
Chapter 6
Exponential and lp-Stability in Volterra
Equations

This chapter is devoted primarily to the exponential and lp-stability of Volterra dif-
ference equations. Lyapunov functionals are the main tools in the analysis. It is
pointed out that in the case of exponential stability, Lyapunov functionals are hard
to extend to vector Volterra difference equations or to Volterra difference equations
with infinite delay. In addition, we use nonstandard discretization scheme due to
Mickens [122] and apply them to continuous Volterra integro-differential equa-
tions. We will show that under the discretization scheme the stability of the zero
solution of the continuous dynamical system is preserved. Also, under the same
discretization, using a combination of Lyapunov functionals, Laplace transforms,
and z-transforms, we show that the boundedness of solutions of the continuous dy-
namical system is preserved. We end the chapter with a brief section introducing
semigroup, which should stir up some curiosity in the application of semigroup to
Volterra difference equations. The chapter concludes with multiple open problems.
The work of this chapter heavily depends on the materials in [9, 51, 59, 76, 91],
and [98].

6.1 Exponential Stability

We consider the scalar linear difference equation with multiple delays

x(t +1) = a(t)x(t)+
t−1

∑
s=t−r

b(t,s)x(s), t ≥ 0, (6.1.1)

where r ∈ Z
+, a : Z+ → R and b : Z+× [−r,∞)→ R. We will use Lyapunov func-

tionals and obtain some inequalities regarding the solutions of (6.1.1) from which
we can deduce exponential asymptotic stability of the zero solution. Also, we will
provide a criteria for the unboundedness of solutions and the instability of the zero
solution of (6.1.1) by means of Lyapunov type functionals.
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Consider the kth-order scalar difference equation

x(t + k)+ p1x(t + k−1)+ p2x(t + k−2)+ · · ·+ pkx(t) = 0, (6.1.2)

where the pi’s are real numbers. It is well known that the zero solution of (6.1.2) is
asymptotically stable if and only if |λ |< 1 for every characteristic root λ of (6.1.2).
There are no easy criteria to test for exponential stability of the zero solution of
equations that are similar to (6.1.2) for variable coefficients. This itself highlights
the importance of the creativity of constructing a suitable Lyapunov functional that
leads to the exponential stability. When using Lyapunov functionals, one faces the
difficulties of relating the constructed Lyapunov functional back to the solution x so
that stability can be deduced. This task is tedious and we did overcome it. The au-
thors have done an extensive literature search and could not find any work that dealt
with exponential stability of Volterra equations of the form of (6.1.1). This research
offers easily verifiable conditions that guarantee exponential stability. Moreover, we
give criteria for the instability of the zero solution. Most importantly, our results
will hold for |a(t)| ≥ 1. We will illustrate our theory with several examples and
numerical simulations. It is scarce to find results concerning the use of Lyapunov
functionals in the stability of finite delay difference equations due to the unforeseen
difficulties in constructing such functions. This section intends to fill some of the
gap and moreover, we will compare the results obtained in this section to known
ones where other methods are used, such as operator theory.
In Chapter 2, we looked at the system of functional difference equation of the form

x(n+1) = G(n,xn), x ∈ R
k (6.1.3)

where G : Z+×R → R is continuous in x. Let x be any solution of (6.1.3). Quite
often when using Lyapunov functional to study system (6.1.3) we encounter pair of
inequalities in the form of

W1(x(n))≤V (n,x(·)) =W2(x(n))+
n−1

∑
s=0

K(n,s)W3(x(s)),

�V (n,x(·))≤−W4(x(n))+F(n)

where V is a Lyapunov functional bounded below, x is the unknown solution of
the functional difference equation, and K, F , and Wi, i = 1,2,3,4 are scalar positive
functions. The wedge W1 is mandatory in order to relate the solutions x back to V .
Hence, identifying such a W1 is not an easy job, as we shall see later on in this sec-
tion. It is even more difficult when using Lyapunov functionals to obtain exponential
stability, since it requires that along the solutions of (6.1.3) we have for some α > 0

�V (n,x(·))≤−αV (n,x(·)).

The above inequality presents us with formidable challenges as maybe seen later in
the section. However, a simple but clever rewriting of the difference equation points
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us in the right direction in constructing the appropriate Lyapunov functional, as we
shall see from (6.1.5).
Let ψ : [−h,0]→ (−∞,∞) be a given bounded initial function with

||ψ||= max
−h≤s≤0

|ψ(s)|.

It should cause no confusion to denote the norm of a function ϕ : [−h,∞)→ (−∞,∞)
with

||ϕ||= sup
−h≤s<∞

|ϕ(s)|.

The notation xt means that xt(τ) = x(t+τ),τ ∈ [−h,0] as long as x(t+τ) is defined.
Thus, xt is a function mapping an interval [−h,0] into R. We say x(t) ≡ x(t, t0,ψ)
is a solution of (6.1.1) if x(t) satisfies (6.1.1) for t ≥ t0 and xt0 = x(t0 + s) = ψ(s),
s ∈ [−h,0].
In preparation for our main results, we let

A(t,s) =
r

∑
u=t−s

b(u+ s,s). (6.1.4)

By noting that
A(t, t − r−1) = 0,

we have that (6.1.1) is equivalent to

�x(t) =
(
a(t)+A(t +1, t)−1

)
x(t)−�t

t−1

∑
s=t−r−1

A(t,s)x(s). (6.1.5)

In [138], the author used the same method and studied the exponential stability and
instability of the zero solution of

x(t +1) = a(t)x(t)−b(t)x(t −h).

One of the novelty of rewriting (6.1.1) in the form of (6.1.5) is that it allows us to
obtain stability results concerning the totally delayed Volterra difference equation

x(t +1) =
t−1

∑
s=t−r

b(t,s)x(s), t ≥ 0. (6.1.6)

We have the following definition.

Definition 6.1.1. The zero solution of (6.1.1) is said to be exponentially stable if
any solution x(t, t0,ψ) of (6.1.1) satisfies

|x(t, t0,ψ)| ≤C
(
||ψ||, t0

)
ζ γ(t−t0), for all t ≥ t0,
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where ζ is constant with 0 < ζ < 1, C : R+×Z
+ → R

+, and γ is a positive con-
stant. The zero solution of (6.1.1) is said to be uniformly exponentially stable if C is
independent of t0.

For simplicity we let
Q(t) = a(t)+A(t +1, t)−1.

Assume
�tA

2(t,z)≤ 0, for all t + s+1 ≤ z ≤ t −1. (6.1.7)

Lemma 6.1 ([98]). Let A(t,s) be given by (6.1.4) and that for δ > 0 the inequality

− δ
(δ +1)r

≤ Q(t)≤−rδA2(t +1, t)−Q2(t) (6.1.8)

holds. If

V (t) =

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]2

+ δ
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z), (6.1.9)

then along the solutions of (6.1.1) we have

�V (t)≤ Q(t)V (t).

Proof. First we note that due to condition (6.1.8), Q(t) < 0 for all t ≥ 0. Also, we
use the fact that if u(t) is a sequence, then �u2(t) = u(t + 1)�u(t)+ u(t)�u(t).
Let x(t) = x(t, t0,ψ) be a solution of (6.1.1) and define V (t) by (6.1.9). Then along
solutions of (6.1.5) we have

�V (t) =

[

x(t +1)+
t

∑
s=t−r

A(t +1,s)x(s)

]

�t

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]

+

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]

�t

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]

+ δ�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z). (6.1.10)

We note that

x(t +1)+
t

∑
s=t−r

A(t +1,s)x(s) = (Q(t)+1)x(t)−�t

t−1

∑
s=t−r−1

A(t,s)x(s)
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+
t

∑
s=t−r

A(t +1,s)x(s)

= (Q(t)+1)x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

= (Q(t)+1)x(t)+
t−1

∑
s=t−r

A(t,s)x(s),

since A(t, t − r−1) = 0. With this in mind, (6.1.10) reduces to

�V (t) =

[

(Q(t)+1)x(t)+
t−1

∑
s=t−r

A(t,s)x(s)

]

Q(t)x(t)

+

[

x(t)+
t−1

∑
s=t−r

A(t,s)x(s)

]

Q(t)x(t)

+ δ�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

= Q(t)V (t)+
(
Q2(t)+Q(t))

)
x2(t)

− δQ(t)
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

+ δ�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

− Q(t)

(
t−1

∑
s=t−r

A(t,s)x(s)

)2

. (6.1.11)

Also, using (6.1.4), we arrive at

�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z) =
−1

∑
s=−r

t

∑
z=t+s+1

A2(t +1,z)x2(z)

−
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

=
−1

∑
s=−r

[
A2(t +1, t)x2(t)+

t−1

∑
z=t+s+1

A2(t +1,z)x2(z)

−
t−1

∑
z=t+s+1

A2(t,z)x2(z)−A2(t, t + s)x2(t + s)
]
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=
−1

∑
s=−r

(
A2(t +1, t)x2(t)−A2(t, t + s)x2(t + s)

)

+
−2

∑
s=−r

t−1

∑
z=t+s+1

�tA
2(t,z)x2(z)

= rA2(t +1, t)x2(t)−
−1

∑
s=−r

A2(t, t + s)x2(t + s)

+
−2

∑
s=−r

t−1

∑
z=t+s+1

�tA
2(t,z)x2(z)

≤ rA2(t +1, t)x2(t)

−
−1

∑
s=−r

A2(t, t + s)x2(t + s). (6.1.12)

With the aid of Hölder’s inequality, we have

(
t−1

∑
s=t−r

A(t,s)x(s)

)2

≤ r
t−1

∑
s=t−r

A2(t,s))x2(s). (6.1.13)

Also,

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)≤ r
t−1

∑
s=t−r

A2(t,s)x2(s). (6.1.14)

By invoking (6.1.8) and substituting expressions (6.1.12)–(6.1.14) into (6.1.11), we
obtain

�V (t) ≤ Q(t)V (t)+
(
Q2(t)+Q(t)+ rδA2(t +1, t)

)
x2(t)

+ [−(δ +1
)
rQ(t)−δ ]

t−1

∑
s=t−h

A2(t,s)x2(s)

≤ Q(t)V (t). (6.1.15)

This completes the proof.

Theorem 6.1.1 ([98]). Assume the hypothesis of Lemma 6.1 holds and suppose there
exists a number α < 1 such that 0 < a(t) + A(t + 1, t)) ≤ α. Then any solution
x(t) = x(t, t0,ψ) of (6.1.1) satisfies the exponential inequality

|x(t)| ≤
√√
√
√ r+δ

δ
V (t0)

t−1

∏
s=t0

(
a(s)+A(s+1,s)

)
(6.1.16)

for t ≥ t0.
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Proof. First we note that condition (6.1.8) implies that there exists some positive
number α < 1 such that |a(t) +A(t + 1, t))| < α. Now by changing the order of
summation we have

δ
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z) = δ
t−1

∑
z=t−r

z−1

∑
s=−r

A2(t,z)x2(z)

= δ
t−1

∑
z=t−r

A2(t,z)x2(z)(z− t + r+1)

≥ δ
t−1

∑
z=t−r

A2(t,z)x2(z),

where we have used the fact that t −h ≤ z ≤ t −1 =⇒ 1 ≤ z− t +h+1 ≤ h. Also

(
t−1

∑
z=t−r

A(t,s)x(s)

)2

≤ r
t−1

∑
z=t−r

A2(t,s)x2(s),

and hence,

δ
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)≥ δ
r

(
t−1

∑
z=t−r

A(t,z)x(z)

)2

.

Let V (t) be given by (6.1.9). Then

V (t) =
[
x(t)+

t−1

∑
s=t−r−1

A(t,s)x(s)
]2
+δ

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

≥ [
x(t)+

t−1

∑
s=t−r−1

A(t,s)x(s)
]2
+

δ
r

(
t−1

∑
z=t−r

A(t,z)x(z)

)2

≥ δ
r+δ

x2(t)+

[√
r

r+δ
x(t)+

√
r+δ

r

t−1

∑
z=t−r

A(t,z)x(z)

]2

≥ δ
r+δ

x2(t).

Consequently,

δ
r+δ

x2(t)≤V (t).

From (6.1.15) we get

V (t)≤V (t0)
t−1

∏
s=t0

(
a(s)+A(s+1,s)

)
.
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Thus we arrive at

|x(t)| ≤
√√
√
√ r+δ

δ
V (t0)

t−1

∏
s=t0

(
a(s)+A(s+1,s)

)

for t ≥ t0. This completes the proof.

Corollary 6.1 ([98]). Assume the hypothesis of Theorem 6.1.1 holds. Then the zero
solution of (6.1.1) is exponentially stable.

Proof. From inequality (6.1.16) we have that

|x(t)| ≤
√√
√
√ r+δ

δ
V (t0)

t−1

∏
s=t0

(
a(s)+A(s+1,s)

)

≤
√

r+δ
δ

V (t0)α t−t0

for t ≥ t0. The proof is complete since α ∈ (0,1).

Now we state a corollary regarding the exponential stability of the zero solution
of (6.1.6).

Corollary 6.2 ([98]). Assume the hypothesis of Theorem 6.1.1 holds with Q(t) =
A(t +1, t)−1. Then the zero solution of (6.1.6) is exponentially stable.

Remark 6.1. If for a positive constant M we have

V (t0)≤ M, for all t0 ≥ 0,

then the zero solution of (6.1.1) is uniformly exponentially stable. This follows from
the exponential inequality (6.1.16).

6.2 Criterion for Instability

In this section we use a nonnegative definite Lyapunov functional and obtain criteria
that can be easily applied to test for instability of the zero solution of (6.1.1).

