
Vehicular Crowdsensing for Smart Cities

Tzu-Yang Yu, Xiru Zhu, and Muthucumaru Maheswaran

Abstract As smart vehicles begin to roam the streets, new possibilities will
emerge for large-scale data acquisition tasks necessary for proactive smart cities
applications. Unlike mobile devices, smart vehicles carry powerful sensors and
are highly mobile; they can cover large areas and perform high quality sensing.
However due to restricted reward structures and limited bandwidths of cellular and
VANETs, not all vehicles can participate equally. Thus, we must find a method for
selecting promising participants which can efficiently the required collect sensing
information. In this chapter, we present ideas for participant selection under varying
conditions from large scale crowdsensing to personalized crowdsensing. We present
several algorithms using a common framework.

1 Introduction

Modern vehicles are equipped with increasingly powerful sensors, communication
interfaces and computing resources. As such, vehicular crowdsensing is quickly
becoming a new paradigm for data collection [10, 14]. Data collected from
crowd sensing could become essential for a smart city to provide dynamic and
proactive services. Vehicles are recruited as sensing participants for large-scale
crowdsensing tasks such as urban sensing or traffic condition monitoring. Compared
to conventional mobile crowdsensing, vehicles are ideal platforms to collect, store,
compute, and share large amounts of sensor data. The advantages are manifold; for
instance, vehicles have greater mobility and cover wider sensing area. Furthermore,
the mobility patterns of vehicles are predictable due to the prevalence of navigation
systems. Most importantly, the abundance of on-board resources and lack of power
constraints enable complex and long-running sensing tasks.

T.-Y. Yu · X. Zhu · M. Maheswaran (�)
McGill University, Montreal, QC, Canada
e-mail: tzu-yang.yu@mail.mcgill.ca; xiru.zhu@mail.mcgill.ca; maheswar@cs.mcgill.ca

© Springer Nature Switzerland AG 2018
M. Maheswaran, E. Badidi (eds.), Handbook of Smart Cities,
https://doi.org/10.1007/978-3-319-97271-8_7

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97271-8_7&domain=pdf
mailto:tzu-yang.yu@mail.mcgill.ca
mailto:xiru.zhu@mail.mcgill.ca
mailto:maheswar@cs.mcgill.ca
https://doi.org/10.1007/978-3-319-97271-8_7

176 T.-Y. Yu et al.

The primary application of modern vehicular crowdsensing research is gener-
alized and large scale monitoring such as environment and traffic monitoring, map
updating, public safety, urban sensing and so on [17, 25]. As such, data collected are
primarily analyzed in a cloud server and results made available for public use. Such
information can be reused by multiple applications. Given its nature, large-scale
sensing is dominated by enterprises or governments. We believe that the benefit
of crowdsensing paradigm should be available for personal use; tasks tend to be
numerous but limited in scale. We define this paradigm as Personalized Vehicular
Crowdsensing (PVC) [22]; it focuses on supporting user-specific sensing tasks.

Unlike generalized crowdsensing tasks, user-specific sensing tasks catered
towards users’ custom requests and are unlikely to be shared with other users.
For instance, different sizes of trucks require varying road width for driving and
turning. However, due to construction, snow, events or even bad parking, passable
roads may no longer be traversable. Hence, it is necessary to look in real time for a
wide variety of road width for different size of trucks. Such road width requirement
depends on type of truck; the system should allow user to tune the road width
parameter as a sensing task.

One related application, Waze, also attempts to leverage vehicular crowdsensing
for everyday users [7]. In Waze, participants form part of a community which
gathers information such as police location, traffic or roadblocks location. However,
unlike our proposal, Waze does not support variegated user inquiries; sensing tasks
are predefined by the platform. In addition, Waze requires participants to actively
enter information; a participant which sees an accident would need to manually
enter such information while driving. In contrast, PVC does not require participants
to be actively engaged. The client generate a customized sensing task as a runnable
program and submit the program to selected vehicle. Selected vehicle execute the
program, sends result back to the requester if the task objective is met.

Applications like Waze that rely on users manually entering sensing results may
not be trustworthy if users intentionally submit faulty sensing results for their own
benefit. For instance, users who want to have better traffic conditions while driving
can report accidents on the road. Thus, vehicles moving in the same direction
may be directed to other routes by the system. In contract, our PVC allows the
sensing program to implement security policies. The participant running the sensing
program must follow the policies; otherwise the task result will be rejected. Thus, a
program based sensing task not only can support customized sensing tasks but can
also reduce security concerns.

As crowdsensing systems leverage participants for collecting data, an incen-
tive system is necessary to maintain participation. To incentivize more users to
participate in a crowdsensing system, the platform should reward participants. Con-
ventional mobile crowdsensing often require complex and fine-grained incentive
mechanism; it requires participants use their mobile phones and actively gather
sensing data from their local environment. This can lead to significant inconvenience
to participants. Besides, some tasks require participants to have specific knowledge
before participating [16]. For instance, a task aimed at collecting photos of rare
plant species may want to recruit participants with some knowledge of Botany.

Vehicular Crowdsensing for Smart Cities 177

Vehicular crowdsensing, on the other hand, does not require human involvement
for completing tasks. Indeed, the quality of sensing results depends on the on-
board sensors rather than the human factor. The participant only lend the on-board
resources to the recruiter, which can be seen as buying computational resources from
cloud servers. However, given that vehicles are owned by individuals, there exists
significant privacy and security issues compared to cloud servers. Thus, typical
payment schemes used in cloud computing cannot be directly applied for vehicular
crowdsensing.

Moreover, unlike conventional cloud computing which consists of numerous of
static servers, vehicular crowdsensing system comprises a dynamic collection of
vehicles (mobile servers). Because of spatial-temporal nature of moving vehicles,
efficiently selecting and utilizing vehicular participants’ on-board resources is one
of the key challenges in building a vehicular crowdsensing service. Although
many participant recruitment algorithms has been recently added to the literature,
unique characteristics of PVC have introduced several new challenges in designing
participant recruitment algorithms.

In this chapter, we focus on providing a discussion on the concept of vehicular
crowdsensing for smart cities, with focus on how participant selection algorithm
is used under different crowdsensing paradigms and specific application needs. We
also explore the challenges of providing recruitment algorithms for PVC as well as
propose and evaluate several recruitment algorithms for PVC tasks.

2 Background and Characteristics

Crowdsensing refers to the outsourcing of data collection to users. This means that
participants contribute to a shared pool of information with mobile sensing devices.
Here, sensing devices often refer to smart phones or increasingly refer to vehicles
with powerful sensors. We distinguish between Vehicular and Mobile crowdsensing
given each has distinct characteristics. For instance, the mobility pattern of vehicles
is predictable due to the prevalence of navigation systems. Such predicted path is
often utilized for efficient participant selection for Vehicular crowdsensing tasks.

2.1 Two Different Crowdsensing Paradigms

In the literature, crowdsensing can be categorized into two type of paradigms: public
crowdsensing [14] and personalized crowdsensing [22]. The primary application
of public crowdsensing research is generalized and large-scale monitoring such
as environment, traffic monitoring, map updating, public safety, noise pollution
assessment, or urban sensing. The aggregated data is often shared to the public
and can be reused by multiple applications. As such, sensed data is collected and

178 T.-Y. Yu et al.

Fig. 1 Conventional public vehicular crowdsensing

analyzed within the cloud server itself and then made available for public use. Given
its scale, such large scale sensing are dominated by enterprises or governments.

In terms of architecture for public sensing, the server schedules optimal set of
vehicular participants to cover the sensing region and collects sensing data from
selected participants as shown in Fig. 1. The information sensed is often fixed, such
as air quality or noise level; hence, a server would continuously request the same
type of information.

