
Chapter 5
Population Dynamics

This chapter is devoted to the application of Volterra difference equations in popula-
tion dynamics and epidemics. We begin the chapter by introducing different types of
population models including predator-prey models. Most commonly studied version
of population models are described by continuous-time dynamics, whereas in real
ecosystem the changes in populations of each species due to competitive interac-
tion cannot occur continuously. Hence, discrete-time dynamical systems are often
more suitable tool for modeling the dynamics in competing species. Cone theory
is introduced and utilized to prove the existence of positive periodic solutions for
functional difference equations. We introduce an infinite delay population model
which governs the growth of population N(n) of a single species whose members
compete among themselves for the limited amount of food that is available to sus-
tain the population, and use the results on cone theory to obtain the existence of a
positive periodic solution. Moreover, from a biologist’s point of view, the idea of
permanence plays a central role in any competing species.

5.1 Background

We begin with a brief history regarding the early work of Vito Volterra on mod-
eling fish population utilizing what we call today: Volterra integral equations and
Volterra integro-differential equations. Volterra did not limit himself to academic
research. Volterra became interested in mathematical ecology late in 1925. His in-
terest in the field was stimulated by conversations with the young zoologist Um-
berto D’Ancona, then engaged to marry his daughter Luisa. D’Ancona, studying
the records of the fish markets in the upper Adriatic, had noticed a curious phe-
nomenon. He observed that during and after the war, when fishing was severely
limited, the proportion of predators among the total catch had increased correspond-
ingly, an effect predicted by Volterra’s models. D’Ancona was thus reinforced in his
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belief that the two facts were causally correlated. In other words, the proportion
of food fish markedly decreased during the war years. This beginning led Volterra
to attack more general problems in ecology. Volterra emphasized consistently that
differential equations are, at best, only rough approximations of actual ecological
systems. They would apply only to animals without age or memory, which eat all
the food they encounter and immediately convert it into offspring. Anything more
realistic would yield integro-differential rather than differential equations. The field
soon became his major research. More on the next discussion can be found in [158].
To put things into perspective we give some background on the famous Lotka prey-
predator model. In 1925 Lotka published his Elements of Physical Biology, in which
he developed and studied the interaction between two species via the model

dN1

dt
= (ε1 + γ1N2)N1,

dN2

dt
= (ε2 + γ2N1)N2,

where ε1 and ε2 are the “coefficients of self-increase,” while γ1 and γ2 account for the
interaction between two species, and the N1, N2, are population sizes. This model
can represent species preying on another, depending on the sign of the constants in
the model. In the case of predation, Lotka showed the existence of close periodic
orbits. Later on, Lotka considered more advanced models that dealt with multiple
species preying on a single specie. For the sake of the next discussion, we write
the above Lotka system to suit a predator-prey model. That is, by assuming all the
constants are positive we have that

dN1

dt
= (ε1 − γ1N2)N1,

dN2

dt
= (−ε2 + γ2N1)N2, (5.1.1)

where N1 and N2 represent the populations of the preys and predators at time t,
respectively. Note that the predators would die out without the presence of the preys.
To better explain this, we multiply the first equation of (5.1.1) by dt and then it is
clear that an amount of ε2N2 of them will die in a time interval dt. Suppose that
predator tendency to eat the prey when encountered does not depend on age, τ , nor
on the state of the association. Assume also that the age distribution of the predators,
λ (τ , t), can be considered as independent of time, λ (τ). The individuals of age not
younger than τ will be in the proportion

f (t − τ) =
∫ ∞

t−τ
λ (η)dη .

Then f (t − τ)N2(t) will be the number of predators that is active at time t − τ .
Their feeding rate is proportional to f (t − τ)N2(t)N1(τ) that is φ(t − τ) f (t −
τ)N2(t)N1(τ), measuring the effect of feeding through all previous time on the
chances of survival and the rate of reproduction at a subsequent time. Setting

φ(t − τ) f (t − τ)N2(t)N1(τ)dτ = F(t − τ)N2(t)N1(τ)dτ

and integrating over all previous time we obtain, as a positive term for the predators’
equation,

N2(t)
∫ t

t−τ
F(t − τ)N1(τ)dτ .
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Similar argument can be made for the preys and hence we arrive at the system of
integro-differential equations

dN1

dt
= N1(t)

[
ε1 − γ1N2(t)−

∫ t

t−τ
F1(t − τ)N1(τ)dτ

]
dN2

dt
= N2(t)

[− ε2 + γ2N1(t)−N2(t)
∫ t

t−T
F2(t − τ)N1(τ)dτ

]
.

Another aspect of importance for application of Volterra difference equations is their
usefulness in numerical approximations of Volterra integro-differential equations,
see [161] and the reference therein. This notion was briefly discussed in Chapter 1.

5.2 Formulation of Predator-Prey Discrete Models

In this section we obtain the Lotka-Volterra predator-prey model from its contin-
uous counterpart. Researchers have argued that discrete time models governed by
difference equations are more appropriate for describing the dynamics relationship
among populations than the continuous ones when the populations have nonover-
lapping generations. There is no unique way of deriving discrete time version of dy-
namical systems corresponding to continuous time formulations. One of the ways of
deriving difference equations modeling the dynamics of populations with nonover-
lapping generations is based on appropriate modifications of models with overlap-
ping generations. In this approach, differential equations with piecewise constant
arguments have been useful (see [170]). Thus, we consider the continuous Lotka-
Volterra predator-prey model given by (5.1.1) and use differential equations with
piecewise constant arguments to obtain a discrete analogue of it. We follow the
work given in [70] and [170]. That is, we assume that the average growth rates in
system (5.1.1) change at regular intervals of time. We can incorporate this aspect
in (5.1.1) and obtain the following modified system

dN1(t)
dt

1
N(t)

= (ε1 − γ1N2([t])) (5.2.1)

dN2(t)
dt

1
N2(t)

= (−ε2 + γ2N1([t]))

where t �= 0,1,2, . . . , [t] denotes the integer part of t, t ∈ (0,∞). Equations of the
form (5.2.1) are known as differential equations with piecewise constant arguments
and they occupy a position midway between differential equations and difference
equations. By a solution of (5.2.1), we mean a function N = (N1,N2)

T which is
defined for t ∈ (0,∞) and has the properties that,
1. N is continuous on [0,∞).

