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Abstract. Planning domain models are critical input to current auto-
mated planners. These models provide description of planning operators
that formalize how an agent can change the state of the world. It is
not easy to obtain accurate description of planning operators, namely to
ensure that all preconditions and effects are properly specified. Therefore
automated techniques to learn them are important for domain modelling.

In this paper, we propose a novel method for learning planning opera-
tors (action schemata) from example plans. This method, called LOUGA
(Learning Operators Using Genetic Algorithms), uses a genetic algorithm
to learn action effects and an ad-hoc algorithm to learn action precondi-
tions. We show experimentally that LOUGA is more accurate and faster
than the ARMS system, currently the only technique for solving the same
type of problem.
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1 Introduction

Automated planning deals with the problem of finding a sequence of actions that
transfer the world from the current state to a desired state. It is a model-based
method, where the model formally describes how the actions are changing states
of the world. Hence an important aspect of automated planning is obtaining a
proper model of actions. In this paper we deal with classical (STRIPS) planning
where actions are defined via preconditions and postconditions (effects), each
being a set of predicates. The problem that we are addressing in the paper is
how to learn these sets of preconditions and postconditions automatically from
examples of plans.

There exist various approaches to acquisition of planning domain models.
The early works such as EXPO [3] or later works such as STRIPS-TraceLearn
[9] improve action models incrementally after observing some problem during
plan execution. Another approach learns from expert traces and subsequent sim-
ulations [10]. Frequently, the acquisition problem consists of finding the domain
model from examples of plans, which is also the topic of this paper. In other
words, the problem is to learn a correct state transition function according to
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observed sequences of actions and states. The system ARMS [11] uses partially
specified plans as its input, namely each plan consists of the initial state, a
sequence actions, and goal predicates. Intermediate states might also be par-
tially specified. Using MAX-SAT, ARMS learns the preconditions and effects of
actions. The follower of ARMS called AMAN [12] allows some actions in plans to
be wrongly recognized. LOCM [2] and LOCM2 [1] do not use a predicate model
of world states but they rather learn finite-state automata for objects in the
world. These automata describe how properties of objects are being changed by
actions. Similarly, Opmaker2 [6] learns actions as methods to change properties
(states) of involved objects and it requires some invariant formulas describing
propositions that must be true in any state. ASCoL [5] and LC M [4] both only
extend the LOCM system. ASCoL learns static preconditions for LOCM and
LC M extends it to work with missing and noisy data. Finally LAMP [13] learns
more complex action models with quantifiers and logical implications.

We solve the same problem as ARMS, but we relax the condition of knowing
the goal predicates. The proposed system LOUGA (Learning Operators Using
Genetic Algorithms) learns from valid sequences of actions (not necessarily from
plans reaching certain goals as ARMS). We assume that the initial state and a
valid sequence of actions is given as input. LOUGA can also exploit partially
specified intermediate states and a final state to find more accurate models. We
use a classical genetic algorithm to learn the effects of actions and an ad-hoc
algorithm to learn the preconditions of actions. We will show experimentally
that LOUGA produces more accurate domain models and it is also faster than
ARMS.

2 Background and Problem Specification

We work with classical STRIPS planning that deals with sequences of actions
transferring the world from a given initial state to a state satisfying certain goal
condition. World states are modeled as sets of predicates that are true in those
states and actions are changing validity of certain predicates.

Formally, let P be a set of all predicates modeling properties of world states.
Then a state S ⊆ P is a set of predicates that are true in that state (every
other predicate is false). Each action a is described by four sets of predicates
(B+

a , B−
a , A+

a , A−
a ), where B+

a , B−
a , A+

a , A−
a ⊆ P,B+

a ∩ B−
a = ∅, A+

a ∩ A−
a = ∅.