Theorem 6.2.1 ([98]). Let H > r be a constant. Assume Q(t)> 0 such that

Q2(t)+Q(t)−HA2(t +1, t)≥ 0. (6.2.1)

If

V (t) =

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]2
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− H
t−1

∑
s=t−r−1

A2(t,s)x2(s), (6.2.2)

then along the solutions of (6.1.1) we have

�V (t)≥ Q(t)V (t).

Proof. Let x(t) = x(t, t0,ψ) be a solution of (6.1.1) and assume V (t) is given
by (6.2.2). Since the calculation is similar to the one in Lemma 6.1 we have that

�V (t) = Q(t)V (t)+
(
Q2(t)+Q(t)−HA2(t +1, t)

)
x2(t)

+ Q(t)(H − r)

(
t−1

∑
s=t−r−1

A2(t,s)x2(s)

)2

≥ Q(t)V (t), (6.2.3)

where we have used
(

t−1

∑
s=t−r

A(t,s)x(s)

)2

≤ r
t−1

∑
s=t−r

A2(t,s)x2(s)

and (6.2.1). This completes the proof.

We remark that condition (6.2.1) is satisfied for

Q(t)≥ −1+
√

1+4HA2(t +1, t)
2

.

Theorem 6.2.2 ([98]). Suppose the hypothesis of Theorem 6.2.1 holds. Then all
solutions of (6.1.1) are unbounded and its zero solution is unstable, provided that

∞

∏
(
a(s)+A(s+1,s)

)
= ∞. (6.2.4)

Proof. From (6.2.3) we have

V (t)≥V (t0)
t−1

∏
s=t0

(
a(s)+A(s+1,s)

)
. (6.2.5)

Let V (t) be given by (6.2.2). Then

V (t) = x2(t)+2x(t)
t−1

∑
t−r−1

A(t,s)x(s)+

[
t−1

∑
t−r−1

A(t,s)x(s)

]2

− H
t−1

∑
t−r−1

A2(t,s)x2(s). (6.2.6)
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Let β = H − r. Then from

( √
r

√
β

a−
√

β√
r

b

)2

≥ 0,

we have

2ab ≤ r
β

a2 +
β
r

b2.

With this in mind we arrive at

2x(t)
t−1

∑
t−r−1

A(t,s)x(s) ≤ 2 |x(t)|
∣
∣
∣
∣
∣

t−1

∑
t−r−1

A(t,s)x(s)

∣
∣
∣
∣
∣

≤ r
β

x2(t)+
β
r

[
t−1

∑
t−r−1

A(t,s)x(s)

]2

≤ r
β

x2(t)+
β
r

r
t−1

∑
t−r

A2(t,s)x2(s).

A substitution of the above inequality into (6.2.6) yields

V (t) ≤ x2(t)+
r
β

x2(t)+(β + r−H)
t−1

∑
t−r−1

A2(t,s)x2(s)

=
β + r

β
x2(t)

=
H

H − r
x2(t).

Using inequality (6.2.5), we get

|x(t)| ≥
√

H − r
H

V 1/2(t)

=

√
H − r

H
V 1/2(t0)

(
t−1

∏
s=t0

(
a(s)++A(s+1,s)

) 1
2

.

This completes the proof.

We have the following corollary regarding the unboundedness and instability of
(6.1.6).

Corollary 6.3 ([98]). Suppose the hypothesis of Theorem 6.2.1 holds with Q(t) =
A(t + 1, t)− 1. Then all solutions of (6.1.6) are unbounded and its zero solution is
unstable, provided that

∞

∏
(
A(s+1,s)

)
= ∞.
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6.2.1 Applications and Numerical Evidence

In this section we provide examples that illustrate our theoretical results in two
instances: when the coefficients a(t) and b(t,s) are constants, and when they are
functions.

First, if a(t) = a and b(t,s) = b (a,b ∈ R) we have A(t,s) =
r

∑
u=t−s

b. Then A(t,s) =

b(r+1− t + s). Hence, �tA
2(t,s) = b2(r− t + s)2 −b2(r+1− t + s)2 ≤ 0 and thus

condition (6.1.7) holds. Also A(t +1, t) = br, and hence condition (6.1.8) becomes

− δ
(δ +1)r

≤ a+br−1 ≤−[δb2r3 +(a+br−1)2] . (6.2.7)

It is obvious from (6.2.7) that when a = 1, b has to be negative.
Next we give four examples where the emphasis is on |a| ≥ 1.

Example 6.1 ([98]). Let a= r = 1,b=−0.3 and δ = 0.5. Then one can easily verify
that (6.2.7) is satisfied. Hence the zero solution of the delay difference equation

x(t +1) = x(t)−0.3x(t −1) (6.2.8)

is exponentially stable.

Example 6.2 ([98]). Let a = 1.2,b = −0.3,r = 1, and δ = 0.5. Then one can eas-
ily verify that (6.2.7) is satisfied. Hence the zero solution of the delay difference
equation

x(t +1) = 1.2x(t)−0.3x(t −1) (6.2.9)

is exponentially stable as illustrated in Figure 6.1.

Example 6.3 ([98]). Let a = 1.29,b = −0.6,r = 1, and δ = 0.5. With these val-
ues (6.2.7) is satisfied, and therefore the zero solution of the delay difference equa-
tion

x(t +1) = 1.29x(t)−0.6x(t −1)

is exponentially stable as shown in Figure 6.2.

Example 6.4 ([98]). a = 1.125,b = −0.15,r = 2, and δ = 2
3 . Then one can easily

verify that (6.2.7) is satisfied. Hence the zero solution of the delay difference equa-
tion

x(t +1) = 1.125x(t)−0.15
(
x(t −1)+ x(t −2)

)

is exponentially stable as shown in Figure 6.3.

It is worth mentioning that in both papers [87] and [136], in which fixed point theory
was used, it was assumed that

t−1

∏
s=0

a(s)→ 0, as t → ∞
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Fig. 6.1 Trajectories of (6.1.1) when a(t) and b(t,s) are constant. Figure 6.1 refers to Example 6.2
where a = 1.2,b =−0.3, and r = 1 with initial condition x(0) =−10 and x(1) = 10.3. Figure 6.2
refers to Example 6.3 where a = 1.29,b = −0.6, and r = 1 with initial condition x(0) = −10 and
x(1) = 10.3. Figure 6.3 refers to Example 6.4 where a = 1.125,b = −0.6, and r = 2 with initial
condition x(0) = 15,x(1) = 2, and x(3) =−10.

for the asymptotic stability.

Example 6.5 ([98]). Let a = 1.3,b = −0.2,r = 1 and H = 1.1. Then Q(t) = 0.1 >

0. Moreover Q(t) ≥ −1+
√

1+4HA2(t +1, t)
2

= 0.0422. Thus conditions (6.2.1)

and (6.2.4) are satisfied and the zero solution of

x(t +1) = 1.3x(t)−0.2x(t −1) (6.2.10)

is unstable. Actually, all its solutions become unbounded for large t. Figure 6.2
shows a trajectory for the above equation with initial condition x(0) = −10 and
x(1) =−1.3.
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Fig. 6.2 Trajectories of (6.1.1) when a(t) and b(t,s) are constant. This graph corresponds to Ex-
ample 6.5 where a = 1.3,b =−0.2, and r = 1 with initial condition x(0) =−10 and x(1) =−1.3.

Remark 6.2. When a(t) and b(t,s) are constant the solution x(t) of the delay differ-
ence equation (6.1.1) is the same as the sequence (xn)n∈N0 defined
recursively as

xn+r+1 = axn+r +b(xn+r−1 + · · ·+ xn) ,n ∈ N0, (6.2.11)

and for which the general solution can be obtained analytically. For r = 1 in par-
ticular, the general solution to (6.2.11) is easily calculated. For instance, the exact
solution to (6.2.8) in Example 6.1 is

x(t) =

(√
30

10

)t
⎛

⎝x(0)cos(tθ)+
10x(1)√

30
− x(0)cosθ

sinθ
sin(tθ)

⎞

⎠ ,

where θ = arctan
(√

5
5

)
. Since

∣
∣
∣
√

30
10

∣
∣
∣< 1 we see that lim

t→+∞
|x(t)|= 0 with an expo-

nential convergence. The exact solution to (6.2.9) in Example 6.2 is

x(t) =
1
2

[(

x(0)+10
x(1)− 6x(0)

10√
6

)(
6+

√
6

10

)t

+

(

x(0)−10
x(1)− 6x(0)

10√
6

)(
6−√

6
10

)t]

.

Since
∣
∣
∣ 6±√

6
10

∣
∣
∣< 1, we see that the solution x(t) of Example 6.2 converges exponen-

tially to zero. Similar calculations can be done for Examples 6.3 and 6.4. Finally,
the exact solution to (6.2.10) in Example 6.5 is
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x(t) =
1
2

[(

x(0)+20
x(1)− 13x(0)

20√
89

)(
13+

√
89

20

)t

+

(

x(0)−20
x(1)− 13x(0)

20√
89

)(
13−√

89
20

)t]

.

Since
∣
∣
∣ 13+

√
89

20

∣
∣
∣> 1, we see that lim

t→+∞
|x(t)|=+∞.

We now give two examples that illustrate the exponentially stable and unstable case
when a(t) and b(t,s) are functions. We corroborate our results with numerical sim-
ulations.

Example 6.6 ([98]). Let a(t) = d2t+1 + 2
3 and b(t,s) = −dt+s for d ∈ R. Then

A(t,s) = −d2s
r

∑
u=t−s

du, and therefore A(t + 1, t) = −d2t
r

∑
u=1

du = −d2t+1 for r = 1.

We can show that �tA
2(t,z) ≤ 0 for all t + s+ 1 ≤ z ≤ t − 1. If we take r = 1 and

δ = 1, we obtain Q(t) = −1
3

. With these choices we see that the left inequality

of condition (6.1.8) is trivially satisfied. To obtain the right inequality, we need to

choose d such that

(
d2(d4)t +

1
9

)
≤ −Q(t) =

1
3

for t large enough. It is there-

fore sufficient to choose d ∈ (0,1). In that case, lim
t→+∞

(d4)t = 0 which implies that

the right inequality of condition (6.1.8) will eventually be satisfied. Note that con-
dition (6.1.8) is satisfied for all t ≥ 0 when d ∈ (0,

√
2

3 ]. With these choices for the
parameters d,δ , and r, we can conclude that the zero solution of the delay difference
equation

x(t +1) =

(
d2t+1 +

2
3

)
x(t)−d2t+1x(t −1)

is exponentially stable. We plotted two of its trajectories in Figure 6.3.

Example 6.7 ([98]). Let a(t) = d2t+1 + 1.1 and b(t,s) = −dt+s. Then from Exam-
ple 6.6 we have A(t + 1, t) = −d2t+1 when r = 1. In that case choosing H = 1
yields Q(t) = 0.1 > 0. With these choices we see that condition (6.2.1) is satisfied
if d ∈ (0,1) and hence the zero solution of the delay difference equation

x(t +1) =
(
d2t+1 +1.1

)
x(t)−d2t+1x(t −1)

is unstable as illustrated in Figure 6.4. In fact, the zero solution is unstable for all
choices of a(t) = d2t+1 +ν with ν > 1. We note that with these choices of a(t) and
b(t,s) we have

∞

∏
(
a(s)+A(s+1,s)

)
=

∞

∏ν =+∞,

and hence (6.2.4) is verified.
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Fig. 6.3 Trajectories of (6.1.1) when a(t) = d2t+1 + 2
3 and b(t,s) = −dt+s. These plots refer to

Example 6.6 with r = 1. The initial condition was taken to be x(0) = −1 and x(1) = 0.21. In
Figure 6.3(a) we plotted the trajectory obtained with d = 2

3 , and in Figure 6.3(b) we plotted the
trajectory with d = 2.99

3 . In the latter case, since condition (6.1.8) is verified only after a certain
value of t, the first few terms of the trajectory x(t) are not converging to zero until condition (6.1.8)
is satisfied.
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a(t)=d2t+1 + 1.1, b(t,s)=−dt+s, d = 1/3, r=1

Fig. 6.4 Trajectories of (6.1.1) when a(t) = d2t+1 + 1.1 and b(t,s) = −dt+s. This graph corre-
sponds to Example 6.7 with r = 1 and initial condition x(0) =−1 and x(1) = 0.21.

Next we compare our results to existing ones. Let a = 1.2,b1 = −0.2, b2 =
−0.088,h∗ = 2, and δ = 0.5. Then one can easily verify that (6.1.8) is satisfied.
Hence the zero solution of the difference equation with multiple delays

x(t +1) = 1.2x(t)−0.2x(t −1)−0.088x(t −2). (6.2.12)

is exponentially stable.
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It is worth mentioning that in both papers [87] and [136] it was assumed that

t−1

∏
s=0

a(s)→ 0, as t → ∞

for the asymptotic stability. Of course our a = 1.2 does not satisfy such a condition,
and yet we concluded exponential stability. Let a = 1.2,b = −0.3,h = 1, and δ =
0.5. Then one can easily verify that (6.1.8) is satisfied. Hence the zero solution of
the delay difference equation

x(t +1) = 1.2x(t)−0.3x(t −1) (6.2.13)

is exponentially stable.
Moreover the above condition of [87] and [136] cannot be satisfied since our a =
1.2. Next we compare our results with the results obtained in [125] by El-Morshedy.
Hence, we begin with the statement of the following.