2. The derivatives dN1(t)
dt , dN2(t)

dt exist at each point t ∈ (0,∞) with the exception of
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the points t ∈ {0,1,2, · · · ,},where left-sided derivatives exist.
3. System (5.2.1) is valid on each interval [k,k+1] with k = 0,1,2, · · ·
Next we integrate both sides of (5.2.1) over any interval [k,k+1), k = 0,1,2, · · · to
arrive at for k ≤ t ≤ k+1 k = 0,1,2, · · ·

N1(t) = N1(k)e
{[ε1−γ1N2(k)](t−k)} (5.2.2)

N2(t) = N2(k)e
{[−ε2+γ2N1(k)](t−k)}

Letting t → k+1, then system takes the form

{
N1(k+1) = N1(k)e{[ε1−γ1N2(k)]}

N2(k+1) = N2(k)e{[−ε2+γ2N1(k)]} (5.2.3)

where k = 0,1,2, · · ·.
General forms of discrete-generation host-parasite

{
P(k+1) = λP(k) f (P(k),H(k))

H(k+1) = cλP(k)(1− f (P(k),H(k))

have been used to model the interaction between host species (a plant, P(k)) and
a parasite species (a herbivore, H(k)). The term 1− f represents the probability of
being parasitized. Nicholson-Bailey [13] used one of the simplest version of the
above general form by considering

{
P(k+1) = λP(k)e−aH(k)

H(k+1) = cλP(k)(1− e−aH(k))

in which f = e−aH(k) is the proportion of hosts escaping parasitism, where a is the
mean encounters per host. Hence, 1− e−aH(k) is the probability that host will be
attacked. In a later study, Beddington et al. [15] considered a generalization of the
above model by studying

{
P(k+1) = λP(k)er(1−P(k)/Pmax)−aH(k)

H(k+1) = cλP(k)(1− e−aH(k))

where Pmax is the carrying capacity imposed by the environment for the host in the
absence of the parasite.
Following in the footsteps of Beddington et al. [15], Elaydi et al. [90] considered
the predator-prey model

{
x(n+1) = x(n)er(1− x(n)

K )−by(n))

y(n+1) = ey(n)(1− e−ay(n))
(5.2.4)

where x(n) ≥ 0 and y(n) ≥ 0 represent population densities of a prey and a preda-
tor, respectively, and a,b,e,K, and r are positive. The constant K is the carrying
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capacity and represents the maximum population size that can be supported by the
available limited resources and r is the growth rate. In [90] Elaydi et al. investi-
gated the stability and invariant manifolds and the stability of the coexisting fixed
point of model (5.2.4). Motivated by Elaydi et al. [90], in [10], Asheghi revisited
model (5.2.4) and analyzed the stability of feasible fixed points and the period-
doubling. In addition, the author studied the Neimark-Sacker bifurcation diagrams.
In 2014, Li and Xu [176] considered the discrete predator-prey model with infected
prey

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(n+1) = S(n)exp
{

r1(n)(1−S(n)− I(n))− a(n)Z(n)
1+b(n)(S(n)+ I(n))

− α(n)I(n)
S(n)+ I(n)

}

I(n+1) = I(n)exp
{

r2(n)(1−S(n)− I(n))− a(n)Z(n)
1+b(n)(S(n)+ I(n))

+
α(n)I(n)

S(n)+ I(n)
−m2(n)

}

Z(n+1) = Z(n)exp
{ a(n)(S(n)+ I(n))

1+b(n)(S(n)+ I(n)
−m3(n)

}
(5.2.5)

where S(n) and I(n) are the susceptible phytoplankton population and the infected
phytoplankton population, respectively, and Z(n) grazes on both the susceptible and
infected phytoplankton. The parameter α > 0 is the frequency-dependent transmis-
sions rate and the parameter m2 is the disease-induced mortality of infected prey.
The parameters r1 and r2 are the intrinsic growth rates of susceptible and infected
population, respectively. Rate m3 represents the natural mortality rate of zooplank-
ton. In addition, a and b are constants. For more on the biological meaning and
development of the model in the continuous case, we refer to [81] and [157]. Li and
Xu [176] assumed periodicity conditions on the coefficients and used the Continua-
tion theorem due to Gaines and Malvin [71] and showed the existence of a positive
periodic solution. Moreover, they effectively used Lyapunov functions and proved
the positive periodic solution is indeed globally asymptotically stable.
We remark that all the above models display positive solutions for positive initial
data.

5.3 Cone Theory and Positive Periodic Solutions

We begin the chapter by utilizing cone theoretic fixed point theorem to study the
existence of positive periodic solutions of the nonlinear nonautonomous system of
functional difference equations

x(n+1) = A(n)x(n)+ f (n,xn) (5.3.1)

where A(n) = diag[a1(n),a2(n), . . . ,ak(n)], a j is ω-periodic, f : Z×R
k → R

k is
continuous in x, and f (n,x) is ω-periodic in n and x, whenever x is ω-periodic.
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Most contents can be found in [149] and the references therein. Such results will be
applied to the infinite delay scalar Volterra discrete population model

N(n+1) = α(n)N(n)
[
1− 1

N0(n)

0

∑
s=−∞

B(s)N(n+ s)
]
, n ∈ Z (5.3.2)

which governs the growth of population N(n) of a single species whose members
compete among themselves for the limited amount of food that is available to sustain
the population. We emphasize that our conditions can only imply the existence of
positive and periodic solutions for model (5.4.1). We note that equation (5.3.2) is a
generalization of the known logistic model

N(n+1) = αN(n)
[
1− N(n)

N0

]
, (5.3.3)

where α is the intrinsic per capita growth rate and N0 is the total carrying ca-
pacity. For more biological information on equation (5.3.2), we refer the reader
to [57]. We remark that in (5.3.2), the term ∑0

s=−∞ B(s)N(n+ s) is equivalent to
∑n

u=−∞ B(u− s))N(u). We chose to write (5.3.2) that way so that it can be put in the
form of x(n+1) = a(n)x(n)+ f (n,xn).
Let X be the set of all real ω-periodic sequences φ : Z → R

k. Endowed with the
maximum norm ||φ || = max

θ∈Z ∑k
j=1 |φ j(θ)| where φ = (φ1,φ2, . . . ,φk)

t , X is a Ba-

nach space. Here t stands for the transpose. If x ∈X , then xn ∈X for any n ∈ Z is
defined by xn(θ) = x(n+θ) for θ ∈ Z.
The existence of multiple positive periodic solutions of nonlinear functional dif-
ferential equations has been studied extensively in recent years. Some appropriate
references would be [34] and [168]. We are particularly motivated by the work in
[88] on functional differential equations and the work of Raffoul in [67, 129], and
[151] on boundary value problems involving functional difference equations. When
working with boundary value problems whether in differential or difference equa-
tions, it is customary to display the desired solution in terms of a suitable Green’s
function and then apply cone theory (see [8, 45, 67, 78, 79, 80], and [118]). Since
our equation (5.3.1) is not the type of boundary value problem, we obtain a variation
of parameters formula and then try to find a lower and upper estimates for the ker-
nel inside the summation. Once those estimates are found we use Krasnoselskii’s
fixed point theorem [97] to show the existence of a positive periodic solution. In
[129], Raffoul studied the existence of periodic solutions of an equation similar to
equation (5.3.1) using Schauder’s Second fixed point theorem. Moreover, In [151],
Raffoul considered the scalar difference equation

