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Abstract. Multiple kernel learning (MKL) is a principled way for kernel fusion
for various learning tasks, such as classification, clustering and dimensionality
reduction. In this paper, we develop a novel multiple kernel learning model
based on the Hilbert-Schmidt independence criterion (HSIC) for classification
(called HSIC-MKL). In the proposed HSIC-MKL model, we first propose a
HSIC Lasso-based MKL formulation, which not only has a clear statistical
interpretation that minimum redundant kernels with maximum dependence on
output labels are found and combined, but also the global optimal solution can
be computed efficiently by solving a Lasso optimization problem. After the
optimal kernel is obtained, the support vector machine (SVM) is used to select
the prediction hypothesis. It is evident that the proposed HSIC-MKL is a two-
stage kernel learning approach. Extensive experiments on real-world data sets
from UCI benchmark repository validate the superiority of the proposed model
in terms of prediction accuracy.
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1 Introduction

Kernel methods such as support vector machines (SVM) and kernel Fisher discriminant
analysis (KFDA) have been successfully applied to a wide variety of machine learning
problems [1]. These methods map data points from the input space to some feature
space, i.e., higher dimensional reproducing kernel Hilbert space (RKHS), where even
relatively simple algorithms such as linear methods can deliver very impressive per-
formance. The mapping is determined implicitly by a kernel function (or simply a
kernel), which computes the inner product of data points in the feature space. Despite
the popularity of kernel methods, there is not yet a mechanism in place that can serve to
guide the kernel leaning and selection. It is well known that selecting an appropriate
kernel, thereby, an appropriate feature space is of great importance to the success of
kernel methods [2]. To address this issue, recent years have witnessed the active
research on learning effective kernels automatically from data. One popular technique
for kernel learning and selection is multiple kernel learning (MKL) [3–5], which aims
at learning a linear or nonlinear combination of a set of predefined kernels (base
kernels) in order to identify a good target kernel for the applications. Compared with
traditional kernel methods employing a fixed kernel, MKL exhibits its flexibility of
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automated kernel learning, and also reflects the fact that typical learning problems often
involve multiple, heterogeneous data sources.

The idea of MKL can be generally applied to all kinds of kernel methods, such as
the commonly used SVM and KFDA, leading to SVM-based MKL and discriminant
MKL, respectively. Our work in this paper will only focus on the SVM-based MKL
formulation. Specifically, we present a two-stage multiple kernel learning model based
on the Hilbert-Schmidt independence criterion (HSIC), called HSIC-MKL. HSIC,
which was initially introduced for measuring the statistical dependence between ran-
dom variables or random processes [6], has been successfully applied in various
machine learning problems [7], such as feature selection, clustering and subspace
learning. The success is based on the fact that many existing learning tasks can be cast
into problems of dependence maximization (or minimization). Motivated by this, in the
first stage, we propose a HSIC-Lasso-based MKL formulation, which not only has a
clear statistical interpretation that minimum redundant kernels with maximum depen-
dence on output labels are found and combined, but also the global optimal solution
can be computed efficiently by solving a Lasso optimization problem1. In the second
stage, the SVM is used to select the prediction hypothesis, i.e., the SVM is trained to
induce the final decision function to show classification results. It should be pointed out
that the HSIC Lasso [8, 9] was originally proposed for high-dimensional feature
selection, which needs to predefine the kernels (for example, Gaussian kernel for inputs
and delta kernel for outputs) before feature selection, whereas our work employs the
HSIC Lasso for MKL, aiming to learn an optimal composite kernel to train a kernel
classifier.

2 Multiple Kernel Learning

In this section, we briefly review the MKL. Suppose we are given a set of labeled
training samples fðxi; yiÞgni¼1 in a binary classification problem, where xi 2 X � Rd is
the input data and yi 2 fþ 1;�1g is the corresponding class label. The goal of the
SVM is to find an optimal hyperplane wT/ðxÞþ b = 0 that separates the training points
into two classes with the maximal margin, where w is the normal vector of the
hyperplane, b is a bias, and / is a feature map which maps xi to a high-dimensional
feature space. This hyperplane can be obtained by solving the following optimization
problem

min
1
2

wk k2 þC
Xn
i¼1

ni

s.t. yiðwT/ðxiÞþ bÞ� 1� ni
ni � 0; i ¼ 1; � � �; n

ð1Þ

1 In statistics and machine learning, Lasso (least absolute shrinkage and selection operator) (also
LASSO) is a regression analysis method that performs both variable selection and regularization in
order to enhance the prediction accuracy and interpretability of the statistical model it produces.
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where n ¼ ðn1; � � �; nnÞT is the vector of slack variables and C is the regularization
parameter used to impose a trade-off between the training error and generalization.

