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Abstract We establish difference versions of the classical integral inequalities
of Hölder, Cauchy-Schwartz, Minkowski and integral inequalities of Grönwall,
Bernoulli and Lyapunov based on the Lagrange method of linear difference equation
of first order.
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1 Introduction

Considering the most general divided difference derivative [5, 6],

Df (t (s)) = f (t (s+ 1
2 ))−f (t (s− 1

2 ))

t (s+ 1
2 )−t (s− 1

2 )
, (1)

admitting the property that if f (t) = Pn(t (s)) is a polynomial of degree n in t (s),
then Df (t (s)) = P̃n−1(t (s)) is a polynomial in t (s) of degree n − 1, one is led
to the following most important canonical forms for t (s) in order of increasing
complexity:

t (s) = t (0); (2)

t (s) = s; (3)
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t (s) = qs; (4)

t (s) = qs + q−s

2
, q ∈ C, s ∈ Z. (5)

When the function t (s) is given by (2)–(4), the divided difference derivative (1)
leads to the ordinary differential derivative Df (t) = d

dt
f (t), finite difference

derivative

�f (s) = f (s + 1) − f (s) = (e
d
ds − 1)f (s) (6)

and q-difference derivative (or Jakson derivative [4])

Dqf (t) = f (qt) − f (t)

qt − t
= q

d
dt − 1

qt − t
f (t) (7)

respectively. When x(s) is given by (5), the corresponding derivative is usually
referred to as the Askey-Wilson first order divided difference operator [1] that one
can write:

Df (x(z)) = f (x(q
1
2 z))−f (x(q

− 1
2 z))

x(q
1
2 z)−x(q

− 1
2 z)

, (8)

where x(z) = z+z−1

2 , having in mind that z = qs .
The calculus related to the differential derivative, the continuous or differential

calculus, is clearly the classical one. The one related to the derivatives (6)–(8)
(difference, q-difference and q-nonuniform difference respectively) is referred to
as the discrete calculus. Its interest is two folds: On the one hand it generalizes the
continuous calculus, and on the other hand it uses discrete variable.

This work is concerned in the difference calculus. We particularly aim to
establish difference versions of the well-known in differential calculus, integral
inequalities of Hölder, Cauchy-Schwartz, Minkowski, Grönwall, Bernoulli, and
Lyapunov. We will note that the raised inequalities were proved in [3] for a more
general difference operator than (6), but one will remark that except classical
recipes used for the inequalities of classical analysis (Hölder, Cauchy-Schwartz
and Minkowski), our approach here is essentially different. It is essentially based
on the Lagrange method and it is so that it can be extended to the more general
derivative (7) or even (8) (see [2]), the latter being, at our best knowledge, the
largest one having the mentioned property of sending a polynomial of degree n

in a polynomial of degree n − 1.
In the following lines, we first introduce basic concepts of difference calculus

and linear first order difference equations necessary for the sequel, and then study
the mentionned integral inequalities.
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2 Preliminaries

2.1 Difference Derivative and Integral

Consider again the difference derivative that is the derivative related to the grid
in (2):

�F(s) = F(s + 1) − F(s) = f (s) (1)

Basing on this derivative, one defines the integration that is the inverse of the
differentiation operation as follows:

∫ s

s0
f (s) =def

∑s−1
i=s0

f (i). (2)

The defined integral admits the following properties:

Fundamental Principle of Analysis One easily verifies that

(i) �
(∫ s

s0
f (s)d�s

)
= �

(∑s−1
s0

f (i)
)

= f (s), (3)

(ii)
∫ s

s0
(�F(s)) d�s = ∑s−1

s0
�F(i) = F(s) − F(s0). (4)

Integration by Parts Integrating the two members of the equality

f (s)�g(s) = �(f (s)g(s)) − g(s + 1)�f (s) (5)

and applying (4), one gets

∫ s

s0
f (s)�g(s)d�s = [f (s)g(s)]sso − ∫ s

s0
g(s + 1)�f (s)d�s, (6)

which is the integration by parts formula.