x(n+1) = a(n)x(n)+h(n) f (x(n− τ(n))) (5.3.4)

where a,h, and τ are ω-periodic for ω is an integer with ω ≥ 1. Under the as-
sumptions that a(n), f (x), and h(n) are nonnegative with 0 < a(n) < 1 for all
n ∈ [0,ω − 1], it was shown that (5.3.4) possesses a positive periodic solution. In
this work we extend (5.3.4) to systems with infinite delay and address the existence
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of positive periodic solutions of (5.3.1) in the case a(n) > 1. Let R+ = [0,+∞),
for each x = (x1,x2, . . . ,xk)

t ∈R
k, the norm of x is defined as |x|= ∑k

j=1 |x j|. Rk
+ =

{(x1,x2, . . . ,xk)
t ∈R

k : x j ≥ 0, j = 1,2, . . . ,k}. Also, we denote f = ( f1, f2, . . . , fk)
t ,

where t stands for transpose. Now we list the following conditions.

(H1) a(n) �= 0 for all n ∈ [0,ω −1] with ∏ω−1
s=0 a j(s) �= 1 for j = 1,2, . . . ,k.

(H2) If 0 < a(n) < 1 for all n ∈ [0,ω − 1], then f j(n,φn) ≥ 0 for all n ∈ Z and
φ : Z→ R

n
+, j = 1,2, . . . ,k where R+ = [0,+∞)

(H3) If a(n)> 1 for all n ∈ [0,ω −1], then f j(n,φn)≤ 0 for all n ∈ Z and φ : Z→
R

n
+, j = 1,2, . . . ,k where R+ = [0,+∞)

(H4) For any L > 0 and ε > 0, there exists δ > 0 such that
[φ ,ψ ∈X , ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ −ψ‖< δ , 0 ≤ s ≤ ω] imply

| f (s,φs)− f (s,ψs)|< ε . (5.3.5)

We begin by stating some preliminaries in the form of definitions and lemmas that
are essential to the proofs of our main results. We start with the following definition.

Definition 5.3.1. Let X be a Banach space and K be a closed, nonempty subset of
X . The set K is a cone if

(i) αu+βv ∈ K for all u,v ∈ K and all α,β ≥ 0
(ii) u,−u ∈ K imply u = 0.

We now state the Krasnoselskii’s fixed point theorem [97].

Theorem 5.3.1 (Krasnoselskii [97]). Let B be a Banach space, and let P be a
cone in B. Suppose Ω1 and Ω2 are open subsets of B such that 0 ∈ Ω1 ⊂ Ω 1 ⊂ Ω2

and suppose that
T : P ∩ (Ω 2\Ω1)→P

is a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈P ∩∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩∂Ω2; or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈P ∩∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩∂Ω2.

Then T has a fixed point in P ∩ (Ω 2\Ω1).

For the next lemma we consider

x j(n+1) = a jx j(n)+ f j(n,xn), j = 1,2, . . . ,k. (5.3.6)

The proof of the next Lemma can be easily deduced from [129] and hence we
omit it.

Lemma 5.1 ([149]). Suppose (H1) hold. Then x j(n) ∈ X is a solution of equa-
tion (5.3.6) if and only if

x j(n) =
n+ω−1

∑
u=n

G j(n,u) f j(u,xu), j = 1,2, . . . ,k (5.3.7)
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where

G j(n,u) =
∏n+ω−1

s=u+1 a j(s)

1−∏n+ω−1
s=n a j(s)

, u ∈ [n,n+ω −1], j = 1,2, . . . ,k. (5.3.8)

Set
G(n,u) = diag[G1(n,u),G2(n,u), . . . ,Gk(n,u)].

It is clear that G(n,u) = G(n+ω,u+ω) for all (n,u) ∈ Z
2. Also, if either (H2) or

(H3) holds, then (5.3.8) implies that

G j(n,u) f j(u,φu)≥ 0

for (n,u) ∈ Z
2 and u ∈ Z, φ : Z→R

k
+. In defining the desired cone we observe that

if (H2) holds, then

∏ω−1
s=0 a j(s)

1−∏n+ω−1
s=n a j(s)

≤ |G j(n,u)| ≤
∏ω−1

s=0 a−1
j (s)

1−∏n+ω−1
s=n a j(s)

(5.3.9)

for all u ∈ [n,n+ω −1]. Also, if (H3) holds, then

∏ω−1
s=0 a−1

j (s)∣∣∣1−∏n+ω−1
s=n a j(s)

∣∣∣ ≤ |G j(n,u)| ≤ ∏ω−1
s=0 a j(s)∣∣∣1−∏n+ω−1
s=n a j(s)

∣∣∣ (5.3.10)

for all u ∈ [n,n+ω −1]. For all (n,s) ∈ Z
2, j = 1,2, . . . ,k, we define

σ2 := min
{
(

ω−1

∏
s=0

a j(s))
2

, j = 1,2, . . . ,n
}

and

σ3 := min
{
(

ω−1

∏
s=0

a−1
j (s))

2

, j = 1,2, . . . ,n
}
.

We note that if 0 < a(n)< 1 for all n ∈ [0,ω −1], then σ2 ∈ (0,1). Also, if a(n)> 1
for all n ∈ [0,ω − 1], then σ3 ∈ (0,1). Conditions (H2) and (H3) will have to be
handled separately. That is, we define two cones; namely, P2 and P3. Thus, for
each y ∈X set

P2 = {y ∈X : y(n)≥ 0,n ∈ Z,and y(n)≥ σ2‖y‖}

and
P3 = {y ∈X : y(n)≥ 0,n ∈ Z, and y(n)≥ σ3‖y‖}.

Define a mapping T : X →X by

(T x)(n) =
n+ω−1

∑
u=n

G(n,u) f (u,xu) (5.3.11)
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where G(n,u) is defined following (5.3.8). We denote

(T x) =
(

T1x,T2x, . . . ,Tkx
)t
.

It is clear that (T x)(n+ω) = (T x)(n).

Lemma 5.2 ([149]). If (H1) and (H2) hold, then the operator TP2 ⊂P2. If (H1)
and (H3) hold, then TP3 ⊂P3.

Proof. Suppose (H1) and (H2) hold. Then for any x ∈P2 we have

(Tjx(n))≥ 0, j = 1,2, . . .k.

Also, for x ∈P2 by using (5.3.8)–(5.3.11) we have that

(Tjx)(n)≤
∏ω−1

s=0 a−1
j (s)

1−∏n+ω−1
s=n a j(s)

n+ω−1

∑
u=n

| f j(u,xu)|

and

‖Tjx‖= max
n∈[0,ω−1]

|Tjx(n)| ≤
∏ω−1

s=0 a−1
j (s)

1−∏n+ω−1
s=n a j(s)

n+ω−1

∑
u=n

| f j(u,xu)|.

