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nonholonomic system.
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1 Introduction

The Jacobi last multiplier (JLM) is a useful tool for deriving an additional first
integral for a system of n first-order ODEs when n−2 first integrals of the system are
known. Besides, the JLM allows us to determine the Lagrangian of a second-order
ODE in many cases [15, 25, 31]. In his sixteenth lecture on dynamics Jacobi uses
his method of the last multiplier [19, 20] to derive the components of the Laplace–
Runge–Lenz vector for the two-dimensional Kepler problem. In recent years a
number of articles have dealt with this particular aspect [10, 16, 24–26]. However,
when a planar system of ODEs cannot be reduced to a second-order differential
equation the question of interest arises whether the JLM can provide a mechanism
for finding the Lagrangian of the system.

Let M be an even dimensional differentiable manifold endowed with a non-
degenerate 2-form �, (M,�) is an almost symplectic manifold. An almost sym-
plectic manifold (M,�) is called locally conformally symplectic (l.c.s.) manifold
by Vaisman [29] if there is a global 1-form η, called the Lee form on M such that

d� = η ∧ �,

where dη = 0. (M,�) is globally conformally symplectic if the Lee form η is
exact and when η = 0, then (M,�) is a symplectic manifold. The notion of
locally conformally symplectic forms is due to Lee and, in more modern form,
to Vaisman. Chinea et al. [8, 9] showed an extension of an observation made
by I. Vaisman [29] that locally conformal symplectic manifolds can be seen as
a natural geometrical setting for the description of time-independent Hamiltonian
systems. In a seminal paper Wojkowski and Liverani [32] studied the Lyapunov
spectrum in locally conformal Hamiltonian systems. It was demonstrated that
Gaussian isokinetic dynamics, Nośe–Hoovers dynamics and other systems can be
studied through locally conformal Hamiltonian systems. It must be noted that the
conformal Hamiltonian structure appears in various dissipative dynamics as well
as in the activator-inhibitor model connected to Turing pattern formation. It has
been shown by Haller and Rybicki [18] that the Poisson algebra of a locally
conformally symplectic manifold is integrable by making use of a convenient setting
in global analysis. In this paper we explore the role of the Jacobi last multiplier
in nonholonomic free particle motion and nonholonomic oscillator. These systems
were studied extensively by L. Bates and his coworkers [2–5]. The two forms
associated with these nonholonomic systems are not closed, in fact they satisfy l.c.s.
condition. We apply JLM to such systems which guarantees that at least locally
the symplectic form can be multiplied by a nonzero function to get a symplectic
structure. In an interesting paper Bates and Cushman [4] compared the geometry of
a toral fibration defined by the common level sets of the integrals of a Liouville
integrable Hamiltonian system with a toral fibration coming from a completely
integrable nonholonomic system. We apply JLM to study and compare these two
toral fibrations. All the examples considered in this paper are taken from Bates et
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al. papers [2–5]. Relatively very little has been done when the flow is not complete.
A quarter of a century ago, Flaschka [14] raised a number of questions concerning
a simple class of integrable Hamiltonian systems in R4 for which the orbits lie on
surfaces.

This paper is organized as follows. The first section recalls the definitions of the
locally conformal symplectic structure and the Jacobi last multiplier. In Sect. 4 we
study nonholonomic dynamics through an example—nonholonomic free particle
motion, using constrained Lagrangian dynamics [7] and Bizyaev, Borisov, and
Mamaev [6] method. We apply Jacobi last multiplier (JLM) method to transform
nonholonomic dynamics into symplectic dynamics, a notion which, to our knowl-
edge, does not appear explicitly in the literature. We study integrability property of
the nonholonomic system in Sect. 5. The paper ends with a list of remarks regarding
the further applications of JLM in nonholonomic systems. Finally, it is worthwhile
to note that the first draft of this paper was circulated as an IHES preprint in 2013.

2 Preliminaries

We start with a brief review [17, 18, 29, 30] of the locally conformal symplectic
structure. A differentiable manifold M of dimension 2n endowed with a non-
degenerate 2-form ω and a closed 1-form η is called a locally conformally
symplectic (l.c.s.) manifold if

dω + ω ∧ η = 0. (2.1)

The 1-form η is called the Lee form of ω [21]. This allows us to introduce the
Lichnerowicz deformed differential operators

dη : �∗(M) −→ �∗+1(M),

such that dηθ = dθ + η ∧ θ . Clearly d2
η = 0 and dηω = 0. It must be worthwhile to

note that l.c.s manifold is locally conformally equivalent to a symplectic manifold
provided η = df and ω = ef ω0, such that dω0 = 0.

