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Dedication

Mahouton Norbert Hounkonnou is a full professor of Mathematics and Physics
at the University of Abomey-Calavi, Cotonou, Benin. His research deals with non-
commutative and nonlinear mathematics including differential equations, operator
theory, coherent states, quantization techniques, orthogonal polynomials, special
functions, graph theory, nonassociative algebras, nonlinear systems, noncommuta-
tive field theories, and geometric methods in physics.

Professor Hounkonnou has authored/coauthored and reviewed several books and
refereed and served as an associate editor for renowned journals in mathematics,
mathematical physics, and theoretical physics. He has published over 200 refereed
research papers in outstanding ISI-ranked journals and international conference
proceedings in the fields of mathematics, mathematical physics, and theoretical
physics.

Norbert has been a visiting professor at several African, Asian, European, and
North American universities. Together with his peers at the international level,
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vi Dedication

he founded the International Chair in Mathematical Physics and Applications
(ICMPA-UNESCO Chair) of the University of Abomey-Calavi offering multi-
university master degrees and PhD programs in mathematics with connections,
motivations, or applications to physics or in physics with important relationships
to mathematics. The best African students from about 13 French- and English-
speaking countries are selected to follow these graduate programs, which attracted
prominent and leading mathematicians and mathematical physicists around the
world who come to give lectures and supervise students’ research, what has
substantially increased international collaboration with African, Asian, American,
European, and Indian scientists and mathematicians.

The ICMPA-UNESCO Chair presently hosts an International Conference Series
(respectively, School) on Contemporary Problems in Mathematical Physics, which
is held in Cotonou (Benin) every 2 years since 1999 (respectively, each year since
2005). These activities have led to a significant network of researchers connected
with the ICMPA-UNESCO Chair. The ICMPA-UNESCO Chair gets its funding
from various sources that are available in mathematics and mathematical physics
and for the development of world-class mathematics and science in Africa. Professor
Hounkonnou has directed/co-directed 32 PhD theses and 21 masters. His PhD and
master students are from several countries including Belgium, Benin, Burkina Faso,
Burundi, Cameroon, Democratic Republic of Congo, Niger, Nigeria, Senegal, Togo,
and Zambia.

Professor Hounkonnou is the chair of the African Academy of Sciences Commis-
sion on Pan-African Science Olympiad (2014 to present), the chair of the African
Academy of Sciences Membership Advisory Committee (MAC) on Mathematical
Sciences (2013 to present), reviewer for the NANUM 2014 Award Committee
Member of the International Congress of Mathematicians (ICM 2014), and TWAS
research professor in Zambia and enjoys the membership of several important
international scientific organizations.

Professor Hounkonnou is the current president of the Benin National Academy of
Sciences, Arts and Letters. His membership extends to the International Association
of Mathematical Physics, American Mathematical Society, African Academy of
Sciences (AAS), The World Academy of Sciences (TWAS), UNESCO Scientific
Board for International Basic Sciences Programme (IBSP), and to many others.

Among other things, Professor Hounkonnou is a Knight of the National Order
of Benin (Chevalier de l’Ordre National du Benin). He has received a series of
recognition for the excellence of his work such as the Prize of the Third World
Academy of Sciences (TWAS) in 1996, the 2015 Tokyo University of Science
President Award, and the 2016 World Academy of Sciences C.N.R. Rao Prize
for Scientific Research “for his incisive work on noncommutative and nonlinear
mathematics and his contributions to world-class mathematics education.”



Preface

The multidisciplinary STEAM-H series (Science, Technology, Engineering, Agri-
culture, Mathematics, and Health) brings together leading researchers to present
their work in the perspective to advance their specific fields and in a way to generate
a genuine interdisciplinary interaction transcending disciplinary boundaries. All
chapters therein were carefully edited and peer-reviewed; they are reasonably
self-contained and pedagogically exposed for a multidisciplinary readership. Con-
tributions are invited only and reflect the most recent advances delivered in a high
standard, self-contained way. The goals of the series are as follows:

1. To enhance multidisciplinary understanding between the disciplines by showing
how some new advances in a particular discipline can be of interest to the other
discipline or how different disciplines contribute to a better understanding of a
relevant issue at the interface of mathematics and the sciences

2. To promote the spirit of inquiry so characteristic of mathematics for the advances
of the natural, physical, and behavioral sciences by featuring leading experts and
outstanding presenters

3. To encourage diversity in the readers’ background and expertise while struc-
turally fostering genuine interdisciplinary interactions and networking

Current disciplinary boundaries do not encourage effective interactions between
scientists; researchers from different fields usually occupy different buildings,
publish in journals specific to their field, and attend different scientific meetings.
Existing scientific meetings usually fall into either small gatherings specializing on
specific questions, targeting specific and small group of scientists already aware of
each other’s work and potentially collaborating, or large meetings covering a wide
field and targeting a diverse group of scientists but usually not allowing specific
interactions to develop due to their large size and a crowded program. Traditional
departmental seminars are becoming so technical as to be largely inaccessible to
anyone who did not coauthor the research being presented. Here contributors focus
on how to make their work intelligible and accessible to a diverse audience, which
in the process enforces mastery of their own field of expertise.
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viii Preface

This volume, as the previous ones, strongly advocates multidisciplinarity with
the goal to generate new interdisciplinary approaches, instruments, and models
including new knowledge, transcending scientific boundaries to adopt a more
holistic approach. For instance, it should be acknowledged, following Nobel
Laureate and president of the UK’s Royal Society of Chemistry, Professor Sir Harry
Kroto, “that the traditional chemistry, physics, biology departmentalised univer-
sity infrastructures—which are now clearly out-of-date and a serious hindrance
to progress—must be replaced by new ones which actively foster the synergy
inherent in multidisciplinarity.” The National Institutes of Health and the Howard
Hughes Medical Institute have strongly recommended that undergraduate biology
education should incorporate mathematics, physics, chemistry, computer science,
and engineering until “interdisciplinary thinking and work become second nature.”
Young physicists and chemists are encouraged to think about the opportunities
waiting for them at the interface with the life sciences. Mathematics is playing
an ever more important role in the physical and life sciences, engineering, and
technology, blurring the boundaries between scientific disciplines.

The series is to be a reference of choice for established interdisciplinary scientists
and mathematicians and a source of inspiration for a broad spectrum of researchers
and research students, graduate, and postdoctoral fellows; the shared emphasis of
these carefully selected and refereed contributed chapters is on important methods,
research directions, and applications of analysis including within and beyond
mathematics. As such the volume promotes mathematical sciences, physical and
life sciences, engineering, and technology education, as well as interdisciplinary,
industrial, and academic genuine cooperation.

Toward such goals, the following chapters are featured in the current volume.
The present volume contains the contributions from the participants of the

conference in honor of Professor Mahouton Norbert Hounkonnou on his 60th
birthday held in Cotonou, Benin. It features the following chapters.

Chapter “Metric Operators, Generalized Hermiticity, and Partial Inner Product
Spaces”, by Jean-Pierre Antoine and Camillo Trapani, analyzes the structure of
metric operators, bounded or unbounded, drawing from recent results on pseudo-
Hermitian quantum mechanics.

In chapter “Beyond Frames: Semi-frames and Reproducing Pairs”, Jean-Pierre
Antoine and Camillo Trapani study semi-frames (upper and lower) and reproducing
pairs which generate two Hilbert spaces conjugates of each other.

Chapter “On Hilbert-Schmidt Operator Formulation of Noncommutative Quan-
tum Mechanics”, by Isiaka Aremua, Ezinvi Baloitcha, Mahouton Norbert Hounkon-
nou, and Komi Sodoga, investigates a system of charged particle in a constant
magnetic field as a way to emphasize the importance of Hilbert-Schmidt operators
in the formulation of noncommutative quantum theory.

In chapter “Symplectic Affine Action and Momentum with Cocycle”, Augustin
Batubenge and Wallace Haziyu show that a symplectic structure can be defined on
the orbit, a symplectic manifold, of a certain affine action.



Preface ix

Chapter “Some Difference Integral Inequalities”, by Gaspard Bangerezako and
Jean-Paul Nuwacu, uses the Lagrange method of linear difference equation of first
order to establish different versions of some classical integral inequalities.

In chapter “Theoretical and Numerical Comparisons of the Parameter Estimator
of the Fractional Brownian Motion”, Jean-Marc Bardet presents theoretical and
numerical comparisons of the most important methods of parameter estimators of
the fractional Brownian motion.

Chapter “Minimal Lethal Disturbance for Finite Dimensional Linear Systems”,
by Abdes Samed Bernoussi, Mina Amharref, and Mustapha Ouardouz, considers
the problem of robust viability giving some characterizations of the viability radius
for finite dimensional disturbed linear systems leading to the determination of the
so-called minimal lethal disturbance.

In chapter “Walker Osserman Metric of Signature (3, 3)”, Abdoul Salam Diallo,
Mouhamadou Hassirou, and Ousmane Toudou Issa investigate a torsion-free affine
manifold and the related Riemann extension to produce an example of Walker
Osserman metric of signature (3, 3).

Chapter “Conformal Symmetry Transformations and Nonlinear Maxwell Equa-
tions”, by Gerald A. Goldin, Vladimir M. Shtelen, and Steven Duplij, explores ways
to describe general, nonlinear Maxwell fields with conformal symmetry, making use
of the conformal compactification of Minkowski spacetime.

Laure Gouba, in chapter “The Yukawa Model in One Space - One Time Dimen-
sions”, revisits the Yukawa model in one space-one time dimensions showing it as a
constrained system at the classical level using the Dirac method and reformulating
the model as a quantum level of scalar field by a bosonization procedure.

Chapter “Towards the Quantum Geometry of Saturated Quantum Uncertainty
Relations: The Case of the (Q, P ) Heisenberg Observables”, by Jan Govaerts,
outlines a program to identify geometric structures associated to the manifold
in Hilbert space of the quantum states that saturate the Schrodinger-Robertson
uncertainty relation to a specific set of quantum observables characterizing a given
quantum system and its dynamics.

In chapter “The Role of the Jacobi Last Multiplier in Nonholonomic Systems
and Locally Conformal Symplectic Structure”, Partha Guha studies the geometric
structure of nonholonomic system with almost symplectic structure in relation to
Jacobi’s last multiplier.

Chapter “Non-perturbative Renormalization Group of a U(1) Tensor Model”,
by Vincent Lahoche and Dine Ousmane Samary, discusses the non-perturbative
renormalization group of a U(1) tensor model.

Richard Kerner, in chapter “Ternary Z2 and Z3 Graded Algebras and Generalized
Color Dynamics”, studies cubic and ternary algebras as a direct generalization of
Grassmann and Clifford algebras with Z3 grading.

Using the fuel smuggling trade between Benin and Nigeria as a background,
chapter “Pseudo-Solution of Weight Equations in Neural Networks: Application for
Statistical Parameters Estimation”, by Vincent J. M. Kiki, Villevo Adanhounme, and
Mahouton Norbert Hounkonnou, presents a pseudo-solution to weight equations in
a class of neural networks using an algebraic approach.
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In chapter “A Note on Curvatures and Rank 2 Seiberg–Witten Invariants”,
Fortuné Massamba discusses lower bounds for certain curvature functionals on the
space of Riemannian metrics of a smooth compact 4-manifold with nontrivial rank
2 Seiberg-Witten invariants.

In chapter “Shape Invariant Potential Formalism for Photon-Added Coher-
ent State Construction”, Komi Sodoga, Isiaka Aremua, and Mahouton Norbert
Hounkonnou introduce the so-called shape invariant potential method, an algebro-
operator approach to construct generalized coherent states for photon-added particle
system, with illustrations on Pöschl-Teller potentials.

Mawoussi Todjro and Yaogan Mensah, in chapter “On the Fourier Analysis for
L2 Operator-Valued Functions”, describe the construction of the Fourier transform
of Hilbert-Schmidt operator-valued function on compact groups.

Chapter “Electrostatic Double Layers in a Magnetized Isothermal Plasma with
two Maxwellian Electrons”, by Odutayo Raji Rufai, discusses finite amplitude
nonlinear ion-acoustic double layers in a magnetized plasma of warm isothermal
ions fluid and two Boltzmann distributed electron species assuming the charge
neutrality condition at equilibrium.

Finally Akira Yoshioka, in chapter “Star Products, Star Exponentials, and
Star Functions”, presents nonformal star products on polynomials with positive
deformation parameter, star exponentials in the star product algebra, leading to the
so-called star functions in the algebra with some noncommutative identities.

The book as a whole certainly enhances the overall objective of the series, that is,
to foster the readership interest and enthusiasm in the STEAM-H disciplines (Sci-
ence, Technology, Engineering, Agriculture, Mathematics, and Health), stimulate
graduate and undergraduate research, and generate collaboration among researchers
on a genuine interdisciplinary basis.

The STEAM-H series is now hosted at Howard University, Washington, DC,
USA, an area that is socially, economically, intellectually very dynamic and home
to some of the most important research centers in the USA. This series, by now
well established and published by Springer, a world-renowned publisher, is expected
to become a national and international reference in interdisciplinary education and
research.

Washington, DC, USA Bourama Toni
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Metric Operators, Generalized
Hermiticity, and Partial Inner
Product Spaces

Jean-Pierre Antoine and Camillo Trapani

Abstract A quasi-Hermitian operator is an operator in a Hilbert space that is
similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive
self-adjoint operator. Motivated by the recent developments of pseudo-Hermitian
quantum mechanics, we analyze the structure of metric operators, bounded or
unbounded. We introduce several generalizations of the notion of similarity between
operators and explore to what extent they preserve spectral properties.

Next we consider canonical lattices of Hilbert space s generated by unbounded
metric operators. Since such lattices constitute the simplest case of a partial inner
product space (PIP-space), we can exploit the technique of PIP-space operators.
Thus we apply some of the previous results to operators on a particular PIP-space,
namely, the scale of Hilbert space s generated by a single metric operator. Finally, we
reformulate the notion of pseudo-hermitian operators in the preceding formalism.

Keywords Metric operators · Quasi-Hermitian operators · Similar operators ·
Lattices and scales of Hilbert spaces · Partial inner product spaces (PIP spaces)

1 Introduction

Non-self-adjoint operators with real spectrum appear in different contexts: the
so-called PT -symmetric quantum mechanics [10], pseudo-Hermitian quantum
mechanics [19, 20], three-Hilbert-space formulation of quantum mechanics [27],

Based on a talk given at the COPROMAPH8 conference [3].
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2 J.-P. Antoine and C. Trapani

nonlinear pseudo-bosons [9], nonlinear supersymmetry, and so on. In addition, they
appear under various names: pseudo-Hermitian, quasi-Hermitian, cryptohermitian
operators.

The PT -symmetric Hamiltonians, that is, Hamiltonians invariant under the joint
action of space reflection (P) and complex conjugation (T ), are usually pseudo-
Hermitian operators. This term was introduced a long time ago by Dieudonné [14]
(under the name “quasi-Hermitian”) for characterizing those bounded operators A

which satisfy a relation of the form

GA = A∗G, (1.1)

where G is a metric operator, i.e., a strictly positive self-adjoint operator. This
operator G then defines a new metric (hence the name) and a new Hilbert space
(sometimes called physical) in which A is symmetric and possesses a self-adjoint
extension. For a systematic analysis of pseudo-Hermitian QM, we may refer to the
review of Mostafazadeh [19] and the special issues [11, 12], which contain a variety
of concrete applications in quantum physics.

According to (1.1), the generic structure of these operators is A∗ = GAG−1.
Thus A∗ is similar to A, in some sense, via a metric operator G, i.e., a strictly
positive self-adjoint operator G > 0, thus invertible, with (possibly unbounded)
inverse G−1. Now, in most of the literature, the metric operators are assumed
to be bounded. In some recent works, however, unbounded metric operators are
introduced [7–9, 20].

On the other hand, if G−1 is bounded, (1.1) implies that A is similar to a self-
adjoint operator, thus it is a spectral operator of scalar type and real spectrum, in the
sense of Dunford [15]. This is the case treated by Scholtz et al. [25] and Geyer et al.
[17], who introduced the concept in the physics literature.

The aim of this chapter is to study in a rigorous way the problem of operator
similarity under a metric operator, bounded or unbounded. In particular, we will
formulate the analysis in the framework of partial inner product spaces (PIP-spaces),
since the latter appear naturally in this context. Most of the information contained
here comes from our papers [4–6].

To conclude, we fix our notations. The framework is a separable Hilbert space H,
with inner product 〈·|·〉, linear in the first entry. Then, for any operator A in H, we
denote its domain by D(A), its range by R(A) and, if A is positive, its form domain
by Q(A) := D(A1/2).

2 Metric Operators

By a metric operator, in a Hilbert space H, we mean a strictly positive self-adjoint
operator G, that is, G > 0 or 〈Gξ |ξ 〉 ≥ 0 for every ξ ∈ D(G) and 〈Gξ |ξ 〉 = 0 if
and only if ξ = 0.



Metric Operators, Generalized Hermiticity, and Partial Inner Product Spaces 3

Of course, G is densely defined and invertible, but need not be bounded; its
inverse G−1 is also a metric operator, bounded or not (in this case, in fact, 0 belongs
to the continuous spectrum of G).

Let G,G1, G2 be metric operators. Then

(1) If G1 and G2 are both bounded, then G1 +G2 is a bounded metric operator;
(2) λG is a bounded metric operator for every λ > 0;
(3) if G1 and G2 commute, their product G1G2 is also a bounded metric operator;
(4) G1/2 and, more generally, Gα(α ∈ R) are bounded metric operators.

Given a bounded metric operator G, define 〈ξ |η〉G := 〈Gξ |η〉, ξ, η ∈ H. This is
a positive definite inner product on H with corresponding norm ‖ξ‖G = ‖G1/2ξ‖.
We denote by H(G) the completion of H in this norm. Thus we get H ⊆ H(G).
If G−1/2 is bounded, H and H(G) are the same as vector spaces and they carry
different, but equivalent, norms.

Clearly, the conjugate dual space H(G)× of H(G) is a subspace of H and
H(G)× ≡ H(G−1) = D(G−1/2) with inner product 〈ξ |η〉G−1 = 〈G−1ξ |η〉. The
upshot is a triplet of Hilbert spaces

H(G−1) ↪→ H ↪→ H(G), (2.1)

where ↪→ denotes a continuous embedding with dense range. If G−1 is bounded,
H(G−1) = H(G) = H with norms equivalent to (but different from) the norm of
H. In the triplet (2.1), G−1/2 is a unitary operator from H(G−1) onto H and from
H onto H(G). In the same way, G1/2 is a unitary operator from H onto H(G−1)

and from H(G) onto H.
Now, the triplet (2.1) is the central part of the infinite scale of Hilbert spaces built

on the powers of G−1/2, VI := {Hn, n ∈ Z}, where Hn = D(G−n/2), n ∈ N, with
a norm equivalent to the graph norm, and H−n = H×n :

. . . ⊂ H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2 ⊂ . . . (2.2)

The obvious question is how to identify the end spaces of the scale:

H∞(G−1/2) :=
⋂

n∈Z
Hn, H−∞(G−1/2) :=

⋃

n∈Z
Hn. (2.3)

By quadratic interpolation [13], one may build the continuous scale Ht , 0 ≤ t ≤ 1,
between H1 and H, where Ht = D(G−t/2), with norm ‖ξ‖t = ‖G−t/2ξ‖. Next,
defining H−t = H×t and iterating, one obtains the full continuous scale VĨ :={Ht , t ∈ R}, a simple example of a PIP-space [2]. Then, of course, one can replace
Z by R in the definition (2.3) of the end spaces of the scale.
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3 Similar and Quasi-Similar Operators

Before proceeding to our main topic, we quote two easy properties. Let A be a linear
operator in the Hilbert space H, with domain D(A). Then, (i) if D(A) is dense in
H, it is also dense in H(G); (ii) if A is closed in H(G), it is also closed in H.

Now we introduce the central definitions.

Definition 3.1

(1) Let H and K be Hilbert spaces, A and B densely defined linear operators in
H, resp. K. A bounded operator T : H → K is called a bounded intertwining
operator for A and B if

(io1) T : D(A)→ D(B);
(io2) BT ξ = TAξ, ∀ξ ∈ D(A).

If T is a bounded intertwining operator for A and B, then T ∗ : K → H is a
bounded intertwining operator for B∗ and A∗.

(2) A and B are similar, which is denoted A ∼ B, if there exists a bounded
intertwining operator T for A and B with bounded inverse T −1 : K → H,
which is intertwining for B and A. In addition, A and B are metrically similar
if T is a metric operator.

(3) A and B are unitarily equivalent (A
u∼ B) if A ∼ B and T : H→ K is unitary.

Obviously, ∼ and
u∼ are equivalence relations.

The following properties are immediate. Let A ∼ B. Then:

(i) TD(A) = D(B).
(ii) A is closed iff B is closed.

(iii) A ∼ B iff B∗ ∼ A∗.
(iv) A−1 exists iff B−1 exists; in that case, B−1 ∼ A−1.

In the sequel, we will examine to what extent the spectral properties of operators
behave under the similarity relation. In order to do that, it is worth recalling the basic
definitions, especially since we are dealing with closed, non-self-adjoint operators.

Given a closed operator A in H, consider A−λI : D(A)→ H and the resolvent
RA(λ) := (A− λI)−1. Then one defines:

• The resolvent set ρ(A) := {λ ∈ C : A − λI is one-to-one and (A − λI)−1

is bounded}.
• The spectrum σ(A) := C \ ρ(A).
• The point spectrum σp(A) := {λ ∈ C : A− λI is not one-to-one}, that is, the set

of eigenvalues of A.
• The continuous spectrum σc(A) := {λ ∈ C : A−λI is one-to-one and has dense

range, different from H}, hence (A− λI)−1 is densely defined, but unbounded.
• The residual spectrum σr(A) := {λ ∈ C : A − λI is one-to-one, but its range is

not dense}, hence (A− λI)−1 is not densely defined.
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With these definitions, the three sets σp(A), σc(A), σr(A) are disjoint and

σ(A) = σp(A) ∪ σc(A) ∪ σr(A). (3.1)

We note also that σr(A) = σp(A∗) = {λ : λ ∈ σp(A
∗)}. Indeed, for any λ ∈ σr(A),

there exists η �= 0 such that

0 = 〈(A− λI)ξ |η〉 = 〈ξ |(A∗ − λI)η〉, ∀ ξ ∈ D(A),

which implies λ ∈ σp(A
∗). Also σr(A) = ∅ if A is self-adjoint.

Note that here we follow Dunford–Schwartz [16], but other authors give a
different definition of the continuous spectrum, implying that it is no longer disjoint
from the point spectrum, for instance, Reed–Simon [22] or Schmüdgen [24]. This
alternative definition allows for eigenvalues embedded in the continuous spectrum,
a situation common in many physical situations.

The answer to the question raised above is given in the following proposition.

Proposition 3.2 Let A, B be closed operators such that A ∼ B with the bounded
intertwining operator T . Then,

(i) ρ(A) = ρ(B).
(ii) σp(A) = σp(B). Moreover if ξ ∈ D(A) is an eigenvector of A corresponding

to the eigenvalue λ, then T ξ is an eigenvector of B corresponding to the same
eigenvalue. Conversely, if η ∈ D(B) is an eigenvector of B corresponding to
the eigenvalue λ, then T −1η is an eigenvector of A corresponding to the same
eigenvalue. Moreover, the multiplicity of λ as eigenvalue of A is the same as
its multiplicity as eigenvalue of B.

(iii) σc(A) = σc(B) and σr(A) = σr(B).
(iv) If A is self-adjoint, then B has real spectrum and σr(B) = ∅.

The property (iv) means that B is then a spectral operator of scalar type with real
spectrum, a notion introduced by Dunford [15].

In conclusion, similarity preserves the various parts of the spectra, but it does
not preserve self-adjointness. This means we are on the good track, since we are
seeking a form of similarity that transforms a non-self-adjoint operator into a self-
adjoint one.

However, the notion of similarity just defined is too strong in many situations. A
natural step is to drop the boundedness of T −1.

Definition 3.3 We say that A is quasi-similar to B, and write A � B, if there exists
a bounded intertwining operator T for A and B which is invertible, with inverse
T −1 densely defined (but not necessarily bounded).
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Even if T −1 is bounded, A and B need not be similar, unless T −1 is also an
intertwining operator. Indeed, T −1 does not necessarily map D(B) into D(A),
unless of course if TD(A) = D(B). Note that one can always suppose that T is
a metric operator

Actually there is a great confusion in the literature about the terminology of
(quasi-)similarity. We refer to our paper [6] for a detailed discussion.

We proceed now to show the stability of the different parts of the spectrum under
the quasi-similarity relation �, following mostly [4] and [6].

Proposition 3.4 Let A and B be closed operators and assume that A � B, with the
bounded intertwining operator T . Then the following statements hold.

(i) σp(A) ⊆ σp(B) and for every λ ∈ σp(A) one has mA(λ) ≤ mB(λ), where
mA(λ), resp. mB(λ), denotes the multiplicity of λ as eigenvalue of the operator
A, resp. B.

(ii) σr(B) ⊆ σr(A).
(iii) If TD(A) = D(B), then σp(B) = σp(A).
(iv) If T −1 is bounded and TD(A) is a core for B, then σp(B) ⊆ σ(A).
(v) If T −1 is everywhere defined and bounded, then ρ(A) \ σp(B) ⊆

ρ(B) and ρ(B) \ σr(A) ⊆ ρ(A).
(vi) Assume that T −1 is everywhere defined and bounded and TD(A) is a core for

B. Then

σp(A) ⊆ σp(B) ⊆ σ(B) ⊆ σ(A).

The situation described in Proposition 3.4 (vi) is quite important for possible
applications. Even if the spectra of A and B may be different, it gives a certain
number of information on σ(B) once σ(A) is known. For instance, if A has a pure
point spectrum, then B is isospectral to A. More generally, if A is self-adjoint, then
any operator B quasi-similar to A by means of an intertwining operator T with
bounded inverse T −1 has real spectrum.

We will illustrate the previous proposition by two examples, both taken from [4].
In the first one, A � B,A,B and T are all bounded, and the two spectra, which are
pure point, coincide.

Example 3.5 In H = L2(R, dx), take the operator Q of multiplication by x, on the
dense domain

D(Q) =
{
f ∈ L2(R) :

∫

R

x2|f (x)|2 dx <∞
}
,

and define the two operators

• Pϕ := |ϕ〉〈ϕ|, for ϕ ∈ L2(R), with ‖ϕ‖ = 1,
• Aϕf = 〈(I +Q2)f |ϕ〉(I +Q2)−1ϕ, ϕ ∈ D(Aϕ).
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Then

(i) Pϕ � Aϕ with the bounded intertwining operator T = (I +Q2)−1.
(ii) Pϕ is everywhere defined and bounded, but the operator Aϕ is closable iff

ϕ ∈ D(Q2).
(iii) If ϕ ∈ D(Q2), Aϕ is bounded and everywhere defined, and σ(Aϕ) = σ(Pϕ) =

{0, 1}.
In the second example, A and B are both unbounded. In that case, the two spectra
coincide as a whole, but not their individual parts. In particular, A has a nonempty
residual spectrum, whereas B does not.

Example 3.6 In H = L2(R, dx), define the two operators

• (Af )(x) = f ′(x)− 2x

1+ x2 f (x), f ∈ D(A) = W 1,2(R)

• (Bf )(x) = f ′(x), f ∈ D(B) = W 1,2(R)

Then

(i) A � B with the bounded intertwining operator T = (I +Q2)−1.
(ii) σ(A) = σ(B).

(iii) σp(A) = ∅, σr(A) = {0}, but σ(B) = σc(B) = iR.

It is easy to generalize the preceding analysis to the case of an unbounded
intertwining operator, but we have to adapt the definition.

Definition 3.7 Let A,B two densely defined linear operators on the Hilbert spaces
H,K, respectively. A closed (densely defined) operator T : D(T ) ⊆ H → K is
called an intertwining operator for A and B if

(io0) D(TA) = D(A) ⊂ D(T );
(io1) T : D(A)→ D(B);
(io2) BT ξ = TAξ, ∀ ξ ∈ D(A).

The first part of condition (io0) means that ξ ∈ D(A) implies Aξ ∈ D(T ).
Then we say again that A is quasi-similar to B, A � B, if there exists a (possibly

unbounded) intertwining operator T for A and B which is invertible, with inverse
T −1 densely defined. Note that A � B does not imply B∗ � A∗, since (io0) may
fail for B∗. Furthermore, we say that A and B are mutually quasi-similar if we have
both A � B and B � A, which we denote by A �� B. Clearly, �� is an equivalence
relation and A �� B implies A∗ �� B∗.

We add that quasi-similarity with an unbounded intertwining operator may occur
only under singular, even pathological, circumstances. For instance, one may note
that, if A � B with the intertwining operator T and the resolvent set ρ(A) is not
empty, then T is necessarily bounded.
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At this point, one may examine to what extent some parts of Proposition 3.4
survive when the intertwining operator T is no longer bounded, and also what
happens if A �� B. We refer to [6] for a thorough analysis.

4 The Lattice Generated by a Single Metric Operator

Now we turn to the general case, where G and G−1 are both possibly unbounded.
Define H(RG) as D(G1/2) equipped with the graph norm ‖ξ‖2

RG
:= ‖ξ‖2 +

∥∥G1/2ξ
∥∥2

. Then define H(G) as the completion of H(RG) in the norm ‖ξ‖2
G :=

∥∥G1/2ξ
∥∥2

. It follows that H(RG) = H ∩ H(G), with the projective norm [2, Sec.
I.2.1].

Now, since D(G1/2) = Q(G), the form domain of G, we may write

‖ξ‖2
RG
= 〈(1+G)ξ |ξ 〉 = 〈RGξ |ξ 〉, ‖ξ‖2

G = 〈Gξ |ξ 〉, with RG = 1+G,

which justifies the notation H(RG).
Next, the conjugate dual H(RG)× = H(R−1

G ), so that

H(RG) ⊂ H ⊂ H(R−1
G ) = H+H(G−1),

with the inductive norm [2, Sec. I.2.1]. Putting everything together, we get the lattice
shown in Fig. 1.

To give a concrete example, take G = x2 in L2(R, dx), so that RG = 1 + x2.
Then all the spaces in the diagram are weighted L2 spaces, as shown in Fig. 2.

Actually one can go further, following a construction made in [1]. If G is
unbounded, RG = 1 + G > 1 and R−1

G bounded, so that we have the triplet
H(RG) ⊂ H ⊂ H(R−1

G ).

Iterating as before, we get the infinite Hilbert scale built on powers of R
1/2
G ,

Hn = D(R
n/2
G ), n ∈ N, and H−n = H×n :

. . . ⊂ H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2 ⊂ . . . (4.1)

Fig. 1 The lattice of Hilbert
space s generated by a metric
operator

H(G−1)

H

H(G)

H(RG−1)

H(RG)

H(R−1
G )

H(R−1
G−1)
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L2(R, x−2 dx)

L2(R, dx)

L2(R, x2 dx)

L2(R, (1 + x−2) dx)

L2(R, (1 + x2) dx)

L2(R, (1 + x2)−1) dx)

L2(R, (1 + x−2)−1 dx)

Fig. 2 The lattice of Hilbert space s generated by G = x2

Taking H = L2(R, dx), we find familiar examples, namely,

• Gx = (1+ x2)1/2, so that H∞(G
1/2
x ) consists of fast decreasing L2 functions.

• Gp = (1 − d2/dx2)1/2 = FGxF−1, so that the scale consists of the Sobolev
spaces Wn,2(R).

An interesting variant of the last example is the LHS of analytic functions
described in [2, Sec. 4.6.3], in which the order parameter is the opening angle of a
sector, instead of the rate of growth at infinity. This LHS simplifies considerably the
formulation of scattering theory, in the form presented by van Winter, as explained
in [2, Sec. 7.2]. Let us give some details.

Define G(a, b) (−π < a < b < π) as the space of all functions f (z), z = reiϕ ,
which are analytic in the open sector Sa,b := {z = reiϕ, a < ϕ < b}, and such
that the integral

∫∞
0 |f (reiϕ)|2 dr <∞ is uniformly bounded in ϕ ∈ (a, b). It turns

out that the family {G(a, b), −π
2 � a < b � π

2 } may be identified, via a Mellin
transform, with a part of an LHS of weighted L2 spaces. First, for −π

2 � a � π
2 ,

define the Hilbert space

L2(a) := {f :
∫ +∞

−∞
eax |f (x)|2 dx <∞} = L2(ra), with ra(t) = e−ax.

(4.2)
Then consider the lattice generated by the family L2(a), L2(0)=L2 and L2(−a),
following the construction described previously. The infimum is L2(a) ∧ L2(b) =
L2(a)∩L2(b) = L2(a∧b) and the supremum is L2(a)∨L2(b)= L2(a)+L2(b) =
L2(a ∨ b), with ra∧b(x) = min(ra(x), rb(x)) and ra∨b(x) = max(ra(x), rb(x)).
As usual, these norms are equivalent to the projective, resp. inductive, norms. For
instance, the following two norms are equivalent

‖f ‖2
L2(ra∧−a)

=
∫ +∞

−∞
ea|x||f (x)|2 dx �

∫ +∞

−∞
(eax + e−ax)|f (x)|2 dx.

Next, the discrete lattice of nine spaces may be converted into a continuous one
by interpolation. This yields {L2(a),−π

2 ≤ a ≤ π
2 }. Thus we obtain an LHS,

with extreme spaces V # = L2(−π
2 ) ∩ L2(π2 ), V = L2(−π

2 ) + L2(π2 ), which are
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L2(−b ∧ b)· · · · · L2(−a ∧ a) L2 L2(−a ∨ a) · · · L2(−b ∨ b) · ·
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· ·

L2(a)

L2(a ∧ b)
...

· · ·
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L2(a ∨ b)
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Fig. 3 The van Winter LHS (from [2])

themselves Hilbert space s. In addition, all spaces are obtained at the first generation,
i.e., they are all of the form L2(c ∧ d) or L2(c ∨ d).

In the case 0 < a < b, one gets the picture shown in Fig. 3. Duality corresponds
to symmetry with respect to the center (i.e., L2): a ∧ b ⇐⇒ −b ∨ −a.

5 Quasi-Hermitian Operators

According to Dieudonné [14], a bounded operator A is called quasi-Hermitian if
there exists a metric operator G such that GA = A∗G. However, this definition is
too restrictive for applications, hence we generalize it in order to cover unbounded
operators.

Definition 5.1 A closed operator A is called quasi-Hermitian if there exists a
metric operator G such that D(A) ⊂ D(G) and

〈Aξ |Gη〉 = 〈Gξ |Aη〉, ξ, η ∈ D(A) (5.1)
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Let us consider first a bounded quasi-Hermitian operator A. If in addition, the
metric operator G is bounded with bounded inverse, then (5.1) implies immediately
that GA is self-adjoint in H. Actually, there is more.

Proposition 5.2 Let A be bounded. Then the following statements are equivalent.

(i) A is quasi-Hermitian.
(ii) There exists a bounded metric operator G, with bounded inverse, such that

GA (= A∗G) is self-adjoint.
(iii) A is metrically similar to a self-adjoint operator K .

We turn now to unbounded quasi-Hermitian operators. The following results are
easy.

Proposition 5.3 Let A be an unbounded quasi-Hermitian operator and G a
bounded metric operator. Then (i) A is quasi-Hermitian iff GA is symmetric in H;
(ii) If A is self-adjoint in H(G), then GA is symmetric in H. If G−1 is also bounded,
A is self-adjoint in H(G) iff GA is self-adjoint in H.

Now we turn the problem around. Namely, given the closed densely defined
operator A, we seek whether there is a metric operator G that makes A quasi-
Hermitian and self-adjoint in H(G). We first obtain a metric operator with bounded
inverse.

Proposition 5.4 Let A be closed and densely defined. Then the following state-
ments are equivalent:

(i) There exists a bounded metric operator G, with bounded inverse, such that A
is self-adjoint in H(G).

(ii) There exists a bounded metric operator G, with bounded inverse, such that
GA = A∗G, i.e., A is similar to its adjoint A∗, with intertwining operator G.

(iii) There exists a bounded metric operator G, with bounded inverse, such that
G1/2AG−1/2 is self-adjoint.

(iv) A is a spectral operator of scalar type with real spectrum, i.e., A =∫
R
λ dX(λ), where {X(λ)} is a spectral family (not necessarily self-adjoint).

Instead of requiring that A be similar to A∗, we may ask that they be only quasi-
similar. The price to pay is that now G−1 is no longer bounded and, therefore, the
equivalences stated above are no longer true. Instead Proposition 5.4 is replaced by
the following weaker result [5].

Proposition 5.5 Let A be closed and densely defined. Consider the statements

(i) There exists a bounded metric operator G such that GD(A) = D(A∗),
A∗Gξ = GAξ , for every ξ ∈ D(A), in particular, A is quasi-similar to its
adjoint A∗, with intertwining operator G.

(ii) There exists a bounded metric operator G, such that G1/2AG−1/2 is self-
adjoint.

(iii) There exists a bounded metric operator G such that A is self-adjoint in H(G);
then we say that A is quasi-self-adjoint.
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(iv) There exists a bounded metric operator G such that GD(A) = D(G−1A∗),
A∗Gξ = GAξ , for every ξ ∈ D(A), in particular, A is quasi-similar to its
adjoint A∗, with intertwining operator G.

Then, the following implications hold:

(i)⇒ (ii)⇒ (iii)⇒ (iv).

If the range R(A∗) of A∗ is contained in D(G−1), then the four conditions (i)-(iv)
are equivalent.

When G is unbounded, we say that A is strictly quasi-Hermitian if it is quasi-
Hermitian, in the sense of Definition 5.1, and AD(A) ⊂ D(G) or, equivalently,
D(GA) = D(A). Therefore, A is strictly quasi-Hermitian iff A � A∗.

More results may be obtained if one uses the PIP-space formalism, as we shall
see below.

6 The LHS Generated by Metric Operators

Denote by M(H) the set of all metric operators and by Mb(H) the set of bounded
ones. There is a natural order on M(H)

G1 � G2 ⇐⇒ ∃ γ > 0 such that G2 ≤ γG1

⇐⇒ H(G1) ⊂ H(G2), where the embedding is continuous and has a

dense range.

As a consequence, we have

G−1
2 � G−1

1 ⇐⇒ G1 � G2 if G1,G2 ∈M(H)

G−1 � I � G, ∀G ∈Mb(H)

Thus, given X, Y ∈ M(H), one has X � Y ⇔ H(X) ↪→ H(Y ). We will show
that the spaces {H(X) : X ∈M(H)} constitute a lattice of Hilbert spaces (LHS).

Let O ⊂ M(H) be a family of metric operators, containing I and at least one
unbounded element, and assume that

D :=
⋂

G∈O
D(G1/2)

is a dense subspace of H. Since every operator G ∈ O is self-adjoint and invertible,
one can define on D, the graph topology tO by means of the norms

ξ ∈ D �→ ‖G1/2ξ‖, G ∈ O.
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Let D× denote the conjugate dual of D[tO], with strong dual topology t×O. Then the
triplet

D[tO] ↪→ H ↪→ D×[t×O]

is the Rigged Hilbert Space associated with O. We will show that O generates a
canonical lattice of Hilbert spaces (LHS) interpolating between D and D×.

On the family {H(X) : X ∈ O−1} define the lattice operations as

H(X ∧ Y ) := H(X) ∩H(Y ),

H(X ∨ Y ) := H(X)+H(Y ),

equipped, respectively, with the projective and the inductive norms, namely,

‖ξ‖2
X∧Y = ‖ξ‖2

X + ‖ξ‖2
Y ,

‖ξ‖2
X∨Y = inf

ξ=η+ζ

(
‖η‖2

X + ‖ζ‖2
Y

)
, η ∈ H(X), ζ ∈ H(Y ) .

The corresponding operators read as

X ∧ Y := X � Y,

X ∨ Y := (X−1 � Y−1)−1 .

Here � stands for the form sum and X, Y ∈ O−1 : given two positive operators,
T := T1 �T2 is the positive operator associated with the quadratic form t = t1+ t2,
where t1, t2 are the quadratic forms of T1, T2, respectively [18, §VI.2.5]. Note that
both X∨ Y and X∧ Y are inverses of a metric operator, but they need not belong to
O−1. In particular, for O =M(H), the corresponding family M(H)−1 is a lattice
by itself, but the domain D usually fails to be dense.

Define R = {G±1/2,G ∈ O} and the domain DR := ⋂
X∈R D(X). Let 
 be

the minimal set of self-adjoint operators containing O∪O−1, stable under inversion
and form sums, such that DR is dense in H(Z), for every Z ∈ 
.

Then O generates a lattice of Hilbert space s J
 := {H(X) : X ∈ 
}
and a PIP-space V
 with central Hilbert space H = H(I ). The total space is
V = ∑

G∈
 H(G) (algebraic inductive limit, in general) and the “smallest” space
is V # = DR. The compatibility and the partial inner product read, respectively, as

ξ#η ⇐⇒ ∃G ∈ 
 such that ξ ∈ H(G), η ∈ H(G−1),

〈ξ |η〉
 = 〈G1/2ξ |G−1/2η〉H.

For simplicity, we write 〈ξ |η〉
 = 〈ξ |η〉.
For instance, for O = {I,G}, the lattice 
 consists of the nine operators shown

in Fig. 4.
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G−1

I

G

I ∧ G−1

I ∧ G

I ∨ G−1

I ∨ G

G ∧ G−1 G ∨ G−1

Fig. 4 The lattice 
 generated by the metric operator G

7 (Quasi-)Similarity for PIP-Space Operators

7.1 General PIP-Space Operators

Given the PIP-space V
 , an operator A on V
 is a map from a subset D(A) ⊂ V

into V , such that

(i) D(A) =⋃
X∈d(A) H(X), where d(A) is a nonempty subset of 
;

(ii) For every X ∈ d(A), there exists Y ∈ 
 such that the restriction of A to H(X)

is a continuous linear map into H(Y ) (we denote this restriction by AYX);
(iii) A has no proper extension satisfying (i) and (ii).

We denote by Op(V
) the set of all operators on V
 . The continuous linear operator
AYX : H(X)→ H(Y ) is called a representative of A.

The properties of the operator A are encoded in the set j(A) of couples (X, Y ) ∈

 × 
 such that A : H(X) → H(Y ), continuously. Thus the operator A may be
identified with the collection of its representatives, A  {AYX : (X, Y ) ∈ j(A)}.
This is a coherent family, that is, if H(W) ⊂ H(X) and H(Y ) ⊂ H(Z), then
one has AZW = EZYAYXEXW (E..  identity). More generally, (X, Y ) ∈ j(A) if
Y 1/2AX−1/2 is bounded in H.

Every operator has an adjoint A× defined as follows: (X, Y ) ∈ j(A) implies
(Y−1, X−1) ∈ j(A×) and

〈A×η|ξ 〉 = 〈η|Aξ〉, for ξ ∈ H(X), η ∈ H(Y−1).

In particular, (X,X) ∈ j(A) implies (X−1, X−1) ∈ j(A×).
An operator A is symmetric if A = A×. Therefore, (X,X) ∈ j(A) implies

(X−1, X−1) ∈ j(A). Then, by interpolation, (I, I ) ∈ j(A), that is, A has a bounded
representative AII : H→ H.

We will now examine the quasi-similarity properties of PIP-space operators.

(1) Let first (G,G) ∈ j(A), for some G ∈ M(H). Then the operator B =
G1/2AGGG−1/2 is bounded on H and AGG � B.

(2) Next, let (G,G) ∈ j(A), with G bounded and G−1 unbounded, so that

H(G−1) ⊂ H ⊂ H(G).
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Consider the restriction A of AGG to H and assume that D(A) = {ξ ∈ H :
Aξ ∈ H} is dense in H. Then G1/2 : D(A) → D(B) and BG1/2η =
G1/2A η, ∀ η ∈ D(A), i.e. A � B, where the two operators act in H.

Now we have BG1/2η = G1/2Aη, ∀ η ∈ H(G) and G1/2 : H(G) → H
is a unitary operator. Therefore, A and B are unitarily equivalent (but acting in
different Hilbert spaces).

(3) Let finally (G,G) ∈ j(A) with G unbounded and G−1 bounded, so that

H(G) ⊂ H ⊂ H(G−1).

Then A : H(G) → H(G) is a densely defined operator in H. Since B =
G1/2AGGG−1/2 is bounded and everywhere defined on H, one has G−1/2Bξ =
AGGG−1/2ξ, ∀ ξ ∈ H, i.e., B � AGG. However, by (1), AGG � B, hence we

have AGG �� B. In addition AGG
u∼ B, since G±1/2 are unitary between H

and H(G).

7.2 The Case of Symmetric PIP-Space Operators

If A ∈ Op(V
) is symmetric, A = A×, there is a possibility of self-adjoint
restrictions to H, that is, candidates for quantum observables.

However, if A = A×, then (G,G) ∈ j(A) iff (G−1,G−1) ∈ j(A), which implies
(I, I ) ∈ j(A). Thus, every symmetric operator A ∈ Op(V
) such that (G,G) ∈
j(A), with G ∈M(H), has a bounded restriction AII to H.

Therefore, we conclude that the assumption (G,G) ∈ j(A) is too strong for
applications ! Thus we will assume instead that (G−1,G) ∈ j(A), where G is
bounded with unbounded inverse, so that

H(G−1) ⊂ H ⊂ H(G).

In that case, one can apply the KLMN theorem,1 namely,

Given a symmetric operator A = A×, assume there is a metric operator G ∈
Mb(H) with an unbounded inverse, for which there exists a λ ∈ R such that
A − λI has a boundedly invertible representative (A − λI)GG−1 : H(G−1) →
H(G). Then AGG−1 has a unique restriction to a self-adjoint operator A in the
Hilbert space H, with dense domain D(A) = {ξ ∈ H : Aξ ∈ H}. In addition,
λ ∈ ρ(A).

If there is no bounded G as before, i.e. (G−1,G) ∈ j(A), one can still use
the KLMN theorem, but in the Hilbert scale VG built on the powers of G−1/2 or
(RG)−1/2.

1KLMN stands for Kato, Lax, Lions, Milgram, Nelson.
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Fig. 5 The semi-similarity
scheme

Let VG = {Hn, n ∈ Z} be the Hilbert scale built on the powers of the operator
G±1/2 or (RG)−1/2, depending on the (un)boundedness of G±1 ∈ M(H) and
let A = A× be a symmetric operator in VG .

(i) Assume there is a λ ∈ R such that A − λI has a boundedly invertible
representative (A − λI)nm : Hm → Hn, with Hm ⊂ Hn. Then Anm has
a unique restriction to a self-adjoint operator A in the Hilbert space H, with
dense domain D(A) = {ξ ∈ H : Aξ ∈ H}. In addition, λ ∈ ρ(A).

(ii) If the natural embedding Hm → Hn is compact, the operator A has a purely
point spectrum of finite multiplicity, thus σ(A) = σp(A), mA(λj ) < ∞ for
every λj ∈ σp(A) and σc(A) = ∅.

Note, however, that there is so far no known (quasi-)similarity relation between
AGG−1 or A and another operator! On the contrary, under the previous assumption
A : H(G−1) → H(G), B = G1/2AGG−1G1/2 is bounded on H, but AGG−1 �� B.
Indeed, (io1) imposes T = G−1/2, hence unbounded, but then conditions (io0) and
(io2) cannot be satisfied.

8 Semi-Similarity of PIP-Space Operators

So far we have considered only the case of one metric operator G in relation to A.
Assume now we take two different metric operators G1,G2 ∈M(H). What can be
said concerning A if it maps H(G1) into H(G2)?

One possibility is to introduce, following [4], a notion slightly more general than
quasi-similarity, called semi-similarity.

Definition 8.1 Let H,K1, and K2 be three Hilbert spaces, A a closed, densely
defined operator from K1 to K2, B a closed, densely defined operator on H. Then
A is said to be semi-similar to B, which we denote by A �� B, if there exist two
bounded operators T : K1 → H and S : K2 → H such that (see Fig. 5):

(i) T : D(A)→ D(B);
(ii) BT ξ = SAξ, ∀ ξ ∈ D(A).

The pair (T , S) is called an intertwining couple.

Of course, if K1 = K2 and S = T , we recover the notion of quasi-similarity and
A � B (with a bounded intertwining operator).

Assume there exist two bounded metric operators G1,G2 such that A :
H(G1) → H(G2) continuously. Then B0 := G

1/2
2 AG2G1G

−1/2
1 has a bounded
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extension B to H (its closure) and AG2G1 �� B, with respect to the intertwining

couple T = G
1/2
1 , S = G

1/2
2 .

Take now A = A× symmetric. Then A : H(G1) → H(G2) implies A :
H(G−1

2 ) → H(G−1
1 ). Assume that G1 � G2, that is, H(G1) ⊂ H(G2). Then

we have

H(G−1
2 ) ⊂ H(G−1

1 ) ⊂ H ⊂ H(G1) ⊂ H(G2).

It follows that the KLMN theorem applies. Assume indeed there exists λ ∈ R such
that A − λI has an invertible representative (A − λI)

G2G
−1
2
: H(G−1

2 ) → H(G2).

Then A
G2G

−1
2

has a unique restriction to a self-adjoint operator A in H, hence

A
G2G

−1
2
�� B and A �� B. A question remains open, namely, A is self-adjoint,

but is the spectrum of B real?
In conclusion, there are three cases: if A : H(G1)→ H(G2), then

(i) G1 is unbounded and G2 is bounded: then

H(G1) ⊂ H ⊂ H(G2),

and A maps the small space into the large one, thus the KLMN theorem applies.
(ii) G1 and G2 are both unbounded, with H(G1) ⊂ H(G2); then the KLMN

theorem applies.
(iii) G1 is bounded and G2 is unbounded: then

H(G2) ⊂ H ⊂ H(G1) and H(G−1
1 ) ⊂ H ⊂ H(G−1

2 ),

so that, in both cases, A maps the large space into the small one; hence, the
KLMN theorem does not apply.

9 Pseudo-Hermitian Hamiltonians

Non-self-adjoint Hamiltonians appear in Pseudo-Hermitian quantum mechanics
[19, 20]. In general, they are PT -symmetric operators, that is, invariant under the
joint action of space reflection (P) and complex conjugation (T ). Typical examples
are H = p2 + ix3 and H = p2 − x4, which are both PT -symmetric, but non-self-
adjoint, and have both a purely point spectrum, real and positive.

Now, the usual assumption is that H is pseudo-Hermitian in the sense of
Dieudonné [14], that is, there exists an (unbounded) metric operator G satisfying
the relation H∗G = GH .
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Assume instead that H is pseudo-Hermitian, that is, D(H) ⊂ D(G) and

〈Hξ |Gη〉 = 〈Gξ |Hη〉, ∀ ξ, η ∈ D(H).

Then, if G is bounded, one gets H � H∗ and G1/2HG−1/2 is self-adjoint. If G is
unbounded and H is strictly quasi-Hermitian, then H � H∗. If, in addition, G−1

is bounded, then G−1H∗Gη = Hη, ∀ η ∈ D(H), which is a restrictive form of
similarity.

Finally, assume that H is a quasi-Hermitian operator which possesses a (large)
set of vectors, φ ∈ Dω

G(H), analytic in the norm ‖·‖G and contained in D(G) [21],
that is,

∞∑

n=0

‖Hnφ‖G
n! tn <∞, for some t ∈ R.

Thus, Dω
G(H) ⊂ D(H) ⊂ D(G) ⊂ D(G1/2) ⊂ H.

Under this assumption, we can proceed to the construction of the physical
system, following [4, Sec.6]. Define HG as the completion of Dω

G(H) in the norm
‖·‖G. This is a closed subspace of H(G) and one has

〈φ|Hψ〉G = 〈Hφ|ψ〉G, ∀φ,ψ ∈ Dω
G(H).

Thus H is a densely defined symmetric operator in HG, with a dense set of analytic
vectors. Therefore, H essentially self-adjoint, according to Nelson’s theorem [21].

Then the closure H of H is self-adjoint in HG. The pair (HG,H) may be
interpreted as the physical quantum system.

Next, WD = G1/2 �Dω
G(H) is isometric from Dω

G(H) into H, hence it extends
to an isometry W = WD : HG → H. The range of W is a closed subspace of H,
denoted by Hphys, and the operator W is unitary from HG to Hphys. Therefore, the
operator h = W H W−1 is self-adjoint in Hphys. This operator h is interpreted as
the genuine Hamiltonian of the system, acting in the physical Hilbert space Hphys.

The situation becomes simpler if Dω
G(H) is dense in H. Then, indeed,

W(Dω
G(H)) is also dense, HG = H(G), Hphys = H and W = G1/2 is unitary

from H(G) onto H.
Now, every eigenvector of an operator is automatically analytic, hence this

construction generalizes that of [20]. This applies, for instance, to the example given
there, namely, the PT -symmetric operator H = 1

2 (p−iα)2+ 1
2ω

2x2 in H = L2(R),
for any α ∈ R, which has an orthonormal basis of eigenvectors.

A beautiful example of the situation just analyzed has been given recently by
Samsonov [23], namely, the second derivative on the positive half-line, with special
boundary conditions at the origin (this example stems from Schwartz [26]).
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Beyond Frames: Semi-frames
and Reproducing Pairs

Jean-Pierre Antoine and Camillo Trapani

Abstract Frames are nowadays a standard tool in many areas of mathematics,
physics, and engineering. However, there are situations where it is difficult, even
impossible, to design an appropriate frame. Thus there is room for generalizations,
obtained by relaxing the constraints. A first case is that of semi-frames, in which one
frame bound only is satisfied. Accordingly, one has to distinguish between upper
and lower semi-frames. We will summarize this construction. Even more, one may
get rid of both bounds, but then one needs two basic functions and one is led to
the notion of reproducing pair. It turns out that every reproducing pair generates
two Hilbert spaces, conjugate dual of each other. We will discuss in detail their
construction and provide a number of examples, both discrete and continuous. Next,
we notice that, by their very definition, the natural environment of a reproducing pair
is a partial inner product space (PIP-space) with an L2 central Hilbert space. A first
possibility is to work in a rigged Hilbert space. Then, after describing the general
construction, we will discuss two characteristic examples, namely, we take for the
partial inner product space a Hilbert scale or a lattice of Lp spaces.
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1 Introduction

Representing functions in terms of simple ones, preferably with a small number
of them, is a recurrent problem in analysis. It is particularly acute in signal and
image processing, where transmission imposes severe constraints. Such signals are
usually taken as square integrable functions on some manifold, hence they constitute
a Hilbert space.

More generally, given a separable Hilbert space H, one seeks to expand an
arbitrary element f ∈ H in a sequence of simple, basic elements (atoms) � =
(ψk), k ∈ �, with � a countable index set:

f =
∑

k∈�
ckψk, (1.1)

where the sum converges in an adequate fashion (e.g., in norm or unconditionally)
and the coefficients ck are (preferably) unique and easy to compute. There are
several possibilities for obtaining that result. Namely, we can require that � be:

(i) an orthonormal basis: the coefficients are unique, namely, ck = 〈ψk|f 〉, the
convergence is unconditional;

(ii) a Riesz basis, i.e., ψk = V ek , where (ek) is an orthonormal basis and
V is bounded bijective operator; the coefficients are unique, namely, ck =
〈φk|f 〉, where (φk) is a unique Riesz basis dual to (V ek); the convergence is
unconditional.

These two notions solve the problem, but they are very rigid and often not very
manageable, leading mostly to infinite expansions. Thus frames were introduced
for ensuring a better flexibility, originally in 1952 by Duffin and Schaeffer [19]
in the context of nonharmonic analysis. The notion was revived by Daubechies,
Grossmann, and Meyer [18] in the early stages of wavelet theory and then became a
very popular topic, in particular in Gabor and wavelet analysis [14, 16, 17, 24]. The
reason is that a good frame in a Hilbert space is almost as good as an orthonormal
basis for expanding arbitrary elements (albeit non-uniquely) and is often easier to
construct. In order to put the present work in perspective, we recall that a sequence
� = (ψk) is a frame for a Hilbert space H if there exist constants 0 < m�M <∞
(the frame bounds) such that

m ‖f ‖2 ≤
∑

k∈�
|〈ψk|f 〉|2 ≤ M ‖f ‖2 ,∀ f ∈ H. (1.2)

Actually frames are most often considered in the discrete case, for instance in
signal processing [16]. However, continuous frames have also been studied and
offer interesting mathematical problems. They have been introduced originally by
Ali, Gazeau, and one of us [1, 2] and also, independently, by Kaiser [25]. Since
then, several papers dealt with various aspects of the concept, see, for instance,
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[13, 21, 22] or [27]. The next step towards numerical applications will be, of course,
discretization, but this is not our purpose in this chapter.

However, there may occur situations where it is impossible to satisfy both frame
bounds at the same time. Therefore, several generalizations of frames have been
introduced. Semi-frames [4, 5], for example, are obtained when functions only
satisfy one of the two frame bounds. It turns out that a large portion of frame theory
can be extended to this larger framework, in particular the notion of duality.

More recently, a new generalization of frames was introduced by Balazs and
Speckbacher [30], namely, reproducing pairs. Here, given a measure space (X,μ),
one considers a couple of weakly measurable functions (ψ, φ), instead of a single
mapping, and one studies the correlation between the two (a precise definition is
given below). This definition also includes the original definition of a continuous
frame [1, 2] to which it reduces when ψ = φ. The increase of freedom in choosing
the mappings ψ and φ, however, leads to the problem of characterizing the range of
the analysis operators, which in general need no more be contained in L2(X, dμ),
as in the frame case. Therefore, it is natural to extend the theory to the case where
the weakly measurable functions take their values in a partial inner product space
(PIP-space), for instance, a rigged Hilbert space or a Hilbert scale.

The paper is organized as follows. In Sect. 2, we review the notions of frames and
semi-frames and recall their salient properties. In Sect. 3 we introduce reproducing
pairs, in particular their duality properties. Then, in Sect. 4, we discuss briefly the
existence and uniqueness of reproducing partners. In Sect. 6, we motivate the link
between reproducing pairs and PIP-spaces, first a Rigged Hilbert space (RHS) in
Sect. 7, then a general PIP-space, more precisely a lattice of Banach spaces (LBS) or
a lattice of Hilbert spaces (LHS), in Sect. 8. Finally, in Sects. 9 and 10, respectively,
we examine two particular cases, namely, a Hilbert scale and a lattice of Lp spaces.

2 Preliminaries: Frames and Semi-frames

2.1 Frames

Before proceeding, we list our definitions and conventions. The framework is a
(separable) Hilbert space H, with the inner product 〈·|·〉 linear in the first factor.
Given an operator A on H, we denote its domain by D(A), its range by Ran (A) and
its kernel by Ker (A). GL(H) denotes the set of all invertible bounded operators on
H with bounded inverse. Throughout the paper, we will consider weakly measurable
functions ψ : X → H, where (X,μ) is a locally compact space with a Radon
measure μ, that is, 〈f |ψx〉 is μ-measurable for every f ∈ H.

The weakly measurable function ψ is a continuous frame if there exist constants
m > 0 and M <∞ (the frame bounds) such that

m ‖f ‖2 �
∫

X

|〈f |ψx〉|2 dμ(x) ≤ M ‖f ‖2 ,∀ f ∈ H. (2.1)
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Given the continuous frame ψ , the analysis operator Cψ : H → L2(X, dμ) is
defined1 as

(Cψf )(x) = 〈f |ψx〉, f ∈ H, (2.2)

and the corresponding synthesis operator C∗ψ : L2(X, dμ) → H as (the integral
being understood in the weak sense, as usual)

C∗ψξ =
∫

X

ξ(x)ψx dμ(x), for ξ ∈ L2(X, dμ). (2.3)

We set Sψ := C∗ψCψ , i.e.,

〈f |Sψf 〉 =
∫

X

|〈f |ψx〉|2 dμ(x). (2.4)

Thus the so-called frame or resolution operator Sψ is self-adjoint, invertible,
bounded with bounded inverse S−1

ψ , that is, Sψ ∈ GL(H).
In particular, if X is a discrete set with μ being a counting measure, we recover

the standard definition (1.2) of a (discrete) frame [14, 16, 19].
An important concept in frame theory is that of duality. Given a frame � = {ψx},

one says that a frame � = {φx} is dual to the frame {ψx} if one has

〈f |g〉 =
∫

X

〈f |φx〉 〈ψx |g〉 dμ(x), ∀ f, g ∈ H. (2.5)

Then � is dual to � as well. The dual of a given frame � is not unique in general,
but one of them is distinguished, namely, the canonical dual ψ̃x := S−1ψx .

2.2 Semi-frames

In practice, there are situations where the notion of frame is too restrictive, in the
sense that one cannot satisfy both frame bounds simultaneously. Thus there is room
for two natural generalizations, namely, we say that a family � is an upper (resp.
lower) semi-frame, if

(i) � is total in H;
(ii) � satisfies the upper (resp. lower) frame inequality in (2.1).

Note that the lower frame inequality automatically implies that the family is total,
i.e., (ii)⇒ (i) for a lower semi-frame.

1As usual, we identify a function f with its residue class in L2(X, dμ).
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Let first � be a (continuous) upper semi-frame, that is, there exists a constant
0 < M <∞ such that

0 <

∫

X

|〈f |ψx〉|2 dμ(x)�M ‖f ‖2 , ∀ f ∈ H, f �= 0. (2.6)

In this case, � is a total set in H, the operators Cψ and Sψ are bounded, Sψ is
injective and self-adjoint. Therefore Ran (Sψ) is dense in H and S−1

ψ is also self-

adjoint. Thus, if � is an upper semi-frame and not a frame, Sψ is bounded and S−1
ψ

is unbounded, as follows immediately from (2.6).
Note that, if a family � verifies the upper frame bound only, the map x �→

ψx is often called a Bessel mapping. More precisely, Bessel maps are those for
which

∫
X
|〈f |ψx〉|2 dμ(x) <∞. By a standard argument based on the closed graph

theorem, one gets the inequality on the right of (2.6).
We notice that an upper semi-frame � is a frame if and only if there exists another

upper semi-frame � which is dual to �, in the sense of (2.5) [22].
Next, we say that a family � = {φx} is a lower semi-frame if it satisfies the lower

frame condition, that is, there exists a constant m > 0 such that

m ‖f ‖2 ≤
∫

X

|〈φx |f 〉|2 dμ(x), ∀ f ∈ H. (2.7)

Clearly, (2.7) implies that the family � is total in H.
Following the terminology of Young [34] in the discrete case, we may call

moment space of a measurable function ψ the range of its analysis operator, Cψ(H).
Then one may say that a measurable function ψ is Bessel or an upper semi-frame if
its moment space is contained in L2(X, dμ). On the contrary, a measurable function
φ is a lower semi-frame if its moment space contains L2(X, dμ).

In the lower case, the definition of Sφ must be changed, since Cφ need not be
densely defined, so that C∗φ may not be well-defined. Instead, following [4, Sec.2]
one defines the analysis operator (2.2) on the domain

D(Cφ) = {f ∈ H :
∫

X

|〈f |φx〉|2 dμ(x) <∞},

which need not be dense. As for the synthesis operator, we put

DφF =
∫

X

F(x) φx dμ(x), F ∈ L2(X, dμ), (2.8)

on the domain of all elements F for which the integral in (2.8) converges weakly in
H. Defining Sφ := DφCφ , it is shown in [4, Sec.2] that Sφ is unbounded and S−1

φ is
bounded.

With these definitions, we obtain a nice duality property between upper and
lower semi-frames. In the discrete case, the role of upper, resp. lower semi-frame, is
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played by Bessel, resp. Riesz-Fischer sequences [34]. A Riesz-Fischer sequence is a
sequence for which, for every sequence {an} ∈ �2, there is a solution of the equation
〈f |φn〉 = an. One knows that every total Riesz-Fischer sequence satisfies the lower
frame condition, which is equivalent to the existence of a Bessel sequence dual to it
[15]. The same result holds here.

Proposition 2.1

(i) Let � = {ψx} be an upper semi-frame, with upper frame bound M and let
� = {φx} be a total family dual to �. Then � is a lower semi-frame, with
lower frame bound M−1.

(ii) Conversely, if � = {φx} is a lower semi-frame, there exists an upper semi-frame
� = {ψx} dual to �, that is, one has, in the weak sense,

f =
∫

X

〈f |φx〉ψx dμ(x), ∀ f ∈ D(C�).

A proof may be found in [4, Lemma 2.5 and Proposition 2.6]. However, the
latter is slightly incomplete. Here is a corrected proof (M. Speckbacher, private
communication).

Proof of (ii) The ‘if’ part is Lemma 2.5 of [4]. Let � be a lower semi-frame. Then
Ran (Cφ) is a closed subspace of L2(X, dμ), in virtue of the lower frame bound
condition, and it is a reproducing kernel Hilbert space (RKHS), since one has, for
F = Cφf ∈ Ran (Cφ),

|F(x)| = |Cφf (x)|� ‖f ‖ ‖φx‖�
√

1/m ‖φx‖
∥∥Cφf

∥∥
2 = Cx ‖F‖2 ,

where m is the lower frame bound of �, i.e., the evaluation functional is bounded.
Let P be the orthogonal projection on Ran (Cφ) and let {en}n∈N be an arbitrary
orthonormal basis of L2(X, dμ).

Define a linear operator V : L2(X, dμ) → H by V = C−1
φ on Ran (Cφ),

by V = 0 on Ran (Cφ)
⊥ and extending by linearity. Then V is bounded, since

C−1
φ : Ran (Cφ)→ H is bounded. Then, for all f ∈ D(Cφ), g ∈ H, we have

〈f |g〉 = 〈VCφf |g〉 = 〈Cφf |V ∗g〉2 = 〈Cφf |V ∗(
∑

n∈N
〈g|en〉en)〉2

= 〈Cφf |
∑

n∈N
〈g|en〉V ∗en〉2 = 〈Cφf |

∑

n∈N
〈g|en〉PV ∗en〉2 = 〈Cφf |Cψg〉2,

where we have put ψx := ∑
n∈N en(PV ∗en)(x). It remains to show that ψx is well

defined for every x ∈ X. This is the case if and only if

∑

n∈N
|(PV ∗en)(x)|2 <∞, ∀ x ∈ X.
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But this follows from the fact that {PV ∗en}n∈N is a Bessel sequence in the RKHS
Ran (Cφ). One has indeed, for any F ∈ Ran (Cφ),

∑

n∈N
|〈F |PV ∗en〉2|2 =

∑

n∈N
|〈VPF |en〉2|2 = ‖VF‖2 �C ‖F‖2

2 ,

since V is bounded and PF = F . �
In the same paper [4], concrete examples are presented, namely an upper semi-

frame of affine coherent states and a lower semi-frame of wavelets on the 2-sphere.
We will come back to these examples in Sect. 5.2.

In conclusion, if two semi-frames are in duality, either they are both frames, or
else at least one of them is a lower semi-frame.

3 Reproducing Pairs

Quite recently, a new generalization of frames was introduced by Balazs and
Speckbacher [30], namely, reproducing pairs. Here, given a measure space (X,μ),
one considers a couple of weakly measurable functions (ψ, φ), instead of a
single mapping. The advantage is that no further conditions are imposed on these
functions, which results in an increased flexibility.

More precisely, the couple of weakly measurable functions (ψ, φ) is called a
reproducing pair if [12]

(a) The sesquilinear form

�ψ,φ(f, g) =
∫

X

〈f |ψx〉〈φx |g〉 dμ(x) (3.1)

is well-defined and bounded on H × H, that is, |�ψ,φ(f, g)|�c ‖f ‖ ‖g‖, for
some c > 0.

(b) The corresponding bounded (resolution) operator Sψ,φ belongs to GL(H).

Under these hypotheses, one has

Sψ,φf =
∫

X

〈f |ψx〉φx dμ(x), ∀ f ∈ H, (3.2)

the integral on the r.h.s. being defined in weak sense. If ψ = φ, we recover the
notion of continuous frame, as introduced in [1, 2], so that we have indeed a genuine
generalization of the latter.

Notice that Sψ,φ is in general neither positive nor self-adjoint, since S∗ψ,φ = Sφ,ψ .

However, if (ψ, φ) is a reproducing pair, then (ψ, S−1
ψ,φφ) is also a reproducing pair,

for which the corresponding resolution operator is the identity, that is, ψ and φ are
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in duality. Therefore, there is no restriction of generality to assume that Sφ,ψ = I

[30]. The worst that can happen is to replace some norms by equivalent ones.

3.1 The Hilbert Spaces Generated by a Reproducing Pair

It has been shown in [12] that each weakly measurable function φ generates an
intrinsic pre-Hilbert space Vφ(X,μ) and, moreover, a reproducing pair (ψ, φ)

generates two Hilbert spaces, Vψ(X,μ) and Vφ(X,μ), conjugate dual of each
other with respect to the L2(X,μ) inner product. Let us sketch that construction,
following closely [12]. Further generalizations will follow.

Given a weakly measurable function φ, let us denote by Vφ(X,μ) the space of all
measurable functions ξ : X → C such that the integral

∫
X
ξ(x)〈φx |g〉 dμ(x) exists

for every g ∈ H (in the sense that ξ 〈φ·|g〉 ∈ L1(X, dμ)) and defines a bounded
conjugate linear functional on H, i.e., ∃ c > 0 such that

∣∣∣∣
∫

X

ξ(x)〈φx |g〉 dμ(x)

∣∣∣∣�c ‖g‖ , ∀ g ∈ H. (3.3)

Clearly, if (ψ, φ) is a reproducing pair, all functions ξ(x) = 〈f |ψx〉 belong to
Vφ(X,μ).

By the Riesz lemma, we can define a linear map Tφ : Vφ(X,μ) → H by the
following weak relation

〈Tφξ |g〉 =
∫

X

ξ(x)〈φx |g〉 dμ(x), ∀ ξ ∈ Vφ(X,μ), g ∈ H. (3.4)

Next, we define the vector space

Vφ(X,μ) = Vφ(X,μ)/Ker Tφ

and equip it with the norm

∥∥[ξ ]φ
∥∥
φ
:= sup

‖g‖�1

∣∣∣∣
∫

X

ξ(x)〈φx |g〉 dμ(x)

∣∣∣∣ = sup
‖g‖�1

∣∣〈Tφξ |g〉
∣∣ , (3.5)

where we have put [ξ ]φ = ξ + Ker Tφ for ξ ∈ Vφ(X,μ). Clearly, Vφ(X,μ) is
a normed space. However, the norm ‖·‖φ is in fact Hilbertian, that is, it derives
from an inner product, as can be seen as follows. First, it turns out that the map
T̂φ : Vφ(X,μ) → H, T̂φ[ξ ]φ := Tφξ is a well-defined isometry of Vφ(X,μ) into
H. Next, one may define on Vφ(X,μ) an inner product by setting

〈[ξ ]φ |[η]φ〉(φ) := 〈T̂φ[ξ ]φ |T̂φ[η]φ〉, [ξ ]φ, [η]φ∈ Vφ(X,μ),
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and one shows that the norm defined by 〈·|·〉(φ) coincides with the norm ‖·‖φ defined
in (3.5). One has indeed

∥∥[ξ ]φ
∥∥
(φ)
= ∥∥T̂φ[ξ ]φ

∥∥ = ∥∥Tφξ
∥∥ = sup

‖g‖�1

∣∣〈Tφξ |g〉
∣∣ = ∥∥[ξ ]φ

∥∥
φ
.