Sets B+
a and B−

a describe positive and negative preconditions of action a, that
is, predicates that must be true and false right before the action a. Action a
is applicable to state S iff B+

a ⊆ S ∧ B−
a ∩ S = ∅. Sets A+

a and A−
a describe

positive (add list) and negative (del list) effects of action a, that is, predicates
that will become true and false in the state right after executing the action a. If
an action a is applicable to state S then the state right after the action a will be
γ(S, a) = (S \ A−

a ) ∪ A+
a . If an action a is not applicable to state S then γ(S, a)

is undefined. In this work we use additional assumptions about the applicability
of actions, namely A−

a ⊆ S and A+
a ∩ S = ∅. The first assumption says that if

an action deletes some predicate from the state then this predicate should be



126 J. Kučera and R. Barták

present in the state. Similarly, if an action adds some predicate to the state then
the predicate should not be in the state before. These assumptions can be easily
included in the action model as A−

a ⊆ B+
a and A+

a ⊆ B−
a .

In practice, operators are used in the domain model rather than actions.
Operator can be seen as a parameterized action. Each operator has a set
of attributes and specifies preconditions and effects as predicates over these
attributes:

(:action move
:parameters (?o - object ?m - place

?l - place)
:precondition (at ?o ?m)
:effect (and (at ?o ?l)

(not (at ?o ?m))))

Actions are obtained by substituting constants for the attributes. The planning
domain model is then specified by the set of predicates and the set of operators.
PDDL modeling language [7] is the most widely used language for modeling
planning domains; we will use syntax of that language in our examples.

In our approach, we assume two types of input information. First, there is
a partial planning domain model consisting of a set of predicates and a set
of operators with attributes but without the description of preconditions and
effects. The second type of input is a set of plans, where each plan consists of
the initial state and a valid sequence of actions. Partially specified intermediate
states or a goal state might also be provided. The information about states can
be in three forms: a predicate was observed in the state, a predicate was observed
not to be in the state, or the state was fully observed. We do not make any other
assumptions about the input data unlike ARMS that presumes that some effect
of every action is used by some later action or in the goal state. The task is to
complete the domain model by learning preconditions and effects of operators
such that the provided input plans are valid plans according to this domain
model.

3 LOUGA

The proposed learning approach works in two main stages. First, we will learn
action effects using a standard genetic algorithm [8] with some extensions. Sec-
ond, we will complete the learned action model by learning action preconditions
using a polynomial ad-hoc algorithm.

In the following text, we will detail these steps. For the genetic algorithm,
we need to encode action effects to a genome. We will show, how to reduce the
number of possible genomes by eliminating those violating conditions imposed
on action effects. We will also define the fitness function that guides the genetic
algorithm and we will show some methods to help the genetic algorithm when
being stuck in a local optima. Next, we will show that it is possible to learn the
effects predicate by predicate rather than all together. Finally, we will present
the method for learning action preconditions.
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3.1 Genome Model

Genetic algorithms work with individuals, each individual encoding a solution
candidate. In our case, an individual describes effects of operators. First, we
generate a list of all operator-predicate pairs such that the operator can use
the predicate in its add or delete lists. This property can be easily verified by
checking that all attributes of the predicate are among the attributes of the
operator. We assume that attributes are typed though this assumption can be
relaxed as we will show in the section on experiments. Each operator-predicate
pair will be associated with one of three values:

– 0: predicate is not in operator’s add and del lists,
– 1: predicate is in operator’s add list (positive effect),
– 2: predicate is in operator’s delete list (negative effect).

The individual will be the sequence of numbers that corresponds one-to-one to
the description of effects of operators.