If (ω, η) is an l.c.s. structure on M and f ∈ C∞(M,R), then (ef ω, η − df ) =
(ω′, η′) is again an l.c.s. structure on M then these two are conformally equivalent,
and these two operators and Lee forms are cohomologous: η′ = η − df . Hence dη

and dη′ are gauge equivalent

dη′(β) = (dη − df ∧)β = ef d(e−f β).

The r.h.s. is connected to Witten’s differential. If f ∈ C∞(M) and t�0, Witten
deformation of the usual differential dtf : �∗(M) −→ �∗+1(M) is defined
by dtf = etf de−tf , which means dtf β = dβ + tβ ∧ df . Since dη and dη′
are gauge equivalent, the Lichnerowicz cohomology groups H ∗(�∗(M), dη) and
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H ∗(�∗(M), dη) are isomorphic and the isomorphism is given by the conformal
transformation [β] �−→ [ef β].

It is clear from the definition that dη does not satisfy the Leibniz property:

dη(θ ∧ ψ) = (d + η∧)(θ ∧ ψ) = dηθ ∧ ψ + (−1)deg θ θ ∧ dψ

= dθ ∧ ψ + (−1)deg θ θ ∧ dηψ.

For an l.c.s. manifold, we denote by

Diff ∞
c (M,ω, η) := {f ∈ Diff∞c (M)|(f ∗ω, f ∗η) 	 (ω, η)}

the group of compactly supported diffeomorphisms preserving the conformal
equivalence class of (ω, η). The corresponding Lie algebra of vector fields is

χc(M,ω, η) := {X ∈ χc(M) | ∃c ∈ R : L
η
Xω = cω},

where L
η
Xβ = LXβ + η(X)β. The Cartan magic formula for L

η
X is given by

L
η
X = dη ◦ iX + iX ◦ dη.

Here we list some of the important properties of the Lie derivative.

1. L
η
XL

η
Y − L

η
XL

η
X = L

η
[X,Y ].

2. L
η
Xdη − dηL

η
X = 0

3. L
η
XiY − iY L

η
X = 0.

4. Let η1 and η2 be two Lee forms then L
η1+η2
X (θ ∧ψ) = (L

η1
X θ)∧ψ +θ ∧ (L

η2
X ψ).

Let X and Y be the two conformal vector fields then [X, Y ] becomes the
symplectic vector field. The proof of this claim is very simple, can easily show
that L

η
[X,Y ]ω = 0.

2.1 Inverse Problem and the Jacobi Last Multiplier

We start with a brief introduction [10, 15, 24, 25, 31] of the Jacobi last multiplier and
inverse problem of calculus of variations [22]. Consider a system of second-order
ordinary differential equations

y′′
i = fi(yj , y

′
j ) for 1�i, j�n.

Geometrically these are the analytical expression of a second-order equation field 	

living on the first jet bundle J 1π of a bundle π : E → R, so

	 = y′
i

∂

∂yi

+ fi(yj , y
′
j )

∂

∂y′
i

.



The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally. . . 279

The local formulation of the general inverse problem is the question for the
existence of a non-singular multiplier matrix gij (y, y′), such that

gij (y
′′
j − fj ) ≡ d

dt

( ∂L

∂yi

) − ∂L

∂y′
i

,

for some Lagrangian L. The most frequently used set of necessary and sufficient
conditions for the existence of the gij are the so-called Helmholtz conditions due to
Douglas [13, 27, 28].

Theorem 2.1 (Douglas [13]) There exists a Lagrangian L : T Q → R such
that the equations are its Euler–Lagrange equations if and only if there exists a
non-singular symmetric matrix g with entries gij satisfying the following three
Helmholtz conditions:

gij = gji, 	̂(gij ) = gik	
k
j + gjk	

k
i ,

gik�
k
j = gjk�

k
i ,

∂gij

∂y′
k

= ∂gik

∂y′
j

,

	k
j := −1

2

∂fi

∂y′
j

, �k
i := −∂f k

∂xi
− 	l

i	
k
l − 	̂(	k

i ),

where 	̂ = ∂
∂t

+ yi ∂
∂xi + f i ∂

∂yi .

