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Abstract
Capsicum is one of the most important
vegetable crops of the family Solanaceae and
is widely used as spice due to its pungent
nature. Besides, Capsicum fruit rich in
metabolites and vitamins; and also has anti-
cancerous property, which further increases
the importance of this crop. However, Cap-
sicum crop is highly affected by abiotic/biotic
stresses such as drought, heat, cold, salinity,
and pathogens. To overcome these stresses,
plants adapted several mechanisms such as the
production of osmoprotectant, proline, galacti-
nol and raffinose, and the reduction of reactive
oxygen species. Autophagy also plays an
important role to provide tolerance against
stresses through degradation of toxins. Among
the others, transcription factors and plasma
membrane intrinsic proteins, and plant endo-
phytes are found to be involved in regulating
stress tolerance mechanism. Furthermore, in

Capsicum genome, a number of genes and
quantitative trait loci (QTLs) involved in
stress tolerance mechanism have been identi-
fied. In this chapter, a detail compilation of
important molecular mechanisms and associ-
ated genes/QTLs involved toward imparting
abiotic and biotic stress tolerance in Capsicum
genome is made.

7.1 Introduction

Environmental stresses including both abiotic and
biotic stresses have major effects on different
developmental processes in plants. To overcome
these stresses, plants adopted different mecha-
nisms including production/accumulation of
osmoprotectants, chaperones, and increasing
superoxide radical scavengers. Among the major
abiotic stresses, drought, cold, heat, salinity, and
cold stresses are the most common in Capsicum
crop. Beside abiotic stresses, several pathogens
also damage Capsicum crop by causing several
diseases. For example, Phytophthora capsici
causes rot disease on various plant parts such as
root, shoot, leaf, and fruits. Several other diseases
including leaf spot (caused by Xanthomonas
campestris), viral disease (caused by tobacco
mosaic virus TMV, cucumber mosaic virus CMV,
tomato spotted wilt virus TSWV, and potyvirus)
also damage Capsicum plants severely. These
diseases cause retorted growth and development
and ultimately reduced yield and quality of fruits.
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In winter crops including Capsicum, low
temperature in root zone is most deleterious and
cause turgor loss due to osmotic stress (Islam
et al. 2014). At molecular level, low temperature
in root zone may lead to several other imbalances
like protein denaturation, membrane disorgani-
zation and damage, increased production of
reactive oxygen species (ROS), change in cyto-
plasm viscosity, and enzyme activity (Janska
et al. 2010; Krasensky and Jonak 2012). These
abnormalities further affect different plant growth
and developmental processes and may cause
premature senescence, reduced fertility, wilting,
chlorosis, reduced leaf expansion, necrosis, and
ultimately plant death (Mahajan and Tuteja
2005). In Capsicum, significant economic loss
may occur due to poor fruit set and quality due to
biotic/abiotic stresses (Sanghera et al. 2011). To
acclimate under stress, plant produces increased
level of compatible solutes, such as proline, raf-
finose, and glycine betaine which stabilizes dif-
ferent cellular structures, and removes excess
ROS and maintain redox balance.

Similarly, abscisic acid pathway is widely
known to provide tolerance against abiotic
stresses mainly in drought and osmotic stress.
Upon availability of endogenous ABA, ABA-
responsive element (ABRE) and MYC/MYB
systems become functional which is required
for expression of rd22 gene (Abe et al. 1997).
Sequences encoding MYC and MYB genes are
essential for the ABA- and drought-responsive
expression of rd22. Furthermore, NAC tran-
scription factors (containing AP2 domain to
increase tolerance) are also induced under
drought stress and in the presence of endogenous
ABA.

Different parameters are used to measure
stress tolerance in Capsicum including gas
exchange, plant height, shoot dry mass, root
morphology (like length, projected area, root
tips’ number, and dry mass), pattern of central as
well as secondary metabolites in different tissues
like leave, root shoot, and carbon remobilization.
For example, a cold stress tolerant variety exhi-
bits more carbon/nitrogen ratio in leaves than
roots and shows a higher level of c-aminobutyric

acid (GABA), proline, galactinol, and raffinose
(stress related) in roots (Aidoo et al. 2017).

In the present chapter, an attempt has been
made to compile several reported researchfindings
in identification and characterization of functional
role of important genes involved in abiotic and
biotic stress tolerance in Capsicum, and subse-
quently, the crosstalk between abiotic and biotic
stress signaling pathways is also discussed.

7.2 Genes and Associated
Molecular Mechanism
Identified for Abiotic Stress
Tolerance in Capsicum Genome

Abiotic stress tolerance involves a complex
mechanism. Sometimes, more than one stresses
act in combination and affect the plant growth. In
Capsicum, several genes involved in important
pathway of tolerance against abiotic stresses have
been characterized (Table 7.1). For example,
Sheong and Wang (2008) identified a protein
encoded by CaAbsi1 gene which has a putative
zinc finger protein in its C-terminus and is
upregulated in early stage of salt stress (high
concentrations of NaCl or mannitol), and after
six hours under cold stress. Besides,
up-regulation in response to oxidative stress,
methyl viologen, hydrogen peroxide, and absci-
sic acid suggested that CaAbsi1 plays an
important role in multiple abiotic stresses toler-
ance mechanism.