Lemma 6.2 ([125]). If there exists λ ∈ (0,1) such that

∣
∣

N

∏
j=0

a(n− j)+b(n)
∣
∣+

N

∑
s=1

∣
∣

s−1

∏
j=0

a(n− j)
∣
∣ |b(n− s)| ≤ λ , (6.2.14)

for large n, then the zero solution of

x(n+1) = a(n)x(n)+b(n)x(n−N) (6.2.15)

is globally exponentially stable.

It can be easily seen that condition (6.2.14) cannot be satisfied for the data given in
the above (6.2.12). Next we state two major results from [125], by Berezansky and
Braverman, so we can compare with equation (6.2.12) and (6.2.13).

Lemma 6.3 ([16]). Let 0< γ < 1 and
m

∑
l=2

|al(n)|+ |1−a1(n)| ≤ γ for n large enough.

Then the equation

x(n+1)− x(n) =−a1(n)x(n)−
m

∑
l=2

al(n)x(gl(n)) (6.2.16)

is exponentially stable. Here n−T ≤ gl(n)≤ n for some integer T > 0.

Lemma 6.4 ([16]). Suppose that for some γ ∈ (0,1) the following inequality is sat-
isfied for n large enough:

m

∑
k=2

|ak(n)|
n−1

∑
j=gk(n)

m

∑
l=1

|al( j)|+ |1−
m

∑
k=1

ak(n)| ≤ γ . (6.2.17)

Then (6.2.16) is exponentially stable.
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In the spirit of (6.2.16) we rewrite (6.2.13) as

x(t +1)− x(n) = .2x(t)−0.3x(t −1).

Then the condition in Lemma 6.3 is equivalent to

|a2(n)|+ |1−a1(n)|= 0.3+ |1+0.2|> 1,

is not satisfied. Also, condition (6.2.17) is equivalent to

|a2(n)||a1(n)|+ |1−a1(n)|= 0.3(0.2)+ |1+0.2|> 1,

is not satisfied. Thus, we have demonstrated that Lyapunov functionals yield better
results as seen from the improvement over the results of [16] and [125]. For more
comparison with existing literature, we have the following theorem by Berezansky,
Braverman, and Karabash.

Theorem 6.2.3 ([17]). Consider the two delays difference equation

x(n+1)− x(n) =−a0x(n)−a1x(n−h1)−a2x(n−h2), h1, h2 > 0. (6.2.18)

Suppose at least one of the following conditions hold:
1) 1 > a0 > 0, |a1|+ |a2|< a0;

2) 0 < a0 +a1 +a2 < 1, |a1|h1 + |a2|h2 <
a0 +a1 +a2

|a0|+ |a1|+ |a2| ;

3) 0 < a0 +a2 < 1, |a2|h2 <
a0 +a2 −|a|

|a0|+ |a1|+ |a2| .
Then Equation (6.2.18) is exponentially stable.

The next theorem is due to Cooke and Győri.

Theorem 6.2.4 ([42]). The multiple delays difference equation

x(n+1)− x(n) =−
N

∑
k=1

akx(n−hk), ak ≥ 0, hk ≥ 0, (6.2.19)

is asymptotically stable if
N

∑
k=1

akhk < 1. (6.2.20)

The next theorem is due to Elaydi (1994) and Kocić and Laddas (1993).

Theorem 6.2.5 ([63, 94]). The multiple delays difference equation

x(n+1)− x(n) = a0(n)x(n)−
N

∑
k=1

ak(n)x(gk(n)), gk(n)≤ n (6.2.21)
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is asymptotically stable if

N

∑
k=1

|ak(n)|=
{

a0(n)− ε for 0 < a0(n)< 1
2−a0(n)− ε for 1 ≤ a0(n)< 2

(6.2.22)

The next theorem is due to Hartung and Győri.

Theorem 6.2.6 ([77]). The multiple delays difference equation

x(n+1)− x(n) =−
N

∑
k=1

akx(gk(n)), ak ≥ 0, gk(n)≤ n, (6.2.23)

is exponentially stable if

lim sup
n→∞

(n−gk(n))< ∞, (6.2.24)

and
N

∑
k=1

ak lim sup
n→∞

(n−gk(n))< 1+
1
e
−

N

∑
k=1

ak. (6.2.25)

We remark that Theorems 6.2.4 and 6.2.5 only give results regarding asymptotic
stability.
Consider the difference equation in Example 6.4, where we have shown its zero
solution is exponentially stable.

x(n+1)− x(n) =−(−.125)x(n)−0.15x(n−1)−0.15x(n−2). (6.2.26)

Then a0 = −.125, a1 = 0.15, and, a1 = 0.15. It is clear that 1) of Theorem 6.2.3
cannot hold since our a0 is negative. Similarly, condition (6.2.22) cannot hold since
it requires that a0 > 0. Notice that Theorems 6.2.4 and 6.2.6 are not applicable to the
results of this section since the coefficients (6.1.1) depend on time. In Example 6.6
we showed the zero solution is exponentially stable. Also we remark that our theo-
rems do not require sign conditions on the coefficients and the fact that if we rewrite
the equations of Theorems 6.2.4, 6.2.5, and 6.2.6, in the form of

x(n+1) = (a0 +1)x(n)+a1x(n−h1)+a2x(n−h2)

then their first coefficient, a0 + 1 > 1, unlike our theorems that are applicable to
|a0 +1|> 1 as it was demonstrated in the examples.
In general, it is a major problem to find an appropriate Lyapunov functional and
hence, the dependence of the quality of the corresponding results on such functional.
However, once a suitable Lyapunov functional is found, investigators may continue
for decades deriving more and more information from that Lyapunov functional. It
is a common knowledge among researchers that stability and boundedness results
go hand in hand with the type of the Lyapunov functional that is being used. To
illustrate our concern, we consider the delay difference equation
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x(t +1) = a(t)x(t)+b(t)x(t − τ)+ p(t), t ∈ Z
+, (6.2.27)

where a,b, p : Z+ → R, τ is a positive integer. We have the following theorem.

Theorem 6.2.7. Assume
|a(t)|< 1, for all t ∈ Z (6.2.28)

and there is a δ > 0 such that

|b(t)|+δ < 1, (6.2.29)

and
|a(t)| ≤ δ , and |p(t)| ≤ K, for some positive constant K. (6.2.30)

Then all solutions of (6.2.27) are bounded. If p(t) = 0 for all t, then the zero solution
of (6.2.27) is (UAS).

Proof. Consider the Lyapunov functional

V (t,x(·)) = |x(t)|+δ
t−1

∑
s=t−τ

|x(s)|.

Then along solutions of (6.2.27) we have

�V = |x(t +1)|− |x(t)|+δ
t

∑
s=t+1−τ

|x(s)|−δ
t−1

∑
s=t−τ

|x(s)|

≤ |a(t)||x(t)|− |x(t)|+ |b(t)||x(t − τ)|+δ
t

∑
s=t+1−τ

|x(s)|−δ
t−1

∑
s=t−τ

|x(s)|+ |p(t)|

=
(|a(t)|+δ −1

)|x(t)|+ (|b(t)|−δ
)|x(t − τ)|+ |p(t)|

≤ (|a(t)|+δ −1
)|x(t)|+ |p(t)|

≤ −γ |x(t)|+ |p(t)|, for some positive constant γ .

The results follow from either [133] or Theorem 2.2.4.

It is evident from Example 6.2 that Theorem 6.2.7 does not give any result concern-
ing the exponential stability of the single delay difference equation

x(t +1) = 1.2x(t)−0.3x(t −1).

This illustrates the uncertainty we face when using Lyapunov functionals. On the
other hand, it is tricky to construct a Lyapunov functional that deals with multiple
delays.
As we indicated before, there is always a price to pay. By using Lyapunov function-
als, our method relaxed the stringent conditions on the size of the coefficients. On
the other hand, it puts a severe demand on the size of the delay h. The next theo-
rem, which is due to Clark [35], does exactly the opposite; however, it asks for the
coefficients to be constants.
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Theorem 6.2.8 ([35]). Suppose the coefficients a and b of (6.2.15) are constants.
Then Equation (6.2.15) is asymptotically stable provided that

|a|+ |b|< 1.

6.3 Vector Equation

In this section we try to extend the concept of exponential stability of finite delay
scalar Volterra equation to the finite delay vector Volterra equation

x(t +1) = Px(t)+
t−1

∑
s=t−r

C(t,s)g(x(s)), (6.3.1)

where r is a positive integer, P is a constant n×n matrix, and C is an n×n matrix of
functions that are defined on −r ≤ t ≤ s < ∞, where t,s ∈ [−r,∞)∩Z. The nonlinear
function g : Rn → R

n is continuous in x. Throughout this paper it is understood that
if x ∈R

n, then |x| is taken to be the Euclidean norm. Obtaining exponential stability
through the method of Lyapunov functional V requires that along the solutions, we
have �V (t,x)≤−αV (t,x), something that is almost impossible to obtain in vector
equations. Materials of this section can be found in [51] and the references therein.
Let U = (u)i j be an n×n matrix. Then we define the norm |U | to be

|U |= max
1≤ j≤n

n

∑
i=1

|ui j|.

It should cause no confusion to denote the norm of a sequence function ϕ : [−r,∞)∩
Z→ R

n with
||ϕ||= sup

−r≤s<∞
|ϕ(s)|.

The notation xt means that xt(τ) = x(t + τ),τ ∈ [−r,0]∩Z as long as x(t + τ) is
defined. Thus, xt is a function mapping an interval [−r,0]∩Z into R

n. We say x(t)≡
x(t, t0,ψ) is a solution of (6.3.1) if x(t) satisfies (6.3.1) for t ≥ t0 and xt0 = x(t0 +
s) = ψ(s), s ∈ [−r,0]∩Z. Throughout this paper it is to be understood that when
a function is written without its argument, then the argument is t. We begin with a
stability definition. For t0 ≥ 0 we define

Et0 = [−r, t0]∩Z.

Let C(t) denote the set of sequences φ : [−r,∞)∩Z→ R
n and ‖φ‖ = sup{|φ(s)| :

s ∈ [−r, t]∩Z}.

Definition 6.3.1. The zero solution of (6.3.1) is stable if for each ε > 0 and each
t0 ≥−r, there exists a δ = δ (ε , t0)> 0 such that [φ ∈ Et0 →R

n,φ ∈C(t) : ‖φ‖< δ ]
implies |x(t, t0,φ)|< ε for all t0 ≥ 0.
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In order to be able to handle the calculations for �V (t) along the solutions of (6.3.1),
we let

A(t,s) :=
r

∑
u=t−s

C(u+ s,s), t,s ∈ [0, ∞)∩Z}.

Clearly A(t, t − r−1) = 0, and as a consequence, one can easily verify that (6.3.1)
is equivalent to the new system

�x(t) = Qx(t)+A(t +1, t)g(x(t))−�t

t−1

∑
s=t−r−1

A(t,s)g(x(s)), (6.3.2)

where the matrix Q is given by Q = P− I and I is the identity n×n matrix.

Remark 6.3. Writing (6.3.1) in the form of (6.3.2) allows us to obtain stability result
regarding the nonlinear Volterra difference equation

x(t +1) =
t−1

∑
s=t−r

C(t,s)g(x(s)). (6.3.3)

This is remarkable since (6.3.1) is considered as the perturbed form of x(t + 1) =
Px(t), which implies that the stability of the zero solution of (6.3.1) depends on
the stability of linear part; that is, one must require that the magnitude of all the
eigenvalues of the matrix A be inside the unit circle.

Before we state and prove our next theorem, we assume there exists a positive def-
inite symmetric and constant n× n matrix D such that for positive constants λ ,μ1,
and μ2 we have

PT DQ+QT D =−μ1I. (6.3.4)

Due to the nonlinearity of the function g, we require that

xT (PT DA(t +1, t)+DA(t +1, t)
)
g(x)≤−μ2|x|2 if x 
= 0, (6.3.5)

and
|g(x)| ≤ λ |x|. (6.3.6)

It is clear that conditions (6.3.5) and (6.3.6) imply that g(0) = 0 and hence x = 0 is
a solution for system (6.3.1). We note that since D is a positive definite symmetric
matrix, there exists a positive constant k such that

k|x|2 ≤ xT Dx, for all x. (6.3.7)

If W (t) and Z(t) are two sequences, then �W (t)Z(t) =W (t +1)�Z(t)+
(�W (t)

)

Z(t).

Theorem 6.3.1 ([51]). Let (6.3.4)–(6.3.6) hold, and suppose there are constants γ >
0 and α > 0 so that

−μ1 −2μ2 + γrλ 2|A(t +1, t)|+ (λ |AT (t +1, t)D|+ |QT D|)
t−1

∑
s=t−r

|A(t,s)| ≤ −α,

(6.3.8)
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− γ +λ |AT (t +1, t)D|+ |QT D| ≤ 0, (6.3.9)

and

1−λ
t−1

∑
s=t−r−1

|A(t,s)|> 0 (6.3.10)

then the zero solution of (6.3.1) is stable.

Proof. Define the Lyapunov functional V (t) =V (t,x) by

V (t) =
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+γ
−1

∑
s=−r

t−1

∑
z=t+s

|A(t,z)||g(x(z))|2. (6.3.11)

First we note that the right side of (6.3.11) is scalar. Let x(t) = x(t, t0,ψ) be a so-
lution of (6.3.1) and define V (t) by (6.3.11). Then along solutions of (6.3.1) we
have

�V (t) = (x(t +1)+
t

∑
s=t−r

A(t +1,s)g(x(s))
)T

D

× �
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+ �
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

× D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+ γr|A(t +1, t)||g(x(t))|2 − γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2.

