
Chapter 2
Functional Difference Equations

In this chapter we consider functional difference equations that we apply to all types
of Volterra difference equations. Our general theorems will require the construction
of suitable Lyapunov functionals, a task that is difficult but possible. As we have
seen in Chapter 1, the concept of resolvent can only apply to linear Volterra dif-
ference systems. The theorems on functional difference equations will enable us to
qualitatively analyze the theory of boundedness, uniform ultimate boundedness, and
stability of solutions of vectors and scalars Volterra difference equations. We extend
and prove parallel theorems regarding functional difference equations with finite or
infinite delay, and provide many applications. In addition, we will point out the need
of more research in delay difference equations. In the second part of the chapter, we
state and prove theorems that guide us on how to systematically construct suitable
Lyapunov functionals for a specific nonlinear Volterra difference equation. We end
the chapter with open problems. Most of the results of this chapter can be found in
[37, 38, 128, 133, 135, 141, 147, 181], and [182].

2.1 Uniform Boundedness and Uniform Ultimate Boundedness

We begin by considering Lyapunov functionals to prove general theorems about
boundedness, uniform ultimate boundedness of solutions, and stability of the zero
solution of the nonlinear functional discrete system

x(n+1) = G(n,x(s); 0 ≤ s ≤ n)
de f
= G(n,x(·)) (2.1.1)

where G : Z+×R
k → R

k is continuous in x. When Lyapunov functionals are used
to study the behavior of solutions of functional difference equations of the form
of (2.1.1), we often end up with a pair of inequalities of the form
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56 2 Functional Difference Equations

V (n,x(·)) =W1(x(n))+
n−1

∑
s=0

K(n,s)W2(x(s)), (2.1.2)

�V (n,x(·))≤−W3(x(n))+F(n) (2.1.3)

where V is a Lyapunov functional bounded below, x is the known solution of the
functional difference equation, and K, F , and Wi, i = 1,2,3, are scalar positive func-
tions. Inequalities (2.1.2) and (2.1.3) are rich in information regarding the qualitative
behavior of the solutions of (2.1.1).
The goal is to use inequalities (2.1.2) and (2.1.3) to conclude boundedness of
x(n) when F is bounded. Also, we obtain stability results about the zero solution
of (2.1.1) when F = 0 and G(n,0) = 0. In the celebrated paper of Kolmanovskii
et al. [36], the authors investigated the boundedness of solutions of Volterra differ-
ence equations by means of Lyapunov functionals. Also, in [37] the same authors
constructed general theorems for the stability of the zero solution of Volterra type
difference equations.
As we have seen in Chapter 1, several authors like Medina [113, 115, 116], Islam
and Raffoul [83], and Raffoul [135] obtained stability and boundedness results of
the solutions of discrete Volterra equations by means of representing the solution
in terms of the resolvent matrix of the corresponding system of difference Volterra
equations. Eloe et al. [65] and Elaydi et al. [61] used the notion of total stability and
established results on the asymptotic behavior of the solutions of discrete Volterra
system with nonlinear perturbation. Their work heavily depended on the summa-
bility of the resolvent matrix. For more results on stability of the zero solution of
Volterra discrete system we refer the reader to Elaydi [52] and Agarwal and Pang
[5] and [117].
Boundedness of solutions of linear and nonlinear discrete Volterra equations was
also studied by Diblik and Schmeidel [47], Gronek and Schmeidel [72], and the
references therein. A survey of the fundamental results on the stability of linear
Volterra difference equations, of both convolution and non-convolution type, can be
found in Elaydi [59].
We say that x(n) = x(n,n0,φ) is a solution of (2.1.1) with a bounded initial function
φ : [0,n0]→ R

k if it satisfies (2.1.1) for n > n0 and x( j) = φ( j) for j ≤ n0.
If D is a matrix or a vector, |D| means the sum of the absolute values of the ele-
ments. Since we are now dealing with functional difference equations, we restate
the following stability definitions.

Definition 2.1.1. Solutions of (2.1.1) are uniformly bounded (UB) if for each B1 > 0
there is B2 > 0 such that

[
n0 ≥ 0,φ : [0,n0]→R

k with |φ(n)|< B1 on [0,n0],n> n0
]

implies |x(n,n0,φ)|< B2.

Definition 2.1.2. Solutions of (2.1.1) are uniformly ultimately bounded (UUB) for
bound B if there is a B > 0 and if for each M > 0 there exists N > 0 such that[
n0 ≥ 0,φ : [0,n0] → R

k with |φ(n)| < M on [0,n0],n > n0,n > n0 +N
]

implies
|x(n,n0,φ)|< B.
If G(n,0) = 0, then x(n) = 0 is a solution of (2.1.1). In this case we state the follow-
ing definitions.
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Definition 2.1.3. The zero solution of (2.1.1) is stable (S) if for each ε > 0, there is
a δ = δ (ε)> 0 such that

[
φ : [0,n0]→R

k with |φ(n)|< δ on [0,n0],n≥ n0
]

implies
|x(n,n0,φ)|< ε . It is uniformly stable (US) if δ is independent of n0.

Definition 2.1.4. The zero solution of (2.1.1) is uniformly asymptotically stable
(UAS) if it is (US) and there exists a γ > 0 with the property that for each μ > 0 there
exists N > 0 such that

[
n0 ≥ 0,φ : [0,n0]→R

k with |φ(n)|< γ on [0,n0],n≥ n0+N
]

implies |x(n,n0,φ)|< μ .

We begin by proving general theorems regarding boundedness and stability of solu-
tions of (2.1.1).

Theorem 2.1.1 ([133]). Let ϕ(n,s) be a scalar sequence for 0 ≤ s ≤ n < ∞ and
suppose that ϕ(n,s) ≥ 0,�nϕ(n,s) ≤ 0,�sϕ(n,s) ≥ 0 and there are constants B
and J such that ∑n

s=0 ϕ(n,s)≤ B and ϕ(0,s)≤ J. Also, suppose that for each n0 ≥ 0
and each bounded initial function φ : [0,n0]→R

k, every solution x(n) = x(n,n0,φ)
of (2.1.1) satisfies

W1(|x(n)|)≤V (n,x(·))≤W2(|x(n)|)+
n−1

∑
s=0

ϕ(n,s)W3(|x(s)|) (2.1.4)

and
�V(2.1.1)(n,x(·))≤−ρW3(|x(n)|)+K (2.1.5)

for some constants ρ and K ≥ 0. Then solutions of (2.1.1) are (UB).

Proof. H > 0 and |φ(n)| < H on [0,n0], and set V (n) = V (n,x(·)). Let V (n∗) =
max0≤n≤n0 V (n). If V (n)≤V (n∗) for all n ≥ n0, then by (2.1.4) we have

W1(|x(n)|)≤V (n) ≤ V (n∗)

≤ W2(|x(n∗)|)+
n∗−1

∑
s=0

ϕ(n∗,s)W3(|φ(s)|)

≤ W2(|φ(n∗)|)+
n∗−1

∑
s=0

ϕ(n∗,s)W3(|φ(s)|)

≤ W2(H)+BW3(H).

From which it follows that

|x(n)≤W−1
1

[
W2(H)+BW3(H)

]
.

On the other hand, if V (n)>V (n∗) for some n ≥ n0, so that V (n) = max0≤s≤n V (s).
We multiply both sides of (2.1.5) by ϕ(n,s) and then sum from s = n0 to s = n−1,
we obtain

n−1

∑
s=n0

(�V (s)
)
ϕ(n,s)≤−ρ

n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)+KB.
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Summing by parts the left side we arrive at

V (n)ϕ(n,n) − V (n0)ϕ(n,n0)−
n−1

∑
s=n0

V (s+1)�sϕ(n,s)

≤ −ρ
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)+KB.

Hence

ρ
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|) ≤ V (n)ϕ(n,n)+V (n0)ϕ(n,n0)

+
n−1

∑
s=n0

V (s+1)�sϕ(n,s)+KB. (2.1.6)

Since �sϕ(n,s)≥ 0, we have for V (n) = max0≤s≤n−1 V (s+1),

n−1

∑
s=n0

V (s+1)�sϕ(n,s) ≤ V (n)
n−1

∑
s=n0

�sϕ(n,s)

= V (n)[ϕ(n,n)−ϕ(n,n0)].

Thus, from inequality (2.1.6) we have

ρ
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|) ≤ V (n)[ϕ(n,n)−ϕ(n,n0)]

− V (n)ϕ(n,n)+V (n0)ϕ(n,n0)+KB

≤ V (n0)ϕ(n,n0)+KB

≤ V (n0)ϕ(0,n0)+KB

≤ V (n0)J+KB. (2.1.7)

In view of (2.1.4), we have

V (n0) ≤ W2(|φ(n0)|)+
n0−1

∑
s=0

ϕ(n0,s)W3(|φ(s)|)

≤ W2(H)+BW3(H).

As a result, inequality (2.1.7) yields

n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)≤ W2(H)+BW3(H)

ρ
+

KB
ρ

.

Now, inequality (2.1.4) implies that
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V (n) ≤ W2(|x(n)|)+
n0−1

∑
s=0

ϕ(n,s)W3(|x(s)|)+
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)

≤ W2(|x(n)|)+BW3(H)+
W2(H)+BW3(H)

ρ
+

KB
ρ

≤ W2(|x(n)|)+D(H),

where D(H) = BW3(H)+ W2(H)+BW3(H)
ρ + KB

ρ .

As W3(r)→∞ as r →∞, there exists an L > 0 such that W3(L) = K
ρ . Now, by (2.1.5),

if |x| > L, then �V < 0. Thus, V (n) attains its maximum when |x| ≤ L. Hence we
have

W1(|x(n)|) ≤ V (n)≤W2(|x(n)|)+D(H)

≤ W2(L)+DH.

Finally, from the above inequality we arrive at

|x(n)| ≤W−1
1

[
W2(L)+D(H)

]
.

This completes the proof.

The next theorem extends Theorem 2.1.1.