Therefore,

(Tjx)(n) =
n+ω−1

∑
u=n

G j(n,u) f j(u,xu)

≥ ∏ω−1
s=0 a j(s)

1−∏n+ω−1
s=n a j(s)

n+ω−1

∑
u=n

| f j(u,xu)|

≥ (
ω−1

∏
s=0

a j(s))
2

‖Tjx‖ ≥ σ2‖Tjx‖.

That is, TP2 is contained in P2. The proof of the other part follows in the same
manner by simply using (5.3.10), and hence we omit it. This completes the proof.

To simplify notation we denote,

A2 = min
1≤ j≤k

∏ω−1
s=0 a j(s)

1−∏n+ω−1
s=n a j(s)

, (5.3.12)

B2 = max
1≤ j≤k

∏ω−1
s=0 a−1

j (s)

1−∏n+ω−1
s=n a j(s)

, (5.3.13)

A3 = min
1≤ j≤k

∏ω−1
s=0 a−1

j (s)∣∣∣1−∏n+ω−1
s=n a j(s)

∣∣∣ , (5.3.14)
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and

B3 = max
1≤ j≤k

∏ω−1
s=0 a j(s)∣∣∣1−∏n+ω−1
s=n a j(s)

∣∣∣ . (5.3.15)

Lemma 5.3 ([149]). If (H1), (H2), and (H4) hold, then the operator T : P2 →P2
is completely continuous. Similarly, if (H1), (H3), and (H4) hold, then the operator
T : P3 →P3 is completely continuous.

Proof. Suppose (H1), (H2), and (H4) hold. First show that T is continuous. By (H4),
for any L> 0 and ε > 0, there exists a δ > 0 such that [φ , ψ ∈X , ‖φ‖≤ L, ‖ψ‖≤ L,
‖φ −ψ‖< δ ] imply

max
0≤s≤ω−1

| f (s,φs)− f (s,ψs)|< ε
B2ω

where B2 is given by (5.3.13). If x, y ∈P2 with ‖x‖ ≤ L, ‖y‖ ≤ L, and ‖x−y‖< δ ,
then

|(T x)(n)− (Ty)(n)| ≤
n+ω−1

∑
u=n

|G(n,u)|| f (u,xu)− f (u,yu)|

≤ B2

ω−1

∑
u=0

| f (u,xu)− f (u,yu)|< ε

for all n ∈ [0,ω − 1], where |G(n,u)| = max1≤ j≤n |G j(n,u)|, j = 1,2, . . . ,k. This
yields ‖(T x)− (Ty)‖ < ε . Thus, T is continuous. Next we show that T maps
bounded subsets into compact subsets. Let ε = 1. By (H4), for any μ > 0 there
exists δ > 0 such that [x, y ∈X , ‖x‖ ≤ μ , ‖y‖ ≤ μ , ‖x− y‖< δ ] imply

| f (s,xs)− f (s,ys)|< 1.

We choose a positive integer N so that δ > μ
N . For x ∈X , define xi(n) = ix(n)

N , for
i = 0,1,2, ....,N. For ||x|| ≤ μ ,

||xi − xi−1|| = max
n∈Z

∣∣∣ ix(n)
N

− (i−1)x(n)
N

∣∣∣

≤ ||x||
N

≤ μ
N

< δ .

Thus, | f (s,xi)− f (s,xi−1)|< 1. As a consequence, we have

f (s,xs)− f (s,0) =
N

∑
i=1

(
f (s,xi)− f (s,xi−1)

)
,
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which implies that

| f (s,xs)| ≤
N

∑
i=1

| f (s,xi
s)− f (s,xi−1

s )|+ | f (s,0)|

< N + | f (s,0)|.

Thus, f maps bounded sets into bounded sets. It follows from the above inequality
and (5.3.11) that

||(T x)(n)|| ≤ B2

k

∑
j=1

( n+T−1

∑
u=n

| f j(u,xu)|
)

≤ B2ω(N + | f (s,0)|).

If we define S = {x ∈X : ||x|| ≤ μ} and Q = {(T x)(n) : x ∈ S}, then S is a subset
of Rωk which is closed and bounded and thus compact. As T is continuous in x, it
maps compact sets into compact sets. Therefore, Q = T (S) is compact. The proof
for the other case is similar by simply invoking (5.3.15). This completes the proof.

Next, we state two theorems and two corollaries. Our theorems and corollaries are
stated in a way that unify both cases; 0< a(n)< 1 and a(n)> 1 for all n∈ [0,ω−1].

Theorem 5.3.2 ([149]). Assume (H1).
(a) Suppose (H2) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

sup
‖φ‖=R1,φ∈P2

| f (s,xs)| ≤ R1

ωB2
, (5.3.16)

and

inf
‖φ‖=R2,φ∈P2

| f (s,xs)| ≥ R2

ωA2
, (5.3.17)

where A2 and B2 are given by (5.3.12) and (5.3.13), respectively. Then, there exists
x ∈P2 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.
(b) Suppose (H3) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

sup
‖φ‖=R1,φ∈P3

| f (s,xs)| ≤ R1

ωB3
, (5.3.18)

and

inf
‖φ‖=R2,φ∈P3

| f (s,xs)| ≥ R2

ωA3
, (5.3.19)

where A3 and B3 are given by (5.3.14) and (5.3.14), respectively. Then, there exists
x ∈P3 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.
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Proof. Suppose (H1), (H2), and (H4) hold. Let Ωξ = {x ∈P2|‖x‖ < ξ}. Let x ∈
P2 which satisfies ‖x‖= R1. in view of (5.3.16), we have

|(T x)(n))| ≤
n+ω−1

∑
u=n

|G(n,u)|| f (u,xu)|

≤ B2ω
R1

ωB2
= R1.

That is, ‖T x‖ ≤ ‖x‖ for x ∈ P2∩ ∂ΩR1 . let x ∈ P2 which satisfies ‖x‖ = R2 we
have, in view of (5.3.17),

|(T x)(n)| ≥ A2

n+ω−1

∑
u=n

| f (u,xu)| ≥ A2ω
R2

ωA2
= R2.

That is, ‖T x‖ ≥ ‖x‖ for x ∈ P2∩ ∂ΩR2 . In view of Theorem 5.3.1, T has a fixed
point in P2∩ (Ω̄2 \Ω1). It follows from Lemma 5.2 that (5.3.1) has an ω-periodic
solution x with R1 ≤ ‖x‖ ≤ R2. The proof of (b) follows in a similar manner by
simply invoking conditions (5.3.18) and (5.3.19).

As a consequence of Theorem 5.3.2, we state a corollary which its proof we omit.