Using (6.3.2) one can easily show that

x(t +1)+
t

∑
s=t−r

A(t +1,s)g(x(s)) = Px(t)+
t−1

∑
s=t−r

A(t,s)g(x(s)).

With this in mind �V becomes

�V (t) = (Px(t)+
t−1

∑
s=t−r

A(t,s)g(x(s))
)T

D
(

Qx(t)+A(t +1, t)g(x(t))
)

+
(

Qx(t)+A(t +1, t)g(x(t))
)T

D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+ γrλ 2|A(t +1, t)||g(x(t))|2 − γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2.
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After rearranging terms, the above expression simplifies to

�V (t) = xT (t)
(
PT DQ+QT D

)
x(t)+ xT (t)PT DA(t +1, t))g(x(t))

+
( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DQx(t)

+
( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DA(t +1, t)g(x(t))

+ xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))+gT (x(t))AT (t +1, t)Dx(t)

+ gT (x(t))AT (t +1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))+ γr|A(t +1, t)||g(x(t))|2

− γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2. (6.3.12)

Next we try to simplify (6.3.12) by combining likewise terms. We begin by noting
that gT (x)AT (t +1, t)Dx =

[
xT DA(t +1, t))g(x)

]T
, and hence we have

xT PT DA(t +1, t))g(x) + gT (x)AT (t +1, t)Dx

= xT (PT DA(t +1, t)+DA(t +1, t)
)
g(x).

( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DQx(t) + xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

= xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

+
[( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DQx(t)
]T

= 2xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

≤ 2|xT (t)||QT D|
t−1

∑
s=t−r

|A(t,s)||g(x(s))|

≤ |QT D|
t−1

∑
s=t−r

|A(t,s)|(|x(t)|2 + |g(x(s))|2),
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where we have used the inequality 2ab ≤ a2 +b2. Similarly,

t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DA(t +1, t)g(x(t))

+ gT (x(t))AT (t +1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

= gT (x(t))AT (t +1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

+
[( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DA(t +1, t)g(x(t))
]T

= 2gT (x(t))AT (t +1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

≤ 2λ |x(t)||AT (t +1, t)D|
t−1

∑
s=t−r

|A(t,s)||g(x(s))|

≤ λ |AT (t +1, t)D|
t−1

∑
s=t−r

|A(t,s)|(|x(t)|2 + |g(x(s))|2).

Let u = t + s, then

γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2 =−γ
t−1

∑
s=t−r

|A(t,s)||g(x(s))|2.

By substituting the above four simplified expressions into (6.3.12) yields

�V (t) ≤
[
−μ1 −μ2 + γrλ 2|A(t +1, t)|

+
(
λ |AT (t +1, t)D|+ |QT D|)

t−1

∑
t−r

|A(t,s)|
]
|x(t)|2

+
[
− γ +λ |AT (t +1, t)D|+ |QT D|

] t−1

∑
t−r

|A(t,s)||g(x(s))|2.

≤ −α|x(t)|2. (6.3.13)

Let ε > 0 be given, we will find δ > 0 so that |x(t, t0,φ)|< ε as long as [φ ∈ Et0 →
R : ‖φ‖< δ ]. Let

L2 = |D|
(

1+λ
t0−1

∑
t0−r

|A(t0,s)|
)2

+λ 2ν
−1

∑
s=−r

t0−1

∑
z=t0+s

|A(t0,z)|.



6.3 Vector Equation 277

By (6.3.13) we have V is decreasing and hence for t ≥ t0 ≥ 0 we have that

V (t,x) ≤ V (t0,φ)

≤ |D|(φ(t0)+
t0−1

∑
t0−r

A(t0,s)g(φ(s))
)2

+ νλ 2
−1

∑
s=−r

t0−1

∑
z=t0+s

|A(t0,z)||φ(z)|2

= δ 2 |D|
(

1+λ
t0−1

∑
t0−r

|A(t0,s)|
)2

+ νλ 2 δ 2
−1

∑
s=−r

t0−1

∑
z=t0+s

|A(t0,z)|

≤ δ 2L2. (6.3.14)

By (6.3.11), we have

V (t,x) ≥
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

× D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

≥ k2
(
|x|− ∣∣

t−1

∑
s=t−r−1

A(t,s)g(x(s))
∣
∣
)2

. (6.3.15)

Combining the two inequalities (6.3.14) and (6.3.15) we arrive at

|x(t)| ≤ δL
k

+λ
t−1

∑
s=t−r−1

|A(t,s)||x(s)|.

So as long as |x(t)|< ε , we have

|x(t)|< δL
k

+ ελ
t−1

∑
s=t−r−1

|A(t,s)|, for all t ≥ t0.

Thus, we have from the above inequality

|x(t)|< ε for δ <
k
L

(
1−λ

t−1

∑
s=t−r−1

|A(t,s)|)ε .

Note that by (6.3.10), the above inequality regarding δ is valid. This completes the
proof.

We have the following corollary.
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Corollary 6.4 ([51]). Assume all the conditions of Theorem 6.3.1 hold. Let x(t) be
any solution of (6.3.1). Then |x(t)|2 ∈ l

(
[t0,∞)∩Z

)
.

Proof. We know from Theorem 6.3.1 that the zero solution is stable. Thus, for the
same δ of stability, we take |x(t, t0,φ)| < 1. Since V is decreasing, we have by
summing (6.3.13) from t0 to t −1 and using (6.3.14) that,

V (t,x)≤V (t0,φ)≤ δ 2L2 −α
t−1

∑
t0

|x(s)|2.

Since,

V (t,x)≥
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

D
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)
,

we have that

(
x+

t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

D
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

≤ δ 2L2 −α
t−1

∑
t0

|x(s)|2. (6.3.16)

Also, using Schwarz inequality one obtains

( t−1

∑
s=t−r−1

|A(t,s)||g(x(s))|
)2

=
( t−1

∑
s=t−r−1

|A(t,s)|1/2|A(t,s)|1/2|g(x(s))|
)2

≤ λ 2
t−1

∑
s=t−r−1

|A(t,s)|
t−1

∑
s=t−r−1

|A(t,s)||x(s)|2.

As ∑t−1
s=t−r−1 |A(t,s)| is bounded by (6.3.10) and |x|2 < 1, we have ∑t−1

s=t−r−1 |A(t,s)|
|x(s)|2 is bounded and hence ∑t−1

s=t−r−1 |A(t,s)||g(x(s))| is bounded. Therefore,
from (6.3.16), we arrive at

α
t−1

∑
s=t0

|x(s)|2 ≤ δ 2L2 −
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

× D
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

≤ δ 2L2 + |D|
(
|x|+

t−1

∑
s=t−r−1

A(t,s)g(x(s))|
)2 ≤ K,

from which we deduce that |x(t)|2 ∈ l
(
[t0,∞)∩Z

)
.
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Due to our previous remark, it is straightforward to extend Theorem 6.3.1 and Corol-
lary 6.4 to (6.3.3) by setting the coefficient matrix P = 0.

Theorem 6.3.2 ([51]). Let (6.3.4) and (6.3.5) hold for P = 0 matrix. Assume (6.3.6)
and suppose there are constants γ > 0 and α > 0 so that

−μ1 −μ2 + γrλ 2|A(t +1, t)|+ (λ |AT (t +1, t)D|

+ |D|)
t−1

∑
t−r

|A(t,s)| ≤ −α,

−γ +λ |AT (t +1, t)D|+ |D| ≤ 0,

and

1−λ
t−1

∑
s=t−r−1

|A(t,s)|> 0

then the zero solution of (6.3.3) is stable and |x(t)|2 ∈ l
(
[t0,∞)∩Z

)
.

Proof. The proof is immediate consequence of Theorem 6.3.1 and Corollary 6.4 by
taking the matrix P to be the zero matrix which implies that Q = I.

Next, we resort to fundamental matrix solution to characterize solutions of (6.3.1)
and then compare both results. We begin by considering the homogenous system,

x(t +1) = Ax(t) (6.3.17)

where A = (ai j) is constant n×n nonsingular matrix. Then if Φ(t) is a matrix that
is nonsingular for all t ≥ t0 and satisfies (6.3.17), then it is said to be a fundamental
matrix for (6.3.17). Also, it is known that if all eigenvalues of A reside inside the unit
circle, then there exist positive constants l and η ∈ (0,1) such that |Φ(t)Φ−1(t0)| ≤
lη t−t0 . For more on Linearization of systems of the form of (6.3.17), we refer the
reader to [57]. Suppose the function g is Lipschitz. That is, there exists a positive
constant L such that

|g(x)−g(y)| ≤ L|x− y| (6.3.18)

for all x and y. Then (6.3.18) along with g(0) = 0 imply that |g(x)| ≤ L|x|.
Theorem 6.3.3 ([51]). Assume all eigenvalues of A of system (6.3.17) reside inside
the unit circle. Also, assume (6.3.18) along with g(0) = 0. In addition we ask that
for some positive constant R

∞

∑
s=−r

|C(u,s)| ≤ R, (6.3.19)

then the zero solution of (6.3.1) is exponentially stable provided that RL < 1−η
l .

Proof. Let Φ(t) be the fundamental matrix for (6.3.17). For a given initial function
φ : [−r,∞)∩Z→ R

n, by using the variation of parameters, we have that
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x(t) = Φ(t)Φ−1(t0)φ(t0)+
t−1

∑
u=t0

Φ(t)Φ−1(u+1)
u−1

∑
s=u−r

C(u,s)g(x(s)). (6.3.20)

Then x(t) given by (6.3.20) is a solution of (6.3.1) (see [57]). Hence, for t ≥ t0 we
have

|x(t)| ≤ lη t−t0 |φ(t0)|+RLlη t−1
t−1

∑
u=t0

η−u|x(u)|.

The rest of the proof follows along the lines of Theorem 4.35 of [57], by invoking
Gronwall’s inequality (see Corollary 1.1).

Theorem 6.3.3 gives stronger type of stability since it requires the zero solution
of (6.3.17) to be exponentially stable. We end this section with an example.

Example 6.8. Let P =

(
1/2 0

0 1/2

)
and C(t,s) =

(
1/3 0

0 1/3

)
,

then A(t,s) =

( 1
3 (r− t + s+1) 0

0 1
3 (r− t + s+1)

)

and A(t +1, t) =

( 1
3 r 0
0 1

3 r

)
.

From PT DQ+QT D =−μ1I, we obtain

D =

( 4
3 μ1 0

0 4
3 μ1

)
. Let g(x) =

⎛

⎜
⎝

−9μ2
8μ1r x1

−9μ2
8μ1r x2

⎞

⎟
⎠ .

Then
xT (PT DA(t +1, t)+DA(t +1, t)

)
g(x) =−μ2

(
x2

1 + x2
2

)
.

Hence (6.3.5) is satisfied. By letting 9μ2
8rμ1

≤ λ < 3
r(r+1) we have that |g(x)| ≤ λ |x| .

For the sake of verifying (6.3.10), we note that

|A(t,s)| ≤ 1
3
|r− t + s+1| ≤ r

3
, for s ∈ [t − r, t −1].

Thus,
t−1

∑
s=t−r−1

|A(t,s)| ≤
t−1

∑
s=t−r−1

r
3
≤ r(r+1)

3
.

Thus, 1−λ ∑t−1
s=t−r−1 |A(t,s)|> 0 for λ <

3
r(r+1)

. Left to verify conditions (6.3.8)

and (6.3.9). As before, by simple calculations one can easily show that (6.3.8)
and (6.3.9) correspond to

−μ1 −2μ2 + γrλ 2 r
3
+

4λ rμ1

9
+

2
3

μ1(
r
3
)≤−α, (6.3.21)

and

− γ +
4λ rμ1

9
+

2
3

μ1 ≤ 0, (6.3.22)
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respectively. Now inequalities (6.3.21) and (6.3.22) can be satisfied by the choice of
appropriate μ1,μ2, and r. Thus we have shown that the zero solution of

x(t +1) =

(
1/2 0

0 1/2

)
x(t)−

t−1

∑
s=t−r

(
1/3 0

0 1/3

)
⎛

⎜
⎝

−9μ2
8μ1r x1

−9μ2
8μ1r x2

⎞

⎟
⎠

is stable by invoking Theorem 6.3.1.

Next we consider the nonlinear Volterra difference equation

y(n+1) = f (y(n))+
n

∑
s=0

C(n,s)h(y(s))+g(n) (6.3.23)

where f and h are k × 1 vector functions that are continuous in x and g is k × 1
vector sequence. In addition C is k× k matrix functions on Z

+ and Z
+×Z

+. Note
that (6.3.23) has no delay. We are mainly interested in the Uniform boundedness on
the solutions of (6.3.23) and its exponential stability when g(n) = 0 for all n ∈ Z

+.
We make the assumptions that for positive constants λ1,λ2, and M that

| f (y)| ≤ λ1|y|, |h(y)| ≤ λ2|y|, and |g| ≤ M. (6.3.24)

If A = (ai j) is a k× k real matrix, then we define the norm of A by

|A|= max
1≤i≤k

{
k

∑
j=1

|ai j|}.

Similarly, for x ∈ R
k, |x| denotes the maximum norm of x. In the next theorem we

construct a Lyapunov functional to obtain uniform boundedness and the exponential
stability of the zero solution.