Theorem 2.1.2 ([133]). Let ϕi(n,s) be a scalar sequence for 0 ≤ s ≤ n < ∞ and
suppose that ϕi(n,s)≥ 0,�nϕi(n,s)≤ 0,�sϕi(n,s)≥ 0 and there are constants Bi

and Ji such that ∑n
s=0 ϕi(n,s) ≤ Bi and ϕi(0,s) ≤ Ji. Also, suppose that for each

n0 ≥ 0 and each bounded initial function φ : [0,n0] → R
k, every solution x(n) =

x(n,n0,φ) of (2.1.1) satisfies

W1(|x(n)|) ≤ V (n,x(·))

≤ W2(|x(n)|)+
n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|)

+
n−1

∑
s=0

ϕ2(n,s)W4(|x(s)|) (2.1.8)

and
�V(2.1.1)(n,x(·))≤−ρ1W3(|x(n)|)−ρ2W4(|x(n)|)+K (2.1.9)

for some constants ρi ≥ 0, i = 1,2 and K ≥ 0. Then solutions of (2.1.1) are (UB).

Proof. We follow the proof of the previous theorem. Let V (n) = max0≤s≤n V (s),
n ≥ n0. If the max of V (n) occurs on [0,n0], then it is trivial. Multiply both sides
of (2.1.9) by ϕi(n,s) and then sum from s = n0 to s = n−1 to obtain

ρi

n−1

∑
s=n0

ϕi(n,s)W3(|x(s)|)≤V (n0)J+KB, i = 1,2. (2.1.10)
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For H > 0 and |φ(n)|< H, we have

V (n0)≤W2(H)+BW3(H)+B2W4(H)
de f
= R(H),

and

n0−1

∑
s=0

ϕi(n,s)Wi+2(|x(s)|)≤Wi+2Bi.

Thus, inequality (2.1.10) yields,

n−1

∑
s=0

ϕi(n,s)Wi+2(|x(s)|)≤ R(H)Ji +KBi

ρi
+Wi+2Bi

de f
= Si(H).

Now, by (2.1.9), if |x| > L, then �V < 0. Thus, V (n) attains its maximum when
|x| ≤ L and hence

W1(|x(n)|) ≤ V (n)≤W2
[|x(H)|+S1(H)

]
+S2(H)

≤ W2
[
L+S1(H)

]
+S2(H).

From the above inequality we obtain

|x(n)| ≤W−1
1

[
W2

[
L+S1(H)

]
+S2(H)

]
.

This completes the proof.

In the next theorem we obtain boundedness and stability results about solutions and
the zero solution of (2.1.1).

Theorem 2.1.3 ([133]). Let ϕ(n) ≥ 0 be a scalar sequence for n ≥ 0 and V and
Wi, i = 1,2, be defined as before. Also, suppose that for each n0 ≥ 0 and each
bounded initial function φ : [0,n0]→R

k, every solution x(n) = x(n,n0,φ) of (2.1.1)
satisfies

W1(|x(n)|)≤V (n,x(·))≤ αW2(|x(n)|)+
n−1

∑
s=0

ϕ(n− s−1)W2(|x(s)|) (2.1.11)

and
�V(2.1.1)(n,x(·))≤−ρW2(|x(n)|) (2.1.12)

for some constants ρ and α > 0.

a) If ∑∞
s=0 ϕ(s) = B, then solutions of (2.1.1) are (UB) and the zero solution

of (2.1.1) is (US).
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b) If ∑∞
n=0 ∑∞

s=n ϕ(s) = J, then solutions of (2.1.1) are (UAB) and the zero solu-
tion of (2.1.1) is (UAS).

Proof. Let H > 0 and |φ(n)|< H on [0,n0], and set V (n) =V (n,x(·)). By (2.1.12),
V (n) is monotonically decreasing and hence, by (2.1.11), we have

W1(|x(n)|)≤V (n) ≤ V (n0)

≤ αW2(H)+W2(H)
n0−1

∑
u=0

ϕ(u)

≤ W2(H)
(
α +B

)
. (2.1.13)

Let ε > 0 be given. Choose H such that H < ε and

W2(H)
(
α +B

)
<W1(ε).

Hence from (2.1.13), we have |x(n)|< ε , for n≥ n0. Consequently, the zero solution
of (2.1.1) is US). Also, it follows from (2.1.13) that

|x(n)|<W−1
1

[
W2(H)

(
α +B

)]
,

which implies solutions of (2.1.1) are (UB).
Sum (2.1.12) from s = n0 to s = n−1 to obtain

−V (n0)≤V (n)−V (n0)≤−ρ
n−1

∑
s=n0

W2(|x(s)|)

and hence

n−1

∑
s=n0

W2(|x(s)|)≤ V (n0)

ρ
≤ (α +B)W2(H)

ρ
.

On the other hand, if we sum (2.1.11) from s = n0 to s = n−1 we arrive at

n−1

∑
s=n0

V (s) ≤ α
(α +B)W2(H)

ρ
+

n−1

∑
u=n0

u−1

∑
s=0

ϕ(u− s−1)W2(|x(s)|)

≤ (α +B)W2(H)

ρ
+

n0−1

∑
s=0

n−1

∑
u=n0

ϕ(u− s−1)W2(|x(s)|)

+
n−1

∑
s=n0

n−1

∑
u=s

ϕ(u− s−1)W2(|x(s)|)

≤ (α +B)W2(H)

ρ
+

n0−1

∑
s=0

W2(|x(s)|)
n−1

∑
u=n0

ϕ(u− s−1)

+
n−1

∑
s=n0

W2(|x(s)|)
n−1

∑
u=s

ϕ(u− s−1)



62 2 Functional Difference Equations

≤ (α +B)W2(H)

ρ
+W2(H)

n0−1

∑
s=0

n−1

∑
u=n0

ϕ(u− s−1)

+B
n−1

∑
s=n0

W2(|x(s)|)

≤ (α +B)2W2(H)

ρ
+W2(H)

n0−1

∑
s=0

u−n

∑
r=n0−s−1

ϕ(r)

≤ (α +B)2W2(H)

ρ
+W2(H)

∞

∑
ξ=0

∞

∑
r=ξ

ϕ(r)

≤ (α +B)2W2(H)

ρ
+W2(H)J

≤ [
J+

(α +B)2

ρ
]
W2(H)

de f
= aW2(H). (2.1.14)

Since V (n) is positive and decreasing for all n ≥ n0 ≥ 0, we have

n−1

∑
s=n0

V (s)≥V (n)(n−n0).

Let ε > 0 be given. Then, for n ≥ n0 +
aW2(H)
W1(ε)

we have form (2.1.11) and (2.1.14)
that

W1(|x(n)|)≤V (n)≤ aW2(H)

n−n0
<W1(ε). (2.1.15)

Hence, inequality (2.1.15) implies that

|x(n)| ≤W−1
1

(aW2(H)

n−n0

)
< ε .

From this we have the (UAB) and the (UAS).

2.2 Functional Delay Difference Equations

Next, we discuss the papers by Zhang [181], the paper [182] by Zhang, and MinG-
Po, and the papers by Raffoul [133, 145], in which the authors prove general the-
orems regarding boundedness and stability of functional difference equations with
infinite or finite delay. In [145], the author proves general theorem in which he offers
necessary and sufficient conditions for the uniform boundedness of all solutions. We
begin by noting that Definition 2.1.4 can be easily extended to accommodate infinite
or finite delays systems by considering the initial sequence φ : [−α,n0]→R

k where
α can either be taken finite or infinite. We consider the functional delay difference
equation
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x(t +1) = F(t,xt). (2.2.1)

We assume that F is continuous in x and that F : Z×C → R
n where C is the set of

sequences φ : [−α,0]→ R
n, α > 0. Let

C(t) = {φ : [t −α, t]→ R
n}.

It is to be understood that C(t) is C when t = 0. Also φt denotes φ ∈ C(t) and
||φt ||= max

t−α≤s≤t
|φ(t)|, where | · | is a convenient norm on R

n. For t = 0,

C(0) = {φ : [−α,0]→ R
n}.

Theorem 2.2.1 ([181]). Let ϕ(n) ≥ 0 be a scalar sequence for n ≥ 0 and V
and Wi, i = 1,2, be defined as before. Also, suppose that for each n0 ≥ 0 and
each bounded initial function φ : [0,n0]→ [0,∞), every solution x(n) = x(n,n0,φ)
of (2.1.1) satisfies

W1(|x(n)|)≤V (n,x(·))≤W2(|x(n)|)+W3

( n

∑
s=l

ϕ(n− s)W4(|x(s)|)
)

(2.2.2)

and
�V(2.2.1)(n,x(·))≤−W5(|x(n)|). (2.2.3)

In addition, if ∑ϕ(s) = J, then the zero solution of (2.2.1) is (UAS).

It is widely known that there are two methods in studying the qualitative theory of
delay differential or difference equations. The basic and more natural one is what
we call the Razumikhin Lyapunov method and the most popular one is the direct
method of Lyapunov function or functional. In some cases one has an advantage
over the other and that all depends on the system being studied. It is the opinion of
the author that Razumikhin Lyapunov method is easier to use since the Lyapunov
function is readily available. Moreover, the imposed conditions are less restrictives.
We consider (2.2.1) for n ∈ Z

+. We assume F : Z+×CH → R
n, where

CH = {φ ∈C(0) : ||φ ||< H},

for some positive constant H. Also, xt(s) = x(t + s), s ∈ C(0). We assume that
F(t,0) = 0, so that x = 0 is a solution. It is assumed that for any t0 ∈ Z

+ and a given
function φ ∈ CH , there is a unique solution of (2.2.1), denoted by x(t, t0,φ), such
that it satisfies (2.2.1) for all integers t ≥ t0, and x(t0, t0,φ) = φ . Lastly, we assume
there is a constant L > 0 such that

|F(t,φ)| ≤ L||φ ||, for t ∈ Z
+ and φ ∈CH .

In the next theorem, we use Lyapunov-Razumikhin method type functions to prove
the (UAS) of the zero solution of (2.2.1). Its proof is too long for our purpose and it
can be found in [182].
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Theorem 2.2.2 ([182]). In addition to the above assumptions, suppose there exists
a continuous Lyapunov function V : Z+×BH → R

+ with BH = {x ∈ R
k : |x|< H},

such that
W1(|x|)≤V (t,x)≤W2(|x|), (2.2.4)

and
�V (t,x(.))≤−W3(|x(t +1)|). (2.2.5)

If P
(
V (t + 1,x(t + 1))

) ≥ V (t + s,x(t + s)), for s ∈ C(0) and P : R+ → R
+

is continuous function with P(s) > s, for s > 0, then the zero solution of (2.2.1)
is (UAS).