During abiotic stresses, highly toxic ROS
(single oxygen, superoxides, peroxide, and
hydroxyl radicles) are produced in mitochondria,
chloroplast, and peroxisomes and may damage to
cellular components including DNA, RNA, pro-
tein, lipid, therefore, need immediate detoxifica-
tion by certain enzymatic or non-enzymatic
scavenging systems (Apel and Hirt 2004). One of
the important scavenging systems involves
methionine sulfoxide reductases (MSR) which
convert methionine sulfoxide back to methion-
ine. Capsicum MSR-B2 (CaMSRB2) has been
shown to provide tolerance against drought stress
in rice. Transgenic rice (CaMSRB2) showed less
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Table 7.1 List of genes reported to be involved in abiotic stresses in Capsicum

Gene/family Description Stress Reference/s

BI1 BAX inhibitor 1 involved in program cell
death

Cold, salinity, drought,
flood, and heavy metal

Isbat et al. (2009)

CaAbsi1 Putative zinc finger protein in its
C-terminus

Salt and cold Seong and Wang (2008)

F-box genes Sub-unit of E3, involved in ubiquitination
activity

Cold, salt, and osmotic Chen et al. (2014)

CaMSRs Methionine sulfoxide reductases, reduces
level of ROS

Drought Kim et al. (2014a, b)

CaDHNs Dehydrin and lysine-rich hydrophilic
protein

Drought and cold Szabala et al. (2014),
Jing et al. (2016)

CaPAL1 Phenylalanine ammonia-lyase; major
gene of phenylpropanoid metabolism

Pathogen defence Kim and Hwang (2014)

CaATGs Autophagy-related gene Heat Zhai et al. (2016)

CaPUB1 Pepper U-box E3 Ubiquitin Ligase Drought Min et al. (2016)

CaWRKYs Contain WRKY domain Heat, salinity, and
drought

Oh et al. (2006), Cheng
et al. (2016)

CaZFP1 Cys2/His2-type zinc finger transcription
factor

Drought tolerance Kim et al. (2004)

CaNACs NAM, ATAF, and CUC transcription
factors

Cold, salt, and drought Guo et al. (2015), Diao
et al. (2018)

CaKR1 Ankyrin-repeat domain C(3)H(1) zinc
finger protein

Cold Seong et al. (2007)

CaBiPs Binding protein Heat, drought, osmotic,
and salinity

Wang et al. (2017)

CaChis Chitin-binding proteins Pathogen defence, cold,
and salinity

Ali et al. (2018)

CaPIPs Plasma membrane intrinsic proteins,
aquaporins

Chilling, salt Yin et al. (2015)

CaPGIPs Polygalacturonase-inhibiting proteins Cold treatment Wang et al. (2013)

CaXTHs Xyloglucan
endotransglucosylase/hydrolase

Drought, high salinity,
and cold

Cho et al. (2006b), Choi
et al. (2011)

CaRma1H1 RING E3 Ub ligase Drought and salt Lee et al. (2009), Seo
et al. (2012)

CabZIPs Basic leucine zipper Drought Lee et al. (2006), Moon
et al. (2015)

CaRAVs Related to ABI3/VP1, transcription factor Drought, salt, and
pathogen

Sohn et al. (2006)

CaGLIP1 GDSL-type lipase Salicylic acid, ethylene,
and methyl jasmonate

Hong et al. (2008)

CaMLO2 Mildew resistance locus O Abscisic acid and
drought

Kim and Hwang (2012),
Lim and Lee (2014)

CaRING1 Ring-type protein Drought Lim et al. (2015a, b)

AGO/DCL/RDR Argonaut protein, Dicer-like protein, and
RNA-dependent RNA polymerase

Cold, drought, and
salinity

Qin et al. (2018)

(continued)

7 Genes/Quantitative Trait Loci and Associated Molecular … 123



oxidative stress, increased level of yield, and
survival rate (Kim et al. 2014a, b). Further, it has
also been suggested that CaMSRB2 may target
porphobilinogen deaminase (PBGD), which is
involved in chlorophyll synthesis.

Dehydrins are hydrophilic proteins produced in
response to abiotic stress to provide tolerance to
plant. Dehydrin contains highly conserved
lysine-rich amino acid sequence (EKKGIMDKI-
KEKLPG, also called K segment) at C-terminus,
and serine residues (S-segment), and a consensus
sequence (Y-segment) at N-terminus. SKn are
acidic dehydrins which are mostly accumulated in
plant cell in response to freezing stress (Rorat
2006). DHN24 (a SK3 dehydrin) found upregu-
lated in phloem cells under drought and cold
stresses (Szabala et al. 2014) suggested that it
might play a role in drought tolerance. Similarly,
DHN3 was found to be associated with cold and
salt stresses (Jing et al. 2016).

Autophagy also plays a vital role in stress tol-
erance through the degradation of damaged and
denatured protein and thus reduces toxic level. In
Capsicum, 15 autophagy-related genes (ATG)
called CaATGs have been identified which got
upregulated during abiotic stresses like salt,
drought, heat, and cold. During heat stress,CaATG
genes have higher expression in heat-tolerant
genotype than heat-sensitive genotype. It has also
been found that CaATGs interact with heat shock
proteins of HSP90 family (Zhai et al. 2016).