Theorem 6.3.4. Assume (6.3.24). Also, we assume that

n−1

∑
s=0

∞

∑
j=n

|C( j,s)|< ∞, (6.3.25)

λ1 +λ2|C(n,n)|+K
∞

∑
j=n

|C( j,n)| ≤ 1−α, (6.3.26)

|C(n,s)| ≥ λ
∞

∑
j=n

|C( j,s)| where λ =
Kα
ε

, (6.3.27)

where ε ,α , and K are positive constants with α ∈ (0,1) and K = ε +λ2. Then every
solution y(n) of (6.3.23) is uniformly bounded and lim

x→∞
sup |y(n)| ≤ M

α . Moreover, if

g(n) = 0 for all n ∈ Z
+, then the zero solution of (6.3.23) is exponentially stable.
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Proof. Let’s begin by defining the Lyapunov functional V by

V (n) = |y(n)|+K
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|. (6.3.28)

Then using (6.3.28) we have along the solutions of (6.3.23) that

�V (n) = |y(n+1)|− |y(n)|+K

(
n

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|−
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|
)

.

Or

�V (n) = (|y(n+1)|− |y(n)|)+K

(
∞

∑
j=n

|C( j,n)||y(n)|−
n−1

∑
s=0

|C(n,s)||y(s)|
)

.

Substitute y(n+1) and use (6.3.26) to obtain

�V (n)≤
(

| f (y(n))|+ |g(n)|+
n

∑
s=0

|C(n,s)||h(y(s))|− |y(n)|
)

+K

(
∞

∑
j=n

|C( j,n)||y(n)|−
n−1

∑
s=0

|C(n,s)||y(s)|
)

.

Or

�V (n)≤
(

λ1|(y(n))|+M+λ2

n

∑
s=0

|C(n,s)||(y(s))|− |y(n)|
)

+K

(
∞

∑
j=n

|C( j,n)||y(n)|−
n−1

∑
s=0

|C(n,s)||y(s)|
)

.

After simplification we arrive at

�V (n)≤
(

λ1 −1+λ2|C(n,n)|+K
∞

∑
j=n

|C( j,n)|
)

|y(n)|

+M+
n−1

∑
s=0

(λ2 −K)|C(n,s)||y(s)|,

which reduces to

�V (n)≤−α|y(n)|+M+(λ2 −K)
n−1

∑
s=0

|C(n,s)||y(s)|.

Using (6.3.27) we get

�V (n)≤−α

(

|y(n)|− M
α

− λ (λ2 −K)

α

n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|
)

.
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Now use the fact that λ := αK
ε and ε := K −λ2 ⇒−λ (λ2−K)

α = K to simplify to

�V (n) ≤ −α

(

|y(n)|+K
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|
)

+M

= −αV (n)+M.

Now, by applying the variations of parameters formula we get:

V (n)≤ (1−α)nV (0)+M
n−1

∑
s=0

(1−α)(n−s−1),

which simplifies to

V (n)≤ (1−α)nV (0)+
M
α
.

Using (6.3.28) we arrive at

|y(n)| ≤ (1−α)n|y(0)|+ M
α

(6.3.29)

≤ |y(0)|+ M
α
.

Hence we have uniform boundedness. If g(n) = 0 for all n ∈ Z
+, then from (6.3.29)

we have
|y(n)| ≤ (1−α)n|y(0)|,

which implies the exponential stability. This completes the proof.
For the next theorem we consider the scalar Volterra difference equation

x(n+1) = μ(n)x(n)+
n−1

∑
s=0

h(n,s)x(s)+ f (n), (6.3.30)

and show, under suitable conditions, all its solutions are uniformly bounded and its
zero solution is uniformly exponentially stable when f (n) is identically zero. We
assume the existence of an initial sequence φ : Z+ → [0,∞), that is bounded and
||φ ||= max

0≤s≤n0
|φ(s)|, n0 ≥ 0.

Theorem 6.3.5 (Raffoul). Suppose there is a scalar sequence α : Z+ → [0,∞). As-
sume there are positive constants a > 1 and b such that

α(s)a−b(n−s−1)−
n−1

∑
u=s

a−b(n−s−1)|h(u,s)|> 0, (6.3.31)

|μ(n)|+ |α(n)|− |h(n,n)|−1 ≤−(1−a−b), (6.3.32)
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and for some positive constant M

n−1

∑
s=0

(1−a−b)(n−s−1)| f (s)| ≤ M, f or 0 ≤ n < ∞.

(i) If

max
n≥n0

n

∑
s=0

(
α(s)a−b(n−s−1)−

n

∑
u=s

a−b(n−s−1)|h(u,s)|
)
< ∞

then all solutions of (6.3.30) are uniformly bounded and its zero solution is uni-
formly exponentially stable when f (n) is identically zero.

(ii) If for every n0 ≥ 0, there is a constant M(n0) depending on n0 such that

n0−1

∑
s=0

α(s)a−b(n0−s−1)−
n0−1

∑
u=s

a−b(n0−s−1)|h(u,s)|< M(n0),

then all solutions of (6.3.30) are bounded and its zero solution is exponentially
stable when f (n) is identically zero.

Proof. Consider the Lyapunov functional

V (n,x) = |x(n)|

+
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|. (6.3.33)

Then along the solutions of (6.3.30) we have

�V (n,x) ≤ |μ(n)||x(n)|+
n−1

∑
s=0

|h(n,s)||x(s)|+ | f (n)|

+
n

∑
s=0

[
α(s)a−b(n−s)−

n

∑
u=s

a−b(n−u)|h(u,s)|]|x(s)|

−
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|.

Next we try to simplify �V (n,x).

n

∑
s=0

[
α(s)a−b(n−s)−

n

∑
u=s

a−b(n−u)|h(u,s)|]|x(s)|

=
n

∑
s=0

[
α(s)a−b(n−s)−

n−1

∑
u=s

a−b(n−u)|h(u,s)|− |h(n,s)|]|x(s)|

=
n−1

∑
s=0

[
α(s)a−b(n−s)−

n−1

∑
u=s

a−b(n−u)|h(u,s)|− |h(n,s)|]|x(s)|
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+ α(n)|x(n)|− |h(n,n)||x(n)|

= a−b
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|

−
n−1

∑
s=0

|h(n,s)||x(s)|+α(n)|x(n)|− |h(n,n)||x(n)|.

Substituting the above expression into (6.3.34) and making use of (6.3.32) yield

�V (n,x) ≤ [|μ(n)|+ |α(n)|− |h(n,n)|−1
]|x(n)|

− (1−a−b)
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|+ | f (n)|

≤ −(1−a−b)
[
|x(n)|

+
n−1

∑
s=0

[
α(s)a−b(n−s)−

n−1

∑
u=s

a−b(n−u)|h(u,s)|]|x(s)|+ | f (n)|

= −(1−a−b)V (n,x)+ | f (n)|. (6.3.34)

Set β = (1−a−b) ∈ (0,1) and apply the variation of parameters formula to get

V (n,x(n)) ≤ (1−β )n−n0V (n0,φ)+
n−1

∑
s=n0

(1−α)(n−s−1)| f (s)|

≤ (1−β )n−n0 ||φ ||
[
1+

+
n0−1

∑
s=0

[
α(s)a−b(n0−s−1)−

n0−1

∑
u=s

a−b(n0−u−1)|h(u,s)|
]

+
n−1

∑
s=n0

(1−α)(n−s−1)| f (s)|. (6.3.35)

The results readily follow from (6.3.35) and the fact that |x(n)| ≤V (n,x). This com-
pletes the proof.

6.4 z-Transform and Lyapunov Functionals

Next we use combination of Lyapunov functionals and z-transform to obtain bound-
edness and stability of Equation (6.3.23).

We assume the existence of a sequence ϕ(n) such that

ϕ(n)≥ 0, �ϕ(n)≤ 0 and
∞

∑
n=0

ϕ(n)< ∞. (6.4.1)
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Lemma 6.5. Assume (6.4.1) and if

H(n) = β (n)+λ
n−1

∑
s=0

ϕ(n− s−1)|β (s)|, (6.4.2)

�H(n) =−αβ (n) β (0) = 1, (6.4.3)

where β (n) and H(n) are scalar sequences, then

β (n)+
n−1

∑
s=0

{α +λϕ(n− s−1)}β (s) = 1 for all n = 1,2,3, . . ., (6.4.4)

β (n)> 0 for all n = 1,2,3, . . ., (6.4.5)
∞

∑
n=0

β (n)< ∞, (6.4.6)

and

β̃ (z) =

[

1+
α

z−1
+λ

ϕ̃
z

]−1(
z

z−1

)

, (6.4.7)

where β̃ (z), ϕ̃(z) are Z-transforms of β and ϕ .

Proof. By (6.4.3) we obtain

H(n) = H(0)−α
n−1

∑
s=0

β (s),

and hence

H(n) = H(0)−α
n−1

∑
s=0

β (s)

= β (n)+
n−1

∑
s=0

{α +λϕ(n− s−1)}β (s).

Since β (0) = H(0), we have (6.4.4). The proof of (6.4.5) follows by an induction
argument on (6.4.4) and by noting that the summation term is positive and β (0) = 1.
For the proof of (6.4.6) we sum (6.4.3) from s = 0 to s = n−1 and get

α
n−1

∑
s=0

β (s) = H(0)−H(n).

Since β (n)> 0 ∀n ≥ 0, we have that H is monotonically decreasing. Therefore

0 <
n−1

∑
s=0

β (s)<
H(0)

α
for every n,
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which proves (6.4.6). Left to prove (6.4.7). The z-transforms of ϕ and β exist for
some |z|> d, where d > 0. Therefore, replacing n by n+1 in equation (6.4.4) gives

β (n+1)+
n

∑
s=0

{α +λϕ(n− s)}β (s) = 1.

Taking the z-transform of both sides and using the fact that β (0) = 1 give

zβ̃ (z)− zβ (0)+α
z

z−1
β̃ (z)+λϕ̃(z)β̃ (z) =

z
z−1

,

or {

z+α
z

z−1
+λϕ̃(z)

}

β̃ (z) =
z2

z−1
.

Since z > 0 we can divide through by z and get,
{

1+α
1

z−1
+

λϕ̃(z)
z

}

β̃ (z) =
z

z−1
.

Finally solving for β̃ (z) gives

β̃ (z) =

{

1+α
1

z−1
+

λϕ̃(z)
z

}−1(
z

z−1

)

,

which proves (6.4.7).

Theorem 6.4.1. Assume the hypothesis of Lemma 6.5. Assume there is λ > 0 such
that

λ�ϕ(n− s−1)+λ2|C(n,s)| ≤ 0 for 0 ≤ s < n for n ∈ Z
+, (6.4.8)

and
λ1 +λ2|C(n,n)|+λϕ(0)≤ 1−α, (6.4.9)

where α ∈ (0,1), then for every solution y(n) of (6.3.23), |y(n)| is uniformly
bounded and

lim
n→∞

sup |y(n)| ≤ M
α
.

Proof. Define the Lyapunov functional V by

V (n)≡ |y(n)|+λ
n−1

∑
s=0

ϕ(n− s−1)|y(s)|, n ≥ 0. (6.4.10)

Then, using (6.4.10) we have along the solutions of (6.3.23) that

�V (n) = |y(n+1)|+λ
n

∑
s=0

ϕ(n− s)|y(s)|− |y(n)|−λ
n−1

∑
s=0

ϕ(n− s−1)|y(s)|,
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which simplifies to

�V (n) =
{
|y(n+1)|− |y(n)|

}

+ λ

{
n

∑
s=0

ϕ(n− s) ‖ y(s) ‖ −
n−1

∑
s=0

ϕ(n− s−1) ‖ y(s) ‖
}

=
{
|y(n+1)|− |y(n)|

}

+ λ

{
n−1

∑
s=0

�nϕ(n− s−1)|y(s)|+ϕ(0)|y(n)|
}

.

Along the solutions of (6.3.23) we have

�V (n) ≤
{
| f (y(n))|+ |g(n)|+

n

∑
s=0

|C(n,s)||h(y(s))|− |y(n)|
}

+ λ
{n−1

∑
s=0

�nϕ(n− s−1)|y(s)|+ϕ(0)|y(n)|
}

≤
{

λ1|y(n)|+M+λ2

n

∑
s=0

|C(n,s)||y(s)|− |y(n)|
}

+ λ
{n−1

∑
s=0

�nϕ(n− s−1)|y(s)|+ϕ(0)|y(n)|
}
.

After some algebra, we arrive at the simplified expression,

�V (n) ≤
{
[λ1 +λ2|C(n,n)|−1+λϕ(0)]

}
|y(n)|+M

+
{ n−1

∑
s=0

[λ2|C(n,s)|+λ�nϕ(n− s−1)]|y(s)|
}
.

Using (6.4.8) and (6.4.9) we arrive at

�V (n)≤−α|y(n)|+M, M > 0 (6.4.11)

Due to (6.4.11), there is a nonnegative sequence η(n) : Z+ → R such that

�V (n) =−α|y(n)|+M−η(n).

Since η is a linear combination of functions of exponential order, η is also of expo-
nential order and so we can take Z transform and have

zṼ (z)− zV (0)−Ṽ (z) =−α|ỹ(z)|+M
z

z−1
− η̃(z).
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We solve for Ṽ and get

Ṽ (z) =
z

z−1
V (0)− α

z−1
|ỹ(z)|+M

z
(z−1)2 − η̃(z)

z−1
.

To derive the second expression for Ṽ , use the fact that

Z

[
n−1

∑
s=0

x(n− s−1)g(s)

]

=
1
z

x̃(z)g̃(z).