Corollary 5.1 ([149]). Assume that (H1) holds.
(a) Suppose (H2) and (H4) hold and

lim
φ∈P2,‖φ‖→0

| f (s,φs)|
‖φ‖ = 0, (5.3.20)

lim
φ∈P2,‖φ‖→∞

| f (s,φs)|
‖φ‖ = ∞. (5.3.21)

Then (5.3.1) has a positive periodic solution.
(b) Suppose (H3) and (H4) hold and

lim
φ∈P3,‖φ‖→0

| f (s,φs)|
‖φ‖ = 0, (5.3.22)

lim
φ∈P3,‖φ‖→∞

| f (s,φs)|
‖φ‖ = ∞. (5.3.23)

Then (5.3.1) has a positive periodic solution.

Theorem 5.3.3 ([149]). Suppose that (H1) holds.
(a) Suppose (H2) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

inf
‖φ‖=R1,φ∈P2

| f (s,xs)| ≥ R1

ωB2
, (5.3.24)
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and

sup
‖φ‖=R2,φ∈P2

| f (s,xs)| ≤ R2

ωA2
, (5.3.25)

where A2 and B2 are given by (5.3.12) and (5.3.13), respectively. Then, there exists
x ∈P2 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.
(b) Suppose (H3) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

inf
‖φ‖=R1,φ∈P3

| f (s,xs)| ≥ R1

ωB3
, (5.3.26)

and

sup
‖φ‖=R2,φ∈P3

| f (s,xs)| ≤ R2

ωA3
, (5.3.27)

where A3 and B3 are given by (5.3.14) and (5.3.15), respectively. Then, there exists
x ∈P3 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.

The proof is similar to the proof of Theorem 5.3.2 and hence we omit it. As a
consequence of Theorem 5.3.3, we have the following corollary.

Corollary 5.2 ([149]). Assume that (H1) hold.
(a) Suppose (H2) and (H4) hold and

lim
φ∈P2,‖φ‖→0

| f (s,φs)|
‖φ‖ = ∞, (5.3.28)

lim
φ∈P2,‖φ‖→∞

| f (s,φs)|
‖φ‖ = 0. (5.3.29)

Then (5.3.1) has a positive periodic solution.

(b) Suppose (H3) and (H4) hold and

lim
φ∈P3,‖φ‖→0

| f (s,φs)|
‖φ‖ = ∞, (5.3.30)

lim
φ∈P3,‖φ‖→∞

| f (s,φs)|
‖φ‖ = 0. (5.3.31)

Then (5.3.1) has a positive periodic solution.

5.3.1 Applications to Infinite Delay Population Models

We apply the results from the previous section to the model (5.3.2) and show that
it admits the existence of a positive periodic solution. Thus, we consider the scalar
discrete model that governs the growth of population N(n) of a single species whose
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members compete among themselves for the limited amount of food that is available
to sustain the population. Thus, we consider the infinite delay Volterra scalar model

N(n+1) = α(n)N(n)
[
1− 1

N0(n)

0

∑
s=−∞

B(s)N(n+ s)
]
, n ∈ Z (5.3.32)

as described in the Introduction. We chose to write (5.3.32) that way so that it can
be put in the form of x(n+1) = a(n)x(n)+ f (n,xn).
Before we state our results in the form of a theorem, we assume that

(P1) α(n)> 1, N0(n)> 0 for all n ∈ Z with α(n), N0(n) are ω-periodic and
(P2) B(n) is nonnegative on (−∞,0]∩Z with ∑0

n=−∞ B(n)< ∞.

Theorem 5.3.4 ([149]). Under assumptions (P1) and (P2), equation (5.3.32) has at
least one positive ω-periodic solution.

Proof. Let a(n) = α(n)N(n) and

f (n,xn) =−x(n)a(n)
N0(n)

0

∑
s=−∞

B(s)x(n+ s).

It is clear that f (n,xn) is ω-periodic whenever x is ω-periodic and (H1) and (H3)
hold since f (n,φn)≤ 0 for all (n,φ)∈Z×(Z,R+). To verify (H4), we let x,y : Z→
R+ with ‖x‖ ≤ L, ‖y‖ ≤ L for some L > 0. Then

| f (n,xn)− f (n,yn)|

=
∣∣∣x(n)a(n)

N0(n)

0

∑
s=−∞

B(s)x(n+ s)− y(n)a(n)
N0(n)

0

∑
s=−∞

B(s)y(n+ s)
∣∣∣

≤
∣∣∣x(n)a(n)

N0(n)

∣∣∣
0

∑
s=−∞

B(s)|x(n+ s)− y(n+ s)|

+
∣∣∣ (x(n)− y(n))a(n)

N0(n)

∣∣∣
0

∑
s=−∞

B(s)|y(n+ s)|

≤ L‖a‖
N0∗

max
s∈Z−

|x(n+ s)− y(n+ s)|+ |x(n)− y(n)|‖a‖L
N0∗

,

where N0∗ = min{N0(s) : 0 ≤ s ≤ ω −1}. For any ε > 0, choose δ = εN0∗/(2L‖a‖).
If ‖x− y‖< δ , then

| f (n,xn)− f (n,yn)|< L‖a‖δ/N0∗+δ‖a‖L/N0∗ = 2L‖a‖δ/N0∗ = ε .
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This implies that (H4) holds. We now show that (5.3.22) and (5.3.23) hold. For
φ ∈P3, we have φ(n)≥ σ3‖φ‖ for all n ∈ [0,ω −1]. This yields

| f (n,φ)|
‖φ‖ ≤ max

τ∈[0,ω−1]

a(τ)
N0(τ)

0

∑
s=−∞

B(s)‖φ‖→ 0

as ‖φ‖→ 0 and

| f (n,φ)|
‖φ‖ ≥ min

τ∈[0,ω−1]

a(τ)
N0(τ)

0

∑
s=−∞

B(s)σ3
2‖φ‖→+∞

as ‖φ‖→ ∞. Thus, (5.3.22) and (5.3.23) are satisfied. By (b) of Corollary 5.1, equa-
tion (5.3.32) has a positive ω-periodic solution. This completes the proof.

Next we consider the infinite delay Volterra discrete model

xi(n+1)) = xi(n)
[
ai(n)−

k

∑
j=1

bi j(n)x j(n)−
k

∑
j=1

n

∑
s=−∞

Ci j(n,s)gi j(x j(s))
]

(5.3.33)

where xi(n) is the population of the ith species, ai, bi j : Z→ R are ω-periodic, and
Ci j : Z×Z→ R is ω-periodic. For more on such derivation we refer to [44].

Theorem 5.3.5 ([149]). Suppose that the following conditions hold for
i, j = 1,2, . . . ,k.