Positivity of the Integral We finally remark that when f(s) is positive, the integral
in (2) is clearly positive, which gives the following property and its corollary useful
for the sequel.

Property 2.1 If f (s)�0 and s1 < s2, then

∫ s2

s1

f (s)d�s�o. (7)

Corollary 2.1 If f (s)�g(s) and s1 < s2, then

∫ s2
s1

f (s)d�s�
∫ s2
s1

g(s)d�s. (8)
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2.2 Linear Difference Equations of First Order

A linear difference equation of first order can be written as

�y(s) = a(s)y(s + 1) + b(s) (9)

or

�y(s) = a(s)y(s) + b(s). (10)

Consider first the homogenous equation corresponding to (9):

�y(s) = a(s)y(s + 1). (11)

Equation (11) gives

y(s + 1) = ( 1
1−a(s)

)y(s), (12)

which by recursion leads to

y(s) = Ea(n0, n)y(n0), (13)

where

Ea(n0, n) =def

{∏s−1
i=s0

1
1−a(i)

, s > s0

1, s�s0
(14)

is a difference version of the exponential function (since Eq. (11) is a difference ver-
sion of the differential equation, y′(x) = a(x)y(x)). Consider now the homogenous
equation corresponding to (10):

�y(s) = a(s)y(s). (15)

Equation (15) gives

y(s + 1) = (1 + a(s))y(s), (16)

which by recursion leads to

y(s) = ea(n0, n)y(n0), (17)
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where

ea(n0, n) =def

{∏s−1
i=s0

(1 + a(i)), s > s0

1, s�s0
(18)

is another difference version of the exponential function. Clearly, we have

Theorem 2.1

ea(n0, n).E−a(n0, n) = e−a(n0, n).Ea(n0, n) = 1. (19)

More generally, we have

Theorem 2.2 If

�y(s) = a(s)y(s + 1),

�z(s) = −a(s)z(s), (20)

with

y(s0)z(s0) = 1, (21)

then

y(s)z(s) = 1. (22)

Prof. �(y(s)z(s)) = y(s + 1)�z(s) + z(s)�y(s) = y(s + 1)(−a(s))z(s) +
z(s)a(s)y(s+1) = 0. This implies that y(s)z(s) = const., which by (21) gives (22),
and the theorem is proved. �
Nonhomogenous Cases Consider first the equation

�y(s) = a(s)y(s + 1) + b(s). (23)

Solving (23) by the method of variation of constants or method of Lagrange, we
suppose that

�y0(s) = a(s)y0(s + 1) (24)

and search the solution of (23) as

y(s) = c(s)y0(s) (25)

where c(s) is to be determined. Placing (25) in (23) and using (24), we get

y0(s)�c(s) = b(s), (26)
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or

c(s) = c + ∑s−1
i=s0

y−1
0 (i)b(i). (27)

Placing this in (25), we get

y(s) = y0(s)c + y0(s)
∑s−1

i=s0
y−1

0 (i)b(i), (28)

with c = y−1
0 (s0)y0(s0) (we suppose that

∑s2
i=s1

h(i) = 0, if s1 > s2), or
equivalently

y(s) = φ(s, s0)
[
y(s0) + ∑s−1

i=s0
φ(s0, i)b(i)

]
, (29)

where φ(a, b) = y0(a)y−1
0 (b).