Taking the Z-transform in (6.4.10) we arrive at

Ṽ (z) =

{

1+λ
ϕ̃(z)

z

}

|ỹ(z)|.

Substituting it into

Ṽ (z) =
z

z−1
V (0)− α

z−1
|ỹ(z)|+M

z
(z−1)2 − η̃(z)

z−1

gives

z
z−1

V (0)− α
z−1

|ỹ(z)|+M
z

(z−1)2 − η̃(z)
z−1

= |ỹ(z)|+λ
ϕ̃(z)|ỹ(z)|

z
.

Solving for |ỹ| gives

|ỹ(z)| =
[

M
1

(z−1)
+V (0)− η̃(z)

z

]{
α

z−1
+1+λ

ϕ̃(z)
z

}−1(
z

z−1

)

=

[

M
1

(z−1)
+V (0)− η̃(z)

z

]

β̃ (z)

=

[

M
1

(z−1)
β̃ (z)+V (0)β̃ (z)− η̃(z)

z
β̃ (z)

]

. (6.4.12)

Taking the z inverse in (6.4.12) gives

|y(n)| = V (0)β (n)−Mβ (n)+M
n

∑
s=0

β (s)−
n−1

∑
s=0

η(n− s−1)β (s)

= V (0)β (n)+M
n−1

∑
s=0

β (s)−
n−1

∑
s=0

η(n− s−1)β (s)

≤ V (0)β (n)+M
n−1

∑
s=0

β (s).
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Since β (n) is bounded, there exists a positive constant R such that β (n)≤ R for all
n ≥ 0. Hence, the above inequality gives

|y(n)| ≤V (0)R+
M
α
.

This shows that all solutions y(n) of (6.3.23) are uniformly bounded.
Note that since ∑∞

n=0 β (n)< ∞, we have that β (n)→ 0, as n → ∞ and hence

lim
n→∞

sup |y(n)| ≤ M
∞

∑
n=0

β (n)≤ M
α
.

This completes the proof.

We end the section with the following example.

Example 6.9. Let

f (y(n)) :=

(
1

16
√

2

)[ |y1(n)|
1+|y1(n)||y2(n)|
1+|y2(n)|

]

h(y(n)) :=

(
y1(n)

0

)

C(n,s) :=
1

2(n+4−s)

[
1 0
0 1

2

]

and

g(n) := cos
(nπ

4

)[ 1
0

]
.

Then we have, | f (y(n))| ≤ 1
16

|y(n)|, |h(y(n))| ≤ |y(n)|, |C(n,s) ≤ 1

2(n+4−s)
and

|g(n)| ≤ 1. Let

Let φ(n) =
1

2(n+3)

and define the Lyapunov functional V by

V (n) = |y(n)|+λ
n−1

∑
s=0

φ(n− s−1)|y(s)|.

Then we have λ = 1
2 , λ1 = 1

16 , and λ2 = 1. Then all conditions of Theorem 6.4.1
are satisfied since �φ(n) ≤ 0, λ�φ(n− s− 1)+ λ2|C(n,s)| ≤ 0. Moreover, con-
dition (6.4.9) is satisfied for α = 13

16 . Thus, by Theorem 6.4.1 all solutions are uni-
formly bounded and satisfy

lim
x→∞

sup |y(n)| ≤ M
α

=
16
13

.
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6.5 lp-Stability

In this section we state the definition of lp-stability and prove theorems under which
it occurs. We begin by considering the nonautonomous nonlinear discrete system

x(n+1) = G(n,x(s); 0 ≤ s ≤ n)
de f
= G(n,x(·)) (6.5.1)

where G : Z+×R
k → R

k is continuous in x and G(n,0) = 0. Let C(n) denote the
set of functions φ : [0,n]→ R and ‖φ‖= sup{|φ(s)| : 0 ≤ s ≤ n}.
We say that x(n) = x(n,n0,φ) is a solution of (6.5.1) with a bounded initial function
φ : [0,n0]→ R

k if it satisfies (6.5.1) for n > n0 and x( j) = φ( j) for j ≤ n0.

Definition 6.5.1. The zero solution of (6.5.1) is stable (S) if for each ε > 0, there is
a δ = δ (n0,ε) > 0 such that [n0 ≥ 0,φ ∈ C(n0), ‖φ‖ < δ ] imply |x(n,n0,φ)| < ε
for all n ≥ n0. It is uniformly stable (US) if it is stable and δ is independent of n0. It
is asymptotically stable (AS) if it is (S) and |x(n,n0,φ)| → 0, as n → ∞.

Definition 6.5.2. The zero solution of system (6.5.1) is said to be lp-stable if it is

stable and if
∞

∑
n=n0

||x(n,n0,φ)||p < ∞ for positive p.

We have the following elementary theorem.

Theorem 6.5.1. If the zero solution of (6.5.1) is exponentially stable, then it is also
lp-stable.

Proof. Since the zero solution of (6.5.1) is exponentially stable, we have by the
above definition that

∞

∑
n=n0

||x(n,n0,φ)|| ≤ [C
(||φ ||,n0

)
]p

∞

∑
n=n0

apη(n−n0)

= [C
(||φ ||,n0

)
]pa−n0 pη

∞

∑
n=n0

apηn

= [C
(||φ ||,n0

)
]p/(1−apη),

which is finite. This completes the proof.

We caution that lp-stability is not uniform with respect to p, as the next example
shows. Also, it shows that (AS) does not imply lp-stability for all p. In Chapter 1,
we considered the difference equation

x(n+1) =
n

n+1
x(n), x(n0) = x0 
= 0, n0 ≥ 1
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and showed its solution is given by

x(n) := x(n,n0,x0) =
x0n0

n
.

Clearly the zero solution is (US) and (AS). However, for n0 = n, we have

x(2n,n,x0) =
x0n
2n

→ x0

2

= 0

which implies that the zero solution is not (UAS). Moreover,

∞

∑
n=n0

||x(n,n0,x0)||p ≤
∞

∑
n=n0

|(x0n0

n
)|p = |x0|p(n0)

p
∞

∑
n=n0

(
1
n
)p,

which diverges for 0 < p ≤ 1 and converges for p > 1.
The next example shows that asymptotic stability does not necessarily imply lp-
stability for any p > 0. Let g : [0,∞)→ (0,∞) with limn→∞ g(n) = ∞. Consider the
nonautonomous difference equation

x(n+1) =
[
g(n)/g(n+1)

]
x(n), x(n0) = x0, (6.5.2)

which has the solution x(n,n0,x0) =
g(n0)
g(n) x0. It is obvious that as n → ∞ the solution

tends to zero, for fixed initial n0 and the zero solution is indeed asymptotically
stable. On the other hand

∞

∑
n=n0

||x(n,n0,x0)||p = [g(n0)x0]
p

∞

∑
n=n0

( 1
g(n)

)p
, (6.5.3)

which may not converge for any p > 0. For example, if we take

g(n) = log(n+2),

then from (6.5.3) we have

∞

∑
n=n0

||x(n,n0,x0)||p = [log(n0 +2)]p||x0||p
∞

∑
n=n0

( 1
log(n+2)

)p
,

which is known to diverge for all p ≥ 0.
The next theorem relates lp-stability to Lyapunov functionals.

Theorem 6.5.2. If there exists a positive definite V (see Definition 1.2.1) and along
the solutions of (6.5.1), V satisfies �V ≤ −c||x||p, for some positive constants c
and p, then the zero solution of (6.5.1) is lp-stable.

Proof. Set the solution x(n) := x(n,n0,φ). The hypothesis of the theorem implies
the zero solution is stable. Thus, for n ≥ n0 there is a positive constant M such that
||x(n,n0,φ)|| ≤ M. For n ≥ n0 we set



6.5 lp-Stability 293

L(n) =V (n,x(n)+ c
n−1

∑
s=n0

||x(s)||p.

Then for all n ≥ n0 we have

�L(n) = �V (n,x)+ ||x||p
≤ −c||x||p + c||x||p = 0.

Therefore, L(n) is decreasing and hence 0 ≤ L(n)≤ L(n0) =V (n0,φ), n ≥ n0. This

implies that 0 ≤ L(n) =V (n,x)+ c
n−1

∑
s=n0

||x(s)||p ≤V (n0,φ), n ≥ n0 so that

0 ≤V (n,x)≤−c
n−1

∑
s=n0

||x(s)||p +V (n0,φ).

As a consequence,

n−1

∑
s=n0

||x(s,n0,φ)||p ≤V (n0,φ)/c, n ≥ n0.

Letting n → ∞ on both sides of the above inequality gives

∞

∑
n=n0

||x(n,n0,φ)||p ≤V (n0,φ)/c < ∞.

This completes the proof.

In the next two examples we show that the lp-stability depends on the type of Lya-
punov functional that is being used. Moreover, there will be a price to pay if you
want to obtain lp-stability for higher values of p.

Example 6.10. Consider the scalar Volterra difference equation

x(n+1) = a(n)x(n)+
n−1

∑
s=0

b(n,s) f (s,x(s)) (6.5.4)

with f being continuous and there exists a constant λ1 such that f (n,x)| ≤ λ1|x|.
Assume there exists a positive α such that

|a(n)|+λ
∞

∑
s=n+1

|b(s,n)|+λ1|b(n,n)|−1 ≤−α, (6.5.5)

and for some positive constant λ which is to be specified later, we have

λ1 ≤ λ , (6.5.6)

then the zero solution of (6.5.4) is l1-stable.
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Proof. Define the Lyapunov functional V by

V (n,x) = |x(n)|+λ
n−1

∑
j=0

∞

∑
s=n

|b(s, j)||x( j)|.

We have along the solutions of (6.5.4) that

�V (t) ≤ (|a(n)|+λ
∞

∑
s=n+1

|b(s,n)|+λ1|b(n,n)|−1
)|x(n)|

+(λ1 −λ )
n−1

∑
s=0

|b(n,s)||x(s)|

≤ −α|x(n)|.

This implies the zero solution is stable and l1-stable by Theorem 6.5.2. This com-
pletes the proof.

Example 6.11. Consider (6.5.4) and assume f is continuous with | f (n,x)| ≤ λ1x2.
Assume there exists a positive constant α such that

a2(n)+λ
∞

∑
s=n+1

|b(s,n)|+λ1|a(n)|
n

∑
s=0

|b(n,s)|−1 ≤−α, (6.5.7)

and for some positive constant λ which is to be specified later, we have

λ1|a(n)|+λ 2
1

n−1

∑
s=0

|b(n,s)|−λ ≤ 0. (6.5.8)

Then the zero solution of (6.5.4) is l2-stable.

Proof. define the Lyapunov functional V by

V (n,x) = x2(n)+λ
n−1

∑
j=0

∞

∑
s=n

|b(s, j)|x2( j).

We have along the solutions of (6.5.4) that

�V (t) =
(
a(n)x(n)+

n−1

∑
s=0

b(n,s) f (s,x(s))
)2 − x2(n)

+ λx2(n)
∞

∑
s=n+1

|b(s,n)|−λ
n−1

∑
s=0

|b(n,s)|x2(s)− x2(n)

≤ a2(n)x2(n)+2λ1|a(n)||x(n)|
n−1

∑
s=0

|b(n,s)||x(s)|+ (
n−1

∑
s=0

b(n,s) f (s,x(s)))2

+ λx2(n)
∞

∑
s=n+1

|b(s,n)|−λ
n−1

∑
s=0

|b(n,s)|x2(s)− x2(n).
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As a consequence of 2zw ≤ z2 +w2, for any real numbers z and w we have

2λ1|a(n)||x(n)|
n−1

∑
s=0

|b(n,s)||x(s)| ≤ λ1|a(n)|
n−1

∑
s=0

|b(n,s)|(x2(n)+ x2(s)).

Also, using Schwartz inequality we obtain

(n−1

∑
s=0

b(n,s) f (s,x(s))
)2

=
n−1

∑
s=0

|b(n,s)|1/2|b(n,s)|1/2| f (s,x(s))|

≤
n−1

∑
s=0

|b(n,s)|
n−1

∑
s=0

|b(n,s)| f 2(s,x(s))

≤ λ 2
1

n−1

∑
s=0

|b(n,s)|
n−1

∑
s=0

|b(n,s)|x2(s).

Putting all together, we get

�V (t) ≤
(

a2(n)+λ
∞

∑
s=n+1

|b(s,n)|+λ1|a(n)|
n

∑
s=0

|b(n,s)|−1
)

x2(n)

+
(

λ1|a(n)|+λ 2
1

n−1

∑
s=0

|b(n,s)|−λ
)n−1

∑
s=0

|b(n,s)|x2

≤ −αx2(n).

This implies the zero solution is stable and l2-stable by Theorem 6.5.2. This com-
pletes the proof.

A quick comparison of (6.5.5) with (6.5.7) and (6.5.6) with (6.5.8) reveals that
the conditions for the l2-stability are more stringent than of the conditions for l1-
stability.