(i) ai(n)> 1, for all n ∈ [0,ω −1], and ai(n) is ω-periodic,
(ii) bi j(n)≥ 0, Ci j(n,s)≥ 0 for all (n,s) ∈ Z

2,
(iii) gi j : R+ → R

+ is continuous in x and increasing with gi j(0) = 0,
(iv) bii(s) �= 0, for s ∈ [0,ω −1],
(v) Ci j(n+ω,s+ω) =Ci j(n,s) for all (n,s) ∈ Z

2 with
maxn∈Z ∑n

s=−∞ |Ci j(n,s)|<+∞.

Then equation (5.3.33) has a positive ω-periodic solution.

Proof. For x = (x1,x2, . . . ,xk)
T , define

fi(n,xn) =−xi(t)
k

∑
j=1

bi j(n)x j(n)−
k

∑
j=1

n

∑
s=−∞

Ci j(n,s)gi j(x j(s))

for i = 1,2, . . . ,k and set f = ( f1, f2, . . . , fk)
t . Then by some manipulation of con-

ditions (i)–(v), the conditions (H1) and (H2) are satisfied. Also, it is clear that f
satisfies (H4). Define

b∗ = max{‖bi j‖ : i, j = 1,2, ·, ·, ·,k},

C∗ = max
{

sup
n∈Z

n

∑
j=1

n

∑
s=−∞

|Ci j(n,s)| : i = 1,2, ·, ·, ·,k
}
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and

g∗(u) = max{gi j(u) : i, j = 1,2, ·, ·, ·,k}

Let x ∈P3. Since g is increasing in x, we arrive at

| fi(n,xn)| ≤ |xi(n)|
[
b∗‖x‖+

n

∑
j=1

n

∑
s=−∞

|Ci j(n,s)|gi j(‖x j‖)
]
.

Thus
| f (n,xn)| ≤ ‖x‖[b∗‖x‖+C∗g∗(‖x‖)],

which implies
| f (n,xs)|

‖x‖ ≤ [b∗‖x‖+C∗g∗(‖x‖)]→ 0

as ‖x‖→ 0. For x∈P3, xi(n)≥σ3‖xi‖ for all n∈Z. Also, from (ii), bi j(n),Ci j(n,s)
have the same sign. Thus, using condition (iii) we have

| fi(n,xn)|

=
n

∑
j=1

xi(n)|bi j(n)|x j(n)+
k

∑
j=1

n

∑
s=−∞

|Ci j(n,s)|gi j(x j(s))

≥ |bii(n)|xi(n)|2 ≥ σ3
2‖xi‖2|bii(n)|

and

| f (n,xs)| ≥ σ3
2

k

∑
i=1

‖xi‖2 min
1≤i≤k

|bii(n)| ≥ σ3
2

k
‖x‖2 min

1≤i≤k
|bii(n)|.

Here we have applied the inequality
(

∑k
i=1 ‖xi‖

)2 ≤ k ∑k
i=1 ‖xi‖2. Thus,

| f (n,xs)|
‖x‖ →+∞ as ‖x‖→+∞.

By (b) of Corollary 5.1, equation (5.3.33) has a positive ω-periodic solution. This
completes the proof.

Theorem 5.3.6 ([149]). Suppose that the following conditions hold for i, j = 1,2, . . . ,k.

(i) 0 < ai(n)< 1, for all n ∈ [0,ω −1], and ai(n) is ω-periodic,
(ii) bi j(n)≤ 0, Ci j(n,s)≤ 0 for all (n,s) ∈ Z

2,
(iii) gi j : R+ → R

+ is continuous in x and increasing with gi j(0) = 0,
(iv) bii(s) �= 0, for s ∈ [0,ω −1],
(v) Ci j(n+ω,s+ω) =Ci j(n,s) for all (n,s) ∈ Z

2 with
maxn∈Z ∑n

s=−∞ |Ci j(n,s)|<+∞.

Then equation (5.3.33) has a positive ω-periodic solution.

Proof. The proof follows from part (a) of Corollary 5.1.
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Remark 5.1. In the statements of Theorem 5.3.5 and Theorem 5.3.6 condition (iv)
can be replaced by

(iv∗)
k

∑
j=1

n

∑
s=−∞

|Ci j(n,s)| �= 0 and gii(x)→+∞ as x →+∞.

5.4 Permanence of Multi-Species Competition Predation

The literature on nonautonomous continuous population models described by dif-
ferential equations is vast, see [165, 166, 167, 168, 169] and the references cited
therein. For example, Wen [169] considered the global attractivity of positive peri-
odic solution of multi-species ecological competition-predation system. Yang and
Xu [33] studied the global attractivity and existence of the periodic n-prey and m-
predator Lotka-Volterra system of differential equations. It is biologically and math-
ematically crucial to study the existence and stability of periodic solution. However,
a more basic and important biological question to ask is whether or not those in-
volved populations will be alive and well in the long run. In [174], Chen discussed
the permanence and global stability of nonautonomous Lotka-Volterra system with
multi-species predator-prey and deviating arguments by using comparison theorem
and constructing suitable Lyapunov functional. On the other hand, the problems
of permanence of time-delay systems have received considerable attention in the-
oretical ecology due to the fact that more realistic models should include some
of the past states of these systems. The dynamic behaviors of population mod-
els governed by difference equation have also been studied by many authors (see
[31, 50, 95, 126, 162, 164, 165, 174, 175], and [178] and the references therein).
This is a relatively new topic and the author believes this study should increase re-
search activities on the subject. In [126], Muroya studied the persistence and global
stability of delay discrete system for k-species,

xi(n+1) = xi(n)exp{ci −aixi(n)−∑l
k=1 aik(n)xk(n− τik)}.

Results of this section can be partially found in [152] and [165]. The Jacobian
method of Section 5.2 is not suitable for our study here. The aim of this study
is to investigate the permanent behavior of the following discrete (l +m)-species
Lotka-Volterra competition-predation system with several delays

xi(n+1) = xi(n)exp{ri(n)−ai(n)xi(n)−∑l
k=1 aik(n)xk(n− τik)

−∑m
k=1 eik(n)yk(n−ηik)},

y j(n+1) = y j(n)exp{−b j(n)− c j(n)y j(n)+∑l
k=1 d jk(n)xk(n−δ jk)

−∑m
k=1 c jk(n)yk(n−ξ jk)},

xi(θ) = φi(θ)≥ 0, y j(θ) = ψ j(θ)≥ 0, θ ∈ N[−τ ,0] := {−τ ,−τ +1, ...,−1,0},
(5.4.1)
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where i = 1,2, ..., l; j = 1,2, ...,m; τik, ηik, δ jk and ξ jk are nonnegative integers;
φi(0)> 0, ψ j(0)> 0;

τ = max{ max
1≤i,k≤l

τik, max
1≤i≤l; 1≤k≤m

ηik, max
1≤k≤l; 1≤ j≤m

δ jk, max
1≤ j,k≤m

ξ jk}> 0;

xi(n) is the density of species Xi at nth generation; y j(n) is the density of species
Yj at nth generation; ri(n) represents the intrinsic growth rate of the prey species
Xi at the nth generation; b j(n) represents the death rate of the predator species Yj

at the nth generation; aik(n) and c jk(n) measure the intensity of intraspecific com-
petition or interspecific action of prey species and predator species, respectively;
eik(n) and d jk(n) represent the influence of the (n−ηik)th and (n− δ jk)th genera-
tion of the predator and prey on the prey and predator population, respectively. For
more background of system (5.4.1), one could refer to [169] and [174]. It is clear
that model (5.4.1) has positive solutions for positive initial data. We note that the
model (5.4.1) generalizes the models in [31, 50], and [126].

