with the features at the previous layer. Second,
the fi−1 provides coarse high-level feature maps from the deeper layers. Last,
the supervision training on fi can enable the network to continuously utilize the
complementarity and mutual benefit of the two modalities to learn to transform
and fuse the depth and RGB features by learning the parameters ωi, gi−1 to
achieve better performance than before.

3.3 Other Network Variants

ParallelNet-Deeplab Network is shown in Fig. 3. As we know, the conv1, conv2,
conv3 in Deeplab have reduced resolution of image. So we feed the output of the
last block of conv1, conv2 and ASPP to CFB with skip architecture to get final
prediction. PSPNet and Deeplab are the same architecture except the combi-
nation method of the Pyramid Pooling Module output. Deeplab is sum-fusion,
while PSPNet is concatenate-fusion. Based on this, the structure of ParallelNet-
PSPNet is the same as ParallelNet-Deeplab.
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Fig. 3. The illustration of ParallelNet-Deeplab. We feed the output of the last module
of the conv1, conv2 and ASPP to three CFBs with skip architecture to get the final
results.

4 Experiments

Dataset. In this section, we evaluate our approach through a series of exper-
iments on Cityscape Dataset for semantic segmentation. Cityscape Dataset is
a large-scale dataset for autopilot-related aspects, focusing on pixels-wise scene
semantic segmentation and instance annotation. The data scene includes differ-
ent scenes from 50 different cities (mainly in Germany), with high quality pixel-
level annotations of 5000 frames in addition to a larger set of 20000 weakly anno-
tated frames. What’s more, the dataset provides corresponding right images,
which meets the requirements of the input image pairs required by our network.
We use the left and right 8-bit images with 5000 frames (pixel-level) for our
experiments. The image data is divided into 34 categories which contain both
stuff and objects. And the 5000-frame fine-labelled (pixel-level) data are parti-
tioned training, verification and test set. There are 2975 images for training, 500
images for verification and 1525 images for testing. It is noted that there are
only 19 classes included in our experiments assessment.

Evaluation Metrics. We mainly employed three widely used metrics to eval-
uate our experimental results: the pixel-wise accuracy (Pixel Acc), the mean of
class-wise intersection over union (Mean IoU) and the instance-level intersection-
over-union (iIoU).

Implementation Details. Our experiments are implemented on the public
platform Tensorflow. We apply the concept of ParallelNet to FCN, Deepalb and
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PSPNet. We exploit the “exponential decay” learning rate method so that a
better solution can be quickly obtained and the model can be more stable later
in the training process. We set the learning−rate, decay−steps, decay−rate to
0.1, 1000, 0.96 respectively. We train our network by Adam optimizer. Specially,
for the three networks, the weights in the bottom-up RGB feature extraction
(convolutional network) are initialized by employing the pre-trained net, while
the weights in CFB are initialized with Xavier initialization, and zero-initializes
the bias. Then we fine-tune all layers with back-propagation. Moreover, dropout
is performed on each network to prevent overfitting. The input image pairs are
randomly cropped during the training. And we set batchsize to 4 due to our
limited memory of GPU. During the testing, we cropped five patches (the four
corner and the center patches) followed by averaging the predictions to make
the final results.

4.1 Comprehensive Experiments

We compare our ParallelNet applied on FCN, Deeplab, PSPNet namely
ParallelNet-FCN, ParallelNet-Deeplab, ParallelNet-PSPNet with the original
networks. The results are shown in Table 1. It can be clearly seen that our Paral-
lelNet outperforms the corresponding original network. For our ParallelNet-FCN,
the results of Pixel acc, mIoU and iIoU are 93.63%, 63.68% and 43.82% respec-
tively with our settings (depth level is 128, Num of CFBs is 5), and it improves
the accuracy of FCN by 0.68%, 1.77% and 0.67% for Pixel acc, mIoU and iIoU
respectively. For our ParallelNet-Deeplab, it increases the results of Deeplab by
0.79%, 1.16% and 0.55%. And for our ParallelNet-PSPNet, it enhance the accu-
racy of PSPNet by 0.82%, 1.22%, 0.56%. The results indicates combining depth
with RGB features can help achieve better semantic segmentation.