Consider now the nonhomogenous equation

�y(s) = a(s)y(s) + b(s). (30)

Here also, solving the equation by the method of Lagrange, we get

y(s) = y0(s)c + y0(s)
∑s−1

i=s0
y−1

0 (i + 1)b(i), (31)

where

�y0(s) = a(s)y0(s) (32)

and c = y−1
0 (s0)y(s0), or equivalently,

y(s) = φ(s, s0)
[
y(s0) + ∑s−1

i=s0
φ(s0, i + 1)b(i)

]
. (33)

3 Difference Integral Inequalities

In this section, we deal with the main content of the work, that is we establish the
mentioned integral inequalities. In the first two subsections, where we prove the
Hölder, Cauchy-Schwartz, and Minkowski inequalities, we refer to classical recipes
currently used in differential situations. In the last three sections, where we prove
the Grönwall, Bernoulli, and Lyapunov inequalities, we mainly rely on the method
of variation of constants of Lagrange.
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3.1 Hölder and Cauchy-Schwartz Inequalities

Theorem 3.1 (Hölder Inequality) Let a, b ∈ Z. For all functions f, g : [a, b] ∩
Z −→ R, we have

∫ b

a

|f (s)g(s)|d�s�
(∫ b

a

|f (s)|αd�s

) 1
α

(∫ b

a

|g(s)|βd�s

) 1
β

, (1)

with 1
α

+ 1
β

= 1.

Proof For A,B ∈ [0,∞[, by the concavity of the logarithm function, we have

log

⎛

⎝A
1
α

α
+ B

1
β

β

⎞

⎠� log(Aα)

α
+ log(Bβ)

β
= log(AB). (2)

which leads to

A
1
α B

1
β �A

α
+ B

β
. (3)

Now let

A(s) = |f (s)|α
∫ b

a
|f (s)|αd�s

;B(s) = |g(s)|β
∫ b

a
|g(s)|βd�s

(4)

with
(∫ b

a

|f (s)|αd�s

) (∫ b

a

|g(s)|βd�s

)

�= 0, (5)

since
∫ b

a
|f (s)|αd�s = 0 or

∫ b

a
|g(s)|βd�s = 0 implies that f (s) ≡ 0 or g(s) ≡ 0

and (1) becomes an identity.
Next, substituting A and B in (3) and integrating from a to b, considering

Corollary 2.1, one gets
∫ b

a

|f (s)|
(∫ b

a
|f (s)|αd�s

) 1
α

|g(s)|
(∫ b

a
|g(s)|βd�s

) 1
β

d�s

�
∫ b

a

{
1

α

|f (s)|α
∫ b

a
|f (s)|αd�s

+ 1

β

|g(s)|β
∫ b

a
|g(s)|βd�s

}

d�s

= 1

α
+ 1

β
= 1, (6)

which gives directly the Hölder inequality and the theorem is proved. �
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If we set α = β = 2 in the Hölder inequality (1), we get the Cauchy-Schwartz
inequality.

Corollary 3.1 (Cauchy-Schwartz Inequality) Let a, b ∈ Z. For all functions
f, g : [a, b] ∩ Z −→ R, we have

∫ b

a

|f (s)g(s)|d�s�

√(∫ b

a

|f (s)|2d�s

)(∫ b

a

|g(s)|2d�s

)

. (7)

Next, we can use the Hölder inequality to prove the Minkowski one.

3.2 Minkowski Inequality

Theorem 3.2 (Minkowski Inequality) Soient a, b ∈ Z. For all functions f, g :
[a, b] ∩ Z −→ R, we have

(∫ b

a

|f (s) + g(s)|d�s

) 1
α

�
(∫ b

a

|f (s)|αd�s

) 1
α

+
(∫ b

a

|g(s)|αd�s

) 1
α

. (8)

Proof We apply the Hölder inequality to obtain

∫ b

a

|f (s) + g(s)|αd�s =
∫ b

a

|f (s) + g(s)|α−1|f (s) + g(s)|d�s

�
∫ b

a

|f (s) + g(s)|α−1|f (s)|d�s +
∫ b

a

|f (s) + g(s)|α−1|g(s)|d�s

�
(∫ b

a

|f (s) + g(s)|(α−1)βd�s

) 1
β

⎡

⎣
(∫ b

a

|f (s)|αd�s

) 1
α

+
(∫ b

a

|g(s)|αd�s

) 1
α

⎤

⎦ .