6.6 Discretization Scheme Preserving Stability and Boundedness

In Chapter 1, we briefly discussed the notion that Volterra discrete equations play
major role in numerical solutions of Volterra integro-differential equations. In this
section we apply a nonstandard discretization scheme due to Mickens (see [119])
to a Volterra integro-differential equation, to form a Volterra discrete system. By
displaying suitable Lyapunov functionals, one for the Volterra integro-differential
equation and another for the Volterra discrete system, we will show that under the
same conditions on some of the coefficients, the stability of the zero solution and
boundedness of solutions are preserved in both systems.
This section is intended to give a brief introduction to the subject of discretization,
although by no means, should it be considered a complete study of the subject. The
author is not claiming that the discretization scheme used here is the most general
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nor it is the most efficient. The sole purpose of this section is to introduce the reader
to the effectiveness of Lyapunov functionals when dealing with preserving the qual-
itative behaviors of solutions. However, this section should set the stage for future
research in preserving the characteristics of Volterra integro-differential equations
when nonstandard discretization schemes are used in obtaining the corresponding
Volterra discrete systems. For comprehensive treatment of the subject of nonstan-
dard discretization we refer to [119] and [120].
For motivational purpose, consider the differential equation

x′(t) = ax(t), for some constant a < 0, (6.6.1)

which has the solution x(t) = ea(t−t0) and x(t)→ 0as t → ∞.
On the other hand, if we consider the difference equation

x(t +1) = ax(t), x(t0) = x0, (6.6.2)

then the unique solution of (6.6.2) is

x(t) = x0at−t0

and
x(t)→ 0as t → ∞

provided that |a| < 1. We see that the stability is not preserved. Applying the ap-
proximations

x′(t) =
x(t +h)− x(t)

h
, x(t) =

x(t +h)+ x(t)
2

(6.6.3)

to equation (6.6.1) we have the analogous discrete system

x(n+1) =
2+ah
2−ah

x(n), (6.6.4)

where x(n + 1) = x(t + h) and x(n) = x(t). All solutions x(n) of (6.6.4) satisfy
x(n)→ 0as n → ∞, provided that

∣
∣
∣
2+ah
2−ah

∣
∣
∣< 1. (6.6.5)

Clearly, inequality (6.6.5) is satisfied for a < 0 and 0 < h < 1. Thus, we see that the
discretization scheme defined by (6.6.3) preserved the stability of the zero solution.
It is noted that the result holds under the restriction that the step-size �t = h satisfies
the restriction

0 < h < 1. (6.6.6)

Restriction (6.6.6) is a direct consequence of how we discretize equation (6.6.1). To
ease the restriction given by (6.6.6), we use a nonstandard discretization scheme due
to Mickens [122]; that is we let
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x′(t) =
x(t +h)− x(t)

Φ(a,h)
, Φ(a,h) =

eah −1
a

. (6.6.7)

We note that this scheme holds for all h> 0. For more on the use of nonstandard dis-
cretization, we refer the reader to [119, 120, 121, 122]. Under discretization (6.6.7),
equation (6.6.1) becomes

x(n+1) = (1+aΦ(a,h))x(n) = eahx(n). (6.6.8)

Since a < 0, we have that eah < 1, and hence all solutions of (6.6.8) go to zero
asymptotically without any restriction on the step-size h. Thus, we see that the dis-
cretization scheme defined by (6.6.7) preserved the stability of the zero solution.

Definition 6.6.1. A resulting difference equation is said to be consistent with respect
to property P under a given discretization scheme with its continuous counterpart if
they both exhibit property P under equivalent conditions.

Based on Definition 6.6.1, we see that (6.6.5) is consistent with respect to asymptotic
stability with (6.6.1) under discretization (6.6.3) provided that (6.6.6) holds. The
same is true for (6.6.7) but without further restriction on the size h.
Next we discuss the stability, uniform asymptotic stability, and exponential stability
of Volterra integro-differential equations and their corresponding discrete systems
with respect to certain discretization schemes. Consider the scalar Volterra integro-
differential equation

x′(t) = ax(t)+
∫ t

0
B(t,s) f (s,x(s))ds, t ≥ 0. (6.6.9)

We assume f (t,x) is continuous in x and t and satisfy

| f (t,x)| ≤ γ |x|, (6.6.10)

where γ is a positive constant. The kernel B : R2 → R is continuous in both argu-
ments. By considering the discretization scheme (6.6.3) for

x′(t) = ax(t)

and by approximating the integral term with

∫ t

0
B(t,s) f (s,x(s)) ds = h

t

∑
s=0

B(t,s) f (s,x(s)), (6.6.11)

we arrive at the corresponding discrete Volterra equation,

x(n+1) =
2+ah
2−ah

x(n)+
2h2

2−ah

n

∑
s=0

B(n,s) f (s,x(s)), n ≥ 0, (6.6.12)
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where x(n+ 1) = x(t + h), x(n) = x(t) and 0 < h < 1. Similarly by considering
discretizations (6.6.7) and (6.6.11) we arrive at the corresponding discrete Volterra
equation,

x(n+1) = eahx(n)+hΦ(a,h)
n

∑
s=0

B(n,s) f (s,x(s)), n ≥ 0, (6.6.13)

The study of Volterra discrete systems is important since they play a major role in
the fields of numerical analysis, control theory, and computer science. Thus, finding
a discretization scheme under which Equation (6.6.12) is consistent with (6.6.9) is
important. Throughout this section it is assumed that the step size h satisfies 0 < h <
1. In preparation for the next theorem we make the following assumptions.

|B(t,s)| is monotonically decreasing in t (6.6.14)

and there exists a constant α > 0 such that ∀t ≥ 0

a+ γ
∫ ∞

t
|B(u, t)|du ≤−α. (6.6.15)

Theorem 6.6.1. Assume conditions (6.6.14) and (6.6.15) hold. Then (6.6.13) is
consistent with respect to uniform asymptotic stability under the discretization
scheme (6.6.7) and (6.6.11) with its continuous counterpart (6.6.9).

Proof. Define the Lyapunov functional V by

V (t) = |x(t)|+ γ
∫ t

0

∫ ∞

t
|B(u,s)||x(s)|du ds.

Then by making use of (6.6.15), we have along the solutions (6.6.9) that

V ′(t) =
x(t)
|x(t)|x

′(t)+ γ
∫ ∞

t
|B(u, t)||x(t)|du− γ

∫ t

0
|B(t,s)||x(s)|ds

≤ a|x(t)|+ γ
∫ t

0
|B(t,s)||x(s)|ds

+ γ
∫ ∞

t
|B(u, t)||x(t)|du− γ

∫ t

0
|B(t,s)||x(s)|ds

≤
[
a+ γ

∫ ∞

t
|B(u, t)|du

]
|x(t)|

≤ −α|x(t)|.

Then by Theorem 2.6.1 of [22], the zero solution of (6.6.9) is (UAS). Now we turn
our attention to (6.6.12). Define V by

V (n) = |x(n)|+ γhΦ(a,h)
n−1

∑
s=0

∞

∑
u=n

|B(u,s)||x(s)|.
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It can be easily shown that along the solutions of (6.6.13)

�V (n) ≤
[
eah + γhΦ(a,h)

∞

∑
u=n

|B(u,n)| −1
]
|x(n)|.

Due to condition (6.6.15) there exists a positive constant β such that

γ
∫ ∞

t
|B(u, t)|du ≤ β .

We can choose h small enough so that the above inequality combined with (6.6.14)
and the fact that a < 0 to imply that there exists a positive constant η such that

eah + γhΦ(a,h)
∞

∑
u=n

|B(u,n)| −1 ≤−η .

Therefore,
�V (n)≤−η |x(n)|.

By setting α = 0 in Theorem 2.2.4 we have the zero solution of (6.6.13) is (UAS).
The proof is complete.

In Theorem 6.6.1 we showed that the discretization scheme given by (6.6.3) and (6.6.11)
preserved the uniform asymptotic stability of the zero solutions of Equations (6.6.9)
and (6.6.12). In the next theorem we will show that the discretization scheme given
by (6.6.3) and (6.6.11) preserves the exponential asymptotic stability of the zero
solutions of Equations (6.6.9) and (6.6.12) under more stringent conditions on the
kernel B(t,s). For the next theorem we make the following assumptions.

|B(t,s)| is monotonically decreasing in t and s. (6.6.16)

Suppose there exist constants k > 1 and α > 0 such that

a+ γ k
∫ ∞

t
|B(u, t)|du ≤−α < 0 (6.6.17)

where k = 1+ ε for some ε > 0. Suppose

|B(t,s)| ≥ λ
∫ ∞

t
|B(u,s)|du (6.6.18)

where λ ≥ kα
ε > 0, 0 ≤ s < t ≤ u < ∞, and

γ
∫ t0

0

∫ ∞

t0
|B(u,s)|du ds ≤ ρ < ∞ for all t0 ≥ 0. (6.6.19)

Remark 6.4. Due to conditions (6.6.16) and (6.6.17) there exists a positive constant
β such that
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γ k
∫ ∞

t
|B(u, t)| du ≤ β .

Similarly, by conditions (6.6.16) and (6.6.19) there is a constant such that

hΦ(a,h)γk
n0−1

∑
s=0

∞

∑
j=n0

|B( j,s)| ≤ Γ1.

Finally, as a consequence of (6.6.16) and (6.6.18) we have

|B(n,s)| ≥ λ
∞

∑
j=n

|B( j,s)|.

Theorem 6.6.2 ([91]). Assume conditions (6.6.16)–(6.6.19) hold. Then (6.6.13) is
consistent with respect to uniform exponential stability under the discretization
scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.9).

Proof. Define

V (t,x) = |x(t)|+ k
∫ t

0

∫ ∞

t
|B(u,s)|du| f (s,x(s))|ds. (6.6.20)

Let V ′(t,x) = d
dt V (t,x(t)). Then along the solutions of (6.6.9) we have,

V ′(t,x) =
x(t)
|x(t)|x

′(t)+ k
∫ ∞

t
|B(u, t)|du| f (t,x(t))|− k

∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤ a|x(t)|+
∫ t

0
|B(t,s)|| f (s,x(s))|ds

+k
∫ ∞

t
|B(u, t)|du| f (t,x(t))|− k

∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤
[
a+ k

∫ ∞

t
|B(u, t)|duγ

]
|x(t)|+(1− k)

∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤ −α|x(t)|− ε
∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤ −α|x(t)|− ελ
∫ t

0

∫ ∞

t
|B(u,s)|du| f (s,x(s))|ds

≤ −α
[
|x(t)|+ k

∫ t

0

∫ ∞

t
|B(u,s)|du| f (s,x(s))|ds

]

≤ −αV (t,x). (6.6.21)

Hence inequality (6.6.21) yields

V (t,x)≤V (t0,φ(.))e−α(t−t0).

As a consequence, we have

|x(t)| ≤ V (t0,φ(.))e−α(t−t0) for t ≥ t0
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≤ ‖φ‖
[
1+ kγ

∫ t0

0

∫ ∞

t0
|B(u,s)|du ds

]
e−α(t−t0) for t ≥ t0.

Hence, the zero solution of (6.6.9) is uniformly exponentially stable.

Remark 6.5. Suppose ρ(t0) is a constant depending on t0. If condition (6.6.19) is
substituted with

∫ t0

0

∫ ∞

t0
|B(u,s)|duγ(s)ds ≤ ρ(t0), for t0 ≥ 0,

then a slight modification of the proceeding paragraph shows that the zero solution
of (6.6.9) is exponentially stable.
To show the zero solution of (6.6.12) is uniformly exponentially stable, we define
V (n) =V (n,x) by

V (n) = |x(n)|+ khΦ(a,h)
n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|.

Then along solutions of (6.6.12), we have

�V (n) = |x(n+1)|− |x(n)|+ khΦ(a,h)
n

∑
s=0

∞

∑
j=n+1

|B( j,s)|| f (s,x(s))|

−khΦ(a,h)
n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|

=
∣
∣
∣eahx(n)+hΦ(a,h)

n

∑
s=0

B(n,s) f (s,x(s))
∣
∣
∣

−|x(n)|+ khΦ(a,h)
n

∑
s=0

[ ∞

∑
j=n

|B( j,s)|| f (s,x(s))|

−|B(n,s)|| f (s,x(s))|
]
− khΦ(a,h)

n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|

≤
[

eah + γkhΦ(a,h)
∞

∑
j=n

|B( j,n)|−1
]
|x(n)|

+hΦ(a,h)(1− k)
n−1

∑
s=0

|B(n,s)|| f (s,x(s))|.

Let α be defined by (6.6.17). Then by (6.6.16) and (6.6.17), we can choose an
appropriate h so that

eah + γkhΦ(a,h)
∞

∑
j=n

|B( j,n)|−1 ≤−α.
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As a consequence,

�V (n) ≤ −α|x(n)|+hΦ(a,h)(1− k)
n−1

∑
s=0

|B(n,s)|| f (s,x(s))|

≤ −α|x(n)|− ελhΦ(a,h)
n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|

≤ −α
[
|x(n)|+hΦ(a,h)k

n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|
]

= −αV (n).

The above inequality implies that

V (n)≤ (1−α)n−n0V (n0), n ≥ n0 ≥ 0.

Or

|x(n)| ≤ (1−α)n−n0V (n0)

≤ ||φ ||
[
1+hΦ(a,h)

n0−1

∑
s=0

∞

∑
j=n0

|B( j,s)|
]
(1−α)n−n0 , n ≥ n0 ≥ 0.

This completes the proof.