Thus we may state:

Proposition 3.1 Let φ be a weakly measurable function. Then Vφ(X,μ) is a pre-
Hilbert space with respect to the norm ‖·‖φ and the map T̂φ : Vφ(X,μ) → H,
T̂φ[ξ ]φ := Tφξ is a well-defined isometry of Vφ(X,μ) into H.

Let us denote by Vφ(X,μ)∗ the Hilbert dual space of Vφ(X,μ), that is, the set of
continuous linear functionals on Vφ(X,μ). The norm ‖·‖φ∗ of Vφ(X,μ)∗ is defined,
as usual, by

‖F‖φ∗ = sup
‖[ξ ]φ‖φ�1

|F([ξ ]φ)|, F ∈ Vφ(X,μ)∗.

Now we define a conjugate linear map Cφ : H→ Vφ(X,μ)∗ by

(Cφf )([ξ ]φ) :=
∫

X

ξ(x)〈φx |f 〉 dμ(x), f ∈ H, (3.6)

which will take the role of the analysis operator Cφ of Sect. 2. Notice that Cφ

is a linear map, whereas Cφ is conjugate linear. The discrepancy is explained in
Remark 3.11 below.

Of course, (3.6) means that (Cφf )([ξ ]φ) = 〈Tφξ |f 〉 = 〈T̂φ[ξ ]φ |f 〉, for every
f ∈ H. Thus Cφ = T̂ ∗φ , the adjoint map of T̂φ . By (3.3) it follows that Cφ is
continuous. This implies that

H = [Ran T̂φ ]̃ ⊕ Ker Cφ, (3.7)

where the first summand denotes the closure of Ran T̂φ . Hence C∗φ = T̂ ∗∗φ = T̂φ , if
Vφ(X,μ) is complete.

By modifying in an obvious way the definition given in Sect. 2, we say that φ is
μ-total if Ker Cφ = {0}, that is Ran T̂φ = H.

Remark 3.2 Whenever no confusion may arise, we will omit the explicit indication
of residues classes and write simply, for instance, ξ ∈ Vφ(X,μ) instead of [ξ ]φ ∈
Vφ(X,μ). Similarly, for the operator Cφ introduced in (3.6), we will often identify
Cφf , f ∈ H, with 〈φx |f 〉, as a shortcut to (Cφf )(ξ) = ∫

X
ξ(x)〈φx |f 〉 dμ(x).

It is easy to see that Vφ(X,μ)[〈·|·〉(φ)] is complete, i.e., it is a Hilbert space if
and only if T̂φ has closed range [12].

As a consequence of (3.7) we get

Corollary 3.3 The following statements hold.
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(i) A weakly measurable function φ is μ-total if and only if Ran T̂φ is dense in H.
(ii) If Vφ(X,μ) is a Hilbert space, Ran T̂φ is equal to H if and only if φ is μ-total.

Now, things get simpler in the case of a reproducing pair. Namely,

Lemma 3.4 If (ψ, φ) is a reproducing pair, then Ran T̂φ = H.

Proof Since Sψ,φ ∈ GL(H), for every h ∈ H, there exists a unique f ∈ H such
that Sψ,φf = h. But, by (3.2), we get

〈h|g〉 =
∫

X

〈f |ψx〉〈φx |g〉 dμ(x), ∀ f, g ∈ H,

that is, h = T̂φ[Cψf ]φ , where the overbar denotes complex conjugation, as
usual. �
Notice that, if (ψ, φ) is a reproducing pair, both functions are necessarily μ-total.

3.2 Duality Properties of the Spaces Vφ(X,μ)

When the space Vφ(X,μ) is a Hilbert space, it is conjugate isomorphic to its dual,
via the Riesz operator. In addition, if (ψ, φ) is a reproducing pair, the dual of
Vφ(X,μ) can be identified with Vψ(X,μ) as we shall prove below. We emphasize
that the duality is taken with respect to the sesquilinear form

〈ξ |η〉μ :=
∫

X

ξ(x)η(x) dμ(x), (3.8)

which coincides with the inner product of L2(X,μ) whenever the latter makes
sense.

Theorem 3.5 Let φ be a weakly measurable function. If F is a continuous linear
functional on Vφ(X,μ), then there exists a unique g ∈ [Mφ] ,̃ the closure of the
range of T̂φ , such that

F([ξ ]φ) =
∫

X

ξ(x)〈φx |g〉 dμ(x), ∀ ξ ∈ Vφ(X,μ) (3.9)

and ‖F‖φ∗ = ‖g‖, where ‖·‖φ∗ denotes the (dual) norm on Vφ(X,μ)∗. More-
over, every g ∈ H defines a continuous linear functional F on Vφ(X,μ) with
‖F‖φ∗ � ‖g‖, by (3.9). In particular, if g ∈ Ran T̂φ , then ‖F‖φ∗ = ‖g‖.
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Proof Let F ∈ Vφ(X,μ)∗. Then, there exists c > 0 such that

|F([ξ ]φ)|�c
∥∥[ξ ]φ

∥∥
φ
= c

∥∥Tφξ
∥∥ , ∀ ξ ∈ Vφ(X,μ).

Let Mφ := {Tφξ : ξ ∈ Vφ(X,μ)} = Ran T̂φ . Then Mφ is a vector subspace of H,
with closure [Mφ ]̃ .

Let F̃ be the linear functional defined on Mφ by

F̃ (Tφξ) := F([ξ ]φ), ξ ∈ Vφ(X,μ).

We notice that F̃ is well-defined. Indeed, if Tφξ = Tφξ
′, then ξ − ξ ′ ∈ Ker Tφ .

Hence, [ξ ]φ = [ξ ′]φ and F([ξ ]φ) = F([ξ ′]φ).
Hence, F̃ is a continuous linear functional on Mφ . Thus there exists a unique

g ∈ [Mφ ]̃ such that

F̃ (Tφξ) = 〈T̂φ[ξ ]φ |g〉 =
∫

X

ξ(x)〈φx |g〉 dμ(x)

and ‖g‖ = ‖F̃‖.
In conclusion,

F([ξ ]φ) =
∫

X

ξ(x)〈φx |g〉 dμ(x), ∀ ξ ∈ Vφ(X,μ).

and ‖F‖φ∗ = ‖g‖.
Moreover, every g ∈ H obviously defines a continuous linear functional F

by (3.9) as |F([ξ ]φ)|� ‖g‖
∥∥[ξ ]φ

∥∥
φ

. This inequality implies that ‖F‖φ∗ � ‖g‖. In

particular, if g ∈ Ran T̂φ , then there exists [ξ ]φ ∈ Vφ(X,μ), ‖[ξ ]φ‖φ = 1, such
that T̂φ[ξ ]φ = g‖g‖−1. Hence F([ξ ]φ) = 〈T̂φ[ξ ]φ |g〉 = ‖g‖. �
Corollary 3.6 Let φ be a μ-total weakly measurable function, then Cφ : H →
Vφ(X,μ)∗ is a conjugate linear isometric isomorphism.

Proof Cφ is surjective by Theorem 3.5. As φ is μ-total, it follows by Corollary 3.3
that Ran T̂φ is dense in H. Consequently, for f ∈ H it follows that

∥∥Cφf
∥∥
φ∗ = sup

‖[ξ ]φ‖φ=1

∣∣∣∣
∫

X

ξ(x)〈φx |f 〉 dμ(x)

∣∣∣∣

= sup
‖[ξ ]φ‖φ=1

|〈T̂φξ |f 〉| = sup
‖g‖=1, g∈Ran T̂φ

|〈g|f 〉| = ‖f ‖ . �



32 J.-P. Antoine and C. Trapani

Theorem 3.7 If (ψ, φ) is a reproducing pair, then every continuous linear func-
tional F on Vφ(X,μ), i.e., F ∈ Vφ(X,μ)∗, can be represented as

F([ξ ]φ) =
∫

X

ξ(x)η(x) dμ(x), ∀ [ξ ]φ ∈ Vφ(X,μ), (3.10)

with η ∈ Vψ(X,μ). The residue class [η]ψ ∈ Vψ(X,μ) is uniquely determined.

Proof By Theorem 3.5, we have the representation

F(ξ) =
∫

X

ξ(x)〈φx |g〉 dμ(x).

It is easily seen that η(x) = 〈g|φx〉 ∈ Vψ(X,μ). Uniqueness is easy. �
The lesson of the previous statements is that the map

j : F ∈ Vφ(X,μ)∗ �→ [η]ψ ∈ Vψ(X,μ) (3.11)

is well-defined and conjugate linear. On the other hand, j (F ) = j (F ′) implies
easily F = F ′. Therefore Vφ(X,μ)∗ can be identified with a closed subspace of
Vψ(X,μ) := {[ξ ]ψ : ξ ∈ Vψ(X,μ)}.

Let (ψ, φ) be a reproducing pair. We want to prove that the spaces Vφ(X,μ)∗
and Vψ(X,μ) can be identified. This is the first essential result of [12], to which
we refer for a proof, see [12, 12, Lemmas 3.11 and 3.12]. Corresponding to T̂φ , we
introduce the linear operator Ĉψ,φ : H → Vφ(X,μ) by Ĉψ,φf := [Cψf ]φ . We
note that Ĉψ,φf = Ĉψ,φf

′ implies f = f ′, as can be seen easily.
Thus we state:

Theorem 3.8 If (ψ, φ) is a reproducing pair, the map j defined in (3.11) is surjec-
tive. Hence Vφ(X,μ)∗  Vψ(X,μ), where  denotes a bounded isomorphism and
the norm ‖·‖ψ is the dual norm of ‖·‖φ . Moreover, Ran Ĉψ,φ[‖·‖φ] = Vφ(X,μ)[‖ ·
‖φ] and Ran Ĉφ,ψ [‖·‖ψ ] = Vψ(X,μ)[‖ · ‖ψ ].
Proof Let (ψ, φ) be a reproducing pair. First one shows that Ran Ĉψ,φ is closed
in Vφ(X,μ)[‖·‖φ]. Moreover, every [η]ψ ∈ Vψ(X,μ) defines a continuous linear

functional on the closed subspace Ran Ĉψ,φ[‖·‖φ], which implies that the map
j is surjective. Next, it turns out that Ran Ĉψ,φ is dense in Vφ(X,μ). Hence,
Ran Ĉψ,φ[‖·‖φ] and Vφ(X,μ)[‖ · ‖φ] coincide, and similarly for the other pair. �
The first statement of the theorem implies that there exist 0 < m�M <∞ such that

m ‖f ‖� ∥∥Ĉψ,φf
∥∥
φ
�M ‖f ‖ , ∀ f ∈ H, (3.12)

a relation that may have an independent interest. The inequalities (3.12) are, of
course, very similar to the ones defining a frame, viz. (1.2) or (2.1). Yet they are
more general, since they are satisfied for any reproducing pair, be it a frame or not.
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By Theorems 3.7 and 3.8, it follows that, if (ψ, φ) is a reproducing pair, then for
every η ∈ Vψ(X,μ), there exists g ∈ H such that η = 〈φ·|g〉.

In conclusion, we may state

Theorem 3.9 If (ψ, φ) is a reproducing pair, the spaces Vφ(X,μ) and Vψ(X,μ)

are both Hilbert spaces, conjugate dual of each other with respect to the sesquilin-
ear form (3.8).

Corollary 3.10 If (ψ, φ) is a reproducing pair and φ = ψ , then ψ is a continuous
frame and Vψ(X,μ) is a closed subspace of L2(X,μ).

Proof Since the duality takes place with respect to the L2 inner product, Vψ(X,μ)

is a subspace of L2(X,μ). The equality Ran Ĉψ,ψ = Vψ(X,μ) and the fact that
Ĉψ,ψ is bounded from below with respect to the L2-norm, by (3.12), imply that it is
closed. �
Remark 3.11 The operator Cφ defined by (2.2) is linear, but the operator Cφ given
in (3.6) is conjugate linear. However the latter maps H into Vφ(X,μ)∗, which is
identified with Vψ(X,μ), thus Cφ maps H linearly into Vψ(X,μ).

Actually Theorem 3.9 has an inverse. Indeed:

Theorem 3.12 Let φ and ψ be weakly measurable and μ-total. Then, the couple
(ψ, φ) is a reproducing pair if and only if Vφ(X,μ) and Vψ(X,μ) are Hilbert
spaces, conjugate dual of each other with respect to the sesquilinear form (3.8).

Proof The “if” part is Theorem 3.9. Let now Vφ(X,μ) and Vψ(X,μ) be Hilbert
spaces in conjugate duality. Consider the sesquilinear form

�ψ,φ(f, g) =
∫

X

〈f |ψx〉〈φx |g〉 dμ(x), f, g ∈ H.

By the definition of the norms ‖·‖φ , ‖·‖ψ and the duality condition, we have, for
every f, g ∈ H, the two inequalities

|�ψ,φ(f, g)|�
∥∥[〈f |ψ·〉]φ

∥∥
φ
‖g‖ ,

|�ψ,φ(f, g)|�
∥∥[〈g|φ·〉]ψ

∥∥
ψ
‖f ‖ .

This means, the form �ψ,φ is separately continuous, hence jointly continuous.
Therefore there exists a bounded operator Sψ,φ such that �ψ,φ(f, g) = 〈Sψ,φf |g〉.
First the operator Sψ,φ is injective. Indeed, since C∗φ = T̂φ , we have

〈Sψ,φf |g〉 = 〈Cψf |Cφg〉 = 〈Ĉψ,φf |Cφg〉 = 〈T̂φĈψ,φf |g〉, ∀f, g ∈ H.

Now T̂φ is isometric and Ĉψ,φ is injective, hence T̂φĈψ,φf = 0 implies f = 0.
Next, Sψ,φ is also surjective, by Corollary 3.3. Hence Sψ,φ belongs to GL(H). �
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In addition to Lemma 3.8, there is another characterization of the space
Vψ(X,μ), in terms of an eigenvalue equation, based on the fact that 〈S−1

ψ,φφy |ψx〉 is
a reproducing kernel [30, Prop.3].

Proposition 3.13 Let (ψ, φ) be a reproducing pair. Let ξ ∈ Vψ(X,μ) and consider
the eigenvalue equation

∫

X

ξ(y)〈S−1
ψ,φφy |ψx〉 dμ(y) = λ ξ(x). (3.13)

Then ξ ∈ Ran Cφ if and only if λ = 1, and ξ ∈ Ker Tψ if and only if λ = 0.
Moreover, there are no other eigenvalues.

4 Existence and Nonuniqueness of Reproducing Partners

Given a weakly measurable function ψ , it is not obvious that there exists another
function φ such that (ψ, φ) is a reproducing pair. Here is a criterion towards the
existence of a specific dual partner.

Theorem 4.1 Let φ be a weakly measurable function and e = {en}n∈N an
orthonormal basis of H. There exists another measurable function ψ , such that
(ψ, φ) is a reproducing pair if and only if Ran T̂φ = H and there exists a family
{ξn}n∈N ⊂ Vφ(X,μ) such that

[ξn]φ = [T̂ −1
φ en]φ, ∀n ∈ N, and

∑

n∈N
|ξn(x)|2 <∞, for a.e. x ∈ X.

(4.1)

The proof of this theorem is quite technical and may be found in [12, Sec.4].
Note that, if φ is a frame, then the reproducing partner ψ given by the proof of
Theorem 4.1 is also a frame.

Actually, given the weakly measurable function φ, the fact that (ψ, φ) is a
reproducing pair does not determine the function ψ uniquely. Indeed we have:

Theorem 4.2 Let (ψ, φ) be a reproducing pair. Then (θ, φ) is a reproducing pair
if and only if θ = Aψ + θ0, where A ∈ GL(H) and [〈f |θ0(·)〉]φ = [0]φ, ∀f ∈
H, i.e.,Ĉθ0,φf = 0,∀ f ∈ H.

Proof If θ = Aψ + θ0 as above, then Sθ,φf = T̂φ(ĈAψ,φ + Ĉθ0,φ)f =
T̂φ(ĈAψ,φf ) = T̂φĈψ,φA

∗f = Sψ,φA
∗f , hence Sθ,φ = Sψ,φA

∗ ∈ GL(H).
Conversely, assume that (θ, φ) is a reproducing pair. By Theorem 3.8, we have

Vφ(X,μ) = RanCψ/Ker Tφ = RanCθ/Ker Tφ , i.e., for every f ∈ H there exists
g ∈ H such that [Cθf ]φ = [Cψg]φ . Then, using successively the definition of Sφ,θ ,
the relation above and the reproducing kernel (3.13), we obtain
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〈f |Sφ,θ (S−1
ψ,φ)

∗ψ(·)〉=
∫

X

〈f |θx〉〈φx |(S−1
ψ,φ)

∗ψ·〉 dμ(x)

=
∫

X

〈g|ψx〉〈φx |(S−1
ψ,φ)

∗ψ·〉 dμ(x)=〈g|ψ·〉=〈f |θ·〉 , ∀ f ∈H.

This means that, for all f ∈ H, we have [Cθf ]φ = [CAψf ]φ or, equivalently,
Ĉθ,φ = ĈAψ,φ , where A := Sφ,θ (S

−1
ψ,φ)

∗ ∈ GL(H). Moreover, Cθf (x) =
CAψf (x) + F(f, x) for a.e. x ∈ X and every f ∈ H, where F(f, ·) ∈ Ker Tφ ,
i.e., F(f, x) = 〈f |(θ − Aψ)x〉 =: 〈f |θ0x〉. �

In addition, the existence of a reproducing partner to a given function φ is
preserved if one replaces Vφ(X,μ) by an isomorphic space V ′φ(X,μ). Indeed:

Corollary 4.3 Let φ, φ′ be weakly measurable functions and Vφ(X,μ)  
Vφ′(X,μ), where  denotes a bounded isomorphism. There exists ψ such that
(ψ, φ) is a reproducing pair if and only if there exists ψ ′ such that (ψ ′, φ′) is a
reproducing pair.

Proof Suppose that (ψ, φ) is a reproducing pair. Let j be the bounded isomorphism
j : Vφ(X,μ)→ Vφ′(X,μ). Then j∗ : Vφ′(X,μ)∗ → Vφ(X,μ)∗ is also a bounded
isomorphism. Since Cφ′ is bounded by (3.3), in order to verify that there exists ψ ′
such that Sψ ′,φ′ ∈ GL(H), we only need to check that C−1

φ′ is bounded. For every

f ∈ H, there exists g ∈ H such that Cφf = j∗Cφ′g. Hence, g �→ C−1
φ j∗Cφ′g

is surjective and bounded. It is moreover injective since μ-totality of φ′ implies
injectivity of Cφ′ . Thus, the bounded inverse theorem implies that (C−1

φ j∗Cφ′)−1

and consequently C−1
φ′ are bounded. Since the statement is symmetric in (ψ, φ) and

(ψ ′, φ′), the converse implication holds as well. �

5 Examples of Reproducing Pairs

In this section, we present a few concrete examples of the construction of Sect. 3.
More details may be found in [12]. We begin with discrete examples, that is, X = N

with the counting measure.

5.1 Discrete Examples

5.1.1 Orthonormal Basis

Let e = {en}n∈N be an orthonormal basis, then e is a frame and Ve(N) = Ve(N) =
�2(N). Indeed, for ξ ∈ Ve(N), we have

∣∣∣
∑

n∈N
ξn〈en|g〉

∣∣∣ =
∣∣∣
∑

n∈N
ξngn

∣∣∣�c ‖g‖ = c ‖{gn}n∈N‖�2 , ∀g ∈ H,
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where gn := 〈g|en〉. Hence, ξ ∈ �2(N)∗ = �2(N). Moreover, since Ker Te = {0}, it
follows that Ve(N) = Ve(N) and ‖·‖�2 = ‖·‖e.

5.1.2 Riesz Basis

Now consider a Riesz basis r = {rn}n∈N. Then rn = Aen for some A ∈ GL(H)

[16]. Therefore Vr (N) = Vr(N) = �2(N) as sets, but with equivalent (not necessary
equal) norms, as can be seen easily. Hence r is a frame.

5.1.3 Discrete Upper and Lower-Semi Frames

Let θ = {θn}n∈N be a discrete frame, m = {mn}n∈N ⊂ C\{0} and define φ :=
{mnθn}n∈N. If {|mn|}n∈N ∈ c0, then φ is an upper semi-frame and if {|mn|−1}n∈N ∈
c0, then φ is a lower semi-frame. Observe that in both cases φ is not a frame.

It can easily be seen that Vφ(N) = M1/m(Vθ (N)) = M1/m(RanCθ) as sets,
where Mm is the multiplication operator defined by (Mmξ)n = mnξn. Moreover,
‖·‖φ � ‖·‖�2

m
, where ‖ξ‖�2

m
:= ∑

n∈N |ξnmn|2. Also, Vφ(N)∗ = Mm(Vθ (N)∗) =
Mm(Vθ (N)) = Mm(RanCθ) as sets.

Using Theorem 4.1, one may show that there exists ψ such that (ψ, φ) is
a reproducing pair [12]. A natural choice of a reproducing partner is ψ :=
{(1/mn)θn}n∈N as Sψ,φ = Sθ ∈ GL(H).

5.2 Continuous Examples

5.2.1 Continuous Frames

If φ is a continuous frame, Corollary 3.10 implies that Vφ(X,μ) is a closed
subspace of L2(X,μ). Now, since L2(X,μ) = RanCφ ⊕ KerDφ , it follows that
Vφ(X,μ)[‖·‖φ]  RanCφ[‖·‖L2 ].

5.2.2 1D Continuous Wavelets

Let ψ, φ ∈ L2(R, dx) and consider the continuous wavelet systems φx,a = TxDaφ,

where, as usual, Tx denotes the translation operator and Da the dilation operator. If

∫

R

|ψ̂(ω)φ̂(ω)| dω

|ω| <∞ (5.1)
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then (ψ, φ) is a reproducing pair for L2(R, dx) with Sψ,φ = cψ,φI [24, Theorem
10.1], where

cψ,φ :=
∫

R

ψ̂(ω)φ̂(ω)
dω

|ω| .

Actually the relation Sψ,φ = cψ,φI simply expresses the well-known orthogonality
relations of wavelet transforms. A similar result holds true for D-dimensional
continuous wavelets [3] and, more generally, for all coherent states associated with
square integrable group representations [3, Chaps. 8 and 12].

For ψ = φ, the cross-admissibility condition (5.1) reduces to the classical
admissibility condition

cφ :=
∫

R

|φ̂(ω)|2 dω

|ω| <∞. (5.2)

Considering the obvious inequalities

|cψ,φ |�
∫

R

|ψ̂(ω)φ̂(ω)| dω

|ω|�c
1/2
φ c

1/2
ψ ,

we see that condition (5.1) is automatically satisfied whenever φ and ψ are both
admissible. However, it is possible to choose a mother wavelet φ that does not
satisfy the admissibility condition (5.2) and still obtain a reproducing pair (ψ, φ).
Consider, for example, the Gaussian window φ(x) = e−πx2

, then cφ = ∞,
which implies that φ is not a continuous wavelet frame. However, if one defines
ψ ∈ L2(R, dx) in the Fourier domain via ψ̂(ω) = |ω|φ̂(ω), it follows that
0 < cψ,φ = ‖φ‖2

2 < ∞. Hence (ψ, φ) is a reproducing pair. This example
clearly shows the increasing flexibility obtained when replacing continuous frames
by reproducing pairs.

5.2.3 A Continuous Upper Semi-frame: Affine Coherent States

In [4, Sec. 2.6] the following example of an upper semi-frame is investigated. Define
H(n) := L2(R+, rn−1 dr), n ∈ N, and the measure space (X,μ) = (R, dx). Let
ψ ∈ H(n) and define the affine coherent state

ψx(r) = e−ixrψ(r), r ∈ R
+.

Then ψ is admissible if supr∈R+ s(r) = 1, where s(r) := 2πrn−1|ψ(r)|2, and
|ψ(r)| �= 0, for a.e. r ∈ R

+. The frame operator is given by the multiplication
operator on H(n)

(Sψf )(r) = s(r)f (r),
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and, more generally,

(Sm
ψ f )(r) = [s(r)]mf (r), ∀m ∈ Z.

Hence Sψ is bounded and S−1
ψ is unbounded.

The function ψ enjoys the interesting property that we can characterize the space
Vψ(R, dx) and its norm. First, we show that Tφξ = ξ̂ψ , which in turn implies
that ξ̂ has to be given by an almost everywhere defined function which satisfies
ξ̂ψ ∈ H(n). Hence ξ ∈ Vψ(R, dx) provided ξ̂ψ ∈ H(n) and then ‖ξ‖ψ =

∥∥̂ξψ
∥∥.

When looking for a reproducing partner for ψ , we first ask whether there exists
an affine coherent state φx(r) = e−ixrφ(r), r ∈ R

+, φ ∈ H(n), such that (ψ, φ)

forms a reproducing pair. The answer is negative. Indeed, since ψ is Bessel and not
a frame, its dual φ is by necessity a lower semi-frame, whereas an affine coherent
state must be Bessel, but can never satisfy the lower frame bound. Hence, there is
no pair of affine coherent states forming a reproducing pair. This fact can also be
proven by an explicit calculation.

More generally, we may look for a reproducing partner which is not an affine
coherent state. First Cψ is an isometry by Corollary 3.6, but Ran T̂ψ �= H. Indeed,
if we had Ran T̂ψ = H, an arbitrary element h ∈ H(n) = L2(R+, rn−1 dr) could be
written as h = T̂ψξ = ξ̂ψ for some ξ ∈ Vψ(R, dx). This applies, in particular, to ψ

itself, which also belongs to H(n). This in turn implies that there exists ξ , such that
ξ̂ (r) = 1 for a.e. r�0. But there is no function that satisfies this condition (however,
the δ-distribution does the job).

This discussion has two major consequences. First, it shows that Vψ(R, dx) is
not a Hilbert space, since it is not complete. Second, ψ has no reproducing partner
at all.

5.2.4 Continuous Wavelets on the Sphere

Next we consider the continuous wavelet transform on the 2-sphere S
2 [3, 10]. For

a mother wavelet φ ∈ H = L2(S2, dμ), define the family of spherical wavelets

φ�,a := R�Daφ, where (�, a) ∈ X := SO(3)× R
+.

Here, Da denotes the stereographic dilation operator and R� the unitary rotation on
S

2.
It has been shown in [10, Theorem 3.3] that the operator Sφ is diagonal in

Fourier space (harmonic analysis on the 2-sphere reduces to expansions in spherical
harmonics Ym

l , l ∈ N,m = −l, . . . , l), thus it is a Fourier multiplier Ŝφf (l,m) =
sφ(l)f̂ (l, m) with the symbol sφ given by

sφ(l) := 8π2

2l + 1

∑

|m�l

∫ ∞

0

∣∣D̂aφ(l,m)
∣∣2 da

a3
, l ∈ {0} ∪ N,

where D̂aφ(l,m) := 〈Ym
l |Daφ〉 is the Fourier coefficient of Daφ.
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The result of the analysis is twofold. First, the wavelet φ ∈ L2(S2, dμ) is
admissible if and only if there exists a constant c > 0 such that sφ(l)�c, ∀ l ∈ N,

equivalently, if the frame operator Sφ is bounded. In addition, for any admissible
axisymmetric wavelet φ, there exists a constant d > 0 such that d�sφ(l)�c, ∀ l ∈
N. Equivalently, Sφ and S−1

φ are both bounded, i.e., the family of spherical wavelets
{φa,�, (�, a) ∈ X = SO(3) × R

∗+} is a continuous frame. One notices, however,
that the upper frame bound, which is implied by the constant c, does depend on φ,
whereas the lower frame bound, which derives from d, does not, it follows from the
asymptotic behavior of the function Ym

l for large l.
However, it turns out [33] that the reconstruction formula converges if d�sφ(l) <

∞ for all l ∈ {0} ∪ N, and this implies that φ (which is not admissible) is in fact a
lower semi-frame and Sφ is unbounded, but densely defined.

We may now apply Theorem 4.1 to investigate the existence of a reproducing
partner for φ. First, we show that Ran T̂φ = H. The operator Mφ defined by

M̂φf (l,m) = sφ(l)
−1f̂ (l, m) is bounded and constitutes a right inverse to Sφ .

Hence, for every f ∈ H, it holds

f = SφMφf = T̂φ[CφMφf ]φ ∈ Ran T̂φ.

Choosing ξl,m(�, a) := Cφ(S
−1
φ Ym

l )(�, a) = 〈S−1
φ Ym

l |φ�,a〉 as a representative of

[T̂ −1
φ Ym

l ]φ yields for every (�, a) ∈ R× R
+:

∞∑

l=0

∑

|m|�l

|ξl,m(�, a)|2 =
∞∑

l=0

∑

|m|�l

|〈S−1
φ Y n

l |φ�,a〉|2 =
∞∑

l=0

∑

|m|�l

|sφ(l)−1φ̂�,a(l, m)|2

�1

d

∞∑

l=0

∑

|m|�l

|φ̂�,a(l, m)|2 = 1

d

∥∥φ�,a

∥∥2
<∞.

Thus there exists (at least one) function ψ ∈ L2(S2, dμ) such that (ψ, φ) is a
reproducing pair.

Moreover, as for the wavelets on R
d , it is possible to choose another continuous

wavelet system ψ�,a as reproducing partner if the symbol sψ,φ , defined by

sψ,φ(l) := 8π2

2l + 1

∑

|m�l

∫ ∞

0
D̂aψ(l,m) D̂aφ(l,m)

da

a3
.

satisfies m�|sψ,φ(l)|�M for all l ∈ {0} ∪ N.
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5.2.5 Genuine Reproducing Pairs, Applications

Explicit examples of reproducing pairs, some of them containing neither frames,
nor semi-frames, have been given in the original paper [30]. An interesting class
of such objects arises in the context of the Gabor transform, or rather the so-called
continuous nonstationary Gabor transform. The latter relies on representations of
the Weyl-Heisenberg group, pioneered by Torrésani [32]. These techniques, and in
particular their discretized versions, seem to have a rich future in signal analysis.
The same can be said of the α-modulation transform and the attending α-modulation
frames [20, 31]. Obviously the whole analysis described in the present chapter,
including semi-frames and reproducing pairs, could and should be extended to
these more general frameworks. This offers interesting perspectives, both from the
mathematical point of view and towards applications in signal processing. But this
is another story. . .

6 Interlude: Reproducing Pairs and PIP-Spaces

Let (ψ, φ) be a reproducing pair. By definition,

〈Sψ,φf |g〉 =
∫

X

〈f |ψx〉〈φx |g〉 dμ(x) =
∫

X

Cψf (x) Cφg(x) dμ(x) (6.1)

is well-defined for all f, g ∈ H (here we revert to the linear maps Cψ,Cφ defined
in (2.2)). The r.h.s. coincides with the sesquilinear form (3.8), that is, the L2 inner
product, but generalized, since in general Cψf,Cφg need not belong to L2(X, dμ).

This fact clearly indicates that the analysis should be performed in the framework
of a partial inner product space (PIP-space) of measurable functions on X [6]. The
question is, how to embed Ran (Cψ) and Ran (Cφ) into the corresponding assaying
subspaces. Next we have to determine how the Hilbert spaces Vψ and Vφ are related
to the latter. Following [9], we will examine successively the cases of a rigged
Hilbert space (RHS) and a genuine PIP-space. Then we particularize the results to a
Hilbert scale and to a PIP-space of Lp spaces. The motivation for the last case is the
following. If, following [30], we make the innocuous assumption that the map x �→
ψx is bounded, i.e., supx∈X ‖ψx‖H�c for some c > 0 (often ‖ψx‖H = const., e.g.
for wavelets or coherent states), then (Cψf )(x) = 〈f |ψx〉 ∈ L∞(X, dμ) so that
a PIP-space based on the lattice generated by the family {Lp(X, dμ), 1�p�∞, }
may be a good solution.
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7 Reproducing Pairs and RHS

We begin with the simplest example of a PIP-space, namely, a rigged Hilbert space
(RHS). Let indeed D[t] ⊂ H ⊂ D×[t×] be an RHS, where D×[t×] denotes the
space of continuous conjugate linear functionals on D, equipped with the strong
dual topology t×. We assume that D[t] is reflexive, so that t and t× coincide with
the respective Mackey topologies [29]. Given a measure space (X,μ), we denote
by 〈·, ·〉 the sesquilinear form expressing the duality between D× and D. As usual,
we suppose that this sesquilinear form extends the inner product of D (and H). This
allows to build the triplet above.

Let x ∈ X �→ ψx, x ∈ X �→ φx be weakly measurable functions from X into
D×. Instead of (3.1), we consider the sesquilinear form

�D
ψ,φ(f, g) =

∫

X

〈f,ψx〉〈φx, g〉 dμ(x), f, g ∈ D. (7.1)

For short, we put �D := �D
ψ,φ and we assume that �D is jointly continuous on

D ×D, that is, �D ∈ B(D,D) in the notation of [11, Sec.10.2]. Then the relation

〈Sψ,φf , g〉 :=
∫

X

〈f,ψx〉〈φx, g〉 dμ(x), ∀ f, g ∈ D, (7.2)

tells us that the operator Sψ,φ belongs to L(D,D×), the space of all continuous
linear maps from D into D×.

7.1 A Hilbertian Approach

We first assume that the sesquilinear form �D is well-defined and bounded on D×D
in the topology of H. Then �D extends to a bounded sesquilinear form on H ×H,
denoted by the same symbol.

The definition of the space Vφ(X,μ) must be modified as follows. Instead
of (3.3), we suppose that the integral below exists and defines a conjugate linear
functional on D, bounded in the topology of H, i.e.,

∣∣∣∣
∫

X

ξ(x)〈φx, g〉 dμ(x)

∣∣∣∣�c ‖g‖ , ∀ g ∈ D. (7.3)

Then the functional extends to a bounded conjugate linear functional on H, since D
is dense in H. Hence, for every ξ ∈ Vφ(X,μ), there exists a unique vector hφ,ξ ∈ H
such that

∫

X

ξ(x)〈φx, g〉 dμ(x) = 〈hφ,ξ |g〉, ∀g ∈ D.
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Next, we define a linear map Tφ : Vφ(X,μ)→ H by

Tφξ = hφ,ξ ∈ H, ∀ ξ ∈ Vφ(X,μ), (7.4)

in the following weak sense

〈Tφξ |g〉 = 〈hφ,ξ |g〉 =
∫

X

ξ(x)〈φx, g〉 dμ(x), g ∈ D, ξ ∈ Vφ(X,μ).

The rest proceeds as before. We consider the space Vφ(X,μ) = Vφ(X,μ)/Ker Tφ ,
with the norm

∥∥[ξ ]φ
∥∥
φ
= ∥∥Tφξ

∥∥, where, for ξ ∈ Vφ(X,μ), we have put
[ξ ]φ = ξ + Ker Tφ . Then Vφ(X,μ) is a pre-Hilbert space for that norm.

Assume, in addition, that the corresponding bounded operator Sψ,φ is an element
of GL(H). Then (ψ, φ) is a reproducing pair and Theorem 3.9 remains true, that is,

Theorem 7.1 If (ψ, φ) is a reproducing pair, the spaces Vφ(X,μ) and Vψ(X,μ)

are both Hilbert spaces, conjugate dual of each other with respect to the sesquilin-
ear form (3.8) or (3.10), namely,

〈[ξ ]φ |[η]ψ 〉 = 〈ξ |η〉μ =
∫

X

ξ(x)η(x) dμ(x), ∀ ξ ∈ Vφ(X,μ), η ∈ Vψ(X,μ).

(7.5)

Example 7.2 To give a trivial example, consider the Schwartz rigged Hilbert space
S(R) ⊂ L2(R, dx) ⊂ S×(R), (X,μ) = (R, dx), ψx(t) = φx(t) = 1√

2π
eixt . Then

Cφf = f̂ , the Fourier transform, so that 〈f |φ(·)〉 ∈ L2(R, dx). In this case

�D
ψ,φ(f, g) =

∫

R

〈f,ψx〉〈φx, g〉 dx = 〈f̂ |̂g〉 = 〈f |g〉, ∀f, g ∈ S(R),

and Vψ(R, dx) = Vφ(R, dx) = L2(R, dx).

7.2 The General Case

In the general case, we only assume that the form �D is jointly continuous on
D×D, with no other regularity requirement. In that case, the vector space Vφ(X,μ)

must be defined differently. Let the topology of D be given by a directed family
P of seminorms. Given a weakly measurable function φ, we denote again by
Vφ(X,μ) the space of all measurable functions ξ : X → C such that the integral∫
X
ξ(x)〈φx, g〉 dμ(x) exists for every g ∈ D and defines a continuous conjugate

linear functional on D, that is, there exists a constant c > 0 and a seminorm p ∈ P

such that
∣∣∣∣
∫

X

ξ(x)〈φx, g〉 dμ(x)

∣∣∣∣�c p(g), ∀ g ∈ D.
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This in turn determines a linear map Tφ : Vφ(X,μ)→ D× by the following relation

〈Tφξ, g〉 =
∫

X

ξ(x)〈φx, g〉 dμ(x), ∀ ξ ∈ Vφ(X,μ), g ∈ D. (7.6)

Next, we define as before the vector space

Vφ(X,μ) = Vφ(X,μ)/Ker Tφ,

and we put again [ξ ]φ = ξ + Ker Tφ for ξ ∈ Vφ(X,μ).
Now we define the topology of Vφ(X,μ) by means of the strong dual topology

t× of D×, which we recall is defined by the seminorms

‖F‖Q = sup
g∈Q

|〈F |g〉, F ∈ D×,

where Q runs over the family of bounded subsets of D[t]. As said above, the
reflexivity of D entails that t× is equal to the Mackey topology τ(D×,D). Define
the following seminorm on Vφ(X,μ):

p̂Q([ξ ]φ) := sup
g∈Q

∣∣〈Tφξ, g〉
∣∣ , (7.7)

where Q is a bounded subset of D[t]. Then we may state

Lemma 7.3 The map T̂φ : Vφ(X,μ) → D×, T̂φ[ξ ]φ := Tφξ is a well-defined
linear map of Vφ(X,μ) into D× and, for every bounded subset Q of D[t], one has

p̂Q([ξ ]φ) = ‖Tφξ‖Q, ∀ξ ∈ Vφ(X,μ)

The latter equality obviously implies the continuity of Tφ .
Next we investigate the dual Vφ(X,μ)∗ of the space Vφ(X,μ), that is, the set

of continuous linear functionals on Vφ(X,μ). We equip Vφ(X,μ)∗ with the strong
dual topology, which is defined by the family of seminorms

qR(F ) := sup
[ξ ]φ∈R

|F([ξ ]φ)|,

where R runs over the bounded subsets of Vφ(X,μ).

Theorem 7.4 Assume that D[t] is a reflexive space and let φ be a weakly
measurable function. If F is a continuous linear functional on Vφ(X,μ), then there
exists a unique g ∈ D such that

F([ξ ]φ) =
∫

X

ξ(x)〈φx, g〉 dμ(x), ∀ ξ ∈ Vφ(X,μ) (7.8)

Moreover, every g ∈ H defines a continuous linear functional F on Vφ(X,μ) with
‖F‖φ∗ � ‖g‖, by (7.8).
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The proof of this theorem follows closely that of Theorem 3.5, replacing Hilbertian
norms by appropriate seminorms and using the reflexivity of D. Details may be
found in [9].

In the present context, the analysis operator Cφ is defined in the usual way,
given in (2.2). Then, particularizing the discussion of Theorem 3.5 to the functional
〈·, Cφg〉, one can interpret the analysis operator Cφ as a continuous operator from
D to Vφ(X,μ)∗. As in the case of frames or semi-frames, one may characterize the
synthesis operator in terms of the analysis operator.

Proposition 7.5 For a weakly measurable function φ, T̂φ ⊆ C∗φ . If, in addition,

Vφ(X,μ) is reflexive, then T̂ ∗φ = Cφ . Moreover, φ is μ-total (i.e., KerCφ = {0}) if

and only if Ran T̂φ is dense in D×.

Proof As Cφ : D→ Vφ(X,μ)∗ is a continuous operator, it has a continuous adjoint

C∗φ : Vφ(X,μ)∗∗ → H [29, Sec.IV.7.4]. Let C�
φ := C∗φ�Vφ(X,μ). Then C

�
φ = T̂φ

since, for every f ∈ D, [ξ ]φ ∈ Vφ(X,μ),

〈Cφf , [ξ ]φ〉 =
∫

X

〈f, φx〉ξ(x) dμ(x) = 〈f, T̂φ[ξ ]φ〉. (7.9)

If Vφ(X,μ) is reflexive, we have, of course, C�
φ = C∗φ = T̂φ .

If φ is not μ-total, then there exists f ∈ D, f �= 0 such that (Cφf )(x) =
0 for a.e. x ∈ X. Hence, f ∈ (Ran T̂φ)

⊥ := {f ∈ D : 〈F, f 〉 = 0, ∀F ∈
Ran T̂φ} by (7.9). Conversely, if φ is μ-total, as (Ran T̂φ)

⊥ = KerCφ = {0}, by the
reflexivity of D and D×, it follows that Ran T̂φ is dense in D×. �

In a way similar to what we have done above, we can define the space Vψ(X,μ),
its topology, the residue classes [η]ψ , the operator Tψ , etc., replacing φ by ψ . Then,
Vψ(X,μ) is a locally convex space.

Theorem 7.6 Assume that the form (7.1) is jointly continuous on D × D. Then,
every continuous linear functional F on Vφ(X,μ), i.e., F ∈ Vφ(X,μ)∗, can be
represented as

F([ξ ]φ) =
∫

X

ξ(x)η(x) dμ(x), ∀ [ξ ]φ ∈ Vφ(X,μ), (7.10)

with η ∈ Vψ(X,μ). The residue class [η]ψ ∈ Vψ(X,μ) is uniquely determined.

Proof By Theorem 7.4, we have the representation

F(ξ) =
∫

X

ξ(x)〈φx, g〉 dμ(x).

It is easily seen that η(x) := 〈g, φx〉 ∈ Vψ(X,μ).
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It remains to prove uniqueness. Suppose that

F(ξ) =
∫

X

ξ(x)η′(x) dμ(x).

Then
∫

X

ξ(x)(η′(x)− η(x)) dμ(x) = 0.

Now the function ξ(x) is arbitrary. Hence, taking in particular for ξ(x) the functions
〈ψx, f 〉, f ∈ D, we get [η]ψ = [η′]ψ . �

The lesson of the previous statements is that the map

j : F ∈ Vφ(X,μ)∗ �→ [η]ψ ∈ Vψ(X,μ) (7.11)

is well-defined and conjugate linear. On the other hand, j (F ) = j (F ′) implies
easily F = F ′. Therefore Vφ(X,μ)∗ can be identified with a closed subspace of
Vψ(X,μ) := {[ξ ]ψ : ξ ∈ Vψ(X,μ)}.

Working in the framework of Hilbert spaces, as in Sect. 7.1, we proved in
Theorem 3.9 that the spaces Vφ(X,μ)∗ and Vψ(X,μ) can be identified. The
conclusion was that if (ψ, φ) is a reproducing pair, the spaces Vφ(X,μ) and
Vψ(X,μ) are both Hilbert spaces, conjugate dual of each other with respect to
the sesquilinear form (3.10). And if φ and ψ are also μ-total, then the converse
statement holds true.

In the present situation, however, a result of this kind cannot be proved with
techniques similar to those of Sect. 3.2, which are specific of Hilbert spaces. In
particular, the condition (b), Sψ,φ ∈ GL(H), which was essential in the proof of
[12, Lemma 3.11], is now missing, and it is not clear by what regularity condition it
should replaced.

8 Reproducing Pairs and Genuine PIP-Spaces

In this section, we will consider the case where our measurable functions take their
values in a genuine PIP-space. However, for simplicity, we will restrict ourselves
to a lattice of Banach spaces (LBS) or a lattice of Hilbert spaces (LHS). For
the convenience of the reader, we have summarized in the Appendix the basic
notions concerning LBSs and LHSs. Further information may be found in our
monograph [6].

Let (X,μ) be a locally compact, σ -compact measure space. Let VJ = {Vp, p ∈
J } be an LBS or an LHS of measurable functions on X. Thus the central Hilbert
space is H := Vo = L2(X,μ) and the spaces Vp, Vp are reflexive Banach spaces
or Hilbert spaces, conjugate dual of each other with respect to the L2 inner product,
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as follows from (A.2). The partial inner product, which extends that of L2(X,μ),
is denoted again by 〈·|·〉. As usual we put V = ∑

p∈J Vp and V # = ⋂
p∈J Vp.

Thus ψ : X → V really means that ψ : X → Vp for some p ∈ J , since V is the
algebraic inductive limit of {Vp, p ∈ J } [29] (see the Appendix).

Example 8.1 A typical example is the lattice generated by the Lebesgue spaces
Lp(R, dx), 1�p�∞, with 1

p
+ 1

p
= 1 [6]. We shall discuss it in detail in Sect. 10.

Two approaches are possible, depending whether the functions ψx themselves
belong to V or rather the scalar functions Cψf . However, the first possibility is
the exact generalization of the one used in the RHS case in Sect. 7. Hence it does
not exploit the PIP-space structure, only the RHS V # ⊂ H ⊂ V ! Thus we turn to
the second strategy.

Let ψ, φ be weakly measurable functions from X into H. In view of (6.1), (A.2)
and the definition of V , we assume that the following condition holds:

(p) ∃p ∈ J such that Cψf = 〈f |ψ·〉 ∈ Vp and Cφg = 〈g|φ·〉 ∈ Vp,∀ f, g ∈ H.

Notice that, in Condition (p), the index p cannot depend on f, g. We need some
uniformity, in the form Cψ(H) ⊂ Vp and Cφ(H) ⊂ Vp. This is fully in line with
the philosophy of PIP-spaces: the building blocks are the (assaying) subspaces Vp,
not individual vectors.

Since Vp is the conjugate dual of Vp, the relation

�ψ,φ(f, g) :=
∫

X

〈f |ψx〉〈φx |g〉 dμ(x), f, g ∈ H,

defines a sesquilinear form on H×H and one has

|�ψ,φ(f, g)|�
∥∥Cψf

∥∥
p

∥∥Cφg
∥∥
p
, ∀ f, g ∈ H. (8.1)

If �ψ,φ is bounded as a form on H×H (this is not automatic, see Proposition 8.2),
there exists a bounded operator Sψ,φ in H such that

∫

X

〈f |ψx〉〈φx |g〉 dμ(x) = 〈Sψ,φf |g〉, ∀ f, g ∈ H. (8.2)

Then (ψ, φ) is a reproducing pair if Sψ,φ ∈ GL(H).
Let us suppose that the spaces Vp have the following property:

(k) If ξn → ξ in Vp, then, for every compact subset K ⊂ X, there exists a
subsequence {ξKn } of {ξn} which converges to ξ almost everywhere in K .

We note that condition (k) is satisfied by the Lp-spaces [28].
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As seen before, Cψ : H→ V , in general. This means, given f ∈ H, there exists
p ∈ J such that Cψf = 〈f |ψ·〉 ∈ Vp. We define

Dr(Cψ) = {f ∈ H : Cψf ∈ Vr }, r ∈ J.

In particular, Dr(Cψ) = H is equivalent to Cψ(H) ⊂ Vr .

Proposition 8.2 Assume that (k) holds. Then

(i) Cψ : Dr(Cψ)→ Vr is a closed linear map.
(ii) If, for some r ∈ J, Cψ(H) ⊂ Vr , then Cψ : H→ Vr is continuous.

Proof

(i) Let fn → f in H and {Cψfn} be Cauchy in Vr . Since Vr is complete, there
exists ξ ∈ Vr such that ‖Cψfn − ξ‖r → 0. By (k), for every compact subset
K ⊂ X, there exists a subsequence {fK

n } of {fn} such that (Cψf
K
n )(x)→ ξ(x)

a.e. in K . On the other hand, since fn → f in H, we get

〈fn|ψx〉 → 〈f |ψx〉, ∀x ∈ X,

and the same holds true, of course, for {fK
n }. From this we conclude that ξ(x) =

〈f |ψx〉 almost everywhere. Thus, f ∈ Dr(Cψ) and ξ = Cψf .
(ii) As for the continuity of Cψ : H→ Vr it follows from (i) and the closed graph

theorem. �
Combining Proposition 8.2(ii) with (8.1), we get

Corollary 8.3 Assume that (k) holds. If Cψ(H) ⊂ Vp and Cφ(H) ⊂ Vp, the form
� is bounded on H×H, that is, |�ψ,φ(f, g)|�c ‖f ‖ ‖g‖.

If Cψ(H) ⊂ Vr , we will assume that Cψ : H→ Vr is continuous. According to
Proposition 8.2, this is automatic if condition (k) holds.

If Cψ : H → Vr continuously, then C∗ψ : Vr → H exists and it is continuous.
By definition, if ξ ∈ Vr ,

〈Cψf |ξ 〉 =
∫

X

〈f |ψx〉ξ(x) dμ(x) = 〈f |
∫

X

ψx ξ(x) dμ(x)〉, ∀ f ∈ H. (8.3)

Thus,

C∗ψξ =
∫

X

ψx ξ(x) dμ(x).

Assume now that for some p ∈ J, Cψ : H → Vp and Cφ : H → Vp

continuously. Then, C∗φ : Vp → H so that C∗φCψ is a well-defined bounded operator
in H. As before, we have

C∗φη =
∫

X

η(x)φx dμ(x), ∀ η ∈ Vp.
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Hence,

C∗φCψf =
∫

X

〈f |ψx〉φx dμ(x) = Sψ,φf, ∀ f ∈ H,

the last equality following also from (8.2) and Corollary 8.3. Of course, this does not
yet imply that Sψ,φ ∈ GL(H), thus we don’t know whether (ψ, φ) is a reproducing
pair.

According to (3.3), the pre-Hilbert space Vφ(X,μ) consists of the measurable
functions ξ such that

∣∣∣∣
∫

X

ξ(x)(Cφg)(x) dμ(x)

∣∣∣∣�c ‖g‖ , ∀ g ∈ H. (8.4)

Since Cφ : H → Vp, the integral is well-defined for all ξ ∈ Vp. This means, the
inner product on the l.h.s. is in fact the partial inner product of V , which coincides
with the L2 inner product whenever the latter makes sense. Thus we may rewrite the
relation (8.4) as

|〈ξ |Cφg〉|�c ‖g‖ ,∀ g ∈ H, ξ ∈ Vp ,

where 〈·|·〉 denotes the partial inner product. Next, by (A.2), one has, for ξ ∈ Vp,

g ∈ H,

|〈ξ |Cφg〉|� ‖ξ‖p
∥∥Cφg

∥∥
p
�c ‖ξ‖p ‖g‖ ,

where the last inequality follows from Proposition 8.2 or the assumption of
continuity of Cφ . Hence ξ ∈ Vφ(X,μ), so that Vp ⊂ Vφ(X,μ).

As for the adjoint operator, we have C∗φ : Vp → H. Then we may write, for
ξ ∈ Vp, g ∈ H, 〈ξ |Cφg〉 = 〈Tφξ |g〉, thus C∗φ is the restriction from Vφ(X,μ) to Vp

of the operator Tφ : Vφ → H introduced in Sect. 2, which reads now as

〈Tφξ |g〉 =
∫

X

ξ(x)〈φx |g〉 dμ(x), ∀ ξ ∈ Vp, g ∈ H. (8.5)

Thus C∗φ ⊂ Tφ .
From now on, the construction proceeds as in Sect. 7. The space Vφ(X,μ) =

Vφ(X,μ)/Ker Tφ , with the norm
∥∥[ξ ]φ

∥∥
φ
= ∥∥Tφξ

∥∥, is a pre-Hilbert space. Then
Theorem 3.9 and the other results from Sect. 3.2 remain true. In particular, we have:

Theorem 8.4 If (ψ, φ) be a reproducing pair, the spaces Vφ(X,μ) and Vψ(X,μ)

are both Hilbert spaces, conjugate dual of each other with respect to the sesquilin-
ear form (3.8), namely,

〈〈ξ |η〉〉μ :=
∫

X

ξ(x)η(x) dμ(x).

Note the form (3.8) coincides with the inner product of L2(X,μ) whenever the latter
makes sense.
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Let (ψ, φ) is a reproducing pair. Assume again that Cφ : H→ Vp continuously,
which me may write Ĉφ,ψ : H → Vp/Ker Tψ , where Ĉφ,ψ : H → Vψ(X,μ)

is the operator defined by Ĉφ,ψf := [Cφf ]ψ , already introduced in Sect. 3.2.
In addition, by Theorem 3.8, one has Ran Ĉψ,φ[‖·‖φ] = Vφ(X,μ)[‖ · ‖φ] and
Ran Ĉφ,ψ [‖·‖ψ ] = Vψ(X,μ)[‖ · ‖ψ ].

Putting everything together, we get

Corollary 8.5 Let (ψ, φ) be a reproducing pair. Then, if Cψ : H → Vp and Cφ :
H→ Vp continuously, one has

Ĉφ,ψ : H→ Vp/Ker Tψ = Vψ(X,μ)  Vφ(X,μ)∗, (8.6)

Ĉψ,φ : H→ Vp/Ker Tφ = Vφ(X,μ)  Vψ(X,μ)∗. (8.7)

In these relations, the equality sign means an isomorphism of vector spaces, whereas
 denotes an isomorphism of Hilbert spaces.

Proof On the one hand, we have Ran Ĉφ,ψ = Vψ(X,μ). On the other hand, under
the assumption Cφ(H) ⊂ Vp, one has Vp ⊂ Vψ(X,μ), hence Vp/Ker Tψ = {ξ +
Ker Tψ, ξ ∈ Vp} ⊂ Vψ(X,μ). Thus we get Vψ(X,μ) = Vp/Ker Tψ as vector
spaces. Similarly Vφ(X,μ) = Vp/Ker Tφ. �

9 The Case of a Hilbert Triplet or a Hilbert Scale

9.1 The General Construction

We have derived in the previous section the relations Vp ⊂ Vφ(X,μ), Vp ⊂
Vψ(X,μ), and their equivalent ones (8.6)–(8.7). Then, since Vψ(X,μ) and
Vφ(X,μ) are both Hilbert spaces, it seems natural to take for Vp, Vp Hilbert
spaces as well, that is, take for V an LHS. The simplest case is then a Hilbert
chain, for instance, the scale (A.4) {Hk, k ∈ Z} built on the powers of a self-adjoint
operator A > I . This situation is quite interesting, since in that case one may get
results about spectral properties of symmetric operators (in the sense of PIP-space
operators) [6, 8].

Thus, let (ψ, φ) be a reproducing pair. For simplicity, we assume that Sψ,φ = I ,
that is, ψ, φ are dual to each other.

If ψ and φ are both frames, there is nothing to say, since then Cψ(H), Cφ(H) ⊂
L2(X,μ) = Ho, so that there is no need for a Hilbert scale. Thus we assume that ψ
is an upper semi-frame and φ is a lower semi-frame, dual to each other. It follows
that Cψ(H) ⊂ L2(X,μ). Hence Condition (p) becomes: There is an index k�1
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such that Cψ : H → Hk and Cφ : H → Hk continuously, thus Vp ≡ Hk and
Vp ≡ Hk . This means we are working in the Hilbert triplet

Vp ≡ Hk ⊂ Ho = L2(X,μ) ⊂ Hk ≡ Vp . (9.1)

Next, according to Corollary 8.5, we have Vψ(X,μ) = Hk/Ker Tψ and
Vφ(X,μ) = Hk/Ker Tφ , as vector spaces.

In addition, since φ is a lower semi-frame, we know that Cφ has closed range in
L2(X,μ) and is injective [4, Lemma 2.1]. However its domain

D(Cφ) := {f ∈ H :
∫

X

|〈f |φx〉|2 dμ(x) <∞}

need not be dense, it could be {0}. Thus Cφ maps its domain D(Cφ) onto a closed
subspace of L2(X,μ), possibly trivial, and the whole of H into the larger space Hk .

9.2 Examples

As for concrete examples of such Hilbert scales, we might mention two. First the
Sobolev spaces Hk(R), k ∈ Z, in H0 = L2(R, dx), which is the scale generated

by the powers of the positive self-adjoint operator A1/2, where A := 1 − d2

dx2 .
The other one corresponds to the quantum harmonic oscillator, with Hamiltonian

Aosc := x2 − d2

dx2 . The spectrum of Aosc is {2n + 1, n = 0, 1, 2, . . .} and it gets

diagonalized on the basis of Hermite functions. It follows that A−1
osc, which maps

every Hk onto Hk−1, is a Hilbert-Schmidt operator. Therefore, the end space of the
scale D∞(Aosc) :=⋂

k Hk , which is simply Schwartz’ space S of C∞ functions of
fast decrease, is a nuclear space.

Actually one may give an explicit example, using a Sobolev-type scale. Let HK

be a reproducing kernel Hilbert space (RKHS) of (nice) functions on a measure
space (X,μ), with kernel function kx, x ∈ X, that is, f (x) = 〈f |kx〉K, ∀f ∈ HK .
The corresponding reproducing kernel is K(x, y) = ky(x) = 〈ky |kx〉K . Choose the
weight function m(x) > 1, the analog of the weight (1 + |x|2) considered in the
Sobolev case. Define the Hilbert scale Hl , l ∈ Z, determined by the multiplication
operator Af (x) = m(x)f (x), ∀x ∈ X. Hence, for each l�1,

Hl ⊂ H0 ≡ HK ⊂ Hl .

Then, for some n�1, define the measurable functions φx = kxm
n(x), ψx =

kxm
−n(x), so that Cψ : HK → Hn, Cφ : HK → Hn continuously,

where Hn ⊂ HK ⊂ Hn, and ψ, φ are dual of each other. One has indeed
〈φx |g〉K = 〈kxmn(x)|g〉K = 〈kx |g mn(x)〉K = g(x)mn(x) ∈ Hn and
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〈ψx |g〉K = g(x)m−n(x) ∈ Hn, which implies duality. Thus (ψ, φ) is a reproducing
pair with Sψ,φ = I , ψ is an upper semi-frame and φ a lower semi-frame.

In this case, one can compute the operators Tψ, Tφ explicitly. The definition (8.5)
reads as

〈Tφξ |g〉K =
∫

X

ξ(x)〈φx |g〉K dμ(x), ∀ ξ ∈ Hn, g ∈ HK,

=
∫

X

ξ(x) g(x)mn(x) dμ,

that is, (Tφξ)(x) = ξ(x)mn(x) or Tφξ = ξ mn. However, since the weight m(x) >

1 is invertible, g mn runs over the whole of Hn whenever g runs over HK . Hence
ξ ∈ Ker Tφ ⊂ Hn means that 〈Tφξ |g〉K = 0, ∀g ∈ HK , which implies ξ = 0, since
the duality between Hn and Hn is separating. The same reasoning yields Ker Tψ =
{0}. Therefore Vφ(X,μ)  RanCψ = Hn and Vψ(X,μ)  RanCφ = Hn.

A more general situation may be derived from the discrete example of Sec-
tion 6.1.3 of [12]. Take a sequence of weights m := {|mn|}n∈N ∈ c0,mn �= 0,
and consider the space �2

m with norm ‖ξ‖�2
m
:= ∑

n∈N |mnξn|2. Then we have the
following triplet replacing (9.1)

�2
1/m ⊂ �2 ⊂ �2

m. (9.2)

Next, for each n ∈ N, define ψn = mnθn, where θ is a frame or an orthonormal
basis in �2. Then ψ is an upper semi-frame. Moreover, φ := {(1/mn)θn}n∈N is
a lower semi-frame, dual to ψ , thus (ψ, φ) is a reproducing pair. Hence, by [12,
Theorem 3.13] (see also Sect. 5.1.3), Vψ  RanCφ = M1/m(Vθ (N)) = �2

m and
Vφ  RanCψ = Mm(Vθ (N)) = �2

1/m (here we take for granted that Ker Tψ =
Ker Tφ = {0}).

For making contact with the situation of (9.1), consider in �2 the diagonal
operator A := diag[n], n ∈ N (the number operator), that is (Aξ)n = n ξn, n ∈ N,
which is obviously self-adjoint and larger than 1. Then Hk = D(Ak) with norm
‖ξ‖k =

∥∥Akξ
∥∥ ≡ �2

r(k)
, where (r(k))n = nk (note that 1/r(k) ∈ c0). Hence we have

Hk = �2
r(k)
⊂ Ho = �2 ⊂ Hk = �2

1/r(k) , (9.3)

where (1/r(k))n = n−k . In addition, as in the continuous case discussed above,
the end space of the scale, D∞(A) := ⋂

k Hk , is simply Schwartz’s space s of
fast decreasing sequences, with dual D∞(A) := ⋃

k Hk = s′, the space of slowly
increasing sequences. Here too, this construction shows that the space s is nuclear,
since every embedding A−1 : Hk+1 → Hk is a Hilbert-Schmidt operator.

However, the construction described above yields a much more general family of
examples, since the weight sequences m are not ordered.
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10 The Case of Lp Spaces

Following the suggestion made at the end of Sect. 2, we present now several
possibilities of taking RanCψ in the context of the Lebesgue spaces Lp(R, dx).

As it is well-known, these spaces don’t form a chain, since two of them are never
comparable. We have only

Lp ∩ Lq ⊂ Ls, for all s such that p < s < q.

Take the lattice J generated by I = {Lp(R, dx), 1�p�∞}, with lattice operations
[6, Sec.4.1.2]:

• Lp ∧ Lq = Lp ∩ Lq is a Banach space for the projective norm ‖f ‖p∧q =
‖f ‖p + ‖f ‖q

• Lp ∨ Lq = Lp + Lq is a Banach space for the inductive norm
‖f ‖p∨q = inff=g+h

{‖g‖p + ‖h‖q; g ∈ Lp, h ∈ Lq
}

• For 1 < p, q < ∞, both spaces Lp ∧ Lq and Lp ∨ Lq are reflexive and (Lp ∧
Lq)× = Lp ∨ Lq .

Moreover, no additional spaces are obtained by iterating the lattice operations to any
finite order. Thus we obtain an involutive lattice and an LBS, denoted by VJ with
elements denoted generically by L(s), s = (p, q).

Following [6, Sec.4.1.2], we represent the space L(p,q) by the point (1/p, 1/q)
of the unit square J = [0, 1]× [0, 1]. In this representation, the spaces Lp are on the
main diagonal, intersections Lp ∩Lq above it and sums Lp +Lq below, the duality
is [L(s)]× = L(s), where s = (p, q) and s = (p, q), that is, symmetry with respect
to L2. Hence, L(p,q) ⊂ L(p′,q ′) if (1/p, 1/q) is on the left and/or above (1/p′, 1/q ′)
The extreme spaces are

V #
J
= L∞ ∩ L1 and VJ = L1 + L∞.

Note that the space L1 +L∞ has been considered by Gould [23]. For a full picture,
see [6, Fig.4.1].

There are three possibilities for using the Lp lattice for controlling reproducing
pairs

(1) Exploit the full lattice J , that is, find (p, q) such that ∀f, g ∈ H, Cψf #Cφg

in the PIP-space VJ , that is, Cψf ∈ L(p,q) and Cφg ∈ L(p,q).
(2) Select in VJ a self-dual Banach chain VI , centered around L2, symbolically.

. . . L(s) ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L(s) . . . , (10.1)
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such that Cψf ∈ L(s) and Cφg ∈ L(s) (or vice-versa). Here are three examples
of such Banach chains. Of course, in each case, one may also select a symmetric
subset of the chain.

• The anti-diagonal chain : q = p

L∞ ∩ L1 ⊂ . . . ⊂ Lq ∩ Lq ⊂ . . . ⊂ L2 ⊂ . . . ⊂ Lq + Lq

= (Lq ∩ Lq)× ⊂ . . . ⊂ L1 + L∞.

• The horizontal chain q = 2 :

L∞ ∩ L2 ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L1 + L2.

• The vertical chain p = 2 :

L2 ∩ L1 ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L2 + L∞.

All three chains are presented in Fig. 1. In each case, the full chain belongs to
the second and fourth quadrants (top left and bottom right). A typical point is
then s = (p, q) with, 2�p�∞, 1�q�2, so that one has the situation depicted

Fig. 1 (1) The three full chains (black); (2) The pair L(s), L(s) for s in the second quadrant (blue);
(3) The pair L(t), L(t) for t in the first quadrant (blue) (from [9])
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in (10.1), that is, the spaces L(s), L(s) to which Cψf , resp. Cφg, belong, are
necessarily comparable to each other and to L2. In particular, one of them is
necessarily contained in L2 (see Fig. 1).

(3) Choose a dual pair in the first and third quadrant (top right, bottom left). A
typical point is then t = (p′, q ′), with 1 < p′, q ′ < 2, so that the spaces
L(t), L(t) are never comparable to each other, nor to L2.

Let us now add the boundedness condition already mentioned in Sect. 2,
supx∈X ‖ψx‖H�c and supx∈X ‖φx‖H�c′ for some c, c′ > 0. Then Cψf (x) =
〈f |ψx〉 ∈ L∞(X, dμ) and Cφf (x) = 〈f |φx〉 ∈ L∞(X, dμ). Therefore, the third
case reduces to the second one, since we have now (in the situation of Fig. 1).

L∞ ∩ L(t) ⊂ L∞ ∩ L2 ⊂ L∞ ∩ L(t). (10.2)

Note that none of these spaces is reflexive.
Following the pattern of Hilbert scales, we choose a (Gel’fand) triplet of

Banach spaces. One could have, for instance, a triplet of reflexive Banach spaces
such as

L(s) ⊂ L2 ⊂ L(s), (10.3)

corresponding to a point s inside of the second quadrant, as shown in Fig. 1. In this
case, according to (8.6) and (8.7), Vψ = L(s)/Ker Tψ and Vφ = L(s)/Ker Tφ .

On the contrary, if we choose a point t in the second quadrant, case (3) above,
it seems that no triplet arises. However, if (ψ, φ) is a nontrivial reproducing pair,
with Sψ,φ = I , that is, ψ, φ are dual to each other, one of them, say ψ , is an upper
semi-frame and then necessarily φ is a lower semi-frame (see the remark at the end
of Sect. 2.2). Therefore Cψ(H) ⊂ L2(X,μ), that is, case (3) cannot be realized.

In conclusion, the only acceptable solution is a triplet of the type (10.3), with s

strictly inside of the second quadrant, that is, s = (p, q) with, 2�p <∞, 1 < q�2.
A word of explanation is in order here, concerning the relations Vψ =

L(s)/Ker Tψ and Vφ = L(s)/Ker Tφ . Both L(s) and L(s) are reflexive Banach spaces,
with their usual norm, and so are the quotients by Tψ , resp. Tφ . On the other hand,
Vψ(X,μ)[‖ · ‖ψ ] and Vφ(X,μ)[‖ · ‖φ] are Hilbert spaces. However, there is no
contradiction, since the equality sign = denotes an isomorphism of vector spaces
only, without reference to any topology. Moreover, the two norms, Banach and
Hilbert, cannot be comparable, lest they are equivalent [26, Coroll. 1.6.8], which
is impossible in the case of Lp, p �= 2. The same is true for any LBS where the
spaces Vp are not Hilbert spaces.

Although we don’t have an explicit example of a reproducing pair, we indicate a
possible construction towards one. Let θ(1) : R→ L2 be a measurable function such
that 〈h|θ(1)x 〉 ∈ Lq, 1 < q < 2, ∀h ∈ L2, and let θ(2) : R → L2 be a measurable
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function such that 〈h|θ(2)x 〉 ∈ Lq, ∀h ∈ L2. Define ψx := min(θ(1)x , θ
(2)
x ) ≡ θ

(1)
x ∧

θ
(2)
x and φx := max(θ(1)x , θ

(2)
x ) ≡ θ

(1)
x ∨ θ

(2)
x . Then we have ψx�φx for almost all

x ∈ R, and

(Cψh)(x) = 〈h|ψx〉 ∈ Lq ∩ Lq, ∀h ∈ L2

(Cφh)(x) = 〈h|φx〉 ∈ Lq + Lq, ∀h ∈ L2

and we have indeed Lq ∩ Lq ⊂ L2 ⊂ Lq + Lq . It remains to guarantee that ψ and
φ are dual to each other, that is,

∫

X

〈f |ψx〉〈φx |g〉 dμ(x) =
∫

X

Cψf (x) Cφg(x) dμ(x) = 〈f |g〉, ∀ f, g ∈ L2.

11 Concluding Remarks

Starting with the well-known notion of frame, both discrete and continuous, we have
introduced a first natural generalization, namely, semi-frames, both upper and lower
ones. The main result is that the two types are dual of each other. Indeed, if two semi-
frames are in duality, either they are both frames, or else at least one of them is a
lower semi-frame. Take, for example, φ = {nen}∪{ 1

k
ek}k and ψ = { 1

2nen}n∪{ k2ek}k
with en an orthonormal basis, then ψ, φ are in duality and both are lower semi-
frames but not Bessel (M. Speckbacher, private communication).

Then the next step is to drop the restriction imposed by the frame bounds on
the two measurable functions in duality, and this leads to the notion of reproducing
pair. We have seen that the latter is quite rich. It generates a whole mathematical
structure, which ultimately leads to a pair of Hilbert spaces, conjugate dual to each
other with respect to the L2(X,μ) inner product. We have given several concrete
examples in Sect. 5. These, and additional ones, should allow one to better specify
the best assumptions to be made on the measurable functions or, more precisely, on
the nature of the range of the analysis operators Cψ,Cφ .

This is clearly seen in the definition (6.1), which immediately suggests to perform
the analysis in the context of PIP-spaces [6], as already remarked in [30]. In
particular, a natural choice is a scale, or simply a triplet, of Hilbert spaces, the two
extreme spaces being conjugate duals of each other with respect to the L2(X,μ)

inner product. Another possibility consists of exploiting the lattice of all Lp(R, dx)
spaces, or a subset thereof, in particular a (Gel’fand) triplet of Banach spaces. Some
examples have been described above, but obviously more work along these lines is
in order.

Another interesting direction consists in considering a whole family G of μ-total,
weakly measurable functions φ : X → H, instead of only one. To each φ ∈ G
we can associate the pre-Hilbert space Vφ(X,μ)[‖·‖φ] and take its completion
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Ṽφ(X,μ)[‖·‖φ]. If φ has a partner ψ ∈ G such that (ψ, φ) is a reproducing pair, both
spaces Vφ(X,μ) = Ṽφ(X,μ)[‖·‖φ] and Vψ(X,μ) = Ṽψ(X,μ)[‖·‖φ] are Hilbert
spaces, conjugate dual to each other. In the general case, however, the question of
completeness of Vφ(X,μ)[‖·‖φ] is open. Can one find conditions under which it
holds? Also once might study the relationship between different pre-Hilbert spaces
Vφ(X,μ). When is one contained in another one?
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Appendix: Lattices of Banach or Hilbert Spaces

For the convenience of the reader, we summarize in this Appendix the basic
facts concerning PIP-spaces and operators on them. However, we will restrict the
discussion to the simpler case of a lattice of Banach (LBS) or Hilbert spaces (LHS).
Further information may be found in our monograph [6] or our review paper [7].