In contrast, personalized crowdsensing focuses on supporting user defined
sensing tasks. These tasks cater towards a specific user’s requests and hence are
unlikely to be requested by other users. Thus, data can also be locally processed
on the sensing device; the server only need to forward the results. For instance,
different size of trucks need varying road width for driving and turning. However,
due to construction, snow, or events, it’s possible roads width change and are no
longer traversable. Hence, it is necessary for the trucker to get real time road width
information ahead of his path by hiring participants. These participants are hired to
perform the specific user defined sensing task of looking at road width and need
to follow specific spatio-temporal constraints from the recruiter. Thus the sensing
result is unlikely to be shared with other users.

The Fig. 2 depicts the architecture of a personalized crowdsensing service. As
shown in Fig. 2, recruiters send task requests to the server. The server retrieves
requests and assigns tasks to appropriate participants. Participants utilizes on

Vehicular Crowdsensing for Smart Cities 179

Fig. 2 Personalized vehicular crowdsensing

board resources to process sensing data. When the requested task is successfully
completed, participants will send back sensing results to the corresponding recruiter
via the cloud server. With personalized sensing, data requests are frequently received
from multiple recruiters. The cloud server collects client requests and schedules
such requests to participants to fulfill.

2.2 Central Server for Vehicular Crowdsensing

With vehicular crowdsensing, one major problem is the reliability of data received.
We would be troubled if a participant sent purposefully misleading data. Hence,
central control is necessary to maintain reliable information for the two vehicular
crowdsensing paradigms introduced above. Second, there should exist a reward
system for which providers of reliable and timely data are appropriately rewarded.
Otherwise, it may be difficult to maintain user participation. Third, we seek to
reduce redundant data. Unlike fixed sensors, vehicles move around and it’s likely
that sensing coverage overlap with others. Thus, the central server need to be
equipped with data de-duplication mechanisms to avoid overwhelming by gathering
all possible data to consumer.

180 T.-Y. Yu et al.

3 Public Vehicular Crowdsensing

3.1 Background

In this section, we focus on participant selection for public vehicular crowd-
sensing. Public vehicular crowdsensing targets large scale sensing, such as air
quality monitoring, traffic monitoring or even public safety. Public Vehicular
Crowdsensing’s purpose is to gather as much information as possible in the
targeted sensing region. Given its scale, not every potential participant can and
should be selected. The problems are threefold. First, each participant must be
rewarded; this reward is often monetary [23]. For instance, Amazon Mechanical
Turk is an example of crowdsourcing with monetary incentive where users perform
tasks for small amounts of money [4]. Second, local network infrastructure can
be overwhelmed when large number of vehicles continuously collect and send
data. Vehicular crowdsensing requires significant overheads; Current vehicular
communication technology have limitations; vehicular ad-hoc networks do not
have a central server to control bandwidth and suffer from reliability issues [2].
In contrast, cellular networks are more reliable but current cellular network data
usage is already growing exponentially; This risks severe network congestion in
the future [1]. Third, significant sensing overlap exist between vehicles; this means
selecting all vehicles would results in large amount of redundant data. For instance,
sensing air quality using every vehicles in traffic would result in processing large
quantity of information; selecting only a few would have been sufficient. Processing
large quantity of data requires large data centers which adds costs. Thus, public
vehicular crowdsensing participant selection attempts to select participants which
can maximize coverage while also limiting costs.

3.2 System Model

Public vehicular crowdsensing is composed of a set of participant vehicles with
wireless transceiver and sensor devices. Typically, participants are either smart cars
or buses; both can carry onboard computing resources and sensing ability. We
also assume we cannot control participants movements; participants do not actively
participate in sensing tasks. Selected participants only gather data passively along
their route as they pass locations of interest.

To communicate with the cloud or other vehicles, current vehicular crowdsensing
relies on vehicular ad hoc networks (VANET) and LTE. VANET utilize IEEE
802.11p, Wireless Access for the Vehicular Environment as standard (WAVE).
They form temporary network of vehicular clusters and road side units (RSUs)
[5]. Vehicles can communicate with neighbors in the immediate cluster directly but
require RSU’s assistance to send data beyond the local cluster. However, VANET
suffer from reliability problems [5]. To fix reliability issues, some works for VANET
include LTE [18].

Vehicular Crowdsensing for Smart Cities 181

To store accumulated data, cloud servers are necessary. Then, applications could
request for sensing information from the cloud servers. We assume the cloud servers
know the participants’ current location; participants could beacon that information
from time to time. Many works in the literature assume knowledge of participants’
predicted route; this can be information from a GPS for instance. However, some
work in the literature only assume knowledge of past routing information. At set
time intervals, the cloud servers can schedule a subset of available participants to
collect sensing data.

When a vehicle participates in crowdsensing, it must be rewarded. Designing
an incentive model which can consistently attract participant is a integral part of
crowdsensing. Important aspects to be considered are costs, sensing quality, sensing
coverage. Not all incentive models result in monetary gain [23]. Waze is an vehicular
crowdsensing application, where users share sensing information on the platform;
users are both participants and consumer of sensing information. For monetary
incentive system, there exists reverse auction where participants bid for sensing
tasks [11, 24]. To prevent low quality sensing, rewards based on data quality are
often considered [15]. Other systems rely on game theory such as Stackelberg game.
Here, a consumer proposes an offer to all participants to consider. This repeats for
multiple iteration until sensing needs are met [20].

Besides minimizing cost, maximizing the amount of area covered and amount of
area covered N times over the targeted region is paramount. Overall, there are two
properties for coverage to consider; spatial coverage and temporal coverage. Spatial
coverage simply seeks to maximize amount of area covered over a time window.
The weakness of this approach is that areas covered by sensors can be unbalanced;
some areas may never be covered while other areas may be always covered. Thus,
popular roads will always have sensing participants on it while side roads suffer in
terms of coverage frequency. However, this approach tend to work well with sparse
distribution of participants [10]. In contrast, temporal coverage is about maximizing
the number of regions covered at least N times. This would result in more even
distribution for collected data but may reduce the overall quantity of data collected.
Furthermore, coverage may not be as complete. There’s little incentive to gather
more data from an area already covered even though some new sensing information
could be gained. A third approach exists; by combining both spatial and temporal
coverage properties, we can obtain a hybrid approach [14]. In this approach, each
vehicle can only gather a capped amount of information at a specific area.

3.3 Definitions and Assumptions

We define notations to be used when describing participant selection algorithms.
We define a sensing region as R = {r1, r2, . . . , rm}, composed of smaller areas. The
exact definition and size of each area ri differs with each approach. For instance,
in [10], each area consist of graph nodes whereas in [21] they consist of 1 meter
by 1 meter square areas. We define the set of vehicles as V = {v1, v2, . . . , vn}. We

182 T.-Y. Yu et al.

Table 1 List of notation for
public vehicular
crowdsensing

Notation Description

T Sensing time window

V Set of all vehicles

P Set of vehicular participants selected for sensing

R Set of areas for sensing

ti Time i within time window T

vi Vehicle i in V

pi Participant i in P

ri Area i in R

rvi ,tj Location of vehicle vi at time tj

C(vi) Function which returns the cost of participant vi

B The total budget of sensing task

assume each vi has sensors and is willing to collect information. We define vehicles
selected as participants as P = {p1, p2, . . . , pm}, where P ⊆ V . We define the time
window as T = {t1, t2, . . . , tq}, where each tj is a time unit. Let rvi ,tj be the location
of vehicle vi at time tj , where rvi ,tj ∈ R ∪∅. We define C as a function which when
given a vehicle returns the cost of recruiting such vehicle. We define B as the budget
constraint which limits the number of participants we can select. Finally, we define
coverage as a function which takes in a participant set and sensing region and
returns the coverage measure of selecting such participant set (Table 1).