For example, let us have a model with the following predicates and operators:

(:predicates
(at ?o - (either object briefcase)

?l - place)
(empty ?b - briefcase)
(free ?o - object)
(in ?o - object ?b - briefcase)

)
(:action move

:parameters (?b - briefcase ?m - place
?l - place)

)
(:action put-in

:parameters (?o - object ?p - place
?b - briefcase)

)

For this model, LOUGA generates the following pairs:

1. ((at ?b ?m), (move ?b ?m ?l))
2. ((at ?b ?l), (move ?b ?m ?l))
3. ((empty ?b), (move ?b ?m ?l))
4. ((at ?o ?p), (put-in ?o ?p ?b))
5. ((at ?b ?p), (put-in ?o ?p ?b))
6. ((empty ?b), (put-in ?o ?p ?b))
7. ((free ?o), (put-in ?o ?p ?b))
8. ((in ?o ?b), (put-in ?o ?p ?b))

Hence, each individual will be described by a list of length eight. For example, the
individual with genome ‘210 11000’ corresponds to the model in which operator
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(move ?b ?m ?l) has predicate (at ?b ?m) in its del list and predicate (at ?b ?l)
in its add list and operator (put-in ?o ?p ?b) has predicates (at ?o ?p) and (at
?b ?p) in its add list.

Note that it is possible to encode operator’s preconditions in the same way,
but we will present a more efficient method to learn operator’s preconditions
later.

3.2 Pre-processing

The genome model specifies the search space that the genetic algorithm will
explore. We can reduce this space further by eliminating individuals violating
constraints of the model. This is done by exploring the example plans and iden-
tifying predicates that cannot be present in the add or del lists of specific opera-
tors. LOUGA simulates execution of the plan and for each state it finds two sets
of predicates: the first set contains predicates that are definitely in the current
state and the second set contains predicates that can possibly be in the current
state, but it is not certain. Algorithm1 describes how these sets are constructed
and used.

Algorithm 1. Removing possible values of some genes.
Input: plan P; array M representing possible values of genes
Output: modified array M

1: Q ← predicates from initial state
2: R - empty set of predicates
3: for all actions a from P do
4: generate a set of predicates X, which a can use
5: for all p ∈ X do
6: if p ∈ Q then � p is definitely in current state
7: M[(a, p),add] = false
8: R = R ∪ {p}
9: Q = Q \ {p}

10: else if p /∈ R then � p is definitely not in the state
11: M[(a, p),del] = false
12: R = R ∪ {p}
13: end if
14: if predicates S were observed after a then
15: Q = Q ∪ S
16: R = R \ S
17: end if
18: if predicates S were observed missing after a then
19: Q = Q \ S
20: R = R \ S
21: end if
22: end for
23: end for
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Initially, the first set Q contains all predicates from the initial state (line 1)
and the second set R is empty (line 2). LOUGA then goes through the actions
in the order specified by the plan. For each action it generates the set of all
predicates that the action can use. If some predicate is present in the state before
the action, LOUGA marks that the action cannot have that predicate in its add
list (line 7). If a predicate is definitely not present in that state, LOUGA marks
that the action cannot delete it (line 11). All predicates generated for the action
are then added to the second set and removed from the first one if they were
present in it. If there are some predicates observed in the state after the action,
all of these predicates are added to the first set and removed from the second
one. After that, LOUGA continues with the next action until it processes the
whole plan. The justification of this process is as follows. If some predicate can
be modified by the action then that predicate can possibly be part of the next
state. If some predicate is in the state and it is not modified by the action then
the predicate stays in the state. Also, information about observed predicates can
be exploited there (lines 14–21).

For example let us assume this short plan:

(:state
(empty b1)
(at b1 home)
(free pencil)
(at pencil home)
(at rubber home)
(free rubber))

(put-in pencil home b1)
(move b1 home office)

We know that there are exactly six predicates in the initial state. Action
(put-in pencil home b1) can work with predicates (at pencil home), (at b1 home),
(empty b1), (free pencil) and (in pencil b1). Pairs made of these predicates and
operator put-in correspond to genes 4–8. Predicates (at pencil home), (at b1
home), (empty b1) and (free pencil) are definitely present in the state before
action put-in, which means that the action cannot add them. As a result, genes
4–7 will have disabled value 1 during evolution. Predicate (in pencil b1) is not
in the initial state, which means that the action cannot delete it and therefore
gene 8 will have disabled value 2 during evolution.