Next, we display an example in the form of a theorem to show the application of
Theorem 2.2.2. Consider the Volterra difference equation with multiple delays

x(t +1) = a(t)x(t)+
k

∑
i=1

bi(t)x(t −hi), (2.2.6)

where the delays hi are positive integers for i = 1,2,3, ....k.

Theorem 2.2.3. Let

a∗ = max
t∈Z+

|a(t)|, b∗i = max
t∈Z+

|bi(t)|, i = 1,2,3, ...k.

If

a∗+
k

∑
i=1

b∗i < 1, (2.2.7)

then the zero solution of (2.2.6) is (UAS).

Proof. Consider the Razumikhin type Lyapunov function

V (t,x) = |x(t)|.

Then along the solutions of (2.2.6) we have that

�V (t,x) = |x(t +1)|− |x(t)|. (2.2.8)

Due to condition (2.2.7), there exists a constant μ ∈ (0,1) such that

k

∑
i=1

b∗i < μ(1−a∗).

Set P(t) =
1
μ

t, for t ≥ 0. Let t0 ∈ Z
+, whenever

P
(
V (t +1,x(t +1))

)≥V (t + s,x(t + s)), for s ∈C(0),
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or
1
μ
|x(t +1)|> |x(t + s)|, for s ∈C(0)

then, by (2.2.6), we have

|x(t +1)| ≤ |a(t)||x(t)|+
k

∑
i=1

|bi(t)||x(t −hi)|

≤ a∗|x(t)|+1/μ
( k

∑
i=1

|b∗i |
)|x(t +1)|,

which implies that

|x(t)| ≥ μ −∑k
i=1 |b∗i |

a∗μ
|x(t +1)|.

Thus, by (2.2.8) we have

�V (t,x) ≤
(

1− μ −∑k
i=1 |b∗i |

a∗μ

)
|x(t +1)|

≤ −
(
− (μ(1−a∗)−∑k

i=1 |b∗i |
a∗μ

)
|x(t +1)|,

if P
(
V (t + 1,x(t + 1))

) ≥ V (t + s,x(t + s)), for s ∈ C(0). Thus the conditions of
Theorem 2.2.2 are satisfied with

W1(|x|) =W2(|x|) = |x|

and

W3(|x(t +1)|) =
(
− (μ(1−a∗)−∑k

i=1 |b∗i |
a∗μ

)
|x(t +1)|,

and the zero solution is (UAS). This completes the proof.

Equations of the form (2.2.6) play a leading role in modeling additive neural net-
works. It is worth mentioning that Theorem 2.2.2 cannot be applied to Volterra equa-
tions of the form

x(n+1) = A(n)x(n)+
n

∑
s=0

C(n,s)x(s).

We will revisit such equation later in the chapter using Razumihkin-Lyapunov type
functions. The next theorem offers easily verifiable conditions. Its proof can be
found in [145]

Theorem 2.2.4 ([145]). Let D > 0 and there is a scalar functional V (t,ψt) that is
continuous in ψ and locally Lipschitz in ψt when t ≥ t0 and ψt ∈C(t) with ||ψt ||<
D. In addition we assume that if x : [t0 −α,∞)→ R

n is a bounded sequence, then
F(t,xt) is bounded on [t0,∞). Suppose there is a function V such that V (t,0) = 0,

W1(|ψ(t)|)≤V (t,ψt)≤W2(||ψt ||),
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and
�V (t,ψt)≤−W3(|ψ(t)|),

then the zero solution of (2.2.1) is (UAS).

It is noted that Theorem 2.2.4 requires Lyapunov functional, unlike Theorem 2.2.2.
In the next theorem we use a Lyapunov functional, and with the aid of Theo-
rem 2.2.4, we show the zero solution of (2.2.6) is (UAS).

Theorem 2.2.5 ([145]). Assume there exists a δ > 0 such that

|a(t)|−1+ kδ < 0 and δ ≥
k

∑
i=1

|bi(t)|.

Then the zero solution of (2.2.6) is (UAS).

Proof. Consider the Lyapunov functional

V (t,xt) = |x(t)|+δ
k

∑
i=1

t−1

∑
s=t−hi

|x(s)|. (2.2.9)

Then along the solutions of (2.2.6) we have

�V (t,xt) = |x(t +1)|− |x(t)|+δ
k

∑
i=1

[ t

∑
s=t−hi+1

|x(s)|−
t−1

∑
s=t−hi

|x(s)|]

= |x(t +1)|− |x(t)|+δ
k

∑
i=1

|x(t)|−δ
k

∑
i=1

|x(t −hi)|

≤ (|a(t)|−1+ kδ )|x(t)|+
k

∑
i=1

(|bi(t)|−δ )|x(t −hi)|

≤ −α|x(t)|, for some positive constant α.

To make sure the conditions of Theorem 2.2.4 are satisfied, we note that

|x(t)| ≤ V (t,xt) = |x(t)|+δ
k

∑
i=1

t−1

∑
s=t−hi

|x(s)|

= |x(t)|+δ
k

∑
i=1

−1

∑
u=−hi

|x(u+ t)|.

Hence, if we take W1(|ψ(t)|) = |ψ(t)|, W3(|ψ(t)|) = α|ψ(t)|, and W2(|ψt |) =
δ

k

∑
i=1

−1

∑
u=−hi

|ψ(u+ t)|, then we satisfy all the requirements of Theorem 2.2.4, and

hence we have the zero solution of (2.2.6) is (UAS). This completes the proof.

It is very obvious that Theorem 2.2.1 would not work for our Lyapunov functional
in Theorem 2.2.5. Theorem 2.2.1 is suitable for Volterra difference equations of
convolution types. For example, if we consider
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x(n+1) = a(n)x(n)+
n−1

∑
s=0

b(n− s)g(n,x(n)),

then a typical Lyapunov functional would be

V (n,x) = |x(n)|+
n−1

∑
s=0

∞

∑
u=n−s

|b(u)||x(s)|,

where the function g satisfies |g(n,x)| ≤ λ |x| for all n ∈ Z
+ for positive constant

λ < 1. By assuming that

|a(n)|+λ |b(0)|
∞

∑
u=1

|b(u)|−1 ≤−α, α > 0,

we have along the solutions that

�V (n,x) ≤ (|a(n)|+λ |b(0)|
∞

∑
u=1

|b(u)|−1
)|x(n)|+(λ −1)

n−1

∑
s=0

|b(n− s)||x(s)|

≤ −α|x(n)|.

Thus all the conditions of Theorem 2.2.1 are satisfied for W1 = W2 = W3 = W4 =
|x|, W5 = α|x|, l = 0, and φ(n− s) = ∑∞

u=n−s |b(u)|.
We end this section with an application to the second order difference equation with
constant delay, r > 0

x(t +2)+ax(t +1)+bx(t − r) = 0, t ∈ Z, (2.2.10)

where a and b are constants.

Theorem 2.2.6 ([145]). Suppose there are positive constants η1,η2,α1,α2 and γ
such that

α1|b|−α2 + γr ≤−η1, α1|a|−α1 +α2 + γr ≤−η2,

and
|b|− γ ≤ 0.

Then the zero solution of (2.2.10) is (UAS).

Proof. First we write (2.2.10) into a system by letting y(t) = x(t + 1). Then by
noting that

�x(t) = y(t)− x(t),

we have

b
−1

∑
s=−r

(
y(t + s)− x(t + s)

)
= b

−1

∑
s=−r

�x(t + s) = bx(t)−bx(t − r).

This implies that Equation (2.2.10) is equivalent to the system
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{
x(t +1) = y(t)
y(t +1) =−bx(t)−ay(t)+b∑−1

s=−r

(
y(t + s)− x(t + s)

) (2.2.11)

Let
β = max{η1, η2}

and define the Lyapunov functional

V (xt ,yt) = α1|y(t)|+α2|x(t)|+ γ
−1

∑
s=−r

t−1

∑
u=t+s

(|y(u)|+ |x(u)|).

Then along the solutions of (2.2.11) we have

�V (xt ,yt) ≤ (α1|b|−α2 + γr)|x(t)|+(α1|a|−α1 +α2 + γr)|y(t)|

+ (|b|− γ)
−1

∑
s=−r

(|y(t + s)|+ |x(t + s)|)

≤ −β
(|x|+ |y|). (2.2.12)

The results follow from Theorem 2.2.4.

Remark 2.1. In Theorem 2.2.6 we saw that the stability depended on the size of the
delay, which was not the case in Theorem 2.2.5.

In [112] the authors considered the linear difference system with diagonal delay

x(n+1) = ax(n−h)+by(n)

y(n+1) = cx(n)+ay(n−h) (2.2.13)

where a,b, and c are real numbers and h is a positive integer. They used the
method of characteristics and proved two theorems on the asymptotic stability of
the zero solution of (2.2.13) by imposing conditions on the size of the delay; that
is
√|ab| < (h+ 1)/h. Also, they required b and c be of the same sign and the de-

lay h is odd. The above system has some limitations by considering all constant
coefficients and diagonal entries have the same coefficient. Next we shall display a
Lyapunov functional to obtain (UAS) of the zero solution of (2.2.13) by appealing
to Theorem 2.2.4.

Theorem 2.2.7 ([145]). Let δ be a positive constant such that

|a|−δ ≤ 0, |c|+δ −1 < 0, and |b|+δ −1 < 0.

Then the zero solution of (2.2.13) is (UAS).

Proof. Let
β = min{|c|+δ −1, |b|+δ −1}

and define the Lyapunov functional
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V (x,y) = |x(n)|+ |y(n)|+δ
n−1

∑
s=n−h

(|x(s)|+ |y(s)|).

Then along the solutions of (2.2.13)

�V (x,y) ≤ (|a|−δ )|x(n−h))|+(|c|+δ −1)|x(n)|
+ (|a|−δ )|y(n−h)|+(|c|+δ −1)|y(n)|
≤ β

(|x|+ |y|).

The (UAS) follows from Theorem 2.2.4.