7.2.1 Role of Ubiquitin Genes During
Abiotic Stress Tolerance

Ubiquitin is one of the key regulators of several
cellular functions such as protein sorting, endo-
cytosis, and hormone signaling and mostly

function through protein degradation. It is a
peptide having highly conserved 76 amino acids.
Three main enzymes named E1, E2, and E3 are
involved in protein degradation through ubiqui-
tin. E1 activates ubiquitin, E2 forms complex
with activated ubiquitin and attached to the target
site, and E3 catalyzes the isopeptide bonds.
On the basis of sub-units, E3 can be
RING-type/U-box E3 class and SKP-type
cullin/CDC53-F-box. Both the types of E3 sub-
units have been well characterized and found to
be involved in abiotic stress tolerance in Cap-
sicum in separate studies. Cho et al. (2006a, b)
isolated a peptide called putative U-box protein 1
(CaPUB1) with U-box motif (essential for E3
activity) from water-stressed hot pepper.
CaPUB1 is found to be induced under different
abiotic stress conditions like drought, salinity,
and cold stress. Overexpression of CaPUB1 in
transgenic Arabidopsis showed longer hypoco-
tyls and root, higher plant growth rate, and early
bolting than wild-type. However, under abiotic
stress conditions such as drought and low tem-
perature, transgenic Arabidopsis plants showed
increased sensitivity than wild-type plants sug-
gesting CaPUB1 gene to be a negative regulator
of abiotic stress tolerance. Similarly, in another
study conducted in rice, overexpression of
CaPUB1 showed hypersensitivity under drought
stress (Min et al. 2016); however, under cold
stress, overexpression of CaPUB1 provided tol-
erance in transgenic rice. Moreover, cold inducer
marker genes including DREBs and cytochrome
P450 also showed higher expression in overex-
pressing CaPUB1 rice lines compared to the
wild-type plants suggesting CaPUB1 to be a
positive regulator of cold stress. On the other
hand, F-box protein, a member of SCF (Skp–
Cullin–F-box) protein complex (another subunit

Table 7.1 (continued)

Gene/family Description Stress Reference/s

CaARFs Auxin-responsive factors Salinity, cold, and heat
stresses

Yu et al. (2017)

CaDRT1 Capsicum annuum DRought Tolerance 1 Drought Baek et al. (2016)

CaWDP1 WPP Domain protein, involved in ABA
signaling

Drought and NaCl
treatments

Park et al. (2017)
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type of E3) was also found to play an important
role in gene regulation during stress response
(Chen et al. 2014). In Capsicum, CaF-box gene
has been found to be differentially expressed
predominantly during salt stress along with cold
stress, and also in response to abscisic acid
(ABA) and salicylic acid (SA).

7.2.2 Role of Plant Aquaporin Genes
During Abiotic Stresses

Plasma membrane intrinsic proteins (PIPs) are
membrane-bound proteins that allow transmem-
brane transfer of water (Chaumont et al. 2001). It
has been suggested that besideswater transmission,
PIPs alsoplay important role in the transportationof
solutes and CO2, and other physiological processes
like stomatal opening, cell elongation, seed germi-
nation, and ripening (Forrest and Bhave 2007).
Moreover, plant aquaporin also takes part in pro-
viding tolerance against biotic/abiotic stresses. In
Capsicum, upregulation of PIP-1 (isolated from
P70) under cold and salt stresses suggested that it
may be involved in providing tolerance to these
stresses and increased susceptibility against salt of
silent PIP1 further confirmed its involvement in
stress tolerance (Yin et al. 2015).

7.3 Role of Transcription Factors
in Abiotic Stress Tolerance

Transcription factors are key regulators of cell
signaling both internally and externally. In plants,
several transcription factors have been character-
ized to play important role in abiotic stress toler-
ance (Gahlaut et al. 2016). In Capsicum also,
several transcription factors including BAX inhi-
bitor 1, WRKY, NAC, CAZFP1, bZIP like, RAV,
GRAS, Dof, ARF, and PF1 have been found to be
involved in abiotic stress tolerance.

7.3.1 BAX Inhibitor 1

In response to environmental stresses, plants fol-
low programmed cell death (PCD) to eliminate

damaged cells. BCL2-associated x protein
(BAX) is found to be important regulator of PCD
and balanced by the activity of BAX inhibitor-1
(BI-1). In Capsicum, CaBI-1 has been cloned and
found to be upregulated in response to different
abiotic stresses like cold, salinity, drought, flood,
and heavy metal stresses and provides tolerance
to plants against these stresses (Isbat et al. 2009).
Loss of function of CaBI-1 enhances cell
death and shows more susceptibility toward cold
stress.