After processing the action we move all these predicates to the second set
(line 8) and delete them from the first set (line 9), if they are present there. Now
the sets contain these predicates:
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first set Q (definitely in the state)
(at rubber home)
(free rubber)

second set R (possibly in the state)
(empty b1)
(at b1 home)
(free pencil)
(at pencil home)
(in pencil b1)

The next action is (move b1 home office). Operator move corresponds
to genes 1–3, that means that the action can use predicates (at b1 home),
(at b1 office) and (empty b1). Predicate (at b1 office) is in none of the sets,
therefore the action cannot delete it and gene 2 cannot have value 2. Other pred-
icates are already in the second set, so genes 1 and 3 will remain unchanged. We
add predicate (at b1 office) to the second set and continue with the next action
(if any).

3.3 Fitness Function

The genetic algorithm uses a fitness function which evaluates the error rate of
the model represented by the individual. We assume three types of errors:

– add error: an action tries to add a predicate that is already present in the
world state,

– del error: an action tries to delete a predicate that is not currently present
in the world state,

– observation error: a predicate was observed in a state in the original plan,
but it is not present in the corresponding state of the plan executed accord-
ing to the current model, or there is a predicate in a state that should not
be present according to observations about the corresponding state in the
original plan.

Formally we can define these errors as follows: let S be a state of a plan
executed according to the model represented by the individual, T be a set of
predicates that were observed in the corresponding state in the input plan, N
be a set of predicates that were observed not to be present in the corresponding
state, a be the action performed from state S and p ∈ A+

a , q ∈ A−
a , s ∈ S and

t ∈ T be some predicates. Add error occurs when p ∈ S, del error occurs when
q /∈ S, and observation error occurs when t /∈ S, s ∈ N or – if T was marked as
a fully-observed state – when s /∈ T .
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After all plans are processed, the fitness value of the individual is defined
using this formula:

(1 − (erroradd + errordel)/(totaladd + totaldel)) ∗ (1 − errorobs/totalobs),

where erroradd, errordel and errorobs are the numbers of corresponding errors,
totaladd and totaldel are the numbers of add and delete operations performed in
simulation, totalobs is the total number of observations about intermediate and
goal states plus the number of surplus predicates in fully-observed states.

We tried a version of the fitness function that treated all three types of errors
identically, but it turned out not to be ideal. When there were too many or too
few observations in input data, evolution could get stuck in a local optima that
favors good add and delete error rates over the observation error rate or vice
versa. Treating observation errors separately solves this problem. We also tried
to split the add and delete errors, but that had a marginal effect on efficiency.
Obviously, the fitness value 1 means a perfect individual.

3.4 The Genetic Algorithm

LOUGA uses a classical genetic algorithm with one-point crossover and muta-
tion [8]. We tried more sophisticated versions of those operators but we did
not find any that would perform significantly better than the standard ver-
sions. We extended the standard algorithm by two additional operators applied
when the population stagnates for some time (i.e. when the best individual is of
certain age).

The first operator is basically 1-step local search starting from the best indi-
vidual’s genome to find all options how to change one gene to get a better
individual. Genes are picked one by one and for every gene, every possible value
is tried and resulting individuals are evaluated. As every gene has at most three
possible values, there are at most 2 ∗ N candidate genomes, where N is the
length of genome. All individuals that performed better than the current best
individual are added to the population.