Next we extend Theorem 2.2.7 to the Volterra delay system

x(n+1) = ax(n−h)+by(n)+d1

−1

∑
s=−h

y(n+ s)

y(n+1) = cx(n)+ay(n−h)+d2

−1

∑
s=−h

x(n+ s) (2.2.14)

Theorem 2.2.8 ([145]). Let δ be a positive constant such that

|a|+hδ1 +δ2 −1 < 0, |b|+hδ1 +δ2 −1 < 0,

and
|a|−δ2 ≤ 0, and |d1|+ |d2|−δ1 ≤ 0.

Then the zero solution of (2.2.14) is (UAS).

Proof. Let
β = min{|a|+hδ1 +δ2 −1, |b|+hδ1 +δ2 −1}

and define the Lyapunov functional

V (x,y) = |x(n)|+ |y(n)|+δ2

n−1

∑
s=n−h

(|x(s)|+ |y(s)|)

+ δ1

−1

∑
s=−h

n−1

∑
u=n+s

(|x(u)|+ |y(u)|).

Then along the solutions of (2.2.14)

�V (x,y) ≤ (|a|−δ2)|x(n−h))|+(|a|+hδ1 +δ2 −1)|x(n)|
+ (|a|−δ2)|y(n−h)|+(|b|+hδ1 +δ2 −1)|y(n)|
≤ β

(|x|+ |y|)

+ (|d1|+ |d2|−δ1)
−1

∑
s=−h

(|x(n+ s)|+ |y(n+ s)|)

≤ β
(|x|+ |y|).
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Hence, the result of (UAS) follows from Theorem 2.2.4.

The next theorem shows that the zero solution of the nonlinear delay difference
equation

x(n+1) = a(n) f (x(n))+b(n)g(x(n− τ)), h ∈ Z
+ (2.2.15)

is (UAS).

Theorem 2.2.9. Suppose f and g are continuous and there are positive constants
α,β , and γ with γ > 1+α such that

γ |a(n)|| f (x)| ≥ |x|, | f (x)| ≥ |g(x)| for 0 < |x|< β , (2.2.16)

and
(1− γ)|a(n)|+ |b(n+ τ)| ≤ −α|a(n)|. (2.2.17)

Then the zero solution of (2.2.15) is (UAS).

Proof. Define the Lyapunov functional

V (n,xn) = |x(n)|+
n−1

∑
s=n−τ

(|b(s+ τ)||g(x(s))|). (2.2.18)

Then along the solutions of (2.2.15) we have

�V (n,xn) ≤ |a(n)|| f (x(n))|+ |b(n)||g(x(n− τ))|− |x(n)|
+ |b(n+ τ)||g(x(n))|− |b(n)||g(x(n− τ))|.

Using (2.2.16) and (2.2.17) we arrive at

�V (n,xn) ≤
(|a(n)|+ |b(n+ τ)|− γ

∣
∣a(n)|)| f (x(n))|

≤ −α|a(n)|| f (x(n))|. (2.2.19)

The (UAS) follows from Theorem 2.2.4. This completes the proof.

2.2.1 Application to Volterra Difference Equations

In this section we apply Theorems 2.1.1, 2.1.2, and 2.1.3 to establish stability and
boundedness results regarding the nonlinear Volterra discrete system

x(n+1) = A(n)x(n)+
n

∑
s=0

C(n,s) f (x(s))+g(n,x(n) (2.2.20)

where A, C, are k× k matrices, g, f are k×1 vector functions with |g(n,x(n))| ≤ N
and | f (x)| ≤ λ |x|, for some positive constants N and λ .
In the case of f (x) = x, Medina [117], showed that if the zero solution of the ho-
mogenous equation associated with (2.2.20) is uniformly asymptotically stable, then
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all solutions of (2.2.20) are bounded when C(n,s) = C(n− s) and g(n,x) = g(n) is
bounded. In proving his results, Medina used the notion of the resolvent matrix
coupled with the variation of parameters formula. Also, the author in [128] used
Lyapunov functionals of convolution type coupled with the z-transform and ob-
tained results about boundedness of solutions of (2.2.20) when g(n,x(n)) = g(n).
Moreover, we saw in Chapter 1 that when f is linear in x, unlike the case here, we
used total stability and under suitable conditions, we showed that the zero solution
of (2.2.20) is uniformly asymptotically stable, when |g(n,x)| ≤ λ (n)|x|. We remark
that the notion of the resolvent cannot be used to obtain boundedness of solutions
of (2.2.20), since the summation term in (2.2.20) is nonlinear.

Theorem 2.2.10 ([133]). Suppose A(n)=A is a k×k constant matrix, and CT (n,s)=
C(n,s). Let I be the k×k identity matrix. Also, suppose there exist positive constants
ρ , μ , and a constant k× k symmetric matrix B such that

AT BA−B =−μI, (2.2.21)

λ |AT B|
n

∑
s=0

|C(n,s)|+ |B|
∞

∑
s=n

|C(n,s)|+N2 −μ ≤−ρ , (2.2.22)

and

λ |AT B|
n

∑
s=0

|C(n,s)|+λ 2|B|
n

∑
s=0

|C(n,s)|+λ −|B| ≤ 0. (2.2.23)

Then solutions of (2.2.20) are (UB).

Proof. Define the Lyapunov functional V (n) =V (n,x(n, ·)) by

V (n,x(·)) = xT (n)Bx(n)+ |B|
n−1

∑
j=0

∞

∑
s=n

|C(s, j)|x2( j), (2.2.24)

where x2( j) = xT ( j)x( j). Then along solutions of (2.2.20) we have

�V(2.2.20)(n) = xT (n)
[
AT BA−B

]
x(n)+2xT (n)AT B

n

∑
s=0

C(n,s) f (x(s))

+2xT (n)AT Bg(n,x(n))+2gT (n,x(n))B
n

∑
s=0

C(n,s) f (x(s))

+
n

∑
s=0

f T (x(s))C(n,s)T B
n

∑
s=0

C(n,s) f (x(s))

+|B|
∞

∑
s=n+1

|C(n,s)|x2(n)−|B|
n−1

∑
s=0

|C(n,s)|x2(s)

+gT (n,x(n))Bg(n,x(n)). (2.2.25)

Using (2.2.21)–(2.2.23) and the fact that for any two real numbers a and b, 2ab ≤
a2 +b2, equation (2.2.25) reduces to
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�V(2.2.20)(n) ≤
[
λ |AT B|

n

∑
s=0

|C(n,s)|+ |B|
∞

∑
s=n

|C(n,s)|+N2 −μ
]
x2(n)

+
[
λ |AT B|

n

∑
s=0

|C(n,s)|+λ 2|B|
n

∑
s=0

|C(n,s)|+λ−|B|
] n

∑
s=0

|C(n,s)|x2(s)

+|AT B|2 +λN2|B|2
n

∑
s=0

|C(n,s)+ |gT Bg|

≤ −ρx2(n)+K,

where K = |AT B|2 + λN2|B|2 ∑n
s=0 |C(n,s) + |gT Bg|. Thus, by Theorem 2.1.1 all

solutions of (2.2.20) are (UB).

In the next theorem, we use Theorem 2.1.3 to establish (UB) and (UAS) for (2.2.20),
when g(n,x(n)) is identically zero.

Theorem 2.2.11 ([133]). Assume g(n,x(n)) = 0 and suppose there is a function
ϕ(n)≥ 0, with �ϕ(n)≤ 0 for n ≥ 0, �nϕ(n−s−1)+ |C(n,s)| ≤ 0 for 0 ≤ s < n <
∞. Also, suppose that for n≥ 0, |A(n)|+ |C(n,n)|+ϕ(0)≤ 1−ρ for some ρ ∈ (0,1).

a) If ∑∞
s=0 ϕ(s) = B, then solutions of (2.2.20) are (UB) and the zero solution

of (2.2.20) is (US).

b) If ∑∞
n=0 ∑∞

s=n ϕ(s) = J, then solutions of (2.2.20) are (UUB) and the zero solution
of (2.2.20) is (UAS).

Proof. Define the Lyapunov functional V (n) =V (n,x(n, ·)), by

V (n) = |x(n)|+
n−1

∑
s=0

ϕ(n− s−1)|x(s)|, n ≥ 0. (2.2.26)

Then along solutions of (2.2.20) we have

�V(2.2.20)(n) ≤
(|A(n)|+ |C(n,n)|+ϕ(0)−1

)|x(n)|

+
n−1

∑
s=0

(�nϕ(n− s−1)+ |C(n,s)|)|x(s)|

≤ −ρ |x(n)|,

and the results follow from Theorem 2.1.3.

2.3 Necessary and Sufficient Conditions

We prove a general theorem in which necessary and sufficient conditions for obtain-
ing uniform boundedness for functional difference system are present. We apply our
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results to finite and infinite delay Volterra difference equations. In the analysis we
state and prove a discrete Jensen’s type inequality. Thus we consider the system of
functional difference equations of the form

x(n+1) = G(n,xn), x ∈ R
k (2.3.1)

where G : Z+ ×R
k → R

k is continuous in x. Let C be set of bounded sequences
φ : (−∞,0] → R

k with the maximum norm. For n ∈ Z
+,C(n) denotes the set of

sequences ψ : [0,n] → R
k with ||ψ|| = max{|ψ(s)| : 0 ≤ s ≤ n}, where | · | is the

Euclidean norm on R
k.

We assume that for each n0 ≥ 0, and each φ ∈ C(n0) there is at least one solution
x(n,n0,φ) of (2.3.1) defined on an interval [n0,α] with xn0 = φ . If the solution re-
mains bounded for all n, then α = ∞. Notation wise, xn(s) = x(n+ s) for s ≤ 0. If D
is a matrix or a vector, |D| means the sum of the absolute values of the elements.

Definition 2.3.1. Solutions of (2.3.1) are (UB) if for each B1 > 0 there is B2 > 0
such that

[
n0 ≥ 0,φ ∈C, ||φ ||< B1, n ≥ n0

]
implies |x(n,n0,φ)|< B2.

Definition 2.3.2. Solutions of (2.3.1) are (UUB) if there is a B > 0 and for each
B3 > 0 there is N > 0 such that

[
n0 ≥ 0,φ ∈ C, ||φ || < B3, n ≥ n0 +N

]
implies

|x(n,n0,φ)|< B.