7.3.2 WRKY and NAC Transcription
Factor Genes

WRKY is one of the largest transcription factor
families in higher plants, which contains WRKY
domain (WRKYGQK peptide and Cx4–5Cx22–
23HxH or Cx7Cx23HxC zing-finger structure).
WRKY transcription factors have been found to
be involved in several biological and physio-
logical processes including stress tolerance.
Totally 61 WRKYs genes (called CaWRKYs)
have been identified in Capsicum (Cheng et al.
2016). Constitutive expression of 16 CaWRKYs
suggested an involvement of WRKYs in funda-
mental developmental processes in Capsicum.
Most of the WRKY genes (60%) are expressed in
fruit tissues. Differential expression of 26, 27,
and 14 WRKY genes under heat, salinity, and
drought stresses, respectively, suggested active
involvement of these WRKY genes in fruit
development under abiotic stresses (Cheng et al.
2016).

NAC is also a well-characterized transcription
factor family involved in stress tolerance in
plants; however, a limited study is available in
Capsicum (Guo et al. 2015; Diao et al. 2018).
Recently, CaNAC2 has been isolated in Cap-
sicum (Guo et al. 2015). CaNAC2 has conserved
NAC domain at N-terminus which encodes 410
amino acids’ long polypeptide. Induced expres-
sion of CaNAC2 after cold and salt stresses
suggested that NAC2 may be involved in stress
mechanism. Loss of function mutants showed
enhanced susceptibility against chilling stress
and delayed the salt-induced leaf chlorophyll
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degradation. Recently, 104 CaNAC genes have
been identified and found to be distributed on all
the 12 chromosomes of Capsicum (Diao et al.
2018). Under abiotic stress condition, several
NAC genes showed differential expression. For
example, CaNAC72 showed >600-fold increased
expression upon salt stress treatment along with
10 other CaNAC genes showing average 10-fold
higher expression. Similarly, upon heat stress,
total 10 NAC genes (CaNAC13, CaNAC20,
CaNAC27, CaNAC29, CaNAC35, CaNAC37,
NAC53, CaNAC61, CaNAC72, and CaNAC102)
are found to be significantly upregulated; how-
ever, CaNAC41 and CaNAC86 get downregu-
lated under stress condition. Further, under
drought stress, more than 70-fold increased
expression of two NAC genes (CaNAC72, and
CaNAC79) suggested the involvement of these
NAC genes in drought stress (Diao et al. 2018).

7.3.3 bZIP Transcription Factor Genes

Basic leucine zipper (bZIP), a large TFs family,
consists of a 40–80 amino acid containing
DNA-binding domain and a leucine zipper
dimerization domain. In Arabidopsis and rice, a
total of 75 and 89 bZIP TFs, respectively, are
known to be involved in multiple mechanisms of
biotic and abiotic stresses, plant development,
seed maturation, etc (Muszynski et al. 2006).
Group A bZIP genes (ABFs/AREBs) are found
to be involved mainly in drought and salinity
stresses (Yoshida et al. 2010). In Capsicum,
CaBZ1 has been characterized to be involved in
salt and abiotic stresses (Moon et al. 2015).
Ectopic expression of CaBZ1 in potato provides
tolerance against drought (Moon et al. 2015).
Similarly, CAbZIP1 provides tolerance against
abiotic stresses in Arabidopsis (Lee et al. 2006).

7.3.4 ERF/AP2-Type and RAV
Transcription Factor
Genes

InCapsicum, Yi et al. (2004) characterized an ERF
transcription factor gene (called CaPF1) for cold

tolerance. Like other ERF/AP2-type TFs, CaPF1
binds to GCC and CRT/DRE cis-elements. Higher
expression of CaPF1 has been observed under
different treatments including chilling stress in
transgenic Arabidopsis.

RAV (related to ABI3/VP1) is a new group of
DNA-binding proteins transcription factors and
contains two different plant-specificDNA-binding
domains—(i) AP2/ERF DNA-binding domain at
N-terminal and (ii) B3 DNA-binding domain of
VP1/ABI3 at C-terminal (Kim et al. 2005; Sohn
et al. 2006). A number of AP2/ERF-domain-
containing proteins (such as DREBs, Tsi1, and
CBFs) and VP1/B3 DNA-binding proteins (VP1,
ABI3, and ARF1) are widely known to be involved
in plant responses to biotic and abiotic stress
(Gutterson and Reuber 2004; Kasuga et al. 1999;
Park et al. 2001; Kirsten et al. 1998). InCapsicum,
it has been found that CaRAV1 interacts with
oxidoreductase protein (CaOXR1) and provides
extreme tolerance against osmotic and salinity
stresses to the overexpressed (CaOXR1/CaRAV1)
lines in Arabidopsis (Lee et al. 2010).

7.3.5 Auxin-Responsive Factors
(ARFs) and DNA-Binding
One Zinc Finger
(DoF) Transcription Factor
Genes

In Capsicum, 22 CaARF genes have been identi-
fied (Yu et al. 2017). These genes are grouped into
six clusters and distributed on all the 12 Capsicum
chromosomes. Most of the above-mentioned
CaARFs showed different expression under abi-
otic stresses like salinity, cold, and heat stresses.
Under salinity stress, nine and ten CaARFs got up-
and downregulated, respectively. Under cold
stress, expression of CaARFs differs in different
tissues, for example, expression of CaARF11 got
upregulated in shoot, and however, its expression
goes down in root at the same time. Similarly,
differential expression of 11 CaARFs under heat
stress condition suggested these CaARFs may be
involved in heat stress tolerance (Yu et al. 2017).