The second operator is applied when even the local search cannot find a better
individual. It stores the best individual and restarts the population. Next time
before restarting it tries to use the information from previous runs by crossing the
current best individual with the stored genomes from previous runs. If it breaks
the stagnation, evolution goes on as before until it starts stagnating again or a
perfect individual is found. If the algorithm cannot find a better local optimum
even after multiple restarts, the operator deletes the local optima list and the
genetic algorithm starts from scratch.
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3.5 Learning Effects Predicate by Predicate

In complex1 domain models, individuals’ genomes can be too long for the genetic
algorithm to work effectively. LOUGA solves this problem by learning operators’
lists separately for each predicate type. It means that an instance of the genetic
algorithm is run for each predicate type separately. In each instance, genomes
are built only from those operator-predicate pairs that use the correct predicate
type and the fitness function ignores observations of predicates of types other
than the current predicate type.

This method generates the same genome as if all predicates were learned
at once, the learning process is only split into multiple parts. These parts are
independent to each other because occurrence of a predicate of one type cannot
affect whether occurrence of a predicate of another type is incorrect or not.
Therefore this method is sound and yields the same outcome as the standard
approach.

3.6 Learning Preconditions

After the add and del sets are learned, the sets of preconditions are generated.
LOUGA goes through every plan and for every operator and every relevant
predicate it counts the number of cases where the predicate was present before
the action was performed and the number of cases where it was not present.
After every plan is processed, a positive precondition is created for every such
pair that the predicate was always present before the action was performed,
and a negative precondition is created for every such pair that the predicate
was never present before the action was performed. If evolution gives a perfect
individual, this method yields proper precondition lists. Algorithm2 describes
this process formally.

4 Results of Experiments

We evaluated experimentally the contribution of components of LOUGA and we
compared LOUGA to ARMS, which is the only other technique solving the same
problems. All experiments were run on laptop with Intel Core i5-2410 2.3 GHz
processor and 8 GB of RAM. We used five classical domains from planning com-
petitions, namely Blocksworld, Briefcase, FlatTyre, Rover, and Freecell. The
Blocksworld domain is a classical planning domain, where a robotic hand builds
towers of blocks. In the Briefcase domain, the task is to transport items between
locations using a briefcase. The FlatTyre domain deals with the problem of
repairing a flat tyre using various tools. The Rover domain models a Mars rover
taking pictures and samples. The Freecall domain is an encoding of a card game.

1 As ‘complex’ models we consider models that have a large number of predicate types
and operators. Such models usually have long genomes so the genetic algorithm has
to search through a large hypothesis space.
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Algorithm 2. Generation of precondition lists
Input: genome G; set of input plans Q
Output: model M

1: create model M represented by G
2: Y, N - integer fields indexed similarly as G; all fields initially 0
3: for all P ∈ Q do
4: s ← initial state of P
5: for all a ∈ P do
6: for all predicate p, which can be generated by a do
7: g ← index of gene corresponding to (p,a)
8: if p ∈ s then
9: Y[g]++

10: else
11: N[g]++
12: end if
13: end for
14: s ← s after performing a according to M
15: end for
16: end for
17: for all gene g ∈ G; g corresponds to predicate p and operator o do
18: if G[g] = 0 then
19: if N [g] = 0 && Y [g] > 0 then
20: add p to preo
21: else if N [g] > 0 && Y [g] = 0 then
22: add (not p) to preo
23: end if
24: else if G[g] = 1 then
25: add (not p) to preo
26: else if G[g] = 2 then
27: add p to preo
28: end if
29: end for

The domains were selected because of their various difficulties of how their mod-
els can be learned. The easiest ones are the Blocksworld and Briefcase domains,
a bit harder is the FlatTyre domain and the hardest ones are the Rover and
Freecell domains. Their basic characteristics are given in Table 1.

For each experiment, we randomly generated 200 valid sequences of actions
(plans) and performed five-fold cross-validation test by splitting them in five
equal parts and running algorithms five times. During each run we used four
groups as learning data and the fifth group as a test set. Plans generated for the
first three domains had usually 5–8 actions. For domains Rover and Freecell, we
generated random walks (without a preset goal) that had about 15–20 actions.