Theorem 2.3.1 ([133]). Let R
+ = [0,∞) and assume there is a scalar sequence

Φ : Z+ → R
+ that satisfy Φ ∈ l∞(R+). Assume the existence of wedges Wj, j =

1,2, ·, ·, ,5. with W1(r)→ ∞, and positive constants K,M with W5(K)> M. Suppose
there is a functional V : R+×C → R

+ such that for each x ∈C(n), we have:

W1(|x(n)|)≤V (n,xn)≤W2(|x(n)|)+W3

( n−1

∑
s=0

Φ(n− s)W4(|x(s)|)
)

(2.3.2)

and
�V (n,xn)≤−W5(|x(n)|)+M. (2.3.3)

Then solutions of (2.3.1) are (UB) if and only if for each K1 > 0, there exists K2 > 0
such that if x(n) = x(n,n0,φ) is a solution of (2.3.1) with ||φ || ≤ K1, then

n∗−1

∑
s=n0

Φ(n∗ − s)W4(|x(s)|)≤ K2 (2.3.4)

whenever v(s)< v(n∗) for n0 ≤ s < n∗, where v(s) =V (s,xs).

Proof. Let x(n) = x(n,n0,φ) be a solution of (2.3.1) that is (UB). Then, for ever
B1 > 0 there exists a B2 > 0, say B2 > B1 so that for n0 ≥ 0, ||φ || < B1,n ≥ n0, we
have |x(n,n0,φ)< B2. Let J := ∑∞

u=0 Φ(u). Then, for n ≥ n0 we have that

n−1

∑
s=0

Φ(n− s)W4(|x(s)|)≤
n−1

∑
s=0

Φ(n− s)W4(B2)≤ JW4(B2).
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This completes the proof of (2.3.4).
Conversely, suppose that (2.3.4) holds. Then for x(n) = x(n,n0,φ) and v(n) =
V (n,xn) with ||φ ||< B1, we have the two cases:

(i) v(n)≤ v(n0) for all n ≥ n0 or

(ii) v(s)≤ v(n∗) for some n∗ > n0 and all n0 ≤ s < n∗.

If (i) holds, then

W1(|x(n)|)≤V (n) ≤ V (n0)

≤ W2(|x(n0)|)+
n0−1

∑
s=0

ϕ(n0,s)W3(|φ(s)|)

≤ W2(|φ(n0)|)+
n0−1

∑
s=0

ϕ(n0,s)W3(|φ(s)|)

≤ W2(H)+BW3(H).

From which it follows that

|x(n)≤W−1
1

[
W2(H)+BW3(H)

]
.

On the other hand, if (ii) holds, then V (n, ·) is increasing and hence we have 0 ≤
−W5(|x(n∗)|)+M. Or, W5(|x(n∗)|) ≤ M. Now since W5(K) > M, we get |x(n∗)| ≤
W−1

5 (M). It follows from (i) and (2.3.2) that

v(n∗) ≤ W2(|x(n∗)|)+W3

( n0−1

∑
s=0

Φ(n∗ − s)W4(|x(s)|)+
n∗−1

∑
s=n0

Φ(n∗ − s)W4(|x(s)|)
)

≤ W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2] .

Since n∗ is arbitrary, we have for all n ≥ n0 that

v(n) ≤ W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2]+ v(n0).

≤ W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2]+W2(K1)+W3(JW4(K1)).

On the other hand, from (2.3.2) we have W1(|x(n)|)≤ v(n), which implies that

|x(n)| ≤W−1
1

[
W2

[
W−1

5 (M)
]
+W3 [JW4(K1)+K2]+W2(K1)+W3(JW4(K1))

]
.

(2.3.5)
Finally, for all n ≥ n0, we have |x(n)| ≤ B2, where B2 is given by the right side
of (2.3.5).
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This completes the proof.
The next Lemma is needed for our next results. One could say it is a Jensen’s type
inequality.

Lemma 2.1 (Raffoul Jensen’s Type Discrete Inequality [133]). Assume Φ :Z+ →
R
+ such that Φ(u+1),�Φ(u)u∈ l1(Z+). Also, assume that q : [n0,n]→R

+ is such
that for constants α and β , we have

1
n− s

n−1

∑
u=s

q(u)≤ α +
β

n− s
(2.3.6)

for all n0 ≤ s < n. Then,

n−1

∑
s=n0

Φ(n− s)q(s)≤ α max
n≥0

{
Φ(n)n+

n−1

∑
u=0

|�Φ(u)|u}+β
∞

∑
u=0

|�Φ(u)|. (2.3.7)

Proof. Let b be any positive integer. Then since Φ(u+ 1),�Φ(u)u ∈ l1(Z+), we
have Φ(∞) = 0. Moreover,

∞

∑
u=b

|�Φ(u)| ≥ |
∞

∑
u=b

�Φ(u)|= |Φ(∞)−Φ(b)|,

from which we have

Φ(b)≤
∞

∑
u=b

|�Φ(u)|. (2.3.8)

We claim that since Φ(u+ 1),�Φ(u)u ∈ l1(Z+), we have Φ(∞) = 0. To see this
for any two sequences y and z, we use the summation by parts formula

∑(�z)y = yz−∑Ez�y,

where Ez(n) = z(n+1). With this in mind, we have

∞

∑
u=0

�Φ(u)u = Φ(u)u |∞u=0 −
∞

∑
u=0

Φ(u+1).

From which we get

Φ(u)u |∞u=0=
∞

∑
u=0

�Φ(u)u+
∞

∑
u=0

Φ(u+1)< ∞.

Suppose the contrary; that is Φ(∞)� 0. Then, there exists a T large enough so that
Φ(p)> ε , for p > T. Thus,

lim
p→∞

pΦ(p)≥ lim
p→∞

pε = ∞,
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which contradict the fact that �Φ(u)u,Φ(u+1)∈ l1(Z+). This completes the proof
of the claim.
Again, using summation by parts, we get

b−1

∑
u=0

|�Φ(u)u| ≥ |
b−1

∑
u=0

�Φ(u)u|= |Φ(b)b−
b−1

∑
u=0

Φ(u+1)|.

From this inequality we arrive at,

|Φ(b)b|− |
b−1

∑
u=0

Φ(u+1)| ≤ |Φ(b)b−
b−1

∑
u=0

Φ(u+1)|

≤
b−1

∑
u=0

|�Φ(u)u|,

from which we get

Φ(b)b ≤
∞

∑
u=0

[Φ(u+1)+ |�Φ(u)u|]< ∞.

Let y = Φ(n− s) and �z = q(s). Then we have z =−∑n−1
u=s q(u). Hence,

n−1

∑
s=n0

Φ(n− s)q(s) ≤ Φ(n− s)
(−

n−1

∑
u=s

q(u)
) |ns=n0

−
n−1

∑
s=n0

�Φ(n− s)
n−1

∑
u=s+1

q(u)

= Φ(n−n0)
n−1

∑
u=n0

q(u)−
n−1

∑
s=n0

�Φ(n− s)
n−1

∑
u=s+1

q(u)

≤ Φ(n−n0)
n−1

∑
u=n0

q(u)+
n−1

∑
s=n0

|�Φ(n− s)|
n−1

∑
u=s

q(u)

≤ Φ(n−n0)
(
(n−n0)α +β

)
+

n−1

∑
s=n0

|�Φ(n− s)|
(
(n− s)α +β

)

=

[

Φ(n−n0)(n−n0)+
n−1

∑
s=n0

|�Φ(n− s)|(n− s)

]

α

+

[

Φ(n−n0)+
n−1

∑
s=n0

|�Φ(n− s)|
]

β

=

[

Φ(n−n0)(n−n0)+
n−n0

∑
u=1

|�Φ(u)|u
]

α (letting u = n− s)

+

[

Φ(n−n0)(n−n0)+
n−n0

∑
u=1

|�Φ(u)|
]

β
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≤
[

Φ(n−n0)(n−n0)+
n−n0

∑
u=0

|�Φ(u)|u
]

α

+

[

Φ(n−n0)(n−n0)+
n−n0

∑
u=0

|�Φ(u)|
]

β

≤ α max
n≥0

{Φ(n)n+
n−1

∑
u=0

|�Φ(u)|u}

+ Φ(n−n0)(n−n0)+

[
∞

∑
u=0

|�Φ(u)|−
∞

∑
u=n−n0

|�Φ(u)|
]

β

≤ α max
n≥0

{Φ(n)n+
n−1

∑
u=0

|�Φ(u)|u}+β
∞

∑
u=0

|�Φ(u)|< ∞,

where we have used (2.3.8). This completes the proof.

Theorem 2.3.2 ([133]). Assume there is a scalar sequence Φ : Z+ → R
+ that

satisfies Φ ∈ l∞(R+). Assume the existence of wedges Wj, j = 1,2, ·, ·, ,5. with
W1(r)→ ∞, and positive constants K,M with W5(K)> M. Suppose there is a func-
tional V : R+×C → R

+ such that for each x ∈C(n), (2.3.2) and (2.3.3) hold. Sup-
pose that for every α > 0, there exists α∗ > 0 such that for 0 ≤ s < n,

1
n− s

n−1

∑
u=s

W5(|x(u)|)≤ α ⇒ 1
n− s

n−1

∑
u=s

W4(|x(u)|)≤ α∗. (2.3.9)

Then solutions of (2.3.1) are (UB.)

Proof. Let x(n) = x(n,n0,φ) be a solution of (2.3.1) and B1 > 0 with ||φ ||< B1. Set
v(n) =V (n,xn). In the case of (ii) we sum (2.3.3) from s to n∗ −1 to get

v(n∗)− v(s)≤−
n∗−1

∑
u=s

W5(|x(u)|)+M(n∗ − s).

This yields that
1

n− s

n∗−1

∑
u=s

W5(|x(u)|)≤ M. (2.3.10)

Then by (2.3.9), there exists M∗ > 0 such that

1
n− s

n∗−1

∑
u=s

W4(|x(u)|)≤ M∗.

If we let q(u) =W4(|x(u)|),α = M∗ then an application of Lemma 1 with β = 0, we
obtain (2.3.4) and hence by Theorem 2.3.1, solutions are (UB).
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It is worth noting that in general (2.3.9) does not hold for arbitrary wedges. To see
this, we let W5(r) =

1
r ,r > 0 and W4(r) = r. Let x(u) = 1

au−1 , |a|> 1. Then

1
n−1

n

∑
u=1

W4(|x(u)|) = 1
n−1

n

∑
u=1

(
1
a
)u−1 → ∞, as n → ∞.