Table 1. Comparison of our ParallelNet with original network. Ours outperforms the
original network.

Method Pixel Acc. (%) mIoU (%) iIoU (%)

FCN 92.95 61.91 43.15

PaallelNet-FCN 93.63 63.68 43.82

Deeplab 86.03 39.16 32.37

ParallelNet-Deeplab 86.82 40.32 32.92

PSPNet 88.65 44.74 35.11

ParallelNet-PSPNet 89.47 45.96 35.67

Class-wise accuracies of ParallelNet compared with the corresponding origi-
nal networks are illustrated in Tables 2, 3 and 4. As it can be seen, the results
of our ParallelNet have been improved in most categories by incorporating the
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Table 2. Comparison of Class-wise semantic segmentation accuracy between FCN and
ParallelNet-FCN (the bold fonts in the tables indicate the superiority of our results).

Method Road(%) swalk(%) build(%) wall(%) fence(%) pole(%) tlight(%)

FCN 95.5 75.11 86.89 31.10 42.55 49.45 56.20

PallelNet-FCN 96.36 75.44 89.46 34.79 47.64 55.17 56.39

Method sign(%) Veg.(%) terrain(%) sky(%) person(%) rider(%) car(%)

FCN 65.47 88.71 56.20 89.09 72.81 44.22 89.88

PallelNet-FCN 67.37 90.5 55.83 88.97 76.96 47.92 90.4

Method trunk(%) bus(%) train(%) mbike(%) bike(%) mIoU(%) iIoU(%)

FCN 31.86 48.96 43.83 38.19 70.19 61.91 43.15

PallelNet-FCN 32.39 49.23 44.52 39.83 70.83 63.68 43.82

depth into RGB features especially in those categories with clear depth and geo-
metric distinction, for example, wall, pole, fences, person, while in some classes
which have little geometric distinction such as sky, terrain, our methods have
shown no superiority.

Table 3. Comparison of Class-wise semantic segmentation accuracy (IoU) between
Deeplab and ParallelNet-Deeplab (the bold fonts in the tables indicate the superiority
of our results).

Method Road(%) swalk(%) build(%) wall(%) fence(%) pole(%) tlight(%)

Deeplab 90.69 64.65 68.43 17.11 19.52 30.20 1.15

ParallelNet-Deeplab 91.62 65.21 70.49 20.13 23.46 33.98 1.36

Method sign(%) Veg.(%) terrain(%) sky(%) person(%) rider(%) car(%)

DEeplab 32.35 82.42 45.40 44.39 51.56 7.72 80.64

ParallelNetDeeplab 33.70 83.55 45.60 44.17 53.67 8.78 81.34

Method trunk(%) bus(%) train(%) mbike(%) bike(%) mIoU(%) iIoU(%)

Deeplab 5.27 24.33 17.05 12.45 48.61 39.16 32.37

ParallelNet-DEeplab 6.09 25.03 17.07 12.96 47.78 40.32 32.93

4.2 Ablation Studies

We conduct ablative experiments for ParallelNet-FCN by setting different depth
levels and cascade numbers of CFB. The results are shown in Tables 5 and 6
respectively.

Table 5 shows the effect of different depth levels on the semantic segmenta-
tion. It is noted that we set the number of CFB to 5. We find that the pixel accu-
racy and the mIoU first increase and then decrease as the depth levels increase.
We think that when the set depth level is relatively small, that is to say, for a
certain pixel on the left image, the corresponding target pixel on the right image
may not be matched. With the set depth level increases, the most pixels in the
left can be matched correctly with the corresponding target pixels on the right
images. In this case, the extracted depth information can play a positive role
in guiding semantic segmentation. However, when the depth level increases con-
tinually, there may be additional pixels which matches the certain pixel in the
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Table 4. Comparison of Class-wise semantic segmentation accuracy(IoU) between
PSPNet and ParallelNet-PSPNet (the bold fonts in the tables indicate the superiority
of our results).