Most tables show runtimes and error rates of generated models (smaller num-
bers are better). We define errors in similar way as described in the section about
fitness function of LOUGA. Add and delete error rates are calculated by dividing
the number of errors by the number of performed add or delete actions. Since
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Table 1. Comparison of domain models used in experiments.

Briefcase Blocksworld FlatTyre Rover Freecell

# object types 3 1 5 7 3

# predicate types 4 5 12 25 11

# operators 3 4 13 9 10

Avg. size of effect lists 3.3 4.5 2 3 5.6

Avg. parameters of operators 2.66 1.5 2.33 4 4.9

ARMS does not work with negative observations, we only evaluate fulfillment of
those observations that state which predicates were definitely present in state.
Observation error rate is therefore calculated by dividing the number of unful-
filled observations by the total number of predicates observed in intermediate
and final states.

The size of population was set to 10, the threshold for local search was set
to 7, the threshold for crossover with individuals from previous runs to 10, the
threshold for population restart was 15 and mutation probability was 5% with
10% chance for a gene to be switched. From our internal tests we saw that bene-
fits of having bigger population do not outweigh the longer computational time,
so we kept the population sizes low. Keeping thresholds high did not provide
much benefit neither, because the population did not usually break stagnation
in reasonable time anyway.

4.1 Efficiency of Predicate by Predicate Approach

In the first experiment, we will show the effect of splitting the learning problem
to multiple smaller problems, where each predicate is learned separately. Both
versions of LOUGA reliably find flawless solutions, so we present the runtimes
only (Table 2).

Table 2. Performance of LOUGA learning a model predicate by predicate compared
to basic version (runtime measured in seconds).

Pred. by pred. Basic version

Briefcase 0.22 ± 0.15 0.86 ± 0.64

Blocksworld 0.81 ± 0.66 22.78 ± 40.38

FlatTyre 2.26 ± 0.74 111.76 ± 116.06

Rover 4.11 ± 0.33 �600

Freecell 5.73 ± 1.1 �600
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As expected, the predicate-by-predicate mode performs significantly faster
than the basic version. Moreover as the standard deviation indicates, the
predicate-by-predicate mode is also more stable. Runtimes of the basic ver-
sion varied greatly, some runs were even 10 times longer than others. Genetic
algorithms usually suffer from such behavior because of the randomness of the
method. The predicate-by-predicate mode works more consistently thanks to
evolution having a clearer direction. We can say that it generates only one prop-
erty at a time even though it is composed of many genes. The basic version works
with all properties together and improvement in one direction can go hand in
hand with step back in other.

4.2 Comparison of GA and Hill Climbing

In the second experiment, we compared the genetic algorithm with the hill climb-
ing approach. In particular, we compared three setups:

– LOUGA - the standard version with 10 individuals
– HC - hill climbing with 1 individual and local search in every generation;

restart when stuck in local optimum
– GA - genetic algorithm without local search operator

For the FlatTyre domain, we used inputs with only goal predicates in ending
states, so the problem had many solutions. In the other domains, we used plans
with complete initial and ending states.

The results (Table 3) show that the genetic algorithm without the local search
operator performs much worse than the other two setups. Pure hill climbing
performs better on inputs where there are many possible solutions. However if
we use complex domains, there is an advantage in incorporating GA, because
local search takes a lot of time on big genomes.

Table 3. Runtimes [s] of LOUGA, hill-climbing and a genetic algorithm.

LOUGA HC GA

Briefcase 0.22 0.88 0.36

Blocksworld 0.81 2.22 1.78

Flat tyre (ambiguious) 2.26 1.82 4.2

Rover 4.11 6.92 34.54

Freecell 5.73 11.11 51.52

4.3 Efficiency of Using Types

We assume that objects (constants) are typed, which reduces the number of can-
didate predicates for preconditions and effects. LOUGA also works with models
without types so our next experiment shows the effect of typing on efficiency.
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Table 4. Performance of LOUGA on models with and without typing.