On the other hand

1
n−1

n

∑
u=1

W5(|x(u)|) = 1
n−1

n

∑
u=1

au−1 =
1

n−1

1− ( 1
a )

n

1− 1
a

≤ 1,

for n > 1.

Remark 2.2. If Φ : Z+ → R
+ with �Φ(n) ≤ 0, for all n ∈ Z

+ and Φ(u + 1) ∈
l1(Z+), then �Φ(u)u ∈ l1(Z+). As a matter of fact,

Φ(n)n+
n−1

∑
u=0

|�Φ(u)|u = Φ(n)n−
n−1

∑
u=0

�Φ(u)u =
n−1

∑
u=0

Φ(u+1).

For example, if we take Φ(n) = ansin(nπ/2) for 0 < a < 1, then

�Φ(n) = an+1cos(nπ/2)−ansin(nπ/2).

It is easy to see that �Φ(3) = a3 > 0. On the other hand

∞

∑
n=0

�Φ(n)n < ∞.

In Theorem 2.1.1 we asked that �nΦ(n)(n)≤ 0.

We end the section with the following theorem.

Theorem 2.3.3 ([133]). Solutions of the scalar difference equation

x(n+1) = a(n)x(n)+
n

∑
s=0

D(n− s)x(s)+ p(n), (2.3.11)

are (UB) if and only if

−1+ |a(n)|+
∞

∑
u=0

|D(u)| ≤ −β , β > 0. (2.3.12)

Proof. First it is obvious that (2.3.12) implies ∑∞
u=0 |D(u)| is bounded. Consider the

Lyapunov functional

V (n,xn) = |x(n)|+
n−1

∑
s=0

∞

∑
u=n−s

|D(u)||x(s)|. (2.3.13)
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Let M = |p(n)|. Then along the solutions of (2.3.11) we have

�V (n,xn) = (|x(n+1)|− |x(n)|)+
n

∑
s=0

∞

∑
u=n−s+1

|D(u)||x(s)|

−
n−1

∑
s=0

∞

∑
u=n−s

|D(u)||x(s)|+ |p(n)|

≤
(
−1+ |a(n)|+

∞

∑
u=0

|D(u)|
)
|x(n)|+ |p(n)|

≤ −β |x(n)|+M (2.3.14)

if and only if (2.3.12) holds (by noting that (2.3.12) is the condition given by (2.3.4)).
We have from equation (2.3.13) and inequality (2.3.14) that

|x(n)| ≤V (n,xn)≤ |x(n)|+
n−1

∑
s=0

Θ(n− s)|x(s)| (2.3.15)

and Θ(n) =
∞

∑
u=n

|D(u)|. The results follow from Theorem 2.3.1.

2.4 More on Boundedness

In this section, we state and prove general theorems that guarantee boundedness of
all solutions of (2.1.1). Then we utilize the theorems and use nonnegative definite
Lyapunov functionals to obtain sufficient conditions that guarantee boundedness of
solutions of (2.1.1). The theory is illustrated with several examples. A stereotype of
equation (2.1.1) is the Volterra discrete system

x(n+1) = A(n)x(n)+
n

∑
s=0

B(n,s) f (s,x(s)). (2.4.1)

Also, in [85], the author studied the exponential stability and boundedness of solu-
tions of the nonlinear discrete system

x(n+1) = F(n,x(n)); n ≥ 0

x(n0) = x0; n0 ≥ 0.

We emphasize that the results of [85] do not apply to equations similar to (2.4.1).
We are mainly interested in applying our results to Volterra discrete systems of the
form of (2.4.1)) with f (x) = xn where n is positive and rational. This section offers
a new perspective at looking at the notion of constructing Lyapunov functionals that
can be effectively used to obtain existence results. For this section, we use a slightly
different boundedness definition.
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Definition 2.4.1. We say that solutions of system (2.1.1) are bounded, if any solu-
tion x(n,n0,φ) of (2.1.1) satisfies

||x(n,n0,φ)|| ≤C
(
||φ ||,n0

)
, for all n ≥ n0,

where C : R+×R
+ →R

+ is a constant that depends on n0 and φ is a given bounded
initial function. We say that solutions of system (2.1.1) are uniformly bounded if C
is independent of n0.

Theorem 2.4.1 ([147]). Let D be a set in R
k. Suppose there exists a Lyapunov func-

tional V : Z+×D → R
+ that satisfies

λ1W1(|x|)≤V (n,x(.))≤ λ2W2(|x|)+λ2

n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|) (2.4.2)

and

�V (n,x(.))≤−λ3W4(|x|)−λ3

n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)+L (2.4.3)

for some positive constants λ1,λ2,λ3 and L, and λ2 > λ3, where ϕi(n,s) ≥ 0 is a
scalar sequence for 0 ≤ s ≤ t < ∞, i = 1,2, such that for some constant γ ≥ 0 the
inequality

W2(|x|)−W4(|x|)+
n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)−ϕ2(n,s)W5(|x(s)|)

)
≤ γ (2.4.4)

holds. Moreover, if ∑n−1
s=0 φ1(n,s)≤B for some positive constant B, then all solutions

of (2.1.1) that stay in D are uniformly bounded.

Proof. Let M =− ln(1−λ3/λ2)> 0. For any initial value n0 ∈ Z
+, let x(n) be any

solution of (2.1.1) with x(n) = φ(n), for 0 ≤ n ≤ n0. Taking the difference of the
function V (n,x)eM(n−n0), we have

�
(

V (n,x)eM(n−n0)
)
=
[
V (n+1,x)eM −V (n,x)

]
eM(n−n0).

For x ∈ D, using (2.4.2) and (2.4.3) we get

�
(

V (n,x)eM(n−n0)
)

≤
[
V (n,x)eM −λ3W4(|x|)eM−λ3

n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)eM+LeM−V (n,x)
]
eM(n−n0)

=
[
V (n,x)(eM −1)−λ3eM

(
W4(|x|)+

n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)
)
+LeM

]
eM(n−n0)
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≤
[
(eM −1)λ2

(
W2(|x|)+

n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|)
)
−λ3eM

(
(W4(|x|)

+
n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)
)
+LeM

]
eM(n−n0). (2.4.5)

Since M = − ln(1−λ3/λ2) > 0, we have λ2(eM − 1) = λ3eM . Thus, the above in-
equality reduces to

�
(

V (n,x)eM(n−n0)
)
≤

[
(eM −1)λ2

(
W2(|x|)− (W4(|x|)+

n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)

−ϕ2(n,s)W5(|x(s)|)
)
+LeM

]
eM(n−n0). (2.4.6)

By invoking condition (2.4.4), the inequality (2.4.6) takes the form

�
(

V (n,x)eM(n−n0)
)
≤
(
(eM −1)λ2γ +LeM

)
eM(n−n0) ≤ αeM(n−n0),

where α = (eM −1)λ2γ +LeM . Summing the above inequality from n0 to n−1, we
obtain,

V (n,x)eM(n−n0)−V (n0,φ)≤ α
n−1

∑
s=0

eM(s−n0) ≤ αe−Mn0
n−1

∑
s=0

(eM)s ≤ α
eM −1

eM(n−n0),

that is,

V (n,x)≤V (n0,φ)e−M(n−n0) +
α

eM −1
≤V (n0,φ)+

α
eM −1

.

From condition (2.4.2), we have

‖x‖ ≤ W−1
1

[ 1
λ1

(
λ2W2(|φ |)+λ2W3(|φ |)

n0−1

∑
s=0

ϕ1(n0,s)
)
+

α
eM −1

]
; for all n ≥ n0.

This completes the proof.

In the next theorems, we consider variables λi(n), i = 1,2,3,4,5.

Theorem 2.4.2 ([147]). Let D be a set in R
k. Suppose there exist a Lyapunov func-

tional V : Z+×D → R
+ that satisfies

λ1(n)W1(|x|)≤V (n,x(.))≤ λ2(n)W2(|x|)+λ2(n)
n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|) (2.4.7)
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and

�V (n,x(.))≤−λ3(n)W4(|x|)−λ3(n)
n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)+L (2.4.8)

for some positive constant L, and positive sequence λ1(n),λ2(n),λ3(n), where λ1(n)
is nondecreasing sequence, and ϕi(n,s) ≥ 0 is a scalar sequence for 0 ≤ s ≤ n <
∞, i = 1,2. Assume that for some positive constants θ , and γ the inequality with

0 <
λ3(n)
λ2(n)

≤ θ < 1, (2.4.9)

and

W2(|x|)−W4(|x|)+
n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)−ϕ2(n,s)W5(|x(s)|)

)
≤ γ (2.4.10)

holds. If ∑n−1
s=0 φ1(n,s) ≤ B, λ2(n) ≤ N for some positive constants B and N, then

all solutions of (2.1.1) that stay in D are uniformly bounded.

Proof. First we note that due to condition (2.4.9), λ3(n) is bounded for all n ≥ n0 ≥
0. For any initial value n0 > 0, let x(n) be any solution of (2.1.1) with x(n) = φ(n)
for 0 ≤ n ≤ n0. Taking the difference of the function V (n,x)eM(n−n0) with

M = inf
n∈Z+

(
− ln(1− λ3(n)

λ2(n)
)
)
> 0,

we have

�
(

V (n,x)eM(n−n0)
)
=
[
V (n+1,x)eM −V (n,x)

]
eM(n−n0).

By a similar argument as in Theorem 2.4.1 we obtain,

�
(

V (n,x)eM(n−n0)
)
≤

(
(eM −1)λ2(n)γ +LeM

)
eM(n−n0)

≤
(
(eM −1)Nγ +LeM

)
eM(n−n0).

We let β = (eM −1)Nγ +LeM , and summing the above inequality from n0 to n−1,
we obtain

V (n,x)eM(n−n0) ≤ V (n0,φ(n0))+β
n−1

∑
s=0

eM(s−n0)

≤ V (n0,φ(n0))+
β

eM −1
eM(n−n0).
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By condition (2.4.7), we have

‖x‖ ≤ W−1
1

[ 1
λ1(n0)

(
V (n0,φ(n0))e

M(n−n0) +
β

eM −1

)]

≤ W−1
1

[ 1
λ1(n0)

(
λ2(n0)W2(|φ |)+λ2(n0)W3(|φ |)

n0−1

∑
s=0

φ1(n0,s)+
β

eM −1

)]
,

for all n ≥ n0. Hence, the solutions of (2.1.1) that start in D are uniformly bounded.
This completes the proof.