Let thus J = {Vp, p ∈ I } be a family of Hilbert spaces or reflexive Banach
spaces, partially ordered by inclusion. Then I generates an involutive lattice J ,
indexed by J , through the operations (p, q, r ∈ I ):

• involution: Vr ↔ Vr = V ×r , the conjugate dual of Vr

• infimum: Vp∧q := Vp ∧ Vq = Vp ∩ Vq

• supremum: Vp∨q := Vp ∨ Vq = Vp + Vq .

It turns out that both Vp∧q and Vp∨q are Hilbert spaces, resp. reflexive Banach
spaces, under appropriate norms (the so-called projective, resp. inductive norms).
Assume that the following conditions are satisfied:

(1) I contains a unique self-dual, Hilbert subspace Vo = Vo.
(2) for every Vr ∈ I, the norm ‖ · ‖r on Vr = V ×r is the conjugate of the norm ‖ · ‖r

on Vr .

In addition to the family J = {Vr, r ∈ J }, it is convenient to consider the two
spaces V # and V defined as

V =
∑

q∈I
Vq, V # =

⋂

q∈I
Vq. (A.1)

These two spaces themselves usually do not belong to I. According to the general
theory of PIP-spaces [6], V is the algebraic inductive limit of the Vp’s, and V # is the
projective limit of the Vp’s.
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We say that two vectors f, g ∈ V are compatible if there exists r ∈
J such that f ∈ Vr, g ∈ Vr . Then a partial inner product on V is a Hermitian
form 〈·|·〉 defined exactly on compatible pairs of vectors. In particular, the partial
inner product 〈·|·〉 coincides with the inner product of Vo on the latter. A partial
inner product space (PIP-space) is a vector space V equipped with a partial inner
product. Clearly LBSs and LHSs are particular cases of PIP-spaces.

We will assume that our PIP-space (V , 〈·|·〉) is nondegenerate, that is, 〈f |g〉 =
0 for all f ∈ V # implies g = 0. As a consequence, (V #, V ) and every couple
(Vr , Vr), r ∈ J, are a dual pair in the sense of topological vector spaces [29]. In
particular, the original norm topology on Vr coincides with its Mackey topology
τ(Vr , Vr), so that indeed its conjugate dual is (Vr)

× = Vr, ∀ r ∈ J . Then, r < s

implies Vr ⊂ Vs , and the embedding operator Esr : Vr → Vs is continuous and has
dense range. In particular, V # is dense in every Vr . In the sequel, we also assume
the partial inner product to be positive definite, 〈f |f 〉 > 0 whenever f �= 0.

Then we have the familiar (Schwarz) inequality

ξ ∈ Vp, η ∈ Vp implies ξη ∈ L1(X,μ) and
∣∣∣∣
∫

X

ξ(x)η(x) dμ(x)

∣∣∣∣�‖ξ‖p ‖η‖p. (A.2)

A standard, albeit trivial, example is that of a rigged Hilbert space (RHS) � ⊂
H ⊂ �# (it is trivial because the lattice I contains only three elements).

Familiar concrete examples of PIP-spaces are sequence spaces, with V = ω the
space of all complex sequences x = (xn), and spaces of locally integrable functions
with V = L1

loc(R, dx), the space of Lebesgue measurable functions, integrable over
compact subsets.

Among LBSs, the simplest example is that of a chain of reflexive Banach spaces.
The prototype is the chain I = {Lp := Lp([0, 1]; dx), 1 < p < ∞} of Lebesgue
spaces over the interval [0, 1].

L∞ ⊂ . . . ⊂ Lq ⊂ Lr ⊂ . . . ⊂ L2 ⊂ . . . ⊂ Lr ⊂ Lq ⊂ . . . ⊂ L1,

(A.3)
where 1 < q < r < 2 (of course, L∞ and L1 are not reflexive). Here Lq and Lq

are dual to each other (1/q + 1/q = 1), and similarly Lr, Lr (1/r + 1/r = 1).
As for an LHS, the simplest example is the Hilbert scale generated by a self-

adjoint operator A > I in a Hilbert space Ho. Let Hn be D(An), the domain of An,
equipped with the graph norm ‖f ‖n = ‖Anf ‖, f ∈ D(An), for n ∈ N or n ∈ R

+,
and Hn := H−n = H×n (conjugate dual):

D∞(A) :=
⋂

n

Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H1 ⊂ H2 . . . ⊂ D∞(A) :=
⋃

n

Hn.

(A.4)
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Note that here the index n may be integer or real, the link between the two cases
being established by the spectral theorem for self-adjoint operators. Here again the
inner product of H0 extends to each pair Hn,H−n, but on D∞(A) it yields only a
partial inner product. A standard example is the scale of Sobolev spaces Hs(R), s ∈
Z, in H0 = L2(R, dx).

References

1. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Square integrability of group representations on homoge-
neous spaces I. Reproducing triples and frames. Ann. Inst. H. Poincaré 55, 829–856 (1991)

2. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Continuous frames in Hilbert space. Ann. Phys. 222, 1–37
(1993)

3. S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent States, Wavelets and Their Generalizations, 2nd
edn. (Springer, New York, 2014)

4. J.-P. Antoine, P. Balazs, Frames and semi-frames. J. Phys. A: Math. Theor. 44, 205201 (2011);
Corrigendum, ibid. 44, 479501 (2011)

5. J.-P. Antoine, P. Balazs, Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim.
33, 736–769 (2012)

6. J.-P. Antoine, C. Trapani, Partial Inner Product Spaces: Theory and Applications. Lecture
Notes in Mathematics, vol. 1986 (Springer, Berlin, 2009)

7. J.-P. Antoine, C. Trapani, The partial inner product space method: a quick overview. Adv. Math.
Phys. 2010, 457635 (2010); Erratum, ibid. 2011, 272703 (2010)

8. J.-P. Antoine, C. Trapani, Operators on partial inner product spaces: towards a spectral analysis.
Mediterr. J. Math. 13, 323–351 (2016)

9. J.-P. Antoine, C. Trapani, Reproducing pairs of measurable functions and partial inner product
spaces. Adv. Oper. Theory 2, 126–146 (2017)

10. J.-P. Antoine, P. Vandergheynst, Wavelets on the 2-sphere: a group theoretical approach. Appl.
Comput. Harmon. Anal. 7, 262–291 (1999)

11. J.-P. Antoine, A. Inoue, C. Trapani, Partial *-Algebras and Their Operator Realizations.
Mathematics and Its Applications, vol. 553 (Kluwer, Dordrecht, 2002)

12. J.-P. Antoine, M. Speckbacher, C. Trapani, Reproducing pairs of measurable functions. Acta
Appl. Math. 150, 81–101 (2017)

13. A. Askari-Hemmat, M.A. Dehghan, M. Radjabalipour, Generalized frames and their redun-
dancy. Proc. Am. Math. Soc. 129, 1143–1147 (2001)

14. P.G. Casazza, The art of frame theory. Taiwan. J. Math. 4, 129–202 (2000)
15. P. Casazza, O. Christensen, S. Li, A. Lindner, Riesz-Fischer sequences and lower frame

bounds. Z. Anal. Anwend. 21, 305–314 (2002)
16. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Boston, 2003)
17. I. Daubechies, Ten Lectures On Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics (SIAM, Philadelphia, 1992)
18. I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys.

27, 1271–1283 (1986)
19. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72,

341–366 (1952)
20. M. Fornasier, Banach frames for α-modulation spaces. Appl. Comput. Harmon. Anal. 22, 157–

175 (2007)
21. M. Fornasier, H. Rauhut, Continuous frames, function spaces, and the discretization problem.

J. Fourier Anal. Appl. 11, 245–287 (2005)
22. J.-P. Gabardo, D. Han, Frames associated with measurable spaces. Adv. Comput. Math. 18,

127–147 (2003)



Beyond Frames: Semi-frames and Reproducing Pairs 59

23. G.G. Gould, On a class of integration spaces. J. Lond. Math. Soc. 34, 161–172 (1959)
24. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)
25. G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, 1994)
26. R.E. Megginson, An Introduction to Banach Space Theory (Springer, New York-Heidelberg-

Berlin, 1998)
27. A. Rahimi, A. Najati, Y.N. Dehghan, Continuous frames in Hilbert spaces. Methods Funct.

Anal. Topol. 12, 170–182 (2006)
28. W. Rudin, Real and Complex Analysis, Int. edn. (McGraw Hill, New York, 1987); p.73, from

Ex.18
29. H.H. Schaefer, Topological Vector Spaces (Springer, New York-Heidelberg-Berlin, 1971)
30. M. Speckbacher, P. Balazs, Reproducing pairs and the continuous nonstationary Gabor

transform on LCA groups. J. Phys. A: Math. Theor. 48, 395201 (2015)
31. M. Speckbacher, D. Bayer, S. Dahlke, P. Balazs, The α-modulation transform: admissibility,

coorbit theory and frames of compactly supported functions. Monatsh. Math. 184, 133–169
(2017)

32. B. Torrésani, Wavelets associated with representations of the Weyl-Heisenberg group. J. Math.
Phys. 32, 1273–1279 (1991)

33. Y. Wiaux, L. Jacques, P. Vandergheynst, Correspondence principle between spherical and
Euclidean wavelets. Astrophys. J. 632, 15–28 (2005)

34. R.M. Young, An Introduction to Nonharmonic Fourier Series, Rev. 1st edn. (Academic Press,
San Diego, 2001)



On Hilbert-Schmidt Operator
Formulation of Noncommutative
Quantum Mechanics

Isiaka Aremua, Ezinvi Baloïtcha, Mahouton Norbert Hounkonnou,
and Komi Sodoga

Abstract This work gives value to the importance of Hilbert-Schmidt operators in
the formulation of noncommutative quantum theory. A system of charged particle
in a constant magnetic field is investigated in this framework.

Keywords Hilbert spaces · Operator theory · Hilbert-Schmidt operators ·
von Neumann algebra · Modular theory · Density matrix · Coherent states ·
Noncommutative quantum mechanics

1 Introduction

The theory of Hilbert-Schmidt operators plays a key role in the formulation
of the noncommutative quantum mechanics. In the past three decades, the von
Neumann algebras [19, 27] underwent a vigorous growth after the discovery of
a natural infinite family of pairwise nonisomorphic factors, and the advent of
Tomita-Takesaki theory [25] and Connes noncommutative geometry [11]. The latter
was initiated with the classification theorems for von Neumann algebras and the
extensions of C∗-algebras [10]. The modular theory of von Neumann algebras was
created by Tomita [26] in 1967 and perfectioned by M. Takesaki around 1970.
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From physical point of view, a charged particle interacting with a constant
magnetic field is one of the important problems in quantum mechanics described
by the Hamiltonian H = 1

2M (p + e
c
A)2, inspired by condensed matter physics,

quantum optics, etc. The Landau problem [18] is related to the motion of a charged
particle on the flat plane xy in the presence of a constant magnetic field along the
z-axis. In metals, the electrons occupy many Landau levels [13] En = h̄ωc(n+ 1

2 ),
each level being infinitely degenerate, with ωc = eB/Mc, the cyclotron frequency,
which are those of the one-dimensional harmonic oscillator, and correspond to the
kinetic energy levels of electrons.

This physical model represents an interesting application [1] of the Tomita-
Takesaki modular theory [25, 26]. Taking into account the sense of the magnetic
field, one obtains a pair of commuting Hamiltonians. Both these Hamiltonians can
be written in terms of two pairs of mutually commuting oscillator-type creation
and annihilation operators, which then generate two mutually commuting von
Neumann algebras, commutants of each other. The associated von Neumann algebra
of observables displays a modular structure in the sense of the Tomita-Takesaki
theory, with the algebra and its commutant referring to the two orientations of the
magnetic field.

Hilbert spaces, at the mathematical side, realize the skeleton of quantum theories.
Coherent states (CS), defined as a specific overcomplete family of vectors in the
Hilbert space describing quantum phenomena [3, 12, 17, 20, 23], constitute an
important tool of investigation. In the studies and understanding of noncommutative
geometry, CS were proved to be useful objects [14]. Based on the approach devel-
oped in [22], Gazeau-Klauder CS were constructed in noncommutative quantum
mechanics [6]. Besides, in studying, in the noncommutative plane [15], the behavior
of an electron in an external uniform electromagnetic background coupled to a
harmonic potential, matrix vector coherent states (MVCS) as well as quaternionic
vector coherent states (QVCS) were constructed and discussed.

Our present contribution paper is organized as follows:

• First, we formulate the Hilbert-Schmidt operators and the Tomita-Takesaki
modular theories in the framework of noncommutative quantum mechanics.

• Detailed proofs are given for main frequently used statements in the study of
modular theory and Hilbert-Schmidt operators. As application, a construction of
CS from the thermal state is achieved as in a previous work [1]. Relevant proper-
ties are discussed. Then, a light is put on the Wigner map as an interplay between
the noncommutative quantum mechanics formalism [22] and the modular theory
based on Hilbert-Schmidt operators.

• Finally, the motion of a charged particle on the flat plane xy in the presence of a
constant magnetic field along the z-axis with a harmonic potential is studied.
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2 von Neumann Algebras: Modular Theory, Hilbert-Schmidt
Operators, and Coherent States

This section recapitulates fundamental notions and main ingredients of the modular
theory used in the sequel. More details on these mathematical structures and their
applications may be found in a series of works [1, 2, 7, 8, 10, 19, 21, 25–27] (and
references therein), widely exploited to write this review section.

2.1 Basics on von Neumann Algebras

In this paragraph, H denotes a Hilbert space over C. H is assumed to be separable,
of dimension N, which could be finite or infinite. Denote by L(H) the C∗-algebra
of all bounded operators on H. The following definitions are in order:

Definition 2.1 Let G be an algebra. A mapping A ∈ G �→ A∗ ∈ G is called
an involution, or adjoint operation, of the algebra G, if it has the following
properties:

1. A∗∗ = A

2. (AB)∗ = B∗A∗, with A,B ∈ G, A∗, B∗ ∈ G

3. (αA+ βB)∗ = ᾱA∗ + β̄B∗, α, β ∈ C.
(ᾱ is the complex conjugate of α.)

Definition 2.2 ∗-algebra
An algebra with an involution is called ∗-algebra and a subset B of G is called
self-adjoint if A ∈ B implies that A∗ ∈ B.

The algebra G is a normed algebra if to each A ∈ G there is associated a real
number ||A||, the norm of A, satisfying the requirements

1. ||A||�0 and ||A|| = 0 if, and only if, ||A|| = 0,
2. ||αA|| = |α|||A||,
3. ||A+ B||�||A|| + ||B||,
4. ||AB||�||A||||B||.
The third of these conditions is called the triangle inequality and the fourth the
product inequality. The norm defines a metric topology on G which is referred to as
the uniform topology. The neighborhoods of an element A ∈ G in this topology are
given by

U(A; ε) = {B;B ∈ G, ||B − A|| < ε}, (2.1)

where ε > 0. If G is complete with respect to the uniform topology, then it is called
a Banach algebra. A normed algebra with involution which is complete and has the
property ||A|| = ||A∗|| is called a Banach ∗-algebra. Then, follows the definition:
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Definition 2.3 A C∗-algebra is a Banach ∗-algebra G with the property

||A∗A|| = ||A||2 (2.2)

for all A ∈ G.

Before going further, let us deal, in the following, with some notions about
representations and states.

Definition 2.4 ∗-Morphism between two ∗-algebras
Let G and B be two ∗-algebras. The ∗-morphism between G and B is given by

the mapping π : A ∈ G �→ π(A) ∈ B, satisfying:

1. π(αA+ βB) = απ(A)+ βπ(B)

2. π(AB) = π(A)π(B)

3. π(A∗) = π(A)∗

for all A,B ∈ G, α ∈ C.

Remark 2.5 Each ∗-automorphism π between two ∗-algebras G and B is positive
because if A�0, then A = B∗B for some B ∈ G. Hence,

π(A) = π(B∗B) = π(B)∗π(B)�0. (2.3)

Definition 2.6 Representation of a C∗-algebra
A representation of a C∗-algebra G is defined to be a pair (H, π), where H is a
complex Hilbert space and π is a ∗-morphism of G into L(H). The representation
(H, π) is said to be faithful if, and only if, π is a ∗-isomorphism between G and
π(G), i.e., if, and only if, kerπ = {0}.

Each representation (H, π) of a C∗-algebra G defines a faithful representation of
the quotient algebra Gπ = G/kerπ.

Then, follows the proposition on the criteria for faithfulness:

Proposition 2.7 ([8], p. 44)
Let (H, π) be a representation of the C∗-algebra G. The representation is faithful
if, and only if, it satisfies each of the following equivalent conditions:

1. kerπ = {0};
2. ||π(A)|| = ||A|| for all A ∈ G;
3. π(A) > 0 for all A > 0.

The proof of this proposition is achieved by the following proposition:

Proposition 2.8 ([8], pp. 42–43)
Let G be a Banach ∗-algebra with identity, B a C∗-algebra, and π a ∗-morphism of
G into B. Then π is continuous and

||π(A)||�||A|| (2.4)

for all A ∈ G. Moreover, if G is a C∗-algebra, then the range Bπ = {π(A);A ∈ G}
of π is a C∗-subalgebra of B.
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Proof (See [8], p. 43)
First assume A = A∗. Then since B is a C∗-algebra and π(A) ∈ B, one has

||π(A)|| = sup {|λ|; λ ∈ σ(π(A))} (2.5)

by Theorem 2.2.5(a) (see [8, p. 29]). Next, define P = π(11G) where 11G denotes
the identity of G. It follows from the definition of π that P is a projection in B.

Hence replacing B by the C∗-algebra PBP , the projection P becomes the identity
11B of the new algebra B. Moreover, π(G) ⊆ B. Now it follows from the
definitions of a morphism and of the spectrum that σB(π(A)) ⊆ σG(A). Therefore,

||π(A)||�sup {|λ|; λ ∈ σG(A)}�||A|| (2.6)

by the following Proposition:

Proposition 2.9 ([8], p. 26)
Let A be an element of a Banach algebra with identity and define the spectral radius
ρ(A) of A by

ρ(A) = sup{|λ|; λ ∈ σG(A)}. (2.7)

It follows that

ρ(A) = lim
n→∞ ||A

n||1/n = inf
n
||An||1/n�||A||. (2.8)

In particular, the limit exists. Thus the spectrum of A is a nonempty compact set.

Proof (See [8], p. 26) Let |λ|n > ||An|| for some n > 0. As each m ∈ Z can be
decomposed as m = pn+ q with p, q ∈ Z and 0�q < n one again establishes that
the series

λ−1
∑

m�0

(
A

λ

)m

(2.9)

is Cauchy in the uniform topology and defines (λ11− A)−1. Therefore,

ρ(A)�||An||1/n (2.10)

for all n > 0, and consequently

ρ(A)� inf
n
||An||1/n� lim

n→∞ inf||An||1/n. (2.11)

Thus to complete the proof it suffices to establish that ρ(A)�rA, where

rA = lim
n→∞ sup||An||1/n. (2.12)

There are two cases.
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Firstly, assume 0 ∈ rG(A), i.e., A is invertible. Then 1 = ||AnA−n||�||An|| ||A−n||
and hence 1�rArA−1 . This implies rA > 0. Consequently, if rA = 0, one must have
0 ∈ rG(A) and ρ(A)�rA.

Secondly, we may assume rA > 0. We will need the following observation. If
An is any sequence of elements such that Rn = (11− An)

−1 exists, then 11− Rn =
−An(11−An)

−1 and An = −(11−Rn)(11−(11−Rn))
−1. Therefore, ||11−Rn|| → 0

is equivalent to ||An|| → 0 by power series expansion.
Define SA = {λ; λ ∈ C, |λ|�rA}. We assume that SA ⊆ rG(A) and obtain a

contradiction. Let ω be a primitive nth root of unity. By assumption

Rn(A; λ) = n−1
n∑

k=1

(
11− ωkA

λ

)−1

(2.13)

is well defined for all λ ∈ SA. But an elementary calculation shows that

Rn(A; λ) =
(

11− An

λn

)−1

. (2.14)

Next one has the continuity estimate

∣∣∣∣∣

∣∣∣∣∣

(
11− ωkA

rA

)−1

−
(

11− ωkA

λ

)−1
∣∣∣∣∣

∣∣∣∣∣

=
∣∣∣∣∣

∣∣∣∣∣

(
11− ωkA

rA

)−1

ωkA

(
1

λ
− 1

rA

)(
11− ωkA

λ

)−1
∣∣∣∣∣

∣∣∣∣∣
�|λ− rA| ||A|| sup

γ∈SA
||(γ 11− A)−1||2, (2.15)

which is uniform in k. The supremum is finite since λ �→ ||(λ11 − A)−1|| is
continuous on rG(A) and for |λ| > ||A|| one has

||(λ11− A)−1||�|λ|−1
∑

n�0

||A||n/|λ|n = (|λ| − ||A||)−1. (2.16)

It follows then that for each ε > 0 there is a λ > rA such that

∣∣∣∣∣

∣∣∣∣∣

(
11− An

rnA

)−1

−
(

11− An

λn

)−1
∣∣∣∣∣

∣∣∣∣∣ < ε (2.17)

uniformly in n. But ||An||/λn → 0 and by the above observation ||(11−An/λn)−1−
11|| → 0. This implies that ||(11 − An/rnA)

−1 − 11|| → 0 and ||An||/rnA → 0
by another application of the same observation. This last statement contradicts,
however, the definition of rA and hence the proof is complete. �
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Finally, if A is not self-adjoint one can combine this inequality with the C∗-norm
property and the product inequality to deduce that

||π(A)||2 = ||π(A∗A)||�||A∗A||�||A||2. (2.18)

Thus ||π(A)||�||A|| for all A ∈ G and π is continuous.
The range Bπ is a ∗-subalgebra of B by definition and to deduce that it is a

C∗-subalgebra we must prove that it is closed, under the assumption that G is a
C∗-algebra.

Now introduce the kernel ker π of π by

kerπ = {A ∈ G;π(A) = 0} (2.19)

then ker π is closed two-sided ∗-ideal. Given A ∈ G and B ∈ kerπ then
π(AB) = π(A)π(B) = 0, π(BA) = π(B)π(A) = 0, and π(B∗) = π(B) = 0.
The closedness follows from the estimate ||π(A)||�||A||. Thus we can form the
quotient algebra Gπ = G/kerπ and Gπ is a C∗-algebra. The elements of Gπ are
the classes Â = {A+I ; I ∈ kerπ} and the morphism π induces a morphism π̂ from
Gπ onto Bπ by the definition π̂(Â) = π(A). The kernel of π̂ is zero by construction
and hence π̂ is an isomorphism between Gπ and Bπ . Therefore, one can define a
morphism π̂−1 from the ∗-algebra Bπ onto the C∗-algebra Gπ by π̂−1(π̂(Â)) = Â

and then applying the first statement of the proposition to π̂−1 and π̂ successively
one obtains

||Â|| = ||π̂−1(π̂(Â))||�||π̂(Â)||�||Â||. (2.20)

Thus ||Â|| = ||π̂(Â)|| = ||π(A)||. Consequently, if π(An) converges uniformly in
B to an element Aπ then Ân converges in Gπ to an element Â and Aπ = π̂(Â) =
π(A) where A is any element of the equivalence class Â. Thus Aπ ∈ Bπ and Bπ

is closed. �
Proof of Proposition 2.7 (See [8], p. 44) The equivalence of condition (1) and
faithfulness is by definition. Prove that (1)⇒ (2)⇒ (3)⇒ (1).
(1) ⇒ (2) Since kerπ = {0}, we can define a morphism π−1 from the range of
π into G by π−1(π(A)) = A and then applying Proposition 2.8 to π−1 and π

successively one has

||A|| = ||π−1(π(A))||�||π(A)||�||A||. (2.21)

(2) ⇒ (3) If A > 0, then ||A|| > 0 and hence ||π(A)|| > 0, or π(A) �= 0. But
π(A)�0 by Proposition 2.8 and therefore π(A) > 0. (3) ⇒ (1) If condition (1) is
false, then there is a B ∈ ker π with B �= 0 and π(B∗B) = 0. But ||B∗B||�0 and
as ||B∗B|| = ||B||2 one has B∗B > 0. Thus condition (3) is false. �
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Definition 2.10 Cyclic representation of a C∗-algebra
A cyclic representation of a C∗-algebra G is defined to be a triplet (H, π,�),

where (H, π) is a representation of G and � is a vector in H which is cyclic for π ,
in H. � is called cyclic vector or cyclic vector for π . If K is a closed subspace of H
then K is called a cyclic subspace for H whenever the set

{
∑

i

π(Ai)ψi;Ai ∈ G, ψi ∈ K

}
(2.22)

is dense in H.

Definition 2.11 State over a C∗-algebra
A linear functional ω over the C∗-algebra G is defined to be positive if

ω(A∗A)�0 (2.23)

for all A ∈ G. A positive linear functional ω over a C∗-algebra G with ||ω|| = 1 is
called a state.

Remark 2.12

1. Every positive element of a C∗-algebra is of the form A∗A and hence positivity
of ω is equivalent to ω being positive on positive elements.

2. Considering a representation (H, π) of the C∗-algebra G, taking � ∈ H being a
nonzero vector and define ω� by

ω�(A) = (�, π(A)�) (2.24)

for all A ∈ G. It follows that ω� is a linear function over G, it is also positive
since

ω�(A
∗A) = ||π(A)�||2�0. (2.25)

||ω�|| = 1 whenever ||�|| = 1 and then, π is nondegenerate. In this case ω� is a
state, and is usually called vector state for the representation (H, π).

Definition 2.13 The cyclic representation (Hω, πω,�ω), constructed from the state
ω over the C∗-algebra G, is defined as the canonical cyclic representation of G

associated with ω.

Next it will be demonstrated that the notions of purity of a state ω and irreducibility
of the representation associated with ω are intimately related.
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Theorem 2.14 ([8], p. 57)
Let ω be a state over the C∗-algebra G and (Hω, πω,�ω) the associated cyclic
representation. The following conditions are equivalent:

1. (Hω, πω) is irreducible;
2. ω is pure;
3. ω is an extremal point of the set EG of states over G. Furthermore, there is

one-to-one correspondence

ωT (A) = (T �ω, πω(A)�ω) (2.26)

between positive functionals ωT , over G, majorized by ω and positive operators
T in the commutant π ′ω, of πω, with ||T ||�1.

Proof (See [8], pp. 57–58)
(1) ⇒ (2) Assume that (2) is false. Thus there exists a positive functional ρ such
that ρ(A∗A)�ω(A∗A) for all A ∈ G. But applying the Cauchy-Schwarz inequality
one then has

|ρ(B∗A)|2 � ρ(B∗B)ρ(A∗A)

� ω(B∗B)ω(A∗A)

= ||πω(B)�ω||2||πω(A)�ω||2.

Thus πω(B)�ω ×πω(A)�ω �−→ ρ(B∗A) is a densely defined, bounded, sesquilin-
ear functional, over Hω×Hω, and there exists a unique bounded operator T , on Hω,
such that

(πω(B)�ω, T πω(A)�ω) = ρ(B∗A).

As ρ is not a multiple of ω operator T is not a multiple of the identity. Moreover,

0 � ρ(A∗A)

= (πω(A)�ω, T πω(A)�ω)

� ω(A∗A) = (πω(A)�ω, πω(A)�ω)

and hence 0�T�11. But

(πω(B)�ω, T πω(C)πω(A)�ω) = ρ(B∗CA)

= ρ((C∗B)∗A) = (πω(B)�ω, πω(C)T πω(A)�ω)

and therefore T ∈ π ′ω. Thus condition (1) is false. (2) ⇒ (1) Assume that (1)
is false. If T ∈ π ′ω, then T ∗ ∈ π ′ω and T + T ∗, (T − T ∗)/i are also elements
of the commutant. Thus there exists a self-adjoint element S of π ′ω which is not a
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multiple of the identity. Therefore there exists a spectral projector P of S such that
0 < P < 11 and P ∈ π ′ω. Consider the functional

ρ(A) = (P�ω, πω(A)�ω).

This is certainly positive since

ρ(A∗A) = (Pπω(A)�ω, Pπω(A)�ω)�0.

Moreover,

ω(A∗A)− ρ(A∗A) = (πω(A)�ω, (11− P)πω(A)�ω)

� 0.

Thus ω majorizes ρ. It is verified that ρ is not a multiple of ω and hence (2) is false.
This proves the equivalence of the first two conditions stated in the theorem and
simultaneously establishes the correspondence described by the last statement.

The equivalence of conditions (2) and (3) is performed as follows. Suppose that
ω is an extremal point of EG and ω �= 0. Then, we must have ||ω|| = 1. Thus ω

is a state and we must deduce that it is pure. Suppose the contrary; then there is
a state ω1 �= ω and a λ with 0 < λ < 1 such that ω�λω1. Define ω2 by ω2 =
(ω − λω1)/(1 − λ); then ||ω2|| = (||ω|| − λ||ω1||)/(1 − λ) = 1 and ω2 is also a
state. But ω = λω1 + (1− λ)ω2 and ω is not extremal, which is a contradiction. �

In the following, some notions on von Neumann algebra are provided. To specify
the Hilbert space upon which a von Neumann algebra A acts, one often uses the
notation {A,H} to denote the von Neumann algebra A.

Definition 2.15 von Neumann algebra
Let H be a Hilbert space. For each subset A of L(H), let A′ denote the set of

all bounded operators on H commuting with every operator in A. Clearly, A′ is a
Banach algebra of operators containing the identity operator IH on H.

(i) A von Neumann algebra is a ∗-subalgebra A of L(H) such that A = A′′.
(ii) A′ denotes the commutant of A, the set of all elements in L(H) which commute

with every element of A.
(iii) A von Neumann algebra always contains the identity operator IH on H. It is

called a factor if A ∩ A′ = CIH.
(iv) If a subset S of L(H) is invariant under the ∗-operation, then S ′′, the double

commutant of S , is the smallest von Neumann algebra containing S , and it is
called the von Neumann algebra generated by S .

We also have the following definition:

Definition 2.16 A von Neumann algebra A ⊂ L(H) is a C∗-algebra acting on the

Hilbert space H that is closed under the weak-operator topology: An
n→+∞−→ A iff

〈ξ |Anη〉 n→+∞−→ 〈ξ |Aη〉,∀ξ, η ∈ H, or equivalently under the σ -weak topology:
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An
n→+∞−→ A iff for all sequences (ξk), (ζk) in H such that

+∞∑

k=1

||ξk||2 < +∞ and

+∞∑

k=1

||ζk||2 < +∞ we have
+∞∑

k=1

〈ξk|Anζk〉 n→+∞−→
+∞∑

k=1

〈ξk|Aζk〉.

Case of L(H)

(i) L(H) is a von Neumann algebra and even a factor since L(H)′ = C11 (11 =
IH).

(ii) The Hilbert space adjoint operation defines an involution on L(H) and with
respect to these operations and this norm, L(H) is a C∗-algebra. In particular,
the C∗-norm property follows from ||A||2�||A∗||||A|| = ||A||2.

(iii) Any uniformly closed subalgebra M of L(H) which is self-adjoint is also a
C∗−algebra.

Next, it comes the following definition:

Definition 2.17 Closure-Orthogonal projection
If M is a subset of L(H) and K is a subset of H, [MK] denotes the closure

of the linear span of elements of the form Aξ, where A ∈M and ξ ∈ K. [MK]
also denotes the orthogonal projection onto [MK].

(iv) A ∗-subalgebra M ⊆ L(H) is said to be nondegenerate if [MH] = H.
(v) If M ⊆ L(H) contains the identity operator, then, it is automatically

nondegenerate.
A nondegenerate ∗-algebra contains the identity operator; If a subalgebra

of L(H) is invariant under the *-operation, then it is called a ∗-subalgebra of
L(H) or a ∗-algebra of operators on H.

We have the following proposition (see [25, pp. 72–73]):

Proposition 2.18 ([25], p. 72)
The subset M of L(H) is a von Neumann algebra on H.

Proof (See [25], p. 72)
Let {Mi ,Hi}i∈I be a family of von Neumann algebras. Let H denote the

direct sum
⊕∑

i∈I
Hi of Hilbert spaces {Hi}i∈I . Each vector ξ = {ξi}i∈I in H is

denoted by
⊕∑

i∈I
ξi . For each bounded sequence {xi}i∈I in

∏

i∈I
Mi , one defines

an operator x on H by

x

⊕∑

i∈I
ξi =

⊕∑

i∈I
xiξi (2.27)
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Then, x is a bounded operator on H denoted by
⊕∑

i∈I
xi . Let M be the set of all

such x.

Particularly, taking M as a subset of L(H), the proof is completed. �
Definition 2.19 Cyclic and separating vector

The modular theory of von Neumann algebras is such that to every von Neumann
algebra M ⊂ L(H), and to every vector ξ ∈ H that is cyclic

(Mξ) = H (2.28)

i.e., the set {Ψ by ξ} (M denoting a set of bounded operators on H) is dense in H;
and separating i.e. for A ∈M,

Aξ = 0 ⇒ A = 0. (2.29)

Moreover, a vector ψ ∈ H is said separating for a von Neumann algebra A if
Aψ = Bψ, A,B ∈ A, if and only if A = B.

We have the following definitions:

Definition 2.20 Separating subset.
Let A be a von Neumann algebra on a Hilbert space H. A subset K ⊆ H is

separating for A if for any A ∈ A, Aξ = 0 for all ξ ∈ K implies A = 0.

Definition 2.21 Cyclic and separating subset of a von Neumann algebra.
Let {A,H} be a von Neumann algebra. A subset M of H is called separating

(resp.cyclic) for A if aξ = 0, a ∈ A, for every ξ ∈ M implies a = 0 (resp. the
smallest invariant subspace [AM] under A containing M in the whole space H).

Recall that a subset K ⊆ H is cyclic for M if [MK] = H. There is a dual relation
between the properties of cyclic for the algebra and separating for the commutant.

We have the following propositions:

Proposition 2.22 ([8], p. 85)
Let A be a von Neumann algebra on H and K ⊆ H a subset. The following
conditions are equivalent:

(1) K is cyclic for A;
(2) K is separating for A′.

Proof (See [8], p. 85)
(1) ⇒ (2) Assume that K is cyclic for A and choose A′ ∈ A′ such that A′K = {0}.
Then, for any B ∈ A and ξ ∈ K, A′Bξ = BA′ξ = 0, hence A′[AK] = 0 and
A′ = 0.

(2) ⇒ (1) Suppose that K is separating for A′ and set P ′ = [AK]. P ′ is then a
projection in A′ and (11− P ′)K = {0}. Hence 11− P ′ = 0 and [AK] = H. �



On Hilbert-Schmidt Operator Formulation of Noncommutative Quantum Mechanics 73

Definition 2.23 The weak and σ -weak topologies
If ξ, η ∈ H, then A �→ |(ξ, Aη)| is a seminorm on L(H). The locally convex

topology on L(H) defined by these seminorms is called the weak topology. The
seminorms defined by the vector states A �→ |(ξ, Aξ)| suffice to define this topology
because H is complex and one has the polarization identity

4(ξ, Aη) =
3∑

n=0

i−n(ξ + inη,A(ξ + inη)). (2.30)

Let {ξn}, {ηn} be two sequences from H such that
∑

n

||ξn||2 <∞,
∑

n

||ηn||2 <∞. (2.31)

Then for A ∈ L(H)

∣∣∣∣∣
∑

n

(ξn, Aηn)

∣∣∣∣∣ �
∑

n

||ξn|| ||A|| ||ηn||

� ||A||
(
∑

n

||ξn||2
)1/2 (

∑

n

||ηn||2
)1/2

�∞. (2.32)

Hence A �→
∣∣∣∣∣
∑

n

(ξn, Aηn)

∣∣∣∣∣ is a seminorm on L(H). The locally convex topology

on L(H) induced by these seminorms is called the σ -weak topology.

Notations: In the sequel,

• A+ denotes the positive part of the von Neumann algebra A or the set of positive
elements of the von Neumann algebra A;

• A∗ denotes the predual of a von Neumann algebra. It is the space of all σ -weakly
continuous linear functionals on A;

• L(H)1 denotes the unit ball of L(H). L(H)1 is norm dense in the unit ball of the
norm closure of L(H), and it is taken as a C∗-algebra (see [8, p. 74]).

Definition 2.24 Let ϕ : A → C be a bounded linear functional on A, which is
denoted by 〈ϕ;A〉, A ∈ A.

ϕ is called a state on this algebra if it also satisfies the two conditions:

(a) 〈ϕ;A∗A〉�0, ∀A ∈ A

(b) 〈ϕ; IH〉 = 1.

The state ϕ is called a vector state if there exists a vector φ ∈ H such that

〈ϕ;A〉 = 〈φ|Aφ〉, ∀A ∈ A. (2.33)

Such a state is also normal.
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Definition 2.25 A state ω on a von Neumann algebra A is faithful if ω(A) > 0 for
all nonzero A ∈ A+.

Remark 2.26 (See [8], Example 2.5.5 p. 85)
Let A = L(H) with H separable. Every normal state ω over A is of the form

ω(A) = Tr(ρA), (2.34)

where ρ is a density matrix. If ω is faithful, then ω(E) > 0 for each rank one
projector, i.e., ||ρ1/2ψ || > 0 for each ψ ∈ H \ {0} . Thus ρ is invertible (in the
densely defined self-adjoint operators on H). Conversely, if ω is not faithful, then
ω(A∗A) = 0 for some nonzero A and hence ||ρ1/2A∗ψ || = 0 for all ψ ∈ H, i.e., ρ
is not invertible. This establishes that ω is faithful if, and only if, ρ is invertible.

Lemma 2.27 ([8], p. 76) Let {Aα} be an increasing set in L(H)+ with an upper
bound in L(H)+. Then {Aα} has a least upper bound (l.u.b.) A, and the net converges
σ -strongly to A.

Proof (See [8], p. 76) Let Kα be the weak closure of the set of Aβ with β > α.

Since L(H)1 is weakly compact, there exists an element A in
⋂

α Kα. For all Aα

the set of B ∈ L(H)+ such that B�Aα is σ -weakly closed and contains Kα, hence
A�Aα. Thus, A majorizes {Aα} and lies in the weak closure of {Aα}. If B is another
operator majorizing {Aα}, then it majorizes its weak closure; thus, B�A and A is
the least upper bound of {Aα}. Finally, if ξ ∈ H, then

||(A− Aα)ξ ||2 � ||A− Aα|| ||(A− Aα)
1/2ξ ||2

� ||A||(ξ, (A− Aα)ξ)

−→
α

0. (2.35)

Since the strong and σ -strong topology coincide on L(H)1, this ends the proof. �
Proposition 2.28 ([8], p. 68) Let Tr be the usual trace on L(H), and let T (H) be
the Banach space of trace-class operators on H equipped with the trace norm T �→
Tr(|T |) = ||T ||Tr. Then it follows that L(H) is the dual T (H)∗ of T (H) by the duality

A× T ∈ L(H)× T (H) �→ Tr(AT ). (2.36)

The weak∗ topology on L(H) arising from this duality is just the σ -weak topology.

Proof (See [8], pp. 68–69) Due to the inequality |Tr(AT )|�||A|| ||T ||Tr, L(H) is
the subspace of T (H)∗ by the duality described in the proposition. Conversely,
assume ω ∈ T (H)∗ and consider a rank one operator Eϕ,ψ defined for ϕ,ψ ∈ H by

Eϕ,ψχ = ϕ(ψ, χ). (2.37)
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One has E∗ϕ,ψ = Eψ,ϕ and Eϕ,ψEψ,ϕ = ||ψ ||2Eϕ,ϕ. Hence

||Eϕ,ψ ||Tr = ||ψ ||Tr(Eϕ,ϕ)
1/2 = ||ψ ||||ϕ||. (2.38)

It follows that

|ω(Eϕ,ψ)|�||ω|| ||ϕ|| ||ψ ||. (2.39)

Hence there exists, by the Riesz representation theorem, an A ∈ L(H) with
||A||�||ω|| such that

ω(Eϕ,ψ) = (ψ,Aϕ). (2.40)

Consider ω0 ∈ T (H)∗ defined by

ω0(T ) = Tr(AT ) (2.41)

then

ω0(Eϕ,ψ) = Tr(AEϕ,ψ)

= (ψ,Aϕ)

= ω(Eϕ,ψ). (2.42)

Now for any T ∈ T (H) there exist bounded sequences {ψn} and {ϕn} and a sequence
{αn} of complex numbers such that

∑

n

|αn| <∞ (2.43)

and

T =
∑

n

αnEϕn,ψn . (2.44)

The latter series converges with respect to the trace norm and hence

ω(T ) =
∑

n

αnω(Eϕn,ψn)

=
∑

n

αnω0(Eϕn,ψn) = ω0(T ) = Tr(AT ). (2.45)

Thus L(H) is just the dual of T (H). The weak∗ topology on L(H) arising from this
duality is given by the seminorms

A ∈ L(H) �→ |Tr(AT )|. (2.46)
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Now, for T as in (2.44), one has

Tr(AT ) =
∑

n

αnTr(Eϕn,ψnA)

=
∑

n

αn(ψn,Aϕn). (2.47)

Thus the seminorms are equivalent to the seminorms defining the σ -weak topology.
�

It follows the theorem below:

Theorem 2.29 ([8, p. 76])
Let ω be a state on a von Neumann algebra A acting on a Hilbert space H. The
following conditions are equivalent:

(1) ω is normal;
(2) ω is σ -weakly continuous;
(3) there exists a density matrix ρ, i.e., a positive trace-class operator ρ on H with

T r(ρ) = 1, such that

ω(A) = T r(ρA). (2.48)

Proof (See [8, pp. 76 to 78])
(3) ⇒ (2) follows from Proposition 2.28 and (2) ⇒ (1) from Lemma 2.27. Next
show (2) ⇒ (3). If ω is σ -weakly continuous there exist sequences {ξn}, {ηn} of
vectors such that

∑

n

||ξn||2 < ∞,
∑

n

||ηn||2 < ∞, and ω(A) =
∑

n

(ξn, Aηn).

Define H̃ =
∞⊕

n=1

Hn and introduce a representation π of A on H̃ by π(A)(
⊕

n

ψn) =
⊕

n

(Aψn). Let ξ =
⊕

n

ξn, η =
⊕

n

ηn and then ω(A) = (ξ, π(A)η). Since ω(A)

is real for A ∈ A+ (with A+ denoting the positive part of the von Neumann algebra
A or the set of positive elements of the von Neumann algebra A), we have

4ω(A) = 2(ξ, π(A)η)+ 2(ξ, π(A∗)η)
= 2(ξ, π(A)η)+ 2(η, π(A)ξ)

= (ξ + η, π(A)(ξ + η))− (ξ − η, π(A)(ξ − η))

� (ξ + η, π(A)(ξ + η)). (2.49)

Hence, by Theorem 2.14 there exists a positive T ∈ π(A)′ with 0�T�11/2 such
that

(ξ, π(A)η) = (T (ξ + η), π(A)T (ξ + η))

= (ψ, π(A)ψ). (2.50)
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Now ψ ∈ H̃ has the form ψ =
⊕

n

ψn, and therefore

ω(A) =
∑

n

(ψn,Aψn). (2.51)

The right side of this relation can be used to extend ω to a σ -weakly continuous
positive linear functional ω̃ on L(H). Since ω̃(11) = 1, it is a state. Thus, by
Proposition 2.28 there exists a trace-class operator ρ with T r(ρ) = 1 such that

ω̃(A) = T r(ρA). (2.52)

Let P be the rank one projector with range ξ ; then

(ξ, ρξ) = T r(PρP ) = T r(ρP ) = ω̃(P )�0. (2.53)

Thus ρ is positive. Turn now to the proof of (1) ⇒ 2. Assume that ω is a normal
state on A. Let {Bα} be an increasing net of elements in A+ such that ||Bα||�1 for
all α and such that A �→ ω(ABα) is σ -strongly continuous for all α. One can use
Lemma 2.27 to define B by

B = l.u.b.
α

Bα = σ -strong lim
α

Bα. (2.54)

Then 0�B�11 and B ∈ A. But for all A ∈ A we have

|ω(AB − ABα)|2 = |ω(A(B − Bα)
1/2(B − Bα)

1/2)|2
� ω(A(B − Bα)A

∗)ω(B − Bα)

� ||A||2ω(B − Bα). (2.55)

Hence

||ω(·B)− ω(·Bα)||�(ω(B − Bα))
1/2. (2.56)

But ω is normal. Therefore ω(B − Bα) → 0 and ω(·Bα) tends to ω(·B) in norm.
As A∗ is a Banach space, ω(·B) ∈ A∗. Now, applying Zorn’s lemma, we can find a
maximal element P ∈ A+ ∩A1 such that A �→ ω(AP) is σ -strongly continuous. If
P = 11, the theorem is proved. Assume ad absurdum that P �= 11. Put P ′ = 11− P

and choose ξ ∈ H such that ω(P ′) < (ξ, P ′ξ). If {B
α
} is an increasing net in A+

such that Bα�P ′, ω(Bα)�(ξ, Bαξ), and B = l.u.b.
α

Bα = σ -strong limα Bα, then

B ∈ A+, B�P ′, and ω(B) = supω(Bα)�sup (ξ, Bαξ) = (ξ, Bξ). Hence, by
Zorn’s lemma, there exists a maximal B ∈ A+ such that B�P ′ and ω(B)�(ξ, Bξ).

Take Q = P ′ − B. Then, Q ∈ A+,Q �= 0, since ω(P ′) < (ξ, P ′ξ), and if
A ∈ A+, A�Q, A �= 0, then ω(A) < (ξ,Aξ) by the maximality of B.
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For any A ∈ A one has

QA∗AQ�||A||2Q2�||A||2||Q||Q. (2.57)

Hence (QA∗AQ)/||A||2||Q||�Q and ω(QA∗AQ) < (ξ,QA∗AQξ). Combining
this with the Cauchy-Schwartz inequality one finds

|ω(AQ)|2 � ω(11)ω(QA∗AQ)

< (ξ,QA∗AQξ) = ||AQξ ||2. (2.58)

Thus both A �→ ω(AQ) and A �→ ω(A(P +Q)) are σ -strongly continuous. Since
P +Q�11, this contradicts the maximality of P. �
Proposition 2.30 ([8], p. 86)
Let A be a von Neumann algebra on a Hilbert space H. Then the following four
conditions are equivalent:

(1) A is σ -finite;
(2) there exists a countable subset of H which is separating for A;
(3) there exists a faithful normal state on A;
(4) A is isomorphic with a von Neumann algebra π(A) which admits a separating

and cyclic vector.

Proof (See [8, p. 86])
(1)⇒ (2) Let {ξα} be a maximal family of vectors in H such that [A′ξα] and [A′ξα′ ]
are orthogonal whenever α �= α′. Since [A′ξα] is a projection in A (in fact the
smallest projection in A containing ξα), {ξα} is countable. But by the maximality,

∑

α

[A′ξα] = 11. (2.59)

Thus {ξα} is cyclic for A′. Hence {ξα} is separating for A by Proposition 2.22. (2)
⇒ (3) Choose a sequence ξn such that the set {ξn} is separating for A and such that∑

n

||ξn||2 = 1. Define ω by

ω(A) =
∑

n

(ξn, Aξn). (2.60)

ω is σ -weakly continuous, hence normal, by using Theorem 2.29. If ω(A∗A) = 0,
then 0 = (ξn, A

∗Aξn) = ||Aξn||2 for all n, hence A = 0. (3) ⇒ (4) Let ω be
a faithful normal state on A and (H, π,�) the corresponding cyclic representation.
Since π(A) is a von Neumann algebra, if π(A)� = 0 for an A ∈ A, then ω(A∗A) =
||π(A)�||2 = 0, hence A∗A = 0 and A = 0. This proves that π is faithful and �

separating for π(A). (4)⇒ (1) Let � be the separating (and cyclic) vector for π(A),

and let {Eα} be a family of mutually orthogonal projections in A. Set E =
∑

α

Eα.
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Then

||π(E)�||2 = (π(E)�, π(E)�)

=
∑

α,α′
(π(Eα)�, π(Eα′)�)

=
∑

α

||π(Eα)�||2 (2.61)

by Lemma 2.27. Since
∑

α

||π(Eα)�||2 < +∞, only a countable number of the

π(Eα)� is nonzero, and thus the same is true for the Eα. �

2.2 Hilbert Space of Hilbert-Schmidt Operators

Here we recall some definitions provided in [1, 2, 21] (and references therein).

Definition 2.31 The trace of a linear operator.
A linear operator A defined on the separable Hilbert space H is said to be of trace

class if the series
∑

k

〈ek|Aek〉 converges and has the same value in any orthonormal

basis {ek} of H. The sum

TrA =
∑

k

〈ek|Aek〉 (2.62)

is called the trace of A.

Definition 2.32 Trace norm
Consider the class of Hilbert-Schmidt operators. For every such operator A, the

trace norm is given by

Tr[√A∗A] = Tr[
∑

k

|ek〉λk〈ek|] =
∑

k

λk < +∞. (2.63)

Remark 2.33 If A is any operator of trace class, then A∗ is also of trace class:

TrA∗ =
∑

k

〈ek|A∗ek〉 =
∑

k

〈ek|Aek〉∗ = (TrA)∗. (2.64)

Definition 2.34 Hilbert-Schmidt operator.
Given a bounded operator, having the decomposition A =

∑

k

|φk〉λk〈φk|, where

{φk} is an orthonormal basis of H, and λ1, λ2, . . . positive numbers, A is called a
Hilbert-Schmidt operator if

Tr[AA∗] =
∑

k

〈φk|A∗Aφk〉 =
∑

k

λ2
k < +∞. (2.65)
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Remark 2.35 If the series (2.63) is infinite, its convergence implies that λk →
0 when k → +∞. Consequently, λ2

k�λk for sufficiently large value of k.

Hence,
∑

k

λ2
k converges when

∑

k

λk converges. This shows that any completely

continuous operator A satisfying (2.63) is a Hilbert-Schmidt operator.

Definition 2.36 Hilbert-Schmidt norm.
For any Hilbert-Schmidt operator A, the quantity

||A||2 =
√

Tr[A∗A] (2.66)

exists, and is called Hilbert-Schmidt norm of A.

Definition 2.37 Let B2(H), B2(H) ⊂ L(H) the set of all bounded operators on H,
be the Hilbert space of Hilbert-Schmidt operators on H = L2(R), with the scalar
product

〈X|Y 〉2 = T r[X∗Y ] =
∑

k

〈�k|X∗Y�k〉, (2.67)

where {�k}∞k=0 is an orthonormal basis of H.

B2(H)  H ⊗ H̄ (where H̄ denotes the dual of H) and basis vectors of B2(H) are
given by

�nl := |�n〉〈�l |, n, l = 0, 1, 2, . . . ,∞. (2.68)

Remark 2.38 In the notation B2(H)  H ⊗ H, H ⊗ H is taken here as the
completion of the algebraic tensor product of H by H which is a pre-Hilbert space

containing finite sums of the type
n∑

j,k=0

λjk|φj 〉 ⊗ |φk〉, where a basis of H ⊗ H

is {|φj 〉 ⊗ |φk〉}∞j,k=0. Then, B2(H), being the Hilbert space of Hilbert-Schmidt

operators on H is isomorphic to H⊗H, since the separable Hilbert spaces are taken
two by two isomorphic each other. Setting |φj 〉 ⊗ |φk〉 = |φj 〉〈φk|, B2(H) admits
for orthonormal basis {φjk}∞j,k=0 such that φjk := |φj 〉〈φk|.
Definition 2.39 Let A and B be two operators on H. The operator A ∨ B is such
that

A ∨ B(X) = AXB∗, X ∈ B2(H). (2.69)

For bounded linear operators A and B, A ∨ B defines a linear operator on B2(H).
Indeed, ∀A,B ∈ L(H), (the space of bounded linear operators on H), since
B2(H) ⊂ L(H), we get ∀X ∈ B2(H), X ∈ L(H). Then, AXB∗ ∈ L(H), i.e.
(A ∨ B) ∈ L(H). Thus, A ∨ B defines a bounded linear operator on B2(H).
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From the scalar product in B2(H),

〈X|Y 〉2 = T r[X∗Y ], X, Y ∈ B2(H), (2.70)

it comes

T r[X∗(AYB∗)] = T r[(A∗XB)∗Y ] ⇒ (A ∨ B)∗ = A∗ ∨ B∗. (2.71)

Since for any X ∈ B2(H),

(A1 ∨ B1)(A2 ∨ B2)(X) = A1[(A2 ∨ B2)(X)]B∗1 = A1A2XB∗2B∗1 , (2.72)

we have

(A1 ∨ B1)(A2 ∨ B2) = (A1A2) ∨ (B1B2). (2.73)

2.3 Modular Theory and Hilbert-Schmidt Operators

2.3.1 Modular Theory

This paragraph is devoted to Tomita-Takesaki modular theory [24–26] of von
Neumann algebras [19, 27]. Recall that the origins of Tomita-Takesaki modular
theory lie in two unpublished papers of M. Tomita in 1967 [26] and a slim volume
by M. Takesaki. As one of the most important contributions in the operator algebras,
this theory finds many applications in mathematical physics.

We provide some key ingredients from [1, 2, 7, 8, 25] as needed for this section.
First, let us deal with some notions from [8]:

1. Let A be a von Neumann algebra on a Hilbert space H and A′ its commutant. Let
� ∈ H be a unit vector which is cyclic and separating for A. This is the case, if
A is a σ -finite von Neumann algebra, and by applying Proposition 2.22.

2. The mapping A ∈ A �→ A� ∈ H then establishes a one-to-one linear
correspondence between A and a dense subspace A� of H. Let S0 and F0 be
two antilinear operators on A� and A′�, respectively. By Proposition 2.22, � is
cyclic and separating for A and A′. Therefore the two antilinear operators S0 and
F0, given by

S0A� = A∗�, for A ∈ A

F0A
′� = A′∗� for A′ ∈ A′ (2.74)

are both well defined on the dense domains on D(S0) = A� and D(F0) = A′�.

Then follows the definition:

Definition 2.40 Define S and F as the closures of S0 and F0, respectively, i.e.,

S = S̄0, F = F̄0 (2.75)
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where the bar denotes the closure. Let � be the unique, positive, self-adjoint
operator and J the unique antiunitary operator occurring in the polar decompo-
sition

S = J�1/2 (2.76)

of S. � is called the modular operator associated with the pair {A,�} and J the
modular conjugation.

The following proposition provides connections between S, F,�, and J :

Proposition 2.41 ([8, p. 89]) The following relations are valid:

� = FS, �−1 = SF

S = J�1/2, F = J�−1/2

J = J ∗, J 2 = IH
�−1/2 = J�1/2J. (2.77)

Proof (See [8, pp. 89–90]) � = S∗S = FS, and S = J�1/2 by Definition 2.40.
Using the fact that for any ψ ∈ D(S̄0) there exists a closed operator Q on H,with
S∗0 = F̄0, F

∗
0 = S̄0, such that

Q� = ψ, Q∗� = S̄0ψ (2.78)

where A′D(Q) ⊆ D(Q), QQ′ ⊇ Q′Q for all Q′ ∈ A′, with S0 = S−1
0 , it

follows by closure that S = S−1, and hence

J�1/2 = S = S−1 = �1/2J ∗, (2.79)

so that J 2�1/2 = J�−1/2J ∗. Since J�−1/2J ∗ is a positive operator, and by the
uniqueness of the polar decomposition one deduces that

J 2 = IH (2.80)

and then

J ∗ = J, �−1/2 = J�1/2J. (2.81)

But this implies that

F = S∗ = (�−1/2J )∗ = J�−1/2 (2.82)

and

SF = �−1/2JJ�−1/2 = �−1. (2.83)

�



On Hilbert-Schmidt Operator Formulation of Noncommutative Quantum Mechanics 83

3. The principal result of the Tomita-Takesaki theory [8, 25] is that the following
relations

JAJ = A′, �itA�−it = A (2.84)

hold for all t ∈ R.
4. Definition 2.42 Modular automorphism group.

Let A be a von Neumann algebra, ω a faithful, normal state on A,
(Hω, πω,�ω) the corresponding cyclic representation, and � the modular
operator associated with the pair (ω(A),�ω). The Tomita-Takesaki theorem
establishes the existence of a σ -weakly continuous one-parameter group t �→ σω

t

of ∗-automorphisms of A through the definition

σω
t (A) = π−1

ω (�itπω(A)�−it ). (2.85)

The group t �→ σω
t is called the modular automorphism group associated with

the pair (A, ω).
5. Definition 2.43 C∗-dynamical system.

A C∗-dynamical system (G, α) is a C∗-algebra G equipped with a group
homomorphism α : G→ Aut(G) that is strongly continuous, i.e., g �→ ||αg(x)||
is a continuous map for all x ∈ G. A von Neumann dynamical system
(A, α) is a von Neumann algebra acting on the Hilbert space H equipped with
a group homomorphism α : G → Aut(A) that is weakly continuous, i.e.,
g �→ 〈ξ |αg(x)η〉 is continuous for all x ∈ A and all ξ, η ∈ H.

Definition 2.44 A state ω on a one-parameter C∗-dynamical system (G, α) is a
(α, β)-KMS state, for β ∈ R, if for all pairs of elements x, y in a norm dense α-
invariant ∗-subalgebra of α-analytic elements of G, then ω(xαiβ(y)) = ω(yx).

Remark 2.45 In the case of a von Neumann dynamical system (A, α), a (α, β)-
KMS state must be normal (i.e., for every increasing bounded net of positive
elements xλ → x, we have ω(xλ) → ω(x)). Besides, given α : R → Aut(A),

an element x ∈ G is α-analytic if there exists a holomorphic extension of the
map t �→ αt (x) to an open horizontal strip {z ∈ C||Im z| < r}, with r > 0, in
the complex plane. The set of α-analytic elements is always α-invariant (i.e., for
all x is analytic, α(x) is analytic)∗-subalgebra of G that is norm dense in the C∗
case and weakly dense in the von Neumann case.

6. The modular automorphism group associated with ω is only the one parameter
automorphism group that satisfies the Kubo-Martin-Schwinger (KMS)-condition
with respect to the state ω, at inverse temperature β, i.e.,

ω(σω
t (x)) = ω(x), ∀x ∈ A (2.86)
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and for all x, y ∈ A, there exists a function Fx,y : R× [0, β] → C such that:

Fx,y is holomorphic on R×]0, β[,
Fx,y is bounded continuous on R× [0, β],
Fx,y(t) = ω(σω

t (y)x), t ∈ R,

Fx,y(iβ + t) = ω(xσω
t (y)), t ∈ R. (2.87)

2.3.2 Vector State and von Neumann Algebras

Let αi, i = 1, 2, . . . , N be a sequence of nonzero, positive numbers, satisfying :
N∑

i=1

αi = 1. Let

� =
N∑

i=1

α
1
2
i Pi =

N∑

i=1

α
1
2
i Xii ∈ B2(H) with Xii = |ζi〉〈ζi | (2.88)

{ζi}∞i=0 being an orthonormal basis of H, and the vectors {Xij = |ζi〉〈ζj |, i, j =
1, 2, . . . , N} forming an orthonormal basis of B2(H),

〈Xij |Xkl〉2 = δikδlj . (2.89)

In particular, the vectors

Pi = Xii = |ζi〉〈ζi | (2.90)

are one-dimensional projection operators on H. Then, we have the following
properties:

(i) Proposition 2.46 � defines a vector state ϕ on the von Neumann algebra Al

corresponding to the operators given with A in the left of the identity operator
IH on H, i.e., Al = {Al = A ∨ I |A ∈ L(H)} .
Proof Indeed, for any A ∨ I ∈ Al , since B2(H) ⊂ L(H) and A ⊂ L(H),
from the Remark 2.26 and the equality (2.34) together, the state ϕ on Al may
be defined by

〈ϕ;A ∨ I 〉 = 〈�|(A ∨ I )(�)〉2 = Tr[�∗A�] = Tr[ρϕA],

with ρϕ =
N∑

i=1

αiPi . (2.91)

�
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(ii) Proposition 2.47 The state ϕ is faithful and normal.

Proof The state ϕ is normal by Theorem 2.29, using the fact that ρϕ is a density
matrix and since we have

〈ϕ;A ∨ I 〉 = Tr[ρϕA]. (2.92)

Its faithfulness comes from Proposition 2.30 by use of the equivalence (2) ⇔
(3), since Al ⊂ L(H) using Eq. (2.34) in the Remark 2.26, we have, with P =
|ζi〉〈ζi |,

〈ϕ; (A ∨ I )∗(A ∨ I )〉 := ϕ
({
(A ∨ I )∗(A ∨ I )

})

= Tr[ρϕA∗A] [by (2.34)]
=

N∑

k=1

〈ζk|ρϕA∗A|ζk〉 [by (2.67)]

=
N∑

k=1

〈ζk|
{

N∑

i=1

αi |ζi〉〈ζi |
}
A∗A|ζk〉 [by (2.91)]

=
N∑

k=1

N∑

i=1

αi〈ζi |A∗A|ζk〉 〈ζk|ζi〉

=
N∑

i=1

αi ||Aζi ||2, αi > 0, A ∈ L(H) (2.93)

where the {ζi}Ni=1 form an orthonormal basis set of H. � is separating for Al ,
by use of Theorem 2.29, and the relation

〈ϕ; (A ∨ I )∗(A ∨ I )〉 = 0 ⇐⇒
N∑

i=1

αi ||Aζi ||2 = 0, ∀i = 1, 2, . . . , N

⇐⇒ A ∨ I = 0 ⇐⇒ A = 0. (2.94)

Thereby, 〈ϕ; (A ∨ I )∗(A ∨ I )〉 = 0 if and only if A ∨ I = 0. �
(iii) Proposition 2.48 The vector � is cyclic and separating for Al .

Proof If X ∈ B2(H) is orthogonal to all (A ∨ I )�,A ∈ L(H), then

Tr[X∗A�] =
N∑

i=1

α
1
2
i 〈ζi |X∗Aζi〉 = 0, ∀A ∈ L(H). (2.95)
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Taking A = Xkl , it follows from the above equality, 〈ζl |X∗ζk〉 = 0 and since

this holds for all k, l, we get X = 0. Indeed, let � =
N∑

i=1

α
1
2
i Pi =

N∑

i=1

α
1
2
i Xii =

N∑

i=1

α
1
2
i |ζi〉〈ζi |, then by definition, see Eq. (2.67),

〈X|(A ∨ I )�〉2 = Tr
[
X∗(A ∨ I )�

]

= Tr
[
X∗A�I ∗

] [by (2.69)]
= Tr

[
X∗A�

]

=
N∑

k=1

〈ζk|X∗A�|ζk〉 [by (2.67)]

=
N∑

k=1

〈ζk|X∗A
{

N∑

i=1

α
1
2
i |ζi〉〈ζi |

}
|ζk〉 [by (2.88)]

=
N∑

k=1

N∑

i=1

α
1
2
i 〈ζk|X∗Aζi〉〈ζi |ζk〉

=
N∑

i=1

α
1
2
i 〈ζi |X∗Aζi〉 (2.96)

such that the orthogonality implies

〈X|(A ∨ I )�〉2 = 0 *⇒
N∑

i=1

α
1
2
i 〈ζi |X∗Aζi〉 = 0. (2.97)

Now taking A = Xkl = |ζk〉〈ζl |, it follows that

N∑

i=1

α
1
2
i 〈ζi |X∗Aζi〉 =

N∑

i=1

α
1
2
i 〈ζi |X∗ {|ζk〉〈ζl |} |ζi〉

=
N∑

i=1

α
1
2
i 〈ζi |X∗ζk〉δil

= α
1
2
l 〈ζl |X∗ζk〉. (2.98)

From (2.97) and (2.98) together, it follows

N∑

i=1

α
1
2
i 〈ζi |X∗Aζi〉 = 0 *⇒ α

1
2
l 〈ζl |X∗ζk〉 = 0, ∀αl > 0. (2.99)
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Thereby,

〈ζl |X∗ζk〉 = 0, ∀k, l *⇒ X = 0. (2.100)

Therefore, we have

〈X|(A ∨ I )�〉2 = 0 *⇒ X = 0 (2.101)

implying that the set {(A ∨ I )�,A ∈ Al} is dense in B2(H), proving from the
Definition 2.19 that � is cyclic for Al . �
The fact that � is separating for Al is obtained through the relation

(A ∨ I )� = (B ∨ I )�⇐⇒ A ∨ I = B ∨ I, ∀A,B ∈ Al . (2.102)

Proof Let A,B ∈ Al , such that (A ∨ I )� = (B ∨ I )�, and take X �= 0, X ∈
B2(H). We have

〈X| {(A ∨ I )− (B ∨ I )}�〉2
= Tr

[
X∗ {(A ∨ I )− (B ∨ I )}�]

= Tr
[
X∗(A− B)�I ∗

] [by (2.69)]

=
N∑

k=1

〈ζk|X∗(A− B)

{
N∑

i=1

α
1
2
i |ζi〉〈ζi |

}
|ζk〉 [by (2.88)]

=
N∑

k=1

N∑

i=1

α
1
2
i 〈ζk|X∗(A− B)ζi〉〈ζi |ζk〉

=
N∑

i=1

α
1
2
i 〈ζi |X∗(A− B)ζi〉

=
N∑

i=1

α
1
2
i 〈ζi |X∗(A− B)ζi〉. [by (2.96) and (2.98)] (2.103)

Taking (A∨I )� = (B∨I )�, the equality 〈X| {(A ∨ I )− (B ∨ I )}�〉2 = 0
leads to

〈X| {(A∨I )− (B∨I )}�〉2 = 0 ⇐⇒
N∑

i=1

α
1
2
i 〈ζi |X∗(A− B)ζi〉 = 0, αi >0

⇐⇒ A ∨ I = B ∨ I (2.104)

which completes the proof. �
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In the same way, � is also cyclic for Ar = {Ar = I ∨ A|A ∈ L(H)} , which
corresponds to the operators given with A in the right of the identity operator
IH on H, hence separating for Ar , i.e. (I∨A)� = (I∨B)�⇐⇒ I∨A = I∨B.

Then, starting to the above setup, to the pair {A, ϕ} is associated:

• a one parameter unitary group t �→ �
− i

t
β

ϕ ∈ L(H)

• and a conjugate-linear isometry Jϕ : H→ H that:

�
i
t
β

ϕ A�
− i

t
β

ϕ = A, t ∈ R, (2.105)

JϕAJϕ = A′, (2.106)

Jϕ ◦ Jϕ = IH, Jϕ ◦�
i
t
β

ϕ = �
− i

t
β

ϕ ◦ Jϕ. (2.107)

Denote the automorphisms by αϕ(t), and deal with operators A ∈ A with A ⊂
L(H). Then, taking into account the Definition 2.25 and the Remark 2.26, from the
expression (2.85), the automorphisms, in this case, satisfy the following relation:

αϕ(t)[A] = �
i
t
β

ϕ A�
− i

t
β

ϕ , ∀A ∈ A. (2.108)

The KMS condition with respect to the automorphism group αϕ(t), t ∈ R, is
obtained for any two A,B ∈ A, such that the function

FA,B(t) = 〈ϕ;Aαϕ(t)[B]〉 (2.109)

has an extension to the strip {z = x + iy|t ∈ R, y ∈ [0, β]} ⊂ C such that FA,B(z)

is analytic in the strip (0, β) and continuous on its boundaries. In addition, it also
satisfies the boundary condition, at an inverse temperature β

〈ϕ;Aαϕ(t + iβ)[B]〉 = 〈ϕ;αϕ(t)[B]A〉, t ∈ R. (2.110)

Setting the generator of the one-parameter group by Hϕ , the operators �
− i

t
β

ϕ verify
the relation

�
− i

t
β

ϕ = eitHϕ and �ϕ = e−βHϕ . (2.111)

2.3.3 von Neumann Algebras Generated by Unitary Operators

Before introducing the von Neumann algebra generated by the unitary operators, let
us consider the following:
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Definition 2.49 Consider the unitary operator U(x, y) on H = L2(R) given by

(U(x, y)�)(ξ) = e−ix(ξ−y/2)� (ξ − y) , (2.112)

x, y, ξ ∈ R, with U(x, y) = e−i(xQ+yP ), where Q,P are the usual position and
momentum operators given on H = L2(R), with [Q,P ] = iIH, and the Wigner
transform, given by

W : B2(H)→ L2(R2, dxdy)

(WX)(x, y) = 1

(2π)1/2 T r[(U(x, y))∗X], (2.113)

where X ∈ B2(H), x, y ∈ R. W is unitary.

Indeed, given X1, X2 ∈ B2(H),

∫

R2
(WX2(x, y))(WX1(x, y))dxdy = 〈X2|X1〉2 = 〈X2|X1〉B2(H). (2.114)

On H̃ = L2(R2, dxdy), ∀(x, y) ∈ R
2, consider the operators

U1(x, y) = W [U(x, y) ∨ IH]W−1,

U2(x, y) = W
[
IH ∨ U(x, y)∗

]
W−1 (2.115)

and let Ai , i = 1, 2, be the von Neumann algebra generated by the unitary operators
[25] {Ui(x, y)/(x, y) ∈ R

2}. Then, it follows that:

Proposition 2.50 ([1])

(i) The algebra A1 is the commutant of the algebra A2 (i.e., each element of A1
commutes with every element of A2) and vice versa with a factor, i.e,

A1 ∩ A2 = CI
H̃
. (2.116)

Considering the antiunitary operator Jβ (i.e. 〈Jφ|Jψ〉 = 〈ψ |φ〉,∀φ,ψ ∈ H =
L2(R)) such that:

Jβ�nl = �ln, J 2
β = IH, Jβ�β = �β,

it comes

JβA1Jβ = A2. (2.117)

The relation (2.117) and the property (i) provide the modular structure of the
triplet {A1,A2, Jβ}.
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(ii) The map [1]

Sβ : H̃→ H̃, Sβ
[
U1(x, y)�β

] = U1(x, y)
∗�β,

is closable and has the polar decomposition

Sβ = Jβ�
1
2
β , (2.118)

where Jβ is the antiunitary operator, with

Jβ�nl = �ln, J 2
β = IH, Jβ�β = �β, (2.119)

JβA1Jβ = A2. (2.120)

Indeed, Jβ is by definition an antiunitary operator. Then, it is self-adjoint, symmet-

ric, and consequently closable. �
1
2
β also being self-adjoint by definition, is closable

too. From (2.118), the map Sβ given as the product of two closable operators is then
closable.

Proof of (2.118) The proof is achieved as follows: The vectors �jk, j, k =
0, 1, 2, · · · ,∞, form an orthonormal basis of H̃ = L2(R2, dxdy). We have

�β =
∞∑

i=0

λ
1
2
i �ii . Applying U1(x, y) to both sides leads to

U1(x, y)�β =
∞∑

i=0

λ
1
2
i U1(x, y)�ii .