To solve the SVM optimization problem, suppose ai be the Lagrange multiplier
corresponding to the ith inequality in (1), the dual problem of (1) is shown to

max
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

yiyjaiajkðxi; xjÞ

s.t.
Xn
i¼1

aiyi ¼ 0;

0� ai �C; i ¼ 1; � � �; n:

ð2Þ

where kðxi; xjÞ ¼ /ðxiÞT/ðxjÞ is the kernel function which implicitly defines the fea-
ture map /.

Instead of formulating an optimization criterion with a fixed kernel k, one can leave
the kernel k as a combination of a set of predefined kernels, which results in the issue of
MKL [3–5]. MKL maps each sample to a multiple-kernel-induced feature space and a
linear classifier is learned in this space. The feature mapping used in MKL takes the
form of /ð�Þ ¼ ½/T

1 ð�Þ; � � � ;/T
Mð�Þ�T, which is induced by M pre-defined base kernels

fkmð�; �ÞgMm¼1 with different kernel forms or different kernel parameters. The linear
combination of the base kernels is given by k ¼PM

m�1 lmkm, where lm is the corre-
sponding combination coefficient. Let l ¼ ðl1; � � � ; lMÞT 2 D, where D is the domain
of l. With different constraints on l, different MKL models can be obtained. For
example, when l 2 D lies in a simplex, i.e.:

D ¼ l : lk k1¼
XM
m¼1

lm ¼ 1; lm � 0

( )
ð3Þ

we call it L1-norm of kernel weights and the resulting model L1-MKL [10]. Most MKL
methods fall in this category. When

D ¼ l : lk kp � 1; p[ 1;lm � 0
n o

ð4Þ

we call it Lp-norm of kernel weights and the resulting model Lp-MKL [11].
Like SVM, the dual problem of MKL can be represented as

max
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

yiyjaiaj
XM
m¼1

lmkmðxi; xjÞ

s.t.
Xn
i¼1

aiyi ¼ 0; l 2 D;

0� ai �C; i ¼ 1; � � �; n:

ð5Þ
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The goal of training MKL is to learn lm, ai and b with the given M base kernels,
and the final decision function is given by

f ðxÞ ¼ sgn
Xn
i¼1

aiyi
XM
m¼1

lmkmðxi; xÞþ b

 !
ð6Þ

where the samples xi with ai [ 0 are called support vectors.

3 MKL-HSIC

In this section, we detailedly discuss the two-stage MKL method (HSIC-MKL) for
learning kernels in the form of linear combination of M base kernels fkmð�; �ÞgMm¼1 or
kernel matrices fKmgMm¼1. The corresponding combination coefficient lm is selected
subject to the condition lm � 0. In the first stage, the algorithm determines the com-
bination coefficient lm, and in the second stage, an SVM is trained with the learned
kernel.

We first introduce the notion of the HSIC. Let e ¼ ð1; � � � ; 1ÞT 2 Rn and I 2 Rn�n

be the identity matrix. Given the centering matrix H ¼ I� eeT=n 2 Rn�n, the centered
kernel matrix associated with K is given by �K ¼ HKH. Given two kernels k1 and k2,
the HSIC between these two kernels is defined as

HSICðK1;K2Þ ¼ 1
n2

trðK1HK2HÞ ð7Þ

Let �L ¼ HLH and �K ¼ HKH, where K and L are the kernel matrix for input data
an kernel matrix for output labels, respectively. We here propose using HSIC Lasso
[8, 9] for estimating the combination coefficient l:

min
1
2

�L�
XM
m¼1

lm �Km

�����
�����
2

F

þ k lk k1

s.t. l1; � � �; lM � 0

ð8Þ

where jj � jjF is the Frobenius norm and k[ 0 is the regularization parameter. In (8), the
first term means that we are aligning the centered output kernel matrix �L by a linear
combination of the centered input base kernel matrices f�KmgMm¼1, and the second term
means that the combination coefficients for irrelevant base kernels become zero since
the L1-regularizer tends to produce a sparse solution. After estimating l, we normalize
each element of l as lm ! lm