3.4 Problem Statement

Public vehicular participant selection problem can be expressed as integer linear
programming problem. We assume that the coverage function is provided. This
problem has been shown to be NP hard; this can proved by reducing the problem to
a set cover problem [9, 10, 21].

Input Values Sensing region R, vehicle set V , cost function C, Budget B,
coverage function coverage

Objective Function Find a set of participants P best fit as sensing participants.
Maximize coverage(P,R, . . .), P ⊆ V

Subject to
∑

pi∈P C(pi) <= B

3.5 Participant Selection Algorithms

In this section, we will explore a variety of algorithms proposed for public vehicular
crowdsensing participant selection. Many works in the literature have covered

Vehicular Crowdsensing for Smart Cities 183

mobile crowdsensing but have only recently started covering participant recruitment
for vehicular crowdsensing.

Hamid et al. first proposed the idea of utilizing vehicular trajectory to best select
vehicular participants [8]. In this paper, each participant has a reputation based on its
past sensing results; participant commitment and quality of information provided.
Participant commitment is the likelihood a participant will follow its provided
trajectory. Quality of information is the quality of previous sensing collection by
the participant. Hence the reputation of a participant vi is given by the following
equation where α and β are weights and p and q are participant commitment and
quality of information respectively.

reputation(pk) = α ∗ ppk
+ β ∗ qpk

(1)

The reward for each participant, Cpk
is based upon a fixed cost plus a variable cost

based on coverage distance dpk
and reputation.

C(pk) = costf ixed + costvariable ∗ dpk
∗ reputation(pk) (2)

The problem is formulated as two step integer linear programming, one for
maximizing the number of regions covered and the second for minimizing cost
of participants which achieves maximum coverage. In the first step, Hamid et al.
maximizes coverage by maximizing the average number of regions covered while
remaining within budget B.

hamid_coverage(P,R) =
∑

tj ∈T

|
⋃

pi∈P

rpi,tj | (3)

In the second step, the distance covered by selected vehicles is minimized while
maintaining the same level of coverage in step one. This will minimize the total
cost.

hamid_step2(P,R) =
∑

pi∈P

pi ∗ dpi
(4)

To solve the above equations, Hamid et al. simply utilized a integer programming
solver, Gurobi 5.1. Integer linear programming is NP-hard but there are methods
for approximations. However, even with approximations, the runtime of the method
is bound to be a higher order polynomial. Thus, Hamid et al. method of solving
vehicular participant takes too long for large-scale public sensing.

Han et al. presents two participant recruitment algorithms based on predicted
trajectory [9]. Note that the cost, c(vi) for selecting vi is assumed to be 1 where
∀vi ∈ V . The cost of selecting a vehicle is the exact same as selecting any
other vehicle. The budget constraint B is the number of participant selected.
The coverage function measure temporal coverage; it computes number of areas
covered by sensors at least once.

184 T.-Y. Yu et al.

han_coverage(P,R) = |
⋃

tj ∈T

⋃

pi∈P

rpi ,tj | (5)

Finally, to evaluate the algorithms, Han et al. utilized a dataset consisting of real
GPS trace of 20,000 shanghai taxi from 08:42–09:42. The first algorithm, referred
as the offline algorithm, assumes full knowledge of all vehicles and their trajectory
within the time window T . It finds the vehicle which adds the most coverage
and selects it as part of the solution. The algorithm then iterates until B vehicles
have been selected. The algorithm’s time complexity is O(B * |V | * log(|V |)). In
contrast, the second algorithm, referred as the online algorithm, assume no prior
knowledge of a vehicle before it joins the crowdsensing system. Since the system
wouldn’t know of a vehicle and its trajectory before it comes into range, this may
be a more realistic assumption. The algorithm decides whether to select a vehicle vi

when it joins the system by comparing the gain in temporal coverage of adding
vi with a dynamic threshold. The dynamic threshold is computed based on the
number of participants already selected. The online algorithm’s time complexity is
O(B * |V |).

Similarly, He et al. also proposed two participant recruitment algorithms based
vehicular trajectory [10]. Both algorithms assume full knowledge of vehicles and
their trajectory within time window T . The crowdsensing cost C is generated
according to a normal distribution. To evaluate the solution, traffic trace dataset was
obtained from TAPAS-Cologne [19], a 24 h generated vehicular trace of the city of
Cologne in Germany simulated using SUMO [13]. The first algorithm consist of
a greedy approximation which maximizes spatial coverage and is meant for small
number of sparsely deployed participants. Here, He et al. define spatial coverage as
simply the number of areas covered over a time period T .

he_coverage_1(P,R) =
∑

tj ∈T

|
⋃

pi∈P

rpi ,tj | (6)

Similar to the offline algorithm by Han et al. this algorithm adds the most cost
effective participant and iterates until the budget constraint is met. Cost effectiveness
is defined as the difference in spatial coverage divided by its cost. The algorithm
has a time complexity of O(|V |2|T |) Since this algorithm does not take into
account temporal coverage, this may result in unbalanced data distribution but
maximizes the amount of information gathered. This is beneficial with a small
number of participants sparsely deployed. In addition, this algorithm is a (|T | + 1)
approximation algorithm; quality suffers when the time window is long. In contrast,
the second algorithm proposed is a genetic algorithm meant for large number of
densely deployed participants. It utilizes the minimum covered time for all areas as
coverage.

he_coverage_2(P,R) = min(
⋃

rk∈R

he_coverage_1(P, rk)) (7)

Vehicular Crowdsensing for Smart Cities 185

The genetic algorithm encodes vehicle selection outcome as a binary string. Thus,
with 5 possible participants, if we only select the first participant, the encoding
would be “10,000”. Initially, a large number of solutions are randomly generated.
At each generation, the coverage, based on temporal coverage is computed and
only a top percent of the population survives. In addition, mutation and crossover
operations occur as well to mimic the evolutionary processes. Crossover combines
two solutions to obtain a hybrid of the two. Mutation randomly changes part of the
selection outcome. Finally, solutions which violate the cost constraint are trimmed
to fit. The algorithm runs until the time limit is reached or until the theoretical upper
bound is reached. The main advantage of this algorithm is that it can be capped in
terms of runtime which allows selection for large number of participations; on the
downside they may result in weaker solutions.

Due to polynomial time complexity from many proposed algorithms, Yi et al.
proposes a linear time algorithm for participant selection based on submodular
property of the problem [21]. This would benefit large-scale vehicular crowdsensing
where scheduling time may be tight. Coverage is defined as the maximum number
of areas covered over T.

yi_coverage(P,R) =
∑

tj ∈T

|
⋃

pi∈P

rpi ,tj | (8)

The utility of a recruiter is defined as the number of coverage minus the costs of
participants recruited where λ is a weight parameter. The objective is to maximize
the utility of the recruiter. Note that there is no hard cap for number of participants; λ
can be adjusted to serve as a soft cap. The utility function is proved to be submodular

utility(P,R) = yi_coverage(P,R) − λ ∗
∑

pi∈P

C(pi) (9)

The algorithm relies on a forward and reverse greedy algorithm operating at the
same time. Thus, the algorithm begins with an empty set and also a set of all
participants. At each iteration, we consider whether to add a participant vi by adding
vi to one of the empty set and removing vi from the full set. The change in utility
by adding and removing a vehicle is utilized to compute a probability of whether
to include the participant as part of the solution. The runtime complexity of the
algorithm is O(|T | * |R| * |V |) and thus is linear. It achieves an approximation
ratio of 1/2. To evaluate the algorithm, Shanghai Taxi dataset was utilized, covering
the trajectory of 4316 taxis. Furthermore, a synthetic dataset was generated using
Gauss-Markov mobility model. Results show that the algorithm only does slightly
worse than a polynomial greedy algorithm but took considerably less time to run.