Since
∞∑

j,k=0

|�jk〉〈�jk| = I
H̃

, we get

U1(x, y)�β =
∞∑

i=0

λ
1
2
i U1(x, y)�ii =

∞∑

i,j,k=0

λ
1
2
i 〈�jk|U1(x, y)�ii〉H̃�jk.

From the relations

φnl = |φn〉〈φl | and Wφnl = �nl, n, l = 0, 1, 2, · · · ,∞

we get

Wφjk =W(|φj 〉〈φk|) = �jk, ∀j, k.
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Using the fact that φi, i = 0, 1, 2, · · · ,∞, form a basis of H = L2(R), we have

〈�jk|U1(x, y)�ii〉H̃ = T r
[|φk〉〈φj |U(x, y)|φi〉H̃〈φi |

]

=
∞∑

l=0

〈φl |φk〉〈φj |U(x, y)|φi〉H̃δil

= δik〈φj |U(x, y)|φi〉H̃
= δik〈φi |U(x, y)|φj 〉H̃
= (2π)

1
2 δikW(|φj 〉〈φi |)(x, y).

Thus 〈�jk|U1(x, y)�ii〉H̃ = (2π)
1
2 δik�ji(x, y). From (2.121), it comes

U1(x, y)�β = (2π)
1
2

∞∑

i,j,k=0

λ
1
2
i �ji(x, y)�jkδki (2.121)

i.e.,

U1(x, y)�β = (2π)
1
2

∞∑

i,j=0

λ
1
2
i �ji(x, y)�ji . (2.122)

Let us calculate U1(x, y)
∗�β . We have

U1(x, y)
∗�β =

∞∑

j=0

λ
1
2
j U1(x, y)

∗�jj =
∞∑

i,j,k=0

λ
1
2
j 〈�ik|U1(x, y)

∗�jj 〉H̃�ik,

(2.123)

where

〈�ik|U1(x, y)
∗�jj 〉H̃ = T r

[|φk〉〈φi |U(x, y)∗|φj 〉H̃〈φj |
]

=
∞∑

l=0

〈φl |φk〉〈φi |U(x, y)∗|φj 〉H̃δjl

= 〈φj |φk〉〈φi |U(x, y)∗|φj 〉H̃
= δjk

(〈φj |U(x, y)|φi〉H̃
)∗

= (2π)
1
2 δkj

(
W(|φi〉〈φj |)

)∗
(x, y)

= (2π)
1
2 δkj�

∗
ij (x, y)

= (2π)
1
2 δkj�ji(x, y). (2.124)
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Putting (2.124) in (2.123) leads to

U1(x, y)
∗�β = (2π)

1
2

∞∑

i,j,k=0

λ
1
2
j �ji(x, y)�ikδkj = (2π)

1
2

∞∑

i,j=0

λ
1
2
j �ji(x, y)�ij .

(2.125)

From (2.121), we have

U1(x, y)�β = (2π)
1
2

∞∑

i,j=0

λ
1
2
i �ji(x, y)�ji .

Applying Sβ to both sides of the equality gives

SβU1(x, y)�β = (2π)
1
2

∞∑

i,j=0

λ
1
2
i Sβ�ji(x, y)Sβ�ji .

Since Sβ
[
U1(x, y)�β

] = U1(x, y)
∗�β , then Sβ�ji(x, y) = �ji(x, y). Thus,

SβU1(x, y)�β = (2π)
1
2

∞∑

i,j=0

λ
1
2
i �jiSβ�ji,

which rewrites

SβU1(x, y)�β = U1(x, y)
∗�β = (2π)

1
2

∞∑

i,j=0

λ
1
2
i �ji(x, y)Sβ�ji . (2.126)

From the relations (2.125) and (2.126) together, it follows that

λ
1
2
i Sβ�ji = λ

1
2
j �ij i.e. Sβ�ji =

[
λj

λi

] 1
2

�ij , (2.127)

for all�ij ∈ H̃, i, j = 0, 1, 2, · · · ,∞. �
Proof of (2.119) Consider the operator Jβ with Jβ�ji = �ij . We have

J 2
β�ji = Jβ�ij = �ji,∀i, j i.e. J 2

β = I
H̃
.

Besides,

�β =
∞∑

i=0

λ
1
2
i �ii i.e. Jβ�β =

∞∑

i=0

λ
1
2
i (Jβ�ii) =

∞∑

i=0

λ
1
2
i �ii = �β.
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Thus Jβ�β = �β . Therefore, Jβ is such that

Jβ�nl = �ln, J 2
β = I

H̃
, Jβ�β = �β.

From (2.118) and

�β =
∞∑

n,l=0

λn

λl
|�nl〉〈�nl | = e−βH , H = H1 −H2,

we get

Sβ = Jβ�
1
2
β and �β =

∞∑

n,l=0

λn

λl
|�nl〉〈�nl |.

Using this above relations yields

∀i, j, (Jβ�
1
2
β )|�ji〉 = Jβ

[
�

1
2
β |�ji〉

]
= Jβ

⎡

⎣
∞∑

n,l=0

(
λn

λl

) 1
2 |�nl〉〈�nl |�ji〉

⎤

⎦

= Jβ

⎡

⎣
∞∑

n,l=0

(
λn

λl

) 1
2 |�nl〉δnj δil

⎤

⎦ = Jβ

[(
λj

λi

) 1
2 |�ji〉

]

=
(
λj

λi

) 1
2 [

Jβ |�ji〉
]
.

From (2.127),

Sβ |�ji〉 =
(
λj

λi

)1/2

|�ij 〉 = (Jβ�
1
2
β )|�ji〉, ∀i, j (2.128)

i.e.,

Sβ = Jβ�
1
2
β . (2.129)

�
Proposition 2.51 ([1])

If {λn}∞n=0 is a sequence of non-zero positive numbers such that
∞∑

n=0

λn = 1, then

the vector

� =
∞∑

n=0

λ
1
2
n�nn (2.130)
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is cyclic (that is the set of vectors {A�/A ∈ A1} is dense in H̃) and separating (i.e.,
if A� = 0, for all A ∈ A1 then A = 0) for A1.

Proof Let X ∈ B2(H̃) and consider the operator W[U(x, y) ∨ I
H̃
]W−1 ∈ A1.

Taking U(x, y) ∨ I
H̃
, we have, since W is unitary,

〈X|W[U(x, y) ∨ I
H̃
]W−1�〉

H̃
= 〈X|(U(x, y) ∨ I

H̃
)�〉B2(H̃)

= Tr[X∗(U(x, y) ∨ I
H̃
)�]

= Tr[(X∗U(x, y))�]
= (2π)

1
2 (WX�)(x, y) [by (2.113)]

(2.131)

and the complex conjugate of (2.131) given by

〈X|(U(x, y) ∨ I
H̃
)�〉B2(H̃)

= Tr[(X∗U(x, y))�]∗ = (2π)
1
2 (WX�)(x, y).

(2.132)

Then, integrating over R2 the modulus squared

〈X|(U(x, y) ∨ I
H̃
)�〉B2(H̃)

〈X|(U(x, y) ∨ I
H̃
)�〉B2(H̃)

=
∣∣∣〈X|(U(x, y) ∨ I

H̃
)�〉B2(H̃)

∣∣∣
2

(2.133)

with respect to x, y, we get

∫

R2
((WX�)(x, y))((WX�)(x, y))dxdy

=
∫

R2

∞∑

i,j=0

∞∑

l,k=0

〈�kk|λ
1
2
i λ

1
2
k Wφjk(x, y)Wφli(x, y)dxdy|�ii〉H̃

=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k 〈�kk|

{∫

R2
Wφjk(x, y)Wφli(x, y)dxdy

}
|�ii〉H̃

=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k 〈�kk|

{∫

R2
W|φj 〉〈φk|(x, y)W|φl〉〈φi |(x, y)dxdy

}
|�ii〉H̃
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=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k 〈�kk|

{∫

R2
�jk(x, y)�li(x, y)dxdy

}
|�ii〉H̃

=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k 〈�kk|

{∫

R2
�jk(x, y)

∗�li(x, y)dxdy

}
|�ii〉H̃

=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k 〈�kk|�ii〉H̃δij δkl

=
∞∑

i,k=0

λ
1
2
i λ

1
2
k δik

=
∞∑

i=0

λi = 1. (2.134)

Since W is unitary, we may write

∫

R2
((WX�)(x, y))((WX�)(x, y))dxdy = 0

*⇒
∣∣∣〈X|W[U(x, y) ∨ I

H̃
]W−1�〉

H̃

∣∣∣
2 = 0

*⇒
∣∣∣〈X|(U(x, y) ∨ I

H̃
)�〉B2(H̃)

∣∣∣
2 = 0

*⇒ X = 0. (2.135)

This implies that the set
{
W[U(x, y) ∨ I

H̃
]W−1�,W[U(x, y) ∨ I

H̃
]W−1 ∈ A1

}

is dense in H̃, proving from the Definition 2.19 that � is cyclic for A1. �
The fact that � is separating for A1 is obtained through the relation

W(U(x, y) ∨ I
H̃
)W−1� =W(U ′(x, y) ∨ I

H̃
)W−1�

⇐⇒ W(U(x, y) ∨ I
H̃
)W−1 =W(U ′(x, y) ∨ I

H̃
)W−1.

(2.136)

Proof Let U(x, y), U ′(x, y) such that W(U(x, y) ∨ I
H̃
)W−1� = W(U ′(x, y) ∨

I
H̃
)W−1�. Take X �= 0, X ∈ B2(H̃) and set � =

N∑

i=1

λ
1
2
i |ζi〉〈ζi |. We have

〈X|W {
(U(x, y) ∨ I

H̃
)− (U ′(x, y) ∨ I

H̃
)
}
W−1�〉

H̃

= 〈X| {(U(x, y) ∨ I
H̃
)− (U ′(x, y) ∨ I

H̃
)
}
�〉B2(H̃)
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= Tr
[
X∗

{
(U(x, y) ∨ I

H̃
)− (U ′(x, y) ∨ I

H̃
)
}
�
]

=
N∑

k=1

〈ζk|X∗
{
U(x, y)− U ′(x, y)

}
{

N∑

i=1

λ
1
2
i |ζi〉〈ζi |

}
|ζk〉

=
N∑

k=1

N∑

i=1

λ
1
2
i 〈ζk|X∗

{
U(x, y)− U ′(x, y)

}
ζi〉〈ζi |ζk〉

=
N∑

k=1

N∑

i=1

λ
1
2
i 〈ζk|X∗

{
U(x, y)− U ′(x, y)

}
ζi〉δik

=
N∑

i=1

λ
1
2
i 〈ζi |X∗

{
U(x, y)− U ′(x, y)

}
ζi〉. (2.137)

Then, we have

〈X|W {
(U(x, y) ∨ I

H̃
)− (U ′(x, y) ∨ I

H̃
)
}
W−1�〉

H̃

= 〈X| {(U(x, y) ∨ I
H̃
)− (U ′(x, y) ∨ I

H̃
)
}
�〉B2(H̃)

= 0

⇐⇒
N∑

i=1

λ
1
2
i 〈ζi |X∗

{
U(x, y)− U ′(x, y)

}
ζi〉 = 0, λi > 0, ∀i

⇐⇒ U(x, y) ∨ I
H̃
= U ′(x, y) ∨ I

H̃
(2.138)

which completes the proof. �

2.4 Modular Theory-Thermal State

Here, we give two examples of thermal states as known from the literature. For more
details, see [1, 2, 7, 8, 11, 24–26].

1. Let αi, i = 1, 2, . . . , N be a sequence of non-zero, positive numbers, satisfying
N∑

i=1

αi = 1. Then, the thermal state is defined as:

� :=
N∑

i=1

α
1
2
i Pi =

N∑

i=1

α
1
2
i Xii ∈ B2(H), (2.139)

where Pi = Xii = |ζi〉〈ζi | is defined as in (2.88)–(2.90), with {Xij =
|ζi〉〈ζj |, i, j = 1, 2, . . . , N} forming an orthonormal basis of B2(H).
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2. The thermal equilibrium state � at inverse temperature β, corresponding to the
harmonic oscillator Hamiltonian

HOSC = 1

2
(P 2 +Q2), with HOSCφn = ω(n+ 1

2
)φn, n = 0, 1, 2, . . . ,

(2.140)

where the density matrix is

ρβ = e−βHosc

T r
[
e−βHosc

] = (1− e−ωβ)

∞∑

n=0

e−nωβ |φn〉〈φn|,

Tr[e−βHOSC ] = e−
βω
2

1− e−βω
, (2.141)

is

� = [
1− e−ωβ

] 1
2

∞∑

n=0

e−
n
2 ωβ |φn〉〈φn|. (2.142)

3. Let the two von Neumann algebras be given by

Al = {Al = A ∨ I |A ∈ L(H)} , Ar = {Ar = I ∨ A|A ∈ L(H)}
(2.143)

where Al corresponds to the operators given with A in the left, and Ar

corresponds to the operators given with A in the right of the identity operator
IH on H, respectively. � defines a vector state ϕ, called KMS state, on the von
Neumann algebra Al . For any A ∨ I ∈ Al , one has the state ϕ on Al given by

〈ϕ;A ∨ I 〉 = 〈�|(A ∨ I )(�)〉2 = T r[�∗A�] = T r[ρϕA],

with ρϕ =
N∑

n=1

αnPn (2.144)

with Pn = |φn〉〈φn|, where

ρϕ = e−βHOSC

Tr[e−βHϕ ] = (1− e−ωβ)

∞∑

n=0

e−nωβ |φn〉〈φn| (2.145)

and

Hϕ = − 1

β

∞∑

n=0

(lnαn)Pn, αn = (1− e−ωβ)e−nωβ. (2.146)
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2.5 Coherent States Built from the Harmonic Oscillator
Thermal State

Before dealing with the CS construction, we shall first extract few facts and
notations about the modular structures emerging for von Neumann algebras in the
study of an electron in a magnetic field as needed for the development of this
paragraph. For details see [1] and references therein.

2.5.1 Electron in a Magnetic Field

Considering the quantum Hilbert space H = L2(R) of the Hamiltonian Hosc
in (2.140), take B2(H)  H⊗ H̄ the space of Hilbert-Schmidt operators on H with
an orthonormal basis given by

φnl := |φn〉〈φl |, n, l = 0, 1, 2, . . . ,∞. (2.147)

Taking the classical Hamiltonian describing an electron placed in the xy plane and
subjected to a constant magnetic field [1],

Helec = 1

2
(
−→
p +−→A )2 = 1

2

(
px + y

2

)2 + 1

2

(
py − x

2

)2
(2.148)

let the following quantum Hamiltonians

H1 = 1

2
(P 2

1 +Q2
1), [Q1, P1] = iI

H̃
(2.149)

with the magnetic field aligned along the negative z axis,
−→
A = 1

2 (y,−x, 0), where

the quantized observables given on H̃ = L2(R2, dxdy) by

px + y

2
→ Q1 = −i

∂

∂x
+ y

2
; py − x

2
→ P1 = −i

∂

∂y
− x

2
(2.150)

and

H2 = 1

2
(P 2

2 +Q2
2), [Q2, P2] = iI

H̃
(2.151)

with the magnetic field aligned along the positive z axis,
−→
A = 1

2 (−y, x, 0), with

the quantized observables given on H̃ = L2(R2, dxdy) by

py + x

2
→ Q2 = −i

∂

∂y
+ x

2
; px − y

2
→ P2 = −i

∂

∂x
− y

2
. (2.152)
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Since [H1,H2] = 0, the eigenvectors �nl of H1 can be so chosen that they are also
the eigenvectors of H2 as follows:

H1�nl = ω

(
n+ 1

2

)
�nl, H2�nl = ω

(
l + 1

2

)
�nl (2.153)

so that H2 lifts the degeneracy of H1 and vice versa. Next, from the Definition 2.49,
it is established that [1]

Wφnl =W(|φn〉〈φl |) = �nl (2.154)

where the φnl are the basis vectors given in (2.147) and the �nl the normalized
eigenvectors in (2.153). Then, from (2.154), the vectors �nl, n, l = 0, 1, 2, . . . ,∞
form a basis of H̃ = L2(R2, dxdy).

Note that, in the sequel, the CS will be constructed from the thermal state �β,

identified with the vector � given in (2.142), denoted as a ket state |�β〉, the
normalized eigenvectors (2.154) �nl also denoted |�nl〉 as proceeded in [1].

2.5.2 Coherent States built from the Thermal State

Take the cyclic vector � of the von Neumann algebra A1 generated by the unitary
operator (2.115)

U1(x, y) =W [U(x, y) ∨ IH]W−1, (2.155)

where W and U(x, y) = e−i(xQ+yP ) are defined by (2.112) and (2.113), and
consider Proposition 2.51 with the thermal state �β, instead of �, such that

�β =
[
1− e−ωβ

] 1
2

∞∑

n=0

e−n
ωβ
2 �nn, i.e., λn = (1− e−ωβ)e−nωβ. (2.156)

The CS, denoted |z, z̄, β〉KMS, built from the thermal state in ket notation |�β〉 (see
[1]), are given by

|z, z̄, β〉KMS = U1(z)|�β〉 := ezA
†
1−z̄A1 |�β〉 (2.157)

where the annihilation and creation operators, A1 and A
†
1 with [1]

A1 = 1√
2
(Q1 + iP1), A

†
1 =

1√
2
(Q1 − iP1) (2.158)
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act on |�n,l〉, eigenstates of the oscillator Hamiltonian in one dimension (2.149)
with eigenvalues En = ω(n+ 1

2 ), as follows:

A
†
1|�n,l〉 =

√
n+ 1|�n+1,l〉, A1|�n,l〉 = √n|�n−1,l〉 (2.159)

where the states |�nl〉 are here denoted |�n,l〉 by commodity.

Proposition 2.52 ([1]) The CS |z, z̄, β〉KMS satisfy the resolution of the identity
condition

1

2π

∫

C

|z, z̄, β〉KMSKMS〈z, z̄, β|dxdy = I
H̃
, H̃ = L2(R2, dxdy). (2.160)

Proof Consider the unitary operator U(x, y) = e−i(xQ+yP ),∀(x, y) ∈ R
2. Let

U(z)φ := φ(x, y) = e−i(xQ+yP )φ ∀φ ∈ H. (2.161)

Show that, for any normalized state φ ∈ H = L2(R):

1

2π

∫

R2
|φ(x, y)〉〈φ(x, y)|dxdy = IH. (2.162)

∀q ∈ R, set φ(x, y)(q) = (π)−
1
4 e−i( x2−q)ye−

(q−x)2

2 ,

such that ∀ψ, ξ ∈ H, we have

〈ξ |φ(x, y)〉H = (π)−
1
4 e−i

xy
2

∫

R

ξ(q)eiyqe−
(q−x)2

2 dq

〈φ(x, y)|ψ〉H = (π)−
1
4 ei

xy
2

∫

R

e−iyq ′e−
(q′−x)2

2 ψ(q ′)dq ′.

Then,

1

2π

∫

R2
〈ξ |φ(x, y)〉〈φ(x, y)|ψ〉dxdy

= 1

2π
√
π

∫

R2
dxdy

∫

R2
dqdq ′ξ(q)eıy(q−q ′)e

[
− (x−q)2

2 − (q′−x)2

2

]

ψ(q ′)

= 1√
π

∫

R

dx

∫

R2
dqdq ′ξ(q)

[
1

2π

∫

R

eiy(q−q ′)dy

]
e

[
−(x−q)2

2 − (q′−x)2

2

]

ψ(q ′).

(2.163)
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Since 1
2π

∫
R
eiy(q−q ′)dy = δ(q − q ′), we get

1

2π

∫

R2
〈ξ |φ(x, y)〉〈φ(x, y)|ψ〉dxdy

= 1√
π

∫

R

dx

∫

R2
dqdq ′ξ(q)δ(q − q ′)e

[
− (x−q)2

2 − (q′−x)2

2

]

ψ(q ′)

= 1√
π

∫

R

dx

∫

R

dq e−
(x−q)2

2 ξ(q)

[∫

R

ψ(q ′)δ(q − q ′)e−
(q′−x)2

2 dq ′
]

= 1√
π

∫

R2
e−(x−q)2

ξ(q)ψ(q)dxdq =
∫

R

dq

(
1√
π

∫

R

e−u2
du

)
ξ(q)ψ(q)

= 〈ξ |ψ〉.

Thus

1

2π

∫

R2
|φ(x, y)〉〈φ(x, y)|dxdy = IH

i.e.
1

2π

∫

C

|U(z)φ〉〈U(z)φ|dxdy = IH. (2.164)

Using the isometry property of W , the states |z, z̄, β〉KMS satisfy the following
resolution of the identity

1

2π

∫

C

|z, z̄, β〉KMSKMS〈z, z̄, β|dxdy = I
H̃
. (2.165)

Proof By definition of the states |z, z̄, β〉KMS and using (2.122), we have:

|z, z̄, β〉KMS = U1(z)�β = (2π)
1
2

∞∑

i,j=0

λ
1
2
i �ji(x, y)|�ji〉,

KMS〈z, z̄, β| = U1(z)
∗�β = (2π)

1
2

∞∑

l,k=0

〈�lk|λ
1
2
k �lk(x, y). (2.166)

Thereby

|z, z̄, β〉KMSKMS〈z, z̄, β| = 2π
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k Wφji(x, y)Wφlk(x, y)|�ji〉〈�lk|.

(2.167)

Integrating the two members of Eq. (2.167) over R2, and using the Wigner map W,

we get
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1

2π

∫

R2
|z, z̄, β〉KMSKMS〈z, z̄, β|dxdy

=
∫

R2

∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k |�ji〉〈�lk|Wφji(x, y)Wφlk(x, y)dxdy

=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k |�ji〉〈�lk|

∫

R2
Wφji(x, y)Wφlk(x, y)dxdy

=
∞∑

i,j=0

∞∑

l,k=0

λ
1
2
i λ

1
2
k |�ji〉〈�lk|δlj δki

=
∞∑

i,j=0

|�ji〉〈�ji |
= I

H̃
. (2.168)

�

From (A
†
1)|�0n〉 =

√
n!|�nn〉 and U1(z)

∣∣∣∣∣�0n〉 = e−
|z|2

2

∞∑

k=0

(zA
†
1)

k

k!

∣∣∣∣∣�0n〉, it comes

that:

U1(z)|�nn〉= 1√
n!

(
A

†
1−z̄I

H̃

)n

U1(z)|�0n〉= 1√
n!

(
− ∂

∂z
− z̄

2
I
H̃

)n

U1(z)|�0n〉.

(2.169)

Proof of the First Equality of (2.169) The operators P and Q verify the following
relations:

[
Q,Pn

] = nPn−1 [Q,P ] = ıh̄nP n−1,
[
Qn,P

] = nQn−1 [Q,P ] = ıh̄nQn−1.

(2.170)

We establish that

e−ıPuQeıPu = Q− u, e−ıQuP eıQu = P + u, ∀u ∈ R.

(2.171)

Multiplying the first and second equalities of (2.171), by 1√
2

and −ı√
2
, respectively,

provides:

e−ıPu Q√
2
eıPu = Q√

2
− u√

2
, e−ıQu

(−ıP√
2

)
eıQu = −ıP√

2
− ıu√

2
.

(2.172)
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Setting u = −x and u = −y, in the first and second relations of (2.172),
respectively, gives with replacing P by P1, and Q by Q1, respectively:

eıP1x
Q1√

2
e−ıP1x = Q1√

2
+ x√

2
, eıQ1y

(
− ıP1√

2

)
e−ıQ1y = −ıP1√

2
+ ıy√

2
.

(2.173)

From A
†
1 = Q1−ıP1√

2
, set z = −x+ıy√

2
. Summing both equalities of (2.173) gives:

eıP1x
Q1√

2
e−ıP1x + eıQ1y

(
− ıP1√

2

)
e−ıQ1y = A

†
1 − z̄I

H̃
. (2.174)

Since U1(z) = ezA
†
1−z̄A1 , with zA

†
1 − z̄A1 = ı(P1x + Q1y), it follows: U1(z) =

eı(P1x+Q1y). This latter equality with (2.174) together leads to:

(A
†
1−z̄I

H̃
)U1(z)= eıP1x

Q1√
2
e−ıP1xeı(P1x+Q1y)+eıQ1y

(
−ı

P1√
2

)
e−ıQ1yeı(P1x+Q1y)

= eı(P1x+Q1y)e−ı
xy
2 eı

xy
2
Q1√

2
+ eı(Q1y+P1x)eı

xy
2 e−ı

xy
2

(
−ı

P1√
2

)

= ezA
†
1−z̄A1

(
Q1√

2
− ı

P1√
2

)
= U1(z)A

†
1. (2.175)

From (2.175), we have

U1(z)|�1n〉 = (A
†
1 − z̄I

H̃
)U1(z)|�0n〉 (2.176)

such that, by recursion, we get

U1(z)|�nn〉 = 1√
n!

(
A

†
1 − z̄I

H̃

)n

U1(z)|�0n〉. (2.177)

�
Proof of the Second Equality of (2.169) Considering A

†
1 = 1√

2
(Q1− ıP1), where

z = 1√
2
(y − ıx), with

∂

∂x
= −ı√

2

∂

∂z
+ ı√

2

∂

∂z̄
,

∂

∂y
= 1√

2

∂

∂z
+ 1√

2

∂

∂z̄
(2.178)

provides

A
†
1 = −

∂

∂z
+ z̄

2
I
H̃
, i.e., A

†
1 − z̄I

H̃
= − ∂

∂z
− z̄

2
I
H̃

(2.179)

which completes the proof. �
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Since

|z, z̄, β〉KMS = U1(z)|�β〉 = (1− e−ωβ)
1
2

∞∑

n=0

e−n
ωβ
2 U1(z)|�nn〉, (2.180)

setting |z; n〉 = U1(z)|�0n〉 and from (2.169), it comes

|z, z̄, β〉KMS = (1− eωβ)
1
2

∞∑

n=0

1√
n!e

−n
ωβ
2

(
− ∂

∂z
− z̄

2
I
H̃

)n

|z; n〉. (2.181)

Set |z; n〉 = U2(z)|�n0〉 with (A
†
2)

n|�n0〉 =
√
n!|�nn〉 and

U2(z)|�n0〉 = e−
|z|2

2

∞∑

k=0

(zA
†
2)

k

k! |�n0〉. (2.182)

Taking |z; 0〉 = U2(z)|�00〉 leads to

(A
†
2)

n|z; 0〉 = √n!|z; n〉 with U2(z)
[
(A

†
2)

n|�00〉
]
= √n!U2(z)|�n0〉.

(2.183)

Then, |z; n〉 = 1√
n! (A

†
2)

n|z; 0〉. In (2.181), we get

|z, z̄, β〉KMS = (1− e−ωβ)
1
2

∞∑

n=0

1

n!e
−n

ωβ
2

(
− ∂

∂z
− z̄

2

)n

(A
†
2)

n|z; 0〉. (2.184)

Using the relation U1(x, y)
∗ = U1(−x,−y), the CS | − z,−z̄, β〉KMS are obtained

as follows:

| − z,−z̄, β〉KMS = Sβ |z, z̄, β〉KMS. (2.185)

Indeed, by definition |z, z̄, β〉KMS = U1(z)|�β〉 := U1(x, y)|�β〉 such that

Sβ
[
U1(x, y)|�β〉

] = U1(x, y)
∗|�β〉 = U1(−x,−y)|�β〉,

i.e., U1(−z)|�β〉 = e−zA
†
1+z̄A1 |�β〉 (2.186)

where e−zA
†
1+z̄A1 |�β〉 := | − z,−z̄′, β〉KMS, leading to (2.185). The CS (2.185)

satisfy a resolution of the identity analogue to (2.165), i.e.,

1

2π

∫

C

| − z,−z̄, β〉KMSKMS〈−z,−z̄, β|dxdy = I
H̃
. (2.187)
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Proof Similar to the proof of (2.165). �

3 Noncommutative Quantum Harmonic Oscillator
Hilbert Space

Without loss of generality, we restrict our developments to the noncommutative
quantum mechanics formalism [6, 11, 15, 22] for the physical system of harmonic
oscillator. We focus on the application of Hilbert-Schmidt operators, bounded
operators on the noncommutative classical configuration space denoted by

Hc = span

{
|n〉 = 1√

n! (a
†)n|0〉

}∞

n=0
. (3.1)

This space is isomorphic to the boson Fock space F = {|n〉}∞n=0, where the
annihilation and creation operators a, a† obey the Fock algebra [a, a†] = 1. The
physical states of the system represented on Hq known as the set of Hilbert-Schmidt
operators is equivalent to the Hilbert space of square integrable function, with

Hq =
{
ψ(x̂1, x̂2) : ψ(x̂1, x̂2) ∈ B(Hc), trc(ψ(x̂1, x̂2)

†, ψ(x̂1, x̂2)) <∞
}

(3.2)

where B(Hc) is the set of bounded operators on Hc. Hq is defined as the set of
bounded operators, with the form |·〉〈·|, acting on the classical configuration space
Hc, with a general element of the quantum Hilbert space, in “bra-ket” notation
given by

|ψ) =
∞∑

n,m=0

cn,m|n,m), (3.3)

with {|n,m) := |n〉〈m|}∞n,m=0 a basis of Hq endowed with the inner product

(ñ, m̃|n,m) = trc[(|ñ〉〈m̃|)‡|n〉〈m|] = δñ,nδm̃,m. (3.4)

Considering the unitary Wigner map W : B2(H)→ L2(R2, dxdy) let us discuss a
correspondence between L2(R2, dxdy) and B2(H).

Proposition 3.1 Given the Hilbert space H = L2(R), the inverse of the map W is
defined on the dense set of vectors f ∈ L2(R2, dxdy) as follows:

W−1 : L2(R2, dxdy)→ H⊗ H

W−1f =
∫

R

∫

R

U(x, y)W(|φ〉〈ψ |)(x, y)dxdy, (3.5)
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where the integral is defined weakly, |φ〉〈ψ | is an element of B2(H)  H ⊗ H and
f =W(|φ〉〈ψ |).
Proof Let us derive the inverse of the map W on L2(R2, dxdy) where the group
G and the Duflo-Moore operator C with domain D(C−1) given in [3] are identified
here to R

2, IH, the identity operator on H = L2(R), respectively, with D(C−1) = H

and D(C−1)† = H. Consider an element in B2(H)  H⊗H of the type |φ〉〈ψ |, with
φ,ψ ∈ H and let f = W(|φ〉〈ψ |). For φ′, ψ ′ ∈ H, we have from the definition of
W in (2.113)

∫

R

∫

R

〈φ′|U(x, y)ψ ′〉W(|φ〉〈ψ |)(x, y)dxdy

=
∫

R

∫

R

〈φ′|U(x, y)ψ ′〉T r(U(x, y)∗|φ〉〈ψ |)dxdy

=
∫

R

∫

R

〈φ|U(x, y)ψ〉〈φ′|U(x, y)ψ ′〉dxdy. (3.6)

By the orthogonality relation, we get

∫

R

∫

R

〈φ′|U(x, y)ψ ′〉W(|φ〉〈ψ |)(x, y)dxdy = 〈φ′|φ〉〈ψ |ψ ′〉. (3.7)

The relation |〈φ′|φ〉〈ψ |ψ ′〉|�||φ′||||ψ ′||||φ||||ψ || implies

∣∣∣∣
∫

R

∫

R

〈φ′|U(x, y)ψ ′〉W(|φ〉〈ψ |)(x, y)dxdy
∣∣∣∣�||φ′||||ψ ′||||φ||||ψ ||. (3.8)

Then, (3.7) holds for all φ′, ψ ′ ∈ H. Then, we obtain

|φ〉〈ψ | =
∫

R

∫

R

U(x, y)W(|φ〉〈ψ |)(x, y)dxdy (3.9)

which completes the proof. �

4 Application

Consider the motion of an electron in the xy-plane, subjected to a constant magnetic
field pointing along the positive z-direction, i.e., in the symmetric gauge A↑ =(−B

2 y,
B
2 x

)
, in the presence of a harmonic potential, described by the following

Hamiltonian [5]

Hθ = 1

2M

(
px − eB

2c
y

)2

+ 1

2M

(
py + eB

2c
x

)2

+ Mω2
0

2
(x2 + y2) (4.1)
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where ωc = eB
2c is the cyclotron frequency, �2 = ω2

0 + ω2
c

4 , with the commutation
relations:

[xi, xj ] = iθεij , [xi, pj ] = ih̄δij , [pi, pj ] = 0,

i, j = 1, 2, ε12 = −ε21 = 1. (4.2)

Next, introduce the dimensionless complex variables, related to the chiral decom-
position of the physical model, given by

z+ = 1√
2
(x1+ − ix2+), z− = 1√

2
(x1− + ix2−) (4.3)

such that they satisfy, with

∂z+ =
1√
2
[∂x1+ + i∂x2+], ∂z− =

1√
2
[∂x1− − i∂x2−], (4.4)

the relations

[∂z± , z±] = 1 = [∂z̄± , z̄±], [∂z± , z∓] = 0 = [∂z̄∓ , z̄±],
[z+, z−] = 0 = [∂z+ , ∂z−]. (4.5)

Set

A+ = ζ
z̄+
2
+ ı

ζ h̄
pz+ , A

†
+ = ζ

z+
2
− ı

ζ h̄
pz̄+

A− = ζ
z−
2
+ ı

ζ h̄
pz̄− , A

†
− = ζ

z̄−
2
− ı

ζ h̄
pz− , ζ = 4

√√√√ (M�/h̄)2

1− Mωc

2 θ + (
M�

4 θ
)2

(4.6)

satisfying the commutation relations

[A−, A†
+] = 0 = [A+, A†

−], [A±, A†
±] = 1. (4.7)

Then, taking �̃± = �̃± ω̃c

2 , where [15]

�̃ = �

√

1− Mωc

2
θ +

(
M�

4
θ

)2

ω̃c = ωc

(
1−

(
ωc

4
+ ω2

0

ωc

)
Mθ

)
, (4.8)
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the Hamiltonian Hθ is obtained as follows:

Hθ = h̄�̃+
(
N+ + 1

2

)
+ h̄�̃−

(
N− + 1

2

)
, N± = A

†
±A±, (4.9)

N± being the number operators such that Hθ writes

Hθ = H+ ⊗ IHq,− + IHq,+ ⊗H−, H± = h̄�̃±
(
N± + 1

2

)
. (4.10)

The Hilbert spaces Hq,± are given by Hq,± = span{|n±〉〈m±|}∞n±,m±=0, with IHq ,±
their corresponding identity operators. The system {A±, A†

±} forms an irreducible
set of operators on the chiral boson Fock space F = {|n±〉}∞n±=0, and has the
following realization on the states

|n+, n−;m+,m−) := |n+〉〈m+| ⊗ |n−〉〈m−|, n±,m± = 0, 1, 2, . . . , (4.11)

of the Hilbert space Hq,+ ⊗Hq,−:

A+|n+, n−;m+,m−) := √n+|n+ − 1, n−;m+,m−)
A

†
+|n+, n−;m+,m−) :=

√
n+ + 1|n+ + 1, n−;m+,m−), (4.12)

A−|n+, n−;m+,m−) :=
√
n−|n+, n− − 1;m+,m−)

A
†
−|n+, n−;m+,m−) :=

√
n− + 1|n+, n− + 1;m+,m−). (4.13)

The operators A± act on the right by A
†
± by conjugation of (4.12) and (4.13). We

have

|n+, n−; 0, 0) = 1√
n+!n−!

(
A

†
+
)n+ (

A
†
−
)n− |0, 0〉〈0, 0| (4.14)

with |0, 0〉〈0, 0| standing for the vacuum state of Hq,+ ⊗Hq,−.
Then, the eigenvalues of the Hamiltonian Hθ are derived from the relation

Hθ (|n+〉〈m+| ⊗ |n−〉〈m−|) = En+,n− (|n+〉〈m+| ⊗ |n−〉〈m−|) (4.15)

as follows:

En+,n− = h̄�̃+
(
n+ + 1

2

)
+ h̄�̃−

(
n− + 1

2

)
. (4.16)
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Given a state |m〉〈n| on Hq  H⊗H, the left aL and right bR annihilation operators
act as follows:

aL|m〉〈n| = (a ⊗ IH̄)|m〉〈n| = a|m〉〈n|IH̄
= √m|m− 1〉〈n|

bR|m〉〈n| = (IH ⊗ b)|m〉〈n| = IH|m〉〈n|b
= √n+ 1|m〉〈n+ 1|, (4.17)

where

aL := a ⊗ IH̄=
1√
2

[
(Q+iP )⊗ IH̄

]
, a

†
L := a† ⊗ IH̄=

1√
2

[
(Q− iP )⊗ IH̄)

]
,

(4.18)

bR :=IH ⊗ b= 1√
2

[IH ⊗ (iQ− P)] , b†
R := IH ⊗ b†= 1√

2
[IH ⊗ (−iQ− P)] .

(4.19)

Q,P are the usual position and momentum operators given on H = L2(R), with
[Q,P ] = iIH.

4.1 Coherent States Construction

Using the operators {A±, A†
±}, the eigenstates |z±〉 satisfy

A±|z±〉 = z±|z±〉, 〈z±|A†
± = 〈z±|z̄± (4.20)

with the complex eigenvalues z±,

|z±〉 = e−
|z±|2

2 e{z±A
†
±}|0〉, (4.21)

given in terms of the chiral Fock basis. Provided the Baker-Campbell-Hausdorff
identity

e{z±A
†
±−z̄±A±} = e−

|z±|2
2 e{z±A

†
±}e{−z̄±A±}, (4.22)
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the CS of the Hamiltonian (4.10) in the noncommutative plane, denoted by
|z+, z−), are defined by

|z+, z−)=e−(|z+|2+|z−|2)
∞∑

n+,m+=0

∞∑

n−,m−=0

z
n++ z̄

m++ z
n−− z̄

m−−√
n+!m+!n−!m−!

|n+〉〈m+| ⊗ |n−〉〈m−|

(4.23)

where we have used [6]:

|z+〉〈z+| = DRDL (|0〉〈0|) = e−|z+|2ez+A
†
+|0〉〈0|ez̄+A+ (4.24)

with DR = e
−z+A†

++z̄+A+
R and DL = e

−z̄+A++z+A†
+

L . The lower indices R,L of the
exponential operators refer to the right and left actions, respectively.

These CS satisfy the resolution of the identity [15]

1

π2

∫

C2
|z+, z−)(z+, z−|d2z+d2z− = IHq,+⊗Hq,− := Iq ⊗ Iq, (4.25)

where Iq stands for the identity on Hq given by Ben Geloun and Scholtz [22]:

Iq = 1

π

∫

C

dzdz̄|z)e←−∂z̄−→∂z (z|. (4.26)

and the identity operator on Hq,+ ⊗Hq,− is:

IHq,+⊗Hq,− =
∞∑

n+,m+=0

∞∑

n−,m−=0

|n+, n−;m+,m−)(n+, n−;m+,m−|. (4.27)

Proof In order to provide an equivalence between (4.25) and (4.26), let us consider
the following relations

Iq |ψ) = 1

π2

∫

C2
dzdz̄dwdw̄|z〉〈w|〈z|ψ |w〉

= 1

π2

∫

C2
dzdz̄dudū|z〉〈z+ u|〈z|ψ |z+ u〉

= 1

π

∫

C

dzdz̄
1

π

∫

C

d2ue−|u|2 |z〉〈z|eū←−∂z̄+u
−→
∂z 〈z|ψ |z〉 (4.28)

where w = z+ u with d2w = d2u, and eu∂zf (z) = f (z+ u). Then, set

1

π

∫

C

d2ue−|u|2 |z〉〈z|eū←−∂z̄+u
−→
∂z 〈z|ψ |z〉 = 1

π

∫

C

d2ue−|u|2 |z〉〈z|eū←−∂z̄ eu−→∂z 〈z|ψ |z〉
(4.29)
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and

I = |z〉〈z|eū←−∂z̄ eu−→∂z 〈z|ψ |z〉. (4.30)

We have

I =
⎡

⎣
∞∑

n′,m′=0

|n′〉〈m′|e−z̄z z̄m
′

√
m′!

zn
′

√
n′!

⎤

⎦ eū
←−
∂z̄ eu

−→
∂z

⎡

⎣
∞∑

n,m=0

〈m|ψ |n〉e−z̄z z̄n√
n!

zm√
m!

⎤

⎦

=
⎡

⎣
∞∑

n,m=0

∞∑

n′,m′=0

zn
′

√
n′!

z̄n√
n! |n

′〉〈m′|〈m|ψ |n〉
⎤

⎦
(
e−z̄z z̄m

′
√
m′!

)
eū
←−
∂z̄ eu

−→
∂z

(
e−z̄z zm√

m!
)
.

(4.31)

Let

K(z) =
(
e−z̄z z̄m

′
√
m′!

)
eū
←−
∂z̄ eu

−→
∂z

(
e−z̄z zm√

m!
)
. (4.32)

We obtain

K(z) = 1√
m′!

1√
m!

∞∑

k=0

∞∑

l=0

1

k!
(
ūk∂kz̄ [z̄m

′
e−z̄z]

) 1

l!
(
ul∂lz

[
zme−z̄z

])
(4.33)

which supplies, by performing a radial parametrization,

1

π

∫

C

d2ue−|u|2K(z)

= 1√
m′!

1√
m!

∞∑

k=0

∞∑

l=0

1

π

∫

C

d2ue−|u|2 ū
k

k!
ul

l! ∂
k
z̄ [z̄m

′
e−z̄z]∂lz

[
zme−z̄z

]

= 1√
m′!

1√
m!

∞∑

k=0

∞∑

l=0

1

π

∫ ∞

0
rdre−r2 rk+l

k!l!
∫ 2π

0
e−i(l−k)φdφ

×∂kz̄ [z̄m
′
e−z̄z]∂lz

[
zme−z̄z

]

= 1√
m′!

1√
m!

∞∑

k=0

[
1

k!
∫ ∞

0
2r2k+1e−r2

dr

] [
1

k!∂
k
z̄ [z̄m

′
e−z̄z]∂kz

[
zme−z̄z

]]

= 1√
m′!

1√
m!

∞∑

k=0

[
1

k!∂
k
z̄ [z̄m

′
e−z̄z]∂kz

[
zme−z̄z

]]
. (4.34)
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Besides,

(
e−z̄z z̄m

′
√
m′!

)
e
←−
∂z̄
−→
∂z

(
e−z̄z zm√

m!
)
= 1√

m′!
1√
m!

∞∑

k=0

[
1

k!∂
k
z̄ [z̄m

′
e−z̄z]∂kz

[
zme−z̄z

]]

(4.35)

implying

1

π

∫

C

d2ue−|u|2K(z) =
(
e−z̄z z̄m

′
√
m′!

)
e
←−
∂z̄
−→
∂z

(
e−z̄z zm√

m!
)
. (4.36)

Then,

1

π

∫

C

d2ue−|u|2 |z〉〈z|eū←−∂z̄+u
−→
∂z 〈z|ψ |z〉

=
⎡

⎣
∞∑

n,m=0

∞∑

n′,m′=0

zn
′

√
n′!

z̄n√
n! |n

′〉〈m′|〈m|ψ |n〉
⎤

⎦
(
e−z̄z z̄m

′
√
m′!

)
e
←−
∂z̄
−→
∂z

(
e−z̄z zm√

m!
)

=
⎡

⎣
∞∑

n′,m′=0

|n′〉〈m′|e−z̄z z̄m
′

√
m′!

zn
′

√
n′!

⎤

⎦ e
←−
∂z̄
−→
∂z

⎡

⎣
∞∑

n,m=0

〈m|ψ |n〉e−z̄z z̄n√
n!

zm√
m!

⎤

⎦

= |z)e←−∂z̄−→∂z (z|ψ) (4.37)

allowing to obtain (4.28) under the form:

Iq |ψ) = 1

π

∫

C

dzdz̄
1

π

∫

C

d2ue−|u|2 |z〉〈z|eū←−∂z̄+u
−→
∂z 〈z|ψ |z〉

= 1

π

∫

C

dzdz̄|z)e←−∂z̄−→∂z (z|ψ) (4.38)

which completes the proof. �

4.2 Density Matrix and Diagonal Elements

Considering that the quantum system obeys the canonical distribution [5, 9, 12],
let us take the partition function Z as that of a composite system made of two
independent systems such that it is the product of the partition functions of the
components, i.e. Z = Z+Z−. The diagonal elements of the density operator
ρ̂ = 1

Z e−βHθ , where Hθ is given in (4.9) with eigenvalues En+,n− in (4.16), are
then derived, in the CS |z+, z−) (4.23) representation, as
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(z+, z−|ρ̂|z+, z−)

= (z+, z−|
⎧
⎨

⎩

∞∑

n+,m+=0

∞∑

n−,m−=0

e−βHθ

Z |n+, n−;m+, m−)(n+, n−;m+, m−|
⎫
⎬

⎭ |z+, z−)

=
{

1

Z+
e
− βh̄�̃+

2 e−|z+|2
[
ee
−βh̄�̃+|z+|2

]}{
1

Z−
e
− βh̄�̃−

2 e−|z−|2
[
ee
−βh̄�̃− |z−|2

]}
(4.39)

where Z = Z+Z−.
Since

1

Z+
=

⎡

⎣ e−
βh̄�̃+

2

1− e−βh̄�̃+

⎤

⎦
−1

, and
1

Z−
=

⎡

⎣ e−
βh̄�̃−

2

1− e−βh̄�̃−

⎤

⎦
−1

(4.40)

then,

(z+, z−|ρ̂|z+, z−) =
⎡

⎣ e−
βh̄�̃+

2

1− e−βh̄�̃+

⎤

⎦
−1

e−
βh̄�̃+

2 e−|z+|2
[
ee
−βh̄�̃+|z+|2

]

×
⎡

⎣ e−
βh̄�̃−

2

1− e−βh̄�̃−

⎤

⎦
−1

e−
βh̄�̃−

2 e−|z−|2
[
ee
−βh̄�̃−|z−|2

]
.

(4.41)

Thereby,

(z+, z−|ρ̂|z+, z−)

=
[
1− e−βh̄�̃+

]
e−(1−e−βh̄�̃+ )|z+|2 ×

[
1− e−βh̄�̃−

]
e−(1−e−βh̄�̃− )|z−|2

= 1

n̄+ 1
e−

1
n̄+1 |z+|2 × 1

n̄∗ + 1
e
− 1

n̄∗+1 |z−|2

= Q(|z+|2)Q(|z−|2). (4.42)

n̄ =
[
eβh̄�̃+ − 1

]−1
and n̄∗ =

[
eβh̄�̃− − 1

]−1
are the corresponding thermal

expectation values of the number operator (i. e. the Bose-Einstein distribution
functions for oscillators with angular frequencies �̃+ and �̃−, respectively), also
called the thermal mean occupancy for harmonic oscillators with the angular
frequencies �̃+ and �̃−, respectively.
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Performing the variable changes r+ =
[
1− e−βh̄�̃+

]1/2 |z+| and r− =
[
1− e−βh̄�̃−

]1/2 |z−| with d2z
π
= rdr

dϕ
π
, r ∈ [0,∞), ϕ ∈ (0, 2π ], we obtain

T rρ̂ = 1

π2

∫

C2
d2z+d2z−(z+, z−|ρ̂|z+, z−)

= 1

π2

∫

C2
d2z+d2z−

[
1− e−βh̄�̃+

]
e−(1−e−βh̄�̃+ )|z+|2

[
1− e−βh̄�̃−

]
e−(1−e−βh̄�̃− )|z−|2

= 1

π2

∫ ∞

0
r+dr+

[
e−r2+

] ∫ 2π

0
dθ+ ×

∫ ∞

0
r−dr−

[
e−r2−

] ∫ 2π

0
dθ−

= 1, (4.43)

with here n± = 0, where we have used the following integral

∫ ∞

0

1

n±!2r
2n±+1
± dr±e−r2± = 1, (4.44)

ensuring that the normalization condition of the density matrix is accomplished.
The right-hand side of (4.42) corresponds to the product of two harmonic oscillators
Husimi distributions [16].

4.3 Lowest Landau Levels and Reproducing Kernel

Let us make a relationship between the quantum numbers n± ∈ N which label the
energy levels per sector and the quantum numbers n,m where n labels the levels and
m describes the degeneracy [4]. Fixing n− = 0 (resp. n = 0), one obtains a state
corresponding to the quantum number m in the lowest Landau level (LLL) given by

φn=0,m(z+, z̄+) = 1√
2πl20m!

(
z+√
2l0

)m

e−|z+|2/4l20 (4.45)

where l0 =
√

1
eB
≡ 1 (with h̄ = 1, e = 1) is the scale of lengths associated with the

Landau problem.
Equivalently, fixing n+ = 0 (resp. m = 0), one gets a state centered at the origin

(m = 0) in the Landau level n given by

φn,m=0(z−, z̄−) = 1√
2πl20n!

(
z̄−√
2l0

)n

e−|z−|2/4l20 . (4.46)
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Consider the projector onto the LLL given by

P0 =
∞∑

m=0

|0,m)(0,m|. (4.47)

In the LLL |0,m), the state |0, ¯̃z+), where z+ = x1+ − ix2+, is such that

(0, ¯̃z+|0,m) = e−
|z̃+|2

2
z̃m+√
m! , z̃+ = z+

l0
√

2
. (4.48)

and also

(0, ¯̃z+|0,m) = (0,m|0, ¯̃z+) = e−
|z̃+|2

2

¯̃zm+√
m! . (4.49)

The matrix elements of the projector P0 are obtained as

(0, ¯̃z+|P0|0, ¯̃z′+) = e−
1
2 [|z̃′+|2+|z̃+|2−2z̃+ ¯̃z′+]. (4.50)

Let |ψ) ∈ Hq , a state given on the LLL by

|ψ) =
∞∑

m=0

am|0,m), am ∈ C. (4.51)

We obtain that |ψ) is analytic up to the Landau gaussian factor e−
|z̃+|2

2 as follows:

(0, ¯̃z+|ψ) = e−
|z̃+|2

2 f (z̃+), f (z̃+) =
∞∑

m=0

am
z̃m+√
m! ∈ L2

hol(C, dν(z, z̄))

(4.52)

with dν(z, z̄) = e−|z|2
2π

dz∧dz̄
i

. Next, let us define the projection operator

Phol : L2(C, dν(z, z̄)) −→ L2
hol(C, dν(z, z̄)) (4.53)

which is an integral operator with the reproducing kernel

K(z̃+, ¯̃z′+) = e
1
2 [|z̃′+|2+|z̃+|2](0, ¯̃z+|P0|0, ¯̃z′+) = ez̃+

¯̃z′+ (4.54)

for L2
hol(C, dν(z, z̄)) [3]. L2

hol(C, dν(z, z̄)) is the subspace of the Hilbert
space L2(C, dν(z, z̄)) of dν-square integrable holomorphic functions on C
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in the variable z. Then, given an operator O on L2(C, dν(z, z̄)) and f ∈
L2
hol(C, dν(z, z̄)), we have

1

π

∫

C

ez̃+
¯̃z′+(Of )(z̃′+)e−|z̃

′+|2d2z̃′+ =
∫

C

ez̃+
¯̃z′+(Of )(z̃′+)e−|z̃

′+|2 dz̃
′+ ∧ d ¯̃z′+
2iπ

=: (PholOf )(z̃+). (4.55)

4.4 Statistical Properties

Let us consider the operators given on Hq ⊗Hq by

P̂X = −ih̄√
2θ
[aR − a

†
R, .] P̂Y = −h̄√

2θ
[aR + a

†
R, .] (4.56)

X̂ =
√

θ

2
[aR + a

†
R] Ŷ = i

√
θ

2
[a†

R − aR]. (4.57)

From (4.17), we obtain in a state |ñ〉〈m̃| ⊗ |m〉〈n| ∈ Hq ⊗Hq

[aR−a
†
R, |ñ〉〈m̃| ⊗ |m〉〈n|]=

√
n+ 1|ñ〉〈m̃| ⊗ |m〉〈n+ 1|−√n|ñ〉〈m̃| ⊗ |m〉〈n|.

(4.58)

We get the following expressions:

(�X̂)2 = θ

2
, (�Ŷ )2 = θ

2
(4.59)

(�P̂X)
2 = h̄2

θ
, (�P̂Y )

2 = h̄2

θ
(4.60)

leading to the following uncertainties:

[�X̂�Ŷ ]2 = θ2

4
= 1

4
|〈[X̂, Ŷ ]〉|2,

[�X̂�P̂X]2 = h̄2

2
�1

4
|〈[X̂, P̂X]〉|2,

[�Ŷ�P̂Y ]2 = h̄2

2
�1

4
|〈[Ŷ , P̂Y ]〉|2,

[�P̂X�P̂Y ]2 = h̄4

4θ2�
1

4
|〈[P̂X, P̂Y ]〉|2 = 0. (4.61)
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5 Concluding Remarks

We have first dealt with some preliminaries about definitions, and remarkable
properties on Hilbert-Schmidt operators and the Tomita-Takesaki modular theory.
Then, the construction of CS built from the thermal state has been achieved and
discussed, with the resolution of the identity. Besides, some detailed proofs have
been provided in the study of the modular theory and Hilbert-Schmidt operators.
The relation between the noncommutative quantum mechanics formalism and the
modular theory, both using Hilbert-Schmidt operators, has been evidenced by the
use of the Wigner map as an interplay between them. The formalism has been
illustrated with the physical model of a charged particle on the flat plane xy in the
presence of a constant magnetic field along the z-axis with a harmonic potential.
CS have been constructed. Then, the density matrix, the projection onto the lowest
Landau level (LLL), and main statistical properties have been discussed on the CS
basis.
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Symplectic Affine Action and Momentum
with Cocycle

Augustin Batubenge and Wallace Haziyu

Abstract Let G be a Lie group, g its Lie algebra, and g∗ the dual of g. Let � be the
symplectic action of G on a symplectic manifold (M,ω). If the momentum mapping
μ : M → g∗ is not Ad∗-equivariant, it is a fact that one can modify the coadjoint
action of G on g∗ in order to make the momentum mapping equivariant with respect
to the new G-structure in g∗, and the orbit of the coadjoint action is a symplectic
manifold. With the help of a two cocycle

∑ : g × g → R, (ξ, η) �→ ∑
(ξ, η) =

dσ̂η(e)·ξ associated with one cocycle σ : G→ g∗; σ(g) = μ(φg(m))−Ad∗gμ(m),
we show that a symplectic structure can be defined on the orbit of the affine action
�(g, β) := Ad∗gβ + σ(g) of G on g∗, the orbit of which is a symplectic manifold
with the symplectic structure ωβ(ξg∗(v), ηg∗(v)) = −β([ξ, η])+∑

(η, ξ).
Furthermore, we introduce a deformed Poisson bracket on (M,ω) with which

some classical results of conservative mechanics still hold true in a new setting.

Keywords Symplectic action · Momentum mapping · Equivariance · Poisson
bracket

1 Introduction

The study of coadjoint orbits was introduced by Kirillov in the 1960s (see [1]).
Coadjoint orbits arise through the action of a Lie group G by means of a coadjoint
representation Ad∗ on the dual g∗ of the Lie algebra g of G. The orbits so obtained
by this action are called coadjoint orbits (see [2, 3]). Kostant and Souriau showed
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that there is (up to covering) an isomorphism between a symplectic manifold
(M,ω), homogeneous under the action of a Lie group G and a coadjoint orbit [3].
We shall now show that if we substitute the coadjoint action of G on g∗ by another
action defined through a one-cocycle σ , the orbits of the affine action of G on g∗
so obtained are symplectic manifolds. Notice that the cocycle map of a momentum
mapping measures its lack of equivariance [2, p. 279], and as stated by Iglesias-
Zemmour P., one co-cycles arise in different ways, see [4, p. 323].

The work is organized as follows.
In Sect. 2 we gather the basics on symplectic actions on a symplectic manifold.

In Sect. 3 we recall the definition of Hamiltonian action, inducing the key concept
of momentum mapping with one cocycle, which induces another action, making
the momentum mapping be equivariant. To end the section we will construct a
symplectic structure on coadjoint orbits of an affine action. In Sect. 4 we will provide
a way forward on a deformation of the standard Poisson bracket on the algebra of
smooth functions on a symplectic manifold for further investigations on this topic,
which opens possible applications to theoretical physics.

Note that in this work, the mere topological assumptions are assumed. The
contents are well detailed in our main reference literature (see [2]), as are most
notations.

2 Lie Group Action

2.1 Preliminaries

Definition 2.1 A Lie group is a group G that is also a smooth manifold such that
the group operations of multiplication G × G → G, defined by (x, y) �→ xy,
and inversion G → G defined by x �→ x−1, are compatible with the smooth
structure.

The vector space g = TeG is called the Lie algebra of the corresponding Lie
group G, where e ∈ G is the identity element. We denote the dual of LieG

by g∗.

Definition 2.2 If G is a group and X a set, the map � : G × X → X is called an
action of G on X if the following two conditions are satisfied:

(i) If e is the identity element of G, then �(e, x) = x for all x ∈ X.
(ii) If g, h ∈ G then �(g,�(h, x)) = �(gh, x) for all x ∈ X.

Note that for each g ∈ G, �g : X → X defined by �g(x) = �(g, x) is a
diffeomorphism. For more on Lie group actions, we refer the reader to [5].
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Definition 2.3 Let M be a smooth manifold. A symplectic structure on M is a 2-
form on M (ω ∈ �2(M)) which satisfies the following two conditions:

(i) ω is closed. That is dω = 0.
(ii) ω is nondegenerate. That is, ω(X, Y ) = 0 for all Y ∈ X(M) implies that X = 0.

In other words, on each tangent space TmM , m ∈ M , if ωm(Xm, Ym) = 0 for
all Ym ∈ TmM , then Xm = 0.

A manifold M is called a symplectic manifold if there is defined on M a closed
2-form ω which is nondegenerate.

Let � : G×M → M , (g,m) �→ �g(m) = g ·m be an action of a Lie group G

on a symplectic manifold (M,ω). Then the action � is called symplectic if for each
g ∈ G, the diffeomorphism �g : M → M , m �→ �g(m) is such that �∗gω = ω.
Details on these preliminaries can be found in [1–3].

Let G be a Lie group and let � be an action of G on a manifold M . Let g
be the Lie algebra of G. We define the infinitesimal generator of the action �

corresponding to X ∈ g to be

XM(m) = d

dt
�exp tX(m) |t=0,

where exp : g→ G is the exponential map.

3 Momentum Mapping

Definition 3.1 Let � : G×M → M , be a symplectic action of a Lie group G on a
symplectic manifold (M,ω), and let XM be the infinitesimal generator of the action
corresponding to X ∈ g. Then the map

μ : M → g∗

is called the momentum mapping for the action if for every X ∈ g there is a
function μ̂X : M → R such that the relation μ̂X(m) = μ(m) · X holds, and where
dμ̂X = iXM

ω.

Definition 3.2 The space (M,ω,�,μ) is called a Hamiltonian G-space.

3.1 Coadjoint Cocycle

Definition 3.3 Let G be a Lie group, g its Lie algebra, and g∗ the dual of its Lie
algebra. The function σ : G→ g∗ defined by
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σ(g) = μ(�g(m)) − Ad∗gμ(m) for all m ∈ M is called a coadjoint cocycle on
G or simply one-cocycle, where we define < Ad∗gβ, ξ >=< β,Adg−1ξ >. See [6].

The map σ satisfies the cocycle identity

σ(gh) = σ(g)+ Ad∗gσ (h) (3.1)

for all g, h ∈ G.
To see this, from σ(g) = μ(�g(m))− Ad∗gμ(m) we have

σ(gh) = μ(�gh(m))− Ad∗ghμ(m)

= μ((�g ◦�h)(m))− (Ad∗g ◦ Ad∗h)(μ(m))

= μ(�g(�h(m)))− Ad∗g (Ad∗h(μ(m)))

= μ(�g(�h(m)))− Ad∗g (μ(�h(m)))

+Ad∗g (μ(�h(m)))− Ad∗g (Ad∗hμ(m))

= σ(g)+ Ad∗g (μ(�h(m))− Ad∗hμ(m))

= σ(g)+ Ad∗gσ (h)

as required.

Proposition 3.4 Let � be a symplectic action of a Lie group G on a symplectic
manifold (M,ω) which admits a momentum mapping μ. Let σ be a one-cocycle.
Define a map

� : G× g∗ → g∗

by

�(g, α) = Ad∗gα + σ(g).

Then the map � is an action and the momentum mapping is equivariant with respect
to this action.

Proof First we need to check that the conditions of an action are satisfied. From the
definition

σ(g) = μ(�g(m))− Ad∗gμ(m),

we have

σ(e) = μ(�e(m))− Ad∗e μ(m)

= μ(m)− μ(m) = 0
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since Ad∗e is the identity map. Thus

�(e, α) = Ad∗e α + σ(e) = α,

i.e.

�(e, α) = α.

Using the cocycle identity (3.1) above we have

�(gh, α) = Ad∗ghα + σ(gh)

= Ad∗g (Ad∗hα)+ σ(g)+ Ad∗gσ (h)
= Ad∗g (Ad∗hα + σ(h))+ σ(g)

= σ(g)+ Ad∗g (�(h, α))

= �(g,�(h, σ )).

Hence � is an action. To see that the momentum mapping is equivariant with
respect to this action, we have

μ(�g(m))−�(g,μ(m)) = μ(�g(m))− (Ad∗gμ(m)+ σ(g))

= (μ(�g(m))− Ad∗gμ(m))− σ(g)

= σ(g)− σ(g) = 0.

Thus,

μ(�g(m)) = �(g,μ(m))

This concludes the proof of the proposition. �
Note that the action

� : G× g∗ → g∗

is an affine action. That it is equivariant is illustrated by the following example.

Example 3.5 Consider the Lie group G = R4 with coordinates (η1, η2, η3, η4)

under addition. Let M = R4 be the symplectic manifold with coordinates
(x1, x2, x3, x4) with symplectic structure ω = dx1 ∧ dx3 + dx2 ∧ dx4. Let � :
G×M → M be the action of G on M defined by

�(η1,η2,η3,η4) (x1, x2, x3, x4) = (x1 + η1, x2 + η2, x3 + η3, x4 + η4 )

We shall first obtain the momentum mapping for this action. Let ξ =
(ξ1, ξ2, ξ3, ξ4) ∈ TeG, then the infinitesimal generator of the action is given by:
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ξR4 (x1, x2, x3, x4) = d
dt
�(exp tξ1,exp tξ2,exp tξ3,exp tξ4) (x1, x2, x3, x4) |t=0

= d
dt

(x1 + exp tξ1, x2 + exp tξ2, x3 + exp tξ3, x4

+ exp tξ4) |t=0

= (ξ1, ξ2, ξ3, ξ4) .

From the relation Xμ̂ξ
= ξM , we get

Xμ̂ξ
= ξ1

∂

∂x1
+ ξ2

∂

∂x2
+ ξ3

∂

∂x3
+ ξ4

∂

∂x4
.

Since ω = dx1 ∧ dx3 + dx2 ∧ dx4, we have

iξR4ω = i
ξ1

∂
∂x1
+ξ2

∂
∂x2
+ξ3

∂
∂x3
+ξ4

∂
∂x4

(dx1 ∧ dx3 + dx2 ∧ dx4)

= ξ1dx3 − ξ3dx1 + ξ2dx4 − ξ4dx2.

Thus

dμ̂ξ (x1, x2, x3, x4) = ξ1dx3 − ξ3dx1 + ξ2dx4 − ξ4dx2.

Hence,

μ̂ξ (x1, x2, x3, x4) = ξ1x3 − ξ3x1 + ξ2x4 − ξ4x2.

Therefore, the momentum mapping is

μ(x1, x2, x3, x4) · (ξ1, ξ2, ξ3, ξ4) = ξ1x3 − ξ3x1 + ξ2x4 − ξ4x2.

To obtain its one cocycle we use the definition

σ(g) = μ(�g(m))− Ad∗gμ(m).

But since G = R4 under addition is commutative, we have Ad∗g = id for all g ∈ G.
It follows that

σ̂ξ̄ (η̄) = μ(�η̄(x̄) · ξ̄ − μ(x̄) · ξ̄
= ξ1η3 − ξ3η1 + ξ2η4 − ξ4η2.

where ξ̄ = (ξi), i = 1, 2, 3, 4, η̄ = (ηi), i = 1, 2, 3, 4. Define a map � : G×g∗ →
g∗ = (R4)∗ = R4 by

�(η1,η2,η3,η4)(α1, α2, α3, α4) = (α1 + η3, α2 + η4, α3 − η1, α4 − η2).
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Note that � is an action since

(i) �(0,0,0,0)(α1, α2, α3, α4) = (α1, α2, α3, α4).
(ii)

�(η1+γ1,η2+γ2,η3+γ3,η4+γ4)(α1, α2, α3, α4)

= (α1 + (η3 + γ3), α2 + (η4 + γ4), α3 − (η1 + γ1), α4 − (η2 + γ2))

= [(α1 + γ3)+ η3, (α2 + γ4)+ η4, (α3 − γ1)− η1, (α4 − γ2)− η2]
= �(η1,η2,η3,η4)(α1 + γ3, α2 + γ4, α3 − γ1, α4 − γ2)

= �(η1,η2,η3,η4)

(
�(γ1,γ2,γ3,γ4)(α1, α2, α3, α4)

)
.

showing � is also a homomorphism.

We shall now show that the momentum mapping is equivariant with respect to the
action � of G on g∗ and the action � of G on M . That is, μ ◦� = � ◦ μ.

Let μ(x1, x2, x3, x4) = (α1, α2, α3, α4) ∈ g∗ = (R4)∗, ξ = (ξ1, ξ2, ξ3, ξ4) ∈
g = R4, and take the standard inner product on R4.

Then

μ(�(η1,η2,η3,η4)(x1, x2, x3, x4)) · (ξ1, ξ2, ξ3, ξ4)

= μ(x1 + η1, x2 + η2, x3 + η3, x4 + η4) · (ξ1, ξ2, ξ3, ξ4)

= ξ1(x3 + η3)− ξ3(x1 + η1)+ ξ2(x4 + η4)− ξ4(x2 + η2)

= ξ1x3 − ξ3x1 + ξ2x4 − ξ4x2 + ξ1η3 − ξ3η1 + ξ2η4 − ξ4η2

= μ(x1, x2, x3, x4) · (ξ1, ξ2, ξ3, ξ4)+ ξ1η3 − ξ3η1 + ξ2η4 − ξ4η2

= (α1, α2, α3, α4) · (ξ1, ξ2, ξ3, ξ4)+ ξ1η3 − ξ3η1 + ξ2η4 − ξ4η2

= ξ1α1 + ξ2α2 + ξ3α3 + ξ4α4 + ξ1η3 − ξ3η1 + ξ2η4 − ξ4η2

= ξ1(α1 + η3)+ ξ2(α2 + η4)+ ξ3(α3 − η1)+ ξ4(α4 − η2)

= (α1 + η3, α2 + η4, α3 − η1, α4 − η2) · (ξ1, ξ2, ξ3, ξ4)

= �(η1,η2,η3,η4)(α1, α2, α3, α4) · (ξ1, ξ2, ξ3, ξ4)

= �(η1,η2,η3,η4)μ(x1, x2, x3, x4) · (ξ1, ξ2, ξ3, ξ4).

Since g = (η1, η2, η3, η4) and x = (x1, x2, x3, x4) were arbitrary, we conclude that
μ(�g(x)) = �gμ(x) for all g ∈ G, x ∈ M .

Theorem 3.6 Let � : G×M → M be a symplectic action of G on (M,ω) which
admits a momentum mapping μ : M → g∗ and let σ : G→ g∗ be the cocycle of μ.
Let the function σ̂η : G→ R be defined by σ̂η(g) = σ(g) · η.

Define also a function 
 : g× g→ R by 
(ξ, η) = dσ̂η(e) · ξ for all ξ, η ∈ g.
Then 
 is skew symmetric bilinear form on g and satisfies the Jacobi’s identity
0 = 
(ξ, [η, ξ ])+
(η, [ξ, ξ ])+
(ξ, [ξ, η]).
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Proof We first obtain an expression for 
(ξ, η). From the expression

σ̂η(g) = μ(�g(x)) · η − Ad∗gμ(x) · η
= μ̂η(�g(x))− μ̂Ad

g−1η(x).

Differentiating with respect to g at g = e in the direction of ξ ∈ g we get

dσ̂η(e) · ξ = d(μ̂η(�g(x)) · ξ − μ̂Ad
g−1η(x) · ξ)

= d
dt
μ̂η(�exp tξ (x)) |t=0 − d

dt
μ̂Adexp(−tξ )η(x) |t=0

= (iηMω) d
dt
�exp tξ (x) |t=0 − d

dt
〈Adexp(−tξ )η, μ(x)〉 |t=0

‘ = (iηMω)(ξM(x))− 〈 d
dt
Adexp(−tξ )η |t=0, μ(x)〉

= (iξM iηMω)(x)− 〈[η, ξ ], μ(x)〉
= −{μ̂ξ , μ̂η}(x)− μ̂[η,ξ ](x)

= −{μ̂ξ , μ̂η}(x)+ μ̂[ξ,η](x)

Thus,


(ξ, η) = −{μ̂ξ , μ̂η} + μ̂[ξ,η] (3.2)

But both the Poisson bracket {μ̂ξ , μ̂η} and the Lie bracket [ξ, η] are skew symmetric
bilinear. This implies that the right side of (3.1) is skew symmetric and bilinear.
Therefore, 
(ξ, η) is skew symmetric and bilinear form on g. The right side also
satisfies Jacobi’s identity which implies that 
(ξ, η) also satisfies the Jacobi’s
identity. �
Example 3.7 We shall use the previous example to obtain an expression for

(ξ, η). Let ξ, η ∈ g where ξ = (ξ1, ξ2, ξ3, ξ4) and η = (η1, η2, η3, η4). We have
already seen, for example, that

ξR4(x1, x2, x3, x4) = ξ1
∂

∂x1
+ ξ2

∂

∂x2
+ ξ3

∂

∂x3
+ ξ4

∂

∂x4
.

From the commutation relation

{μ̂ξ , μ̂η} = μ̂[ξ,η] −
(ξ, η).
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Now, evaluating the left side

{μ̂ξ , μ̂η} = −iξM iηMω

= −i
ξ1

∂
∂x1
+ξ2

∂
∂x2
+ξ3

∂
∂x3
+ξ4

∂
∂x4

i
η1

∂
∂x1
+η2

∂
∂x2
+η3

∂
∂x3
+η4

∂
∂x4

(dx1 ∧ dx3 + dx2 ∧ dx4)

= −i
ξ1

∂
∂x1
+ξ2

∂
∂x2
+ξ3

∂
∂x3
+ξ4

∂
∂x4

(i
η1

∂
∂x1
+η2

∂
∂x2
+η3

∂
∂x3
+η4

∂
∂x4

(dx1 ∧ dx3 + dx2 ∧ dx4))

= −i
ξ1

∂
∂x1
+ξ2

∂
∂x2
+ξ3

∂
∂x3
+ξ4

∂
∂x4

(η1dx3 − η3dx1 + η2dx4 − η4dx2)

= −(ξ3η1 − ξ1η3 + ξ4η2 − ξ2η4).