Dividing the two members of the inequality by
(∫ b

a
|f (s) + g(s)|(α−1)βd�s

) 1
β

,

with (α − 1)β = α, we get

(∫ b

a

|f (s) + g(s)|αd�s

)1− 1
β

�

⎡

⎣
(∫ b

a

|f (s)|αd�s

) 1
α

+
(∫ b

a

|g(s)|αd�s

) 1
α

⎤

⎦ ,

which is the Minkowski inequality since 1 − 1
β

= 1
α

. �
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3.3 Grönwall Inequality

Let’s prove first the following:

Lemma 3.1 Given y, f, a real valued functions defined on Z, with a(s)�0. Sup-
pose that y0(s) is the solution of �y0(s) = a(s)y0(s), such that y0(s0) = 1.

In that case, if

�y(s)�a(s)y(s) + f (s) (9)

for all s ∈ Z, then

y(s)�y0(s)y(s0) + y0(s)

∫ s

s0

y−1
0 (s + 1)f (s)d�s. (10)

Proof Let y0(s) be the solution of the homogenous equation

�y0(s) = a(s)y0(s). (11)

Searching the solution y(s) of (9) verifying (10), by the method of variation of
constants

y(s) = c(s)y0(s), (12)

where c(s) is unknown, we place (12) in (9), considering (11) and get

y0(s + 1)�c(s)�f (s). (13)

Given the fact that a(s)�0, we have that y0(s) > 0 and the relation (13) simplifies
in

�c(s)�y−1
0 (s + 1)f (s). (14)

Integrating the two members of the inequality from s0 to s, we get

c(s) − c(s0)�
∫ s

s0

y−1
0 (s + 1)f (s)d�s. (15)

Since y0(s0) = 1, (12) gives c(s0) = y(s0), and (15) simplifies in

c(s)�y(s0) +
∫ s

s0

y−1
0 (s + 1)f (s)d�s. (16)
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Hence

c(s)y0(s)�y0(s)

[

y(s0) +
∫ s

s0

y−1
0 (s + 1)f (s)d�s

]

, (17)

which gives the expected result:

y(s)�y0(s)y(s0) + y0(s)

∫ s

s0

y−1
0 (s + 1)f (s)d�s.

�
Considering the Theorem 2.1, we obtain the following

Corollary 3.2 If the functions y, f, a verify the conditions of Lemma 3.1, then

y(s)�y(s0)ea(s0, s) + ea(s0, s)

∫ s

s0

E−a(s0, s + 1)f (s)d�s.

Lemma 3.2 Given y, f, a real valued functions defined on Z, with a(s)�0.
Suppose that y0(s) is the solution of �y0(s) = a(s)y0(s + 1), such that y0(s0) =

1.
In that case, if

�y(s)�a(s)y(s + 1) + f (s) (18)

for all s ∈ Z, then

y(s)�y0(s)y(s0) + y0(s)

∫ s

s0

y−1
0 (s)f (s)d�s (19)

Proof Let y0(s) be the solution of the homogenous equation

�y0(s) = a(s)y0(s + 1). (20)

Searching the solution y(s) of (18) verifying (19), by the method of variation of
constants

y(s) = c(s)y0(s), (21)

where c(s) is unknown, we place (21) in (18), considering (20) and get

y0(s)�c(s)�f (s). (22)

Given the fact that a(s)�0, we have that y0(s) > 0 and the relation (22) simplifies
in
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�c(s)�y−1
0 (s)f (s). (23)

Integrating the two members of the inequality from s0 to s, we get

c(s) − c(s0)�
∫ s

s0

y−1
0 (s)f (s)d�s. (24)

Since y0(s0) = 1, (21) gives c(s0) = y(s0), and (24) simplifies in

c(s)�y(s0) +
∫ s

s0

y−1
0 (s)f (s)d�s. (25)

Hence

c(s)y0(s)�y0(s)

[

y(s0) +
∫ s

s0

y−1
0 (s)f (s)d�s

]

, (26)

which gives the expected result:

y(s)�y0(s)y(s0) + y0(s)

∫ s

s0

y−1
0 (s)f (s)d�s.