In contrast to generalized public crowdsensing approaches, Gao et al. proposes an
air monitoring vehicular crowdsensing system using buses [6]. Unique to Mosaic’s
approach is that unlike passenger cars, buses have fixed routes. Thus the first
algorithm selects entire bus routes based on achievable coverage. To expand on
the first algorithm, the second algorithm selects individual buses. Furthermore,

186 T.-Y. Yu et al.

instead of seeking to cover an entire area, Mosaic proposes Points of Interests (POI)
which are high priority sensing locations. These high priority area could be schools,
hospital or other public spaces. The priority between POI are considered to be equal.
The sensing region R is split into 100 by 100 m areas; this may feel somewhat rough
in terms of precision but is acceptable for air quality monitoring. Each area has an
importance value, δ, attached, based on its distance to the nearest POI. Hence, an
area close to a POI has higher δ compared to an area far from any POIs. Since air
quality can be inferred from nearby measurements, coverage can be defined as the
number of route passing within or near the area.

local(rk, R, POI) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ(rk, R, POI) > 2 routes passing thru rk

0.75 ∗ δ(rk, R, POI) 1 or 2 routes passing thru rk

0.5 ∗ δ(rk, R, POI) >= 1 routes 1 areas away

0.25 ∗ δ(rk, R, POI) >= 1 routes 2 areas away

0 otherwise
(10)

coverage(V,R, POI) =
∑

ri∈R

local(ri , V , POI) (11)

The first algorithm proposed to find the best bus route is similar to the greedy
algorithms mentioned in previous papers. It finds the route which adds the most
coverage and adds it as part of the solution; this is iterated until the Budget is
reached. However, since this algorithm does not consider the temporal dimension
of coverage, a second algorithm for bus selection is proposed. In this second algo-
rithm, coverage equation is slightly modified to include percent of time coverage.
Similarly, the algorithm attempts to select the bus with highest coverage and adds
it as part of the solution. It iterates until the budget B is reached. The algorithm’s
time complexity is O(B ∗ |V | ∗ |R|0.5) and takes about 10 s to run with 1415 buses.
To evaluate Mosaic, data was collected from a 2.9 × 3.1 km2 city area in China.
It consisted of 282 bus routes and 1415 buses schedule with 72 POI consisting of
school and hospital locations. Mosaic proposed a crowdsensing system which works
well for air quality monitoring but would suffer when crowdsensing for other type
of sensing data. Here, temporal coverage is less emphasized; air quality changes
does not occur as suddenly. This paper does not consider participants selection for
general sensing tasks.

The participant recruitment algorithms proposed above only considered a single
type of sensing data. However, sensors on vehicles are heterogeneous, furthermore
quality of sensors may differ. Hence, Liu et al. proposed a heterogeneous participant
selection algorithm [14]. Unlike other works mentioned, Liu et al. utilize a time
continous markov chain mobility model rather than assume to know a participant’s
trajectory. Thus, given a vehicle’s position, a vehicle has an average stay duration
and a likelihood of transitioning to another area. The longer a vehicle stays in an
area, the more data it gathers. The cost of selection is 1 for each participant and
the Budget is the maximum number of vehicle which can be selected. Thus the

Vehicular Crowdsensing for Smart Cities 187

coverage is simply how much information all participant can gather from all sensors
it possess. The objective is to maximize the total coverage while remaining within
the Budget .

The algorithm for selection is once more a greedy algorithm which adds the
best participant at each iteration and repeats until Budget has been reached. This
is O(|Budget | ∗ |V |) in terms of time complexity since it only seeks to find the
maximum rather than sorting. To evaluate this algorithm, GPS trace of T-Drive
trajectory dataset are used. This contain the trajectories of 10,357 taxis and about
15 million data points.

One weakness of current vehicular recruitment strategy is that once selected, a
participant must continue sensing for a fixed period of time. However, inefficiency
exists; the participant selected may be only truly cost effective for part of the time
window T selected. Furthermore, trajectory provided by participants tend to be
error prone in reality. Thus, Hu et al. have proposed a variable duration participant
recruitment with uncertain trajectory [12].

To deal with uncertainty, Hu et al. proposes a probabilistic method for estimating
location of a vehicle given a trajectory. This probability can be obtained from
historical data. Let prob(rk, tj , vk) be the likelihood of vehicle vk to be at region
rk at time tj . Thus, the position vehicle i, rvi ,tj instead of returning a single area rk ,
returns a R sized matrix of probability. Note that |rvi ,tj | = 1.

rvi ,tj =
⋃

rk∈R

prob(rk|vi, tj) (12)

Furthermore, the solution for variable duration participant recruitment is a |V | by
|T | matrix denoting whether vi is recruited at ti instead of a set of selected vehicles.

selectvi
=

⎡

⎢
⎢
⎢
⎣

v11 δ12 δ13 . . . δ1q

v21 δ22 δ23 . . . δ2q

...
...

...
. . .

...

vn1 δn2 δn3 . . . δnq

⎤

⎥
⎥
⎥
⎦

selectvi ,rj ,tk =
{

1 Selected

0 Otherwise
(13)

In addition, the cost for selecting participants is defined by a |V | by |T | matrix,
where a cost is associated for each time point for each vehicle. Thus, cost function
for a participant vi is defined as follows.

C(vi) =
∑

tj ∈T

Cvi ,tj ∗ solutionvi ,vj
(14)

188 T.-Y. Yu et al.

Finally, Hu et al. defines spatial coverage as a function of the vehicle trajectory
probability and the required number of vehicles for sensing at area rk , requiredrk .
Thus, the number vehicles selected at rk at time tj must be greater or equal than
requiredrk or else coverage is defined as 0. Let Prk be the set of participants selected
which covers region rk .

SC(ri, tj , V) =
∏

pk∈Pri

prob(ri, tj , pk) (15)

SCcase(ri, tj , V) =
{

SC(select, ri , tj)
∑

vk∈V selectri ,tj ,vk
> requiredrk

0 otherwise

(16)
coverage(select, R) =

∑

ri∈R

∑

tj ∈|T |
SCcase(select, ri , tj , V) (17)

Note that this coverage function will penalize for overlap as the coverage probability
is multiplied for every vehicle covering an area. The objective of the algorithm is
to select a set of vehicles at different time points which maximizes the coverage
function while staying within budget B. Given that variable duration participant
selection problem is a subset of standard vehicular participant selection, the problem
is NP-hard. Thus, the first step is a pruning algorithm to remove non-viable
participants while the second step is a greedy algorithm to select the vehicle and
time for sensing.

The pruning step computes a Pearson correlation matrix to find vehicles with
significant trajectory overlap. Vehicles with significant overlap are grouped together.
The vehicle with lowest average costs within the group will be preferred given they
cover similar areas at similar times. As such, the algorithm can prune to only |V ′|
participants. The step has a time complexity is O(|V ′||V |).

In the second step, vehicles are still selected at specific times. The algorithm
simply seeks to iteratively recruit the best participant vk for each area rk at each time
tj . To find such best vehicle, Hu et al. define the following SC efficiency measure to
rank participants.

eff icientvi ,rj ,tk = SC(selecttk , R) − SC(selecttk−1)/Cvi,tj (18)

This measures the marginal increase in spatial coverage for a single vehicle at time
step tj . Thus, the time complexity is O(|V ′|2|T |2).