�PM
m¼1 lm.
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Noting that\�K; �L[ F ¼ \�K;L[ F ¼ \K; �L[ F ¼ trKHLH ¼ n2HSICðK;LÞ,
we can rewrite the first term of (8) as

1
2

�L�
XM
m¼1

lm �Km

�����
�����
2

F

¼ 1
2

�L�
XM
m¼1

lm �Km; �L�
XM
m¼1

lm �Km

* +
F

¼ 1
2

�L; �Lh iF� �L;
XM
m¼1

lm �Km

* +
F

þ 1
2

XM
m¼1

lm �Km;
XM
m¼1

lm �Km

* +
F

¼ 1
2

�L; �Lh iF�
XM
m¼1

lm �L; �Kmh iF þ
1
2

XM
m¼1

XM
o¼1

lmlo �Km; �Koh iF

¼ n2

2
HSICðL;LÞ � n2

XM
m¼1

lmHSICðL;KmÞþ n2

2

XM
m¼1

XM
o¼1

lmloHSICðKm;KoÞ

ð9Þ

In (9), the n2 and HSICðL;LÞ are constant and can be ignored. We have a clear
statistical interpretation ofMKLusingHSICLasso. First, if them-th kernel matrixKm has
high dependence on the output matrix L, HSICðL;KmÞ takes a large value and thus lm
should also be large so that (9) is minimized. On the other hand, if Km and L are
independent, HSICðL;KmÞ is close to zero and thus lm tends to be removed by the L1-
regularizer. This means that relevant kernels that have strong dependence on output L
tend to be selected by the HSIC Lasso. Second, if Km and Ko are strongly dependent,
which means one of them is redundant kernel,HSICðKm;KoÞ takes a large value and thus
either lm or lo tends to be zero. This means that redundant kernels tend to be removed by
the HSIC Lasso. In one word, HSIC Lasso tends to find non-redundant kernels with
strong dependence on output L, which is a preferable property in kernel learning.

To solve the HSIC Lasso problem in (9), many Lasso optimization techniques can
be applied in practice, such as dual augmented Lagrangian (DAL) [12, 13], which has
been successfully employed for high-dimensional feature selection [8, 9].

We sketch the overall procedure of the proposed HSIC-MKL in Algorithm 1, where
the centered kernel matrix can be calculated by

�Kij ¼ Kij � 1
n

Xn
i¼1

Kij � 1
n

Xn
j¼1

Kij þ 1
n2
Xn
i¼1

Xn
j¼1

Kij ð10Þ
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We analyze the computational complexity of Algorithm 1 with the O notation.
Firstly, the computational complexity of calculating centered kernel matrices in Step 3
is OðMn2Þ. Secondly, the complexity of the quadratic programming solver in Step 4 is
OðTM3Þ with T being the number of iterations in solving (8). Finally, note that
empirically the SVM training complexity is Oðn2:3Þ [14], the computational complexity
of Step 6 is OðMþ n2:3Þ. Thus, the total computational complexity of our proposed
HSIC-MKL is

OðMn2ÞþOðM3ÞþOðMþ n2:3Þ ¼ OðMn2 þM3 þ n2:3Þ ð11Þ

It should be noted that we here suppose that multiple base kernels (kernel matrices)
can be precomputed and loaded into memory before the HSIC-MKL training. Then, the
computational cost of calculating the base kernels is ignored.

4 Experimental Evaluation

In this section, we perform extensive experiments on binary classification problems to
evaluate the efficacy of the proposed HSIC-MKL approach. We compare HSIC-MKL
with the following state-of-the-art kernel learning algorithms:

• AvgMKL: The average combination of multiple base kernels. It was reported that
AvgMKL is competitive with many algorithms [3, 4].