When the system is one-dimensional we have i = j = k = 1 and then the three
set of conditions become trivial and the fourth one reduces to one single P.D.E.

	(g) + g
∂f

∂v
≡ v

∂g

∂x
+ f

∂g

∂v
+ g

∂f

∂v
= 0.

This is the equation defining the Jacobi multipliers, because div	 = ∂f
∂v

. The main
equation can also be expressed as

dg

dt
+ g · div 	 = 0.

Then, the inverse problem reduces to find the function g ( often denoted by μ)
which is a Jacobi multiplier and L is obtained by integrating the function μ two
times with respect to velocities.

An autonomous second-order differential equation y′′ = F(y, y′) has associated
a system of first-order differential equations

y′ = v, v′ = F(y, v) (2.2)
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whose solutions are the integral curves of the vector field in R
2

	 = v
∂

∂y
+ F(y, v)

∂

∂v
. (2.3)

A Jacobi multiplier μ for such a system must satisfy divergence free condition

∂

∂y
(μv) + ∂

∂v
(μF) = 0,

which implies μ must be such that

v
∂μ

∂y
+ ∂μ

∂v
F + μ

∂F

∂v
= 0.

which taking into account dM
dx

= v ∂M
∂y

+ F ∂M
∂v

above equation can be written as

d log μ

dx
+ ∂F

∂v
= 0. (2.4)

The normal form of the differential equation determining the solutions of the Euler–
Lagrange equation defined by the Lagrangian function L(y, v) admits as a Jacobi
multiplier the function

μ = ∂2L

∂v2
. (2.5)

Conversely, if μ(y, v) is a last multiplier function for a second-order differential
equation in normal form, then there exists a Lagrangian L for the system related to
μ by the above equation.

Let L be such that condition M = ∂2L
∂v2 be satisfied, then

∂L

∂v
=

∫ v

M(y, ζ )dζ + φ1(y)

which yields

L(y, v) =
∫ v

dv′
∫ v′

M(y, ζ )dζ + φ1(y)v + φ2(y).

Geometrical Interpretation of JLM Let M be a smooth, real, n-dimensional
orientable manifold with fixed volume form �. Let ẋi (t) = γi(x1(t), · · · , xn(t)),
1�i�n generated by the vector field 	 and we consider the (n−1)-form �γ = i	�.
The function μ ∈ C∞(M) is called a JLM of the ODE system generated by 	, if
μω is closed, i.e.,

d(μ�γ ) = dμ ∧ �γ + μd�γ .

This is equivalent to 	(μ) + μ. div 	 = 0. Characterizations of the JLM can be
obtained in terms of the deformed Lichnerowicz operator dμ(θ) = dμ ∧ θ + dθ ,
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where the Lee form in terms of the last multiplier, i.e. η = dμ. Hence, μ is a
multiplier if and only if [11]

d(μ�γ ) ≡ dμ�γ + (m − 1)d�γ = 0. (2.6)

3 Nonholonomic Free Particle, Conformal Structure,
and Jacobi Last Multiplier

Let us start with the discussion of Hamiltonian formulation of nonholonomic
systems [6, 7]. Consider a mechanical system in 3D space with coordinates x, y, z.
Let the coordinate z be cyclic. The motion takes place in the presence of a
nonholonomic constraint which is given by

f = ż − yẋ = 0. (3.1)

We express the equation of motion in the form of Euler–Lagrange equations with
undetermined multiplier λ

d

dt

( ∂L

∂ẋi

) − ∂L

∂xi

= λ
∂f

∂ẋi

, i = 1, 2, 3. (3.2)

It is clear from the cyclic condition and definition of f that λ satisfies λ = d
dt

(
∂L
∂ż

)
.