Theorems 2.4.1 and 2.4.2 are of special importance since, by the aid of constructing
a suitable Lyapunov functionals, the theorems can be applied to nonlinear Volterra
systems of the form

x(n+1) = σ(n)x(n)+
n

∑
s=0

B(n,s)x2/3(s), n ≥ 0, x(n) = φ(n) for 0 ≤ n ≤ n0,

(2.4.11)
where φ(n) is a given bounded initial sequence.

2.5 Applications to Nonlinear Volterra Difference Equations

In this section, we apply the results of the previous section to nonlinear Volterra
difference equations. As we shall see that Theorems 2.4.1 and 2.4.2 will guide us
step by step on how such Lyapunov functionals are constructed.

Theorem 2.5.1 ([147]). Consider the scalar nonlinear Volterra difference equation
given by (2.4.11). Suppose there are constants β1, β2 ∈ (0,1) such that

σ2(n)+
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
|B(n,n)|+

∞

∑
u=n+1

|B(u,n)|−1 ≤−β1,

and
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
−1 ≤−β2. (2.5.1)

If
n−1

∑
s=0

∞

∑
u=n

|B(u,s)|,
n

∑
s=0

|B(n,s)|< ∞,

and

|B(n,s)| ≥
∞

∑
u=n

|B(u,s)|,

then all solutions of (2.4.11) are uniformly bounded.
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Proof. To see this, we consider the Lyapunov functional

V (n,x) = x2(n)+
n−1

∑
s=0

∞

∑
u=n

|B(u,s)|x2(s).

Then along solutions of (2.4.11) we have

�V (n,x) = x2(n+1)− x2(n)+
∞

∑
u=n+1

|B(u,n)|x2(n)−
n−1

∑
s=0

|B(u,s)|x2(s)

=
(

σ(n)x(n)+
n

∑
s=0

B(n,s)x2/3(s)
)2 − x2(n)

+2
∞

∑
u=n+1

|B(u,n)|x2(n)−
n−1

∑
s=0

|B(u,s)|x2(s)

=
(

σ2(n)+
∞

∑
u=n+1

|B(u,n)|−1
)

x2(t)

+2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s)+
( n

∑
s=0

|B(n,s)|x2/3(s)
)2

−
n−1

∑
s=0

|B(n,s)|x2(s). (2.5.2)

To further simplify the above inequality we perform the following calculations. Us-
ing the fact that ab ≤ a2/2+b2/2,

2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s) ≤ 2|σ(n)||x(n)|
n

∑
s=0

|B(n,s)|x2/3(s)

≤ |σ(n)|
n

∑
s=0

|B(n,s)|
(

x2(n)+ x4/3(s)
)
.

Using the Cauchy-Schwartz inequalities for series, one obtains

( n

∑
s=0

|B(n,s)|x2/3(s)
)2 ≤

( n

∑
s=0

|B(n,s)|1/2|B(n,s)|1/2x2/3(s)
)2

≤
n

∑
s=0

|B(n,s)|
n

∑
s=0

|B(n,s)|x4/3(s).

Adding the above two inequalities yields

2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s)+
( n

∑
s=0

|B(n,s)|x2/3(s)
)2

≤ |σ(n)|
n

∑
s=0

|B(n,s)|
(

x2(n)+ x4/3(s)
)
+

n

∑
s=0

|B(n,s)|
n

∑
s=0

|B(n,s)|x4/3(s)
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= |σ(n)|
n

∑
s=0

|B(n,s)|x2(n)

+
(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n

∑
s=0

|B(n,s)|x4/3(s). (2.5.3)

Finally, we make use of Young’s inequality, which says for any two nonnegative real
numbers ω and ϖ , we have

ωϖ ≤ ωe

e
+

ϖ f

f
, with 1/e+1/ f = 1.

Thus, for e = 3/2 and f = 3, we get

n

∑
s=0

|B(n,s)|x4/3(s) =
n

∑
s=0

|B(n,s)|1/3|B(n,s)|2/3x4/3(s)

≤
n

∑
s=0

( |B(n,s)|
3

+
2
3
|B(n,s)|x2(s)

)

=
n

∑
s=0

|B(n,s)|
3

+
2
3
|B(n,s)|x2(s)+

2
3

n−1

∑
s=0

|B(n,s)|x2(s).

With this in mind, inequality (2.5.3) reduces to

2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s)+
( n

∑
s=0

|B(n,s)|x2/3(s)
)2

≤ 2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
|B(n,n)|

+
1
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n

∑
s=0

|B(n,s)|

+
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)n−1

∑
s=0

|B(n,s)|x2(s). (2.5.4)

By substituting (2.5.4) into (2.5.2), we arrive at

�V (n,x) ≤
[
σ2(n)+

2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
|B(n,n)|+

∞

∑
u=n+1

|B(u,n)|−1
]
x2(n)

+
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|−1
)n−1

∑
s=0

|B(n,s)|x2(s)

+
1
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n

∑
s=0

|B(n,s)|. (2.5.5)
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Let L= 1
3

(
|σ(n)|+∑n

s=0 |B(n,s)|
)

∑n
s=0 |B(n,s)|. Take W1 =W2 =W4 = x2(n), W3 =

W5 = x2(s), λ1 = λ2 = 1 and λ3 = min{β1,β2}. Also, we choose ϕ1(n,s) =

∑∞
u=n |B(u,s)|, and ϕ2(n,s) = |B(n,s)|, we see that conditions (2.4.7) and (2.4.8)

of Theorem 2.4.2 are satisfied. Next we make sure condition (2.4.10) is satisfied. To
see this,

W2(|x|)−W4(|x|)+
n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)−ϕ2(n,s)W5(|x(s)|)

)

= x2(n)− x2(n)+
n−1

∑
s=0

( ∞

∑
u=n

|B(u,s)|− |B(u,s)|
)

x2(s)

=
n−1

∑
s=0

( ∞

∑
u=n

|B(u,s)|− |B(u,s)|
)

x2(s)≤ 0.

Thus, condition (2.4.10) is satisfied for γ = 0. An application of Theorem 2.4.2
yields the results.

In the next theorem we establish sufficient conditions that guarantee the bounded-
ness of all solutions of the vector Volterra difference equation

�x(t) = Ax(t)+
t−1

∑
s=0

C(t,s)x(s)+g(t), (2.5.6)

where t ≥ 0, x(t) = φ(t) for 0 ≤ t ≤ t0, φ(t) is a given bounded continuous initial
k×1 vector function. Also, A and C are k×k matrices and g is k×1 vector functions
that is continuous in x If D is a matrix, |D| means the sum of the absolute values of
the elements. For what to follow we write g and x for g(t) and x(t), respectively.

Theorem 2.5.2. Suppose CT (t,s) = C(t,s). Let I be the k × k identity matrix. As-
sume there exist positive constants L,ν ,ξ ,β1,β2,λ3, and k×k positive definite con-
stant symmetric matrix B such that

[
AT B+BA+AT BA

]
≤−ξ I, (2.5.7)

[
−ξ + |Bg| +

t−1

∑
s=0

|B||C(t,s)|+
t−1

∑
s=0

|AT B||C(t,s)|

+ ν
∞

∑
u=t+1

|B(u, t)|
]
(1+λ3)≤−β1, (2.5.8)

[
|B|−ν +

(
(gT B)2 + 1+ |AT B|

+
t−1

∑
s=0

|C(t,s)|
)]

(1+λ3)≤−β2, (2.5.9)
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(|gT g|+ |Bg|)(1+λ3) = L, (2.5.10)

|C(t,s)| ≥ ν
∞

∑
u=t+1

|C(u,s)|, (2.5.11)

and

t−1

∑
s=0

∞

∑
u=t

|C(u,s)|,
t−1

∑
s=0

|C(t,s)|< ∞. (2.5.12)

Then solutions of (2.5.6) are uniformly bounded.

Proof. Since B is k×k positive definite constant symmetric matrix, then there exists
an r1 ∈ (0,1] and r2 > 0 such that

r1xT x ≤ xT Bx ≤ r2xT x. (2.5.13)

Define

V (t,x) = xT Bx+ν
t−1

∑
s=0

∞

∑
u=t

|C(u,s)|x2(s).

Here xT x = x2 = (x2
1 + x2

2 + · · ·+ x2
k). We have along the solutions that

�V (t,x) =
[
Ax+

t−1

∑
0

C(t,s)x(s)+g
]T

Bx (2.5.14)

+ xT B
[
Ax+

t−1

∑
s=0

C(t,s)x(s)+g
]

+
[
Ax+

t−1

∑
s=0

C(t,s)x(s)+g
]T

B
[
Ax+

t−1

∑
0

C(t,s)x(s)+g
]

− ν
t−1

∑
s=0

|B(t,s)|x2(s)+ν
∞

∑
u=t+1

|B(u, t)| x2.

By noting that the right side of (2.5.14) is scalar and by recalling that B is a sym-
metric matrix, expression (2.5.14) simplifies to

�V (t,x) = xT
(

AT B+BA+AT BA
)

x+2xT Bg (2.5.15)

+ 2
t−1

∑
s=0

xT BC(t,s)x(s)

+
[
xT AT Bg+2gT B

t−1

∑
s=0

C(t,s)x(s)+2xT AT B
t−1

∑
s=0

C(t,s)x(s)

+
t−1

∑
s=0

xT (s)C(t,s)�s B
t−1

∑
s=0

C(t,s)x(s)+gT B g
]
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− ν
t−1

∑
s=0

|C(t,s)|x2(s)+ν
∞

∑
u=t+1

|C(u, t)|x2

≤ −ξ x2 +2|xT ||Bg|+2
t−1

∑
s=0

|xT ||B||C(t,s)||x(s)|

+
[ t−1

∑
s=0

|C(t,s)|2|gT B||x(s)|+2
t−1

∑
s=0

|xT ||AT B||C(t,s)||x(s)|

+
t−1

∑
s=0

xT (s)C(t,s) B
t−1

∑
s=0

C(t,s)x(s)+ |gT g|
]

− ν
t−1

∑
s=0

|C(t,s)|x2(s)+ν
∞

∑
u=t+1

|C(u, t)|x2.