Now we turn our attention to the preservation of boundedness. Consider the Volterra
linear integro-differential equation

x′(t) = ax(t)+
∫ t

0
B(t,s)x(s)ds+g(t), t ≥ 0 (6.6.22)

and its analogous discrete Volterra equation, under discretizations (6.6.7) and
(6.6.11)

x(n+1) = eahx(n)+hΦ(a,h)
n

∑
s=0

B(n,s)x(s)+hΦ(a,h)g(n), n ≥ 0 (6.6.23)

where a,B are as defined before and g is continuous and uniformly bounded. Thus,
there exists a positive constant M such that

hΦ(a,h)|g(t)| ≤ M, for all t ≥ 0. (6.6.24)

Theorem 6.6.3. Suppose there is a continuous function ψ : [0,∞) → [0,∞) with

ψ ′ ≤ 0 for t ≥ 0,
∫ t

0
ψ(u)du < ∞, and ∂

∂ t ψ(t − s)+ |B(t,s)| ≤ 0 for 0 ≤ s < t < ∞,

where |B(t, t)| is uniformly bounded. If for t ≥ 0, a+ψ(0)≤−α < 0, for some pos-
itive constant α , then (6.6.23) is consistent with respect to boundedness under the
discretization scheme (6.6.7) and (6.6.11) with its continuous counterpart (6.6.22).
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Proof. Define a Lyapunov functional

V (t,x) = |x(t)|+
∫ t

0
ψ(t − s)|x(s)|ds.

Along the solutions of (6.6.22) we have,

V ′(t,x) =
x(t)
|x(t)|x

′(t)+ψ(0)|x(t)|+
∫ t

0

∂
∂ t

ψ(t − s)|x(s)|ds

≤ a|x(t)|+
∫ t

0
|B(t,s)||x(s)|ds

+ |g(t)|+ψ(0)|x(t)|+
∫ t

0

∂
∂ t

ψ(t − s)|x(s)|ds

≤ [a+ψ(0)]|x(t)|+M+

∫ t

0

[ ∂
∂ t

ψ(t − s)+ |B(t,s)|
]
|x(s)|ds

≤ −α|x(t)|+M.

By ([23], pp. 109–111) we have all solutions of (6.6.22) are bounded. With respect
to (6.6.23) we consider the Lyapunov functional

V (n) = |x(n)|+hΦ(a,h)
n−1

∑
s=0

ψ(n− s−1)|x(s)|.

Then along solutions of (6.6.23), we have

�V (n) ≤
[
eah +hΦ(a,h)

(|B(n,n)|+ψ(0)
)−1

]
|x(n)|

+hΦ(a,h)
n−1

∑
s=0

[
�nψ(n− s−1)+ |B(n,s)|

]
|x(s)|+ |g(n)|.

Due to condition ∂
∂ t ψ(t − s)+ |B(t,s)| ≤ 0 for 0 ≤ s < t < ∞, we have �nψ(n− s−

1)+ |B(n,s)| ≤ 0 for 0 ≤ s < n < ∞.
Also, due to condition a+ψ(0)≤−α < 0 we have a < 0. Moreover, since |B(t, t)|
is uniformly bounded we arrive at the fact that we can choose h small enough so
that

eah +hΦ(a,h)
(|B(n,n)|+ψ(0)

)−1 ≤−α,

for some positive constant α. As a consequence,

�V (n) ≤ −α|x(n)|+M.

By Theorem 2.1.1 we have all solutions of (6.6.23) are bounded. Thus, (6.6.23)
is consistent with respect to boundedness under the discretization scheme (6.6.7)
and (6.6.11) with its continuous counterpart (6.6.22).
Next we state the following corollaries using discretization (6.6.3).
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Corollary 6.5 ([91]). Assume conditions (6.6.14) and (6.6.15) hold. Then (6.6.12)
is consistent with respect to uniform asymptotic stability under the discretization
scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.9).

The proof follows along the lines of the proof of Theorem 6.6.1 by taking

V (n) = |x(n)|+ γ
2h2

2−ah

n−1

∑
s=0

∞

∑
u=n

|B(u,s)||x(s)|.

Corollary 6.6 ([91]). Assume conditions (6.6.16)–(6.6.19) hold. Then (6.6.12) is
consistent with respect to uniform exponential stability under the discretization
scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.9).

The proof follows along the lines of the proof of Theorem 6.6.2 by taking

V (n) = |x(n)|+ 2h2

2−ah
k

n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|.

For the next corollary we consider (6.6.22) and its analogous discrete Volterra dif-
ference equation

x(n+1) =
2+ah
2−ah

x(n)+
2h2

2−ah

n

∑
s=0

B(n,s)x(s)+g(n), n ≥ 0 (6.6.25)

under discretization scheme (6.6.3) and (6.6.11).

Corollary 6.7 ([91]). Suppose there is a continuous function ψ : [0,∞)→ [0,∞) with

ψ ′ ≤ 0 for t ≥ 0,
∫ t

0
ψ(u)du < ∞, and ∂

∂ t ψ(t − s)+ |B(t,s)| ≤ 0 for 0 ≤ s < t < ∞,

where |B(t, t)| is uniformly bounded. If for t ≥ 0, a+ψ(0)≤−α < 0, for some pos-
itive constant α , then (6.6.25) is consistent with respect to boundedness under the
discretization scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.22).

The proof follows along the lines of the proof of Theorem 6.6.3 by taking

V (n) = |x(n)|+ 2h2

2−ah

n−1

∑
s=0

ψ(n− s−1)|x(s)|.

6.7 Semigroup

We end the book with a brief introduction of the concept of semigroup. The notion
of semigroup falls under the umbrella of fixed point theory. In continuous dynam-
ical systems, including partial differential equations, semigroup has been the main
tools in studying boundedness, uniform exponential stability, strong stability, weak
stability, almost weak stability, the existence of weak solutions, and almost periodic
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solutions. The theory of semigroup has been well developed for continuous dynam-
ical systems, which is not the case for discrete dynamical systems. This section is
only intended to raise curiosity about the subject of semigroup and how it can be
effectively used to qualitatively study solutions of discrete dynamical systems, and
in particular, Volterra difference equations.
Let X be a Banach space and B(X) the Banach algebra of all linear and bounded
operators acting on X .

Definition 6.7.1. The subset T = {T (n)}n∈Z of B(X) is called discrete semigroup
if it satisfies the following conditions:
(i) T (0) = I, where I is the identity operator on X .
(ii) T (n+m) = T (n)T (m), for all n,m ∈ Z

+.

Definition 6.7.2. A linear operator A is called the generator of semigroup T if

lim
s→1

T (s)x−T (1)x
s−1

, x ∈ D(A),

where the domain D(A) of A is the set of all x ∈ X for which the above limit exists.

Next we consider the discrete initial value problem

x(t +1) = Ax(t), x(t0) = x0 ∈ D(A), t ≥ t0, t, t0 ∈ Z
+, (6.7.1)

where A is the generator of T. By [76] the initial value problem (6.7.1) has the
unique solution

x(t) = T (t − t0)x0. (6.7.2)

Denote the norms in X and B(X) by ‖·‖. We have the following theorems. First, for
concise definitions and terminology regarding stability and boundedness we refer to
[76].

Theorem 6.7.1 ([76]). The following statements are equivalent:
(i) Equation (6.7.1) is stable;
(ii) {T (t) : t ∈ Z} is bounded;
(iii) Equation (6.7.1) is uniformly stable.

Theorem 6.7.2 ([76]). The following statements are equivalent:
(i) Equation (6.7.1) is asymptotically stable;
(ii) limt→∞ ||T (t)x||= 0, for every x ∈ X;
(iii) Equation (6.7.1) is globally asymptotically stable;
(iv) Equation (6.7.1) is uniformly asymptotically stable.

Next we turn our attention to using semigroup in Volterra difference equations.
Thus, we consider the linear convolution Volterra difference equations with infinite
delays

x(n+1) =
n

∑
s=−∞

C(n− s)x(s), n ≥ n0 ≥ 0, n,n0 ∈ Z
+, (6.7.3)
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and

x(n+1) =
n

∑
s=−∞

{C(n− s)+G(n,s)}x(s), n ≥ n0 ≥ 0, n,n0 ∈ Z
+. (6.7.4)

Our intention is to write (6.7.3) as a functional difference equation so that semigroup
can be used to derive conditions that relate solutions of (6.7.3) and (6.7.4). Let γ be
a positive constant. Define the set

Bγ = {ϕ : Z− → C
k : sup

t∈Z−
|ϕ(t)|eγt < ∞},

where C is the set of complex numbers. Then Bγ is a Banach space when endowed
with the norm

||ϕ||= sup
t∈Z−

|ϕ(t)|eγt < ∞, ϕ ∈ Bγ .

As we have done before, for xn ∈ Bγ , we set

xn(s) = x(n+ s), s ∈ Z
+.

Then we may write (6.7.3) as

x(n+1) = L(xn), (6.7.5)

where L(·) : Bγ → C
k is a functional given by

L(ϕ) =
∞

∑
j=0

C( j)ϕ(− j), ϕ ∈ Bγ .

Let T (n) denote the solution of (6.7.5). Then T (n)ϕ = xn(ϕ), for ϕ ∈ Bγ . Moreover,
we denote by x(·,ϕ) the solution of (6.7.5) satisfying x(s,ϕ) = ϕ(s), for s ∈ Z

−.
Then it can be easily shown that T (n) is a bounded linear operator on Bγ and satisfies
the semigroup property

T (n+m) = T (n)T (m).

We have the following theorems.

Theorem 6.7.3 ([59]). Suppose system (6.7.5) possesses an ordinary dichotomy
with dichotomy constant M (see [59]). Assume

∞

∑
n=0

|C(n)|eγn < ∞ and
n

∑
s=−∞

sup
n≥n0

|G(n,s)|eγ(n−s) < ∞, (6.7.6)

∞

∑
s=n0

n0−1

∑
j=−∞

|G(s, j)|eγ(n0− j) +
∞

∑
s=n0

s

∑
j=n0

|G(s, j)< 1/M. (6.7.7)

Then for any bounded solution x(n) of (6.7.3) on [n0,∞) there exists a unique
bounded solution y(n) of (6.7.4) on [n0,∞) such that
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y(n) = x(n)+
n−1

∑
s=n0

T (n− s−1)PE0
( s

∑
j=−∞

|G(s, j)y( j)
)

−
∞

∑
s=n

T (n− s−1)(I−P)E0
( s

∑
j=−∞

|G(s, j)y( j)
)
, n ≥ n0, (6.7.8)

where E0(t) = I if t = 0 and E0(t) = 0 (matrix) if t 
= 0.

Theorem 6.7.4 ([59]). Assume (6.7.6) and (6.7.7) Suppose system (6.7.5) possesses
an ordinary dichotomy with dichotomy constant M and related projection P (see
[59]) such that

||T (n)P|| ≤ Man for some a,0 < a < 1.

Then there is a one-to-one correspondence between bounded solutions x(n) of (6.7.3)
on [n0,∞) and bounded solutions y(n) of (6.7.4) on [n0,∞), and the asymptotic re-
lation

y(n) = x(n)+o(1) (n → ∞)

holds.

Naturally, the resolvent operator that was developed in Chapter 1, Section 1.3, might
be used to define a semigroup for Volterra difference equations. To see this, we
consider Volterra difference equation of convolution type

x(n+1) = Ax(n)+
n

∑
s=0

B(n− s)x(s) (6.7.9)

for all integers n ≥ 0 and for integers, 0 ≤ s ≤ n, where A,B are k× k matrix func-
tions, and x is a k × 1 unknown vector. Then, we saw that the resolvent matrix
equation of (6.7.9) takes the form

R(n+1) = AR(n)+
n

∑
u=0

B(n−u)R(u), R(0) = I, n ∈ Z
+. (6.7.10)

Let A and B(·) be closed operators in X . Hence D(A) endowed with the graph norm
|x| = ||x||+ ||Ax|| is a Banach space denoted by Y. Next we use the resolvent op-
erator to define the solution of the nonhomogenous Volterra difference equation of
convolution type

x(n+1) = Ax(n)+
n

∑
s=0

B(n− s)x(s)+ f (n), (6.7.11)

where f is a k×1 given vector. First, we have the following definition.
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Definition 6.7.3. R(·) is a resolvent of (6.7.11) if R(n) ∈ B(X) for n ∈ Z
+ and

satisfies

1. R(0) = I (the identity operator on X).
2. R(n) ∈B(Y ) for n ∈ Z

+ and for y ∈ Y , we have

R(n+1)y = AR(n)y+
n

∑
u=0

B(n−u)R(u)y

= R(n)Ay+
n

∑
u=0

R(n−u)B(u)y. (6.7.12)

We note that item 2. of Definition 6.7.3 is needed for (ii) of Definition 6.7.1. Suppose
R(n) is the resolvent operator of (6.7.11). Then, it can be easily shown using the
results of Section 1.3 that the solution of (6.7.11) is given by

x(n) = R(n)x0 +
n

∑
u=0

R(n−u−1) f (u), n ∈ Z
+. (6.7.13)

Now, one can use the concept of the resolvent operator given by (6.7.12) to obtain
various results concerning the qualitative analysis of solutions of Volterra difference
equations.
It is worth noting, however, that using the resolvent operator in Volterra difference
equations to define a semigroup and obtain a meaningful result is in dire need for
further development.

6.8 Open Problems

Open Problem 1
Prove a parallel theorem to Theorem 6.3.5 by considering (6.3.30) as a vector equa-
tion.

Open Problem 2
Extend Theorem 6.3.5 to the delay Volterra difference equation

x(n+1) = μ(n)x(n)+
n−1

∑
s=n−h

h(n,s)x(s)+ f (n),

where h is a positive integer.

Open Problem 3 (Extremely Hard)
Extend the results of Section 6.1 to the following Volterra difference equations

x(n+1) = Px(n)+
n−1

∑
s=−∞

H(n,s)g(x(s)), (vector)
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x(n+1) = a(n)x(n)+
n−1

∑
s=−∞

h(n,s)g(x(s)), (scalar)

and

x(n+1) = Px(n)+
n−1

∑
s=n−h

H(n,s)g(x(s)), (vector)

where h is a positive integer.
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