We consider the motion of a free particle with unit mass subjected to a
constraint (3.1) and the Lagrangian is L = 1

2 (ẋ2 + ẏ2 + ż2), although the results
presented in this paper are quite general. We use (3.2) to obtain the equations of
motion1

ẋ = px, ẏ = py, ż = pz, ṗx = −λy, ṗy = 0 ṗz = λ. (3.3)

Using the constraint equation ż = yẋ we can find

λ = pxpy − λy2, or λ = pxpy

1 + y2

and this is equivalent to λ = ( ∂L
∂ż

). Hence eliminating the multiplier λ we obtain

ẋ = px, ẏ = py, ṗx = −y
pxpy

(1 + y2)
, ṗy = 0. (3.4)

1The physicist way of looking the constrained dynamics is different from our presentation, it is
described by L = 1

2

(
ẋ2 + ẏ2 + ż2

) + λ
(
ż − yẋ

)
, where momenta are given by px = ẋ −

λy, py = ẏ, pz = ż + λ, pλ = 0, The usual Dirac analysis of constraints then
identifies the following two constraints, φ1 = pλ = 0 φ2 = pz − ypx − λ(1 + y2) primary
and secondary, respectively, which are second class, {φ1, φ2} = (1 + y2). It would be interesting
to bridge the gap between these two methods.
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3.1 Reduction, Constrained Hamiltonian and Nonholonomic
Systems

Let Lc(x, ẋ) be the Lagrangian of the system after substituting the expression of ż or
ẋ3. Thus we obtain a close system of equations for the variables (x, ẋ) and constraint
f = ż − yẋ = 0, given by

d

dt

(∂Lc

∂ẋ

) − ∂Lc

∂x
= (

∂L

∂ż
)∗ẏ,

d

dt

(∂Lc

∂ẏ

) − ∂Lc

∂y
= −(∂L

∂ż

)∗
ẋ, (3.5)

where ( ∂L
∂ż

)∗ means that the substitution ż is made after the differentiation. This
reduces to study the system with two degrees of freedom and preserves the energy
integral

E = ∂Lc

∂ẋ
ẋ + ∂Lc

∂ẏ
ẏ − Lc.

Remark One can obtain the equations of motion (3.4) using the constrained
Lagrangian. We now define the constrained Lagrangian by substituting the con-
straint equation ż = yẋ into Lagrangian:

Lc = 1

2

(
(1 + y2)ẋ2 + ẏ2). (3.6)

The equations of motion can be obtained from the constrained Lagrangian
Lc(y, ẋ, ẏ) = L(ẋ, ẏ, yẋ) using chain rule. This is a special case of nonholonomic
treatment given in Tony Bloch’s book [7]. The general equations of motion for
a nonholonomic system with the constraint equation ẇ = −Aa

αṙα in terms
of constrained Lagrangian Lc(r

α,wa, ṙα) = L[(rα, wa, ṙα,−Aa
α(r,w)ṙα] are

given as

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+ Aa

α(r,w)
∂Lc

∂wa
= − ∂Lc

∂ẇa
Bb

αβrβ, (3.7)

where

Bb
αβ =

(
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂wa
− Aa

β

∂Ab
α

∂wa

)

.

Note that the system is holonomic if and only if the coefficients Bb
αβ vanish.

The Lagrangian of the reduced system is Lc = 1/2
(
(1 + y2)ẋ2 + ẏ2

)
. Let S be

the configuration space and Legc : T S → T ∗S be the Legendre transformation of
the reduced system. Using Legendre transformation

mi = ∂L̃

∂ẋ
, H =

2∑

i=1

miẋi − Lc, i = 1, 2 (3.8)
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we obtain the following system of equations

ẋi = ∂H

∂mi

, ṁ1 = −∂H

∂x1
+ ∂H

∂m2
S, ṁ2 = −∂H

∂x2
− ∂H

∂m2
S, (3.9)

where S = ( ∂L
∂ż

)∗ and i = (1, 2). Then the momenta corresponding to the reduced
equations are given by

mx = ∂Lc

∂ẋ
= (1 + y2)ẋ, my = ∂Lc

∂ẏ

and the corresponding Hamiltonian of the reduced system is given by

Hc = 1

2

( m2
x

1 + y2 + m2
y

)
. (3.10)

It is easy to find Hamiltonian equations from (3.9) as ẋ = ∂H
∂mx

, ẏ = ∂H
∂my

, ṁx =
− ∂H

∂x
+ ∂H

∂my
S = −0 + ymymx/(1 + y2), ṁy = − ∂H

∂y
− ∂H

∂mx
S = ym2

x/(1 + y2)2 −
ym2

x/(1 + y2)2 = 0. Here we tacitly use S = ż = ymx/(1 + y2).
The new set of equations is given by