To evaluate their algorithms, Hu et al. utilized a trace dataset from taxis in Rome
over an area of 64 km2 [3]. The duration of the dataset is over 30 days. Thus,
the model proposed attempts to select participants at each ti during a given time
window. This improves coverage metrics but suffers from higher computational
costs. Furthermore, the proposed model can only obtain greater coverage with the
same workload by selecting more vehicles and switching off vehicles when they
are no longer useful for sensing. This has a few problems; first reward system

Vehicular Crowdsensing for Smart Cities 189

could include a fixed cost as part of the recruitment; recruiting more vehicles
would increase costs [8]. Furthermore, sensing data collected may result in highly
fragmented data from multiple sources; for instance a single time window T covered
can have at most T vehicles covering each area. This is a problem because of lack of
continuity and varying sensor quality. Compared to single continuous data, having
multiple fragments of data increases the level of noise and reduce sensing quality.

4 Personalized Vehicular Crowdsensing

Public vehicular crowdsensing is more appropriate for large scale sensing such as
environment and traffic monitoring, public safety, and urban sensing. Beyond public
sensing, the benefit of crowdsensing can be available to support more personal tasks.
However, unlike conventional large scale sensing tasks, the unique characteristics of
personalized vehicular crowdsensing have introduced several new challenges in the
design of participant recruitment algorithms. These include:

1. Personalized crowdsensing which targets every-day users have tighter budget
constraints compared to the public crowdsensing supported by large enterprises
or governments.

2. Requests by users are diverse; for instance, finding parking space, checking
a favorite restaurant, etc. Evidently, it would be meaningless to employ large
scale sensing; the sensing region in personalized vehicular crowdsensing is both
location and time specific.

3. Personalized crowdsensing tasks are time sensitive compared with large scale
sensing tasks. For instance in finding parking slot scenario, the spot can be taken
before the client arrives. Thus the system needs to guarantee timeliness. On the
other hand, we do not need to cover all sensing region at all time; we can reduce
the number of sensing participants accordingly.

4. Because clients can submit requests as needed, multiple requests can be made by
a single client. Since sensing data is processed locally, overloaded participants
may fail to process all requests. Thus, on-line load balancing is necessary when
selecting participants.

Traditional vehicular crowdsensing participant recruitment seeks to cover an
entire area over a time window. Therefore traditional approaches cannot be applied
to the Personalized Vehicular Crowdsensing Participant Recruitment problem
(PVC-PR) because here we only consider a particular location at a specific time.
For instance, suppose a recruiter is interested in finding a parking slot near his
destination. Let client’s route go through three unique regions R = {r1, r2, r3}
with each region requiring 10 min to traverse. In such tasks, we do not need to
know the parking status at region r3 while we are still in region r1. This is because
the parking space might be taken away before we arrive at r3 which requires a
total 20 min driving time. Thus, traditional participant recruitment algorithms could
suffer from over recruitment, which is very inefficient for PVC tasks. We only need

190 T.-Y. Yu et al.

to maintain partial coverage at indicated locations instead of covering all locations
all the time.

In the following sections, we propose and evaluate several algorithms specifically
for PVC tasks. The main objective of these algorithms is to recruit the minimum set
of vehicular participants which can complete the PVC tasks. We also ensure proper
load balancing among all the participants to reduce the chance of task failures.

4.1 System Model and Assumptions

Similar to conventional crowdsensing systems, PVC is comprised of cloud servers
and massive number of smart vehicles, and the vehicles are equipped with sensors
and communication devices such as Wi-Fi and Cellular interfaces. When a vehicle
begins its journey, general information such as unique vehicle ID and predicted
route from navigation system are uploaded and stored in the cloud server. Vehicles
need to reload predicted trajectories again if any changes occur to their planned
routes. Recruiters can make queries on sensing data of interest to the server. The
query needs to specify the sensing target and minimum distance from the recruiter.
For instance, the recruiter is interested in finding parking space at least 1 km ahead
but no longer than 5 km away. We consider such monitoring area as Monitoring
Window (MW). Given the recruiter’s planned route as the sensing route, the cloud
server need to select a set of proper vehicular participants to complete such task. The
participant selection decision is based on the provided monitoring area. As shown
in Fig. 2, the monitoring area changes dynamically based on projected trajectory of
the recruiter. Thus monitoring coverage should follow recruiters’ movements.

4.2 Definitions

Before formally presenting the problem, we describe some definitions and notations.
We consider the area of interest to be divided into a number of small road segments
R = {r1, r2 . . . rm}. Each road segment has a single traffic direction. Roads which
have opposite traffic directions are considered as two different road segments. The
area also contains a set of vehicles V , and let C = {c1, c2 . . . ci} be the set of clients
and P = {p1, p2 . . . pj } ⊆ V be the set of participants.

Client’s sensing route and participant’s projected route is composed of sequence
of road segments as shown in Fig. 3. Each road segment contains a time stamp
specifying arrival time of such vehicle. Let Rc be the set of route segments in
client’s query c and let Rp be the set of predicted future road segments of a given
participant p. The time stamp of a given road segment can be derived from the
following functions:

Vehicular Crowdsensing for Smart Cities 191

Fig. 3 Future routes and sensing routes

Fig. 4 Monitoring window (MW): a window for selecting useful sensing participants. For
instance, a client needs a participant at least 1 min drive away δ = 60 s, but cannot be more than
5 min drive away ε = 300 s

T (rk, R) =
{
R

+ rk ∈ R

−MAX_INT otherwise

In order to select valid and suitable participants for a specific client, we use the
following definitions:

Definition 1 (Common road segments) Given a client’s query route Rc and
participant’s future trajectory Rp, the set of common road segments is defined as

Rcom
c,p = Rc ∩ Rp, c ∈ C ∧ p ∈ P (19)

Definition 2 (Data timeliness) An important criteria to consider for participant
selection is that data must arrive in a timely fashion to the client. In other word,
data that arrives too early or too late is considered worthless to the client. Thus,
participants need to be in a specific sensing window in order to provide useful
sensing data. We refer to such window as monitoring window. Figure 4 shows how
MW helps in selecting useful participants. Let δ and ε be the lower bound and
upper bound for the window, respectively. The value of a participant at route rk is
represented as follow:

192 T.-Y. Yu et al.

�(Rc, Rp, rk) =

⎧
⎪⎪⎨

⎪⎪⎩

1 δ ≤ T (rk, Rc) − T (rk, Rp) ≤ ε

, rk ∈ Rcom
c,p

0 otherwise

(20)

Definition 3 (Query route coverage (QRC)) We define query route coverage as
the total number of road segments a set of selected participants can cover for a
single client under the associated timeliness constraint. Given a client, c ∈ C, and a
participant, p ∈ P , a single participant coverage for a single client can be defined
as:

single_cover(c, p) = {∀rk ∈ Rp|�(Rc, Rp, rk) = 1
}

(21)

Thus, given a set of participants S ⊆ P , the function QRC can be defined as
follows:

QRC(S) =
∣
∣
∣
∣
∣
∣

⋃

p′∈S

single_cover(c, p′)

∣
∣
∣
∣
∣
∣

(22)

Definition 4 (Participant maximum load (PML)) Participants will be assigned
sensing tasks by different clients along its journey. Because of the spatio-temporal
nature of the PVC tasks, certain regions may not have sufficient member of partic-
ipants at specific spatio-temporal locations. Hence, some participants in popular
sensing regions may be overloaded. Figure 5 shows an example of participant
workload with 3 clients. In the figure, the participant p services 3 clients between
timestamp t1 and t2 in region 2.

Fig. 5 Sample workload for a single participant with 3 clients; depending on clients location of
interest, the workload is spatial-temporally assigned

Vehicular Crowdsensing for Smart Cities 193

Table 2 List of notation for personalized vehicular crowdsensing

Notation Description

R Set of road segments

C Set of clients

P Set of vehicular participants

Rc The query route segments of the client c ∈ C

Rp The predicted future road segments of the participant p ∈ P

T (r, R) Function to get the timestamp of a road segment r , given a set of road
segments

Rcom
c,p The set of common road segments, obtained from Rc ∩ Rp .