Genome length Runtime [s]

Types NoTypes Types NoTypes

Briefcase 26 32 0.22 ± 0.15 0.97 ± 0.47

Blocksworld 16 108 0.81 ± 0.66 1.91 ± 0.76

FlatTyre 67 405 2.26 ± 0.74 11.47 ± 3.65

Rover 201 2796 4.11 ± 0.33 97.86 ± 7.67

Freecell 291 1481 5.73 ± 1.1 30.7 ± 3.96

The results (Table 4) show that LOUGA can handle domain models with-
out types, thought efficiency decreases significantly. The table also shows the
increased size of the genome when types are not used. The added genes (pred-
icates) can be split in two groups. The first group consists of genes that use
the unary predicates describing types. These genes do not add any difficulty
to the problem, because they are not used in any add or delete lists and thus
LOUGA immediately finds a trivial solution for those predicates. The second
group consists of genes that use the original predicates. These genes do make
the problem noticeably harder. In the Rover domain significantly more of these
genes were created, because this domain has more operators and predicate types,
and therefore more operator’s parameter-predicate’s parameter pairs were cre-
ated by removing typing and more genes needed to be added.

4.4 Comparison to ARMS

Finally, we compared performance of LOUGA and ARMS [11], which is still the
most efficient system for this kind of problem. We used two settings there. First,
we used example plans with complete initial states, goal predicates, and a small
number of predicates observed in intermediate states (every predicate will have
5% chance to be observed). This is the kind of input ARMS was created for.
Second, we used plans with complete initial and ending states but no information
about intermediate states, which is input that suits LOUGA well. We present
the comparison for three domains only where both systems found solutions.

Tables 5 and 6 clearly indicate that LOUGA outperforms ARMS both in
terms of runtime and quality of obtained models. From the data we can also see
that ARMS has some problems generating delete lists. In many cases, there were
zero predicates in delete lists in total. We assume that it is due to ARMS not
having enough information about which predicates need to be deleted. LOUGA
has less trouble generating those lists thanks to the assumption that a predicate
has to be deleted before it can be added again to the world. But in some cases in
the first experiment the learned delete lists were not the same as the delete lists
of the original model, because the information about what has to be deleted was
not sufficiently present in the plans. In the second experiment LOUGA knew
that every predicate in the ending states was observed, so it typically found the
original models.
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Table 5. Comparison of ARMS and LOUGA systems. Inputs with goal predicates and
small number of predicates in intermediate states were used.

ARMS Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0.263 − 0.029 0 6.19

Blocksworld 0.409 0.095 0.039 0.001 28.82

Flat tyre 0.319 0.479 0.342 0.003 504.19

LOUGA Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0 0 0 0 0.29

Blocksworld 0 0 0 0 0.64

Flat tyre 0 0 0 0 1.04

Table 6. Comparison of ARMS and LOUGA systems. Inputs with complete goal states
were used.

ARMS Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0.318 – 0.032 0 6.72

Blocksworld 0.331 0.061 0.036 0.014 29.64

Flat tyre 0.336 0.507 0.311 0.005 548.09

LOUGA Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0 0 0 0 0.22

Blocksworld 0 0 0 0 0.81

Flat tyre 0 0 0 0 2.26

5 Conclusions

The paper presents a novel approach to learn planning operators from exam-
ple plans using a genetic algorithm. We presented several techniques to improve
performance of the classical genetic algorithm. First, we suggested the prepro-
cessing technique to restrict the set of allowed genomes. Second, we used the
genetic algorithm to learn action effects only while the preconditions are learnt
separately using an ad-hoc algorithm. Third, we showed that action effects can
be learnt predicate by predicate rather than learning the effect completely using
a single run of the genetic algorithm. The presented approach LOUGA achieves
much better accuracy and it is faster than the state-of-the-art system ARMS
solving the same problem.
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