Similarly, 33 CaDoFs have been identified in
Capsicum (Wu et al. 2016) and found to be
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distributed across 11 Capsicum chromosomes
(excluding Chromosome 7). Several CaDoFs
showed significant differential expression under
two stresses including heat and salinity (Wu et al.
2016).

7.4 Genes Involved in Biotic Stress
Tolerance

In Capsicum, several genes have been charac-
terized to play a vital role in providing tolerance
against biotic stresses like bacteria, virus, and

nematodes (Table 7.2). Bacteria called X. cam-
pestris causes leaf blight disease in Capsicum.
Choi et al. (2007) identified a CaPO2 gene to
provide tolerance against this disease. A knock-
down mutant of CaPO2 showed increased sus-
ceptibility against Xanthomonas. Similarly,
CaMLO2 also reported to show resistance
against Xanthomonas and silencing of this also
show increased susceptibility toward disease
represented by cell death and increased ROS
(Kim and Hwang 2012; Zheng et al. 2013).
CaMLO2 interacts with a calmodulin-related
gene, involved in cell death (CaCaM1), and

Table 7.2 List of genes reported to be involved in different biotic stress tolerance in Capsicum

Biotic stress Genes Description Reference/s

Xanthomonas
campestris resistance

Bs Genes Bacterial spot Romer et al. (2010), Vallejos
et al. (2010)

CaPO2 Peroxidase Choi et al. (2012)

CaMLO2 Mildew resistance locus O; associated
with powdery mildew

Kim and Hwang (2012),
Zheng et al. (2013)

CaCaM1 Calmodulin 1; involved in
hypersensitive cell death

Kim et al. (2014a, b)

Pseudomonas
syringae resistance

CaLOX1 Lipoxigenase Hwang and Hwang (2010),
Lim et al. (2015a, b)

Phytophthora capsici
resistance

CaMsrB2 Methionine sulfoxide reductase B2 Hong Truong et al. (2013),
Oh et al. (2010)

CaRGA2 Resistance gene analogs Zhang et al. (2013)

Ipcr Inhibitor of P. capsici resistance Reeves et al. (2013),
Wang et al. (2015)

Ralstonia
solanacearum
resistance

CaHDZ27
Related genes

Homeodomain–Leucine Zipper I Mou et al. (2017)

Cucumber mosaic
virus resistance

cmv11.1 Cucumber mosaic virus Ben-Chaim et al. (2001),
Yao et al. (2013)

ToMV resistance Cmr1 The gene showed synteny with
ToMV-resistance locus

Kang et al. (2010)

Potato virus
resistance

pvr’s (4E
(eIF4E))

Potato virus Y (PVY) resistance Ruffel et al. (2006),
Hwang et al. (2009)

PVY, PepMoV,
and PMMoV

Potato virusY (PVY) resistance Banerjee et al. (2014),
Rubio et al. 2008)

PVMV-HN Potato virus Y (PVY) resistance Gao et al. (2014)

Nematode resistant RKN Root-knot nematodes Djian-Caporalino et al.
(1999, 2001)

Me4, Mech1, and
Mech2

Meloidogyne species or its
populations

Djian-Caporalino et al.
(2001, 2007)

CaMi Nematode-resistant gene Chen et al. (2007), Fazari et al.
(2012)
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regulated disease tolerance mechanism (Kim
et al. 2014a, b). Likewise, a lipoxygenase-related
gene (CaLOX1) was found to provide tolerance
against Pseudomonas syringae (Hwang and
Hwang 2010). P. capsici is one of the most
harmful bacteria for Capsicum causing rot dis-
ease. In Capsicum, a gene related to reactive
oxygen species (ROS) production called
CaMsrB2 has been characterized to provide
resistance against rot disease (Oh et al. 2010).
Similarly, CaRGA2 and Ipcr (disease resistance
inhibitor) also provide resistance against P. cap-
sici (Zhang et al. 2013; Reeves et al. 2013).

Similarly, several genes are also reported to be
involved in tolerance against viral disease like
cucumber mosaic virus (cmv11.1), tobacco
mosaic virus (TMV), potato virus Y (PVY), and
potyviruses [including veinal mottle virus
(PVMV), tobacco etch virus (TEV), chili veinal
mottle virus (ChiVMV), PVY, and PepMoV],
and has been reviewed recently by us (for details,
see Chhapekar et al. 2018).

7.5 Crosstalk Between Abiotic
and Biotic Stress Responses

Signaling pathways that are involved in plant
defense against abiotic and biotic stresses share
some common modules like involvement of
transcriptional factors, ROS, signaling pathways
(calcium signaling, ABA signaling, jasmonic
acid signaling, and mitogen-activated protein
cascades (Moller et al. 2007; Wong and Shi-
mamoto 2009; Ton et al. 2009; Fonseca et al.
2009; Pitzschke et al. 2009; Walley and Dehesh
2010; Galon et al. 2010). These convergent
nodes help plants to swiftly adapt to a changed
environment involving abiotic/biotic stresses via
these signaling crosstalks (Fujita et al. 2006;
Atkinson and Urwin 2012, Fig. 7.1). Here, we
describe a few examples of above-mentioned
abiotic and biotic crosstalks in plants including
Capsicum.