�
For the same reasons as the Corollary 3.2, we obtain the following:

Corollary 3.3 If the functions y, f, a verify the conditions of Lemma 3.2, then

y(s)�y(s0)Ea(s0, s) + Ea(s0, s)

∫ s

s0

e−a(s0, s)f (s)d�s.

We can now prove the following:

Theorem 3.3 (Grönwall Inequality) Let y, f, a be real valued functions defined
on Z, with a(s)�0.

Suppose that y0(s) is the solution of �y0(s) = a(s)y0(s), such that y0(s0) = 1.
In that case if

y(s)�f (s) +
∫ s

s0

y(s)a(s)d�s, (27)

then

y(s)�f (s) + ea(s0, s)

∫ s

s0

a(s)f (s)E−a(s0, s + 1)d�s. (28)



148 G. Bangerezako and J. P. Nuwacu

Proof Defining

v(s) =
∫ s

s0

y(s)a(s)d�s, (29)

(27) gives

y(s)�f (s) + v(s), (30)

and

�v(s) = y(s)a(s)�f (s)a(s) + a(s)v(s). (31)

By the Corollary 3.2 of Lemma 3.1, the inequality (31) leads to

v(s)�v(s0)ea(s0, s) + ea(s0, s)

∫ s

s0

a(s)f (s)E−a(s0, s + 1)d�s (32)

Since v(s0) = 0, (30) and (32) imply that

y(s)�f (s) + ea(s0, s)

∫ s

s0

a(s)f (s)E−a(s0, s + 1)d�s, (33)

which is the expected Grönwall inequality. �
As direct consequences, we obtain the following results:

Corollary 3.4 Let y, f, a be real valued functions defined on Z, with a(s)�0. If

y(s)�
∫ s

s0

y(s)a(s)d�s, (34)

for all s ∈ Z, then

y(s)�0. (35)

Proof This follows from the Theorem 3.3 with f (s) ≡ 0. �
Corollary 3.5 Let a(s)�0 and α ∈ R. If

y(s)�α +
∫ s

s0

y(s)a(s)d�s, (36)

for all s ∈ Z, then

y(s)�αea(s0, s). (37)
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Proof From the Grönwall inequality with f (s) = α, one gets

y(s)≤ α + ea(s0, s)

∫ s

s0

αa(s)E−a(s0, s + 1)d�s

= α

(

1 − ea(s0, s)

∫ s

s0

�E−a(s0, s)d�s

)

= α (1 − ea(s0, s) [E−a(s0, s) − E−a(s0, s0)])

= α − αea(s0, s)E−a(s0, s) + αea(s0, s)

= αea(s0, s),

(38)

which gives the expected inequality. �

3.4 Bernoulli Inequality

Theorem 3.4 (Bernoulli Inequality) Let α ∈ R. Then for all s, s0 ∈ Z, with
s > s0, we have

ea(s0, s)≥1 + α(s − s0). (39)

Proof Let y(s) = α(s − s0), s > s0. Then �y(s) = α and αy(s) + α = α2(s −
s0) + α≥α = �y(s), which implies that �y(s)≤αy(s) + α.

By the Corollary 3.2 of Lemma 3.1, we obtain

y(s)≤y(s0)eα(s0, s) + eα(s0, s)

∫ s

s0

αE−α(s0, s + 1)d�s,

= −eα(s0, s)

∫ s

s0

�E−α(s0, s)d�s, (y(x0) = 0)

= −eα(s0, s)[E−α(s0, s) − 1]
= −1 + eα(s0, s).