For the right side, note that since G = R4 is commutative under addition [ξ, η] = 0.
Therefore, we have

−(ξ3η1 − ξ1η3 + ξ4η2 − ξ2η4) = −
(ξ, η).

Thus


(ξ, η) = ξ3η1 − ξ1η3 + ξ4η2 − ξ2η4.

3.2 The Orbits of an Affine Action

Proposition 3.8 Let G be a Lie group, g its Lie algebra, and g∗ the dual of its Lie
algebra. Let � : G × g∗ → g∗ defined by �(g, α) = Ad∗gα + σ(g) be the affine
action of G on g∗. Then the orbit G · β = {�(g, β) : g ∈ G} is a symplectic
manifold with the 2-form given by

ωβ(ξg∗(v), ηg∗(v)) = −β[ξ, η] +
(η, ξ).

Proof We shall first show that the orbit Oβ = {�(g, β) : g ∈ G} is a manifold.
Thereafter we shall define a symplectic structure on it.

Let Oβ = {�(g, β) : g ∈ G} ⊂ g∗ be the orbit. The isotropy group of β is given
by

Gβ = {g ∈ G : �(g, β) = β}.

This is a closed subgroup of G since if gn is a sequence in Gβ which converges to
g ∈ G then we have
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β = lim
n→∞�(gn, β)

= �( lim
n→∞ gn, β)

= �(g, β).

The second equality holds because � is an action and so it is smooth. This shows
that g ∈ Gβ .

Now we show that Oβ
∼= G/Gβ . To this end, let us define a map

ϕ : Oβ → G/Gβ

by

ϕ(η) = gGβ

for η ∈ Oβ , where η = �(g, β) for some g ∈ G.
The map ϕ is well-defined since if ϕ(η) = hGβ also, then we have

�(g, β) = �(h, β)

so that

�(h−1, �(g, β)) = β.

Hence, �(h−1g, β) = β, which implies that h−1g ∈ Gβ and consequently

gGβ = hGβ.

This map ϕ is injective. To see this let η = �(g, β), ξ = �(h, β) and gGβ = hGβ

for h, g ∈ G and η, ξ ∈ Oβ . Then h−1g ∈ Gβ so that �(h−1g, β) = β. This
implies that �(h−1, �(g, β)) = β. It follows that �(g, β) = �(h, β) so that η =
ξ .

Furthermore, the map is surjective since if

gGβ ∈ G/Gβ,

then

η = �(g, β) ∈ Oβ

gives

ϕ(η) = gGβ
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by construction.
Thus, the map ϕ is an isomorphism. �

Proposition 3.9 Suppose that η ∈ Oβ so that η = �(h, β) for some h ∈ G, then
the isotropy groups Gβ and Gη are conjugates.

Proof We shall change the notation a bit and write �g(β) for �(g, β). We have
already seen that � is an action and so, it is a homomorphism

�(gh, β) = �(g,�(h, β)).

Next, we define a map γ : G/Gβ → G/Gη by

[g]β �→ [hgh−1]η.

Then γ is a well-defined isomorphism. To see this, let x ∈ Gβ so that �x(β) = β.
Since η = �h(β), we have

�h ◦�x ◦�h−1(η) = �h ◦�x ◦�h−1(�(h, β))

= �h ◦�x(�(hh−1, β))

= �h ◦�x(β)

= �(h,�(x, β))

= �(h, β)

= η.

Since x ∈ Gβ was arbitrary, it follows that �hGβ�h−1 is a subgroup of Gη. Taking
β = �(h−1, η) gives the reverse inclusion. Thus Gη = �hGβ�h−1 .

Hence γ is an isomorphism.
We now write the orbit of � through β as

G · β = G/Gβ
∼= Oβ.

From the discussion above, it is clear that the orbit G · β does not depend on the
choice of the element β in its orbit. We already have that Gβ is a closed subgroup
of G. Thus G · β = G/Gβ is a manifold.

We shall now define a symplectic structure on the orbit of the action � through β.
Let ξ ∈ g. We define the vector field on g∗, called the infinitesimal generator of

the action to be:
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ξg∗(β) = d
dt
�(exp tξ , β) |t=0

= d
dt
[Ad∗exp tξ β + σ(exp tξ )] |t=0

= d
dt
Ad∗exp tξ β |t=0 + d

dt
σ (exp tξ ) |t=0

= d
dt
Ad∗exp tξ β |t=0 +dσ(e) · ξ

= d
dt
Ad∗exp tξ β |t=0 +dσ̂ξ (e)

If now η ∈ g, then we have

(ξg∗(β))η = d
dt
(Ad∗exp tξ β)η |t=0 +dσ̂ξ (e) · η

= β( d
dt
Adexp(−tζ )η) |t=0 +∑

(η, ξ)

= β(−[ξ, η])+∑
(η, ξ).

To compute the tangent space to the orbit G · β at β, for ξ ∈ g let x(t) = exp tξ be
a curve in G which is tangent to ξ at t = 0, then β(t) = �(x(t), β) is the curve in
G · β such that β(0) = β since σ(e) = 0.

If η ∈ g, then

〈β(t), η〉 = 〈�(x(t), β), η〉
= 〈Ad∗x(t)β + σ(x(t)), η〉
= 〈Ad∗exp tξ β, η〉 + 〈σ(exp tξ ), η〉

where 〈·, ·〉 is the natural pairing of g and its dual g∗.
Differentiating with respect to t at t = 0 gives
〈β ′(0), η〉 = 〈ad∗ξ β, η〉 +

∑
(η, ξ).

This implies that

β ′(0) = ad∗ξ β +
∑

(·, ξ).

Therefore, the tangent space to G · β at β is given by

TβG · β = {ad∗ξ β +
∑

(·, ξ) : ξ ∈ g}.

Consider now the function ωβ : g× g→ R defined by

ωβ(ξ, η) = β(−[ξ, η])+
∑

(η, ξ).
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Clearly ωβ is skew symmetric and bilinear on g since both the Lie bracket and∑
(·, ·) are skew symmetric bilinear.

kerωβ = {ξ ∈ g : ωβ(ξ, η) = 0,∀η ∈ g}
= {ξ ∈ g : β(−[ξ, η] +∑

(η, ξ) = 0,∀η ∈ g}
= LieGβ

Now, for ξ ∈ g let ξ̃ denote the vector field on g∗ generated by ξ . That is,

ξ̃β = ξ̃ (β)

= d
dt
�(exp tξ , β) |t=0 .

Then for β ∈ g∗, define the function
�β : TβG · β × TβG · β → R by

�β(ξ̃ , η̃) = ωβ(ξ, η)

for all ξ, η ∈ g.

Theorem 3.10 �β defined above is a well-defined 2-form on G · β, the orbit of the
affine action � : G× g∗ → g∗ through β.

Proof First note that if ζ ∈ LieGβ , then �β(ζ̃ , ξ̃ ) = ωβ(ζ, ξ) = 0 for all ξ ∈ g.
Now let ξ, η ∈ g. If ζ ∈ LieGβ , then

�β(ξ̃ + ζ̃ , η̃) = ωβ(ξ + ζ, η)

= ωβ(ξ, η)+ ωβ(ζ, η) since ωβ is bilinear.

= ωβ(ξ, η) since ωβ(ζ, η) = 0

= �β(ξ̃ , η̃).

Thus �β does not depend on the choice of ξ, η ∈ g. Hence �β is well-defined.
Since locally ωβ is skew symmetric, bilinear on the tangent space TeG, it follows
that �β is skew symmetric bilinear on the tangent space TβG ·β. It remains to show
that �β is non-degenerate and closed on G · β.

To prove non-degeneracy let ξ ∈ g be such that ξ �∈ LieGβ , we must show that
there exists η ∈ g such that �β(ξ̃ , η̃) �= 0

But now if η ∈ g and ξ �∈ LieGβ then

�β(ξ̃ , η̃) = ωβ(ξ, η) �= 0
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if and only if

ξ �∈ kerωβ = LieGβ.

This shows that if ξ �∈ LieGβ , there exists η ∈ g such that �β(ξ̃ , η̃) �= 0. Hence
�β is non-degenerate. To show that �β is closed we use the formula

dω(X, Y,Z) = (LXω)(Y,Z)− (LYω)(X,Z)+ (LZω)(X, Y )

+ω(X, [Y,Z])− ω(Y, [X,Z])+ ω(Z, [X, Y ])

whose proof can be found in [3] on page 53.
Let ξ, η, ζ ∈ g, then

d�β(ξ̃ , η̃, ζ̃ ) = dωβ(ξ, η, ζ )

= (Lξωβ)(η, ζ )− (Lηωβ)(ξ, ζ )+ (Lζωβ)(ξ, η)+ ωβ(ξ, [η, ζ ])
− ωβ(η, [ξ, ζ ])+ ωβ(ζ, [ξ, η]).

Repeated application of Jacobi identity then shows that d�β = 0 which means that
�β is closed.

We have therefore shown that if the affine action � : G× g∗ → g∗ defined by

�(g, α) = Ad∗gα + σ(g)

is used in place of the coadjoint action, then the orbit G ·α is a symplectic manifold
with the 2-form given by

ωα(ξg∗(v), ηg∗(v)) = −α[ξ, η] +
∑

(η, ξ).

4 Towards a Generalization

In Theorem 3.6 above and other related results on conservation laws which are not
explicitly mentioned in this text, the function 
 or other identities make use of
the canonical Poisson bracket. It would be worth extending them using a deformed
Poisson bracket that looks more general and is defined as follows.

Let M be a C∞ manifold, and let

{f, g}p = pr

{
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q

}
,



Symplectic Affine Action and Momentum with Cocycle 133

where f and g lie in C∞(M), q, p are canonical coordinates of points of M , r is
a nonnegative integer. It is easily seen that the case p = 1 yields the usual Poisson
bracket.

Proposition 4.1 Let M be a C∞ manifold. Then M endowed with {., .}p on
C∞(M) is a Poisson manifold.

Proof For all f, g, h, f1, f2, g1, g2 ∈ C∞(M), for all αi ∈ C, i = 1, 2,

(i) {., .}p : C∞(M)× C∞(M) −→ C∞(M) is a bilinear mapping. For,
∂

∂t
being

a linear operator, it is easily seen that

{α1f1 + α2f2, g}p = α1{f1, g}p + α2{f2, g}p
and

{f, α1g1 + α2g2}p = α1{f, g1}p + α2{f, g2}p
(ii) {., .}p is skew-symmetric as it can be seen that {f, f }p = 0.

(iii) {., .}p satisfies the Jacobi identity, i.e.

{f, {g, h}p}p + {g, {h, f }p}p + {h, {f, g}p}p = 0

as by the straightforward calculation below:
We have

{f, {g, h}p}p = pr
[
∂f
∂q

∂{g,h}p
∂p

− ∂f
∂p

∂{g,h}p
∂q

]

= pr
[
∂f
∂q

∂
∂p

(
pr

(
∂g
∂q

∂h
∂p
− ∂g

∂p
∂h
∂q

))

− ∂f
∂p

∂
∂q

(
pr

(
∂g
∂q

∂h
∂p
− ∂g

∂p
∂h
∂q

))]

= pr
[
∂f
∂q

(
rpr−1

(
∂g
∂q

∂h
∂p
− ∂g

∂p
∂h
∂q

)
+ pr

(
∂2g
∂p∂q

∂h
∂p
+ ∂g

∂q
∂2h
∂p2

−
(
∂2g

∂p2
∂h
∂q
+ ∂g

∂p
∂2h
∂p∂q

)))

− ∂f
∂p

(
pr

(
∂2g

∂q2
∂h
∂p
+ ∂g

∂q
∂2h
∂q∂p

−
(

∂2g
∂q∂p

∂h
∂q
+ ∂g

∂p
∂2h
∂q2

)))]

= rp2r−1
(
∂f
∂q

(
∂g
∂q

∂h
∂p
− ∂g

∂p
∂h
∂q

))
+ p2r

(
∂f
∂q

∂2g
∂p∂q

∂h
∂p
+ ∂f

∂q
∂g
∂q

∂2h
∂p2

− ∂f
∂q

∂2g

∂p2
∂h
∂q
− ∂f

∂q
∂g
∂p

∂2h
∂p∂q

− ∂f
∂p

∂2g

∂q2
∂h
∂p

− ∂f
∂p

∂g
∂q

∂2h
∂q∂p

+ ∂f
∂p

∂2g
∂q∂p

∂h
∂q
+ ∂f

∂p
∂g
∂p

∂2h
∂q2

)
. (∗)
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Similarly,

{g, {h, f }p}p = rp2r−1
(
∂g
∂q

(
∂h
∂q

∂f
∂p
− ∂h

∂p
∂f
∂q

))
+ p2r

(
∂g
∂q

∂2h
∂p∂q

∂f
∂p
+ ∂g

∂q
∂h
∂q

∂2f

∂p2

− ∂g
∂q

∂2h
∂p2

∂f
∂q
− ∂g

∂q
∂h
∂p

∂2f
∂p∂q

− ∂g
∂p

∂2h
∂q2

∂f
∂p
− ∂g

∂p
∂h
∂q

∂2f
∂q∂p

+ ∂g
∂p

∂2h
∂q∂p

∂f
∂q
+ ∂g

∂p
∂h
∂p

∂2f

∂q2

)
. (∗∗)

and

{h, {f, g}p}p = rp2r−1
(
∂h
∂q

(
∂f
∂q

∂g
∂p
− ∂f

∂p
∂g
∂q

))
+ p2r

(
∂h
∂q

∂2f
∂p∂q

∂g
∂p
+ ∂h

∂q
∂f
∂q

∂2g

∂p2

− ∂h
∂q

∂2f

∂p2
∂g
∂q
− ∂h

∂q
∂f
∂p

∂2g
∂p∂q

− ∂h
∂p

∂2f

∂q2
∂g
∂p
− ∂h

∂p
∂f
∂q

∂2g
∂q∂p

+ ∂h
∂p

∂2f
∂q∂p

∂g
∂q
+ ∂h

∂p
∂f
∂p

∂2g

∂q2

)
. (∗∗)

Adding the three expressions (*), (**), and (***) taking note of the equality of
mixed partials, the terms with coefficient p2r cancel out. We remain with

{f, {g, h}p}p + {g, {h, f }p}p + {h, {f, g}p}p
= rp2r−1

[
∂f
∂q

(
∂g
∂q

∂h
∂p
− ∂g

∂p
∂h
∂q

)
+ ∂g

∂q

(
∂h
∂q

∂f
∂p
− ∂h

∂p
∂f
∂q

)

+ ∂h
∂q

(
∂f
∂q

∂g
∂p
− ∂f

∂p
∂g
∂q

)
]

Expanding and adding gives the desired results.
Thus, the Jacobi identity holds.

(iii) Finally, {., .} is a derivation in each variable. That is,

{fg, h}p = {f, h}pg + f {g, h}p
which ends the proof. �

Proposition 4.2 Let M be a Poisson manifold and H ∈ C∞(M). There is a unique
vector field XH on M , so-called Hamiltonian vector field with Hamiltonian function
H such that

XH [g]p = {g,H }p,

for all g ∈ C∞(M). Thus,

{f, g}p = Xg[f ]p = −Xf [g]p.

Momentum mapping was introduced by Souriau for the purposes of reduction of
mechanical systems with symmetries. Therefore, such a deformed Poisson bracket



Symplectic Affine Action and Momentum with Cocycle 135

introduces a new formalism for Hamiltonian mechanics, a setting that goes beyond
the scope of this paper.
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Some Difference Integral Inequalities

G. Bangerezako and J. P. Nuwacu

Dedicated to Prof. Hounkonnou M N, for his 60th birthday.

Abstract We establish difference versions of the classical integral inequalities
of Hölder, Cauchy-Schwartz, Minkowski and integral inequalities of Grönwall,
Bernoulli and Lyapunov based on the Lagrange method of linear difference equation
of first order.

Keywords Hölder · Cauchy-Schwartz · Minkowski · Grönwall · Bernoulli and
Lyapunov inequalities · Lagrange method

1 Introduction

Considering the most general divided difference derivative [5, 6],

Df (t (s)) = f (t (s+ 1
2 ))−f (t (s− 1

2 ))

t (s+ 1
2 )−t (s− 1

2 )
, (1)

admitting the property that if f (t) = Pn(t (s)) is a polynomial of degree n in t (s),
then Df (t (s)) = P̃n−1(t (s)) is a polynomial in t (s) of degree n − 1, one is led
to the following most important canonical forms for t (s) in order of increasing
complexity:

t (s) = t (0); (2)

t (s) = s; (3)
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t (s) = qs; (4)

t (s) = qs + q−s

2
, q ∈ C, s ∈ Z. (5)

When the function t (s) is given by (2)–(4), the divided difference derivative (1)
leads to the ordinary differential derivative Df (t) = d

dt
f (t), finite difference

derivative

�f (s) = f (s + 1)− f (s) = (e
d
ds − 1)f (s) (6)

and q-difference derivative (or Jakson derivative [4])

Dqf (t) = f (qt)− f (t)

qt − t
= q

d
dt − 1

qt − t
f (t) (7)

respectively. When x(s) is given by (5), the corresponding derivative is usually
referred to as the Askey-Wilson first order divided difference operator [1] that one
can write:

Df (x(z)) = f (x(q
1
2 z))−f (x(q

− 1
2 z))

x(q
1
2 z)−x(q

− 1
2 z)

, (8)

where x(z) = z+z−1

2 , having in mind that z = qs .
The calculus related to the differential derivative, the continuous or differential

calculus, is clearly the classical one. The one related to the derivatives (6)–(8)
(difference, q-difference and q-nonuniform difference respectively) is referred to
as the discrete calculus. Its interest is two folds: On the one hand it generalizes the
continuous calculus, and on the other hand it uses discrete variable.

This work is concerned in the difference calculus. We particularly aim to
establish difference versions of the well-known in differential calculus, integral
inequalities of Hölder, Cauchy-Schwartz, Minkowski, Grönwall, Bernoulli, and
Lyapunov. We will note that the raised inequalities were proved in [3] for a more
general difference operator than (6), but one will remark that except classical
recipes used for the inequalities of classical analysis (Hölder, Cauchy-Schwartz
and Minkowski), our approach here is essentially different. It is essentially based
on the Lagrange method and it is so that it can be extended to the more general
derivative (7) or even (8) (see [2]), the latter being, at our best knowledge, the
largest one having the mentioned property of sending a polynomial of degree n

in a polynomial of degree n− 1.
In the following lines, we first introduce basic concepts of difference calculus

and linear first order difference equations necessary for the sequel, and then study
the mentionned integral inequalities.
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2 Preliminaries

2.1 Difference Derivative and Integral

Consider again the difference derivative that is the derivative related to the grid
in (2):

�F(s) = F(s + 1)− F(s) = f (s) (1)

Basing on this derivative, one defines the integration that is the inverse of the
differentiation operation as follows:

∫ s

s0
f (s) =def

∑s−1
i=s0

f (i). (2)

The defined integral admits the following properties:

Fundamental Principle of Analysis One easily verifies that

(i) �
(∫ s

s0
f (s)d�s

)
= �

(∑s−1
s0

f (i)
)
= f (s), (3)

(ii)
∫ s

s0
(�F(s)) d�s =∑s−1

s0
�F(i) = F(s)− F(s0). (4)

Integration by Parts Integrating the two members of the equality

f (s)�g(s) = �(f (s)g(s))− g(s + 1)�f (s) (5)

and applying (4), one gets

∫ s

s0
f (s)�g(s)d�s = [f (s)g(s)]sso −

∫ s

s0
g(s + 1)�f (s)d�s, (6)

which is the integration by parts formula.

Positivity of the Integral We finally remark that when f(s) is positive, the integral
in (2) is clearly positive, which gives the following property and its corollary useful
for the sequel.

Property 2.1 If f (s)�0 and s1 < s2, then

∫ s2

s1

f (s)d�s�o. (7)

Corollary 2.1 If f (s)�g(s) and s1 < s2, then

∫ s2
s1

f (s)d�s�
∫ s2
s1

g(s)d�s. (8)
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2.2 Linear Difference Equations of First Order

A linear difference equation of first order can be written as

�y(s) = a(s)y(s + 1)+ b(s) (9)

or

�y(s) = a(s)y(s)+ b(s). (10)

Consider first the homogenous equation corresponding to (9):

�y(s) = a(s)y(s + 1). (11)

Equation (11) gives

y(s + 1) = ( 1
1−a(s)

)y(s), (12)

which by recursion leads to

y(s) = Ea(n0, n)y(n0), (13)

where

Ea(n0, n) =def

{∏s−1
i=s0

1
1−a(i)

, s > s0

1, s�s0
(14)

is a difference version of the exponential function (since Eq. (11) is a difference ver-
sion of the differential equation, y′(x) = a(x)y(x)). Consider now the homogenous
equation corresponding to (10):

�y(s) = a(s)y(s). (15)

Equation (15) gives

y(s + 1) = (1+ a(s))y(s), (16)

which by recursion leads to

y(s) = ea(n0, n)y(n0), (17)
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where

ea(n0, n) =def

{∏s−1
i=s0

(1+ a(i)), s > s0

1, s�s0
(18)

is another difference version of the exponential function. Clearly, we have

Theorem 2.1

ea(n0, n).E−a(n0, n) = e−a(n0, n).Ea(n0, n) = 1. (19)

More generally, we have

Theorem 2.2 If

�y(s) = a(s)y(s + 1),

�z(s) = −a(s)z(s), (20)

with

y(s0)z(s0) = 1, (21)

then

y(s)z(s) = 1. (22)

Prof. �(y(s)z(s)) = y(s + 1)�z(s) + z(s)�y(s) = y(s + 1)(−a(s))z(s) +
z(s)a(s)y(s+1) = 0. This implies that y(s)z(s) = const., which by (21) gives (22),
and the theorem is proved. �
Nonhomogenous Cases Consider first the equation

�y(s) = a(s)y(s + 1)+ b(s). (23)

Solving (23) by the method of variation of constants or method of Lagrange, we
suppose that

�y0(s) = a(s)y0(s + 1) (24)

and search the solution of (23) as

y(s) = c(s)y0(s) (25)

where c(s) is to be determined. Placing (25) in (23) and using (24), we get

y0(s)�c(s) = b(s), (26)
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or

c(s) = c +∑s−1
i=s0

y−1
0 (i)b(i). (27)

Placing this in (25), we get

y(s) = y0(s)c + y0(s)
∑s−1

i=s0
y−1

0 (i)b(i), (28)

with c = y−1
0 (s0)y0(s0) (we suppose that

∑s2
i=s1

h(i) = 0, if s1 > s2), or
equivalently

y(s) = φ(s, s0)
[
y(s0)+∑s−1

i=s0
φ(s0, i)b(i)

]
, (29)

where φ(a, b) = y0(a)y
−1
0 (b).

Consider now the nonhomogenous equation

�y(s) = a(s)y(s)+ b(s). (30)

Here also, solving the equation by the method of Lagrange, we get

y(s) = y0(s)c + y0(s)
∑s−1

i=s0
y−1

0 (i + 1)b(i), (31)

where

�y0(s) = a(s)y0(s) (32)

and c = y−1
0 (s0)y(s0), or equivalently,

y(s) = φ(s, s0)
[
y(s0)+∑s−1

i=s0
φ(s0, i + 1)b(i)

]
. (33)

3 Difference Integral Inequalities

In this section, we deal with the main content of the work, that is we establish the
mentioned integral inequalities. In the first two subsections, where we prove the
Hölder, Cauchy-Schwartz, and Minkowski inequalities, we refer to classical recipes
currently used in differential situations. In the last three sections, where we prove
the Grönwall, Bernoulli, and Lyapunov inequalities, we mainly rely on the method
of variation of constants of Lagrange.
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3.1 Hölder and Cauchy-Schwartz Inequalities

Theorem 3.1 (Hölder Inequality) Let a, b ∈ Z. For all functions f, g : [a, b] ∩
Z −→ R, we have

∫ b

a

|f (s)g(s)|d�s�
(∫ b

a

|f (s)|αd�s

) 1
α
(∫ b

a

|g(s)|βd�s

) 1
β

, (1)

with 1
α
+ 1

β
= 1.

Proof For A,B ∈ [0,∞[, by the concavity of the logarithm function, we have

log

⎛

⎝A
1
α

α
+ B

1
β

β

⎞

⎠� log(Aα)

α
+ log(Bβ)

β
= log(AB). (2)

which leads to

A
1
α B

1
β �A

α
+ B

β
. (3)

Now let

A(s) = |f (s)|α
∫ b

a
|f (s)|αd�s

;B(s) = |g(s)|β
∫ b

a
|g(s)|βd�s

(4)

with
(∫ b

a

|f (s)|αd�s

)(∫ b

a

|g(s)|βd�s

)
�= 0, (5)

since
∫ b

a
|f (s)|αd�s = 0 or

∫ b

a
|g(s)|βd�s = 0 implies that f (s) ≡ 0 or g(s) ≡ 0

and (1) becomes an identity.
Next, substituting A and B in (3) and integrating from a to b, considering

Corollary 2.1, one gets
∫ b

a

|f (s)|
(∫ b

a
|f (s)|αd�s

) 1
α

|g(s)|
(∫ b

a
|g(s)|βd�s

) 1
β

d�s

�
∫ b

a

{
1

α

|f (s)|α
∫ b

a
|f (s)|αd�s

+ 1

β

|g(s)|β
∫ b

a
|g(s)|βd�s

}
d�s

= 1

α
+ 1

β
= 1, (6)

which gives directly the Hölder inequality and the theorem is proved. �



144 G. Bangerezako and J. P. Nuwacu

If we set α = β = 2 in the Hölder inequality (1), we get the Cauchy-Schwartz
inequality.

Corollary 3.1 (Cauchy-Schwartz Inequality) Let a, b ∈ Z. For all functions
f, g : [a, b] ∩ Z −→ R, we have

∫ b

a

|f (s)g(s)|d�s�

√(∫ b

a

|f (s)|2d�s

)(∫ b

a

|g(s)|2d�s

)
. (7)

Next, we can use the Hölder inequality to prove the Minkowski one.

3.2 Minkowski Inequality

Theorem 3.2 (Minkowski Inequality) Soient a, b ∈ Z. For all functions f, g :
[a, b] ∩ Z −→ R, we have

(∫ b

a

|f (s)+ g(s)|d�s

) 1
α

�
(∫ b

a

|f (s)|αd�s

) 1
α

+
(∫ b

a

|g(s)|αd�s

) 1
α

. (8)

Proof We apply the Hölder inequality to obtain

∫ b

a

|f (s)+ g(s)|αd�s =
∫ b

a

|f (s)+ g(s)|α−1|f (s)+ g(s)|d�s

�
∫ b

a

|f (s)+ g(s)|α−1|f (s)|d�s +
∫ b

a

|f (s)+ g(s)|α−1|g(s)|d�s

�
(∫ b

a

|f (s)+ g(s)|(α−1)βd�s

) 1
β

⎡

⎣
(∫ b

a

|f (s)|αd�s

) 1
α

+
(∫ b

a

|g(s)|αd�s

) 1
α

⎤

⎦ .

Dividing the two members of the inequality by
(∫ b

a
|f (s)+ g(s)|(α−1)βd�s

) 1
β

,

with (α − 1)β = α, we get

(∫ b

a

|f (s)+ g(s)|αd�s

)1− 1
β

�

⎡

⎣
(∫ b

a

|f (s)|αd�s

) 1
α

+
(∫ b

a

|g(s)|αd�s

) 1
α

⎤

⎦ ,

which is the Minkowski inequality since 1− 1
β
= 1

α
. �
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3.3 Grönwall Inequality

Let’s prove first the following:

Lemma 3.1 Given y, f, a real valued functions defined on Z, with a(s)�0. Sup-
pose that y0(s) is the solution of �y0(s) = a(s)y0(s), such that y0(s0) = 1.

In that case, if

�y(s)�a(s)y(s)+ f (s) (9)

for all s ∈ Z, then

y(s)�y0(s)y(s0)+ y0(s)

∫ s

s0

y−1
0 (s + 1)f (s)d�s. (10)

Proof Let y0(s) be the solution of the homogenous equation

�y0(s) = a(s)y0(s). (11)

Searching the solution y(s) of (9) verifying (10), by the method of variation of
constants

y(s) = c(s)y0(s), (12)

where c(s) is unknown, we place (12) in (9), considering (11) and get

y0(s + 1)�c(s)�f (s). (13)

Given the fact that a(s)�0, we have that y0(s) > 0 and the relation (13) simplifies
in

�c(s)�y−1
0 (s + 1)f (s). (14)

Integrating the two members of the inequality from s0 to s, we get

c(s)− c(s0)�
∫ s

s0

y−1
0 (s + 1)f (s)d�s. (15)

Since y0(s0) = 1, (12) gives c(s0) = y(s0), and (15) simplifies in

c(s)�y(s0)+
∫ s

s0

y−1
0 (s + 1)f (s)d�s. (16)
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Hence

c(s)y0(s)�y0(s)

[
y(s0)+

∫ s

s0

y−1
0 (s + 1)f (s)d�s

]
, (17)

which gives the expected result:

y(s)�y0(s)y(s0)+ y0(s)

∫ s

s0

y−1
0 (s + 1)f (s)d�s.

�
Considering the Theorem 2.1, we obtain the following

Corollary 3.2 If the functions y, f, a verify the conditions of Lemma 3.1, then

y(s)�y(s0)ea(s0, s)+ ea(s0, s)

∫ s

s0

E−a(s0, s + 1)f (s)d�s.

Lemma 3.2 Given y, f, a real valued functions defined on Z, with a(s)�0.
Suppose that y0(s) is the solution of �y0(s) = a(s)y0(s+ 1), such that y0(s0) =

1.
In that case, if

�y(s)�a(s)y(s + 1)+ f (s) (18)

for all s ∈ Z, then

y(s)�y0(s)y(s0)+ y0(s)

∫ s

s0

y−1
0 (s)f (s)d�s (19)

Proof Let y0(s) be the solution of the homogenous equation

�y0(s) = a(s)y0(s + 1). (20)

Searching the solution y(s) of (18) verifying (19), by the method of variation of
constants

y(s) = c(s)y0(s), (21)

where c(s) is unknown, we place (21) in (18), considering (20) and get

y0(s)�c(s)�f (s). (22)

Given the fact that a(s)�0, we have that y0(s) > 0 and the relation (22) simplifies
in
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�c(s)�y−1
0 (s)f (s). (23)

Integrating the two members of the inequality from s0 to s, we get

c(s)− c(s0)�
∫ s

s0

y−1
0 (s)f (s)d�s. (24)

Since y0(s0) = 1, (21) gives c(s0) = y(s0), and (24) simplifies in

c(s)�y(s0)+
∫ s

s0

y−1
0 (s)f (s)d�s. (25)

Hence

c(s)y0(s)�y0(s)

[
y(s0)+

∫ s

s0

y−1
0 (s)f (s)d�s

]
, (26)

which gives the expected result:

y(s)�y0(s)y(s0)+ y0(s)

∫ s

s0

y−1
0 (s)f (s)d�s.

�
For the same reasons as the Corollary 3.2, we obtain the following:

Corollary 3.3 If the functions y, f, a verify the conditions of Lemma 3.2, then

y(s)�y(s0)Ea(s0, s)+ Ea(s0, s)

∫ s

s0

e−a(s0, s)f (s)d�s.

We can now prove the following:

Theorem 3.3 (Grönwall Inequality) Let y, f, a be real valued functions defined
on Z, with a(s)�0.

Suppose that y0(s) is the solution of �y0(s) = a(s)y0(s), such that y0(s0) = 1.
In that case if

y(s)�f (s)+
∫ s

s0

y(s)a(s)d�s, (27)

then

y(s)�f (s)+ ea(s0, s)

∫ s

s0

a(s)f (s)E−a(s0, s + 1)d�s. (28)
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Proof Defining

v(s) =
∫ s

s0

y(s)a(s)d�s, (29)

(27) gives

y(s)�f (s)+ v(s), (30)

and

�v(s) = y(s)a(s)�f (s)a(s)+ a(s)v(s). (31)

By the Corollary 3.2 of Lemma 3.1, the inequality (31) leads to

v(s)�v(s0)ea(s0, s)+ ea(s0, s)

∫ s

s0

a(s)f (s)E−a(s0, s + 1)d�s (32)

Since v(s0) = 0, (30) and (32) imply that

y(s)�f (s)+ ea(s0, s)

∫ s

s0

a(s)f (s)E−a(s0, s + 1)d�s, (33)

which is the expected Grönwall inequality. �
As direct consequences, we obtain the following results:

Corollary 3.4 Let y, f, a be real valued functions defined on Z, with a(s)�0. If

y(s)�
∫ s

s0

y(s)a(s)d�s, (34)

for all s ∈ Z, then

y(s)�0. (35)

Proof This follows from the Theorem 3.3 with f (s) ≡ 0. �
Corollary 3.5 Let a(s)�0 and α ∈ R. If

y(s)�α +
∫ s

s0

y(s)a(s)d�s, (36)

for all s ∈ Z, then

y(s)�αea(s0, s). (37)
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Proof From the Grönwall inequality with f (s) = α, one gets

y(s)≤α + ea(s0, s)

∫ s

s0

αa(s)E−a(s0, s + 1)d�s

= α

(
1− ea(s0, s)

∫ s

s0

�E−a(s0, s)d�s

)

= α (1− ea(s0, s) [E−a(s0, s)− E−a(s0, s0)])

= α − αea(s0, s)E−a(s0, s)+ αea(s0, s)

= αea(s0, s),

(38)

which gives the expected inequality. �

3.4 Bernoulli Inequality

Theorem 3.4 (Bernoulli Inequality) Let α ∈ R. Then for all s, s0 ∈ Z, with s >

s0, we have

ea(s0, s)≥1+ α(s − s0). (39)

Proof Let y(s) = α(s − s0), s > s0. Then �y(s) = α and αy(s) + α = α2(s −
s0)+ α≥α = �y(s), which implies that �y(s)≤αy(s)+ α.

By the Corollary 3.2 of Lemma 3.1, we obtain

y(s)≤y(s0)eα(s0, s)+ eα(s0, s)

∫ s

s0

αE−α(s0, s + 1)d�s,

= −eα(s0, s)

∫ s

s0

�E−α(s0, s)d�s, (y(x0) = 0)

= −eα(s0, s)[E−α(s0, s)− 1]
= −1+ eα(s0, s).

(40)

Hence eα(s0, s)≥1+ α(s − s0), with s > s0, as expected. �
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3.5 Lyapunov Inequality

Let f : Z −→ [0,∞[. Consider the Sturm-Liouville difference equation

�2u(s)+ f (s)u(s + 1) = 0, s ∈ Z. (41)

Define the function F by

F(y) = ∫ b

a

[
(�y(s))2 − f (s)y2(s + 1)

]
d�s. (42)

We prove first the following lemmas:

Lemma 3.3 Let u(s) be a nontrivial solution of the Sturm-Liouville difference
equation (41). In that case, for all y belonging to the domain of definition of F ,
the following equality is verified,

F(y)− F(u)− F(y − u) = 2(y − u)(b)�u(b)− 2(y − u)(a)�u(a). (43)

Proof We have

F(y)− F(u)− F(y − u)

=
∫ b

a

[(�y(s))2 − f (s)y2(s + 1)− (�u(s))2

+f (s)u2(s + 1)− (�(y − u)(s))2 + f (s)(y − u)2(s + 1)]d�s

= 2
∫ b

a

[− (�u(s))2 + f (s)u2(s + 1)+�y(s)�u(s)

−f (s)y(s + 1)u(s + 1)]d�s

= 2
∫ b

a

[�y(s)�u(s)+ y(s + 1)�2u(s)− (�u(s))2

−�2u(s)u(s + 1)]d�s

= 2
∫ b

a

[�[y(s)�u(s)] −�[u(s)�u(s)]]d�s

= 2
∫ b

a

� [(y(s)− u(s))�u(s)] d�s

= 2 (y(b)− u(b))�u(b)− 2 (y(a)− u(a))�u(a), (44)

which proves the lemma. �
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Lemma 3.4 Let y be in the domain of definition of F . For all c, d ∈ [a, b] ∩ Z,
a, b ∈ Z and a�c�d�b, we have

∫ d

c
(�y(s)2)d�s� (y(d)−y(c))2

d−c
. (45)

Proof Let u(s) = y(d)−y(c)
d−c

s+ dy(c)−cy(d)
d−c

. Then �u(s) = y(d)−y(c)
d−c

and �2u(s) =
0. This proves that u(s) is a solution of (41) with f (s) = 0 for all s ∈ Z and F(y) =∫ b

a (�y(s))2 d�s, for all y from the domain of definition of F . By Lemma 3.3, we
get F(s)−F(u)−F(y−u) = 0, and consequently F(y) = F(u)+F(y−u)�F(u).
This leads to the following result:

∫ d

c (�y(s))2 d�s�
∫ d

c (�u(s))2 d�s

= ∫ d

c

(
y(d)−y(c)

d−c

)2
d�s

= (y(d)−y(c))2

d−c
, (46)

which proves the lemma. �
Theorem 3.5 (Lyapunov Inequality) Given f : Z −→ [0,∞[ and u a nontrivial
solution of Eq. (41) with u(a) = u(b) = 0, a, b ∈ Z and a < b, then

∫ b

a

f (s)d�s� 4

b − a
. (47)

Proof By the Lemma 3.3 with y = 0 and u(a) = u(b) = 0, one gets F(0)−F(u)−
F(−u) = −2u(b)�u(b) + 2u(a)�u(a).This gives F(u) = 0 since F(0) = 0 and
F(u) = F(−u). Thus

F(u) =
∫ b

a

[
(�u(s))2 − f (s)u2(s + 1)

]
d�s = 0. (48)

Let M = max
[
u2(s); s ∈ [a, b] ∩ Z

]
and c ∈ [a, b]∩Z such that u2(c) = M . Then

M = u2(c)�u2(s+1) and using (48), Lemma 3.4 and the fact that u(a) = u(b) = 0,
we get

M

∫ b

a

f (s)d�s�
∫ b

a

f (s)u2(s + 1)d�s

=
∫ b

a

(�(us))2 d�s

=
∫ c

a

(�(us))2 d�s +
∫ b

c

(�(us))2 d�s
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� (u(c)− u(a))2

c − a
+ (u(b)− u(c))2

b − c

= M

[
1

c − a
+ 1

b − c

]
�M

4

b − a
.

(49)

which proves the Lyapunov inequality. �
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Theoretical and Numerical Comparisons
of the Parameter Estimator of the
Fractional Brownian Motion

Jean-Marc Bardet

This paper is dedicated to Norbert Hounkonnou who is not
really a specialist of probability and statistics (. . . ) but who
often taught these topics and has mainly allowed them to
significantly develop in Benin by his unwavering support to
Masters and PhD of Statistics.

Abstract The fractional Brownian motion which has been defined by Kolmogorov
(CR (Doklady) Acad Sci URSS (N.S.) 26:115–118) and numerous papers was
devoted to its study since its study in Mandelbrot and Van Ness (SIAM Rev 10:422–
437, 1968) [19] present it as a paradigm of self-similar processes. The self-similarity
parameter, also called the Hurst parameter, commands the dynamic of this process
and the accuracy of its estimation is often crucial. We present here the main and
used methods of estimation, with the limit theorems satisfied by the estimators.
A numerical comparison is also provided allowing to distinguish between the
estimators.

Keywords Fractional Brownian motion · Long memory process · Parametric
estimation

1 Introduction

The fractional Brownian motion (fBm for short) has been studied a lot since the
seminal papers of Kolmogorov [16] and Mandelbrot and Van Ness [19]. A simple
way to present this extension of the classical Wiener Brownian motion is to define it
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from its both first moments. Hence, an fBm with parameter (H, σ 2) ∈ (0, 1] ×
(0,∞) is a centered Gaussian process X = {X(t), t ∈ R} having stationary
increments and such as

cov
(
X(s),X(t)

) = σ 2 RH(s, t) = 1

2
σ 2 (|s|2H +|t |2H −|t−s|2H )

(s, t) ∈ R
2.

As a consequence, Var(X(t)) = σ 2 |t |2H for any t ∈ R, which induces that X is the
only H -self-similar centered Gaussian process having stationary increments. More
detail on this process can be found in the monograph of Samorodnitsky and Taqqu
[21].

We consider the following statistical problem. We suppose that a trajectory
(X(1), · · · , X(N)) of X is observed and we would like to estimate the parameters
H and σ 2 which are unknown.

Remark 1.1 It is also possible to consider an observed path (X(1/N),X(2/N), · · ·,
X(1)) of X. Using the self-similarity property of X, the distributions of
(X(1), · · · , X(N)) and NH(X(1/N),X(2/N), · · · , X(1)) are the same.

This statistical model is parametric and it is natural to estimate θ = (H, σ 2) using a
parametric method. Hence, on the one hand, in the forthcoming Sect. 2, two possible
parametric estimators are presented. On the other hand, several other used and
famous semi-parametric estimators are studied in Sect. 3. For each estimator, its
asymptotic behavior is stated and the main references recalled. Finally, Sect. 4 is
devoted to a numerical study from Monte-Carlo experiments, allowing to obtain
some definitive conclusions with respect to the estimators.

2 Two Classical Parametric Estimators

Since X is a Gaussian process for which the distribution is integrally defined when
θ is known, a parametric method such as Maximum Likelihood Estimator (MLE)
is a natural choice of estimation and it provides efficient estimators. As X is a
process having stationary increments, it is appropriate to define Y the process of
its increments, i.e. the fractional Gaussian noise,

Y = {Y (t), t ∈ R} = {X(t)−X(t − 1), t ∈ R},

with covariogram rY (k) = cov
(
Y (t), Y (t + k)

)
satisfying

rY (k) = 1

2
σ 2 (|k + 1|2H + |k − 1|2H − 2|k|2H )

k ∈ R.
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The spectral density fY of Y is defined for λ ∈ [−π, π ] by (see Sinaï [22] or Fox
and Taqqu [11]):

fH (λ) : = 1

2π

∑

k∈Z
rY (k) e

ikλ

= 2 σ 2 �(2H + 1) sin(πH) (1− cos λ)
∑

k∈Z
|λ+ 2kπ |−1−2H . (2.1)

Hence, since (X(1), · · · , X(N)) is observed, (Y (1), · · · , Y (N)) is observed (we
assume X(0) = 0).

2.1 Maximum Likelihood Estimation

The likelihood L(Y(1),··· ,Y (N))(y1, · · · , yN) of (Y (1), · · · , Y (N)) is the Gaussian
probability density of (Y (1), · · · , Y (N)), which can be written

L(Y(1),··· ,Y (N))(y1, · · · , yN) = (2π)N/2

det
(

N(H, σ 2)

) ×

exp
(
−1

2
(y1, · · · , yN)
−1

N (H, σ 2)(y1, · · · , yN)′
)
,

where the definite positive covariance matrix 
N(H, σ 2) is such as


N(H, σ 2) = (
r(|i − j |))1�i,j�N

.

Then the MLE θ̂N = (ĤN , σ̂ 2
N) of θ is defined as:

(ĤN , σ̂ 2
N) = Arg max

(H,σ 2)∈(0,1)×(0,∞)
L(Y (1),··· ,Y (N))(Y (1), · · · , Y (N)).

As it is generally done, it can be more convenient to minimize the contrast defined
by −2 log

(
L(Y(1),··· ,Y (N))(Y (1), · · · , Y (N))

)
.

The asymptotic behavior of this estimator has been first obtained in Dahlhaus
[9]. The main results are the following:

Theorem 2.1 The estimator (ĤN , σ̂ 2
N) is asymptotically efficient and satisfies

( ĤN

σ̂ 2
N

)
a.s.−→

N→∞

(
H

σ 2

)
(2.2)
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and

√
N

(( ĤN

σ̂ 2
N

)
−

(
H

σ 2

))
D−→

N→∞ N2
(
0 , �−1

0 (H, σ 2)
)
, (2.3)

where �−1
0 (H, σ 2) is the limit of 1

N
I−1
N (H, σ 2) and IN(H, σ 2) is the Fisher

information matrix of (Y (1), · · · , Y (N)). Moreover,

�0(H, σ 2) = 1

4π

∫ π

−π

( ∂

∂θ
log fθ (λ)

)( ∂

∂θ
log fθ (λ)

)′
dλ, (2.4)

and fθ (λ) = σ 2 gH (λ) where

gH (λ) = 2 sin(πH)�(2H + 1)(1− cos λ)
∑

j∈Z

∣∣λ+ 2πj
∣∣−2H−1

.

The asymptotic covariance �0(H, σ 2) cannot be really simplified, we just can
obtain:

�−1
0 (H, σ 2) = 1

1
2aH − b2

H

( 1
2 −σ 2bH

−σ 2bH σ 4aH

)
(2.5)

where aH = 1
4π

∫ π

−π

(
∂
∂H

log gH (λ)
)2
dλ and bH = 1

4π

∫ π

−π
∂
∂H

log gH (λ) dλ.

2.2 Whittle Estimation

The MLE is an asymptotically efficient estimator but it has two main drawbacks:
first, it is a parametric estimator which can only be used, stricto sensu, to fBm and
its use is numerically limited since the computation of the likelihood requires to
inverse the matrix 
N(H, σ 2) and this is extremely time consuming when N�5000
and impossible when N�10000 (with a 2014-software). In Whittle [28], a general
approximation of the likelihood for Gaussian stationary processes Y has been first
proposed. This consists in writing for Y depending on a parameter vector θ :

− 1

N
logL(Y(1),··· ,Y (N))(Y (1), · · · , Y (N))− 1

2
log(2π)

D 
N→∞ ÛN (θ) = 1

4π

∫ π

−π

(
log(fθ (λ))+ ÎN (λ)

fθ (λ)

)
dλ

where ÎN (λ) = 1
2πN

∣∣∣
∑N

k=1 Y (k)e−ikλ
∣∣∣
2

is the periodogram of Y .
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Then θ̃N = (H̃W , σ̃ 2
N) = Argminθ∈#ÛN(θ) is called the Whittle estimator of θ . In

case of the fractional Gaussian noise, Dahlhaus [9] achieved the results of Fox and
Taqqu [11] and proved the following limit theorem:

Theorem 2.2 The estimator (H̃W , σ̃ 2
N) is asymptotically efficient and satisfies

( H̃W

σ̃ 2
N

)
a.s.−→

N→∞

(
H

σ 2

)
(2.6)

and

√
N

(( H̃W

σ̃ 2
N

)
−

(
H

σ 2

))
D−→

N→∞ N2
(
0 , �−1

0 (H, σ 2)
)
, (2.7)

with �0(H, σ 2) defined in (2.4).

Hence, the Whittle estimator (H̃N , σ̃ 2
N) has the same asymptotic behavior than the

MLE while its numerical accuracy is clearly better: in case of fractional Gaussian
noise, and therefore in case of the fBm, the Whittle estimator has to be preferred to
the MLE.

3 Other Classical Semi-parametric Estimators

As we said previously, we present now some classical semi-parameteric methods
frequently used for estimating the parameter H of an fBm, but also applied to other
long-range dependent or self-similar processes.

3.1 R/S and Modified R/S Statistics

The first estimator which has been applied to an fBm, and more precisely to a
fractional Gaussian noise has been the R/S estimator. This estimator defined by the
hydrologist Hurst [14] was devoted to estimate the long-range dependent parameter
(also called the Hurst parameter) of a long memory process. Lo [18] introduced the
modified R/S statistic for a times series X which is defined as

Q̂N(q) = 1

ŝN,q

(
max

1�k�N

k∑

i=1

(X(i)−XN)− min
1�k�N

k∑

i=1

(X(i)−XN)
)

(3.1)

where XN = 1
N
(X(1) + · · · + X(N)) is the sample mean and ŝ2

N,q is an estimator

of σ 2 =∑
i∈Z cov(X(0),X(j)) defined by
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ŝ2
N,q =

1

N

N∑

i=1

(X(i)−XN)2 + 2
q∑

i=1

ωi(q) γ̂N (i) (3.2)

with

{
ωi(q) = 1− i/(q + 1)
γ̂N (i) = 1

N

∑N−i
j=1 (X(j)−XN)(X(j + i)−XN)

(3.3)

The classical R/S statistic corresponds to q = 0. In such case, we have the following
asymptotic behavior when X is an fGn:

Proposition 3.1 If X is an fGn with parameter H > 1/2, then (see Li et al. [17])

1

NH
E
[
Q̂N(0)

] −→
N→∞E

[
max

0�t�1
BH(t)− min

0�t�1
BH(t)

]
, (3.4)

with BH the fractional bridge with parameter H , i.e., BH(t) = XH(t) − tXH (1)
for t ∈ [0, 1] where XH is a standardized fBm of parameter 1.

Using this asymptotic behavior of the expectation, an estimator of H has been
defined. First the trajectory (X(1), · · · , X(N)) is divided in K blocks of length
N/K and Q̂ni (0) is averaged for several values of ni such as ni −→

N→∞∞. Then, a

log-log regression of (Q̂ni (0)) onto (ni) provides a slope ĤRS which is an estimator
of H since log E

[
Q̂ni (0)

]  H log(ni) + C (see, for instance, Taqqu et al. [25]).
Note that even in the “simple” case of the fGn, there still does not really exist a
convincing asymptotic study of such an estimator.
Lo [18] and numerical experiments in Taqqu et al. [25] have shown that this
estimator is not really accurate and Lo [18] proposed an extension of this R/S
statistic: this is the modified R/S statistic. We have the following asymptotic
behavior (see Giraitis et al. [12] and Li et al. [17]):

Proposition 3.2 If q −→
N→∞∞ and q/N −→

N→∞0, and X is a fGn, then:

• if H�1/2, N−1/2 Q̂N(q)
D−→

N→∞UR/S (3.5)

• if H > 1/2, qH−1/2N−H Q̂N(q)
D−→

N→∞ZR/S (3.6)

where UR/S = max0�t�1 B1/2(t) − min0�t�1 B1/2(t) and ZR/S = max0�t�1
BH(t)−min0�t�1 BH(t), with BH the fractional bridge with parameter H .

Then, using several values of q, (q1, · · · , qm), a log-log regression of Q̂N(qi) onto
qi provides an estimator ĤRSM of H (the slope of the regression line is H − 1

2 ). But
there does not exist more precise result about the convergence rate of such estimator
of H in the literature. Moreover, in Teverovsky et al. [26], the difficulty of selecting
a right range of values for qi is highlighting.
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As a conclusion, we can say that R/S or modified R/S statistics provides estimation
of H but these estimators are not really accurate.

3.2 Second-Order Quadratic Variations

Contrary to the R/S method, the second-order quadratic variations can be directly
applied to self-similar processes, and hence in particular to fBm.

For presenting this method, introduced by Guyon and Leòn [13] and Istas and
Lang [15], first, for a ∈ N

∗, define the second-order quadratic variations of X =
(X(i))i∈Z by

V
(a)
t := (X(t + 2a))− 2X(t + a)+X(t))2 for t ∈ N

∗. (3.7)

The key-point of this method is the following property:

Property 3.3 If X is a second moment order H -self-similar process having station-
ary increments, with EX2(1) = σ 2, then for all a ∈ N

∗ and t ∈ N
∗

E(V (a)
t ) = σ 2(4− 22H )

a2H . (3.8)

Therefore log E(V (a)
t ) = C + 2H log a for any (a, t). This provides an idea of

estimating H : if E(V (ai )
t ) can be estimated for several different scales ai , then the

slope of the log-log-regression of
(̂
E(V (ai )

t )
)

onto (ai) is 2ĤN , which is an estimator
of H .
The common choice for scales are ai = i and the estimator of E(V (i)

t ) is the
empirical mean of V (i)

t ,

SN(i) = 1

N − 2i

N−2i∑

k=1

V
(i)
k . (3.9)

Then a central limit theorem can be established for i ∈ N∗:
√
N

(
SN(i)− σ 2(4− 22H )

i2H ) D−→
N→∞N

(
0, γ (i)

)

with γ (i) = 1

2
σ 4i2H+1

∞∑

�=−∞

(
|�+ 2|2H + |�− 2|2H − 2|�+ 1|2H − 2|�− 1|2H + 6|�+ 2|2H

)2
.
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Then we can define

ĤN := 1

2

A

AAᵀ
(

log(SN(i))
)ᵀ

1�i≤p,

where A := (
log i − 1

p

∑p

j=1 log j
)

1�i�p
∈ R

p is a row vector, Aᵀ its transposed
vector (vector-column).
As a consequence, it can be shown (see Bardet [2] or [8]) that, with (a0, a1, a2) =
(1,−2, 1),

√
N

(
ĤN −H

) D−→
N→∞N

(
0 , 
(H)

)
, where


(H) : = A�(H)Aᵀ
4(AᵀA)2 and (3.10)

�(H) : =
(

2
i2H j2H

∑
k∈Z

[∑q
k1,k2=0 a

(1)
k1

a
(1)
k2
|ik1−jk2+k|2H

∑2
k1,k2=0 a

(1)
k1

a
(1)
k2
|k1−k2|2H

]2)

1�i,j�p
.(3.11)

This method has a lot of advantages: low time-consuming, convergence rate close
to MLE convergence rate, etc.
However it is easy to slightly improve this estimator. First, the asymptotic covari-
ance �(H) of (SN(i)) is a function of H ; hence, using the estimator ĤN , this
asymptotic covariance can be estimated. Hence, a pseudo-generalized estimator of
H can be defined. More precisely, define

�̂N = �
(
ĤN

)
. (3.12)

Then the pseudo-generalized estimator H̃N of H is defined by:

H̃N =
(BNL)ᵀ�̂−1

N

(
log(SN(i))

)ᵀ
1�i≤p

2(BNL)ᵀ�̂−1
N (BNL)

(3.13)

with Ip = (1, 1, · · · , 1)ᵀ, L = (log i)1�i�p and BN = I − IpI
ᵀ
p �̂N

I
ᵀ
p �̂−1

N Ip
.

Then, from Bardet [2],

Proposition 3.4 If X is an fBm of parameter H , then with B = I − IpI
ᵀ
p �

I
ᵀ
p �−1Ip

,

√
N(H̃N − H)

D−→
N→∞N

(
0 ; 
′(H)

)
, with 
′(H)= 1

4t (BL)G−1(BL)
. (3.14)

From Gauss-Markov Theorem, the asymptotic variance 
′(H) is smaller or equal
to 
(H) and thus the estimator H̃N is more accurate than ĤN .
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Another improvement of this estimator consists in considering a number p of
“‘scales”’ increasing with N : this is what we will use in simulations (theoretical
results are not yet established, if they could be once).

3.3 Detrended Fluctuation Analysis (DFA)

The DFA method was introduced in Peng et al. [20] in a biological frame. The aim
of this method is to highlight the self-similarity of a time series with a trend. Let
(Y (1), . . . , Y (N)) be a sample of a time series (Y (n))n∈N.

1. The first step of the DFA method is a division of {1, . . . , N} in [N/n]windows of
length n (for x ∈ R, [x] is the integer part of x). In each window, the least squares
regression line is computed, which represents the linear trend of the process in the
window. Then, we denote by Ŷn(k) for k = 1, . . . , N the process formed by this
piecewise linear interpolation. Then the DFA function is the standard deviation
of the residuals obtained from the difference between Y (k) and Ŷn(k), therefore,

F̂ (n) =
√√√√ 1

n · [N/n]
n·[N/n]∑

k=1

(
Y (k)− Ŷn(k)

)2

2. The second step consists in a repetition of the first step with different values
(n1, . . . , nm) of the window’s length. Then the graph of the log F̂ (ni) by log ni
is drawn. The slope of the least squares regression line of this graph provides an
estimation of the self-similarity parameter of the process (Y (k))k∈N.

From the construction of the DFA method, it is interesting to define the restriction
of the DFA function in a window. Thus, for n ∈ {1, . . . , N}, one defines the partial
DFA function computed in the j -th window, i.e.

F 2
j (n) =

1

n

nj∑

i=n(j−1)+1

(X(i)− X̂n(i))
2, for j ∈ {1, . . . , [N/n]}. (3.15)

Then, it is obvious that

F 2(n) = 1

[N/n]
[N/n]∑

j=1

F 2
j (n). (3.16)

Let {XH(t), t�0} be an FBM, built as a cumulated sum of stationary and centered
fGn {YH (t), t�0}. In Bardet and Kammoun [4], the following detailed asymptotic
behavior of the DFA method is established. First some asymptotic properties of
F 2

1 (n) can be established:
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Proposition 3.5 Let {XH(t), t�0} be an fBm with parameters 0 < H < 1 and
σ 2 > 0. Then, for n and j large enough,

1. E(F 2
1 (n)) = σ 2f (H) n2H

(
1+O

(1

n

))
,

with f (H) = (1−H)

(2H + 1)(H + 1)(H + 2)
,

2. Var
(
F 2

1 (n)
) = σ 4g(H) n4H

(
1+O

(1

n

))
,

with g depending only on H,

3. cov(F 2
1 (n), F

2
j (n)) = σ 4h(H) n4H j2H−3

(
1+O

(1

n

)+O
(1

j

))
,

with h(H) = H 2(H − 1)(2H − 1)2

48(H + 1)(2H + 1)(2H + 3)
.

In order to obtain a central limit theorem for the logarithm of the DFA function, we
consider normalized DFA functions

S̃j (n) =
F 2
j (n)

n2Hσ 2f (H)
and S̃(n) = F 2(n)

n2Hσ 2f (H)
(3.17)

for n ∈ {1, . . . , N} and j ∈ {1, . . . , [N/n]}.
Under conditions on the asymptotic length n of the windows, one proves a central
limit theorem satisfied by the logarithm of the empirical mean S̃(n) of the random
variables (S̃j (n))1�j�[N/n].

Proposition 3.6 Under the previous assumptions and notations, let n ∈ {1, . . . , N}
be such that N/n→∞ and N/n3 → 0 when N →∞. Then

√
[N
n

] · log(S̃(n))
D−→

N→∞N (0, γ 2(H))),

where γ 2(H) > 0 depends only on H .

This result can be obtained for different lengths of windows satisfying the conditions
N/n → ∞ and N/n3 → 0. Let (n1, . . . , nm) be such different window lengths.
Then, one can write for N and ni large enough

log(S̃(ni))  1√[N/ni] · εi *⇒

log(F (ni))  H · log(ni)+ 1

2
log(σ 2f (H))+ 1√[N/ni] · εi,
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with εi ∼ N (0, γ 2(H)). As a consequence, a linear regression of log(F (ni)) on
log(ni) provides an estimation ĤDFA of H . More precisely,

Proposition 3.7 Under the previous assumptions and notations, let n ∈
{1, . . . , N}, m ∈ N

∗ \ {1}, ri ∈ {1, . . . , [N/n]} for each i with r1 < · · · < rm
and ni = rin be such that N/n → ∞ and N/n3 → 0 when N → ∞. Let ĤDFA

be the estimator of H , defined as the slope of the linear regression of log(F (ri · n))
on log(ri · n), i.e.

ĤDFA =
∑m

i=1(log(F (ri · n))− log(F ))(log(ri · n)− log(n))
∑m

i=1(log(ri · n)− log(n))2
.

Then ĤDFA is a consistent estimator of H such that, with C(H,m, r1, . . . , rm) > 0,

E[(ĤDFA −H)2]�C(H,m, r1, . . . , rm)
1

[N/n] . (3.18)

Hence, this result shows that the convergence rate of ĤDFA is
√
N/n that is a

convergence rate o(N1/3) from the condition N/n3 → 0. This is clearly less
accurate than parametric estimators or even quadratic variations estimators. This
estimator is devoted to trended long-range time series but even in such frame this
estimator does not give satisfying results (see Bardet and Kammoun [4]).

3.4 Increment Ratio Statistic

The Increment Ratio (IR) statistic was first proposed in Surgailis et al. [24] in
the frame of long-range dependent time series and extended to continuous time
processes in Bardet and Surgailis [5]. For a time series X = (X(k))k∈Z define the
second-order variation as in (3.7) D(a)

t = X(t + 2a))− 2X(t + a)+X(t) for t ∈ Z

and a ∈ N
∗. Assume that a trajectory (X(0),X(1), · · · , X(N)) is observed. Define

for a ∈ N
∗,

R
(a)
N := 1

N − 2a

N−3a∑

k=0

∣∣D(a)
k +D

(a)
k+1

∣∣

|D(a)
k | + |D(a)

k+1|
, (3.19)

with the convention 0
0 := 1. Note the ratio on the right-hand side of (3.19) is either

1 or less than 1 depending on whether the consecutive increments D
(a)
k and D

(a)
k+1

have same signs or different signs; moreover, in the latter case, this ratio generally
is small whenever the increments are similar in magnitude (“cancel each other”).
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If X is an fBm with parameter H ∈ (0, 1), then it is established in Bardet and
Surgailis [5] that for any H ∈ (0, 1),

R
(1)
N

a.s.−→
N→∞ $2(H) (3.20)

√
N

(
R

(1)
N −$2(H)

) D−→
N→∞N

(
0 , 
2(H)

)
. (3.21)

The expressions of $2(H) and 
2(H) are, respectively, given by:

$2(H) := λ(ρ2(H)), (3.22)

λ(r) := 1

π
arccos(−r)+ 1

π

√
1+ r

1− r
log

(
2

1+ r

)
, (3.23)

ρ2(H) := corr
(
D

(1)
0 ,D

(1)
1

) = −32H(t) + 22H(t)+2 − 7

8− 22H(t)+1
(3.24)

and 
2(H) :=
∑

j∈Z
cov

⎛

⎝
∣∣D(1)

0 +D
(1)
1

∣∣
∣∣D(1)

0

∣∣+ ∣∣D(1)
1

∣∣ ,
∣∣D(1)

j +D
(1)
j+1

∣∣
∣∣D(1)

j

∣∣+ ∣∣D(1)
j+1

∣∣

⎞

⎠ . (3.25)

and their graphs in Figs. 1 and 2.
The central limit (3.21) provides a way for estimating H : indeed, since H ∈
(0, 1) �→ $2(H) is an increasing C 1 function, define

0 0.2 0.4 0.6 0.8 1
0.52

0.54

0.56

0.58

0.6

0.62

0.64
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0.68

0.7

H

L(H)

Fig. 1 The graph of $2(H)



Theoretical and Numerical Comparisons of the Parameter Estimator of the. . . 165

3

4

7

4

4

4

5

4

1

4

2

4

6

4

H

0.34

0.36

0.38

0.42

Fig. 2 The graphs of
√

p(H), p = 1 (with a pole at 3/4) and p = 2 (with a pole at 7/4) (from

Stoncelis and Vaičiulis [23]

ĤN = $−1
2

(
R

(1)
N

)
.

From the Delta-method, we obtain the following central limit theorem for ĤN :

Proposition 3.8 For all H ∈ (0, 1),

√
N

(
ĤN −H

) D−→
N→∞N

(
0 , γ 2(H)

)

with γ 2(H) = 
2(H)
[(
$−1

2

)′
($2(H)))

]2
.

In Bardet and Surgailis [6], in a quite similar frame, an improvement of ĤN has
been proposed. It consists first in obtaining a central limit theorem for the vector
(R

(1)
N , R

(2)
N , · · · , R(m)

N ) with m ∈ N
∗ and not only for R(a)

N with a = 1. Hence, we
obtain the following multidimensional central limit theorem:

√
N

(
(R

(i)
N )1�i�m − ($

(i)
2 )1�i�m

) D−→
N→∞N

(
0 , �m(H)

)

where �m(H) = (γij (H))1�i,j�m and

$
(i)
2 (H) = λ(ρ

(i)
2 (H))

with ρ
(i)
2 (H) = Cor(D(i)

0 ,D
(i)
1 )

= −|2i + 1|2H − |2i − 1|2H + 4|i + 1|2H + 4|i − 1|2H − 6

8− 22H+1
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and γij (H) =
∑

k∈Z
cov

( ∣∣D(i)
0 +D

(i)
1

∣∣
∣∣D(i)

0

∣∣+ ∣∣D(i)
1

∣∣ ,
∣∣D(j)

k +D
(j)

k+1

∣∣
∣∣D(j)

k

∣∣+ ∣∣D(j)

k+1

∣∣

)
.

Then we define:

Ĥ
(i)
N = [

$
(i)
2

]−1(
R

(i)
N

)
,

and using again the Delta-Method we obtain another multidimensional central limit
theorem

√
N

(
(Ĥ

(i)
N )1�i�m −H Im

) D−→
N→∞N

(
0 , �m(H)

)

and �m(H) : =
([ ∂

∂x
($

(i)
2 )−1($

(i)
2 (H))

]
γij (H)

[ ∂

∂x
($

(j)
2 )−1($

(j)
2 (H))

])

1�i,j�p
.

Finally a pseudo-generalized least squares estimator of H can be constructed (like
for ĤQV ). Indeed �m(H) can be estimated by �̂m = �m(Ĥ

(1)
N ). Then we define

ĤIR =
(
Iᵀm (�̂m Im

)−1
Iᵀm (�̂m)

−1 (
Ĥ

(i)
N

)
1�i�m

(3.26)

and we obtain this proposition:

Proposition 3.9 For all H ∈ (0, 1) and m ∈ N
∗,

√
N

(
ĤIR −H

) D−→
N→∞N (0 , s2),

with s2 = (
Iᵀm

(
�m(H)

)−1
Im

)−1
.

Then the convergence rate of ĤIR is
√
N , confidence intervals can also be easily

computed.

3.5 Wavelet Based Estimator

This approach was introduced for fBm by Flandrin [10], and popularized by many
authors to other self-similar or long-range dependent processes (see, for instance,
Veitch and Abry [27], Abry et al. [1], or Bardet et al. [7]). Here we are going
to follow Bardet [3], which is especially devoted to fBm as an extension of
Flandrin [10].

First we define a (mother) wavelet function ψ such as ψ : R→ R is a piecewise
continuous and piecewise left (or right)-differentiable in [0, 1], such that |ψ ′l (t)| is
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Riemann integrable in [0, 1] with ψ ′l the left-derivative of ψ , with support included
in [0, 1] and Q first vanishing moments, i.e.

∫
tpψ(t)dt = 0 f or p = 0, 1, · · · ,Q− 1 (3.27)

and

∫
tQψ(t)dt �= 0. (3.28)

For ease of writing, we have chosen a ψ supported in [0, 1]. But all the following
results are still true, mutatis mutandis, if we work with any compactly supported
wavelets. For instance, ψ can be any of the Daubechies wavelets.

Now we define the wavelet coefficients d(a, i) of X where a ∈ N
∗ is called

“scale” and i ∈ {1, 2, · · · , [N/a] − 1} is called “shift” by:

d(a, i) = 1√
a

∫ ∞

−∞
ψ(

t

a
− i)X(t)dt = 1√

a

∫ a

0
ψ(

t

a
)X(t + ai)dt. (3.29)

For each (a, i), d(a, i) is a zero-mean Gaussian variable and its variance is a self-
similar deterministic function in a, independent of the shift i, since for any a ∈
{1, 2, · · · , [N/2]} and i ∈ {1, 2, · · · , [N/a] − 1},

Ed2(a, i) = a2H+1Cψ(H) where Cψ(H) = −σ 2

2

∫ ∫
ψ(t)ψ(t ′)|t − t ′|2Hdtdt ′.

We assume now Cψ(H) > 0 for all H ∈]0, 1[. Now we consider an empirical
variance IN(a) of d(a, i) by

IN(a) = 1

[N/a] − 1

[N/a]−1∑

k=1

d2(a, k). (3.30)

Using properties of ψ and particularly condition
∫
tpψ(t)dt = 0 for p =

0, 1, · · · ,Q − 1, we can show that lim|i−j |→∞ |cov(d̃(a, i), d̃(a, j))| = 0 and limit

theorems for IN(a). More precisely,

Proposition 3.10 Under the previous assumptions, for 1�a1 < · · · < am ∈ N
∗,

then

[√
N

ai
(log IN(ai)− (2H+1) log ai−logCψ(H))

]

1�i�m

D−→
N→∞Nm(0;F), (3.31)

with F=(fij )1�i,j�m the matrix with Dij=GCD(ai, aj ),
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fij = σ 4Dij

2C2
ψ(H)a

2H+1/2
i a

2H+1/2
j

∞∑

k=−∞

(∫ ∫
ψ(t)ψ(t ′)

∣∣kDij + ait − aj t
′∣∣2H dtdt ′

)2

.

When a trajectory (X(1), · · · , X(N)) is observed, dX cannot be computed and an
approximation has to be considered. Indeed, the wavelet coefficients d(a, i), com-
puted from a continuous process cannot be directly obtained and only approximated
coefficients can be computed from a time series. It requires to choose large enough
scales to fit well. Here, we will work with approximated coefficients e(a, i) defined
by:

e(a, i) = 1√
a

∞∑

k=−∞
ψ(

k

a
− i)X(k) = 1√

a

a∑

k=0

ψ(
k

a
)X(k + ai). (3.32)

Denote also

JN(a) = 1

[N/a] − 1

[N/a]−1∑

k=1

e2(a, k). (3.33)

The limit theorem of Proposition 3.10 can be rewritten with ẽ(a, i) instead of
d̃(a, i). The main difference is the use of scales a1(N), · · · , am(N) satisfying
lim

N→∞ ai(N) = ∞. More precisely, the limit theorem is the following:

Proposition 3.11 Let n1 < · · · < nm be integer numbers and let ai(N) = nib(N)

for i = 1, · · · ,m with b(N) a sequence of integer numbers satisfying: [ N

b(N)
]�2,

lim
N→∞ b(N) = ∞ and lim

N→∞
N

b3(N)
= 0. Then, under previous assumptions,

√
N

b(N)
(log JN(ai(N))−(2H+1) log ai(N)−logCψ(H))1�i�m

D−→
N→∞Nm(0;G),

with G= (gij )1�i,j�m the matrix with Dij =GCD(ni, nj ),

gij = σ 4Dij

2C2
ψ(H)n

2H+1/2
i n

2H+1/2
j

∞∑

k=−∞

(∫ ∫
ψ(t)ψ(t ′)

∣∣kDij + nit − nj t
′∣∣2H dtdt ′

)2

.
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From conditions on b(N), the best convergence rate of this limit theorem is less than
N1/3 instead of

√
N without the discretization problem. It is an important difference

for the following estimation of H .
Indeed, Proposition 3.11 provides a method to estimate H from a linear regression.
In fact, the central limit theorem of this proposition can be written :

√
N

b(N)
(YN−(2H+1)L−KIm)

D−→
N→∞Nm(0;G),

with

• K= logCψ(H), Im= (1, .., 1)′, and L= (log ni)1�i�m,
• YN = (log JN(ai(N))− log b(N))1�i�m and M= (L, Im).

Under assumptions, there exists θ = t (2H + 1,K), such that YN = M θ + βN ,
where βN is a remainder which is asymptotically Gaussian. By the linearity of this
model, one obtains an estimation θ̂1(N) of θ by the regression of YN on M and
ordinary least squares (O.L.S.).