ẋ = mx

1 + y2 , ẏ = my, ṁx = ymxmy

1 + y2 , ṁy = 0. (3.11)

The vector field

	 = mx

1 + y2 ∂x + my∂y + ymxmy

1 + y2 ∂mx (3.12)

satisfies

i	ωnh = −dHc,

where the two form is given by

ωnh = dmx ∧ dx + dmy ∧ dy − mxy

1 + y2 dy ∧ dx. (3.13)

Here ωnh is the nondegenerate two form on phase space P , however it is not closed,
i.e.,

dωnh = ydy

1 + y2
∧ dmx ∧ dx = d

(1

2
ln (1 + y2)

) ∧ ωnh. (3.14)

The corresponding Poisson structure is given by
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{x,mx} = 1, {y,my} = 1, {mx,my} = mxy

1 + y2 , (3.15)

which does not satisfy Jacobi identity, it is known as almost Poisson
structure. The (nonholonomic) Poisson bracket between two functions fi =
fi(x, y,mx,my), (i = 1, 2) is

{f1, f2}nh = ∂f1

∂x

∂f2

∂mx

− ∂f1

∂mx

∂f2

∂x
+ ∂f1

∂y

∂f2

∂my

− ∂f1

∂my

∂f2

∂y

+ mxy

1 + y2

( ∂f1

∂mx

∂f2

∂my

− ∂f1

∂my

∂f2

∂mx

)
.

The equations of motion may be given in terms of nonholonomic Poisson bracket

ḟ = {f,H }nh, ∀f : M → R. (3.16)

A function f : M → R is an integral of motion of the nonholonomic system if and
only if it satisfies {f,H }nh = 0.

Using these almost Poisson structures we can still do Hamiltonian dynamics as
long as we are willing to give up the existence of canonical coordinates and the
Jacobi identities for the Poisson brackets. We will subsequently see that the Jacobi
last multiplier plays a crucial role to obtain the canonical coordinates and Poisson
structures.

3.2 Hamiltonization and Reduction Using Jacobi Multiplier

Let us compute the JLM of the set of Eq. (3.4) from

d

dt
log μ + ( − yẏ

1 + y2

) = 0,

thus we obtain

μ = (1 + y2)1/2. (3.17)

It is worthwhile to note that if we compute the “JLM” of the set of Eq. (3.11)
from d

dt
log μ + ( yẏ

1+y2

) = 0, we obtain the inverse multiplier μ−1 = (1 + y2)−1/2.
It is obvious because we compute it on the dual space.

Using the Jacobi last multiplier (JLM) one can show that system (3.10) has an
invariant measure that can be represented in the form μ(y)dxdm. JLM is a smooth
and positive function on the entire phase space, so it acts like a density of the
invariant measure and satisfies the Liouville equation



The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally. . . 285

div (μ	) = 0,

where 	 stands for the vector field determined by system (3.10).

Proposition 3.1 The function K = mx/
√

1 + y2 = μ−1mx is the integral of
motion of the nonholonomic system, thus nonholonomic Poisson bracket with H

vanishes, {H,K}nh = 0.

It follows directly from the set of Eq. (3.11).

3.3 Conformally Hamiltonian Formulation of Nonholonomic
Systems

Let M be a symplectic manifold with symplectic form ω, when it is exact we write
ω = dθ . For a function H ∈ C∞(M) we denote its Hamiltonian vector field by
XH .

Definition 3.2 The diffeomorphism φa is conformal if (φa)∗ω = ω and corre-
sponding to this flow the vector field 	a is said to be conformal with parameter
a ∈ R if L	aω = aω.

It is clear

d

dt
φ∗

t ω = φ∗
t L	aω = aφ∗

t ω

which has a unique solution φ∗
t ω = eatω.

The next proposition was given by McLachlan and Perlmutter [23].

Proposition 3.3 Let M be a symplectic manifold with symplectic form ω. It admits
a conformal vector field a �= 0 if and only if ω = −dθ .

(a) Given a Hamiltonian H ∈ C∞(M), the conformal Hamiltonian vector field Xa
H

satisfies

iXa
H
ω = dH − aθ. (3.18)

(b) If H 1(M) = 0, then the set of conformal vector fields on M is given by {XH +
cZ} : H ∈ C∞(M)}, where Z is defined by iZω = −θ and it is known as the
Liouville vector field.