Definition 5.4.1. System (5.4.1) is said to be permanent if there are positive con-
stants Mk and Lk, k = 1,2, such that for each positive solution

{x1(n), ...,xl(n),y1(n), ...,ym(n)}

of system (5.4.1) satisfies

L1 ≤ lim
n→∞

infxi(n)≤ lim
n→∞

supxi(n)≤ M1,

L2 ≤ lim
n→∞

infy j(n)≤ lim
n→∞

supy j(n)≤ M2,

for all i = 1,2, ..., l; j = 1,2, ...,m.

Throughout, we always assume {ri(n)}, {b j(n)}, {aik(n)}, {eik(n)}, {d jk(n)},
{c jk(n)}, {ai(n)} and {c j(n)} are bounded nonnegative sequences, and use the fol-
lowing notations for any bounded sequence {u(n)}

u = sup
n∈N

u(n), u = inf
n∈N

u(n).

In order to present our main result, we need some preliminaries. Let R
l+m
+ =

{(x1(n), ...,xl(n),y1(n), ...,ym(n))| xi(n) ≥ 0,y j(n) ≥ 0, i = 1,2, ..., l; j = 1, ...,m},
and let x(n) = (x1(n), ...,xl(n),y1(n), ...,ym(n)) ∈ R

l+m
+ , the notation x(n) > 0 de-

notes x(n) ∈ IntRl+m
+ . For ecological reasons, we consider system (5.4.1) only in

IntRl+m
+ . It is easy to obtain the following result.

Lemma 5.4 ([165]). IntRl+m
+ is positively invariant set of system (5.4.1).

Lemma 5.5 ([165]). Assume that {x(n)} satisfies x(n)> 0 and

x(n+1)≤ x(n)exp{r(n)(1−ax(n))}
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for n ∈ [n1,∞), where a is a positive constant. Then

limsup
n→∞

x(n)≤ 1
ar

exp(r−1).

Lemma 5.6 ([165]). Assume that {x(n)} satisfies

x(n+1)≥ x(n)exp{r(n)(1−ax(n))},n ≥ N0,

limsupn→∞ x(n) ≤ K and x(N0) > 0, where a is a constant such that aK > 1 and
N0 ∈ N. Then

liminf
n→∞

x(n)≥ 1
a

exp{r(1−aK)}.
The main result will follow directly from the following two propositions.

Proposition 5.1 ([152]). For every solution {x1(n), ...,xl(n),y1(n), ...,ym(n)} of sys-
tem (5.4.1), we have

limsup
n→∞

xi(n)≤ Mi (i = 1,2, ..., l), limsup
n→∞

y j(n)≤Wj ( j = 1,2, ...,m),

where

Mi =
exp(ri −1)

ai +aii exp(−riτii)
, Wj =

exp(∑l
k=1 d jkMk −b j −1)

c j + c j j exp((b j −∑l
k=1 dkkMk)ξ j j)

.

Proof. First, we prove limsupn→∞ xi(n)≤ Mi. From the first equation of (5.4.1), we
have

xi(n+1)≤ xi(n)exp{ri(n)}.
It follows that

n−1

∏
s=n−τik

xi(s+1)≤
n−1

∏
s=n−τik

xi(s)exp{ri(s)},

that is

xi(n)≤ xi(n− τik)exp{
n−1

∑
s=n−τik

ri(s)}.

In other words,

xi(n− τik)≥ xi(n)exp{−
n−1

∑
s=n−τik

ri(s)},

and hence

xi(n+1) ≤ xi(n)exp{ri(n)−ai(n)xi(n)−
l

∑
k=1

aik(n)xk(n)exp{−
n−1

∑
s=n−τik

ri(s)}

≤ xi(n)exp{ri(n)− (ai(n)+aii(n))exp{−
n−1

∑
s=n−τii

ri(s)}xi(n)}

≤ xi(n)exp{ri − (ai +aii)exp(−riτii)xi(n)}.
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It follows from Lemma 5.5 that

limsup
n→∞

xi(n)≤ Mi.

Next, we prove that limsupn→∞ y j(n)≤Wj. For sufficiently small ε > 0, there exists
sufficiently large n0 such that xi(n)≤Mi+ε for all n> n0. From the second equation
of (5.4.1), we have

y j(n+1) ≤ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)xk(n−δ jk)}

≤ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)(Mk + ε)}.

By a similar argument, we can verify that

y j(n−ξ jk)≤ y j(n)exp{
n−1

∑
s=n−ξ jk

(b j(s)−
l

∑
k=1

d jk(s)(Mk + ε))},

and hence

y j(n+1) ≤ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)(Mk + ε))− c j(n)y j(n)

−
m

∑
k=1

c jk(n)yk(n)exp{
n−1

∑
s=n−ξ jk

(bk(s)−
l

∑
k=1

dkk(s)(Mk + ε))}}

≤ y j(n)exp{(−b j +
l

∑
k=1

d jk(Mk + ε))− (c j + c j j)exp{(b j

−
l

∑
k=1

dkk(Mk + ε))ξ j j}y j(n)}.

Therefore, by Lemma 5.5, we obtain

limsup
n→∞

y j(n)≤Wj.

The proof is complete.

Proposition 5.2 ([152]). Let {x1(n), ...,xl(n),y1(n), ...,ym(n)} denote any positive
solution of system (5.4.1). Assume

(H) min
1≤i≤l; 1≤ j≤m

{
(ai +aii)Mi

ri −∑l
k=1,k �=i aikMk −∑m

k=1 eikWk
,

(c j + c j j)Wj

∑l
k=1 d jkmk −b j −∑m

k=1,k �= j c jkWk

}
> 1.
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Then there exist positive constants mi and w j such that

liminf
n→∞

xi(n)≥ mi, liminf
n→∞

y j(n)≥ w j (i = 1,2, ..., l; j = 1,2, ...,m),

where

mi =
r1 −∑l

k=1 aikMk −∑m
k=1 eikWk

ai +aii
exp{(ri −

l

∑
k=1

aikMk)

×(1− (ai +aii)Mi

ri −∑l
k=1 aikMk −∑m

k=1 eikWk
)},

w j =
∑l

k=1 d jkmk −b j −∑m
k=1 c jkWk

c j + c j j
exp{(−b j +

l

∑
k=1

d jkmk −
m

∑
k=1

c jkWk)

×(1− (c j + c j j)Wj

∑l
k=1 d jkmk −b j −∑m

k=1 c jkWk
)}.