But we can also identify the asymptotic covariance matrix of βN . Indeed, the
matrix G is a function Gψ(n1, · · · , nm,H) and Ĝ(N) = Gψ(n1, · · · , nm, Ĥ1(N))

converges in probability to G. So, it is possible to determine an estimation θ̂2(N) of
θ by generalized least squares (G.L.S.) of H by minimizing

‖ YN −M θ ‖2
Ĝ(N)−1= (YN −M θ)′Ĝ(N)−1(YN −M θ).

Thus, from the classical linear regression theory and the Gauss-Markov’s Theorem:

Proposition 3.12 Under previous assumptions,

1. The O.L.S. estimator of H is ĤOLS such as ĤOLS =
(

1

2
, 0

)
(M ′M)−1M ′

YN − 1

2
and

√
N

b(N)
(ĤOLS −H)

D−→
N→∞N (O , σ 2

1 ), with σ 2
1

= 1

4
(M ′M)−1M GM ′ (M ′M)−1.

2. The G.L.S. estimator of H is ĤWave such as ĤWave=
(

1

2
, 0

)(
M ′ Ĝ(N)−1M

)−1

M ′Ĝ(N)−1 YN − 1

2
and

√
N

b(N)
(ĤWave −H)

D−→
N→∞N (O , σ 2

2 ), with

σ 2
2 =

1

4

(
M ′ Ĝ(N)−1M

)−1
�σ 2

1 .
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Hence, as for other semi-parametric estimator of H (see the DFA estimator of
H ), the convergence rates of ĤWave is N1/3−ε, which is less accurate than the
convergence rates of Whittle or generalized quadratic variations estimators.

4 Numerical Applications and Results of Simulations

4.1 Concrete Procedures of Estimation of H

In the previous section, we theoretically defined several estimators of H from
a trajectory (X(1), · · · , X(N)) of an fBm. Hereafter, we specify the concrete
procedure of computation of these estimators:

• The Whittle estimator ĤW does not require to select auxiliary parameters or
bandwidths. However we can notice that the integrals are replaced by Riemann
sums computed for λ = πk/n, k = 1, · · · , N .

• The classical R/S estimator ĤRS has been computed by averaging on uniformly
distributed windows (see Taqqu et al. [25]).

• The modified R/S estimator ĤRSM has been computed using several uniformly
distributed values of q around the optimal bandwidth q = [N1/3] as it is given
by Lo [18]. More precisely we selected q = {[N0.3], · · · , [N0.5]}.

• The second order quadratic variations estimator ĤQV requires the choice of
the number of scales. After convincing auxiliary simulations, we selected p =
[3 log(N)].

• The DFA estimator ĤDFA requires the choice of windows. From the theoretical
and numerical study in Bardet and Kammoun [4], we have chosen n =
{[N0.3], · · · , [N0.5]}.

• The Increment Ratio estimator ĤIR is computed with M = 5.
• The wavelet based estimator ĤWave is computed with b(N) = [N0.3] and m =
[2 ∗ log(N)].

4.2 Results of Simulations

We generated 1000 independent replications of trajectories (X(1), · · · , X(N)) for
N = 500 and N = 5000, with X an fBm of parameters H = 0.1, 0.2, · · · , 0.9.
We applied the estimators of H to these trajectories and compared the Mean Square
Error (MSE) for each of them (Table 1).
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Ĥ

Q
V

0.
00

59
0.

00
77

0.
03

21
0.

04
91

0.
00

13
0.

01
04

0.
01

57
0.

01
07

0.
01

11
√
M̂
SE

fo
r
Ĥ
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5 Conclusion

We studied here several parametric and semi-parametric estimators of the Hurst
parameter. In the part, we only consider the fBm. In such frame, we obtained:

1. Theoretically Only 3 estimators have a
√
N convergence rate: ĤW , ĤQV ,

and ĤIR . The first one is specific for fBm, both the other ones can also
applied to other processes. The worst estimators are certainly R/S and modified
R/S estimators. Wavelet based and DFA estimators can finally be written as
generalized quadratic variations but the works with semi-parametric convergence
rate o(N1/2), and second-order quadratic variation estimator is clearly more
accurate.

2. Numerically The ranking between the estimators is clear and follows the
theoretical study: the Whittle estimator ĤW provides the best results, followed by
the second-order quadratic variation estimator ĤQV and the IR estimator ĤIR

which provides accurate estimations, followed by ĤWave which is still efficient.
The DFA and R/S estimators are not really interesting.
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Minimal Lethal Disturbance for Finite
Dimensional Linear Systems

Abdes Samed Bernoussi, Mina Amharref, and Mustapha Ouardouz

Abstract In this work we consider the problem of robust viability and viability
radius for finite dimensional disturbed linear systems. The problem consists in the
determination of the smallest disturbance f (in some disturbance set F), for which
a given viable state z0 does not remains viable. We also consider the problem of
the determination of the smallest disturbance f for which the viability set V iab

f

K
becomes empty; the smallest disturbance that makes all the K-viable states non
viable, which we call the Minimal Lethal Disturbance (MLD). We give some
characterizations of the viability radius and an illustration through some examples
and connection with toxicity in biology.

Keywords Viability · Viability radius · Minimal lethal disturbance · Robustness

1 Introduction

The viability notion has been introduced by Aubin in [1–3] and has been developed
by many authors. The principle consists in saying that a given state z0 is K viable
during a time interval I = [0, T ], where K is a given subset of the state space, if the
state z(t, z0) remains in K for all t ∈ ]0, T [. Since the introduction of the viability
notion, it was used to study many applications related to environment, economic,
political development phenomena, etc. [1].

Combining the concepts of control and viability, a more general definition was
given by Aubin [1]: it is the viability kernel. A state z(t = 0) is in the K viability
kernel, for a controlled system during a time interval I = [0, T ], if there exists
at least one control u such that the controlled state zu(t, z0) remains in K for all
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t ∈ ]0, T [. Some characterizations of the viability kernel, known as the viability
theorems, are given in [2, 3] using the contingent concepts introduced by Bouligand
in the years 30 to extend the tangent concept to the multivogue applications.
The approximation of the viability kernel, by a numerical algorithms, has been
considered by many authors and a wide literature is devoted to this problem.

In this work we consider the viability problem for a disturbed finite dimensional
linear systems. Indeed consider, for a dynamical system and an initial state z0
which is K-viable for the autonomous system, the following problems: Can the
initial state z0 remain K-viable in the presence of the disturbance f ? If yes, for
each disturbance? For that we introduce the so-called “viability radius” which is
the smallest disturbance f for which the given viable state z0 does not remain
viable for the disturbed system. The problem is connected to the robust control
problems but with some particularities due to the viability notion. In [4], I. Alvarez
and S. Martin have considered the problem of the viability robustness from a
geometric point of view. In this work we consider the problem in relation with the
dynamic of the system, the disturbance, and control operators. Also we consider for
a given subset K of the state space the problem of the determination of the smallest
disturbance f for which the set V iab

f

K becomes empty; the smallest disturbance
(in some disturbance set F) that makes all the K-viable states nonviable. This
work is motivated by some problems in biology and particularly in toxicology
where the determination of the so-called “Minimal Lethal Dose (MLD)” is very
important: It consists to determinate the “smallest lethal dose” of a given poison.
The problem has many applications as for example the vulnerability and risk
management of groundwater pollution problem. For such problem the risk is linked
to three parameters which are probability, vulnerability, and gravity. The gravity
depends on the characteristics of the pollutant and particularity on the Minimal
Lethal Dose (MLD) of the pollutant which characterize its proper gravity [5, 6, 9].
The problem will be detailed in the section application. In this paper, we recall in the
second section the definition of the viability and we introduce the “viability radius.”
In the third section we consider the problem of the determination of a control
which maximizes the viability radius. Some examples are presented to illustrate
our approaches.

2 Viability Radius and Minimal Lethal Disturbance

2.1 Viability Concept: Definition and Characterization

In this section we recall the viability definition as it was introduced by Aubin in [1].
Consider the linear system given by the following state equation:

{
ż(t) = Az(t) ; t ∈ ]0, T [
z(0) = z0

(1)

where A ∈Mn(R), z(.) ∈ C([0, T ],Rn) and z0 ∈ Rn.
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Let K be a non empty subset of Rn. We recall the following definition [1].

Definition 2.1 We say that a state z0 ∈ Z = Rn is K-viable or viable in K on
I = [0, T ] if:

(i) z0 ∈ K;
(ii) z(t, z0) ∈ K for all t ∈ [0, T ].
where z(t, z0) is the solution of (1) with z(0) = z0.

The set of all K-viable states is called K-viability set and denoted by:

V iabK = {z0 ∈ Z : z0 is K − viable}

In [1] some characterizations and examples of viability sets are given and we have
the definition [1]:

Definition 2.2 We say that

• a subset K is viable if: K = V iabK
• K is a repeller if V iabK = ∅.

Let K be a non empty bounded and connected subset of Rn with a smooth regular
boundary ∂K and consider the signed distance φK defined by:

φK(z(t, z0)) =
⎧
⎨

⎩

− d[z(t, z0), ∂K] if z(t, z0) ∈ K

+ d[z(t, z0), ∂K] else.
(2)

where d[z(t, z0), ∂K] = inf{y∈∂K}
‖z(t, z0)− y‖Rn .

φK is the signed distance as defined and used by J. Sethian in [7] to characterize
some level sets.

We define

ρK(z0) = sup
t ∈ I

φK(z(t, z0))

Then we have the characterization:

Proposition 2.3 Let K be a nonempty bounded and connected subset of Rn with
a smooth regular boundary ∂K. Then if ρK(z0) < 0 (respectively ρK(z0) > 0), then
the initial state z0 is K-viable (respectively is not K-viable) (Fig. 1).

Remark 2.4 In the case where ρK(z0) = 0, if K is closed then z0 is K-viable but
in the general cases we can’t decide.

For more details about viability definitions and characterizations, we refer to
[1–3] and the references therein.
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Fig. 1 Viable state and nonviable one

2.2 Viability Radius

2.2.1 Definitions and Examples

Consider now the disturbed system given by the following state equation:

⎧
⎨

⎩

ż(t) = Az(t)+Gf (t) 0 < t < T

z(0) = z0

(3)

where G ∈Mn,p(R) and f ∈ F . F is the disturbance space which is in this paper
a subspace of C(0, T ;Rp).

The solution of (3) is given by:

zf (t, z0) = zf (t) = S(t)z0 +
∫ t

0
S(t − s)Gf (s)ds

where S(t) = eAt .
Denote

Htf =
∫ t

0
S(t − s)Gf (s)ds

then zf (t) = S(t)z0 +Htf .
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For a K-viable state z0 (f = 0 for the autonomous system) when the system
is disturbed by a given disturbance f ∈ F , the state z0 can remain viable, i.e.
zf (t, z0) ∈ K for all t ∈ I or no. In this case we define the set of all K-viable
states which remain viable for the disturbed system as follows:

Definition 2.5 For a given disturbance f we define the set of all K-viable states
which remain K-viable for the disturbed system by f as:

V iab
f

K = {z0 ∈ V iabK : zf (t, z0) ∈ K ,

∀ t ∈ [0, T ] }

Remark 2.6 1. In the case where f = 0, we have V iab0
K = V iabK and for each

f , V iab
f

K ⊂ V iabK
2. We can define another set of all initial states which are viable under f which

can contain some states which are not viable for the autonomous system. Such
subset will be defined like the viability kernel for the controlled system but as here
the system is disturbed (not controlled) we consider the set V iab

f

K as defined in
Definition 2.5.

Definition 2.7 We say that

• a subset K is f -viable if: K = V iab
f

K
• K is a f -repeller if V iab

f

K = ∅.

Remark 2.8 If a subset K is f -viable, then it is viable. The converse is not true as
it will be shown in the next sections.

Consequently if K is a repeller then it is f -repeller for each f ∈ F . The
converse is not true.

Now for a given K-viable state, can we determinate the smallest disturbance, which
makes the state nonviable? For that we introduce the so-called viability radius. We
have the following definition.

Definition 2.9 Let z0 be an initial K-viable state. We define the K-viability radius
of z0 as:

RK
viab(z0) = sup{r > 0 ∀ f ∈ F if ||f ||∞ < r then zf (t, z0) ∈ K , ∀ t ∈ I }

where ||f ||∞ = supt∈I ||f (t)||Rp

Remark 2.10 The viability radius is the “smallest disturbance” that can make z0
nonviable: For all f ∈ C(0, T ;Rp) if ‖f ‖ < RK

viab(z0), then z0 remains viable in
presence of f and

∀ε > 0 , ∃f ∈ C(0, T ;Rp)

: RK
viab(z0) < ‖f ‖ < RK

viab(z0)+ ε such that z0 is not viable underf
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To illustrate the definitions and the remark, let us consider the following example in
one-dimensional case for clarity.

Example 2.11 Consider the linear system given by the following state equation:

⎧
⎨

⎩

ż(t) = 2z(t)+ 4f (t) 0 < t�T = 3

z(0) = z0

(4)

and f ∈ C([0, T ];R).
The solution of Eq. (4) is given by:

zf (t) = z0e
2t +

∫ t

0
4e2(t−s)f (s)ds

which gives:

zf (t) = z0e
2t + 4e2t

∫ t

0
e−2sf (s)ds

Case 1. Consider the subset K = ]0, 40[.
We have for f = 0, the nondisturbed system:

V iabK = {z0 ∈]0, 40[ such that z0e
2t ∈]0, 40[

for all t ∈ [0, 3]}

which gives

V iabK =]0 , 40e−6[

Consider now the disturbed system (f �= 0). We consider, for example, the initial
state z0 = 20e−6.

z0 is K-viable in the autonomous case and in the disturbed case it remains viable
if and only if:

20e−6e2t + 4e2t
∫ t

0
e−2sf (s)ds ∈ ]0 , 40[ ; ∀ t ∈ [0, 3]

which is equivalent to

− 5e−6 <

∫ t

0
e−2sf (s)ds < 10e−2t − 5e−6 ; ∀ t ∈ [0, 3] (5)
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Consider the case where F = R, i.e. f (t) = f ∈ R, then Eq. (5) gives:

− 5e−6 < (
1

2
− 1

2
e−2t )f < 10e−2t − 5e−6 ; ∀ t ∈ [0, 3] (6)

which is equivalent, for 0 < t < 3 to

−10e−6

1− e−2t
< f <

20e−2t − 10e−6

1− e−2t
; ∀ t ∈ ]0, 3] (7)

and for t = 0, we obtain : −5e−6 < 0f < 10− 5e−6.
We remark also that:

lim
t→0+

−10e−6

1− e−2t = −∞ and lim
t→0+

20e−2t − 10e−6

1− e−2t = +∞

So, z0 remains K-viable for all f such that:

−10e−6

1− e−6
< f <

10e−6

1− e−6
(8)

and finally we obtain:

RK
viab(z0) = 10e−6

1− e−6 (9)

Case 2. Consider the subset K = [0, 40].
We have for f = 0, the nondisturbed system:

V iabK = {z0 ∈ [0, 40] such that z0e
2t ∈ [0, 40]

for all t ∈ [0, 3]}

which gives

V iabK = [0 , 40e−6]

Consider the state z0 = 0 which is K-viable and we have

RK
viab(z0 = 0) = 0 (10)

Because for all ε > 0 and f = − ε,

zf (t, z0 = 0) = − ε

∫ t

0
4e2(t−s)ds /∈ K = [0, 40]
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This example proof that we can have, for a given K-viable state, RK
viab(z0) = 0.

We remark that for f = ε > 0, the state z0 remains viable while RK
viab(z0) = 0

(Remark 2.10).
Case 3. Let us consider now another case where

F1 = {αet ; α ∈ R and t ∈ [0, 3]} and K =]0, 40[

Then we obtain: the K-viable state z0 = 20e−6 remains K-viable for the disturbed
system if and only if:

zf (t) = z0e
2t + 4αe2t

∫ t

0
e−2sesds ∈ ]0, 40[

which gives

−20e−6e2t

4(e2t − et )
< α <

40− 20e−6e2t

4(e2t − et )
< ∀ t ∈ ]0, 3[

which gives

−5e−6

et − 1
et < f (t) = αet <

40e−t − 20e−6et

4(et − 1)
(11)

and consequently:

RK
viab(z0) = 5e−6

1− e−3

We remark that the K-viability radius depends on the choice of the disturbances set
and we will show in the section applications in biology that this property is very
important.

2.2.2 Characterization

We have the following characterization:

Theorem 2.12 Assume that K is a nonempty bounded connected and closed set of
Rn with a smooth regular boundary ∂K and ImHT =Rn, then for a given K-viable
state z0, the viability radius satisfies:

RK
viab(z0) � inf

t∈I
|φK(z(t, z0))|

‖Ht‖ (12)
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Proof of the Theorem 2.12. Consider the solution of the disturbed system

zf (t, z0) = S(t)z0 +
∫ t

0
S(t − s)Gf (s)ds

So the state z0 remains K-viable if and only if

zf (t, z0) ∈ K, ∀ t ∈ I

We have for t ∈ I ,

φK(zf (t, z0)) =
⎧
⎨

⎩

−d[zf (t, z0), ∂K] if zf (t, z0) ∈ K,

+d[zf (t, z0), ∂K] else.
(13)

Denote

ρK,f (z0) = sup
t ∈ I

φK(zf (t, z0))

So if ρK,f (z0) < 0, then the initial state z0 remains K-viable and if ρK,f (z0) > 0,
then the initial state z0 does not remain K-viable.

We have:

d[zf (t, z0), ∂K] = inf{y∈∂K}
‖zf (t, z0)− y‖

If

‖f ‖∞ < inf
t∈I

|φK(z(t, z0))|
‖Ht‖

we obtain

‖f ‖∞ <
|φK(z(t, z0))|

‖Ht‖ ; ∀ t ∈ I

As

‖Htf ‖�‖Ht‖‖f ‖∞
then

‖Htf ‖ < |φK(z(t, z0))|| ; ∀ t ∈ I (14)
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then for all y ∈ ∂K and t ∈ I ,

‖S(t)z0 +Htf − y‖ �= 0

because if there exists t ∈ I and y ∈ ∂K, such that ‖S(t)z0 +Htf − y‖ = 0, then:

Htf = −S(t)z0 + y

which is in contradiction with the fact that ‖Htf ‖ < |φK(z(t, z0))| ∀ t ∈ I .
Then

φK(zf (t, z0)) < 0 ; ∀ t ∈ [0, T ]

and then ρK,f (z0)�0 and consequently z0 remains K-viable because K is closed.
So we conclude that

RK
viab(z0) � inf

t∈I
|φK(z(t, z0))|

‖Ht‖ (15)

Remark 2.13 We can have equality in some situations as in the following example:

Example 2.14 Consider the example given by Eq. (4) and let us consider the two
cases:

Case 1. K = [0, 40], z0 = 20e−6 and f (t) = f ∈ R for all t ∈ [0, T ].
In this case we have:

|φK(z(t, z0)| = 20e−6et

and

‖Ht‖ = 2(e2t − 1)

So we obtain the same result as in (9) and we have:

RK
viab(z0) = 10e−6

1− e−6
= inf

t∈I
|φK(z(t, z0))|

‖Ht‖
Case 2. K = [0, 40] and z0 = 0.

In this case we remark that RK
viab(z0 = 0) = 0 (the same result as in (10))

because φK(z(t, z0 = 0)) = 0

2.3 Minimal Lethal Disturbance (MLD)

In this subsection we consider the problem of the determination of the smallest
disturbance f , for which the set V iab

f

K is empty (for which the subset K becomes
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f -repeller); the smallest disturbance that makes all the K-viable states nonviable
which we call the Minimal Lethal Disturbance (MLD). For that we have the
following definition:

Definition 2.15

• We define the K-viability radius as :

RK
viab = sup{r > 0 : ∀ f ∈ F , ||f ||∞ < r, V iab

f
K �= ∅}

• If there exists a disturbance f ∈ F such that RK
viab =‖ f ‖∞ and V iab

f
K = ∅,

we say that f is the K-Minimal Lethal Disturbance (MLD).

Remark 2.16 We remark that for each disturbance f such that ||f ||∞ < RK
viab,

then there exists at least one viable state z0 which remains f -viable. But if
||f ||∞ > RK

viab we do not have necessary V iab
f
K = ∅, but there exists another

disturbance h such that ||f ||∞ = ||h||∞ and for which V iabhK = ∅.

The K-viability radius is the smallest disturbance f for which K becomes f -
repeller. We have used the terminology Minimal Lethal Disturbance because in
biology an equivalent term is used: Minimal Lethal Dose.

In some applications, the determination of the Minimal Lethal Disturbance is
a very difficult problem as it will be shown in the section application where we
consider an application in biology and particularly in toxicology and irradiation.

From Definition 2.15 we have the result:

Proposition 2.17 We have

RK
viab = sup{RK

viab(z) : z ∈ V iabK}

Proof Let z be a K-viable state, then

∀ f ∈ F such that ‖f ‖ � RK
viab

there exists a disturbance h such that ‖h‖ = ‖f ‖ for which z is not viable for the
system excited by h.

Then

RK
viab(z) � RK

viab

So we have

RK
viab� sup{RK

viab(z) : z ∈ V iabK}

and consequently the result.
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Example 2.18 Consider the linear system given by the following state equation:

⎧
⎨

⎩

ż(t) = 2z(t)+ 4f (t) 0 < t�T = 3

z(0) = z0

(16)

and ∀t ∈ I , f (t) = f ∈ R.
The solution of Eq. (16) is given by:

zf (t) = z0e
2t + 4e2t

∫ t

0
e−2sf (s)ds

Consider the subset K = [0, 40].
We have for f = 0, the nondisturbed system:

V iabK = [0 , 40e−6]
For each state z0 ∈ V iabK =]0 , 40e−6[, the K-viability radius is given by:

RK
viab(z0) = inf

t∈[0,3]
|φK(z(t, z0))|

‖Ht‖

For each z0 ∈ ]0 , 40e−6[, we have :

|φK(z(t, z0))| = inf{|z0e
2t |, |40e−6 − z0e

2t |}

which gives:

|φK(z(t, z0))| =
⎧
⎨

⎩

z0e
2t if z0 ∈ [0 , 20e−6[

40− z0e
2t if z0 ∈ ]20e−6 , 40e−6]

We have ‖Ht‖ = 2(e2t − 1) and so we obtain:

RK
viab(z0) =

⎧
⎪⎪⎨

⎪⎪⎩

inft∈]0,3] z0e
2t

2(e2t−1)
if z0 ∈ ]0 , 20e−6[

inft∈]0,3] 40−z0e
2t

2(e2t−1)
if z0 ∈ ]20e−6 , 40e−6[

and finally we obtain

RK
viab =

10e−6

1− e−6

We remark that RK
viab = RK

viab(z0 = 20e−6) and it is normal because z0 is in the
center of V iabK and consequently it is the farthest viable state from ∂K .
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3 Controlled System

3.1 Viability Kernel and Viability Radius

Consider a controlled system given by:

⎧
⎨

⎩

ż(t) = Az(t)+ Bu(t) 0 < t < T

z(0) = z0

(1)

where u(.) ∈ U = C([0, T ],Rp).

Definition 3.1 1. The viability kernel of K, noted V iab(A,B)(K), is the subset of
initial states z0 ∈ K such that there exists at least one solution of (1) starting from
z0 and K-viable during the time interval I = [0, T ]. i. e. zu(x, t) ∈ K for all
t ∈ [0, T ], where zu(x, t) is the solution of (1).

We say that K is a repeller if V iab(A,B)(K) = ∅.

Consider now the disturbed controlled system given by the following equation:

⎧
⎨

⎩

ż(t) = Az(t)+ Bu(t)+Gf 0 < t < T

z(0) = z0

(2)

where f ∈ F .
We define the viability radius for each state in the viability kernel as follows:

Definition 3.2 Let K be a nonempty subset of Z.

(i) We define for each z0 ∈ V iab(A,B,G)(K), the K-viability radius, of z0, as:

RV iab(A,B,G)(K)(z0)

= sup{r > 0 ∀ f ∈ F : ||f ||∞ < r : ∃ u ∈ U :: zf,u(t, z0)∈K ; ∀ t∈I }

(ii) We define the K-viability radius of the system as:

RV iab(A,B,G)(K)

= sup
r > 0

{||f ||∞ < r:∀z0 ∈ V iab(A,B,G)(K)∃ u∈U :: zf,u(t, z0)∈K ∀ t∈I }

Remark 3.3

• For each f such that ||f ||∞ > RV iabF (K)(z0) there exists a function h (not
necessary equal to f ) such that ||h||∞ = ||f ||∞ and z0 does not remain viable
for the system excited by h.
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• We have a similar remark about RV iabF (K). For each f such that ||f ||∞ >

RV iabF (K)(z0) there exists, for each viable state z0, a function h (not necessarily
equal to f ) such that ||h||∞ = ||f ||∞ and

∀ u ∈ U : there exists t ∈ I : zf,u(t, z0) /∈ K

Example 3.4 Consider the disturbed and controlled system given by the state
equation:

⎧
⎨

⎩

ż(t) = 2z(t)+ 3u(t)+ 4f (t) 0 < t < T = 3

z(0) = z0

(3)

Let us consider the same set K = [0 , 40].
In the autonomous case (nondisturbed noncontrolled), the K-viability set is given

by:

V iabK = [0 , 40e−6].

In the controlled and nondisturbed case, the viability kernel of K under F is given
by:

V iabF (K) = K = [0 , 40]

In the disturbed noncontrolled case, the viability radius is given by:

RK
viab =

10e−6

1− e−6

and in the disturbed and controlled case, the K-viability radius under F of the
system is given by:

RV iabF (K) = K

3.2 Robust Viability and Viability Radius for Linear Finite
Dimensional System

3.2.1 Problem Statement

Consider the linear system given by the following state equation:

{
ż(t) = Az(t) + Bu(t) + Gf (t) ; 0 < t < T

z(0) = z0
(4)
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where A ∈Mn(R), z(.) ∈ C([o, T ],Rn), B ∈Mn,p(R) and G ∈Mq,n(R).
The solution of the disturbed and controlled system is given by:

zu,f (t, z0) = et z0 + H̃tu + Htf (5)

where

H̃tu =
∫ t

0
eA(t−s)Bu(s)ds

and

Htu =
∫ t

0
eA(t−s)Gf (s)ds

In this subsection we consider the following problem:

(P )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

For a given state z0 ∈ V iabF (K)

Determinate a control u

which maximize the viability radius of z0

If the initial state z0 is K-viable, then z0 ∈ V iabF (K), so we consider the problem
for each state z0 in the viability kernel.

Remark 3.5 We have for all t ∈ I ,

φK(zu,0(t, z0)) =
⎧
⎨

⎩

−d[zu,0(t, z0), ∂K] if zu,0(t, z0) ∈ K,

+d[zu,0(t, z0), ∂K] else.
(6)

Denote

ρ
u,0
K (z0) = sup

t ∈ I

φK(zu,0(t, z0))

then for all u such that zu,0(t, z0) ∈ K ∀ t ∈ I we have:

−d(z0, ∂K)�ρ
u,0
K (z0)�0

So |ρu,0
K (z0)|�d(z0, ∂K).

Let z0 be an initial state in the viability kernel V iabF (K) so there exists at least
one control u such that:

zu,0(t, z0) ∈ K ; ∀ t ∈ I
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Consider the subset Cα of K defined by:

Cα = {x ∈ K ; φK(x)�α} (7)

where −d(z0, ∂K) � α� 0, then

dH (Cα,K) = |α| � d(z0, ∂K)

where for two subset A and B, dH (A,B) is the Hausdorf distance defined by:

dH (A,B) = max(ρ(A,B), ρ(B,A))

where ρ(A,B) = supx∈A d(x, B).
Then Cα is the largest subset of K such that

d(Cα, ∂K) = |α|

So we consider a relaxed problem:

(P1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

For a given state z0 ∈ V iabF (K)

Determinate a control u

which maximize d(C, ∂K)

where C is the farthest subset of K from ∂K where the state z0 is K-viable.

Remark 3.6 The effect of such control is to make the state z(., z0) in K but as far
as possible from ∂K .

3.2.2 Problem Approach

To solve the problem (P1) we consider an approach based on the Dichotomy
algorithm.

Algorithm 1: Consider the largest subset C0 of K such that

d(C0, ∂K) = d(z0, ∂K)

then:

(1) if z0 is in V iabF (C0) (the viability kernel of C0), stop because in this case

d(C0, ∂K) = d(z0, ∂K)
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(2) else define C1 the largest subset of K such that

d(C1, ∂K) = d(z0, ∂K)

2

and
(2*) if z0 is in V iabF (C1) (the viability kernel of C1), we define C2 the largest

subset of K such that

d(C2, ∂K) = d(z0, ∂K)

4

and we go to (2*)
else
we define C2 the largest subset of K such that

d(C2, ∂K) = d(z0, ∂K)

2
+ d(z0, ∂K)

4

and we go to (2*).

We obtain the following algorithm:
If z0 ∈ V iabF (Ci ), we define Ci+1 as the largest subset of K such that

d(Ci+1, ∂K) = d(Ci , ∂K)

2

Else, (z0 /∈ V iabF (Ci )), we define Ci+1 as the largest subset of K such that

d(Ci+1, ∂K) = d(Ci , ∂K)+ d(Ci , ∂K)

2

Denoting rm = d(Cm, ∂K), we have the result:

Theorem 3.7 We assume that K is a bounded nonempty and closed subset of Z =
Rn with a smooth regular boundary ∂K , then:

(i) the sequence (rm) converges to a real r∗;
(ii) there exists a control u∗ solution of problem (P1) and the subset C∗ given by (7)

with α = r∗ is the farthest subset of K from ∂K where z0 is viable.

Proof (i) The sequence (rm) converges to a real r∗ due to the dichotomy principle.
Indeed, we have

|d(Ci+1, ∂K)− d(Ci , ∂K)| = d(Ci , ∂K)

2
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and

dH (Ci+1, Ci ) = dH (Ci , Ci−1)

2
for i�1

For (ii) denote by

C = {Cj ⊂ K : z0 ∈ V iabF (Cj ) ; j�0}

We have two cases:

1. If C = ∅, then r∗ = 0 and in this case C∗ = K.
As z0 ∈ V iabF (K), then there exists a control u such that zu(t, z0 ∈ K for

all t ∈ I and for such control u we have

ρu
K(z0) = 0

and consequently u is a solution of problem (P1).
2. C �= ∅, we consider the subsequence (rj ) of (rm) defined for j such that Cj ∈ C.

The subsequence (rj ) is convergent to r∗ and z0 ∈ V iabF (C∗). Indeed, if z0 /∈
V iabF (C∗), then for all control u, there exists a time t ∈ I , such that zu(t, z0) /∈ C∗.
So as C∗ is closed subset of K, then for all u, we have

ρu
C∗(z0) > 0

which is in contradiction with the fact that

lim
j→∞ dH (Cj , C∗) = 0

So there exists a control u∗ such that zu∗(t, z0) ∈ C∗ for all t ∈ I and

ρu∗
C∗(z0) = r∗

and as

r∗ = d(C∗, ∂K)

we obtain the result.
So the determination of the robust control which maximizes the viability radius

consists to solve a sequence of viability kernel problems (steep (2*)) and for that
there exist many methods based on the viability theorems [1–4]. Also for the
numerical approaches (which is not the aim of this paper) many algorithms are
developed and can be used.
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3.2.3 Example

Example 3.8 To illustrate our approach we consider in this subsection an example
of disturbed controlled system in R2.

Consider the system given by the following state equation:

⎧
⎨

⎩

ż(t) = Az(t) + Bu(t) + Gf (t) 0 < t < T

z(0) = z0

(8)

where

A =
(

2 0
0 1

)
; B =

(
3
b

)
and G =

(
2
g

)

where b, g ∈ R and T = 3.
The solution of the system (8) is given by:

zu,f (t) = et z0 +
∫ t

0
eA(t−s)Bu(s)ds +

∫ t

0
eA(t−s)Gf (s)ds (9)

Let K = [0, 40] × [0, 10] ⊂ R2.
We consider three cases: Autonomous system, disturbed noncontrolled system,

and disturbed controlled system.
Case 1. Autonomous system. In this case we determinate the K-viability set,

V iabK.
We have

V iabK = [0, 40e−6] × [0, e−3] (10)

Indeed, z0 = (z01, z0,2) is K-viable if and only if et z0 ∈ K which is equivalent to

⎧
⎨

⎩

0�z01e
2t�40 ; ∀ t ∈ [0, 3[]

0�z02e
t�10 ; ∀ t ∈ [0, 3]

So we obtain the result (10).
Case 2. Disturbed and noncontrolled system In this case we determinate the K-

viability radius for a given K-viable state and the Minimal Lethal Disturbance of
the set K.

• K-viability radius. To simplify we consider the case where f (t) = f ∈ R.
Let z0 = (20e−6, 1

2e
−3) an initial K-viable state. We have

z(t, z0) = (20e−6e2t ,
1

2
e−3et ) ; ∀ t ∈ [0, 3]
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So we have

S(t)z0 +Htf = (20e−6e2t + 2f (e2t − 1),
1

2
e−3et + f 2(et − 1))

So z0 remains viable if

⎧
⎪⎪⎨

⎪⎪⎩

−20e−6e2t

2(e2t−1)
� f � 40−20e−6e2t

2(e2t−1)

− 1
2 e
−3et

2(et−1) �f� 10− 1
2 e
−3et

2(et−1) ; ∀ t ∈ [0, 3]

So

RK
viab(z0) = inf (

10e−6

1− e−6
,

e−3

4(1− e−3)
)

and finally

RK
viab(z0) = e−3

4(1− e−3)

• Minimal Lethal Disturbance. To assess the viability radius of K we use
Proposition 2.17. We obtain

RK
viab = RK

viab(z0) = e−3

4(1− e−3)

And it is natural because z0 is in the “center” of the viability set.

Case 3. Disturbed and controlled system. In this case we consider the state z0
considered in the case 1 and we will determinate a control solution of problem (P1).
For this we consider two cases: the case where the system is controllable and the
case which the system is not controllable.

• The system is controllable.
The system is controllable if and only if b �= 0. As an example we take b = 1.

So we have

zu,0(t, z0) = (20e−6e2t + 3et
∫ t

0
e−2su(s)ds,

1

2
e−3et + et

∫ t

0
e−su(s)ds)

for all t ∈ [0, 3].
For z0 = (20e−6,

1

2
e−3) we have for

C0 = [20e−6, 40− 1

2
e−3] × [1

2
e−3, 10− 1

2
e−3]
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we have d(C0, ∂K) = d(z0, ∂K) and z0 is C0-viable. So the control u = 0 is a
solution of problem (P1).

Consider now the case where z0 is not K-viable but in the viability kernel. As
an example we consider z0 = (20, 5) which is not K-viable because

z0,0(t, z0) = (20e2t , 5et )

and for t = 2, for example, z0,0(t, z0) /∈ K, but z0 is in the viability kernel,
because

zu,0(t, z0) = (20e2t + 3et
∫ t

0
e−2su(s)ds,

5et + et
∫ t

0
e−su(s)ds)

and there exists a control u such that:

zu,0(t, z0) ∈ K , ∀ t ∈ [0, 3]

• The system is not controllable. This is the case where b = 0. So the solution is
given by

zu,0(t, z0 = (z01, z02)

= (z01e
2t + 3et

∫ t

0
e−2su(s)ds, z02e

t )

; ∀ t ∈ ]0, 3[

In this case the state z0 = (20, 5) is not in the viability kernel.

Let us consider another state z1 = (30, (9.7)e−3) which is in the viability kernel.
To determinate the robust control we have to find the smallest subset C for which
z1 is in the viability kernel using the Algorithm 1. As z1 = (30, (9.7)e−3) is in the
viability kernel so RK

viab(z0)�0. Consider

C0 =](9.7)e−3, 40− (9.7)e−3[×](9.7)e−3, 10− (9.7)e−3[

By explicit calculus we proof that z1 is not in the viability kernel of C0. So

0�r∗ < (9.7)e−3
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we consider

C1 =

]1
2
(9.7)e−3, 40− 1

2
(9.7)e−3[×]1

2
(9.7)e−3, 10− 1

2
(9.7)e−3[

In this case z1 is in the viability kernel of C1, so we have

1

2
(9.7)e−3�r∗ < (9.7)e−3

and we consider

C2 =

](1

2
+ 1

4
)(9.7)e−3, 40− (

1

2
+ 1

4
)(9.7)e−3[×

](1

2
9.7)e−3 + 1

4
, 10− (

1

2
+ 1

4
)(9.7)e−3[

and in this case z1 is in the viability kernel of C2, so we have

1

2
(9.7)e−3�c∗ < (

1

2
+ 1

4
)(9.7)e−3

which gives

0.2240 � r∗ � 0.3360

And we continue the algorithm.

Remark 3.9 We have presented in this paper, as examples, the one-dimensional
case just for clarity, however for the case where the dimension is greater or equal
to 2,the approch is the same but we have to do numerical computations for all the
considered parameters.

4 Connection with Minimal Lethal Dose in Toxicity

The viability radius depends on the disturbance set; F . This property has been
exploited in biology, and particularly in toxicology, to assess the toxicity of each
poison. For that the concept of Minimal Lethal Dose was introduced. We recall the
following definition [10, 11]:

Definition 4.1 The Minimal Lethal Dose (MLD) is the lowest dose of a substance
that can kill an animal by administering a slow intravenous drug. Death is assessed
by cardiac arrest.
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We remark that in this definition one can take into account the manner of
administering the substance: this is the equivalent operator Ht in our case. We recall
that the dose is the ratio between the weight of the absorbed substance and the
weight of the body absorbs. It was cited in Paracelsus all substances are toxic, it is
only a question of quantity, a question of dose [9].

In practice, the determination of the Minimal Lethal Dose (MLD) for each
poison is a very difficult problem and for that the biologists estimate the MLD
in the laboratories. As in each measure in laboratories there are some errors, J.W.
Trevan has introduced in 1927, the so-called Lethal Dose 50 (LD50). We recall the
definition:

Definition 4.2 The LD50 value is a statistical estimate of a dose that can kill 50%
of the population of animals from the same species. It is expressed in mg of substance
per kg of body weight.

The median lethal dose is a quantitative indicator of the toxicity of a given substance.
Why 50%? This is for statistical representation reasons. In general we uses the value
50%, rather than 0, 5, 95, or 100%. In fact, Gaussian curve is “flat” to 50%, making
a sample is more representative when a threshold is exceeded by 50% [8, 11].

The LD50 concept was introduced by J. W Trevan in 1927 and it permits the
classification of all products by their dangerousness.

5 Conclusion

In this work we have considered, for finite dimensional linear systems, the viability
radius and the robust viability control problems. Some characterizations are given.
We have presented some examples to illustrate the definitions and approaches. We
notice that this work was motivated by the concept of minimal lethal dose introduced
for toxicity problems. It will be interesting to extend the results to Distributed
Parameters Systems and consider the relationships between vulnerability and
protector control concepts introduced by Bernoussi for such systems, and the robust
viability control. Also as for Distributed Parameters Systems the measures function
and sensors play an important role, it will be interesting to consider the problems
through measures functions. Such problems are under investigation.
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1 Introduction

The pseudo-Riemannian geometry is the study of the Levi–Civita connection, which
is the unique torsion-free connection compatible with the metric structure. The
theory of affine connections is a classical topic in differential geometry, it was
initially developed to solve pure geometrical problems. It provides an extremely
important tool to study geometrical structures on manifolds and, as such, has been
applied with great sources in many different setting. For affine connections, a survey
of the development of the theory can be found in [19] and references therein. In
[13], García-Rio et al. introduced the notion of the affine Osserman connections.
Affine Osserman connections are well-understood in dimension two. For instance,
in [6] and [13], the authors proved in a different way that an affine connection is
Osserman if and only if its Ricci tensor is skew-symmetric. The situation is however
more involved in higher dimensions where the skew-symmetry of the Ricci tensor is
a necessary (but not a sufficient) condition for an affine connection to be Osserman.
The concept of an affine Osserman connection has become a very active research
subject (See [7–9] for more details.)

In this paper, we associate a pseudo-Riemannian structure of neutral signature to
certain affine connections and use this correspondence to study both geometries. We
examine affine Osserman connections, Riemann extensions, and Walker structures.
Our paper is organized as follows. Section 1 introduces this topic. Section 2 contains
some definitions and basic results we shall need. In Sect. 3, we study the Osserman
condition on a family of affine connection (cf. Proposition 3.3). Finally in Sect. 4, we
construct an example of pseudo-Riemannian Walker Osserman metric of signature
(3, 3), using the Riemann extensions. The Riemann extension provides a link
between affine and pseudo-Riemannian geometries. It plays an important role in
various questions involving the spectral geometry of the curvature operator. (See,
for example, [1–3, 7, 13] for more details.)

2 Preliminaries

2.1 Affine Manifolds

Let M be an m-dimensional smooth manifold and ∇ be an affine connection on
M . Let us consider a system of coordinates (u1, · · · , um) in a neighborhood U of a
point p in M . In U , the connection is given by

∇∂i ∂j = f k
ij ∂k, (2.1)

where {∂i = ∂
∂ui
}1�i�m is a basis of the tangent space TpM and the functions

f k
ij (i, j, k = 1, · · · ,m) are called the coefficients of the affine connection. The pair

(M,∇) shall be called affine manifold.
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We define a few tensor fields associated to a given affine connection ∇. The
torsion tensor field T ∇ , which is of type (1, 2), is defined by

T ∇(X, Y ) = ∇XY −∇YX − [X, Y ],

for any vector fields X, and Y on M . The components of the torsion tensor T ∇ in
local coordinates are

T k
ij = f k

ij − f k
ji .

If the torsion tensor of a given affine connection∇ vanishes, we say that∇ is torsion-
free.

The curvature tensor field R∇ , which is of type (1, 3), is defined by

R∇(X, Y )Z := ∇X∇YZ − ∇Y∇XZ −∇[X,Y ]Z,

for any vector fields X, Y and Z on M . The components in local coordinates are

R∇(∂k, ∂l)∂j =
∑

i

Ri
jkl∂i .

We shall assume that ∇ is torsion-free. If R∇ = 0 on M , we say that ∇ is flat affine
connection. It is known that ∇ is flat if and only if around a point there exists a local
coordinates system such that f k

ij = 0 for all i, j , and k.

We define the Ricci tensor Ric∇ , of type (0, 2) by

Ric∇(Y, Z) = trace{X �→ R∇(X, Y )Z}.

The components in local coordinates are given by

Ric∇(∂j , ∂k) =
∑

i

Ri
kij .

It is known in Riemannian geometry that the Levi–Civita connection of a Rieman-
nian metric has symmetric Ricci tensor, that is, Ric(Y, Z) = Ric(Z, Y ). But this
property is not true for an arbitrary affine connection which is torsion-free. In fact,
the property is closely related to the concept of parallel volume element (cf. [19]
for more details).

In a 2-dimensional manifold, the curvature tensor R∇ and the Ricci tensor Ric∇
are related by

R∇(X, Y )Z = Ric∇(Y, Z)X − Ric∇(X,Z)Y. (2.2)

For X ∈ �(TpM), we define the affine Jacobi operator JR∇ with respect to X

by JR∇ (X) : TpM −→ TpM such that
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JR∇ (X)Y := R∇(Y,X)X. (2.3)

for any vector field Y . The affine Jacobi operator satisfies JR∇ (X)X = 0 and
JR∇ (αX) = α2JR∇ (X)Y , for α ∈ R − {0} and X ∈ TpM . Let (M,∇) be a
three-dimensional affine manifold and let X = ∑3

i=1 αi∂i be a non-null vector on
M , where {∂i} denotes the coordinate basis and αi ∈ R

∗. Then the affine Jacobi
operator is given by

JR∇ (X) = α2
1R∇(·, ∂1)∂1 + α1α2R∇(·, ∂1)∂2 + α1α3R∇(·, ∂1)∂3

+α1α2R∇(·, ∂2)∂1 + α2
2R∇(·, ∂2)∂2 + α2α3R∇(·, ∂2)∂3

+α1α3R∇(·, ∂3)∂1 + α2α3R∇(·, ∂3)∂2 + α2
3R∇(·, ∂3)∂3.

2.2 Affine Osserman Manifolds

Let (M,∇) be an m-dimensional affine manifold, i.e., ∇ is a torsion free connection
on the tangent bundle of a smooth manifold M of dimension m. Let R∇(X, Y )

be the curvature operator and JR∇ (X) the Jacobi operator with respect to a vector
X ∈ TpM associated.

Definition 2.1 ([14]) One says that an affine manifold (M,∇) is affine Osserman
at p ∈ M if the characteristic polynomial of JR∇ (X) is independent of X ∈ TpM .
Also (M,∇) is called affine Osserman if (M,∇) is affine Osserman at each p ∈ M .

Theorem 2.2 ([14]) Let (M,∇) be an m-dimensional affine manifold. Then
(M,∇) is called affine Osserman at p ∈ M if and only if the characteristic
polynomial of JR∇ (X) is

Pλ[JR∇ (X)] = λm

for every X ∈ TpM .

Corollary 2.3 We say that (M,∇) is affine Osserman if Spect{JR∇ (X)} = {0} for
any vector X

Corollary 2.4 If (M,∇) is affine Osserman at p ∈ M , then the Ricci tensor is
skew-symmetric at p ∈ M .

The affine Osserman connections are of interest not only in the affine geometry, but
also in the study of the pseudo-Riemannian Osserman metrics since they provide
some nice examples of Osserman manifolds whose Jacobi operators have non-trivial
Jordan normal form and which are not nilpotent. It has long been a task in this field
to build examples of Osserman manifolds were not nilpotent and which exhibited
non-trivial Jordan normal form. We will refer [1, 3] for more information.
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2.3 The Riemann Extension Construction

Let N := T ∗M be the cotangent bundle of an m-dimensional manifold and let
π : T ∗M → M be the natural projection. A point ξ of the cotangent bundle is
represented by an ordered pair (ω, p), where p = π(ξ) is a point on M and ω

is an 1-form on TpM . If u = (u1, · · · , um) are local coordinates on M , let u′ =
(u1′ , · · · , um′) be the associated dual coordinates on the fiber where we expand an
1-form ω as ω = ui′dui (i = 1, · · · ,m; i′ = i + m); we shall adopt the Einstein
convention and sum over repeated indices henceforth.

For each vector field X = Xi∂i on M , the evaluation map ιX(p, ω) = ω(Xp)

defines on function on N which in local coordinates is given by

ιX(ui, ui′) = ui′X
i.

Vector fields on N are characterized by their action on function ιX; the complete lift
XC of a vector field X on M to N is characterized by the identity

XC(ιZ) = ι[X,Z], for all Z ∈ C∞(TM).

Moreover, since a (0, s)-tensor field on M is characterized by its evaluation on
complete lifts of vector fields on M , for each tensor field T of type (1, 1) on M ,
we define a 1-form ιT on N which is characterized by the identity

ιT (XC) = ι(T X).

Definition 2.5 Let (M,∇) be an affine manifold of dimension m. The Riemann
extension ḡ of (M,∇) is the pseudo-Riemannian metric of neutral signature (m,m)

on the cotangent bundle T ∗M , which is characterized by the identity

ḡ(XC, YC) = −ι(∇XY + ∇YX).

In the system of induced coordinates (ui, ui′) on TM , the Riemann extension takes
the form:

ḡ =
(
−2uk′�k

ij Idm

Idm 0

)
,

with respect to {∂u1 , . . . , ∂um, ∂u′1 , . . . , ∂u′m}; here, the indices i and j range from

1, . . . , m, i′ = i +m, and �k
ij are the Christoffel symbols of the connection ∇ with

respect to the coordinates (ui) on M . More explicitly:

ḡ(∂ui , ∂uj ) = −2uk′�
k
ij , ḡ(∂ui , ∂u′j ) = δ

j
i , ḡ(∂u′i , ∂u′j ) = 0.
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Let (M, g) be a pseudo-Riemannian manifold. The Riemann extension of the
Levi–Civita connection inherits many of the properties of the base manifold. For
instance, (M, g) has constant sectional curvature if and only if (TM, ḡ) is locally
conformally flat. However, the main applications of the Riemann extensions appear
when considering affine connections are not the Levi–Civita connection of any
metric. We have the following result:

Theorem 2.6 ([13]) Let (T ∗M, ḡ) be the cotangent bundle of an affine manifold
(M,∇) equipped with the Riemann extension of the torsion free connection ∇.
Then (T ∗M, ḡ) is a pseudo-Riemannian globally Osserman manifold if and only
if (M,∇) is an affine Osserman manifold.

3 Example of Affine Osserman Connections

In the following M denotes a three-dimensional manifold and ∇ a smooth torsion-
free affine connection. Choose a system (u1, u2, u3) of local coordinates in a domain
U ⊂ M such that the affine connection ∇ is uniquely determined by six functions
f1, . . . , f6 given by the formulas

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇∂1∂1 = f1(u1, u2, u3)∂2;
∇∂1∂2 = f2(u1, u2, u3)∂2;
∇∂1∂3 = f3(u1, u2, u3)∂2;
∇∂2∂2 = f4(u1, u2, u3)∂2;
∇∂2∂3 = f5(u1, u2, u3)∂2;
∇∂3∂3 = f6(u1, u2, u3)∂2.

(3.1)

One can easily show that the non-zero components of the Ricci tensor are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ric(∂1, ∂1) = ∂2f1 − ∂1f2 + f1f4 − f 2
2

Ric(∂1, ∂2) = ∂2f2 − ∂1f4

Ric(∂1, ∂3) = ∂2f3 − ∂1f5 + f3f4 − f2f5

Ric(∂3, ∂1) = ∂2f3 − ∂3f2 + f3f4 − f2f5

Ric(∂3, ∂2) = ∂2f5 − ∂3f4

Ric(∂3, ∂3) = ∂2f6 − ∂3f5 + f4f6 − f 2
5 .

(3.2)

The skew-symmetry of Ricci tensor means that, in any local coordinates, we have:

⎧
⎪⎪⎨

⎪⎪⎩

Ric(∂1, ∂1) = Ric(∂2, ∂2) = Ric(∂3, ∂3) = 0
Ric(∂1, ∂2)+ Ric(∂2, ∂1) = 0
Ric(∂1, ∂3)+ Ric(∂3, ∂1) = 0
Ric(∂2, ∂3)+ Ric(∂3, ∂2) = 0.

(3.3)
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According (3.1) and (3.3), we have the following

Proposition 3.1 The affine connection ∇ defined in (3.1) is skew-symmetric if the
functions fi, i = 1, . . . , 6 satisfy the following partial differential equations:

∂2f2 − ∂1f4 = 0; ∂2f5 − ∂3f4 = 0

∂2f1 − ∂1f2 + f1f4 − f 2
2 = 0

∂2f6 − ∂3f5 + f4f6 − f 2
5 = 0

2∂2f3 − ∂1f5 − ∂3f2 + 2f3f4 − 2f2f5 = 0. (3.4)

Proof It follows from (3.1) and (3.3).

Corollary 3.2 ([8]) Let ∇ be as (3.1). Assume that f2 = f3 = f5 = 0, then
the affine connection (3.1) is skew-symmetric if and only if the coefficients of the
connection (3.1) satisfy

f4(u1, u2, u3) = f1(u2), ∂2f1 + f1f4 = 0, and ∂2f6 + f4f6 = 0. (3.5)

We have the following result:

Proposition 3.3 Let (M,∇) be a 3-dimensional affine manifold with torsion free
connection given by (3.1). Then (M,∇) is affine Osserman if and only if the Ricci
tensor is skew-symmetric.

Proof Since the Ricci tensor of any affine Osserman connection is skew-symmetric,
it follows from previous expression that we have the following necessary conditions
for the affine connections (3.1) to be Osserman

∂2f2 − ∂1f4 = 0; ∂2f5 − ∂3f4 = 0

∂2f1 − ∂1f2 + f1f4 − f 2
2 = 0

∂2f6 − ∂3f5 + f4f6 − f 2
5 = 0

and

2∂2f3 − ∂1f5 − ∂3f2 + 2f3f4 − 2f2f5 = 0.

Then, the associated affine Jacobi operator can be expressed, with respect to the
coordinate basis, as

(JR∇ (X)) =
⎛

⎝
0 0 0
a 0 c

0 0 0

⎞

⎠ ,
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with

a = α1α3

(
∂1f3 − ∂3f1 + f2f3 − f1f4

)

+α2α3

(
2∂1f5 − ∂2f3 − ∂3f2 + f2f5 − f3f4

)

+α2
3

(
∂1f6 − ∂3f3 + f2f6 − f3f5

)
;

c = −α2
1

(
∂1f3 − ∂3f1 + f2f3 − f1f5

)

−α1α2

(
∂1f5 − ∂2f3 − 2∂3f2 + f3f4 − f2f5

)

−α1α3

(
∂1f6 − ∂3f3 + f2f6 − f3f5

)
.

The characteristic polynomial of the affine Jacobi operator is now seen to be:

Pλ[JR∇ (X)] = −λ3

which has zero eigenvalues. 23
Example 3.4 Following Corollary 3.2, one can construct examples of affine Osser-
man connections. The following connection on R

3 whose non-zero coefficients of
the cofficients are given by

∇∂1∂1 = u1u3∂2 and ∇∂3∂3 = (u2 + u3)∂2 (3.6)

is nonflat affine Osserman.

The concept of an affine Osserman connection has become a very active research
subject. In [10], the authors give examples of affine Osserman connections which are
locally symmetric but not flat on 3-dimensional manifolds. In [11], affine Osserman
connections which are Ricci flat but not flat on 3-dimensional manifolds are given.
In [12], examples of affine Osserman connections which are Ricci flat and which
are not Ricci flat on 3-dimensional manifolds are exhibited.

4 Example of Walker Osserman Metric

Let M be a pseudo-Riemannian manifold of signature (p, q). We suppose given a
splitting of the tangent bundle in the form TM = V1 ⊕ V2 where V1 and V2 are
smooth subbundles which are called distribution. This defines two complementary
projection π1 and π2 of TM onto V1 and V2. We say that V1 is a parallel distribution
if ∇π1 = 0. Equivalently this means that if X1 is any smooth vector field taking
values in V1, then ∇X1 again takes values in V1. If M is Riemannian, we can take
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V2 = V ⊥1 to be the orthogonal complement of V1 and in that case V2 is again
parallel. In the pseudo-Riemannian setting, of course, V1∩V2 need not be trivial. We
say that V1 is a null parallel distribution if V1 is parallel and if the metric restricted to
V1 vanishes identically. Manifolds which admit null parallel distribution are called
Walker manifolds. More precisely, a Walker manifold is a triple (M, g,D) where
M is an m-dimensional manifold, g an indefinite metric, and D an r-dimensional
parallel null distribution. Of special interest are those manifolds admitting a field of
null planes of maximum dimension r = m

2 . In this particular case, it is convenient
to use special coordinate systems associated with any Walker metric.

Let (u1, u2, u3) be the local coordinates on a 3-dimensional affine manifold
(M,∇). We expand ∇∂i ∂j =

∑
k f

k
ij ∂k for i, j, k = 1, 2, 3 to define the Christoffel

symbols of ∇. Let ω = u4du1 + u5du2 + u6du3 ∈ T ∗M : (u4, u5, u6) be the dual
fiber coordinates. The Riemann extension is the pseudo-Riemannian metric ḡ on the
cotangent bundle T ∗M of neutral signature (3, 3) defined by setting

ḡ(∂1, ∂4) = ḡ(∂2, ∂5) = ḡ(∂3, ∂6) = 1,

ḡ(∂1, ∂1) = −2u4f
1
11 − 2u5f

2
11 − 2u6f

3
11,

ḡ(∂1, ∂2) = −2u4f
1
12 − 2u5f

2
12 − 2u6f

3
12,

ḡ(∂1, ∂3) = −2u4f
1
13 − 2u5f

2
13 − 2u6f

3
13,

ḡ(∂2, ∂2) = −2u4f
1
22 − 2u5f

2
22 − 2u6f

3
22,

ḡ(∂2, ∂3) = −2u4f
1
23 − 2u5f

2
23 − 2u6f

3
23,

ḡ(∂3, ∂3) = −2u4f
1
33 − 2u5f

2
33 − 2u6f

3
33.

Let us consider the affine Osserman connection given in (3.6). The Riemann
extension ḡ on R

6 of the connection (3.6) has the form

ḡ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−2u5u1u3 0 0 1 0 0
0 0 0 0 1 0
0 0 −2u5(u1 + u3) 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The nonvanishing covariant derivatives of ḡ are given by

∇̄∂1∂1 = u1u3∂2 − u3u5∂4 + u1u5∂6, ∇̄∂1∂3 = −u1u5∂4 − u5∂6,

∇̄∂1∂5 = −u1u3∂4, ∇̄∂3∂3 = (u1 + u3)∂2 + u5∂4 − u5∂6,

∇̄∂3∂5 = −(u1 + u3)∂6.
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The nonvanishing components of the curvature tensor of (R6, ḡ) are given by

R(∂1, ∂3)∂1 = −u1∂2; R(∂1, ∂3)∂3 = ∂2; R(∂1, ∂3)∂5 = u1∂4 − ∂6;
R(∂1, ∂5)∂1 = −u1∂6; R(∂1, ∂5)∂3 = u1∂4; R(∂3, ∂5)∂1 = ∂6;
R(∂3, ∂5)∂3 = −∂4.

Now, if X = ∑6
i=1 αi∂i is a vector field on R

6, then the matrix associated with the
Jacobi operator JR(X) = R(·, X)X is given by

(JR(X)) =
(
A 0
B At

)
,

where A is the 3× 3 matrix given by

A =
⎛

⎝
0 0 0

1− u1 0 u1 − 1
0 0 0

⎞

⎠ ;

and B is the 3× 3 matrix given by

B =
⎛

⎝
2u1 0 −u1

0 0 0
−1− u1 0 1

⎞

⎠ .

Then we have the following

Proposition 4.1 (R6, ḡ) is a Walker Osserman metric of signature (3, 3).

Walker geometry is intimately related to many questions in mathematical
physics. Note that the Riemann extension is necessarily a Walker metric. It is a
remarkable fact that Walker metrics satisfying some natural curvature conditions are
locally Riemann extensions, thus leading the corresponding classification problem
to a task in affine geometry as shown in [2].

Chaichi et al. [4] have studied conditions for a Walker metric to be Einstein,
Osserman, or locally conformally flat and obtained thereby exact solutions to the
Einstein equations for a restricted Walker manifold.

Appendix 1: Components of the Curvature Tensor

The non-zero components of the curvature tensor of the affine connection (3.1) are
given by

R(∂1, ∂2)∂1 = (∂1f2 − ∂2f1 + f 2
2 − f1f4)∂2

R(∂1, ∂2)∂2 = (∂1f4 − ∂2f2)∂2
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R(∂1, ∂2)∂3 = (∂1f5 − ∂2f3 + f2f5 − f3f4)∂2

R(∂1, ∂3)∂1 = (∂1f3 − ∂3f1 + f2f3 − f1f5)∂2

R(∂1, ∂3)∂2 = (∂1f5 − ∂3f2)∂2

R(∂1, ∂3)∂3 = (∂1f6 − ∂3f3 + f2f6 − f3f5)∂2

R(∂2, ∂3)∂1 = (∂2f3 − ∂3f2 + f3f4 − f2f5)∂2

R(∂2, ∂3)∂2 = (∂2f5 − ∂3f4)∂2

R(∂2, ∂3)∂3 = (∂2f6 − ∂3f5 + f4f6 − f 2
5 )∂2.

Appendix 2: Osserman Geometry

Let R be the curvature operator of a Riemannian manifold (M, g) of dimension m.
The Jacobi operator J (x) : y �→ R(y, x)x is the self-adjoint endomorphism of the
tangent bundle. Following the seminal work of Osserman [20], one says that (M, g)

is Osserman if the eigenvalues of J are constant on the unit sphere bundle

S(M, g) := {X ∈ TM : g(X,X) = 1}.

Work of Chi [5], of Gilkey et al. [15], and of Nikolayevsky [16, 17] show that any
complete and simply connected Osserman manifold of dimension m �= 16 is a rank-
one symmetric space; the 16-dimensional setting is exceptional and the situation
is still not clear in that setting although there are some partial result due, again, to
Nikolayevsky [18].

Suppose (M, g) is a pseudo-Riemannian manifold of signature (p, g) for p > 0
and q > 0. The pseudo-sphere bundles are defined by setting

S±(M, g) := {X ∈ TM : g(X,X) = ±1}.

One says that (M, g) is spacelike (resp. timelike) Osserman if the eigenvalues of J
are constant on S+(M, g) (resp. S−(M, g)). The situation is rather different here
as the Jacobi operator is no longer diagonalizable and can have nontrivial Jordan
normal form as shown by Garcá-Ró et al. [13]. We refer to [14] for more information
on Osserman manifolds.
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1 Introduction

It is well-known that in (3+ 1)-dimensional spacetime (Minkowski space), denoted
M(4), Maxwell’s equations respect not only Poincaré symmetry, but also conformal
symmetry. But the physical meaning of this conformal symmetry is still not entirely
clear. A historical review is provided by Kastrup [6].

In our ongoing work, we have been investigating the characterization of general,
nonlinear conformal-invariant Maxwell theories [2]. Our strategy is to make use
of the identification of the conformal compactification M# of Minkowski space
with the projective light cone in (4 + 2)-dimensional spacetime Y (6) [1]. Poincaré
transformations, dilations, and special conformal transformations act by rotations
and boosts in Y (6). Nikolov and Petrov [9] consider a linear Maxwell theory in
Y (6), and carry out a ray reduction and dimensional reduction procedure to obtain
conformal-invariant theories in M(4). The result is a description of some additional
fields that might survive in M(4). To handle nonlinear Maxwell theories, we allow
the constitutive equations to depend explicitly on conformal-invariant functionals
of the field strength tensors (with the goal of carrying out a similar dimensional
reduction). This parallels, in a certain way, the approach taken by two of us in earlier
articles describing general (Lagrangian and non-Lagrangian) nonlinear Maxwell
and Yang–Mills theories with Lorentz symmetry in M(4) [3, 4].

This contribution surveys some of the key ideas underlying our investigation. A
major tool is to focus on the behavior of the fields and the coordinates under confor-
mal inversion. We introduce here the resulting “inverse Minkowski space” obtained
via conformal inversion, and consider the possibility of defining Maxwellian fields
independently on the inverse space. We also write two independent conformal-
invariant functionals of the Maxwell field strength tensors in Y (6)—one bilinear,
the other trilinear in the field strengths. These are the functionals which are to
enter general nonlinear constitutive equations in the (4+2)-dimensional theory. We
also make some remarks regarding the dimensional reduction procedure from six to
four dimensions, as we consider its generalization from linear to general nonlinear
theories.

2 Conformal Transformations and Compactification

2.1 Conformal Transformations in Minkowski Space

The full conformal group for (3 + 1)-dimensional Minkowski spacetime M(4), as
usually defined, includes the following transformations. For x = (xμ) ∈ M(4),
μ = 0, 1, 2, 3, we have:
translations:

x′μ = (Tb x)
μ = x μ − bμ ; (2.1)
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spatial rotations and Lorentz boosts, for example:

x′ 0 = γ (x0−βx1) , x′ 1 = γ (x1−βx0) , −1 < β = v

c
< 1 , γ = (1−β2)−

1
2 ;

(2.2)
or more generally,

x′μ = ($x)μ = $μ
ν xν (Einstein summation convention) ; (2.3)

and dilations:

x′μ = (Dλ x)
μ = λx μ , λ > 0 ; (2.4)

all of which are causal in M(4). Let us consider conformal inversion R, which acts
singularly on M(4), and breaks causality:

x′μ = (R x)μ = x μ/xνx
ν, where (2.5)

xνx
ν = gμνxμx

ν , gμν = diag [1,−1,−1,−1] . (2.6)

Evidently R2 = I . That is, neglecting singular points, conformal inversion is
like a reflection operator: inverting twice yields the identity operation. Conformal
inversion preserves the set of light-like submanifolds (the “light rays”), but not the
causal structure. Locally, we have:

gμνdx
′μdx′ ν = 1

(xσ xσ )2 gμνdx
μdxν . (2.7)

Combining inversion with translations, and inverting again, gives us the special
conformal transformations Cb, which act as follows:

x′μ = (Cb x)
μ = (RTb R x)μ = (x μ − bμxνx

ν)/(1− 2bνx
ν + bνb

νxσ x
σ ) .

(2.8)
The operators Cb belong to the conformal group, and can be continuously connected
to the identity.

2.2 Conformal Compactification

We can describe Minkowski space M(4) using light cone coordinates. Choose a
particular (spatial) direction in R3. Such a direction is specified by a unit vector û,
labeled (for example) by an appropriate choice of angles in spherical coordinates. A
vector x ∈ R3 is then labeled by angles and by the coordinate u, with −∞ < u <
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∞, and x · x = u2. With respect to this direction, we introduce the usual light cone
coordinates,

u± = 1√
2
(x0 ± u) . (2.9)

Then for x = (x0, x), we have xμx
μ = 2u+u−; so under conformal inversion

(with obvious notation),

u ′ + = 1

2u−
, u ′ − = 1

2u+
. (2.10)

To obtain the conformal compactification M# of the (3 + 1)-dimensional
Minkowski space M(4), we formally adjoin to it the set J of necessary “points
at infinity.” These are the images under inversion of the light cone L(4) ⊂ M(4)

(defined by either u+ = 0 or u− = 0), together with the formal limit points of L(4)

itself at infinity (which form an invariant submanifold of J ). Here J is the well-
known “extended light cone at infinity.” The resulting space M# = M(4) ∪ J has
the topology of S3 × S1/Z2.

In the above, we understand the operators Ta , $
μ
ν , Dλ, R, and Cb as trans-

formations of M#. Including these operators but leaving out R, we have what is
often referred to as the “conformal group,” all of whose elements are continuously
connected to the identity. There are many different ways to coordinatize M# and to
visualize its structure, which we shall not discuss here.

3 Inverse Minkowski Space

3.1 Motivation and Definition

In the preceding construction, which is quite standard, there is a small problem
with the units. We glossed over (as do nearly all authors) the fact that x μ has the
dimension of length, while the expression for (R x)μ has the dimension of inverse
length. Thus we cannot actually consider R as a transformation on Minkowski space
(or on compactified Minkowski space) without arbitrarily fixing a unit of length!

Furthermore, regarding the formula for (Cb x)
μ, it is clear that b must have the

dimension of inverse length; but in the expression for (Tb x)μ, it has the dimension
of length.

Kastrup [5] suggested introducing a Lorentz-invariant “standard of length” κ

at every point, having the dimension of inverse length, and working with the
dimensionless coordinates ημ = κxμ together with κ . This leads into a discussion
of geometrical gauge properties of Minkowski space.

Let us consider instead the idea of introducing a separate “inverse Minkowski
space” [M(4)]−1, whose points z have dimension of inverse length. Then we can
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let zμ = (R̂ x)μ = xμ/xνx
ν belong to [M(4)]−1. As before, in order to define

R̂ on the light cone, we shall need to compactify: first, to compactify [M(4)]−1

so as to include the image points of R̂ acting on the light cone in M(4), and then
to compactify [M(4)], obtaining [M#]−1 and M#. The two spaces are, of course,
topologically and geometrically the same, with R̂ : M# → [M#]−1, and its inverse
R̂−1 : [M#]−1 → M#, given by the same formula: xμ = zμ/zνz

ν .
Just as we have Ta , $

μ
ν , Dλ, and Cb acting in M# (allowing a to have the

dimension of length, and b to have the dimension of inverse length), we now define
corresponding transformations, T̃b, $̃μ

ν , D̃λ, and C̃a acting in [M#]−1, using the
same formulas as before, but with z replacing x. Thus, (T̃b z)μ = zμ − bμ, and so
forth. Now,

Cb = R̂−1T̃bR̂, Dλ = R̂−1D̃1/λR̂, $ = R̂−1$̃R̂, Ta = R̂−1C̃bR̂ .

(3.1)

3.2 Conformal Lie Algebra

The well-known Lie algebra of the conformal group has 15 generators, as follows:

[Pμ, Pν] = 0, [Kμ,Kν] = 0, [Pμ, d] = Pμ, [Kμ, d] = −Kμ,

[Pμ, Jαβ ] = gμαPβ − gμβPα, [Kμ, Jαβ ] = gμαKβ − gμβKα, (3.2)

[Jμν, Jαβ ] = (usual Lorentz algebra), [Pμ,Kν] = 2(gμνd− Jμν),

where the Pμ generate translations, the Kμ generate special conformal transforma-
tions, the Jαβ generate Lorentz rotations and boosts, and d generates dilations.

Evidently the exchange Pμ → Kμ, Kμ → Pμ, d → −d leaves the Lie algebra
invariant. This fact is now easily understood, if we think of it as conjugating the
operators in M with the operator R̂ to obtain the generators of transformations in
[M#]−1:

P̃μ = R̂KμR̂
−1, K̃μ = R̂PμR̂

−1, d̃ = R̂(−d)R̂−1, J̃ = R̂J R̂−1. (3.3)

3.3 Some Comments

To relate the original conformal inversion R to R̂, we may introduce an arbitrary
constant A > 0, having the dimension of area. Let Â : [M(4)]−1 → M(4) be the
operator x μ = Azμ. Then define x′μ = (RAx)

μ = (ÂR̂x)μ = Ax μ/xνx
ν , for

A > 0. Note that R 2
A = I , independent of the value of A.
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Now (letting b have units of length), we have (RATbRAx)
μ = (Cb/Ax)

μ, and
we can work consistently in the original Minkowski space and its compactification.
The introduction of the constant A parallels Kastrup’s introduction of the length
parameter κ .

However, it is also interesting not to follow this path, but to consider the doubled,
compactified Minkowski space M# ∪ [M#]−1; i.e., the disjoint union of M# and its
inverse space. It is possible to define Maxwell fields on the doubled space, making
use of the conformal inversion.

Finally we remark that a similar construction of an “inverse spacetime” can be
carried out for the Schrödinger group introduced by Niederer [8]. The Schrödinger
group consists of the Galilei group, dilation of space and time given by Dλ(t, x) =
(λ2t, λx), and additional transformations that can be considered as analogues of
special conformal transformations. The latter transformations can be obtained as
the result of an inversion, followed by time translation, and then inversion again.
Here the inversion is defined by R : (t, x) → (−1/t, x/t), with R 2 : (t, x) →
(t,−x). Note that for the Schrödinger group, there is only a one-parameter family
of transformations obtained this way, in contrast to the four-parameter family of
special conformal transformations; the Schrödinger group is only 12-dimensional,
while the conformal group is 15-dimensional.

Under inversion, the dimensions again change. Here, they change from time
and space to inverse time and velocity, respectively. Again one compactifies, and
again we have the option to introduce a “doubled spacetime,” where now it is a
compactified Galilean spacetime which has been doubled.