If H1(M) = 0, we know that every conformal vector field can be written as
XH + cZ for some Hamiltonian and a unique c ∈ R.

Let ω = dmx ∧ dx + dmy ∧ dy be the symplectic form. Then by contraction
with respect to the Hamiltonian vector field we obtain
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iXH
ω = −dH + λ

( ∂H

∂m2
dx1 − ∂H

∂m1
dx2

) ≡ −dH + λθ.

The vector field Z is tangent to the fibers is given by

Z = ∂H

∂m2

∂

∂m1
− ∂H

∂m1

∂

∂m2
, iZω = θ.

Given the Hamiltonian Hc ∈ C∞(M), the Hamiltonian vector field XHc

corresponding to Hamiltonian Hc satisfies

iXHc
ωnh = dHc − θ, θ = mxy

1 + y2 dx.

This yields a conformal vector field. Let ω = dmx∧dx+dmy∧dy be the symplectic
form when the manifold equipped with coordinates (x, y,mx,my). The conformal
vector field is given by XHc + Z, where Z is defined by

iZω = −θ, where Z = mxy

1 + y2

∂

∂mx

. (3.19)

4 Integrability of Nonholonomic Dynamics and Locally
Conformally Symplectic Structure

In this section we unveil the connection between the Jacobi last multiplier, l.c.s.
structure and integrability properties of nonholonomic dynamics.

Proposition 4.1 The nonholonomic two form ωnh and ω̃nh satisfy locally conformal
symplectic structure and the Lee form is η = d

(
log(1+y2))1/2

) = d(log μ), where
μ is the Jacobi’s last multiplier.

Proof It is straightforward to check

dωnh = −( ydy

1 + y2

) ∧ dmx ∧ dx

= d
(

log
1

2
(1 + y2)

) ∧ (
dmx ∧ dx + dmy ∧ dy − mxy

1 + y2
dy ∧ dx

) = η ∧ ωnh

and similarly for the other case. ��
The inverse multiplier plays an important role for changing locally conformal

symplectic form ωnh to symplectic form. In this process we find new momemta
which satisfy canonical Poisson structure.
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Proposition 4.2 Let μ−1 be the inverse multiplier, then ω = μ−1ωnh is a
symplectic form, given by

ω̃ = dm̃x ∧ dx + dm̃y ∧ dy, (4.1)

where the new momenta are

m̃x = μ−1mx = mx√
1 + y2

m̃y = mx√
1 + y2

. (4.2)

Proof By direct computation one obtains

μ−1ωnh = 1
√

1 + y2

(
dmx ∧ dx + dmy ∧ dy − mxy

1 + y2 dy ∧ dx
)

= dmx√
1 + y2

∧dx + dmy√
1 + y2

∧dy − mxy

(1 + y2)3/2
dy ∧dx ≡ dm̃x ∧dx +dm̃y ∧dy.

��
It is clear dω̃ = 0 and the new momenta satisfy the canonical Poisson structure

{x, m̃x} = 1, {y, m̃y} = 1. (4.3)

4.1 Role of Jacobi’s Multiplier and Integrability
of Nonholonomic Dynamical Systems

We now address the question of integrability of the nonholonomic systems as
posed by Bates and Cushman [4, 12]. In their papers, they explored to what extent
nonholonomic systems behave like an integrable system. The fundamental Liouville
theorem states that it suffices to have n {f1 = H, f2, · · · , fn} independent Poisson
commuting functions to explicitly (i.e., by quadratures) integrate the equations of
motion for generic initial conditions. Let Mc = {f1 = c1, · · · , fn = cn} be a
common invariant level set, which is regular (i.e., df1, · · · dfn are independent),
compact and connected, then it is diffeomorphic to n-dimensional tori Tn = R

n/�,
where � is a lattice in R

n. These tori are known as the Liouville tori [1, 12],
In the neighborhood of Mc there exist canonical variables I , φ mod 2π , called
action-angle variables which satisfy {φi, Ij } = δij , {φi, φj } = {Ii, Ij } = 0,
i, j = 1, · · · n, such that the level sets of the actions I , · · · , In are invariant tori
and H = H(I1, . . . , In).