δ Lower bound of monitoring window (MW)

ε Upper bound of MW

�(Rc, Rp, r) Value function return 1 if the timeliness constraints are satisfied and 0
otherwise

single_cover(c, p) The function return set of road segments such that ∀r �(Rc, Rp, r) = 1

�oadmax
p The maximum workload the participant p will have for entire journey

βc Maximal number of vehicles that the client c can hire for doing the
sensing task

capp Soft threshold of maximum number of tasks that p is able to serve
simultaneously

4.3 Problem Formulation

The PVC participant recruitment problem can be formulated as a two stage
optimization. In the first stage, we seek to find the set of participants which can
maximize requested coverage. That is, given a single client c and set of participants
P = {p1, p2 . . . pj } ⊆ V . The objective function is defined as:

Objective function of the first stage recruit subset of vehicles S′ ⊆ P maximizing
coverage subject to a budget constraint βc.

{

S′ ∈ arg max
S

QRC(S)

∣
∣
∣
∣ |S′| < βc

}

where βc is the maximal number of vehicles that the client c can hire for doing the
sensing task (Table 2).

Objective function of the second stage Since the first stage may return several
solutions which achieves maximum coverage, we need to make sure the solution can
achieve global load balance to guarantee quality of service. Thus, the objective of
the second stage focuses on recruiting a set of participants from the first stage which
reduces the workload among all vehicular participants given a stream of requests
c = {c1, c2}. The formulation of this stage is defined as below.

194 T.-Y. Yu et al.

Minimize
∑

p′∈P

�oadmax
p′

capp′

Where �oadmax
p′ signify the maximum workload participant p′ will be service for,

and capp′ is a soft threshold of maximum number of tasks that p′ is willing to serve
simultaneously.

4.4 Algorithm Design

In this section, we present our online participant selection algorithm for each
incoming request. To ensure our solution can maximize coverage for requested
sensing routes as well as spread global load balance, we use the following score
function for selecting decision.

Definition 5 (Workload score function) To select proper participants, our work-
load score function which considers participant’s current maximum workload,
�oadmax

p is defined as follows:

Score(�oadmax
p) ← capp

�oadmax
p

, ∀ �oadmax
p , and ∀ capp ∈ N

+
(23)

Where �oadmax
p indicates the maximum workload the participant p will have for

the entire journey, and capp is a soft threshold of maximum number of tasks that p

is willing to serve simultaneously.

The pseudocode detailed in Algorithm 1 shows how our score function is used for
recruiting participants while considering load balance. In the algorithm, a participant
is selected in each round, where the size of round S is capped by the size of the
query routes |Rc|. The vehicle selection decision is based on the vehicle’s weight w.
The weight of the participant p′ is calculated by its workload score times its route
coverage for the clients query route,

w ← Score(�oadmax
p′) × single_cover(c, p′).

We select the vehicle which has the maximum weight wmax as shown in
Algorithm 1 from line 7 to line 14.

The above algorithm assume availability of perfect predictions of candidate
vehicles future route. Such assumption is not realistic given high potential of
prediction errors. We evaluate predicted trip error based on different traffic levels
using the TAPAS Cologne simulated vehicle trace. We found that as the length of a
trip increases, the error in predicted locations of participant vehicles will increased
(see Fig. 6). In the light traffic, prediction error increase slowly as the length in
time of trips increase, whereas prediction error grows quickly in heavy traffic. We
solve this issue by proposing a windowed based scheduling approach where we only
schedule participants for set time windows instead of whole trips. We set the initial

Vehicular Crowdsensing for Smart Cities 195

Algorithm 1 Weight based Greedy algorithm (WBG)
Input c, P
Output Participants

1: Participants ← ∅
2: S ← Rc

3: while S is not empty do
4: pbest ← ∅
5: Rcover ← 0
6: wmax ← INT _MIN

7: for p′ ∈ P do
8: w′ ← Score(�oadmax

p′) × |single_cover(c, p′)|
9: if w′ > wmax then

10: wmax = w′
11: pbest ← p′
12: Rcover ← R̂

13: end if
14: end for
15:
16: if pbest is empty then
17: No valid participant, break the loop
18: end if
19:
20: S ← S \ Rcover

21: update_workload(pbest , Rcover)

22: Participants ← Participants ∪ {pbest }
23: end while

Fig. 6 The y axis measures the difference in time from a very light traffic expected arrival time.
We can see deviation from arrival time increases at different rate based on traffic

scheduling window to 300 s for each sensing task, since errors for predicted arrival
times within trip length of 300 s are acceptable in both light and heavy traffic as
shown in Fig. 6. However, a static window size suffers from too frequent scheduling,
resulting computation resources waste and increased delays. For instance, in light
traffic, a 1200 s may be better choice for the scheduling window instead of 300 s.
Thus, we proposed Dynamic Window Based (DWB) solution.

196 T.-Y. Yu et al.

Algorithm 2 Dynamic window based scheduling (DWB)
1: P ← Get participant candidates
2: C ← Subscribe to the request buffer
3: for each c ∈ C do
4:

{
Rc′ ∈ Rc | ∀rk T (rk, Rc) < current_t ime + SWc

} SW is calculated based on Eq. 24
5: S ← WBG(Rc′ , P) The Weight Based Greedy Algorithm (see Algorithm 1)
6: Expected_coverc ← |QRC(S, c)|
7: Notify the client c and each p ∈ S

8: end for

As shown in Algorithm 2, DWB only schedule participants for serving a client’s
sensing task within a specific scheduling window SW . The size of SW is calculate
as the following:

SWc ←

⎧
⎪⎪⎨

⎪⎪⎩

cover_rate < 1 MAX

{
SWc × cover_ratec

SWmin

otherwise SWc × θ where θ ∈ R
+

(24)

θ is a positive multiplier controls how fast SWc is grow. Note that to predict the next
SW size, we need to know the coverage performance of the previous SW . In such
case, we assume that the client calculated the coverage rate before submit the next
rescheduling request, where the coverage rate is calculated as the follow:

cover_ratec ← Actual_coverc

Expected_coverc
(25)

Each client has its own scheduling window due to various of driving behavior. The
scheduler continuously adjust the size of SW until the corresponding sensing routes
are fully scheduled. The flow of DWB scheduling is shown in Fig. 7.

4.5 Experiment Setup

To evaluate the performance of our proposed algorithm, we utilized the TAPAS
Cologne dataset, one of the largest traffic simulation dataset. It consists of data
simulated over a 24 h period for the city of Cologne, Germany. It covers over 1000
square kilometers[19]. To reduce simulation time, we restricted ourselves to a data
subset which consist of 7200 time steps from 6 AM to 8 AM. During this period
about 34,000 unique vehicles were part of the simulation. To obtain the trace of
vehicle positions as predicted path, we utilized the SUMO traffic simulator [13].
Figure 8 shows the workflow of our experiment. For simplicity, we assume all
the PVC clients are drivers, that is, we randomly select a subset of vehicles as
clients from the 34,000 unique vehicles. We utilize a uniform random distribution to

Vehicular Crowdsensing for Smart Cities 197

Syn

(Participant ID + future routes)

(Client ID + future routes)

Client ID + future routes + cover rate

Request

Request

C1

C2

C3

Request buffer

C1

C2

C3

Request buffer

Ack
Slelect participants

(SW=300 sec)
Assign task

Assign task

Ack

Ack

Ack

Notify Client

Notify Client

(Cover routes)

Select participant

(SW is based on cover rate)

Time Time Time

When hit the last
covered route

(Calculate cover rate)

Client Participants

Fig. 7 Dynamic window based scheduling workflow

TAPAS
Cologne
Dataset

SUMO
Simulator

GoSense
 & WB

Algorithm

Dump
Vehicle

Trajectory
Data

Evaluation

Fig. 8 Experiment flow

select 30,000 clients whereby each client’s sensing route range from 1 to 125 road
segments. When clients begin their journey, client send their future sensing routes
and sensing objectives to the server. The system then schedule participants to cover
clients’ sensing routes in a first-in-first-serve manner. A vehicular client cannot be
the participant for its own task but can be a participant for other tasks. For parameter

198 T.-Y. Yu et al.

setting, we set the budget to be constrained by βc = 20, and we set the soft parallel
task constraint for each vehicle to be cap = 10. We evaluate the performance of
the proposed algorithm by comparing against the PR algorithm in GoSense [22].
The simulation programs were written in Java and utilized only a single thread.
When evaluating the run time of the algorithms, each algorithm was run alone. The
machine utilized has i5-4590 k 3.30 GHZ and 16 GB of RAM.