• SimpleMKL [10]: An algorithm reformulates the mixed-norm regularization of
MKL problem as the weighted 2-norm regularization, and L1-norm is imposed on
kernel weights.

• LpMKL [11]: An algorithm generalizes the regular L1-norm MKL to arbitrary Lp-
norm ðp[ 1ÞMKL. We adopt the cutting plane algorithm with second order Taylor
approximation of Lp.
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• CKA-MKL [15]: The two-stage MKL with centered kernel alignment. The two-
stage MKL first learns the optimal kernel weights according some criteria, and then
applies the learned optimal kernel to train a kernel classifier.

For parameter settings, the regularization parameters C and k are determined by
5-fold cross-validation on the training set. Specifically, we perform grid-search in one
dimension (i.e., a line-search) to choose the regularization parameters C from the set
f10�2; 10�1; � � � ; 102g for all the compared methods. For our proposed HSIC-MKL
approach, we perform grid-search over two dimensions, i.e., C ¼ f10�2; 100; � � � ; 102g
and k ¼ f10�2; 10�1; � � � ; 102g. In addition, for LpMKL, we examine p ¼ 2; 3; 4 and
report the best results. In the aspect of implementation, all the methods are imple-
mented using MATLAB in the framework of SVM-KM toolbox2. Note that Sim-
pleMKL has been implemented in the SimpleMKL software package3, which needs the
SVM-KM toolbox.

We select eight popular binary classification data sets, i.e., Australian Credit
Approval, Breast Cancer Wisconsin (Original), Pima Indians Diabetes, German Credit
Data, Heart, Ionosphere, Liver Disorders, and Sonar, from the UCI machine learning
repository [16]. For Breast Cancer Wisconsin (Original), we directly eliminated the
samples that contain missing attribute values. Table 1 provides the statistics of these
data sets. It presents, for each data set, the short name of data set, the number of
samples, the number of features, and the original name of data set.

For each data set, we partition it into a training set and a test set by stratified sampling
(by which the object generation follows the class prior probabilities): 50% of the data set
serves as training set and the left 50% as test set. The training samples are normalized to be
of zero mean and unit variance, and the test samples are also normalized using the same
mean and variance of the training data. Following the settings of previous For each data
set, we partition it into a training set and a test set by stratified sampling (by which the
object generation follows the class prior probabilities): 50% of the data set serves as

Table 1. Statistics of the selected eight data sets from UCI

Data set #Samples #Features Original data set

Australian 690 14 Australian credit approval
Breast 683 9 Breast cancer wisconsin (original)
Diabetes 768 8 Pima indians diabetes
German 1000 20 German credit data
Heart 270 13 Heart
Ionosphere 351 34 Ionosphere
Liver 345 7 Liver disorders
Sonar 208 60 Sonar

2 http://asi.insa-rouen.fr/enseignants/*arakoto/toolbox/.
3 http://asi.insa-rouen.fr/enseignants/*arakoto/code/mklindex.html.
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training set and the left 50% as test set. The training samples are normalized to be of zero
mean and unit variance, and the test samples are also normalized using the samemean and
variance of the training data. Following the settings of previousMKL studies [10], we use

the Gaussian kernel kðxi; xjÞ ¼ expð� xi � xj
�� ��2.2r2Þ and polynomial kernel

kðxi; xjÞ ¼ ðxi � xj þ 1Þd as the base kernels:
• Gaussian kernels with ten different widths r 2 f2�3; 2�2; � � � ; 26g for each indi-

vidual dimension as well as all dimensions.
• Polynomial kernels with three different degrees d 2 f1; 2; 3g for each individual

feature as well as all features.

All kernel matrices are normalized to unit trace and precomputed prior to running
the algorithms.

To get stable results, we independently repeat splitting each data set, and then run
each algorithm on it for 20 times. The average classification accuracy and the standard
deviations of each algorithm are reported in Table 2. The bold numbers denote the best
performance of MKL methods on each data set. To conduct a rigorous comparison, the
paired t-test [17] is performed. The paired t-test is used to analyze if the difference
between two compared algorithms on one data set is significant or not. The p-value of
the paired t-test represents the probability that two sets of compared results come from
the distributions with an equal mean. A p-value of 0.05 is considered statistically
significant. The win-tie-loss (W-T-L) summarizations based on the paired t-test are
listed in Table 3, where HSIC-MKL and SimpleMKL, HSIC-MKL and LpMKL, and
HSIC-MKL and CKA-MKL are compared, respectively. For two compared algorithms,
assuming Algorithm 1 vs. Algorithm 2, a win or a loss means that Algorithm 1 is better
or worse than Algorithm 2 on a data set. A tie means that both algorithms have the
same performance.