The vector fields Xf1 , · · · , Xfn corresponding to the n integrals of motion
f1, · · · fn are independent (it follows from the independency of differentials ) and
span the tangent spaces of TqMc for all q ∈ Mc, since Mc is compact, hence Xfi

s are
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complete. The Poisson commutativity implies the commutativity of vector fields. In
other words, the so-called invariant manifolds, which are the (generic) submanifolds
traced out by the n commuting vector fields Xfi

are Liouville tori, the flow of each
of the vector fields Xfi

is linear, so that the solutions of Hamilton’s equations are
quasi-periodic. A proof in the case of a Liouville integrable system on a symplectic
manifold was given by Arnold [1].

We will soon figure out that the (reduced) nonholonomic problem which we
are considered in this paper has two constants of motion H (Hamiltonian) and K ,
these are Poisson commuting. However, because the nonholonomic system does not
satisfy the Jacobi identity, the associated vector fields XH and XK do not commute,
i.e. [XH ,XK ] �= 0, on the torus. So Bates and Cushman [4] asked if such system is
integrable in some sense or how can it be converted to integrable systems.

4.2 JLM and Commuting of Vector Fields

It has been observed the reduced Hamiltonian equation of motion lies on the
invariant manifold given by

K = mx√
1 + y2

, (4.4)

where K satisfies dK
dt

= 0. The Hamiltonian vector field

XK = 1
√

1 + y2

∂

∂x
(4.5)

satisfies Xk�ωnh = −dK .
The Hamiltonian vector field XH satisfies

LXH
K = XH (K) = 0, (4.6)

which implies

ωnh(XH ,XK) = XK�XH�ωnh = XK�( mx

1 + y2 dmx+mydmy− mx2y

(1 + y2)2 dy
) = 0.

Next observe that the Lie bracket between vector fields XH and XK

[XH ,Xk] = − ymx

1 + y2
XK. (4.7)

This has been demonstrated by Bates and Cushman the vector fields XH and XK do
not commute on the torus, because the two form ωnh is not closed. They try to seek
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an integrating factor g such that [gXK,XH ] = 0. The next proposition addresses
the value of g.

Proposition 4.3 Let μ be the Jacobi last multiplier, then the modified vector field
μ−1XK commutes with the Hamiltonian vector field XH , i.e.,

[μ−1XK,Xh] = 0. (4.8)

Proof We know that the JLM μ = √
1 + y2, so that μ−1XK = ∂x . Hence we

obtain [μ−1XK,Xh] = 0. ��

5 Final Comments and Outlook

Our formalism can be easily extended to nonholonomic oscillator. In this case,
Lagrangian is given by L = 1

2 (ẋ2 + ẏ2 + ż2) + 1
2y2, subject to the nonholonomic

constraint ż = yẋ. The reduced system of equations are given by

ẋ = px, ẏ = py, ṗx = − y

1 + y2
pxpy, ṗy = −y.

One can easily check that the last multiplier is μ = (1 + y2)1/2. The two form
associated to the reduced nonholonomic oscillator equation

ωas = (1 + y2)dpx ∧ dx + dpy ∧ dy + ypxdy ∧ dx

satisfies locally conformal symplectic structure, dωas +η ∧ωas = 0, where the Lee
form η = d

(
log(1 + y2)1/2

)
. Hence the inverse Jacobi’s last multiplier transforms

ωas into a symplectic form

μ−1ωas ≡ ω̃ = dp̃x ∧ dx + dp̃y ∧ dy,

where the modified momenta are given by p̃x = √
1 + y2px and py = py√

1+y2
.

Thus everything can be repeated here.
The application of the Jacobi Last Multiplier (JLM) for finding Lagrangians of

any second-order differential equation has been extensively studied. It is known
that the ratio of any two multipliers is a first integral of the system, in fact, it
plays a role similar to the integrating factor for system of first-order differential
equations. But so far, it has not been applied to nonholonomic systems. In this paper
we have studied nonholonomic system endowed with a two form, which is closely
related to locally conformal symplectic structure. We have applied JLM to map it
to symplectic frame work. Also, we have shown how a toral fibration defined by
the common level sets of integrable nonholonomic system, studied by Bates and
Cushman, can be mapped to toral fibration defined of the integrals of a Liouville
integrable Hamiltonian system.
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There are some open problems popped up from this article. Firstly, it would be
nice to study the time-dependent nonholonomic systems using JLM. Secondly, we
have considered examples from the integrable domain, hence it would be great to
apply JLM in nonintegrable domain.
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