4.6 Main Results

In this subsection, we compare the performance of GoSense and our proposed
weight based algorithm. We utilize the number of participants required for com-
pleting a task and maximum peak workload among all participants as metrics to
evaluate the algorithms. The peak workload is defined as follows:

Peak workload ← arg max
p′∈P

�oadmax
p′

As shown in Fig. 9, WBG outperforms GoSense in terms of load balance. We
also evaluated how data timeliness constraints δ and ε influenced the performance.
The size of the window is defined as:

26
24
22
20
18
16
14
12
10

8
6
4
2
0

Pe
ak

 w
or

kl
oa

d

0 5,000 10,000 15,000 20,000 25,000 30,000

of client requests

GoSense (MW = 900)

WBG (MW = 900)

Workload cap

10,000
9,000
8,000
7,000

6,000
5,000
4,000
3,000
2,000

1,000
0

Sa
m

pl
es

(c
lie

nt
s)

1 2 3 4 5 6 7 8 9 10 11

of participants

GoSense (MW = 900)

WBG (MW = 900)

Sa
m

pl
es

(c
lie

nt
s)

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

of participants
1 2 3 4 5 6 7 8 9 10 11 12 13

GoSense (MW = 60)

WBG (MW = 60)

26
24
22
20
18
16
14
12
10

8
6
4
2
0

Pe
ak

 w
or

kl
oa

d

0 5,000 10,000 15,000 20,000 25,000 30,000

of client requests

GoSense (MW = 60)

WBG (MW = 60)

Workload cap

Fig. 9 Comparison of GoSense and WBG algorithm performance. Note: MW←monitoring
window (second)

Vehicular Crowdsensing for Smart Cities 199

5,0000 10,000 15,000 20,000 25,000 30,000

Pe
ak

 w
or

kl
oa

d
5

4

3

2

1

0

3,200

2,800

2,400

2,000

1,600

1,200

800

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Sa
m

pl
es

(c
lie

nt
s)

WBG (MW = 900)

WBG (MW = 600)

WBG (MW = 300)

WBG (MW = 60)

(a) # of clients (b) # of missing road segments

WBG (MW = 900)

WBG (MW = 600)

WBG (MW = 300)

WBG (MW = 60)

Fig. 10 Simulation results under different monitoring window (MW): second

MW ← ε − δ

Given different sizes of MW, WBG still outperformed GoSense. We also observe
that GoSense requires slightly less participants but also causes significantly heavier
peak workload in comparison to WBG. Thus, we can trade off increase in
participants for better load balancing.

Figure 10 depicts how MW influence the performance. As we can see in Fig. 10a,
wider MW will result in smaller peak workload. That is, because wider MW will
yield more potential participants for selection as shown in Fig. 3c; the workload can
be more easily spread between participants. We also found that the overall number
participants decreased when the size of monitoring window is decreased as shown
in Fig. 9. This is because when the size of MW is small there is high chance that
the region does not contains the suitable participants which result in uncovered
region. As depicted in Fig. 10b, we can see that as MW narrows, the number of
missing route segment covered increases. This is because the time interval which a
participant is considered valid is reduced. Thus at every time step, less participants
are considered.

4.7 The Execution Time

Next, we consider the execution time of both algorithms under the same conditions.
We explore run time under different number of participants and different road
length. Here, number of participants refers to the vehicles which can be selected
for PVC tasks. Hence, a road length of 50 would require coverage in 50 different
road segments. In general, we can see that as the number of participants or road
length increases, run time increases linearly. This matches well with our complexity
of O(S ×R ×Rp). As we can see from Fig. 11a, b, when considering the number of
participants, the run time of WBG is only slightly above GoSense. In contrast, the

200 T.-Y. Yu et al.

75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0

75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
03000

6000
9000

12000
15000

18000
21000

24000
27000

30000

95
100
105
110
115
120

908580757065605550454035302520151050

Pr
oc

es
si

ng
 ti

m
e

(m
in

i-s
ec

)

GoSense

WBG

Pr
oc

es
si

ng
 ti

m
e

(m
in

i-s
ec

)

GoSense

WBG

(a) (b) stnemgesdaoryreuqfo#stnapicitrapralucihevfo#

Fig. 11 Running time under different number of participants and length of request route segments

number of query routes seems to show no impact between either algorithm. Hence,
we have shown that utilizing WBG does not result in a heavier overhead compared
to GoSense.

4.8 Window Based Scheduling (Static vs. Dynamic)

In this section, we explore the improved WBG algorithm using window based
scheduling. When experimenting in this section, we utilized a simple position
prediction algorithm using average route speed. Hence, significant errors exists
when predicting for a longer time periods. Figure 12 shows the performance in terms
of route segments missing rate in Cumulative Distribution Function (CDF) graph
format. Here, route segment missing rate is defined as route missing ratec ⇐
1 − cover_ratec. As we can see, scheduling for whole route leads to the worst
performance. Using 80% of vehicles as comparison point, scheduling for whole
results in 20% and 40% route missing rate compared to 5% and 20% for static
window scheduling and 10% and 20% for dynamic window scheduling. Overall,
static window scheduling performs best for missing route rate. There is a trade
off; static window scheduling requires fairly frequent scheduling and increase
computational overhead. Thus, if we care about reducing the number of scheduling,
dynamic window scheduling reduces the scheduling count as seen in Fig. 13.
Furthermore, the performance of dynamic window scheduling remains within reach
of static scheduling with more frequency scheduling. Thus, we have shown dynamic
window scheduling can be a competitive option when considering heavy overhead
of scheduling for all vehicles.

Vehicular Crowdsensing for Smart Cities 201

100
90

(%)

80
70
60
50
40
30
20
10
0

0 10 20 30 40 50 60 70 80 90 100 (%)

Light
Heavy

Route missing rate

Static window scheduling

100
90

(%)

80
70
60
50
40
30
20
10
0

0 10 20 30 40 50 60 70 80 90 100(%)

Light
Heavy

Route missing rate

Schedule for whole
100
90

(%)

80
70
60
50
40
30
20
10
0

0 10 20 30 40 50 60 70 80 90 100 (%)

Light
Heavy

Route missing rate(a) (b)

(c)

Fig. 12 Results show in Cumulative Distribution Function (CDF) graph under random monitoring
window. The random number is generated using the same seed. The route missing rate = number of
uncover route segments Rmiss

c divided by the total query route segments Rc. For calculating SW ,
we set θ = 2 and SWmin = 300 for our dynamic window scheduling