In plant, several hormones are involved in
defense pathways including abiotic (ABA) and

Abiotic stresses Biotic stresses
Heat

Drought
Cold

Salinity
Oxidative

Virus
Bacteria 

Fungal pathogen
Insects attack
Nematodes

Abiotic and biotic stress response

Downstream genes of TFs 

Transcription Factors 
AP2/ERF, MYC, MYB, NAC, WRKY

Kinases
MAPK

ROS
generation/accumulation

Phytohormones
ABA, SA, JA, ET

Fig. 7.1 Schematic diagram
showing crosstalks between
phytohormones, kinases
(MPKK), reactive oxygen
species (ROS), and
transcription factor genes in
plants during abiotic and
biotic stresses
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biotic (SA, JA, and ethylene) stresses. Further,
ABA is also found to be involved in tolerance
against biotic stresses, thus making this hormone
enabled to create a crosstalk among different
signaling pathways (Fujita et al. 2006; Yasuda
et al. 2008; Lim and Lee 2014). In different crops
like rice and tomato, as well as model plant
Arabidopsis, ABA is found to be involved in
resistance mechanism of different biotic stresses
caused by P. syringae, B. cinereal, and Magna-
porthe grisea (Audenaert et al. 2002; Mohr and
Cahill 2003; Koga et al. 2004; Asselbergh et al.
2008; Jiang et al. 2010) through repression of the
systemic acquired resistance (SAR) pathway and
also through reduction of defense-related com-
pounds like lignins and phenylpropanoids
(Yasuda et al. 2008; Kusajima et al. 2010). On
the other hand, examples are also available where
ABA acts as positive regulator in biotic stress
resistance (Asselbergh et al. 2008; Ton et al.
2009). In Capsicum, CaMLO2 is transcription-
ally induced under stress conditions (Kim and
Hwang 2012) and is found to be upregulated
under ABA treatment and drought. The overex-
pression of the CaMLO2 gene in Arabidopsis
reduces sensitivity toward ABA in germination
and seedling growth stages. These results suggest
that ABA signaling via CaMLO2 may regulate
drought stress (Lim and Lee 2014).

Mitogen-activated protein (MAP) kinase
(MAPK/MPK) cascades are responsible for
phosphorylation and dephosphorylation of pro-
teins which significantly affect the regulation of
physiological, morphological, and cellular pro-
cesses and are also involved in defense mecha-
nism involving hormone signaling and ROS
(Jonak et al. 2002; Xiong and Yang 2003; Nak-
agami et al. 2005; Rodriguez et al. 2010;
Atkinson and Urwin 2012). MEKK1/MKK2/
MPK4/MPK6 cascades are found to be involved
in signaling under biotic and abiotic stress con-
ditions (Teige et al. 2004; Rodriguez et al. 2010)
and play a crucial role of crosstalk signaling
between abiotic and biotic stress mechanisms
(Fujita et al. 2006; Zhang et al. 2006; Takahashi
et al. 2011; Atkinson and Urwin 2012). MKK2–
MPK4/MPK6 cascades are involved in cold and
salt stress signaling (Ichimura et al. 2000; Teige

et al. 2004); however, MEKK1–MKK4/MKK5–
MPK3/MPK6 cascades are involved in pathogen
defense response pathway via the regulation of
expression of WRKY 22/WRKY 29 genes (Nuhse
et al. 2000). Recently in Capsicum, the
involvement of MAPK cascade in response to
abiotic (CaMPK1 and CaMPK3; salinity and
heat) and biotic stress (CaMPK4; Ralstonia
solanacearum infection) has also been reported
(Liu et al. 2015).

Another important player that is involved in
crosstalk signaling during abiotic and biotic
stresses is ROS (Fujita et al. 2006; Ton et al.
2009; Atkinson and Urwin 2012; Baxter et al.
2014). The ROS’ signaling network is vastly
conserved among plants and regulates various
biological processes such as plant growth,
development, and responses to biotic and/or
abiotic stresses (Mittler et al. 2011; Baxter
et al. 2014). During different types of stresses,
ROS function differently. In general, ROS con-
centration induces during various abiotic stress
conditions, i.e., drought, heat, and salinity stres-
ses) and pathogen infection to minimize cell
injury (Apel and Hirt 2004; Mittler and Blum-
wald 2010). Several, research findings in plants
revealed that biotic and abiotic stress responses
are mediated by a temporal–spatial synchro-
nization between ROS and some other signals
that rely on the production of several
stress-specific compounds, chemicals, and hor-
mones in plants (Baxter et al. 2014). Further,
certain TFs integrate ROS-scavenging mecha-
nisms in response to various types of stresses.
Arabidopsis zinc-finger TF, ZAT12 regulates
H2O2 levels in plants and its transcripts were
induced by wounding, abiotic and biotic stresses.
It also induces the expression of its downstream
gene ascorbate peroxidase (APX1) and when
overexpressed conferred tolerance to oxidative
stress, freezing, and high light (Davletova et al.
2005; Vogel et al. 2005; Fujita et al. 2006). In
Capsicum, a gene related to ROS production
known as CaMsrB2 has been characterized to
provide resistance against rot disease (Oh et al.
2010). Another gene in C. annuum, i.e., receptor-
like protein kinase 1 (CaRLK1), is also induced
by pathogen infection and application of

7 Genes/Quantitative Trait Loci and Associated Molecular … 129



exogenous H2O2 (Yi et al. 2010). These findings
suggest that the ROS signaling might mediate
crosstalk between biotic and abiotic stress-
responsive gene expression.