(40)

Hence eα(s0, s)≥1 + α(s − s0), with s > s0, as expected. �
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3.5 Lyapunov Inequality

Let f : Z −→ [0,∞[. Consider the Sturm-Liouville difference equation

�2u(s) + f (s)u(s + 1) = 0, s ∈ Z. (41)

Define the function F by

F(y) = ∫ b

a

[
(�y(s))2 − f (s)y2(s + 1)

]
d�s. (42)

We prove first the following lemmas:

Lemma 3.3 Let u(s) be a nontrivial solution of the Sturm-Liouville difference
equation (41). In that case, for all y belonging to the domain of definition of F ,
the following equality is verified,

F(y) − F(u) − F(y − u) = 2(y − u)(b)�u(b) − 2(y − u)(a)�u(a). (43)

Proof We have

F(y) − F(u) − F(y − u)

=
∫ b

a

[(�y(s))2 − f (s)y2(s + 1) − (�u(s))2

+f (s)u2(s + 1) − (�(y − u)(s))2 + f (s)(y − u)2(s + 1)]d�s

= 2
∫ b

a

[− (�u(s))2 + f (s)u2(s + 1) + �y(s)�u(s)

−f (s)y(s + 1)u(s + 1)]d�s

= 2
∫ b

a

[�y(s)�u(s) + y(s + 1)�2u(s) − (�u(s))2

−�2u(s)u(s + 1)]d�s

= 2
∫ b

a

[�[y(s)�u(s)] − �[u(s)�u(s)]]d�s

= 2
∫ b

a

� [(y(s) − u(s))�u(s)] d�s

= 2 (y(b) − u(b)) �u(b) − 2 (y(a) − u(a))�u(a), (44)

which proves the lemma. �
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Lemma 3.4 Let y be in the domain of definition of F . For all c, d ∈ [a, b] ∩ Z,
a, b ∈ Z and a�c�d�b, we have

∫ d

c
(�y(s)2)d�s� (y(d)−y(c))2

d−c
. (45)

Proof Let u(s) = y(d)−y(c)
d−c

s + dy(c)−cy(d)
d−c

. Then �u(s) = y(d)−y(c)
d−c

and �2u(s) =
0. This proves that u(s) is a solution of (41) with f (s) = 0 for all s ∈ Z and F(y) =∫ b

a (�y(s))2 d�s, for all y from the domain of definition of F . By Lemma 3.3, we
get F(s)−F(u)−F(y−u) = 0, and consequently F(y) = F(u)+F(y−u)�F(u).
This leads to the following result:

∫ d

c (�y(s))2 d�s�
∫ d

c (�u(s))2 d�s

= ∫ d

c

(
y(d)−y(c)

d−c

)2
d�s

= (y(d)−y(c))2

d−c
, (46)

which proves the lemma. �
Theorem 3.5 (Lyapunov Inequality) Given f : Z −→ [0,∞[ and u a nontrivial
solution of Eq. (41) with u(a) = u(b) = 0, a, b ∈ Z and a < b, then

∫ b

a

f (s)d�s� 4

b − a
. (47)

Proof By the Lemma 3.3 with y = 0 and u(a) = u(b) = 0, one gets F(0)−F(u)−
F(−u) = −2u(b)�u(b) + 2u(a)�u(a).This gives F(u) = 0 since F(0) = 0 and
F(u) = F(−u). Thus

F(u) =
∫ b

a

[
(�u(s))2 − f (s)u2(s + 1)

]
d�s = 0. (48)

Let M = max
[
u2(s); s ∈ [a, b] ∩ Z

]
and c ∈ [a, b]∩Z such that u2(c) = M . Then

M = u2(c)�u2(s+1) and using (48), Lemma 3.4 and the fact that u(a) = u(b) = 0,
we get

M

∫ b

a

f (s)d�s�
∫ b

a

f (s)u2(s + 1)d�s

=
∫ b

a

(�(us))2 d�s

=
∫ c

a

(�(us))2 d�s +
∫ b

c

(�(us))2 d�s
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� (u(c) − u(a))2

c − a
+ (u(b) − u(c))2

b − c

= M

[
1

c − a
+ 1

b − c

]

�M
4

b − a
.

(49)

which proves the Lyapunov inequality. �
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