Method Road(%) swalk(%) build(%) wall(%) fence(%) pole(%) tlight(%)

PSPNet 92.56 67.84 77.22 21.32 25.02 38.47 3.00

PallelNet-PSPNet 93.89 68.19 78.11 24.09 28.95 43.10 2.90

Method sign(%) Veg.(%) terrain(%) sky(%) person(%) rider(%) car(%)

PSPNet 27.16 85.30 50.09 75.43 58.30 11.62 83.40

PallelNet-PSPNet 29.87 86.46 48.55 75.71 60.40 12.10 84.00

Method trunk(%) bus(%) train(%) mbike(%) bike(%) mIoU(%) iIoU(%)

PSPNet 22.45 38.35 7.48 15.20 49.92 44.74 35.11

PallelNet-PSPNet 22.55 37.69 8.25 16.35 50.99 45.96 35.66

left. So the number of disturbing pixels in the right image may increase and the
errors correspondingly increase. At this time, the depth information will have
a negative effect on semantic segmentation due to the existence of the errors,
which causes both pixel accuracy and mIoU to decrease. We find that the depth
level is set to 128 for the best performance.

Table 5. The results of different depth levels on semantic segmentation. And setting
the depth level to 128 will achieve the best performance

Method Pixel Acc. (%) mIoU (%) iIoU (%)

32 91.35 56.67 41.19

64 92.64 59.43 41.81

128 93.63 63.68 43.82

192 92.47 61.08 42.07

Table 6 shows the effect of diverse numbers of CFB on semantic segmentation.
We have set the depth level to 128. From the bottom to the top of the network,
we record the CFB at the top of the network as the first CFB and the CFB
at the bottom of the network as the sixth CFB. From Table 6, we find that
multiple CFBs which utilize the skip structure has improved performance, the
pixel accuracy and the mIoU grow fast as the number of CFB increases from
2 to 5. The network using 5 CFBs achieve 63.97% mean IU and 93.63% pixel
accuracy. And our cascaded improvements have met diminishing returns both
with respect to the IU metric and also in terms of pixel-wise accuracy when the
number of CFB increases from 5 to 6.

4.3 Qualitative Results

We show some qualitative results of ours proposed method compared with FCN
network which only employ the RGB information on semantic segmentation in
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Table 6. Refining ParallelNet by cascading different numbers of CFB improves seman-
tic segmentation.

Num of CFB Pixel Acc. (%) mIoU (%) iIoU (%)

6 93.79 63.59 43.88

5 93.63 63.68 43.82

4 92.34 60.57 42.07

3 91.87 58.41 42.38

2 91.3 55.88 40.69

Fig. 4. Qualitative results of our ParallelNet-FCN compared with FCN. From the left
to right for each example:image, Ground truth, the resluts of FCN and our Parallel-
Net. Note that our network shows significant improvement in these categories which
have clear depth distinction, e.g., (a) the Pole which has clear depth distinction. (b)
eliminating noise points with the help of depth to segmentation, (c) the fence which
has geometric distinction, (d) the pedestrian which has obvious depth characteristic.
Best viewed in color.
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Fig. 3. We obtain the semantic segmentation results of FCN by running the avail-
able source code. We compare the results with our ParallelNet which employs
image pairs as inputs and combines the depth information with the RGB infor-
mation for segmentation (Fig. 4). We can see that our network shows significant
improvement in fences, Pole, pedestrians categories which have clear depth dis-
tinction that may be lost in RGB-only features and our network helps eliminating
noise points.

5 Conclusion

We present a novel ParallelNet for effectively segmenting images by taking bene-
fit of the relevance and complementarity between depth and RGB modalities on
the RGB images inputs. Our effective CFB with skip architecture can availably
fuse the discriminative RGB and depth features in different level and combine
the higher-level and lower-level features to get finer prediction. Our experiments
demonstrate that our proposed ParallelNet outperforms the original network
which only utilize the RGB features. In the future we plan to extend our proposed
method to object detection and classification tasks to obtain more competitive
results.
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