5 Future Works

Previous works have proposed various methods and metrics for selecting sensing
participants when the trajectory has some level of certainty. However, such sensing
are considered opportunistic; no solution proposed so far seeks to actively suggest
new routes to the participants to minimize sensing coverage. For instance, if a
participant’s current trajectory collects information that is already known; that
participant would make a small overall contribution. However, by taking a detour,
the participant could greatly increase the contribution to the sensing task. The
advantages are unmistakable; by rerouting participants, areas without possibility of
sensing in the old model can be sensed. Overall the sensing quality can be improved.
However, significant challenges lie ahead. First, a reward system must be designed
to incentivize users to tolerate rerouting while minimizing costs. Unlike participants
selected to sense opportunistically, rerouting consumes a participant’s time and
requires direct participation. Second, a new route generation algorithm must be
devised to suggest routes which increase overall sensing coverage to potential
participants while minimizing overlap and costs. Finally, a complete vehicular

202 T.-Y. Yu et al.

Heavy traffic

0
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Sc
he

du
lin

g
co

un
t

Travel time(second)

0
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Sc
he

du
lin

g
co

un
t

Travel time(second)(a)

(b)

Light traffic

Static window

Dynamic window

Whole route

Static window

Dynamic window

Whole route

Fig. 13 Scheduling count difference under light and heavy traffic

crowdsensing system should combine both opportunistic sensing and participatory
sensing. How to seamlessly incorporate both types of sensing will prove to be an
intriguing challenge.

6 Conclusion

Vehicular crowdsensing is certain to play a major role in sensing data collection for
proactive services in smart cities. Because vehicles are highly mobile, each vehicle
can quickly gather sensing information over large regions. However, challenges

Vehicular Crowdsensing for Smart Cities 203

remain; current network infrastructure and vehicular networking technologies can-
not support large-scale vehicular crowdsensing due to its bandwidth requirements.
Luckily, it is unnecessary to select all vehicles as participants; sensor coverage
intersects and produce duplicated data. Thus, we can minimize bandwidth use by
selecting the best participants from the available ones. The selection criterion can be
diverse; this includes spatio-temporal coverage, distance to point of interest, or even
combined coverage of heterogeneous sensors. Thus, the selection problem consist
of maximizing these measures while minimizing or staying within a budget limit. In
personalized vehicular crowdsensing, load balance criteria is also included because
of local processing needs. However, work still remain in the area of participatory
vehicular crowdsensing; actively suggesting routes to participants for sensing can
significantly improve sensing coverage.

References

1. Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021 white
paper, Mar 2017.

2. S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan. A comprehensive survey on
vehicular ad hoc network. Journal of network and computer applications, 37:380–392, 2014.

3. L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi. CRAWDAD dataset
roma/taxi (v. 2014-07-17). Downloaded from https://crawdad.org/roma/taxi/20140717, July
2014.

4. M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical turk: A new source of
inexpensive, yet high-quality, data? Perspectives on psychological science, 6(1):3–5, 2011.

5. C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan. A comparative survey of vanet
clustering techniques. IEEE Communications Surveys & Tutorials, 19(1):657–681, 2017.

6. Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, and C. Chen. Mosaic: A low-cost
mobile sensing system for urban air quality monitoring. In Computer Communications, IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on, pages 1–9. IEEE, 2016.

7. Google. Waze mobile, 2017. https://www.waze.com/.
8. S. A. Hamid, H. Abouzeid, H. S. Hassanein, and G. Takahara. Optimal recruitment of smart

vehicles for reputation-aware public sensing. In Wireless Communications and Networking
Conference (WCNC), 2014 IEEE, pages 3160–3165. IEEE, 2014.

9. K. Han, C. Chen, Q. Zhao, and X. Guan. Trajectory-based node selection scheme in vehicular
crowdsensing. In Communications in China (ICCC), 2015 IEEE/CIC International Conference
on, pages 1–6. IEEE, 2015.

10. Z. He, J. Cao, and X. Liu. High quality participant recruitment in vehicle-based crowdsourcing
using predictable mobility. In Computer Communications (INFOCOM), 2015 IEEE Confer-
ence on, pages 2542–2550. IEEE, 2015.

11. C. Hu, M. Xiao, L. Huang, and G. Gao. Truthful incentive mechanism for vehicle-based
nondeterministic crowdsensing. In Quality of Service (IWQoS), 2016 IEEE/ACM 24th
International Symposium on, pages 1–10. IEEE, 2016.

12. M. Hu, Z. Zhong, Y. Niu, and M. Ni. Duration-variable participant recruitment for urban
crowdsourcing with indeterministic trajectories. IEEE Transactions on Vehicular Technology,
2017.

13. D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. Recent development and applications
of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and
Measurements, 5(3&4):128–138, December 2012.

https://crawdad.org/roma/taxi/20140717
https://www.waze.com/

204 T.-Y. Yu et al.

14. Y. Liu, J. Niu, and X. Liu. Comprehensive tempo-spatial data collection in crowd sensing
using a heterogeneous sensing vehicle selection method. Personal and Ubiquitous Computing,
20(3):397–411, 2016.

15. D. Peng, F. Wu, and G. Chen. Pay as how well you do: A quality based incentive mechanism
for crowdsensing. In Proceedings of the 16th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pages 177–186. ACM, 2015.

16. S. Reddy, D. Estrin, and M. Srivastava. Recruitment framework for participatory sensing data
collections. In International Conference on Pervasive Computing, pages 138–155. Springer,
2010.

17. L. Shao, C. Wang, Z. Li, and C. Jiang. Traffic condition estimation using vehicular crowd-
sensing data. In 2015 IEEE 34th International Performance Computing and Communications
Conference (IPCCC), pages 1–8, Dec 2015.

18. S. Ucar, S. C. Ergen, and O. Ozkasap. Vmasc: Vehicular multi-hop algorithm for stable
clustering in vehicular ad hoc networks. In Wireless Communications and Networking
Conference (WCNC), 2013 IEEE, pages 2381–2386. IEEE, 2013.

19. S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas. Generation and analysis
of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing,
13(5):1061–1075, 2014.

20. M. Wu, D. Ye, S. Tang, and R. Yu. Collaborative vehicle sensing in bus networks: A stack-
elberg game approach. In Communications in China (ICCC), 2016 IEEE/CIC International
Conference on, pages 1–6. IEEE, 2016.

21. K. Yi, R. Du, L. Liu, Q. Chen, and K. Gao. Fast participant recruitment algorithm for large-
scale vehicle-based mobile crowd sensing. Pervasive and Mobile Computing, 2017.

22. T. Y. Yu, X. Zhu, and H. Chen. Gosense: Efficient vehicle selection for user defined vehicular
crowdsensing. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pages 1–5,
June 2017.

23. X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao. Incentives for mobile crowd
sensing: A survey. IEEE Communications Surveys & Tutorials, 18(1):54–67, 2016.

24. X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li. Free market of crowdsourcing:
Incentive mechanism design for mobile sensing. IEEE transactions on parallel and distributed
systems, 25(12):3190–3200, 2014.

25. D. Zhao, H. Ma, L. Liu, and X.-Y. Li. Opportunistic coverage for urban vehicular sensing.
Computer Communications, 60:71–85, 2015.

	Vehicular Crowdsensing for Smart Cities
	1 Introduction
	2 Background and Characteristics
	2.1 Two Different Crowdsensing Paradigms
	2.2 Central Server for Vehicular Crowdsensing

	3 Public Vehicular Crowdsensing
	3.1 Background
	3.2 System Model
	3.3 Definitions and Assumptions
	3.4 Problem Statement
	3.5 Participant Selection Algorithms

	4 Personalized Vehicular Crowdsensing
	4.1 System Model and Assumptions
	4.2 Definitions
	4.3 Problem Formulation
	4.4 Algorithm Design
	4.5 Experiment Setup
	4.6 Main Results
	4.7 The Execution Time
	4.8 Window Based Scheduling (Static vs. Dynamic)

	5 Future Works
	6 Conclusion
	References