4 Nonlinear Electrodynamics: General Approach

4.1 Motivation and Framework for Nonlinear Maxwell Fields

Let us write Maxwell’s equations as usual (in SI units), in terms of the four fields
E,B,D, and H:

∇ × E = −∂B
∂t

, ∇ · B = 0 , ∇ ×H = ∂D
∂t
+ j , ∇ · D = ρ . (4.1)

The constitutive equations, relating the pair (E,B) to the pair (D,H), may be linear
or nonlinear. Our strategy is to introduce general constitutive equations respecting
the desired symmetry at the “last possible moment.”

Now the general nonlinear theory with Lorentz symmetry has constitutive
equations of the form

D = MB+ 1

c2 NE , H = NB−ME , (4.2)
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where M and N may depend on the field strengths via the two Lorentz invariants

I1 = B2 − 1

c2
E2 , I2 = B · E . (4.3)

In the linear case, M and N are constants.
Our initial motivation for studying nonlinear Maxwell theories with symmetry

was to explore the existence of a Galilean limit [3]. It is well known that taking a
Galilean limit c → ∞ in the linear case requires losing one of the time-derivative
terms in Maxwell’s equations, as described carefully by Le Bellac and Lévy–
Leblond [7]. But in the general nonlinear case (allowing non-Lagrangian as well
as Lagrangian theories), we showed that all four Maxwell equations can survive
intact. Here I1 and I2 survive, and can yield nontrivial theories in the c→∞ limit.

We remark here that introducing conformal symmetry in this context further
restricts the invariants, leaving only the ratio I2/I1 as an invariant.

In covariant form, Maxwell’s equations are written (in familiar notation):

∂αF̃
αβ = 0 , ∂αG

αβ = jβ , (4.4)

where

F̃ αβ = 1

2
εαβμνFμν and Fμν = ∂μAν − ∂νAμ . (4.5)

Here the constitutive equations relate G to F and F̃ . With Lorentz symmetry, they
take the general form

Gμν = NFμν + cMF̃μν ≡ M1
∂I1

∂Fμν

+M2
∂I2

∂Fμν

, (4.6)

where M and N (or, equivalently, M1 and M2) are functions of the Lorentz invariants
I1 and I2:

I1 = 1

2
FμνF

μν , I2 = − c

4
FμνF̃

μν . (4.7)

4.2 Transformations Under Conformal Inversion

Under conformal inversion, we have the following symmetry transformations of the
electromagnetic potential, and of spacetime derivatives:

A′μ(x′) = x2Aμ(x)− 2xμ(x
αAα) (4.8)

∂ ′μ :=
∂

∂x′
= x2∂μ − 2xμ(x · ∂) (4.9)
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where we here abbreviate x2 = xμx
μ and (x · ∂) = xα∂α . Then with Fμν =

∂μAν − ∂νAμ, we have:

F ′μν(x′) = (x2)2Fμν(x)− 2x2xα(xμFαν + xνFμα) (4.10)

and

�′ = (x2)2�− 4x2(x · ∂) , (4.11)

where the d’Alembertian � = ∂μ∂
μ. Additionally, the 4-current jμ transforms by

j ′μ(x′) = (x2)3jμ(x) − 2(x2)2xμ(x
αjα(x)) . (4.12)

These transformations define a symmetry of the (linear) Maxwell equations,

�Aν − ∂ν(∂
αAα) = jν . (4.13)

That is, if A(x) and j (x) satisfy (4.13), then A′(x′) and j ′(x′) satisfy the same
equation with � ′ and ∂ ′ in place of � and ∂ , respectively. Combining this symmetry
with that of the Poincaré transformations and dilations, we have the symmetry with
respect to the usual conformal group.

But note that the symmetry under conformal inversion can be interpreted to
suggest not only a relation among solutions to Maxwell’s equations in M#, but also
the definition of new Maxwell fields on the inverse compactified Minkowski space
[M#]−1.

4.3 Steps Toward General Nonlinear Conformal-Invariant
Electrodynamics

We see the remaining steps in constructing general, nonlinear conformal invariant
Maxwell theories (both Lagrangian and non-Lagrangian) as the following. Identi-
fying M# with the projective light cone in the (4 + 2)-dimensional space Y (6), we
write Maxwell fields in Y (6), and constitutive equations in Y (6). The constitutive
equations depend only on conformal-invariant functionals of the Maxwell fields in
Y (6), which we identify. To restrict the theory to the projective light cone, we then
carry out a dimensional reduction procedure, as discussed by Nikolov and Petrov
[9]. In doing this we make use of the “hexaspherical space” Q(6)—transforming all
the expressions to hexaspherical coordinates, and proceeding from there.
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5 Related (4+2)-Dimensional Spaces

In this section we review the (4+2)-dimensional spaces Y (6) and Q(6), highlighting
how conformal inversion acts in these spaces.

5.1 The Space Y (6)

For y ∈ R6, write y = (ym),m = 0, 1, . . . , 5, define the flat metric tensor ηmn =
diag[1,−1,−1,−1;−1, 1], so that

ymy
m = ηmny

myn = (y0)2 − (y1)2 − (y2)2 − (y3)2 − (y4)2 + (y5)2 . (5.1)

This is the space we call Y (6). The light cone L(6) is then the submanifold
specified by the condition,

ymy
m = 0 , or (y1)2 + (y2)2 + (y3)2 + (y4)2 = (y0)2 + (y5)2 . (5.2)

To define the projective space PY (6) and the projective light cone PL(6), consider
y = (ym) ∈ Y (6), and define the projective equivalence relation,

(ym) ∼ (λym) for λ ∈ R, λ �= 0 . (5.3)

The equivalence classes [y] are just the rays in Y (6); and PY (6) is this space of rays.
To describe the projective light cone PL(6), we may choose one point in each ray

in L(6). Referring back to Eq. (5.2), if we consider

(y1)2 + (y2)2 + (y3)2 + (y4)2 = (y0)2 + (y5)2 = 1, (5.4)

we see that we have S3 × S1. But evidently the above condition selects two points
in each ray; so PY (6) can in this way be identified with (and has the topology of)
S3 × S1/Z2.

Furthermore, PL(6) can be identified with M#. When y4 + y5 �= 0, the
corresponding element of M# belongs to M(4) (finite Minkowski space), and is
given by

xμ = yμ

y4 + y5
, μ = 0, 1, 2, 3. (5.5)

The “light cone at infinity” corresponds to the submanifold y4+y5 = 0 in PL(6).
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5.2 Conformal Transformations in Y (6)

The 15 conformal group generators act via rotations in the (4+2)-dimensional space
Y (6), so as to leave PL(6) invariant. Setting

Xmn = ym∂n − yn∂m (m < n) , (5.6)

one has the 6 rotation and boost generators

Mmn = Xmn (0 ≤ m < n ≤ 3) , (5.7)

the 4 translation generators

Pm = Xm5 −Xm4 (0 ≤ m ≤ 3) , (5.8)

the 1 dilation generator

D = −X45 , (5.9)

and the 4 special conformal generators,

Km = −Xm5 −Xm4 , (0 ≤ m < n ≤ 3) . (5.10)

But of course, from these infinitesimal transformations we can only construct
the special conformal transformations, which act like (proper) rotations and boosts.
Conformal inversion acts in Y (6) by reflection of the y5 axis, which makes it easy to
explore in other coordinate systems too:

y′m = ym(m = 0, 1, 2, 3, 4) , y′5 = −y5 , (5.11)

or more succinctly, y′m = Km
n yn, where Km

n = diag [1, 1, 1, 1, 1,−1].

5.3 The Hexaspherical Space Q(6)

This space is a different (4 + 2)-dimensional space, defined conveniently for
dimensional reduction. For q ∈ R6, write q = (qa) with the index a =
0, 1, 2, 3,+,−. Then define, for y ∈ Y (6), with y4 + y5 �= 0,

qa = ya

y4 + y5 (a = 0, 1, 2, 3); q+ = y4+ y5 ; q− = ymy
m

(y4 + y5)2 . (5.12)
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In Q(6) the metric tensor is no longer flat:

gab(q) =
⎛

⎜⎝
(q+)2gμν 0 0

0 q− q+
2

0 q+
2 0

⎞

⎟⎠ (5.13)

The projective equivalence is simply

(q0, q1, q2, q3, q+, q−) ∼ (q0, q1, q2, q3, λq+, q−) , λ �= 0. (5.14)

We comment, however, that with this metric tensor, the map from contravariant
to covariant vectors in Q(6) is actually two-to-one; hence, it is not invertible. This
suggests that one can improve on the hexaspherical coordinatization, a discussion
we shall not pursue here.

When we take q− to zero, we have the light cone in Q(6), while fixing the value
q+ = 1 is one way to select a representative vector in each ray. Another comment,
however, is that fixing q+ actually breaks the conformal symmetry. This is a subtle
point that does not cause practical difficulty, but seems to have been unnoticed
previously.

Convenient formulas for the transformation of q-coordinates under conformal
inversion may be found in [2].

6 Maxwell Theory with Nonlinear Constitutive Equations
in (4 + 2)-Dimensional Spacetime

6.1 Nonlinear Maxwell Equations in Y (6)

Next we introduce 6-component fields Am in Y (6), and write

Fmn = ∂mAn − ∂nAm , (6.1)

so that

∂Fmn

∂yk
+ ∂Fnk

∂ym
+ ∂Fkm

∂yn
= 0 . (6.2)

While this is not really the most general possible “electromagnetism” in 4 space and
2 time dimensions, it is the theory most commonly discussed in the linear case, and
the one we wish to generalize. As before, we defer writing the constitutive relations,
and we have:

∂Gmn

∂ym
= J n , (6.3)

where J n is the 6-current.
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For the nonlinear theory, we next need general conformal-invariant nonlinear
constitutive equations relating Gmn to Fmn. But conformal invariance now means
rotational invariance in Y (6). Thus we write

Gmn = Rmnk�Fn� + Pmnk�rsFk�Frs , (6.4)

where the tensors R and P take the general form,

Rmnk� = r (· · · ) (ηmkη�n− ηnkη�m) , and Pmnk�rs = p (· · · ) εmnk�rs . (6.5)

Here r and s must be functions of rotational invariants, which we next write down.

6.2 Invariants for the General Nonlinear Maxwell Theory
with Conformal Symmetry

We can now write two rotation-invariant functionals of the field strength tensor in
Y (6). The first invariant is, as expected,

I1 = 1

2
FmnF

mn . (6.6)

But unlike in the (3+1)-dimensional case, the second rotational invariant is trilinear
in the field strengths:

I2 = 1

2
εmnk�rsFmnFk�Frs . (6.7)

This is a new pattern. Then, in Eq. (6.3), we have

r = r (I1, I2) , p = p (I1, I2) , (6.8)

with I1 and I2 as above.
In Q(6), the invariants take the form,

I1(q) = 1

2
Fab(q)F

ab(q) = 1

2
gacgbdFab(q)Fcd(q) , (6.9)

I2(q) = 1

(q+)5 εabcdegFab(q)Fcd(q)Feg(q) (6.10)

= 1

2
(det J̄ ) εabcdegFab(q)Fcd(q)Feg(q) ,

where J̄ is a Jacobian matrix for transforming between y and q-coordinates. Note
that in the above, ε is the Levi–Civita symbol. The Levi–Civita tensor with raised
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indices is defined generally as (1/
√|g| )ε, where g = det[gab]. Here this becomes

(det J̄ ) εabcdeg .
The explicit presence of q+ in the expression for I2 explains why the condition

q+ = 1 does not respect the conformal symmetry: the value of q+ can change under
conformal transformations.

7 Dimensional Reduction to (3 + 1) Dimensions

The final steps are to carry out a ray reduction and dimensional reduction of the
(4+ 2)-dimensional Maxwell theory with conformal symmetry.

A prolongation condition states that the Maxwell fields respect the ray equiva-
lence in Y (6)):

yk∂kAn ∝ An . (7.1)

A splitting relation allows the characterization of components tangential to LC(6):

∂An

∂yn
= 0 (a gauge condition) . (7.2)

One then expresses everything in Q(6) (hexaspherical coordinates), and restricts
to the light cone by taking q− → 0, to obtain (as in the linear case) a general
conformal nonlinear electromagnetism in (3+ 1) dimensions, with some additional
fields surviving the dimensional reduction.

In this article we have highlighted some new features suggested by the conformal
symmetry of nonlinear Maxwell fields, including the idea of doubling the compact-
ified Minkowski spacetime, and the trilinear form of one of the conformal invariant
functionals in Y (6). For some additional details, see also [2].
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The Yukawa Model in One Space - One
Time Dimensions

Laure Gouba

Abstract The Yukawa Model is revisited in one space - one time dimensions in an
approach completely different to those available in the literature. We show that at the
classical level it is a constrained system. We apply the Dirac method of quantization
of constrained systems. Then by means of the bosonization procedure we uniformize
the Hamiltonian at the quantum level in terms of a pseudo-scalar field and the chiral
components of a real scalar field.

Keywords Constrained system · Dirac method of quantization · Bosonization
procedure

In 1934 the Japanese physicist, Hideki Yukawa, predicted a new particle which later
became known as the pi meson, or the pion for short [1]. He considered these pions
as the carriers of the force exchanged between two nucleons. The Yukawa coupling
is the coupling between nucleons and pion that has been generalized as any coupling
between scalars and fermions. In particle physics, Yukawa’s interaction or Yukawa
coupling, is an interaction between a scalar field φ and a Dirac field ψ of the type
V = gψ̄φψ for a scalar field or V = gψ̄iγ5φψ for a pseudoscalar field, g is called a
Yukawa coupling constant. Recently the scalar Yukawa model has been introduced,
where the Dirac field is replaced by a complex scalar field [2–4]. The Yukawa
interaction is also used in the Standard Model to describe the coupling between
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion
particles). Several papers about Yukawa models can be found in the literature [5–8].
We are interested in the Yukawa Model in one space - one time dimensions that we
consider as a good testing ground of nonperturbative studies in Yukawa models. We
start by considering the model at the classical level, then we apply the Dirac method
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of quantization of constrained systems. By means of a bosonization procedure we
reformulate the model into a quantum model of scalar fields.

We consider in a Minkowski space-time, the Yukawa model where the coupling
is between a pseudo-scalar field and a Dirac field. The dynamics of this system is
given by the Lagrangian density,

L = 1

2
∂μφ∂

μφ + i

2
ψ̄γ μ∂μψ − i

2
∂μψ̄γ μψ − gψ̄iγ5φψ − V (φ), (1)

where φ is a pseudo-scalar field, ψ is the Dirac massless field, g is the coupling
constant, V is the potential that for the moment is left arbitrary. We consider the
model in 1+ 1 dimensional space-time where the spacetime coordinates indices are
μ = 0, 1 while spacetime metric is ημν = diag(+,−). An implicit choice of units is
such that h̄ = c = 1. The matrices γ μ define the Clifford Dirac algebra associated
with the two-dimensional Minkowski space-time whose representation is given by
the Pauli matrices

σ 1 =
(

0 +1
+1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(+1 0
0 −1

)
, (2)

and

γ 0 = σ 1, γ 1 = iσ 2, γ5 = γ 0γ 1 = −σ 3. (3)

Then in this representation of Dirac, the spinor ψ is split into two components as
follows:

ψ =
(
ψ+
ψ−

)
, ψ† = (ψ

†
+ ψ

†
−) , with γ5ψ± = ∓ψ±, ψ̄ = ψ†γ 0 (4)

where ψ+ is the left chirality spinor and ψ− the right chirality spinor.
We consider a space-time topology τ that is cylindrical by compactifying the

spatial real line into a circle S1 of circumference L = 2πR, where R is the radius
of the circle. We formally set

τ = R× S1, (5)

with the above topology, it is necessary to define the periodic boundary conditions.
We choose the following boundary conditions

ψ±(t, x + L) = −e2iπα±ψ±(t, x), t ∈ R, x ∈ S1, (6)

with α± being real constants.
The dimensions of the fields follow from the corresponding kinetic energy terms

in the Lagrangian. In two-dimensional spacetime (D = 2), the dimensionality of
the fields is set

[φ] : D − 2

2
= 0 ; [ψ] : D − 1

2
= 1

2
. (7)
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The physical dimension of the coupling constant g is determined by using ordinary
dimensional analysis as follows:

[g] : D − [φ] − 2[ψ] = −D + 4

2
= 1 . (8)

Let’s first determine the equation of motion for each variable. Given the
Lagrangian density L and a degree of freedom X, the Euler Lagrange equations
are determined by

∂μ
∂L

∂(∂μX)
= ∂L

∂X
. (9)

The explicit expression of the Lagrangian density in Eq. (1) is given by

L = 1

2
(∂0φ)

2 − 1

2
(∂1φ)

2 + i

2
ψ†∂0ψ − i

2
∂0ψ

†ψ + i

2
ψ†γ5∂1ψ

− i

2
∂1ψ

†γ5ψ − igφψ†γ 1ψ − V (φ). (10)

The fundamental degrees of freedom are the following:

φ, ψ, ψ†. (11)

The equation of motion for the variable φ is the following:

∂0
∂L

∂(∂0φ)
+ ∂1

∂L
∂(∂1φ)

= ∂L
∂φ

, (12)

that is

(∂2
0 − ∂2

1 )φ + igψ†γ 1ψ + ∂V

∂φ
= 0 . (13)

For the variable ψ , the equation of motion is

∂0
∂L

∂(∂0ψ)
+ ∂1

∂L
∂(∂1ψ)

= ∂L
∂ψ

, (14)

that is

∂0ψ
† + ∂1ψ

†γ5 + 2gφψ†γ 1 = 0. (15)

The equation of motion for the variable ψ† is determined by

∂0
∂L

∂(∂0ψ†)
+ ∂1

∂L
∂(∂1ψ†)

= ∂L
∂ψ† , (16)
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that is

∂0ψ + ∂1γ5ψ − 2gφγ 1ψ = 0 . (17)

This model is characterized by the existence of constraints that appear naturally
from the expressions of the conjugate momenta of the degrees of freedom of the
system. The literature about constrained systems is wide, for more details, one can
read, for instance, in [9]. The momenta variables associated with φ, ψ, ψ† are,
respectively,

πφ = ∂L
∂(∂0φ)

= ∂0φ; πψ = ∂L
∂(∂0ψ)

= − i

2
ψ†; πψ† = ∂L

∂(∂0ψ†)
= − i

2
ψ ,

(18)
where the left derivation convention has been performed for the fermionic variables
ψ and ψ† that are Grassmann odd variables. The phase space is then characterized
by the pairs

{(φ(t, x), πφ(t, x)), (ψ(t, x), πψ(t, x)), (ψ†(t, x), πψ†(t, x))} . (19)

By definition, these pairs are canonically conjugated. In other words, their elemen-
tary Poisson brackets at equal time are given by

{φ(t, x), πφ(t, y)} = δ(x − y) = −{πφ(t, y), φ(t, x)}; (20)

{ψ(t, x), πψ(t, y)} = −δ(x − y) = {πψ(t, y), ψ(t, x)}; (21)

{ψ†(t, x);πψ†(t, y)} = −δ(x − y) = {πψ†(t, y), ψ
†(t, x)} . (22)

Without any confusion and ambiguity we choose to omit in the rest of the paper the
variables (t, x). Now we apply the canonical formalism for quantizing theories with
constraints (Dirac formalism). This formalism has been successfully used in [10]
and widely in the literature, for instance in [9, 11, 12].

The conjugate momenta πψ and πψ† induce the following constraints:

σ1 = πψ + i

2
ψ†; σ2 = πψ† + i

2
ψ . (23)

These constraints are space-time classical configurations that are in terms of
the degrees of freedom of the system. These constraints are called the primary
constraints. Since the dynamics of the system depends on the primary constraints, it
is compulsory to study the dynamical evolution of the system. Given the Lagrangian
density in (10), the canonical Hamiltonian density follows as

H0 = ∂0φπφ + ∂0ψπψ + ∂0ψ
†πψ† − L , (24)
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that is after substitution of L by its expression in (10)

H0 = 1

2
π2
φ +

1

2
(∂1φ)

2 − i

2
ψ†γ5∂1ψ + i

2
∂1ψ

†γ5ψ + igφψ†γ 1ψ + V (φ) (25)

and the canonical Hamiltonian is

H =
∫

dxH0. (26)

Once we have specified the phase space in Eq. (19), the fundamental Poisson
brackets in Eqs. (20)–(22), and the canonical Hamiltonian density in Eq. (25), we
can study now the evolution of the constraints in order to check if they generate other
constraints and proceed to their classification according to the Dirac formalism.

The primary Hamiltonian is given by the summation of the canonical Hamilto-
nian and a linear combination of the primary constraints as follows:

H1 = H0 +
∫

dx(u(1)σ1 + u(2)σ2). (27)

In order to check whether the constraints σi, i = 1, 2 generate other constraints,
we solve the equations {σi, H1} = 0, i = 1, 2 .

{σ1,H1} = u(2)

∫
dx(− i

2
δ(x − y)); (28)

{σ2,H1} = u(1)

∫
dx(− i

2
)δ(x − y).

Solving {σi,H1} = 0 implies some choices for u(i), i = 1, 2 and that means that
the constraints σi, i = 1, 2 do not generate other constraints. The total number
of constraints for this model is then equal to 2. An algebra of the constraints is as
follows:

{σ1, σ1} = 0; {σ1, σ2} = − i

2
δ(x − y); (29)

{σ2, σ1} = − i

2
δ(x − y); {σ2, σ2} = 0.

With the algebra in (29), we conclude that all the constraints are of second class.
Let’s call Δ the matrix of the Poisson brackets of the second class constraints.
According to the Dirac formalism of quantization, we should define the algebra
of the Dirac brackets by using the general formula

{f, g}D = {f, g} −
∑

s,s′
{f, σs}Css′ {σs′ , g}, (30)
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where f and g are two degrees of freedom, σs, σs′ the constraints and C the inverse
matrix of the matrix Δ. Then it follows for our system the Dirac brackets

{φ, πφ}D = δ(x − y) = −{πφ, φ}D; (31)

{ψ±, ψ†
±}D = −iδ(x − y) = {ψ†

±, ψ±}D. (32)

The fundamental Hamiltonian formulation of the system is then given after the
complete analysis of the system by the degrees of freedom φ(t, x), πφ(t, x),

ψ(t, x), πψ(t, x), ψ†(t, x), πψ†(t, x), the fundamental symplectic structure is
given by the Dirac brackets, that appear now implicitly since we omit the index
D as

{φ(t, x), πφ(t, y)} = δ(x − y) = −{πφ(t, x), φ(t, y)}; (33)

{ψ±(t, x), ψ†
±(t, y)} = −iδ(x − y) = {ψ†

±(t, x), ψ±(t, y)}, (34)

and the fundamental Hamiltonian density

H = 1

2
π2
φ +

1

2
(∂1φ)

2 − i

2
ψ†γ5∂1ψ + i

2
∂1ψ

†γ5ψ + igφψ†γ 1ψ + V (φ). (35)

Now we proceed by canonical quantization, that is the correspondence principle
that states that to each of the classical structures should correspond a similar
structure for the quantum system. Then at the quantum level, the phase space is the
abstract Hilbert space whose elements are called quantum states. To the classical
variables of the phase space correspond linear operators acting on the Hilbert space.
To the Poisson brackets correspond now an algebraic structure of commutation
relations for the quantum system. We still consider that h̄ = 1 = c. We have then
the fundamental bosonic and fermionic operators:

φ̂(t, x), π̂φ(t, x), ψ̂±(t, x), ψ̂
†
±(t, x), (36)

that satisfy the fundamental commutation and anticommutation relations, respec-
tively, for the bosonic operators and the fermionic operators:

[φ̂(t, x), π̂φ(t, y)] = iδ(x − y) = −[π̂φ(t, x), φ̂(t, y)] ; (37)

{ψ̂±(t, x), ψ̂
†
±(t, y)} = δ(x − y) = {ψ̂†

±(t, x), ψ̂±(t, y)} . (38)

The quantum Hamiltonian density is given by

Ĥ= 1

2
π̂2
φ +

1

2
(∂1φ̂)

2− i

2
ψ̂†γ5∂1ψ̂ + i

2
∂1ψ̂

†γ5ψ̂ + igφ̂ψ†γ 1ψ̂ +V (φ̂). (39)
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The Hamiltonian (39) can also be written in terms of their chiral components of the
fermionic operators as

Ĥ = 1

2
π̂2
φ +

1

2
(∂1φ̂)

2 + i

2

(
ψ̂

†
+∂1ψ̂+ − ∂1ψ̂

†
+ψ̂+

)
− i

2

(
ψ̂

†
−∂1ψ̂− − ∂1ψ̂

†
−ψ̂−

)

+igφ̂
(
ψ̂

†
+ψ̂− − ψ̂

†
−ψ̂+

)
+ V (φ̂). (40)

It is well known that in 1+ 1 spacetime dimensions, the fermionic operators can
be expressed in terms of bosonic operators by means of vertex operators and the
Klein factors. This procedure is called bosonization. The inverse procedure called
fermionization also exists but is less used in the literature [13]. The aim of this
paper is to uniformize the quantum representation of the system, we choose to
bosonize the fermionic operators in order to uniformize the Hamiltonian in terms
of only bosonic operators. We consider the Schrödinger picture where the time
variable is fixed and that we choose equal to zero. The notation : : expresses the
normal ordering in which the creation operators should be placed at the left of the
annihilation operators. We bosonize then the chiral fermionic operators in terms
of chiral bosonic operators. This procedure has been already well done in [14, 15].
Referring then to the results in [14] and [15], the chiral components of the fermionic
operators in (40) are bosonized as follows:

ψ̂±(x) = 1

L
e±

iπ
L
xeiρ±

π
2 p̂∓ : e±iλϕ̂±(x) : ; (41)

ψ̂
†
±(x) =

1

L
e±

iπ
L
xe−iρ± π

2 p̂∓ : e∓iλϕ̂±(x) : , (42)

where

ϕ̂±(x) = q̂± ± 2π

L
p̂± x +

+∞∑

n=1

1√
n

(
a

†
±,ne

± 2iπ
L

nx + a±,ne
∓ 2iπ

L
nx

)
, (43)

are the chiral components of a real scalar bosonic field ϕ̂ = ϕ̂++ϕ̂−. The parameters
λ and ρ± are such that λ = ±1 and ρ2± = 1 = λ2. The Klein factor is given by
eiρ±

π
2 p̂∓ . We have

∂1ϕ̂±(x) = ±2iπ

L

(
p± + i

+∞∑

n=1

√
n
(
a

†
±,ne

± 2iπ
L

nx − a±,ne
∓ 2iπ

L
nx

))
, (44)

and the algebra of the bosonic representation is

[
q̂±, p̂±

] = i;
[
a±,n, a

†
±,m

]
= δnm, n, m ≥ 1 , (45)

[
ϕ̂±(x), ∂1ϕ̂±(y)

] = ±2iπδ(x − y). (46)
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For the normal ordering, the convention is that the operators

(
q̂±
a

†
±,n

)
should be

placed at the left of the operators

(
p̂±
a±,n

)
. Using the procedure of point splitting,

that is necessary for the well definition of the composites fermionic operators, and
the Baker-Campbell-Hausdorf formula, we show that

ψ̂
†
+∂1ψ̂+ − ∂1ψ̂

†
+ψ̂+ = (−i)

(
1

π
(∂1ϕ̂+)2 − π

L2

)
; (47)

ψ̂
†
−∂1ψ̂− − ∂1ψ̂

†
−ψ− = (i)

(
1

π
(∂1ϕ̂−)2 − π

L2

)
; (48)

ψ̂
†
+ψ̂− − ψ̂

†
−ψ̂+ = −

2i

L
: sin[π

2
(ρ+p̂− − ρ−p̂+)+ λ(ϕ̂+ + ϕ̂−] : . (49)

We set now λ = 1 and the uniformized quantum Hamiltonian density of the 1+1
Yukawa model is given by

Ĥ = : 1

2
π̂2
φ +

1

2
(∂1φ̂)

2 + 1

2π
(∂1ϕ̂+)2 + 1

2π
(∂1ϕ̂−)2

+ 2

L
g φ̂ sin

(π
2
(ρ+p̂− − ρ−p̂+)+ ϕ̂+ + ϕ̂−

)
+ V (φ̂) : (50)

− π

L2 ,

where φ̂ is the quantum pseudo-scalar field in (39) and ϕ̂± the chiral components of
the real scalar field ϕ̂ in Eqs. (41)–(43). The quantity π

L2 can be interpreted as the
Casimir Energy.

As concluding remarks, we can first notice the absence of first class constraints
at the classical level, means there are no gauge symmetry generators, that makes
the model more simple. We did not discuss about the symmetries and conserved
charges. The potential is left arbitrary, a nice choice would be the Higgs potential.
Some extensions of this work can be performed starting with Eq. (50). For instance,
the coupling constant g has the dimension of mass, thus setting a mass scale. It
would be interesting to understand how this mass scale, g, determines finally the
mass spectrum of the different (pseudo) scalar fields in Eq. (50).
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1 Introduction

Historically, Heisenberg’s uncertainty principle [1] has proved to be pivotal in
the emergence of quantum mechanics as the conceptual paradigm for physics at
the smallest distance scales. To date the uncertainty principle remains a reliable
guide in the exploration and the understanding of the physical consequences of the
foundational principles of quantum dynamics.

In its original formulation, Heisenberg suggested that measurements of a quan-
tum particle’s (configuration space) coordinate, q, and (conjugate) momentum, p,
are intrinsically limited in their precision in a way such that

�q �p � h, h = 2πh̄, h̄ = h

2π
 6.626× 10−34 J s, (1)

h̄ being the reduced Planck constant. Soon thereafter, Schrödinger [2] and Robertson
[3] made this statement both more precise and more general for any given pair of
self-adjoint, or at least hermitian quantum observables A and B, in the form of the
Schrödinger–Robertson1 uncertainty relation (SR-UR),

(�A)2 (�B)2 ≥ 1

4
〈(−i)[A,B]〉2 + 1

4
〈{A− 〈A〉, B − 〈B〉}〉2, (2)

where as usual (�A)2 = 〈(A − 〈A〉)2〉 and (�B)2 = 〈(B − 〈B〉)2〉, while
〈O〉 denotes the normalised expectation value of any quantum operator O given
an arbitrary (normalisable) quantum state (see Appendix 1 for notations and a
derivation of the SR-UR). As a by-product one thus also obtains the less tight (but
better known, and generalised) Heisenberg uncertainty relation (H-UR),

(�A) (�B) ≥ 1

2
|〈(−i)[A,B]〉|. (3)

In the case of the Heisenberg algebra, namely [Q,P ] = ih̄ I, indeed this becomes
�q �p ≥ h̄/2.

In the classical limit h̄ → 0, both terms of these inequalities vanish and the
latter turn into strict equalities. The physical world, however, is not classical since
Planck’s constant, albeit small as measured in our macroscopic units, definitely has
a finite and non-vanishing value. Yet, in certain regimes of their Hilbert spaces
dynamical quantum systems must display classical behaviour as we experience
it through quantum observables some of which are of a macroscopic character.
Indeed, any quantum system is specified through a set of quantum observables
of which the algebra of commutation relations is represented by the Hilbert space

1Robertson extended this statement to an arbitrary number of observables in terms of the
determinant of their covariance matrix of bi-correlations.
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which describes that quantum system and its quantum states. Given a particular
choice of quantum observables and through measurements of the latter, experiments
give access to the quantum states of such a system and enable their manipulation.
If certain regimes of a quantum system display the hallmarks of a classical-like
behaviour, certainly these regimes must correspond to quantum states which are as
close as possible to being classical given a set ensemble of quantum observables
characterising that system. In other words classical-like regimes of a quantum
system which is characterised by a collection of quantum observables need to
correspond to quantum states which saturate as exact equalities the generalised
Schrödinger–Robertson uncertainty relation related to that ensemble of quantum
observables. Indeed saturated uncertainty relations leave the least room possible for
a genuine quantum dynamical behaviour which would otherwise potentially lead to
large differences in the values taken by the two terms involved in the inequalities
expressing such uncertainty relations.

For reasons recalled in Appendix 1, in the case of two observables the SR-UR is
saturated by quantum states |ψ0〉 which are such that

[(A− 〈A〉) − λ0 (B − 〈B〉)] |ψ0〉 = 0, (4)

[A − λ0 B] |ψ0〉 = [〈A〉 − λ0 〈B〉] |ψ0〉,

where the complex parameter λ0 is given by the following combination of expecta-
tion values for the state |ψ0〉,

λ0 = 〈(B − 〈B〉)(A− 〈A〉)〉
(�B)2

= (�A)2

〈(A− 〈A〉)(B − 〈B〉)〉 . (5)

Such saturating quantum states are parametrised by collections of continuous
parameters, if only for the expectation values 〈A〉 and 〈B〉 as well as the ratio
�A/�B, for instance. Indeed, especially when considered in the form of the second
relation in (4), such states determine classes of quantum coherent-like states (see
[4, 5] and references therein), which share many of the remarkable properties of
the well-known Schrödinger canonical coherent states for the Heisenberg algebra.
In particular in order that their expectation values 〈A〉 and 〈B〉 retain finite non-
vanishing classical values as h̄ → 0, it is necessary that the saturating states |ψ0〉
meeting the conditions (4) involve all possible linearly independent quantum states
spanning the full Hilbert space of the system. Furthermore, usually the linear span of
such coherent states encompasses the full Hilbert space, since they obey a specific
overcompleteness relation or resolution of the unit operator, thereby providing a
self-reproducing kernel representation of that Hilbert space [4, 6].

In other words, given a set of quantum observables such saturating quantum
states for the corresponding collection of uncertainty relations determine a specific
differentiable submanifold of Hilbert space, out of which the full Hilbert space of
the quantum system may a priori be reconstructed (provided a sufficient number of
quantum observables is considered). In particular quantum amplitudes may then be
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given a functional path integral representation over that manifold of coherent states,
which involves specific geometrical structures of that manifold [6, 7]. Indeed, very
naturally that manifold comes equipped then not only with a (quantum) symplectic
structure2 but also with a (quantum) Riemannian metric structure3 [7], both of these
geometric structures being compatible with one another (and dependent, generally,
on Planck’s constant). A quantum geometric representation of the quantum system
thus arises out of its Hilbert space given a choice of its quantum observables and
through the associated uncertainty relation. It may even be that, for instance through
the corresponding path integral, the quantum system itself may be reconstructed out
of these geometric structures (provided the original choice of quantum observables
be large enough).

Such an approach connects directly with, and expands on Klauder’s general pro-
gramme of “Enhanced Quantisation” having been proposed for many years now (see
[6] and references therein), as a path towards a geometrical formulation of genuine
quantum dynamics which shares a number of similarities with other proposals for
such geometrical formulations [8, 9]. For that same reason, the programme as briefly
outlined above provides a possible avenue towards a further understanding of the
underpinnings of the AdS/CFT correspondence and the holographic principle, for
instance along lines similar to those having been explored already in [10] and H.J.R.
van Zyl (2015; Constructing dualities from quantum state manifolds. Unpublished).

While the general programme outlined above, based on saturated uncertainty
relations and the geometry of the associated coherent-like quantum states, is offered
here as a project of possible interest to Professor Norbert Hounkonnou in celebration
as well of his sixtieth birthday and on the occasion of this COPROMAPH Workshop
organised in his honour, the present paper only deals with the construction of the
quantum states which saturate the Schrödinger–Robertson uncertainty relation in the
case of the Heisenberg algebra for a single quantum degree of freedom, leaving for
separate work a discussion of the ensuing geometric structures. Besides some results
which presumably are original, most of those being presented herein certainly are
available in the literature (see [11–13] and references therein) even though in a
scattered form.4 However this author did not find them discussed along the lines
addressed here, nor could he find them all brought together in one single place, as
made available in the present contribution with the purpose of providing a basis
towards a pursuit of the projected programme aiming at a better understanding of
the geometric structures inherent to quantum systems and their dynamics.

Section 2 particularises the discussion to the Heisenberg algebra and identifies
the saturating states for the SR-UR in the configuration space representation of that
algebra. A construction in terms of Fock algebras and their canonical coherent states
is then initiated in Sect. 3, beginning with a reference Fock algebra related to an
intrinsic physical scale. Section 4 then presents the complete parametrised set of

2Because of the sesquilinear properties of the inner product defined over Hilbert space.
3Because of the hermitian and positive definite properties of the inner product defined over Hilbert
space.
4For this reason no attempt is being made towards a complete list of references to the original
literature which relates to many different fields of quantum physics.
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saturating quantum states, leading to the general class of the well-known squeezed
coherent states. Further specific results of interest for these states are then presented
in Sects. 5 and 6, to conclude with some additional comments in the Conclusions.
Complementary material of a more pedagogical character as befits the Proceedings
of the present COPROMAPH Workshop is included in two Appendices.

2 The Uncertainty Relation for the Heisenberg Algebra

Given a single degree of freedom system whose configuration space has the
topology of the real line, q ∈ R, let us consider the corresponding Heisenberg
algebra with its conjugate quantum observables, Q and P , such that

[Q,P ] = ih̄ I, Q† = Q, P † = P. (6)

The configuration and momentum space representations of this algebra are well
known, based on the corresponding eigenstate bases, Q|q〉 = q|q〉 and P |p〉 =
p|p〉, with q, p ∈ R. Our choices of normalisations and phase conventions for these
bases states are such that5

〈q|q ′〉 = δ(q−q ′), 〈p|p′〉 = δ(p−p′),
∫ +∞

−∞
dq |q〉〈q| = I=

∫ +∞

−∞
dp |p〉〈p|,

(7)

〈q|p〉 = 1√
2πh̄

e
i
h̄
qp
, 〈p|q〉 = 1√

2πh̄
e
− i

h̄
qp
. (8)

Consider an arbitrary (normalisable) quantum state |ψ0〉, which we assume
also to have been normalised, 〈ψ0|ψ0〉 = 1. In configuration space this state is
represented by its wave function, ψ0(q) = 〈q|ψ0〉 ∈ C. Let q0 and p0 be its real
valued expectation values for the Heisenberg observables,

q0 = 〈ψ0|Q|ψ0〉, p0 = 〈ψ0|P |ψ0〉, q0, p0 ∈ R, (9)

and introduce the shifted or displaced operators

Q̄ = Q− q0, P̄ = P − p0, (10)

which again define a Heisenberg algebra of hermitian (ideally self-adjoint) quantum
observables, [Q̄, P̄ ] = ih̄ I, Q̄† = Q̄, P̄ † = P̄ . One also has (�Q)2 = 〈ψ0|Q̄2|ψ0〉
and (�P )2 = 〈ψ0|P̄ 2|ψ0〉.

5Hence the states |q〉, say, are determined up to a q-independent overall global phase factor which
remains unspecified, relative to which all other phase factors are then identified accordingly.
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The Schrödinger–Robertson uncertainty relation (SR-UR) then reads (see
Appendix 1),

(�Q)2 (�P )2 ≥ 1

4
h̄2 + 1

4
〈{Q̄, P̄

}〉2, (11)

{
Q̄, P̄

}
being the anticommutator of Q̄ and P̄ . As a corollary note that one then

also has the looser Heisenberg uncertainty relation (H-UR),

�Q�P ≥ 1

2
h̄. (12)

However according to the general programme outlined in the Introduction, we
are interested in identifying all quantum states that saturate the SR-UR, but not
necessarily the H-UR. Quantum states that saturate the H-UR are certainly such that
〈{Q̄, P̄

}〉 = 0, namely they cannot possess any (Q, P ) quantum correlation. The
ensemble of states that saturate the SR-UR is thus certainly larger than that which
saturates the H-UR. What distinguishes these two sets of states will be made explicit
later on.

For reasons recalled in Appendix 1, those states which saturate the SR-UR are
such that

[
Q̄ − λ0 P̄

] |ψ0〉 = 0, [(Q− q0) − λ0 (P − p0)] |ψ0〉 = 0, (13)

where the complex parameter λ0 takes the value,

λ0 = 1

(�P )2

(
1

2
〈{Q̄, P̄

}〉 − 1

2
ih̄

)
= (�Q)2 1

1
2 〈

{
Q̄, P̄

}〉 + 1
2 ih̄

. (14)

The defining Eq. (13) of saturating states for the (Q, P ) observables of the
Heisenberg algebra is best solved by working in a wave function representation,
say in configuration space. The above condition then reads

[
(q − q0)− λ0

(
−ih̄

d

dq
− p0

)]
ψ0(q) = 0. (15)

Clearly its solution is

ψ0(q) = N0(q0, p0, λ0) e
i
h̄
qp0 e

i
2λ0h̄

(q−q0)
2

, (16)

ψ∗0 (q) = N∗0 (q0, p0, λ0) e
− i

h̄
qp0 e

− i

2λ∗0 h̄
(q−q0)

2

,

where N0(q0, p0, λ0) is a complex valued normalisation factor still to be deter-
mined. Requiring the state |ψ0〉 to be normalised to unity implies the following
value for the norm of N0(q0, p0, λ0),
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|N0(q0, p0, λ0)| =
(

2π (�Q)2
)−1/4

. (17)

Its overall phase, however, will be determined later on, once further phase con-
ventions will have been specified. Note well that all quantum states saturating
the SR-UR are of this simple form, specified in terms of four independent real
parameters, namely q0, p0, �Q > 0 (say) and 〈{Q̄, P̄

}〉 (in terms of which
�P > 0 is then also determined since (�Q)2 (�P )2 = (h̄2 + 〈{Q̄, P̄

}〉2)/4).
In the remainder of this paper, we endeavour to understand the structure of these
saturating quantum states from the point of view of coherent states, as indeed the
defining Eq. (13) invites us to do.

To conclude, let us also remark that for those saturating states such that in
addition 〈{Q̄, P̄

}〉 = 0, in this particular case which thus saturates the H-UR rather
than the SR-UR we have the following results (with a choice of phase factor for the
wave function which complies with the specifications to be addressed later on),

〈{Q̄, P̄
}〉 = 0 : λ0 = − ih̄

2 (�P )2
= −2i

(�Q)2

h̄
,

1

λ0
= ih̄

2 (�Q)2
,

(18)

ψ0(q) = 1
(
2π (�Q)2)1/4 e

i
h̄
qp0 e

− 1
4(�Q)2

(q−q0)
2

, �Q�P = 1

2
h̄. (19)

Note well, however, that even in this case the value of �P/�Q = h̄/(2(�Q)2) is
still left as a free real and positive parameter. In the case of the ordinary Schrödinger
canonical coherent states, which indeed saturate the H-UR, this latter ratio is
implicitly set to a specific value in terms of physical parameters of the system under
consideration.

3 A Reference Fock Algebra

A priori the quantum observables Q and P possess specific physical dimensions, of
which the product has the physical dimension of h̄. For the sake of the construction
hereafter, let us denote by �0 an intrinsic physical scale which has the same physical
dimension as Q, so that the physical dimension of P is that of h̄/�0. For instance,
we may think of Q as a configuration space coordinate measured in a unit of length,
in which case �0 has the dimension of length, hence the notation. However, note
that the physical dimension of �0 could be anything, as may be relevant given the
physical system under consideration. Furthermore �0 need not correspond to some
fundamental physical scale or constant. The scale �0 may well be expressed in terms
of fundamental physical constants in combination with other physical parameters
related to the system under consideration. In particular �0 may involve Planck’s
constant itself, h̄, and thus change value in the classical limit h̄→ 0 (as is the case
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for the ordinary harmonic oscillator of mass m and angular frequency ω, with then
the natural choice �0 = √h̄/(mω)). The purpose of the intrinsic physical scale �0 is
to introduce a reference quantum Fock algebra, hence the corresponding reference
canonical coherent states, in order to address the quantum content characterised by
the defining Eq. (13) of the quantum states saturating the SR-UR of the Heisenberg
algebra, which is indeed a condition characteristic of quantum coherent states.

Given the intrinsic physical scale �0, let us thus introduce the following reference
Fock operators,

a = 1√
2

(
Q

�0
+ i

�0

h̄
P

)
, a† = 1√

2

(
Q

�0
− i

�0

h̄
P

)
, (20)

with the inverse relations for the Heisenberg observables,

Q = 1√
2
�0

(
a + a†

)
, P = − ih̄

�0
√

2

(
a − a†

)
, (21)

which indeed generate the corresponding Fock and Heisenberg algebras, respec-
tively,

[
a, a†

]
= I, [Q,P ] = ih̄ I. (22)

The associated normalised reference Fock vacuum, |�0〉, such that

a|�0〉 = 0, 〈�0|�0〉 = 1, (23)

is chosen with a phase relative to the overall phase implicitly chosen for the position
eigenstates |q〉 such that

〈q|�0〉 =
(
π�2

0

)−1/4
e
− 1

2�2
0
q2

. (24)

On account of the condition a|�0〉 = 0 to be compared to the defining Eq. (13), it is
clear that the reference Fock vacuum |�0〉 saturates not only the SR-UR but also the
H-UR with vanishing expectation values for q0, for p0 and for the (Q, P ) correlator
〈{Q,P }〉, while the values for �Q and �P given by

(�Q)2 = 1

2
�2

0, (�P )2 = 1

2

h̄2

�2
0

,

(
�Q

�0

)2

= 1

2
,

(
�0

h̄
�P

)2

= 1

2
, (25)

are such that

(�Q) (�P) = 1

2
h̄,

(
�Q

�0

) (
�0

h̄
�P

)
= 1

2
,

(
�Q

�0

)2

+
(
�0

h̄
�P

)2

= 1,

(26)



Towards the Quantum Geometry of Saturated Quantum Uncertainty Relations. . . 243

with in particular thus even the ratio �P/�Q taking a predetermined value,
�P/�Q = h̄/�2

0. As it turns out, all states saturating the SR-UR will be constructed
out of this reference Fock vacuum (thereby also determining the overall phase of the
wave function of these states, ψ0(q), left unspecified in (16) and (17) of Sect. 2).

In order to deal with the shifted or displaced observables Q̄ and P̄ which involve
the expectation values q0 and p0, given the reference Fock algebra (20) let us
introduce the following complex quantity,

u0 = 1√
2

(
q0

�0
+ i

�0

h̄
p0

)
, ū0 = u∗0 =

1√
2

(
q0

�0
− i

�0

h̄
p0

)
, (27)

with the inverse relations,

q0 = 1√
2
�0 (u0 + ū0) , p0 = − ih̄

�0
√

2
(u0 − ū0) . (28)

Correspondingly we have the Fock algebra of the associated shifted or displaced
Fock generators,

b(u0) = a − u0, b†(u0) = a† − ū0,
[
b(u0), b

†(u0)
]
= I, (29)

which are such that

b(u0) = 1√
2

(
Q̄

�0
+ i

�0

h̄
P̄

)
, b†(u0) = 1√

2

(
Q̄

�0
− i

�0

h̄
P̄

)
, (30)

as well as

Q̄ = 1√
2
�0

(
b(u0)+ b†(u0)

)
, P̄ = − ih̄

�0
√

2

(
b(u0)− b†(u0)

)
, (31)

[
Q̄, P̄

] = ih̄ I.

The correspondence between the displaced Fock algebra and the reference one is
best understood by considering the displacement operator [4] defined6 in terms of
the parameters u0 or (q0, p0),

D(q0, p0) ≡ D(u0) ≡ eu0a
†−ū0a = e−

1
2 |u0|2 eu0a

†
e−ū0a, (32)

D(u0) ≡ D(q0, p0) ≡ e
− i

h̄
q0P+ i

h̄
p0Q = e

i
2h̄ q0p0 e

− i
h̄
q0P e

i
h̄
p0Q (33)

= e
− i

2h̄ q0p0 e
i
h̄
p0Q e

− i
h̄
q0P ,

6All Baker–Campbell–Hausdorff (BCH) formulae necessary for this paper are discussed in
Appendix 2.
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which is a unitary operator defined over Hilbert space,

D†(u0) = D−1(u0) = D(−u0). (34)

Indeed the following identities readily follow, which make explicit the displacement
action of the displacement operator D(u0) on the different quantities being involved,

b(u0) = D(u0) a D†(u0) = a − u0, b†(u0) = D(u0) a
† D†(u0) = a† − ū0,

(35)

Q̄ = D(u0)QD†(u0) = Q − q0, P̄ = D(u0) P D†(u0) = P − p0, (36)

D(u0) |q〉 = e
i

2h̄ q0p0 e
i
h̄
qp0 |q + q0〉, D(u0) |p〉 = e

− i
2h̄ q0p0 e

− i
h̄
q0p |p + p0〉.

(37)

Consequently the normalised Fock vacuum, |�0(u0)〉, of the displaced Fock
algebra, such that b(u0)|�0(u0)〉 = 0 and 〈�0(u0)|�0(u0)〉 = 1, is obtained as
being simply the displaced reference Fock vacuum since b(u0)D(u0) = D(u0)a,

|�0(u0)〉 = D(u0) |�0〉, 〈�0(u0)|�0(u0)〉 = 1, (38)

b(u0)|�0(u0)〉 = 0, (a − u0)|�0(u0)〉 = 0, a|�0(u0)〉 = u0|�0(u0)〉.
(39)

In other words, the Fock vacuum |�0(u0)〉 of the displaced Fock algebra is a
canonical coherent state of the reference Fock vacuum |�0〉. This also implies that
all such states |�0(u0)〉 again saturate not only the SR-UR but also the H-UR with
still a vanishing expectation value for the (Q, P ) correlator, 〈{Q̄, P̄

}〉, but this
time with non-vanishing expectation values for Q and P which are specified by
the choice for u0,

〈�0(u0)|Q|�0(u0)〉 = q0, 〈�0(u0)|P |�0(u0)〉 = p0, (40)

〈�0(u0)|
{
Q̄, P̄

} |�0(u0)〉 = 0,

while the values for �Q and �P remain those of the reference Fock vacuum |�0〉,

(�Q)2 = 1

2
�2

0, (�P )2 = 1

2

h̄2

�2
0

, (�Q)2 (�P )2 = 1

4
h̄2. (41)

As is well known, the coherent states |�0(u0)〉 possess some remarkable
properties [4, 6] of which two are worth to be emphasised in our discussion.
Even though these states are not linearly independent among themselves as is
made explicit by their non-vanishing overlap matrix elements, none of which is
vanishing,
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〈�0(u2)|�0(u1)〉 = e−
1
2 |u2|2− 1

2 |u1|2+ū2u1 = e−
1
2 (u2ū1−ū2u1) e−

1
2 |u2−u1|2

= e
i

2h̄ (q2p1−q1p2) e
− 1

4�2
0
(q2−q1)

2− 1
4

(
�0
h̄

)2
(p2−p1)

2

, (42)

their linear span over all possible values of the parameter u0 ∈ C encompasses
the complete Hilbert space of the system. As a matter of fact this latter result
remains valid whatever the choice of normalised reference quantum state on which
the displacement operator acts. Thus given an arbitrary state |χ0〉 normalised to
unity, 〈χ0|χ0〉 = 1, consider the states obtained from the action on it of D(u0) for
all possible values of u0 ∈ C,

|u0, χ0〉 ≡ D(u0) |χ0〉. (43)

One then has the following overcompleteness relation in Hilbert space,7

∫

C

du0 dū0

π
|u0, χ0〉 〈u0, χ0| =

∫

R2

dq0dp0

2πh̄
|u0, χ0〉 〈u0, χ0| = I, (44)

a result which may readily be established by computing the matrix elements of both
terms of this equality in the Q eigenstate basis, for instance. In particular, by choos-
ing for |χ0〉 the reference Fock vacuum |�0〉, one obtains the overcompleteness
relation for the displaced Fock vacua |�0(u0)〉,

∫

C

du0dū0

π
|�0(u0)〉 〈�0(u0)| =

∫

R2

dq0dp0

2πh̄
|�0(u0)〉 〈�0(u0)| = I. (45)

This specific result will be shown to extend to all saturating states of the SR-UR.
Another remarkable property of the states |�0(u0)〉 which extends to all sat-

urating states of the SR-UR is the following. Any finite order polynomial in the
Heisenberg observables Q and P possesses a diagonal kernel integral representation
in terms of the states |�0(u0)〉, a result which extends the above overcompleteness
relation valid specifically for the unit operator. Let us point out, however, that this
property applies specifically for the states |�0(u0)〉 constructed out of the reference
Fock vacuum |�0〉. Generically, it does not apply8 for other choices of reference
state |χ0〉.

To establish such a result, first consider a general finite order polynomial in
the operators Q and P . Such a composite operator may always be brought into
the form of a finite sum of normal ordered monomials relative to the reference
Fock algebra (a, a†). A generating function of such normal ordered monomials

7With du0dū0 ≡ dRe u0 dIm u0.
8Unless of course, one considers a reference state which itself is again the Fock vacuum for some
other Fock algebra constructed out of the Heisenberg algebra of the observables Q and P , as is the
case with the squeezed quantum states to be identified in Sect. 4.
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is provided by the operator exp(αa†) exp(−ᾱa) with α and (−ᾱ = −α∗) as
independent generating parameters. Using the above overcompleteness relation and
the fact that a|�0(u0)〉 = u0|�0(u0)〉, this generating operator may be given the
following integral representation (see also (175) in Appendix 2),

eαa
†
e−ᾱa = e|α|2 e−ᾱa eαa

†

=
∫

C

du0dū0

π
e|α|2 e−ᾱa |�0(u0)〉 〈�0(u0)| eαa†

=
∫

C

du0dū0

π
|�0(u0)〉

(
e|α|2e−ᾱu0eαū0

)
〈�0(u0)|. (46)

However the product of exponential factors appearing inside this integral is directly
related to the diagonal matrix elements of the same operator for the coherent states
|�0(u0)〉,

〈�0(u0)|eαa†
e−ᾱa|�0(u0)〉 = eαū0 e−ᾱu0 , e−∂u0∂ū0 eαū0 e−ᾱu0 = eᾱα eαū0 e−ᾱu0 ,

(47)

leading to the final diagonal kernel integral representation of the generating operator,

eαa
†
e−ᾱa =

∫

C

du0dū0

π
|�0(u0)〉

(
e−∂u0∂ū0 〈�0(u0)|eαa†

e−ᾱa|�0(u0)〉
)
〈�0(u0)|.

(48)

Therefore any composite operator, A, which is a finite order polynomial in the
observables Q and P possesses the following diagonal kernel integral representation
over the states |�0(u0)〉,

A =
∫

C

du0dū0

π
|�0(u0)〉 a(u0, ū0) 〈�0(u0)|, (49)

where the diagonal kernel a(u0, ū0) is constructed as follows out of the diagonal
matrix elements of A in the states |�0(u0)〉,

a(u0, ū0) = e−∂u0∂ū0 A(u0, ū0), A(u0, ū0) = 〈�0(u0)|A|�0(u0)〉. (50)

In terms of the parameters (q0, p0), the same results are expressed as, with
|�0(q0, p0)〉 ≡ |�0(u0)〉,

A =
∫

R2

dq0dp0

2πh̄
|�0(q0, p0)〉 a(q0, p0) 〈�0(q0, p0)|, (51)

where

a(q0, p0) = exp

(
−1

2
�2

0∂
2
q0
− 1

2

h̄2

�2
0

∂2
p0

)
〈�0(q0, p0)|A|�0(q0, p0)〉. (52)
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4 Fock Algebras for the Saturating Quantum States

4.1 Reversible Parametrisation Packages

Let us now address the quantum state content, |ψ0〉, of the defining relation (13)
for the saturated SR-UR of the Heisenberg algebra of quantum observables (Q, P ),
namely,

[(Q− q0) − λ0 (P − p0)] |ψ0〉 = 0, (53)

with

λ0 = 1

(�P )2

(
1

2
〈{Q̄, P̄

}〉 − 1

2
ih̄

)
= (�Q)2 1

1
2 〈

{
Q̄, P̄

}〉 + 1
2 ih̄

. (54)

Besides the complex variable u0 already representing the real expectation values
(q0, p0) given the physical scale �0, let us now introduce the angular parameter
ϕ related to the possible (Q, P ) correlation, such that −π/2 ≤ ϕ ≤ +π/2 and
defined by

cosϕ = 1√
1+ 1

h̄2 〈
{
Q̄, P̄

}〉2
, sinϕ =

1
h̄
〈{Q̄, P̄

}〉
√

1+ 1
h̄2 〈

{
Q̄, P̄

}〉2
, tanϕ = 1

h̄
〈{Q̄, P̄

}〉.

(55)

Note that the saturated SR-UR is then expressed simply as

�Q�P = h̄

2

1

cosϕ
= h̄

2

√
1+ tan2 ϕ ≥ h̄

2
, (56)

(
�Q

�0

)(
�0

h̄
�P

)
= 1

2 cosϕ
= 1

2

√
1+ tan2 ϕ ≥ 1

2
,

while the parameter λ0 simplifies to

− λ0 = ih̄

2 (�P )2

1

cosϕ
eiϕ = i

�Q

�P
eiϕ, (57)

the latter expression thus also displaying explicitly the remaining fourth and last real
(and positive) independent free parameter labelling the saturating states, namely the
ratio �Q/�P . In particular we then have for the operator which annihilates the
saturating quantum states

1

�Q
[(Q− q0) − λ0 (P − p0)] =

(
Q− q0

�Q
+ ieiϕ

P − p0

�P

)

= 1√
2

(
�0

�Q
+ h̄ eiϕ

�0�P

)
b(u0) + 1√

2

(
�0

�Q
− h̄ eiϕ

�0�P

)
b†(u0). (58)



248 J. Govaerts

Consequently, when having in mind the reference Fock algebra (a, a†) and in
order to account for this last variable, �Q/�P or �P/�Q, it proves useful to
consider the following further definitions of properly normalised quantities, with
ρ± ≥ 0 and −π ≤ θ± ≤ +π ,

ρ± eiθ± ≡ 1

2
√

2 cosϕ

(
�0

�Q
± h̄ eiϕ

�0�P

)
= 1√

2

((
�0

h̄
�P

)
±

(
�Q

�0

)
eiϕ

)
,

(59)

so that

ρ± = 1√
2

√(
�0

h̄
�P

)2

+
(
�Q

�0

)2

± 1, (60)

cos θ± = 1

ρ±
√

2

[(
�0

h̄
�P

)
± cosϕ

(
�Q

�0

)]
, (61)

sin θ± = ± 1

ρ±
√

2
sinϕ

(
�Q

�0

)
,

tan θ± =
± sinϕ

(
�Q
�0

)

(
�0
h̄
�P

)
± cosϕ

(
�Q
�0

) = sinϕ

cosϕ ± �2
0
h̄

�P
�Q

. (62)

Since ρ2+ − ρ2− = 1, let us introduce finally a real parameter r such that 0 ≤ r <

+∞, defined by,

cosh r = ρ+ = 1√
2

√(
�0

h̄
�P

)2

+
(
�Q

�0

)2

+ 1 ≥ 1,

sinh r = ρ− = 1√
2

√(
�0

h̄
�P

)2

+
(
�Q

�0

)2

− 1 ≥ 0. (63)

In terms of these quantities, the following notations prove to be useful later on as
well,

ζ = eiθ tanh r, z = r eiθ , eiθ = −ei(θ−−θ+) = ei(θ−−θ+±π). (64)

Note that the complex variable z takes a priori all its values in the entire complex
plane, while the complex variable ζ takes all its values inside the unit disk in the
complex plane.

Hence given the physical scale �0 and any quantum state saturating the SR-UR,
the associated real quantities q0, p0, 〈{Q̄, P̄

}〉, �Q > 0 and �P > 0, of which four
are independent because of the property (�Q)2(�P )2 = h̄2(1+〈{Q̄, P̄

}〉2/h̄2)/4,
determine in a unique manner through the above definitions the two independent
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complex quantities u0 and z in the complex plane. These two complex variables, u0
and z, thus label all SR-UR saturating quantum states.

Conversely, given the two complex variables u0 and z taking any values in
the complex plane, in terms of the physical scale �0 there corresponds to these
parameters a SR-UR saturating quantum state, |ψ0〉, whose relevant expectation
values are constructed as follows. On the one hand for the Heisenberg observables
Q and P , their expectation values are

q0 = 1√
2
�0 (u0 + ū0) , p0 = − ih̄

�0
√

2
(u0 − ū0) , (65)

while on the other hand their uncertainties are such that
(
�Q

�0

)2

+
(
�0

h̄
�P

)2

= cosh 2r ≥ 1,

(
�Q

�0

)2

−
(
�0

h̄
�P

)2

= cos θ sinh 2r,

(66)

namely,9

(
�Q

�0

)2

= 1

2
(cosh 2r + cos θ sinh 2r) , (67)

(
�0

h̄
�P

)2

= 1

2
(cosh 2r − cos θ sinh 2r) ,

with thus the saturated SR-UR expressed as

(�Q)2 (�P )2 = 1

4
h̄2

(
1+ sin2 θ sinh2 2r

)
. (68)

Furthermore the (Q, P ) correlation of these states |ψ0〉 is then determined as

1

h̄
〈{Q̄, P̄

}〉 = tanϕ = sin θ sinh(2r), (69)

with

cosϕ = 1√
1+ sin2 θ sinh2(2r)

, sinϕ = sin θ sinh(2r)√
1+ sin2 θ sinh2(2r)

. (70)

The particular case of (Q, P ) uncorrelated saturating states is worth a separate
discussion. This situation, characterised by the vanishing correlation 〈{Q̄, P̄

}〉 = 0,
corresponds to the phase value ϕ = 0. One then finds

cos θ± = sgn

(
�0

h̄
�P ± �Q

�0

)
, sin θ± = 0. (71)

9Note the identity cosh2 2r − cos2 θ sinh2 2r = 1+ sin2 θ sinh2 2r .
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Consequently in such a case θ+ = 0, while the value for θ− is determined as follows

if
�0

h̄
�P − �Q

�0
> 0 : θ− = 0; if

�0

h̄
�P − �Q

�0
< 0 : θ− = ±π,

(72)
leading to the value for θ ≡ θ− − θ+ ± π (mod 2π ) given as

if
�0

h̄
�P − �Q

�0
> 0 : θ = ±π (mod 2π); (73)

if
�0

h̄
�P − �Q

�0
< 0 : θ = 0 (mod 2π).

Nonetheless the value for r remains arbitrary,

cosh r = 1√
2

(
�0

h̄
�P + �Q

�0

)
, sinh r = 1√

2

∣∣∣∣
�0

h̄
�P − �Q

�0

∣∣∣∣ . (74)

On the other hand, in terms of the (u0, z) parametrisation (Q, P ) uncorrelated
saturating states correspond to either one of the two values θ = 0,±π (mod 2π ),
thus leading to the quantities,

if θ = 0 : �Q

�0
= 1√

2
er ,

�0

h̄
�P = 1√

2
e−r ,

�0

h̄
�P−�Q

�0
= −√2 sinh r < 0;

if θ = ±π : �Q

�0
= 1√

2
e−r ,

�0

h̄
�P = 1√

2
er ,

�0

h̄
�P − �Q

�0
= √2 sinh r > 0. (75)

Of course, these results are consistent with those derived above.
Given the latter expressions for �Q/�0 and �0�P/h̄, it is clear why the

parameter r ≥ 0 is known as the squeezing parameter, while all such (Q, P )

uncorrelated states then all saturate the H-UR rather than the SR-UR whatever the
value for r . In addition, as the value for the correlation parameter θ or ϕ varies away
from θ = 0,±π (mod 2π ) or ϕ = 0 (−π/2 ≤ ϕ ≤ π/2), respectively, both these
quantities remain limited within a finite interval whose width is set by the squeezing
parameter r ,

1√
2
e−r ≤ �Q

�0
,
�0

h̄
�P ≤ 1√

2
er . (76)

In particular when r = 0, corresponding to z = 0 and thus to an irrelevant value
for θ , one has the specific situation that �Q/�0 = 1/

√
2 = �0�P/h̄ in addition

to the fact that 〈{Q̄, P̄
}〉 = 0, namely the fact that ϕ = 0, thereby leaving as only

remaining free parameter the complex variable u0 for these states which saturate the
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H-UR rather than the SR-UR. This situation corresponds exactly to the displaced
Fock vacua and coherent states |�0(u0)〉 = D(u0)|�0〉 constructed in Sect. 3 out of
the reference Fock vacuum |�0〉.

Consequently in this paper those quantum states that saturate the SR-UR are
referred to generally as “squeezed states” (or squeezed coherent states, since they
turn out to correspond to coherent states as well, as discussed hereafter). Note that
if the parameter z is purely real, whether positive or negative (thus corresponding
to θ = 0 or θ = ±π (mod 2π ), respectively), such squeezed states have no
(Q, P ) correlation. While if z is strictly complex with θ �= 0,±π (mod 2π ) those
squeezed states have a non-vanishing (Q, P ) correlation. If the distinction needs to
be emphasised, in this paper these situations will be referred to as “uncorrelated” and
“correlated” squeezed states, respectively. Note that uncorrelated squeezed states
saturate the H-UR, while correlated squeezed states saturate the SR-UR but not the
H-UR. In the literature some authors reserve the term “squeezed states” specifically
to uncorrelated squeezed states thus with z strictly real and which saturate the H-
UR, while to emphasise the distinction correlated squeezed states are then referred
to as “intelligent states” which saturate the SR-UR[11–13]. However given the
considerations of this paper based on the SR-UR leading to this general class of
squeezed states, whether (Q, P ) correlated or not it seems preferable to refer to
all of these as squeezed states. Furthermore when time evolution of such states is
considered10 the value for θ certainly evolves in time, thereby generating correlated
squeezed states out of what could have been initially uncorrelated ones.

Another reason why it is legitimate to consider on a same footing correlated
and uncorrelated squeezed states is the following fact. The general Schrödinger–
Robertson uncertainty relation may also be expressed [3] in terms of the determinant
of the covariance matrix of bi-correlations of observables (see Appendix 1),

〈Ā2〉 〈B̄2〉 − 〈ĀB̄〉 〈B̄Ā〉 ≥ 0, (77)

(�A)2 (�B)2 −
(

1

2
〈{Ā, B̄

}〉
)2

≥
(

1

2
〈(−i) [A,B]〉

)2

,

which in the case of the Heisenberg observables reads,

〈Q̄2〉 〈P̄ 2〉− 〈Q̄P̄ 〉 〈P̄ Q̄〉 ≥ 0, (�Q)2 (�P )2− h̄2
(

1

2h̄
〈{Q̄, P̄

}〉
)2

≥ 1

4
h̄2.

(78)

General squeezed states thus minimise the l.h.s. of these inequalities, whether
correlated or uncorrelated, namely whether the parameter z is strictly complex or
strictly real, respectively.

10In the simple situation of the harmonic oscillator of mass m and angular frequency ω, and by
choosing then �0 = √h̄/(mω), all these general squeezed states evolve coherently into one another
with parameters u0 and z whose time dependence is given by u0(t) = u0e

iωt and z(t) = ze2iωt .
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4.2 Correlated Squeezed Fock Algebras and Their Vacua

Coming back now to the operator (58) which annihilates the saturating states, note
that it may be expressed in the form

2 cosϕ eiθ+
(

cosh r b(u0) − eiθ sinh r b†(u0)
)

(79)

= 2 cosϕ eiθ+ cosh r
(
b(u0) − ζ b†(u0)

)
.

Consequently let us now introduce the correlated displaced squeezed Fock algebra
generators defined as11

b(z, u0) = cosh r b(u0) − eiθ sinh r b†(u0) (80)

= cosh r (a − u0) − eiθ sinh r
(
a† − ū0

)
,

b†(z, u0) = −e−iθ sinh r b(u0) + cosh r b†(u0) (81)

= −e−iθ sinh r (a − u0) + cosh r
(
a† − ū0

)
,

which are such that
[
b(z, u0), b

†(z, u0)
]
= I, (82)

while a specific choice of overall phase factor has been effected for b(z, u0) and
b†(z, u0), consistent with the fact that b(0, u0) = b(u0) and b†(0, u0) = b†(u0).

Obviously the SR-UR saturating or squeezed quantum states are the normalised
Fock vacua of these displaced squeezed Fock algebras (b(z, u0), b

†(z, u0)). Let us
denote these Fock states as |�z(u0)〉 such that 〈�z(u0)|�z(u0)〉 = 1 as well as
b(z, u0)|�z(u0)〉 = 0. However one also observes that (hence the name of displaced
squeezed Fock algebra for (b(z, u0), b

†(z, u0))),

b(z, u0) = D(u0) a(z)D
†(u0), b†(z, u0) = D(u0) a

†(z)D†(u0), (83)

where the operators

a(z) = cosh r a − eiθ sinh r a†, a†(z) = −e−iθ sinh r a + cosh r a†, (84)

define correlated squeezed Fock algebras such that

[
a(z), a†(z)

]
= I, (85)

11Note the slight abuse of notation which is without consequence, which consists in denoting as
a dependence on z a dependence of (b(z, u0), b

†(z, u0)) which is in fact separate in r and in eiθ

while z = reiθ .



Towards the Quantum Geometry of Saturated Quantum Uncertainty Relations. . . 253

which are general Bogoliubov transformations of the reference Fock algebra (a, a†)

such that (a(0), a†(0)) = (a, a†). Consequently if |�z〉 denote the normalised Fock
vacua of the Fock algebras (a(z), a†(z)) for all z ∈ C, such that 〈�z|�z〉 = 1 and
a(z)|�z〉 = 0, the saturating squeezed states and thus also Fock vacua |�z(u0)〉 are
given as the displaced states of |�z〉,
|�z(u0)〉 = D(u0) |�z〉, b(z, u0) |�z(u0)〉 = D(u0) a(z) |�z〉 = 0. (86)

Note that from the last of these two identities it follows that general squeezed states
|�z(u0)〉 with u0 �= 0 are also coherent states of the squeezed (a(z), a†(z)) Fock
algebras. Indeed by introducing the quantities

u0(z) ≡ cosh r u0 − eiθ sinh r ū0 = cosh r (u0 − ζ ū0) , u0(0) = u0,

ū0(z) ≡ −e−iθ sinh ru0 + cosh r ū0 = cosh r
(
ū0 − ζ̄ u0

)
, ū0(0) = ū0, (87)

one has

a(z) |�z(u0)〉 = u0(z) |�z(u0)〉, (88)

as follows also from the identity,

b(z, u0) = a(z) − u0(z), (89)

which shows that the (b(z, u0), b
†(z, u0)) Fock algebras are shifted versions of the

(a(z), a†(z)) Fock algebras.12 As a matter of fact it may readily be checked that one
has, independently from the value for z,

u0(z)a
†(z) − ū0(z)a(z) = u0a

† − ū0a, (90)

so that

D(u0) = e
− i

h̄
q0P+ i

h̄
p0Q = eu0a

†−ū0a = eu0(z)a
†(z)− ū0(z)a(z), (91)

a property which thus explains the above results.
Inverting the Bogoliubov transformations (84), one finds

a = cosh r a(z) + eiθ sinh r a†(z), a† = e−iθ sinh r a(z) + cosh r a†(z),

(92)
hence likewise for the variables u0 and u0(z),

u0 = cosh r u0(z) + eiθ sinh r ū0(z), ū0 = e−iθ sinh r u0(z) + cosh r ū0(z).