Proof. We first prove that liminfn→∞ xi(n)≥ mi. For any ε > 0, according to Propo-
sition 5.1, there exists a n1 ∈N such that xi(n− τ)≤ Mi + ε , y j(n− τ)≤Wj + ε for
all n ≥ n1. Thus, it follows from the first equation of system (5.4.1) that

xi(n+1) ≥ xi(n)exp{(ri(n)−
l

∑
k=1,k �=i

aik(n)(Mk + ε)

−
m

∑
k=1

eik(n)(Wk + ε))− (ai(n)+aii(n))xi(n)}

= xi(n)exp{(ri(n)−
l

∑
k=1,k �=i

aik(n)(Mk + ε)−
m

∑
k=1

eik(n)(Wk + ε))

×(1− ai(n)+aii(n)

ri(n)−∑l
k=1,k �=i aik(n)(Mk + ε)−∑m

k=1 eik(n)(Wk + ε)
xi(n))}

≥ xi(n)exp{(ri(n)−
l

∑
k=1,k �=i

aik(n)(Mk + ε)−
m

∑
k=1

eik(n)(Wk + ε))

×(1− ai(n)+aii(n)

ri −∑l
k=1,k �=i aik(Mk + ε)−∑m

k=1 eik(Wk + ε)
xi(n))}.

By lemma 5.6 and condition (H), we obtain

liminf
n→∞

xi(n)≥ mi.
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From the second equation of (5.4.1), we have

y j(n+1) ≥ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)mk

−
m

∑
k=1,k �= j

c jk(n)(Wk + ε)− (c j(n)+ c j j(n))y j(n)}

= y j(n)exp{(−b j(n)+
l

∑
k=1

d jk(n)mk −
m

∑
k=1,k �= j

c jk(n)(Wk + ε))

×(1− c j(n)+ c j j(n)

∑l
k=1 d jk(n)mk −b j(n)−∑m

k=1,k �= j c jk(n)(Wk + ε)
y j(n)}

≥ y j(n)exp{(−b j(n)+
l

∑
k=1

d jk(n)mk −
m

∑
k=1,k �= j

c jk(n)(Wk + ε))

×(1− c j(n)+ c j j(n)

∑l
k=1 d jkmk −b j −∑m

k=1,k �= j c jk(Wk + ε)
y j(n)}.

By Lemma 5.6 and condition (H), we obtain liminfn→∞ y j(n)≥ w j. This completes
the proof.

Now, we state our main results of this section, which its proof is a direct conse-
quence of Propositions 5.1 and 5.2.

Theorem 5.4.1 ([152]). Assume (H) holds. Then system (5.4.1) is permanent.

Now, let us consider the special case of system (5.4.1), i.e., ai(n) ≡ c j(n) ≡ 0,
τik ≡ 0, ηis ≡ 0, δ jk ≡ 0 and ξ js ≡ 0 (i,k = 1,2, ..., l; j,s = 1,2, ...,m), in this case,
system (5.4.1) can be written as

xi(n+1) = xi(n)exp{ri(n)−∑l
k=1 aik(n)xk(n)−∑m

k=1 eik(n)yk(n)},
y j(n+1) = y j(n)exp{−b j(n)+∑l

k=1 d jk(n)xk(n)−∑m
k=1 c jk(n)yk(n)}.

(5.4.2)

As a corollary of Theorem 5.4.1, we have

Corollary 5.3 ([152]). Let {x1(n), ...,xl(n),y1(n), ...,ym(n)} denote any positive so-
lution of system (5.4.2). Assume

min
1≤i≤l; 1≤ j≤m

{
aiiM′

i

ri −∑l
k=1,k �=i aikM′

k −∑m
k=1 eikW ′

k

,
c j jW ′

j

∑l
k=1 d jkm′

k −b j −∑m
k=1,k �= j c jkW ′

k

}
> 1
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holds. Then there exist positive constants M′
i , W ′

j , m′
i and w′

j such that

m′
i ≤ lim inf

n→∞
xi(n)≤ lim sup

n→∞
xi(n)≤ M′

i (i = 1,2, ..., l),

w′
j ≤ lim inf

n→∞
y j(n)≤ lim sup

n→∞
y j(n)≤W ′

j ( j = 1,2, ...,m),

where

M′
i =

exp(ri −1)
aii

, W ′
j =

exp(∑l
k=1 d jkM′

k −b j −1)

c j j
,

m′
i =

r1 −∑l
k=1 aikM′

k −∑m
k=1 eikW ′

k

aii
exp{(ri −

l

∑
k=1

aikM′
k)

×(1− aiiM′
i

ri −∑l
k=1 aikM′

k −∑m
k=1 eikW ′

k

)},

w′
j =

∑l
k=1 d jkm′

k −b j −∑m
k=1 c jkW ′

k

c j j
exp{(−b j +

l

∑
k=1

d jkm′
k −

m

∑
k=1

c jkW
′
k)

×(1− c j jW ′
j

∑l
k=1 d jkm′

k −b j −∑m
k=1 c jkW ′

k

)}.

Finally, we give a suitable example to illustrate the feasibility of Theorem 5.4.1.

Example 5.1. We consider the following system:

x(n+1) = x(n)exp{1− x(n−1)− 1
60 (3+ sinn)y1(n)},

y1(n+1) = y1(n)exp{−1+ 2
9 (8+ cosn)x(n)− y1(n−1)− 1

80 (3+ sinn)y2(n)},
y2(n+1) = y2(n)exp{−1− cosn+ 2

9 (8+ cosn)x(n)− y2(n−1)}.

It is easy to verify that the system satisfies the condition (H). Therefore, by Theo-
rem 5.4.1 the system is permanent.

5.5 Open Problems

Open Problem 1.
In this section we consider the Lotka-Volterra predator-prey model given by Elaydi
et al. [90] and extend it to predator-prey model with ratio dependence. Let x and
y represent population densities of a prey and a predator, respectively. In [70], Fan
and Wang discretized a continuous model with ratio dependence and obtained the
Lotka-Volterra discrete predator-prey model with ratio dependence
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n+1) = x(n)exp
{

a(n)−b(n)x(n)− c(n)y(n)
m(n)y(n)+ x(n)

}

y(n+1) = y(n)exp
{−d(n)+

f (n)x(n)
m(n)y(n)+ x(n)

} (5.5.1)

We refer to [70] for the specific interpretation of the coefficients. In [70] the authors
proved the existence of positive periodic solution of (5.5.1) by using Coincidence
Theory or Degree Theory.
We propose the reader uses the idea of [176] and show the positive periodic solu-
tion is actually globally asymptotically stable by constructing a suitable Lyapunov
function.
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