TFs are another convergent node that play a
crucial role in signal crosstalk under abiotic and
biotic stress. For example, MYC2 induced by
ABA (key regulator of biotic/abiotic stress sig-
naling pathway) suggested its involvement in
crosstalks (Abe et al. 2003; Anderson et al. 2004;
Asselbergh et al. 2008; Pieterse et al. 2009).
Beside ABA, MYC2 TF also acts as a positive
regulator of JA-induced defense genes, however,
negatively regulates combined JA/ethylene
induced genes (Anderson et al. 2004; Pieterse
et al. 2009). Another TF family MYB has also
been found to be involved in the regulation of
both biotic and abiotic stress regulation in plants
(Dubos et al. 2010). For example, MYB96 is
upregulated under drought stress and also pro-
motes ABA-dependent stress tolerance (Seo et al.
2011); and also, under biotic stress, MYB96
regulates pathogenesis-related (PR) gene
expression via ABA-dependent SA biosynthesis,
thus acting as a node for crosstalk among stress
responses (Seo and Park 2010). Other MYB TFs,
i.e., OsMYB4, AtBOS1, and TaPIMP1, were
involved in the regulation of broad-spectrum of
different stresses including drought, salt, and
pathogens (Mengiste et al. 2003; Vannini et al.
2006, 2007; Liu et al. 2011). In addition to
MYB/MYC TFs, NAC and AP2/ERF TFs are
also widely known to be involved in stress sig-
naling (Xu et al. 2011). RD26, an NAC TF in
Arabidopsis, is upregulated by JA, ABA,
drought, salinity, and pathogen via regulation of
ROS detoxification genes (Fujita et al. 2004;
Atkinson and Urwin 2012). Similarly, in rice,
OsNAC6 was reported to be involved in tolerance
against drought, salinity, and rice blast (Naka-
shima et al. 2007). Further, in wheat TaNAC4 is
upregulated in response to salinity, cold stress,
and rust stripe fungus (Xia et al. 2010).
Above-mentioned studies suggested that the
NAC TFs also regulate cross-signaling between
stress response pathways. Recently, in Capsicum,
it is reported that the expression of NAC TFs
(CaNAC2, CaNAC72, CaNAC102) was induced

in response to cold, heat, and salt stress (Guo
et al. 2015; Diao et al. 2018). AP2/ERF TF gene
(TSI1) from tobacco is also involved in the reg-
ulation of both abiotic stress and pathogen
response pathways. TSI1 induces the expression
of PR genes and can confer resistance to bacterial
pathogen and salinity (Park et al. 2001). In
Capsicum, a AP2/ERF TF gene RFP1 was found
to be involved in osmotic stress and pathogen
defense (Hong et al. 2007; Asselbergh et al.
2008). Moreover, WRKY and DREB TFs also
act as a key player in defense against biotic and
abiotic stresses in many plant species including
Capsicum (Qiu and Yu 2009; Tsutsui et al. 2009;
Peng et al. 2011; Cheng et al. 2016). Altogether,
these studies suggest that the TFs might mediate
crosstalk between biotic and abiotic
stress-responsive gene-expression networks.
A list of TFs in Capsicum that may be crucial in
controlling the response to biotic and abiotic
stresses is given in Tables 7.1 and 7.2.

7.6 QTL Mapping for Abiotic/Biotic
Stresses in Capsicum Genome

QTL mapping is a widely known approach to
identify genomic loci associated with quantita-
tive traits particularly complex traits. In agricul-
tural crops, such as wheat, rice, maize, and
tomato, a number of QTLs have been identified
for abiotic stress tolerance including heat,
drought, and cold. However, in Capsicum, no
QTL mapping study is available for abiotic stress
tolerance and majority of the QTL mapping
studies are focused on pungency, fruit traits like
color, shape, and other important agronomic
traits (Chhapekar et al. 2018). Dozens of studies
were also conducted to identify QTLs for biotic
stress tolerance in Capsicum (Table 7.3). Using
different marker systems starting from RAPD to
SNPs, several QTLs have been reported for many
biotic stresses caused by virus, fungus, bacteria,
and nematodes. For Phytophthora resistance, a
number of QTLs have been identified using dif-
ferent mapping populations including F2, back-
cross, recombinant inbred lines, and doubled
haploids. Interestingly, in most of the studies,
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Table 7.3 List of QTLs identified to be associated with different biotic stress tolerance mechanism in Capsicum

Trait Population (parents) Marker type Method Reference

Phytophthora
resistance

F2:3
(CM334/Chilsungcho)

RFLP, SSR, and gene
based

CIM Kim et al.
(2008)