Next, we perform some calculations to simplify inequality (2.5.15).

2|xT ||Bg|= 2|xT ||Bg|1/2|Bg|1/2 ≤ x2|Bg|+ |Bg|,

2
t−1

∑
s=0

|xT ||B||C(t,s)||x(s)| ≤
t−1

∑
s=0

|B||C(t,s)|(x2 + x2(s)),

t−1

∑
s=0

|C(t,s)|2|gT B||x(s)| ≤
t−1

∑
s=0

|C(t,s)|(|gT B|2 + x2(s)),

and

2
t−1

∑
s=0

|xT ||AT B||C(t,s)||x(s)| ≤
t−1

∑
s=0

|AT B||C(t,s)|(x2 + x2(s)).

Finally,

t−1

∑
s=0

xT (s)C(t,s) B
t−1

∑
s=0

C(t,s)x(s)

|B| |
t−1

∑
s=0

xT (s)C(t,s)||
t−1

∑
s=0

C(t,s)x(s)|

≤ |B|
( t−1

∑
s=0

xT (s)C(t,s)
)2/

2+ |B|
( t−1

∑
s=0

C(t,s)x(s)
)2/

2

= |B|
( t−1

∑
s=0

C(t,s)x(s)
)2

= |B|
( t−1

∑
s=0

|C(t,s)| 1
2 |C(t,s)| 1

2 |x(s)|
)2

≤ |B|
t−1

∑
s=0

|C(t,s)|
t−1

∑
s=0

|C(t,s)|x2(s).
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Substitution of the above inequalities into (2.5.15) yields

�V (t,x)̇ ≤
[
−ξ + |Bg|+

t−1

∑
s=0

|B||C(t,s)|

+
t−1

∑
s=0

|AT B||C(t,s)|+ν
∞

∑
u=t+1

|C(u, t)|
]
x2

+
[
|B|−ν +

(
(gT B)2 +1+ |AT B|+ |B|

t−1

∑
s=0

|C(t,s)|
) t−1

∑
s=0

|C(t,s)|x2(s)

+ (μ(t)|gT Bg|+ |Bg|)(1+λ3).

Applying conditions (2.5.8), (2.5.9), and (2.5.10), �V (t,x) reduces to

�V (t,x) ≤ −β1x2 −β2

t−1

∑
s=0

|C(t,s)|x2(s)+L,

where L = (μ(t)|gT Bg|+ |Bg|)(1+λ3). By taking W1 = r1xT x,W2 = xT Bx, W4 =
r2xT x, W3 =W5 = x2(s), λ1 = λ2 = 1 and λ3 =min{β1,β2}, φ1(t,s)= ν ∑∞

u=t |C(u,s)|,
and φ2(t,s) = |C(t,s)|, we see that conditions (2.4.7) and (2.4.8) of Theorem 2.4.2
are satisfied. Next we make sure condition (2.4.10) is satisfied. Using (2.5.11)
and (2.5.13) we obtain

W2(|x|)−W4(|x|)+
t−1

∑
s=0

(φ1(t,s)W3(|x|)−φ2(t,s)W5(|x(s)|))

= xT Bx− r2xT x+
t−1

∑
s=0

(
ν

∞

∑
u=t

|C(u,s)|− |C(t,s)|
)

x2(s)≤ 0.

Thus condition (2.4.10) is satisfied with γ = 0. An application of Theorem 2.4.2
yields the results.

2.6 Open Problems

Open Problem 1.
Reformulate Theorems 2.4.1 and 2.4.2 to obtain results concerning the exponential
stability of the zero solution of (2.1.1).
For Open Problem 2, we consider the functional delay difference equation

x(t +1) = F(t,xt). (2.6.1)

We assume that F is continuous in x and that F : Z×C → R
n where C is the set of

sequences φ : [−α,0]→ R
n, α > 0. Let

C(t) = {φ : [t −α, t]→ R
n}.
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It is to be understood that C(t) is C when t = 0. For φ ∈C(t) we denote

|||φt |||=
[ n

∑
i=1

t−1

∑
s=t−α

φ 2
i (s)

]1/2

where φ(t) = (φ1(t), · · · ,φn(t)).

Open Problem 2.

Theorem 2.6.1. Let D > 0 and there is a scalar functional V (t,ψt) that is continu-
ous in ψ and locally Lipschitz in ψt when t ≥ t0 and ψt ∈ C(t) with ||ψt || < D. In
addition we assume that if x : [t0 −α,∞)→ R

n is a bounded sequence, then F(t,xt)
is bounded on [t0,∞). If V such that V (t,0) = 0,

W1(|φ(t)|)≤V (t,φt)≤W2(|φt |)+W3(|||φt |||),

and
�V (t,φt)≤−W4(|φ(t)|),

then the zero solution of (2.6.1) is uniformly asymptotically stable .

Open Problem 3.
General theorem in the spirit of Theorems 2.1.1, 2.1.2, and 2.1.3 regarding func-
tional delay difference equations is nowhere to be found and hence there is a des-
perate need of such theorems. In particular, for h > 0 and constant, we ask that
parallel theorems to Theorems 2.1.1, 2.1.2, and 2.1.3 should be developed regard-
ing the functional discrete system

x(n+1) =
(
G(n,x(s); −h ≤ s ≤ n

) de f
= G(n,x(·)) (2.6.2)

where G : Z+×R
k → R

k is continuous in x. Then such theorems can be applied to
Volterra difference systems of the form

x(n+1) = b(n)x(n)+
n−1

∑
s=−h

C(n,s)g(x(s)), (2.6.3)

and

x(n+1) = b(n)x(n)+
n−1

∑
s=n−h

C(n,s)g(x(s)). (2.6.4)

In the next theorem we establish sufficient conditions that guarantee the bounded-
ness of all solutions of the vector Volterra difference equation by using Lyapunov-
Razumikhini method. It should serve as a guidance to formulate and prove bound-
edness results concerning functional difference equations. Thus, we consider the
Volterra difference equation
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x(t +1) = Ax(t)+
t−1

∑
s=0

C(t,s)x(s)+g(t), (2.6.5)

where t ≥ 0, x(t) = φ(t) for 0 ≤ t ≤ t0, φ(t) is a given bounded initial k×1 vector
functions. Also, A and C are k× k matrices and g is k× 1 vector functions. If D is
a matrix, |D| means the sum of the absolute values of the elements. Let ||g||[0,∞)

denote the norm of g.

Theorem 2.6.2 ([144]). Let I be the k×k identity matrix. Assume there exists a k×k
positive definite constant symmetric matrix B such that

AT B+BA =−I, (2.6.6)

Suppose that there is a positive constant M such that

t−1

∑
s=0

|BC(t,s)| ≤ M,

so that
2βhM

α
< 1,

where α,β , and h are all positive constants to specify in the proof. If in addition, g
is bounded, then all solutions of of (2.6.5) are uniformly bounded.

Proof. Since B is k×k positive definite constant symmetric matrix, then there exists
an α,β ∈ (0,1] such that

α2|x|2 ≤ xT Bx ≤ β 2|x|2.

Define the Lyapunov-Razumikhini function

V (t,x) = xT Bx.

Then clearly
α2|x|2 ≤V (t,x)≤ β 2|x|2.

Then along the solutions of (2.6.5) we have

�V (t,x) =
[
Ax+

t−1

∑
0

C(t,s)x(s)+g
]T

Bx

+ xT B
[
Ax+

t−1

∑
s=0

C(t,s)x(s)+g
]

= xT
(

AT B+BA
)

x+2xT Bg+2
t−1

∑
s=0

xT BC(t,s)x(s)

≤ −|x|2 +2|x||B|||g||[0,∞) +2
t−1

∑
s=0

|BC(t,s)||x(s)|.
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Now, if h2V (t,x(t))>V (s,x(s)) for 0 ≤ s ≤ t −1, where h > 1 is a constant to be
determined, then

α2|x(s)|2 ≤V (s,x(s))≤ h2V (t,x(t))≤ h2β 2|x|2,

and
hβ
α

|x(t)| ≥ |x(s)|, s ≤ t −1.

Thus,

�V (t,x) ≤ −|x|2 +2
hβ
α

|x|2
t−1

∑
s=0

|BC(t,s)|+2|x||B|||g||[0,∞)

≤ −|x|2 +2
hβM

α
|x|2 +2|x||B|||g||[0,∞).

Since
2βhM

α
< 1, h maybe chosen so that h > 1 and

2hβhM
α

< 1, yielding

�V (t,x)≤ (
2

hβ
α

−1
)|x|2 +2|x||B|||g||[0,∞) ≤ 0

provided that

|x| ≥ 2|B|||g||[0,∞)

1− 2βhM
α

:= K.

Now we summarize what we have

(a) W1(|x|)≤V (t,x)≤W2(|x|),
(b) there exists K > 0 so that if x(t) is a solution of (2.6.5) with |x(t)| ≥ K for some

t ≥ 0 and V (s,x(s))< p(V (t,x)) for 0 ≤ s ≤ t −1 and p(u)> u, then �V (t,x)≤
0, where p(u) = h2u.

Now choose any solution x(t) such that |φ(t)|< H for 0 ≤ t ≤ n0 for some H > 0.
Let L > max{H,K} and choose D > 0 with W2(L) < W1(D). If this solution is
unbounded, then there is t1 > 0 such that |x(t1)|>D, |x(t)| ≤D for 0< t ≤ t1−1.
If V (t1,x(t1)≤V (t0,x(t0), then we would have

W1(|x(t1|)≤V (t1,x(t1) ≤ V (t0,φ(t0)≤W2(|φ(t0|)
≤ W2(L)<W1(D),

from which we get |x(t1)| < D, a contradiction. Thus, V (t1,x(t1) > V (t0,x(t0). We
leave it for the reader to complete the proof using (a) and (b) as guidance.

Open Problem 4.
We propose that the reader develops general theorems for the boundedness and sta-
bility of functional difference equations using Lyapunov-Razumikhini method. Con-
ditions (a) and (b) should serve as guidance for stating and proving such theorems.
For more on the subject we refer to [181] and [182].
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