From Tables 2 and 3, we find that the proposed HSIC-MKL consistently achieves
the overall best classification performance. Among the evaluated 8 data sets, Sim-
pleMKL, LpMKL and CKA-MKL report 1, 2 and 1 best results, respectively, while our

Table 2. Classification accuracy comparison among different MKL algorithms on UCI data sets

Data set Classification accuracy (%)
AvgMKL SimpleMKL LpMKL CKA-MKL HSIC-MKL

Australian 66.8 ± 4.5 85.1 ± 1.3 84.6 ± 1.7 87.2 – 0.4 86.7 ± 1.3
Breast 95.4 ± 0.9 96.6 – 0.7 96.1 ± 0.6 96.4 ± 0.9 96.6 ± 1.0
Diabetes 65.3 ± 1.8 75.9 ± 2.3 72.7 ± 2.4 75.3 ± 3.5 77.1 – 2.2
German 69.6 ± 1.4 71.5 ± 2.6 74.4 – 1.5 72.0 ± 1.2 72.4 ± 0.9
Heart 75.5 ± 5.3 83.1 ± 2.8 80.6 ± 3.6 82.1 ± 1.8 83.3 – 2.6
Ionosphere 91.2 ± 1.8 93.5 ± 1.2 94.8 ± 2.1 93.7 ± 1.0 95.5 – 0.8
Liver 57.4 ± 2.1 62.4 ± 4.3 69.3 ± 2.8 68.8 ± 1.6 70.0 – 2.9
Sonar 59.0 ± 8.7 78.2 ± 3.5 84.7 – 3.3 81.3 ± 2.8 81.8 ± 3.2
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HSIC-MKL reports 4 best results. From the viewpoint of significance test, we have the
following observations. For HSIC-MKL, although it is outperformed by LpMKL on
the German and Sonar data sets, it produces significantly better classification perfor-
mance than LpMKL on the Australian, Diabetes, Heart, Ionosphere and Liver data
sets. Compared with SimpleMKL, HSIC-MKL significantly outperforms SimpleMKL
on the Australian, Diabetes, German, Ionosphere, Liver, Sonar data sets, and yields the
same performance on the rest of the data sets. Compared with CKA-MKL, HSIC-MKL
significantly outperforms CKA-MKL on the Diabetes, Heart, Ionosphere and Liver
data sets, and yields the same performance on the rest of the data sets. Overall, HSIC-
MKL is better than SimpleMKl, LpMKL and CKA-MKL.

5 Conclusion

We have presented an effective two-stage MKL algorithm based on the notion of HSIC.
By discussing the connection between MKL and HSIC Lasso, we find that the pro-
posed algorithm not only has a clear statistical interpretation that minimum redundant
kernels with maximum dependence on output labels are found and combined, but also
the global optimal solution can be computed efficiently by solving a Lasso optimization
problem. Comprehensive experiments on a number of benchmark data sets demonstrate
the promising results of our proposed algorithm. Future investigation will focus on the
further validation of the use of the proposed algorithm on more real-world applications,
such as computer vision, speech and signal processing, and natural language pro-
cessing. Moreover, expending the proposed model to extreme learning machine and
domain transfer learning, as well as investigating theoretical properties of the proposed
algorithm are important issues to be investigated.

Acknowledgements. This work is supported in part by the National Natural Science Foundation
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Table 3. Significance test of classification results on UCI data sets

Data set Win-tie-loss (W-T-L)
HSIC-MKL vs.
SimpleMKL

HSIC-MKL
vs. LpMKL

HSIC-MKL vs.
CKA-MKL

Australian W W T
Breast T T T
Diabetes W W W
German W L T
Heart T W W
Ionosphere W W W
Liver W W W
Sonar W L T
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