RILs (YCM334/Tean) SNP and SPP BSA and CIM Liu et al.
(2014)

DHs (H3/Van;
Per/YW) and F2
(YW/CM334)

RFLP, RAPD, and AFLP IM and CIM Thabuis
et al. (2003)

F2 (CM334/JEP) RAPD, SCAR, and
AFPL

CIM Quirin et al.
(2005)

BC (Yolo
Wonder/CM334)

AFLP, SCAR, and
CAPS

CIM Thabuis
et al. (2004)

RILs (CM334/Early
Jalapeno)

SPP IM Naegele
et al. (2014)

Cucumber
mosaic virus
resistance

F2:3 (BJ0747/XJ0630) SLAF IM and MQM Li et al.
(2018)

F2 and backcross
(BJ0747/XJ0630)

SSR and ISSR CIM Yao et al.
(2013)

DH (H3/Vania) RAPD, RFLP, and AFLP IM and CIM Caranta
et al. (2002)

DH (Yolo
wonder/Perennial)

– MQM Tamisier
et al. (2017)

F2, BC1 and F2:3
(PBC688/G29)

SLAF MQM Guo et al.
(2017)

Root-knot
nematodes

F2:3 (Yolo
Wonder/Doux Long
des Landes)

SCAR, SSR, and SNP regression, SIM, CIM,
and nonparametric
interval mapping

Barbary
et al. (2016)

Anthracnose
resistance

F2
(Jatilaba/PRI95030)

AFLP, SSR, and gene
based

MQM Voorrips
et al. (2004)

Three way popu.
(PBC932C/PBC80C)

SCAR-Indel and
SSR-HpmsE032

Regression Suwor et al.
(2017)

BC (17013/PBC932) SSR, InDel, and CAPS ICIM Sun et al.
(2015)

Thripe
resistances

F2 (AC 1979/4661) AFLP, SSR, and SNP IM and MQM Maharijaya
et al. (2015)

Powdery
mildew
resistance

DH (H3/Vania) Gene based IM and CIM Lefebvre
et al. (2003)

Potato Virus DH (Yolo
wonder/Perennial)

– MQM Tamisier
et al. (2017)

PepMoVirus
resistance

F2
(CM334/Chilsungcho)

RAMP, RFLP, SSR,
CAPS, AFLP, and
BAC-end sequences

CIM Kim et al.
(2011)

RILs recombinant inbred lines; DH double haploid; BC backcross; RFLP restriction fragment length polymorphism;
SSR simple sequence repeats; SNP single nucleotide; RAPD random amplified polymorphic DNA; AFLP amplified
fragment length polymorphism; SCAR sequence characterized amplified region; CAPS cleaved amplified polymorphic
sequence; SPP single position polymorphism; SLAF specific length amplified fragment; ISSR inter-simple sequence
repeats
CIM composite interval mapping; BSA bulk segregant analysis; IM interval mapping; MQM multiple QTL mapping;
SIM simple interval mapping
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CM334 (potentially resistance against Phytoph-
thora) was used as one of the parents along with
a susceptible parent (like Chilsungcho, Tean,
Yolo Wonder, and Early Jalapeno). Kim et al.
(2008) identified four major QTLs (cumulative
PVE *66%) for rot resistance. Similarly, Liu
et al. (2014) identified a major gene for Phy-
tophthora resistance on chromosome 5. QTL
mapping studies conducted for biotic stresses in
Capsicum is summarized in Table 7.3.

7.7 Role of Plant Endophytes
in Abiotic/Biotic Stress
Tolerance

Plant endophytes mainly consist of bacteria pre-
sent in plant tissues symptomatically and do not
cause any visible infection. These endophytes are
mainly present in intercellular spaces as well as
vascular tissues. A number of bacterial species
have been isolated from different plant organs
like root, stem, leaves, and seed. Under stress
conditions (abiotic/biotic), endophytes are found
to provide tolerance to host against stresses. For
example, some bacteria are found to provide
better nutrition through nitrogen fixation under
stress condition (Vessey 2003). Further, through
the production of indoleacetic acid and cytokinin,
endophytes provide better growth even under
abiotic/biotic stress condition (Beyeler et al.
1999; Timmusk et al. 1999).

Ethylene is an important signaling molecule
under abiotic/biotic stresses, and high level of
ethylene may found harmful for plant growth
except fruit ripening (Czarny et al. 2006). Basi-
cally, methionine acts as precursor for ethylene
production and are converted via methionine–
S adenosyl L methionine–1-aminocyclopropane
1–carboxylic acid (ACC)–ethylene. In Cap-
sicum, some rhizosphere bacteria produce
enzymes with deaminase activity which cleave
ACC molecule and ultimately control product of
ethylene under stress condition (Mayak et al.
2004). In another study (Sziderics et al. 2007),
out of five bacterial strains isolated from Cap-
sicum, four were found to produce indoleacetic
acid and thus provide better growth under

osmotic stress condition. Beside better growth,
these strains were also found to be involved in
the regulation of osmotic pressure and proline
content. Two strains of azotobacter (EZB4 and
EZB8) reduced the expression of two
stress-inducible genes CaACCO and CaLTPI
under abiotic stresses (Sziderics et al. 2007).
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