(93)

12In the same way that b(u0)|�0(u0)〉 = 0, a|�0(u0)〉 = u0|�0(u0)〉 and b(u0) = a − u0,
corresponding to the case with z = 0.
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In terms of the Heisenberg observables, these definitions translate into

a(z) = 1√
2

(
cosh r − eiθ sinh r

) Q

�0
+ i√

2

(
cosh r + eiθ sinh r

) �0

h̄
P ,

a†(z) = 1√
2

(
cosh r−e−iθ sinh r

) Q

�0
− i√

2

(
cosh r + e−iθ sinh r

) �0

h̄
P , (94)

with the inverse relations,

Q

�0
= 1√

2

(
cosh r + e−iθ sinh r

)
a(z) + 1√

2

(
cosh r + eiθ sinh r

)
a†(z),

�0

h̄
P = − i√

2

(
cosh r−e−iθ sinh r

)
a(z)+ i√

2

(
cosh r−eiθ sinh r

)
a†(z), (95)

so that for the corresponding parameters u0(z), ū0(z), q0 and p0,

u0(z) = 1√
2

(
cosh r − eiθ sinh r

) q0

�0
+ i√

2

(
cosh r + eiθ sinh r

) �0

h̄
p0,

ū0(z) = 1√
2

(
cosh r − e−iθ sinh r

) q0

�0
− i√

2

(
cosh r + e−iθ sinh r

) �0

h̄
p0, (96)

while

q0

�0
= 1√

2

(
cosh r + e−iθ sinh r

)
u0(z) + 1√

2

(
cosh r + eiθ sinh r

)
ū0(z),

�0

h̄
p0 = − i√

2

(
cosh r−e−iθ sinh r

)
u0(z)+ i√

2

(
cosh r−eiθ sinh r

)
ū0(z). (97)

4.3 Squeezed Fock Vacua and SR-UR Saturating Quantum
States

Having understood that the SR-UR saturating states are the displaced coherent states
of the squeezed Fock vacua |�z〉, namely |�z(u0)〉 = D(u0)|�z〉, let us finally
turn to the construction of the latter which are characterised by the condition that
a(z)|�z〉 = 0 with

a(z) = cosh r a − eiθ sinh r a†. (98)

Given that the corresponding Bogoliubov transformation, linear in both generators
of the reference Fock algebra (a, a†), is unitary, necessarily it corresponds to a
unitary operator acting on Hilbert space of the following form, defined up to an
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arbitrary global phase factor set here to a trivial value,

S(α) = exp

(
1

2
αa†2 − 1

2
ᾱa2

)
, α ∈ C, (99)

α being some complex parameter. The operator S(α) is thus such that

S†(α) = S−1(α) = S(−α), S(0) = I. (100)

A straightforward application of the BCH formula (172) in Appendix 2 then leads
to the identities,

S(α) a S†(α) = cosh ρ a − eiφ sinh ρ a†, (101)

S(α) a† S†(α) = − e−iφ sinh ρ a + cosh ρ a†,

the parameter α being represented as α = ρ eiφ with ρ ≥ 0.
Consequently by choosing α = z, one finds for the squeezed Fock algebras

(a(z), a†(z)),

a(z) = S(z) a S†(z), a†(z) = S(z) a† S†(z),
[
a(z), a†(z)

]
= I, (102)

while their normalised squeezed Fock vacua |�z〉 are constructed as follows out of
the reference Fock vacuum |�0〉, since a(z)S(z)|�0〉 = S(z)a|�0〉 = 0,

|�z〉 = S(z) |�0〉, 〈�z|�z〉 = 〈�0|�0〉 = 1. (103)

Given the displacement operator D(u0), let us also introduce the operators

S(z, u0) ≡ exp

(
1

2
z(a† − ū0)

2 − 1

2
z̄(a − u0)

2
)
, (104)

which obey the following properties,13

D(u0) S(z) = S(z, u0)D(u0), S(z, u0) = D(u0) S(z)D
†(u0). (105)

Hence finally all normalised quantum states that saturate the Schrödinger–
Robertson uncertainty relation for the Heisenberg observables (Q, P ) are given by
the algebraic representation

|ψ0(z, u0)〉 ≡ |�z(u0)〉 = eu0a
†−ū0a e

1
2 za

†2− 1
2 z̄a

2 |�0〉 (106)

= D(u0) S(z) |�0〉 = S(z, u0)D(u0) |�0〉 = S(z)D(u0(z)) |�0〉,

13Note that because of (90), one also has the identity D(u0)S(z) = S(z)D(u0(z)) with u0(z) =
cosh r(u0 − ζ ū0). The author thanks Victor Massart for a remark on this point.
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|�0〉 being the normalised Fock vacuum of the reference Fock algebra (a, a†). Note
that this construction also fixes the absolute phase factor for all these saturating
states, relative to the choice of phase made for the state |�0〉. The overall phase
factor for the wave function of the saturating states, ψ0(q; z, u0) ≡ 〈q|ψ0(z, u0)〉 in
Eq. (16), will be determined accordingly in Sect.6.

5 Overcompleteness and Kernel Representation

In Sect. 3 two remarkable properties of the canonical coherent states, |�0(u0)〉,
were emphasised. Let us now consider how these properties extend to the general
squeezed coherent states |�z(u0)〉, beginning with the overcompleteness property.

As established in Eq. (44), given any normalised reference state |χ0〉, one has the
following representation of the unit operator on the considered Hilbert space,

∫

C

du0 dū0

π
D(u0)|χ0〉 〈χ0|D†(u0) (107)

=
∫

R2

dq0dp0

2πh̄
D(q0, p0)|χ0〉 〈χ0|D†(q0, p0) = I.

Hence by choosing |χ0〉 = |�z〉 so that D(u0)|χ0〉 = |�z(u0)〉, given any fixed
value for z ∈ C one has the overcompleteness property for the SR-UR saturating
states,

∫

C

du0 dū0

π
|�z(u0)〉 〈�z(u0)| =

∫

R2

dq0dp0

2πh̄
|�z(u0)〉 〈�z(u0)| = I, (108)

which thus generalises the overcompleteness relation in Eq. (45) (which corresponds
to the case z = 0). Note well, however, that this identity involves an integral over the
entire complex plane only for the complex variable u0, independently of the value
for z which is fixed but arbitrary. Since the states |�z〉 = S(z)|�0〉 involve those
Fock states built from the reference Fock algebra (a, a†) which include only an even
number of the corresponding a† Fock quanta and thereby span only half the Hilbert
space under consideration, a similar identity involving rather such an integral only
over the complex plane of z values but with a fixed value now for u0 cannot apply.
However, given any arbitrary normalisable and normalised integration measure
μ(z, z̄) over the complex plane for all values of z provides still for a generalised
form of overcompleteness relation involving then all the saturating states,

∫

C2

du0 dū0

π

dz dz̄

π
μ(z, z̄) |�z(u0)〉 〈�z(u0)| = I,

∫

C

dz dz̄

π
μ(z, z̄) = 1.

(109)

Let us now consider the possibility of a diagonal kernel integral representation
of operators. Given a fixed but arbitrary value for z, any finite order polynomial in
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the observables Q and P may be written as a linear combination of monomials
which are expressed in normal ordered form with respect to the Fock algebra
(a(z), a†(z)). Let us thus consider again the generating function of such normal
ordered monomials, namely the operator exp(αa†(z))exp(−ᾱa(z)) with generating
parameters α ∈ C and (−ᾱ = −α∗). Following the same line of analysis as in
Sect. 3, one has

eαa
†(z) e−ᾱa(z) = eαᾱ e−ᾱa(z) eαa

†(z)

=
∫

C

du0 dū0

π
eαᾱ e−ᾱa(z) |�z(u0)〉 〈�z(u0)| eαa†(z)

=
∫

C

du0 dū0

π
|�z(u0)〉 eαᾱ e−ᾱu0(z) eαū0(z) 〈�z(u0)| (110)

=
∫

C

du0 dū0

π
|�z(u0)〉

×
[
e−∂u0(z)∂ū0(z) 〈�z(u0)|eαa†(z) e−ᾱa(z) |�z(u0)〉

]
〈�z(u0)|.

Consequently, any finite order polynomial in the Heisenberg observables Q and P

may be given the following diagonal kernel integral representation, whatever the
fixed but arbitrary value for the complex squeezing parameter z,

A =
∫

C

du0 dū0

π
|�z(u0)〉 a(z, z̄; u0, ū0) 〈�z(u0)|, (111)

where the diagonal kernel is defined as

a(z, z̄; u0, ū0) = e−∂u0(z)∂ū0(z) 〈�z(u0)|A|�z(u0)〉. (112)

More generally given the normalised integration measure μ(z, z̄), one may extend
this representation to

A =
∫

C2

du0 dū0

π

dz dz̄

π
μ(z, z̄) |�z(u0)〉 a(z, z̄; u0, ū0) 〈�z(u0)|. (113)

In the above representations the second order differential operator ∂u0(z)∂ū0(z) may
also be expressed as

∂u0(z)∂ū0(z) =
1

2
eiθ sinh 2r ∂2

u0
+ 1

2
e−iθ sinh 2r ∂2

ū0
+ cosh 2r ∂u0∂ū0 (114)

= (cosh 2r + cos θ sinh 2r)
1

2
�2

0 ∂
2
q0
+ (cosh 2r− cos θ sinh 2r)

1

2

h̄2

�2
0

∂2
p0

+h̄ sin θ ∂q0 ∂p0 ,
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while it is worth noting that

du0 dū0 = du0(z) dū0(z). (115)

Indeed, since (see (90))

|�z(u0)〉 = D(u0)|�z〉 = eu0(z)a
†(z)−ū0(z)a(z) |�z〉 = e−

1
2 |u0(z)|2 eu0(z)a

†(z) |�z〉,
(116)

the matrix element 〈�z(u0)|A|�z(u0)〉 is first a function of u0(z) and ū0(z) rather
than directly a function of u0 and ū0 independently of the value for z.

6 Correlated Squeezed State Wavefunctions

6.1 Squeezed State Configuration Space Wave Functions

Having fully identified, in the form recalled hereafter, the quantum states that
saturate the Schrödinger–Robertson uncertainty relation for the Heisenberg algebra
of the observables Q and P , inclusive of their phase since that of the reference Fock
vacuum has been specified,

|ψ0(z, u0)〉 = |�z(u0)〉 = D(u0) S(z) |�0〉, (117)

we may reconsider the construction of the wave function representation of these
states, say in configuration space.

In terms now of the notations and parametrisations introduced throughout the
discussion, the expression for the wave functions of these states as determined
in (16) and (17) reads14

ψ0(q; z, u0) ≡ 〈q|�z(u0)〉 =
(
π�2

0

)−1/4
(cosh 2r + cos θ sinh 2r)−1/4 ×

× eiϕ(z,u0) e
i
h̄
qp0 exp

(
−1

2

1− i sin θ sinh 2r

cosh 2r + cos θ sinh 2r

(
q − q0

�0

)2
)
,

(118)

where ϕ(z, u0) is the phase factor still to be determined. Thus in particular, when
u0 = 0,

〈q|�z(0)〉 = 〈q|�z〉 =
(
π�2

0

)−1/4
(cosh 2r + cos θ sinh 2r)−1/4 ×

× eiϕ(z,0) exp

(
−1

2

1− i sin θ sinh 2r

cosh 2r + cos θ sinh 2r

(
q

�0

)2
)
. (119)

14Since one has the relations i
2λ0h̄

= − 1
h̄

�P
�Q

e−iϕ = − 1
2�2

0

1−i sin θ sinh 2r
cosh 2r+cos θ sinh 2r .
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However since the displacement operator’s action on Q eigenstates is such that

D(u0)|q〉 = e
i

2h̄ q0p0 e
i
h̄
qp0 |q + q0〉, (120)

〈q|D(u0) = 〈q|D†(−u0) = 〈q − q0| e− i
2h̄ q0p0 e

i
h̄
qp0 ,

one has

〈q|�z(u0)〉 = 〈q|D(u0)S(z)|�0〉 = e
− i

2h̄ q0p0 e
i
h̄
qp0 〈q − q0|�z(0)〉, (121)

which, given the above two expressions for 〈q|�z(u0)〉 and 〈q|�z(0)〉, thus implies
that

eiϕ(z,u0) = e
− i

2h̄ q0p0 eiϕ(z,0). (122)

The final determination of the phase factor ϕ(z, 0) is based now on the following
relation between specific Fock state overlaps,

〈�0|�z〉 =
∫ +∞

−∞
dq 〈�0|q〉 〈q|�z〉. (123)

The function 〈q|�z〉 is specified in (119) in terms of eiϕ(z,0), while given the choice
of phase for the reference Fock vacuum |�0〉 its own wave function was determined
earlier on to be simply,

〈q|�0〉 =
(
π�2

0

)−1/4
e
− 1

2
q2

�2
0 . (124)

On the other hand, since the l.h.s. of the overlap (123) corresponds to 〈�0|S(z)|�0〉,
clearly this latter quantity does not involve any phase factor left unspecified.
Consequently the Gaussian integration in (123) determines the overall phase factor
ϕ(z, u0) of the wave functions (118).

The evaluation of 〈�0|�z〉 is readily achieved by using the BCH formula (203)
of Appendix 2 for the squeezing operator S(z),

S(z) = e
1
2 ζ a†2

eln(1−|ζ |2) 1
2 (a

†a+ 1
2 ) e−

1
2 ζ̄ a

2
, ζ = eiθ tanh r, z = reiθ .

(125)
Hence,

〈�0|�z〉 = 〈�0|S(z)|�0〉 =
(

1− tanh2 r
)1/4 = (cosh r)−1/2 . (126)

When combined with the normalisation factor in (119), the Gaussian integration
in (123) leads to a factor which may be brought into the form of this last factor
(cosh r)−1/2 being multiplied by a specific phase factor. In order to express the
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thereby determined phase factor ϕ(z, 0), let us introduce two last angular parameters
θ̄±(z) defined by

cos θ̄±(z) = cosh r ± cos θ sinh r√
cosh 2r ± cos θ sinh 2r

,

sin θ̄±(z) = ± sin θ sinh r√
cosh 2r ± cos θ sinh 2r

, (127)

tan θ̄±(z) = ± sin θ sinh r

cosh r ± cos θ sinh r
, (128)

and such that

cos(θ̄+(z)− θ̄−(z)) = 1√
cosh2 2r − cos2 θ sinh2 2r

,

sin(θ̄+(z)− θ̄−(z)) = sin θ sinh 2r√
cosh2 2r − cos2 θ sinh2 2r

. (129)

On completing the Gaussian integration in (123) (which requires some little work
for simplifying some intermediate expressions), one then finally determines that

eiϕ(z,0) = e−
i
2 θ̄+(z). (130)

In conclusion the complete expression for the configuration space wave function
representations of all the states that saturate the Schrödinger–Robertson uncertainty
relation for the Heisenberg observables Q and P is given as

ψ0(q; z, u0)

≡ 〈q|�z(u0)〉 =
(
π�2

0

)−1/4
(cosh 2r + cos θ sinh 2r)−1/4 e−

i
2 θ̄+(z) ×

× e
− i

2h̄ q0p0 e
i
h̄
qp0 exp

(
−1

2

1− i sin θ sinh 2r

cosh 2r + cos θ sinh 2r

(
q − q0

�0

)2
)
. (131)

Note that because of the following identities,

cosh r ± eiθ sinh r = √cosh 2r ± cos θ sinh 2r eiθ̄± ,

cosh r ± e−iθ sinh r = √cosh 2r ± cos θ sinh 2r e−iθ̄± , (132)

1± i sin θ sinh 2r =
(

cosh r ± eiθ sinh r
) (

cosh r ∓ e−iθ sinh r
)
,

cosh 2r ± cos θ sinh 2r =
(

cosh r ± eiθ sinh r
) (

cosh r ± e−iθ sinh r
)
, (133)
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the same wave functions have also the equivalent representations,

ψ0(q; z, u0)

≡ 〈q|�z(u0)〉 =
(
π�2

0

)−1/4
(cosh 2r + cos θ sinh 2r)−1/4 e−

i
2 θ̄+(z) ×

× e
− i

2h̄ q0p0 e
i
h̄
qp0 exp

(
−1

2

cosh r−eiθ sinh r

cosh r + eiθ sinh r

(
q−q0

�0

)2
)
, (134)

and

ψ0(q; z, u0)≡〈q|�z(u0)〉=
(
π�2

0

)−1/4
(cosh 2r + cos θ sinh 2r)−1/4 e−

i
2 θ̄+(z) ×

× e
− i

2h̄ q0p0 e
i
h̄
qp0 exp

(
−1

2

√
cosh 2r − cos θ sinh 2r

cosh 2r + cos θ sinh 2r

× ei(θ̄−(z)−θ̄+(z))
(
q−q0

�0

)2
)
. (135)

Furthermore note that

(cosh 2r ± cos θ sinh 2r)−1/4 e−
i
2 θ̄±(z) =

(
cosh r ± eiθ sinh r

)−1/2
, (136)

a relation which invites us to consider finally the result in the following form:

ψ0(q; z, u0) ≡ 〈q|�z(u0)〉 =
(
π�2

0

)−1/4 (
cosh r + eiθ sinh r

)−1/2 × (137)

× e
− i

2h̄ q0p0 e
i
h̄
qp0 exp

(
−1

2

cosh r − eiθ sinh r

cosh r + eiθ sinh r

(
q − q0

�0

)2
)
.

6.2 The Fundamental Overlap 〈�z2(u2)|�z1(u1)〉 of Squeezed
States

As a last quantity to be determined in this paper, let us consider the overlap of two
arbitrary general squeezed coherent states, associated with the pairs of variables
(z2, u2) and (z1, u1),

〈�z2(u2)|�z1(u1)〉 =
∫ +∞

−∞
dq 〈�z2(u2)|q〉 〈q|�z1(u1)〉. (138)
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Given the parameters u2 and u1, correspondingly one has the pairs of quantities
(q2, p2) and (q1, p1), while related to z2 and z1 one has the remaining variables
(r2, θ2) and (r1, θ1) such that

z2 = r2 e
iθ2 , ζ2 = eiθ2 tanh r2; z1 = r1 e

iθ1 , ζ1 = eiθ1 tanh r1. (139)

Even though a little tedious, the evaluation of the Gaussian integral in (138) is
straightforward enough. It leads to the following equivalent expressions, by relying
on a number of the identities pointed out above. In one form one finds

〈�z2(u2)|�z1(u1)〉
= (cosh r2 · cosh r1)

−1/2 (
1− ζ̄2ζ1

)−1/2
e

i
2h̄ (q2p1−q1p2) e−

1
4 G(2)(2,1), (140)

where the Gaussian quadratic form G(2)(2, 1) is given as

G(2)(2, 1) = 1

1− ζ̄2ζ1

[
(
1− ζ̄2

)
(1− ζ1)

(
q2 − q1

�0

)2

−

− 2i
(
ζ̄2 − ζ1

) (q2 − q1

�0

)(
�0

h̄
(p2 − p1)

)

+ (
1+ ζ̄2

)
(1+ ζ1)

(
�0

h̄
(p2 − p1)

)2
]
. (141)

In terms of the variables (u2, u1) and (ζ2, ζ1), the same expression writes as

〈�z2(u2)|�z1(u1)〉 (142)

= (cosh r2 · cosh r1)
−1/2 (

1− ζ̄2ζ1
)−1/2

e−
1
2 (u2ū1−ū2u1) e−

1
4G(2)(2,1),

with this time, in a further streamlined form for the Gaussian quadratic factor,

1

2
G(2)(2, 1)

= 1

1− ζ̄2ζ1

(
(1+ ζ̄2ζ1)|u2− u1|2− ζ̄2(u2− u1)

2− ζ1(ū2− ū1)
2
)

= 1

1− ζ̄2ζ1

(
(u2 − u1)− ζ2(ū2 − ū1)

)∗(
(u2 − u1)− ζ1(ū2 − ū1)

)
. (143)

That the dependence of this result on the different variables parametrising the
SR-UR states |�z2(u2)〉 and |�z1(u1)〉 comes out as established above may be
understood from the following two identities (for the first, see (125)),
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S(z)|�0〉 = (cosh r)−1/2 e
1
2 ζa

†2 |�0〉, (144)

D†(u2)D(u1) = D(−u2)D(u1) = e
i

2h̄ (q2p1−q1p2) D(u1 − u2) (145)

= e−
1
2 (u2ū1−ū2u1) D(u1 − u2),

which imply the relation,

〈�z2(u2)|�z1(u1)〉 (146)

= (cosh r2 · cosh r1)
−1/2 e

i
2h̄ (q2p1−q1p2) 〈�0|e 1

2 ζ̄2 a2
D(u1 − u2) e

1
2 ζ1a

†2 |�0〉.

Hence the above evaluations have also established the corresponding general matrix
element,

〈�0|e 1
2 ζ̄2 a2

D(u) e
1
2 ζ1a

†2 |�0〉 (147)

= (
1− ζ̄2ζ1

)−1/2
exp

{
−1

2

1

1− ζ̄2ζ1

(
u− ζ2ū

)∗(
u− ζ1ū)

)}
.

7 Conclusions

In this contribution to the present Workshop Proceedings we have explored the first
step in the general programme outlined in the Introduction, in the case of the quan-
tum observables Q and P defining the Heisenberg algebra. Namely, generally given
a quantum system characterised by a set of quantum observables, one considers the
set of quantum states that saturate the Schrödinger–Robertson uncertainty relation
corresponding to this set of observables. Such states are the closest possible to
displaying a classical behaviour of the quantum system while, being determined
by a condition characteristic of coherent-like quantum states, they are parametrised
by a collection of continuous variables and therefore define a specific submanifold
within the Hilbert space of the quantum system. Correspondingly there arise specific
geometric structures associated with this manifold, compatible with one another,
namely both a quantum symplectic structure and a quantum Riemannian metric.
It may even be possible to reconstruct the quantum dynamics of the system
from that geometric data as well as a choice of Hamiltonian operator represented
through its diagonal matrix elements for the saturating states, thereby offering
a geometric formulation of quantum systems and their dynamics through a path
integral representation.

This general programme is initiated herein, in the case of observables of the
Heisenberg algebra for a single degree of freedom quantum system as an illustration.
Correspondingly the saturating quantum states are the so-called and well-known



264 J. Govaerts

general squeezed states, for which many properties and results were reviewed and
presented together with quite many details and some original results, with the hope
that some readers could become interested in taking part in such an exploration in
the case of other possible choices of quantum observables and the ensuing saturating
quantum states. For instance, the affine quantum algebra of scale transformations,
[Q,D] = ih̄Q (say with D = (QP + PQ)/2), does also play an important
role in quite many quantum systems [4, 6, 7, 14], with its own coherent states.
To this author’s best knowledge, the analogue states for the affine algebra of the
squeezed states for the Heisenberg algebra remain to be fully understood. Other
situations may be thought of as well, such as the operators and uncertainty relation
related to the factorisation of a quantum Hamiltonian along the lines and methods
of supersymmetric quantum mechanics, H = A† A + E0.

Essential to such a programme is the evaluation of the overlap of the saturating
quantum states given a set of quantum observables. In particular this quantity
encodes the data necessary in identifying the inherent geometric structures, as
well as in the construction of the quantum path integral of the system over the
manifold in Hilbert space associated with the saturating quantum states. Usually
overcompleteness relations ensue, implying that the overlap of saturating states
determines a reproducing kernel representation of the Hilbert space.

In this contribution the discussion concludes with the evaluation of this repro-
ducing kernel for the general squeezed states of the Heisenberg algebra which
saturate the Schrödinger–Robertson uncertainty relation. We defer to a separate
publication an analysis of the corresponding symplectic and Riemannian geometric
structures, as well as of the path integral representation of the quantum system over
the associated manifold of squeezed states, |�z(u)〉 = D(u)S(z)|�0〉. All of these
considerations are to follow from the quantities 〈�z2(u2)|�z1(u1)〉.

Thus in particular the overlap 〈�z2(u2)|�z1(u1)〉 determines a reproducing
kernel representation of the Hilbert space of the Heisenberg algebra of observables
Q and P . Indeed, given the generalised overcompleteness relation (109), obviously
one has the property,

〈�z2(u2)|�z1(u1)〉 (148)

=
∫

C2

du3 dū3

π

dz3 dz̄3

π
μ(z3, z̄3) 〈�z2(u2)|�z3(u3)〉 〈�z3(u3)|�z1(u1)〉.

We plan to report elsewhere on such applications and further developments of the
results of the present contribution, as well as on the general programme outlined
in the Introduction. This programme is offered here as a token of genuine and
sincere appreciation for Professor Norbert Hounkonnou’s constant interest and
many scientific contributions of note, and certainly for his unswerving efforts as
well towards the development of mathematical physics in Benin, in Western Africa,
and on the African continent, to the benefit of the younger and future generations,
and this on the occasion of this special COPROMAPH Workshop celebrating his
sixtieth birthday.
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Appendix 1: Cauchy–Schwarz Inequality and Quantum
Uncertainty Relations

In the first part of this Appendix, for the purpose of the present paper it proves
useful to reconsider specific arguments leading to the Cauchy–Schwarz inequality.
In the second part this inequality is applied to establish the Schrödinger–Robertson
uncertainty relation (SR-UR) given any two quantum observables.

Let |ψ1〉 and |ψ2〉 be any two (normalisable and non-vanishing) quantum states,
and consider their arbitrary complex linear combination, say in the form,

|ψ〉 = |ψ1〉 + iλeiϕ |ψ2〉, ϕ, λ ∈ R, (149)

with ϕ a phase factor and λ a real parameter. Since the sesquilinear and hermitian
inner product of Hilbert space is positive definite, the norm of the state |ψ〉 is
positive definite whatever the values for these two parameters,

P(λ) ≡ 〈ψ |ψ〉 = λ2〈ψ2|ψ2〉 + iλ
(
eiϕ〈ψ1|ψ2〉 − e−iϕ〈ψ2|ψ1〉

)
+ 〈ψ1|ψ1〉 ≥ 0.

(150)

Note that the l.h.s. of this inequality is a real quadratic polynomial in λ ∈ R with
real coefficients, P(λ), of which the coefficient in λ2 is strictly positive. Hence the
parabolic graph of this function of λ lies entirely in the upper half plane and this
polynomial has no real roots in λ, unless the state |ψ〉 itself vanishes identically in
which case the two roots are degenerate and real for just a unique and specific set of
values for the parameters ϕ and λ such that the parabola P(λ) has its minimum just
touching the horizontal coordinate axis in λ. Consequently the discriminant of this
real quadratic form in λ is negative, namely

〈ψ1|ψ1〉 〈ψ2|ψ2〉 ≥ −1

4

(
eiϕ〈ψ1|ψ2〉 − e−iϕ〈ψ2|ψ1〉

)2 ≥ 0. (151)

This inequality is the tightest when the quantity on the r.h.s. of this relation, which is
still a function of the parameter ϕ, reaches its maximal value. As readily established
this maximum is obtained for a phase factor ϕ = ϕ0 such that

e2iϕ0 = −〈ψ2|ψ1〉
〈ψ1|ψ2〉 , (152)
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namely,

eiϕ0〈ψ1|ψ2〉 = −e−iϕ0〈ψ2|ψ1〉, (153)

ieiϕ0〈ψ1|ψ2〉 = −ie−iϕ0〈ψ2|ψ1〉 =
(
ieiϕ0〈ψ1|ψ2〉

)∗
.

Given this choice, the tightest discriminant inequality in (151) reduces to the well-
known Cauchy–Schwarz inequality

〈ψ1|ψ1〉 〈ψ2|ψ2〉 ≥ |〈ψ1|ψ2〉|2. (154)

Having set the phase factor as ϕ = ϕ0 the polynomial P(λ) may be organised in
the following form:

P(λ) = 〈ψ2|ψ2〉
[(

λ+ ieiϕ0
〈ψ1|ψ2〉
〈ψ2|ψ2〉

)2

+ 〈ψ1|ψ1〉〈ψ2|ψ2〉 − |〈ψ1|ψ2〉|2
〈ψ2|ψ2〉2

]
≥ 0.

(155)

Hence making now the additional choice λ = λCS such that

λCS = −ieiϕ0
〈ψ1|ψ2〉
〈ψ2|ψ2〉 = ie−iϕ0

〈ψ2|ψ1〉
〈ψ2|ψ2〉 , ieiϕ0λCS = −〈ψ2|ψ1〉

〈ψ2|ψ2〉 , (156)

λCS being indeed a real quantity on account of the properties in (153), one has

〈ψ |ψ〉 = P(λCS) = 〈ψ2|ψ2〉 〈ψ1|ψ1〉〈ψ2|ψ2〉 − |〈ψ1|ψ2〉|2
〈ψ2|ψ2〉2 ≥ 0. (157)

Consequently, besides the Cauchy–Schwarz inequality (154), one also concludes
that this inequality is saturated into a strict equality provided the states |ψ1〉 and
|ψ2〉 are such that |ψ〉 = 0 for these choices of parameters ϕ = ϕ0 and λ = λCS ,
namely

|ψ1〉 − 〈ψ2|ψ1〉
〈ψ2|ψ2〉 |ψ2〉 = 0 ⇐⇒ 〈ψ1|ψ1〉 〈ψ2|ψ2〉 = |〈ψ1|ψ2〉|2. (158)

Let now A and B be two arbitrary quantum observables, namely hermitian (and
ideally, self-adjoint) operators acting on Hilbert space, A† = A and B† = B,
and consider an arbitrary (normalisable and non-vanishing) quantum state |ψ0〉.
Whatever choice of quantum operator O, its expectation value for that state |ψ0〉
is denoted as

〈O〉 = 〈ψ0|O|ψ0〉
〈ψ0|ψ0〉 . (159)
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In particular for the observables A and B we have their real valued expectation
values

a0 = 〈A〉, b0 = 〈B〉, a0, b0 ∈ R, (160)

which are used to shift these observables as follows:

Ā = A− a0I, B̄ = B − b0I, Ā† = Ā, B̄† = B̄, (161)

such that [Ā, B̄] = [A,B]. Consequently we have

(�A)2 = 〈Ā2〉, (�B)2 = 〈B̄2〉. (162)

In order to establish the SR-UR from the Cauchy–Schwarz inequality, let us
consider the following two quantum states:

|ψ1〉 = 1√〈ψ0|ψ0〉 Ā|ψ0〉, |ψ2〉 = 1√〈ψ0|ψ0〉 B̄|ψ0〉, (163)

which are such that

〈ψ1|ψ1〉 = (�A)2 , 〈ψ2|ψ2〉 = (�B)2 , (164)

〈ψ1|ψ2〉 = 〈ĀB̄〉, 〈ψ2|ψ1〉 = 〈B̄Ā〉 = 〈ĀB̄〉∗.

Consequently the Cauchy–Schwarz inequality (154) reads

(�A)2 (�B)2 ≥ |〈ĀB̄〉|2, (�A)2 (�B)2 ≥ 〈ĀB̄〉 〈B̄Ā〉. (165)

Alternatively by expressing the quantity 〈ĀB̄〉 in terms of the commutator and anti-
commutator of the operators Ā and B̄ which then separate its real and imaginary
parts,15 namely

〈ĀB̄〉 = 〈1
2

[
Ā, B̄

]+ 1

2

{
Ā, B̄

}〉 = 1

2
i 〈(−i)

[
Ā, B̄

]〉 + 1

2
〈{Ā, B̄

}〉, (166)

〈B̄Ā〉 = 〈ĀB̄〉∗ = −1

2
i 〈(−i)

[
Ā, B̄

]〉 + 1

2
〈{Ā, B̄

}〉, (167)

one obtains the inequality in the Schrödinger–Robertson form,

(�A)2 (�B)2 ≥ 1

4
〈(−i) [A,B]〉2 + 1

4
〈{Ā, B̄

}〉2. (168)

15Note that (−i)[Ā, B̄] and
{
Ā, B̄

}
are hermitian (or even self-adjoint if A and B are self-adjoint)

operators whose expectations values are thus real.
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As a by-product one also derives the looser generalised Heisenberg uncertainty
relation,

(�A)2 (�B)2 ≥ 1

4
〈(−i) [A,B]〉2, (�A) (�B) ≥ 1

2
|〈(−i)[A,B]〉|.

(169)

Furthermore given (158) the SR-UR (168) is saturated, namely (�A)2 (�B)2 =
〈ĀB̄〉〈B̄Ā〉, provided the state |ψ0〉 is such that

(
Ā− 〈B̄Ā〉

(�B)2 B̄

)
|ψ0〉 = 0,

(
Ā − λ0 B̄

) |ψ0〉 = 0, (170)

(A− λ0B) |ψ0〉 = (〈A〉 − λ0〈B〉) |ψ0〉,

where the complex parameter λ0 is given by λ0 = 〈B̄Ā〉/ (�B)2 = (�A)2 /〈ĀB̄〉,
namely

λ0 = 1

(�B)2

(
1

2
〈{Ā, B̄

}〉 − 1

2
i 〈(−i) [A,B]〉

)
(171)

= (�A)2 1(
1
2 〈

{
Ā, B̄

}〉 + 1
2 i 〈(−i) [A,B]〉

) .

Appendix 2: Baker–Campbell–Hausdorff Formulae

This Appendix is structured in three parts. The first recalls a basic Baker–Campbell–
Hausdorff (BCH) formula. The second part discusses recent results established
in [15] based on a construction of the most general BCH formula which is also
outlined. Finally the third part applies these results to a SU(1,1) algebra directly
related to the general squeezed coherent states arising as the states saturating the
Schrödinger–Robertson uncertainty relation.

Given any two operators, A and B, the following basic BCH is well known,16

eA B e−A = B + [A,B] + 1

2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · = ead A B,

(172)

where the (Lie algebra) adjoint action of the operator A on an operator X is
defined by

ad A ·X ≡ [A,X]. (173)

16It suffices to consider the generating operator in λ, eλABe−λA, expanded in series in λ.
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This identify is to be used throughout hereafter. Note that it also implies

eA eB e−A = ee
ad A B, eA eB = ee

ad A B eA. (174)

Hence in particular when [A,B] commutes with both A and B, we have simply

eA eB = e[A,B] eB eA. (175)

In order to establish the general BCH formula, first let us consider some operator
A(λ) function of a parameter λ. Then the following identities apply,17

e−A(λ) d

dλ
eA(λ) =

∫ 1

0
dt e−tA(λ) dA(λ)

dλ
etA(λ)

=
∫ 1

0
dt e−t ad A(λ) dA(λ)

dλ

= �
(
−ad A(λ)

) dA(λ)

dλ
, (176)

where the function �(x) is given as

�(x) =
∫ 1

0
dt etx =

∞∑

n=0

1

(n+ 1)! x
n = ex − 1

x
. (177)

This function being such that

�(− ln x) = x − 1

x ln x
= 1

�(x)
, (178)

it proves useful to also introduce the function �(x) defined by18

�(x) = x ln x

x − 1
= 1+

∞∑

n=1

(−1)n+1

n(n+ 1)
(x − 1)n, �(− ln x)�(x) = 1. (179)

Given two operators A and B, the general BCH formula provides an expression
for the operator C defined by

C = ln(eA eB), eC = eA eB. (180)

17As a reminder we have
∫ 1

0 dt (1− t)n tm = n!m!/(n+m+ 1)! as well as
∫ 1

0 dt tn = 1/(n+ 1),

hence in particular d
dλ

eA(λ) = ∫ 1
0 dt e(1−t)A(λ) dA(λ)

dλ
etA(λ).

18Note that �(e−x) = 1/�(x) = x/(ex − 1) = ∑∞
n=0 Bnx

n/n! is a generating function for
Bernoulli numbers, Bn. The author thanks Christian Hagendorf for pointing this out to him.
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In order to establish this expression, let us introduce the generating operator C(λ)

such that

eC(λ) = eA eλB, C(λ) = ln(eA eλB), C(0) = A. (181)

The adjoint action of the operator C(λ) on any operator D is given as

eC(λ) D e−C(λ) = eA eλB D e−λB e−A, namely, ead C(λ) D = ead A eλ ad B D,

(182)
which implies

ead C(λ) = ead A eλ ad B, ad C(λ) = ln(ead A eλ ad B). (183)

On the other hand, since

e−C(λ) d

dλ
eC(λ) = e−λB e−A d

dλ
eA eλB, namely, �(−ad C(λ))

dC(λ)

dλ
= B,

(184)
necessarily

dC(λ)

dλ
= �

(
ead A eλ ad B

)
B. (185)

Given the integration condition C(0) = A, finally the following general BCH
formulae applies for the operator C,

C = ln(eA eB) = A+
∫ 1

0
dλ�

(
ead A eλ ad B

)
B (186)

= A + B −
∫ 1

0
dλ

∞∑

n=1

1

n(n+ 1)

(
I − ead A eλ ad B

)n

B

= A + B +
∫ 1

0
dλ

∞∑

n=1

1

n(n+ 1)

(
I− ead A eλ ad B

)n−1
(
ead A − I

ad A

)
[A,B].

In particular when [A,B] commutes with both A and B, one has the well-known
BCH formula,

C = ln(eA eB) = A+ B + 1

2
[A,B], eA eB = eA+B+ 1

2 [A,B] = e
1
2 [A,B] eA+B,

(187)
which implies again the result in (175).

It is the last form for the BCH formula in (187) which is the starting point of the
recent analysis of [15] which manages to sum up the BCH formula in closed form
in the case of operators A and B whose commutator is of the form,

[A,B] = uA + vB + cI, (188)
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where u, v, and c are constant parameters.19 Indeed in such a situation one has

ad A · [A,B] = v [A,B], ad B · [A,B] = −u [A,B],
ead A [A,B] = ev [A,B], eλ ad B [A,B] = e−λu [A,B], (189)

which implies that

ln(eA eB) = A + B + f (u, v) [A,B], (190)

where f (u, v) is a simple function determined from (187) in the form

f (u, v) = ev − 1

v

∫ 1

0
dλ

∞∑

n=1

1

n(n+ 1)

(
1− ev e−λ v

)n−1
. (191)

A direct evaluation finds for this function, which proves to be symmetric,

f (u, v) = ueu(ev − 1)− vev(eu − 1)

uv(eu − ev)
= u(1− e−v)− v(1− e−u)

uv(e−v − e−u)
= f (v, u),

(192)
with the distinguished value f (0, 0) = 1/2 (in agreement with (187)).

Finally given the reference Fock algebra of operators a and a† introduced in
Sect. 3, consider the operators

K0 = 1

2

(
a†a + 1

2

)
, K+ = 1

2
a†2

, K− = 1

2
a2, (193)

which generate a SU(1,1) algebra of transformations acting on the Hilbert space
representing the Heisenberg algebra of observables Q and P ,

[K0,K±] = ±K±, [K−,K+] = 2K0. (194)

Independently of the representation which realises this SU(1,1) algebra, let us apply
the result (190) to specific combinations of operators K0 and K± obeying this
algebraic structure.

To begin with consider the following operator

eα K+ eγ K0 e−ᾱ K− , (195)

where α is an arbitrary complex parameter such that |α| < 1 and γ = ln(1− |α|2).
In order to apply (190), let us rewrite this operator in the form [16],

eα K+ eγ K0 e−ᾱ K− = eα K+ eγs K0 eγ−s K0 e−ᾱ K− , (196)

19Note that for all practical purposes the results of [15] remain valid as stated if the term cI stands
for an operator which commutes with both A and B.
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where

γs = ln(1+ s|α|), γs + γ−s = γ+ + γ− = γ = ln(1− |α|2), s = ± 1.
(197)

Since we have

[α K+, γs K0] = −γs (α K+), [γ−s K0,−ᾱ K−] = −γ−s (−ᾱ K−), (198)

the BCH formula (190) then applies separately to the first two, and the last two
factors in (196). With the evaluation of the corresponding values for the function
f (u, v), one then finds

ln(eα K+ eγs K0) = s

|α|γs α K+ + γs K0 ≡ Ã,

ln(eγ−s K0 e−ᾱ K−) = s

|α|γ−s ᾱ K− + γ−s K0 ≡ B̃, (199)

namely so far,

eα K+ eγ K0 e−ᾱ K− = eÃ eB̃ . (200)

However the values for γs are chosen not only such that γs + γ−s = γ but also
such that the BCH formula (190) may be applied once again to the latter product,
which requires that the commutator of Ã and B̃ be again a linear combination of
these same two operators,

[Ã, B̃] = −γ−s Ã − γs B̃. (201)

The final evaluation of the BCH formula for (195) then reduces to the determination
of the value f (−γ−s ,−γs). In order to present this BCH formula, since |α| < 1 let
us introduce the following parameters, with 0 ≤ r <∞ and −π ≤ θ < +π ,

|α| = tanh r, α = eiθ tanh r, z = eiθ r. (202)

One then has finally

eα K+ eln(1−tanh2 r)K0 e−ᾱ K− = ezK+ − z̄ K− . (203)

A similar procedure may be applied to the operator

e−ᾱ K− e−γ K0 eα K+ . (204)

However given the following inner automorphism of the SU(1,1) algebra,

K0 ←→−K0, K+ ←→ −K−, K− ←→ −K+, (205)
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from (203) one readily has (with then also α ↔ ᾱ and z↔ z̄)

e−ᾱ K− e−(1−tanh2 r)K0 eα K+ = ezK+ − z̄ K− = S(z) = eα K+ eln(1−tanh2 r)K0 e−ᾱ K− .
(206)

The results (203) and (206), which thus apply to the squeezing operator S(z)

introduced in Sect. 4.3 are stated in [17] by establishing them in the defining
representation of the SU(1,1) algebra. Here they are derived solely from the structure
of the SU(1,1) algebra and independently of the representation of that algebra, by
using the conclusions of [15].
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1 Introduction

The Jacobi last multiplier (JLM) is a useful tool for deriving an additional first
integral for a system of n first-order ODEs when n−2 first integrals of the system are
known. Besides, the JLM allows us to determine the Lagrangian of a second-order
ODE in many cases [15, 25, 31]. In his sixteenth lecture on dynamics Jacobi uses
his method of the last multiplier [19, 20] to derive the components of the Laplace–
Runge–Lenz vector for the two-dimensional Kepler problem. In recent years a
number of articles have dealt with this particular aspect [10, 16, 24–26]. However,
when a planar system of ODEs cannot be reduced to a second-order differential
equation the question of interest arises whether the JLM can provide a mechanism
for finding the Lagrangian of the system.

Let M be an even dimensional differentiable manifold endowed with a non-
degenerate 2-form �, (M,�) is an almost symplectic manifold. An almost sym-
plectic manifold (M,�) is called locally conformally symplectic (l.c.s.) manifold
by Vaisman [29] if there is a global 1-form η, called the Lee form on M such that

d� = η ∧�,

where dη = 0. (M,�) is globally conformally symplectic if the Lee form η is
exact and when η = 0, then (M,�) is a symplectic manifold. The notion of
locally conformally symplectic forms is due to Lee and, in more modern form,
to Vaisman. Chinea et al. [8, 9] showed an extension of an observation made
by I. Vaisman [29] that locally conformal symplectic manifolds can be seen as
a natural geometrical setting for the description of time-independent Hamiltonian
systems. In a seminal paper Wojkowski and Liverani [32] studied the Lyapunov
spectrum in locally conformal Hamiltonian systems. It was demonstrated that
Gaussian isokinetic dynamics, Nośe–Hoovers dynamics and other systems can be
studied through locally conformal Hamiltonian systems. It must be noted that the
conformal Hamiltonian structure appears in various dissipative dynamics as well
as in the activator-inhibitor model connected to Turing pattern formation. It has
been shown by Haller and Rybicki [18] that the Poisson algebra of a locally
conformally symplectic manifold is integrable by making use of a convenient setting
in global analysis. In this paper we explore the role of the Jacobi last multiplier
in nonholonomic free particle motion and nonholonomic oscillator. These systems
were studied extensively by L. Bates and his coworkers [2–5]. The two forms
associated with these nonholonomic systems are not closed, in fact they satisfy l.c.s.
condition. We apply JLM to such systems which guarantees that at least locally
the symplectic form can be multiplied by a nonzero function to get a symplectic
structure. In an interesting paper Bates and Cushman [4] compared the geometry of
a toral fibration defined by the common level sets of the integrals of a Liouville
integrable Hamiltonian system with a toral fibration coming from a completely
integrable nonholonomic system. We apply JLM to study and compare these two
toral fibrations. All the examples considered in this paper are taken from Bates et
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al. papers [2–5]. Relatively very little has been done when the flow is not complete.
A quarter of a century ago, Flaschka [14] raised a number of questions concerning
a simple class of integrable Hamiltonian systems in R4 for which the orbits lie on
surfaces.

This paper is organized as follows. The first section recalls the definitions of the
locally conformal symplectic structure and the Jacobi last multiplier. In Sect. 4 we
study nonholonomic dynamics through an example—nonholonomic free particle
motion, using constrained Lagrangian dynamics [7] and Bizyaev, Borisov, and
Mamaev [6] method. We apply Jacobi last multiplier (JLM) method to transform
nonholonomic dynamics into symplectic dynamics, a notion which, to our knowl-
edge, does not appear explicitly in the literature. We study integrability property of
the nonholonomic system in Sect. 5. The paper ends with a list of remarks regarding
the further applications of JLM in nonholonomic systems. Finally, it is worthwhile
to note that the first draft of this paper was circulated as an IHES preprint in 2013.

2 Preliminaries

We start with a brief review [17, 18, 29, 30] of the locally conformal symplectic
structure. A differentiable manifold M of dimension 2n endowed with a non-
degenerate 2-form ω and a closed 1-form η is called a locally conformally
symplectic (l.c.s.) manifold if

dω + ω ∧ η = 0. (2.1)

The 1-form η is called the Lee form of ω [21]. This allows us to introduce the
Lichnerowicz deformed differential operators

dη : �∗(M) −→ �∗+1(M),

such that dηθ = dθ + η ∧ θ . Clearly d2
η = 0 and dηω = 0. It must be worthwhile to

note that l.c.s manifold is locally conformally equivalent to a symplectic manifold
provided η = df and ω = ef ω0, such that dω0 = 0.

If (ω, η) is an l.c.s. structure on M and f ∈ C∞(M,R), then (ef ω, η − df ) =
(ω′, η′) is again an l.c.s. structure on M then these two are conformally equivalent,
and these two operators and Lee forms are cohomologous: η′ = η − df . Hence dη
and dη′ are gauge equivalent

dη′(β) = (dη − df∧)β = ef d(e−f β).

The r.h.s. is connected to Witten’s differential. If f ∈ C∞(M) and t�0, Witten
deformation of the usual differential dtf : �∗(M) −→ �∗+1(M) is defined
by dtf = etf de−tf , which means dtf β = dβ + tβ ∧ df . Since dη and dη′
are gauge equivalent, the Lichnerowicz cohomology groups H ∗(�∗(M), dη) and
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H ∗(�∗(M), dη) are isomorphic and the isomorphism is given by the conformal
transformation [β] �−→ [ef β].

It is clear from the definition that dη does not satisfy the Leibniz property:

dη(θ ∧ ψ) = (d + η∧)(θ ∧ ψ) = dηθ ∧ ψ + (−1)deg θ θ ∧ dψ

= dθ ∧ ψ + (−1)deg θ θ ∧ dηψ.

For an l.c.s. manifold, we denote by

Diff ∞c (M,ω, η) := {f ∈ Diff∞c (M)|(f ∗ω, f ∗η)  (ω, η)}
the group of compactly supported diffeomorphisms preserving the conformal
equivalence class of (ω, η). The corresponding Lie algebra of vector fields is

χc(M,ω, η) := {X ∈ χc(M) | ∃c ∈ R : Lη
Xω = cω},

where L
η
Xβ = LXβ + η(X)β. The Cartan magic formula for Lη

X is given by

L
η
X = dη ◦ iX + iX ◦ dη.

Here we list some of the important properties of the Lie derivative.

1. L
η
XL

η
Y − L

η
XL

η
X = L

η
[X,Y ].

2. L
η
Xdη − dηL

η
X = 0

3. L
η
XiY − iYL

η
X = 0.

4. Let η1 and η2 be two Lee forms then L
η1+η2
X (θ ∧ψ) = (L

η1
X θ)∧ψ+θ ∧ (L

η2
X ψ).

Let X and Y be the two conformal vector fields then [X, Y ] becomes the
symplectic vector field. The proof of this claim is very simple, can easily show
that Lη

[X,Y ]ω = 0.

2.1 Inverse Problem and the Jacobi Last Multiplier

We start with a brief introduction [10, 15, 24, 25, 31] of the Jacobi last multiplier and
inverse problem of calculus of variations [22]. Consider a system of second-order
ordinary differential equations

y′′i = fi(yj , y
′
j ) for 1�i, j�n.

Geometrically these are the analytical expression of a second-order equation field �

living on the first jet bundle J 1π of a bundle π : E → R, so

� = y′i
∂

∂yi
+ fi(yj , y

′
j )

∂

∂y′i
.



The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally. . . 279

The local formulation of the general inverse problem is the question for the
existence of a non-singular multiplier matrix gij (y, y

′), such that

gij (y
′′
j − fj ) ≡ d

dt

( ∂L
∂yi

)− ∂L

∂y′i
,

for some Lagrangian L. The most frequently used set of necessary and sufficient
conditions for the existence of the gij are the so-called Helmholtz conditions due to
Douglas [13, 27, 28].

Theorem 2.1 (Douglas [13]) There exists a Lagrangian L : TQ → R such
that the equations are its Euler–Lagrange equations if and only if there exists a
non-singular symmetric matrix g with entries gij satisfying the following three
Helmholtz conditions:

gij = gji, �̂(gij ) = gik�
k
j + gjk�

k
i ,

gik�
k
j = gjk�

k
i ,

∂gij

∂y′k
= ∂gik

∂y′j
,

�k
j := −

1

2

∂fi

∂y′j
, �k

i := −
∂f k

∂xi
− �l

i�
k
l − �̂(�k

i ),

where �̂ = ∂
∂t
+ yi ∂

∂xi
+ f i ∂

∂yi
.

When the system is one-dimensional we have i = j = k = 1 and then the three
set of conditions become trivial and the fourth one reduces to one single P.D.E.

�(g)+ g
∂f

∂v
≡ v

∂g

∂x
+ f

∂g

∂v
+ g

∂f

∂v
= 0.

This is the equation defining the Jacobi multipliers, because div� = ∂f
∂v

. The main
equation can also be expressed as

dg

dt
+ g · div � = 0.

Then, the inverse problem reduces to find the function g ( often denoted by μ)
which is a Jacobi multiplier and L is obtained by integrating the function μ two
times with respect to velocities.

An autonomous second-order differential equation y′′ = F(y, y′) has associated
a system of first-order differential equations

y′ = v, v′ = F(y, v) (2.2)
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whose solutions are the integral curves of the vector field in R
2

� = v
∂

∂y
+ F(y, v)

∂

∂v
. (2.3)

A Jacobi multiplier μ for such a system must satisfy divergence free condition

∂

∂y
(μv)+ ∂

∂v
(μF) = 0,

which implies μ must be such that

v
∂μ

∂y
+ ∂μ

∂v
F + μ

∂F

∂v
= 0.

which taking into account dM
dx
= v ∂M

∂y
+ F ∂M

∂v
above equation can be written as

d log μ

dx
+ ∂F

∂v
= 0. (2.4)

The normal form of the differential equation determining the solutions of the Euler–
Lagrange equation defined by the Lagrangian function L(y, v) admits as a Jacobi
multiplier the function

μ = ∂2L

∂v2
. (2.5)

Conversely, if μ(y, v) is a last multiplier function for a second-order differential
equation in normal form, then there exists a Lagrangian L for the system related to
μ by the above equation.

Let L be such that condition M = ∂2L
∂v2 be satisfied, then

∂L

∂v
=

∫ v

M(y, ζ )dζ + φ1(y)

which yields

L(y, v) =
∫ v

dv′
∫ v′

M(y, ζ )dζ + φ1(y)v + φ2(y).

Geometrical Interpretation of JLM Let M be a smooth, real, n-dimensional
orientable manifold with fixed volume form �. Let ẋi (t) = γi(x1(t), · · · , xn(t)),
1�i�n generated by the vector field � and we consider the (n−1)-form �γ = i��.
The function μ ∈ C∞(M) is called a JLM of the ODE system generated by �, if
μω is closed, i.e.,

d(μ�γ ) = dμ ∧�γ + μd�γ .

This is equivalent to �(μ) + μ. div � = 0. Characterizations of the JLM can be
obtained in terms of the deformed Lichnerowicz operator dμ(θ) = dμ ∧ θ + dθ ,
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where the Lee form in terms of the last multiplier, i.e. η = dμ. Hence, μ is a
multiplier if and only if [11]

d(μ�γ ) ≡ dμ�γ + (m− 1)d�γ = 0. (2.6)

3 Nonholonomic Free Particle, Conformal Structure,
and Jacobi Last Multiplier

Let us start with the discussion of Hamiltonian formulation of nonholonomic
systems [6, 7]. Consider a mechanical system in 3D space with coordinates x, y, z.
Let the coordinate z be cyclic. The motion takes place in the presence of a
nonholonomic constraint which is given by

f = ż− yẋ = 0. (3.1)

We express the equation of motion in the form of Euler–Lagrange equations with
undetermined multiplier λ

d

dt

( ∂L
∂ẋi

)− ∂L

∂xi
= λ

∂f

∂ẋi
, i = 1, 2, 3. (3.2)

It is clear from the cyclic condition and definition of f that λ satisfies λ = d
dt

(
∂L
∂ż

)
.

We consider the motion of a free particle with unit mass subjected to a
constraint (3.1) and the Lagrangian is L = 1

2 (ẋ
2 + ẏ2 + ż2), although the results

presented in this paper are quite general. We use (3.2) to obtain the equations of
motion1

ẋ = px, ẏ = py, ż = pz, ṗx = −λy, ṗy = 0 ṗz = λ. (3.3)

Using the constraint equation ż = yẋ we can find

λ = pxpy − λy2, or λ = pxpy

1+ y2

and this is equivalent to λ = ( ∂L
∂ż

). Hence eliminating the multiplier λ we obtain

ẋ = px, ẏ = py, ṗx = −y
pxpy

(1+ y2)
, ṗy = 0. (3.4)

1The physicist way of looking the constrained dynamics is different from our presentation, it is
described by L = 1

2

(
ẋ2 + ẏ2 + ż2

) + λ
(
ż − yẋ

)
, where momenta are given by px = ẋ −

λy, py = ẏ, pz = ż + λ, pλ = 0, The usual Dirac analysis of constraints then
identifies the following two constraints, φ1 = pλ = 0 φ2 = pz − ypx − λ(1 + y2) primary
and secondary, respectively, which are second class, {φ1, φ2} = (1 + y2). It would be interesting
to bridge the gap between these two methods.
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3.1 Reduction, Constrained Hamiltonian and Nonholonomic
Systems

Let Lc(x, ẋ) be the Lagrangian of the system after substituting the expression of ż or
ẋ3. Thus we obtain a close system of equations for the variables (x, ẋ) and constraint
f = ż− yẋ = 0, given by

d

dt

(∂Lc

∂ẋ

)− ∂Lc

∂x
= (

∂L

∂ż
)∗ẏ, d

dt

(∂Lc

∂ẏ

)− ∂Lc

∂y
= −(∂L

∂ż

)∗
ẋ, (3.5)

where ( ∂L
∂ż

)∗ means that the substitution ż is made after the differentiation. This
reduces to study the system with two degrees of freedom and preserves the energy
integral

E = ∂Lc

∂ẋ
ẋ + ∂Lc

∂ẏ
ẏ − Lc.

Remark One can obtain the equations of motion (3.4) using the constrained
Lagrangian. We now define the constrained Lagrangian by substituting the con-
straint equation ż = yẋ into Lagrangian:

Lc = 1

2

(
(1+ y2)ẋ2 + ẏ2). (3.6)

The equations of motion can be obtained from the constrained Lagrangian
Lc(y, ẋ, ẏ) = L(ẋ, ẏ, yẋ) using chain rule. This is a special case of nonholonomic
treatment given in Tony Bloch’s book [7]. The general equations of motion for
a nonholonomic system with the constraint equation ẇ = −Aa

αṙ
α in terms

of constrained Lagrangian Lc(r
α,wa, ṙα) = L[(rα, wa, ṙα,−Aa

α(r,w)ṙα] are
given as

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+ Aa

α(r,w)
∂Lc

∂wa
= − ∂Lc

∂ẇa
Bb
αβr

β, (3.7)

where

Bb
αβ =

(
∂Ab

α

∂rβ
− ∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂wa
− Aa

β

∂Ab
α

∂wa

)
.

Note that the system is holonomic if and only if the coefficients Bb
αβ vanish.

The Lagrangian of the reduced system is Lc = 1/2
(
(1 + y2)ẋ2 + ẏ2

)
. Let S be

the configuration space and Legc : T S → T ∗S be the Legendre transformation of
the reduced system. Using Legendre transformation

mi = ∂L̃

∂ẋ
, H =

2∑

i=1

miẋi − Lc, i = 1, 2 (3.8)
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we obtain the following system of equations

ẋi = ∂H

∂mi

, ṁ1 = −∂H

∂x1
+ ∂H

∂m2
S, ṁ2 = −∂H

∂x2
− ∂H

∂m2
S, (3.9)

where S = ( ∂L
∂ż

)∗ and i = (1, 2). Then the momenta corresponding to the reduced
equations are given by

mx = ∂Lc

∂ẋ
= (1+ y2)ẋ, my = ∂Lc

∂ẏ

and the corresponding Hamiltonian of the reduced system is given by

Hc = 1

2

( m2
x

1+ y2 +m2
y

)
. (3.10)

It is easy to find Hamiltonian equations from (3.9) as ẋ = ∂H
∂mx

, ẏ = ∂H
∂my

, ṁx =
− ∂H

∂x
+ ∂H

∂my
S = −0+ ymymx/(1+ y2), ṁy = − ∂H

∂y
− ∂H

∂mx
S = ym2

x/(1+ y2)2−
ym2

x/(1+ y2)2 = 0. Here we tacitly use S = ż = ymx/(1+ y2).
The new set of equations is given by

ẋ = mx

1+ y2 , ẏ = my, ṁx = ymxmy

1+ y2 , ṁy = 0. (3.11)

The vector field

� = mx

1+ y2 ∂x +my∂y + ymxmy

1+ y2 ∂mx (3.12)

satisfies

i�ωnh = −dHc,

where the two form is given by

ωnh = dmx ∧ dx + dmy ∧ dy − mxy

1+ y2 dy ∧ dx. (3.13)

Here ωnh is the nondegenerate two form on phase space P , however it is not closed,
i.e.,

dωnh = ydy

1+ y2
∧ dmx ∧ dx = d

(1

2
ln (1+ y2)

) ∧ ωnh. (3.14)

The corresponding Poisson structure is given by
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{x,mx} = 1, {y,my} = 1, {mx,my} = mxy

1+ y2 , (3.15)

which does not satisfy Jacobi identity, it is known as almost Poisson
structure. The (nonholonomic) Poisson bracket between two functions fi =
fi(x, y,mx,my), (i = 1, 2) is

{f1, f2}nh = ∂f1

∂x

∂f2

∂mx

− ∂f1

∂mx

∂f2

∂x
+ ∂f1

∂y

∂f2

∂my

− ∂f1

∂my

∂f2

∂y

+ mxy

1+ y2

( ∂f1

∂mx

∂f2

∂my

− ∂f1

∂my

∂f2

∂mx

)
.

The equations of motion may be given in terms of nonholonomic Poisson bracket

ḟ = {f,H }nh, ∀f : M → R. (3.16)

A function f : M → R is an integral of motion of the nonholonomic system if and
only if it satisfies {f,H }nh = 0.

Using these almost Poisson structures we can still do Hamiltonian dynamics as
long as we are willing to give up the existence of canonical coordinates and the
Jacobi identities for the Poisson brackets. We will subsequently see that the Jacobi
last multiplier plays a crucial role to obtain the canonical coordinates and Poisson
structures.

3.2 Hamiltonization and Reduction Using Jacobi Multiplier

Let us compute the JLM of the set of Eq. (3.4) from

d

dt
log μ+ (− yẏ

1+ y2

) = 0,

thus we obtain

μ = (1+ y2)1/2. (3.17)

It is worthwhile to note that if we compute the “JLM” of the set of Eq. (3.11)
from d

dt
log μ+ ( yẏ

1+y2

) = 0, we obtain the inverse multiplier μ−1 = (1+ y2)−1/2.
It is obvious because we compute it on the dual space.

Using the Jacobi last multiplier (JLM) one can show that system (3.10) has an
invariant measure that can be represented in the form μ(y)dxdm. JLM is a smooth
and positive function on the entire phase space, so it acts like a density of the
invariant measure and satisfies the Liouville equation
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div (μ�) = 0,

where � stands for the vector field determined by system (3.10).

Proposition 3.1 The function K = mx/
√

1+ y2 = μ−1mx is the integral of
motion of the nonholonomic system, thus nonholonomic Poisson bracket with H

vanishes, {H,K}nh = 0.

It follows directly from the set of Eq. (3.11).

3.3 Conformally Hamiltonian Formulation of Nonholonomic
Systems

Let M be a symplectic manifold with symplectic form ω, when it is exact we write
ω = dθ . For a function H ∈ C∞(M) we denote its Hamiltonian vector field by
XH .

Definition 3.2 The diffeomorphism φa is conformal if (φa)∗ω = ω and corre-
sponding to this flow the vector field �a is said to be conformal with parameter
a ∈ R if L�aω = aω.

It is clear

d

dt
φ∗t ω = φ∗t L�aω = aφ∗t ω

which has a unique solution φ∗t ω = eatω.
The next proposition was given by McLachlan and Perlmutter [23].

Proposition 3.3 Let M be a symplectic manifold with symplectic form ω. It admits
a conformal vector field a �= 0 if and only if ω = −dθ .

(a) Given a Hamiltonian H ∈ C∞(M), the conformal Hamiltonian vector field Xa
H

satisfies

iXa
H
ω = dH − aθ. (3.18)

(b) If H 1(M) = 0, then the set of conformal vector fields on M is given by {XH +
cZ} : H ∈ C∞(M)}, where Z is defined by iZω = −θ and it is known as the
Liouville vector field.

If H1(M) = 0, we know that every conformal vector field can be written as
XH + cZ for some Hamiltonian and a unique c ∈ R.

Let ω = dmx ∧ dx + dmy ∧ dy be the symplectic form. Then by contraction
with respect to the Hamiltonian vector field we obtain
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iXH
ω = −dH + λ

( ∂H

∂m2
dx1 − ∂H

∂m1
dx2

) ≡ −dH + λθ.

The vector field Z is tangent to the fibers is given by

Z = ∂H

∂m2

∂

∂m1
− ∂H

∂m1

∂

∂m2
, iZω = θ.

Given the Hamiltonian Hc ∈ C∞(M), the Hamiltonian vector field XHc

corresponding to Hamiltonian Hc satisfies

iXHc
ωnh = dHc − θ, θ = mxy

1+ y2 dx.

This yields a conformal vector field. Let ω = dmx∧dx+dmy∧dy be the symplectic
form when the manifold equipped with coordinates (x, y,mx,my). The conformal
vector field is given by XHc + Z, where Z is defined by

iZω = −θ, where Z = mxy

1+ y2

∂

∂mx

. (3.19)

4 Integrability of Nonholonomic Dynamics and Locally
Conformally Symplectic Structure

In this section we unveil the connection between the Jacobi last multiplier, l.c.s.
structure and integrability properties of nonholonomic dynamics.

Proposition 4.1 The nonholonomic two form ωnh and ω̃nh satisfy locally conformal
symplectic structure and the Lee form is η = d

(
log(1+y2))1/2

) = d(logμ), where
μ is the Jacobi’s last multiplier.

Proof It is straightforward to check

dωnh = −
( ydy

1+ y2

) ∧ dmx ∧ dx

= d
(

log
1

2
(1+ y2)

) ∧ (
dmx ∧ dx + dmy ∧ dy − mxy

1+ y2
dy ∧ dx

) = η ∧ ωnh

and similarly for the other case. 23
The inverse multiplier plays an important role for changing locally conformal

symplectic form ωnh to symplectic form. In this process we find new momemta
which satisfy canonical Poisson structure.
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Proposition 4.2 Let μ−1 be the inverse multiplier, then ω = μ−1ωnh is a
symplectic form, given by

ω̃ = dm̃x ∧ dx + dm̃y ∧ dy, (4.1)

where the new momenta are

m̃x = μ−1mx = mx√
1+ y2

m̃y = mx√
1+ y2

. (4.2)

Proof By direct computation one obtains

μ−1ωnh = 1√
1+ y2

(
dmx ∧ dx + dmy ∧ dy − mxy

1+ y2 dy ∧ dx
)

= dmx√
1+ y2

∧dx+ dmy√
1+ y2

∧dy− mxy

(1+ y2)3/2
dy∧dx ≡ dm̃x∧dx+dm̃y∧dy.

23
It is clear dω̃ = 0 and the new momenta satisfy the canonical Poisson structure

{x, m̃x} = 1, {y, m̃y} = 1. (4.3)

4.1 Role of Jacobi’s Multiplier and Integrability
of Nonholonomic Dynamical Systems

We now address the question of integrability of the nonholonomic systems as
posed by Bates and Cushman [4, 12]. In their papers, they explored to what extent
nonholonomic systems behave like an integrable system. The fundamental Liouville
theorem states that it suffices to have n {f1 = H, f2, · · · , fn} independent Poisson
commuting functions to explicitly (i.e., by quadratures) integrate the equations of
motion for generic initial conditions. Let Mc = {f1 = c1, · · · , fn = cn} be a
common invariant level set, which is regular (i.e., df1, · · · dfn are independent),
compact and connected, then it is diffeomorphic to n-dimensional tori Tn = R

n/$,
where $ is a lattice in R

n. These tori are known as the Liouville tori [1, 12],
In the neighborhood of Mc there exist canonical variables I , φ mod 2π , called
action-angle variables which satisfy {φi, Ij } = δij , {φi, φj } = {Ii, Ij } = 0,
i, j = 1, · · · n, such that the level sets of the actions I , · · · , In are invariant tori
and H = H(I1, . . . , In).

The vector fields Xf1 , · · · , Xfn corresponding to the n integrals of motion
f1, · · · fn are independent (it follows from the independency of differentials ) and
span the tangent spaces of TqMc for all q ∈ Mc, since Mc is compact, hence Xfi s are
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complete. The Poisson commutativity implies the commutativity of vector fields. In
other words, the so-called invariant manifolds, which are the (generic) submanifolds
traced out by the n commuting vector fields Xfi are Liouville tori, the flow of each
of the vector fields Xfi is linear, so that the solutions of Hamilton’s equations are
quasi-periodic. A proof in the case of a Liouville integrable system on a symplectic
manifold was given by Arnold [1].

We will soon figure out that the (reduced) nonholonomic problem which we
are considered in this paper has two constants of motion H (Hamiltonian) and K ,
these are Poisson commuting. However, because the nonholonomic system does not
satisfy the Jacobi identity, the associated vector fields XH and XK do not commute,
i.e. [XH,XK ] �= 0, on the torus. So Bates and Cushman [4] asked if such system is
integrable in some sense or how can it be converted to integrable systems.

4.2 JLM and Commuting of Vector Fields

It has been observed the reduced Hamiltonian equation of motion lies on the
invariant manifold given by

K = mx√
1+ y2

, (4.4)

where K satisfies dK
dt
= 0. The Hamiltonian vector field

XK = 1√
1+ y2

∂

∂x
(4.5)

satisfies Xk�ωnh = −dK .
The Hamiltonian vector field XH satisfies

LXH
K = XH(K) = 0, (4.6)

which implies

ωnh(XH ,XK) = XK�XH�ωnh = XK�(
mx

1+ y2 dmx+mydmy− mx2y

(1+ y2)2 dy
) = 0.

Next observe that the Lie bracket between vector fields XH and XK

[XH,Xk] = − ymx

1+ y2
XK. (4.7)

This has been demonstrated by Bates and Cushman the vector fields XH and XK do
not commute on the torus, because the two form ωnh is not closed. They try to seek
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an integrating factor g such that [gXK,XH ] = 0. The next proposition addresses
the value of g.

Proposition 4.3 Let μ be the Jacobi last multiplier, then the modified vector field
μ−1XK commutes with the Hamiltonian vector field XH , i.e.,

[μ−1XK,Xh] = 0. (4.8)

Proof We know that the JLM μ = √
1+ y2, so that μ−1XK = ∂x . Hence we

obtain [μ−1XK,Xh] = 0. 23

5 Final Comments and Outlook

Our formalism can be easily extended to nonholonomic oscillator. In this case,
Lagrangian is given by L = 1

2 (ẋ
2 + ẏ2 + ż2) + 1

2y
2, subject to the nonholonomic

constraint ż = yẋ. The reduced system of equations are given by

ẋ = px, ẏ = py, ṗx = − y

1+ y2
pxpy, ṗy = −y.

One can easily check that the last multiplier is μ = (1 + y2)1/2. The two form
associated to the reduced nonholonomic oscillator equation

ωas = (1+ y2)dpx ∧ dx + dpy ∧ dy + ypxdy ∧ dx

satisfies locally conformal symplectic structure, dωas +η∧ωas = 0, where the Lee
form η = d

(
log(1 + y2)1/2

)
. Hence the inverse Jacobi’s last multiplier transforms

ωas into a symplectic form

μ−1ωas ≡ ω̃ = dp̃x ∧ dx + dp̃y ∧ dy,

where the modified momenta are given by p̃x =
√

1+ y2px and py = py√
1+y2

.

Thus everything can be repeated here.
The application of the Jacobi Last Multiplier (JLM) for finding Lagrangians of

any second-order differential equation has been extensively studied. It is known
that the ratio of any two multipliers is a first integral of the system, in fact, it
plays a role similar to the integrating factor for system of first-order differential
equations. But so far, it has not been applied to nonholonomic systems. In this paper
we have studied nonholonomic system endowed with a two form, which is closely
related to locally conformal symplectic structure. We have applied JLM to map it
to symplectic frame work. Also, we have shown how a toral fibration defined by
the common level sets of integrable nonholonomic system, studied by Bates and
Cushman, can be mapped to toral fibration defined of the integrals of a Liouville
integrable Hamiltonian system.
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There are some open problems popped up from this article. Firstly, it would be
nice to study the time-dependent nonholonomic systems using JLM. Secondly, we
have considered examples from the integrable domain, hence it would be great to
apply JLM in nonintegrable domain.
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Non-perturbative Renormalization
Group of a U(1) Tensor Model
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Abstract This paper aims at giving some comment on our new development on
the functional renormalization group applied to the U(1) tensor model previously
studied in [Phys. Rev. D 95, 045013 (2017)]. Using the Wetterich non-perturbative
equation, the flow of the couplings and mass parameter are discussed and the
physical implication such as the asymptotically safety of the model is provided.

Keywords Random tensor models · Functional renormalization group · Flow
equation

1 Introduction

Random Tensor Models [1–3] extends Matrix Models as promising candidates to
understand Quantum Gravity in higher dimension, D�3. Especially colored tensor
models allow one to define probability measures on simplicial pseudo-manifolds,
and they are considered as a convenient formalism for studying random geometries
[3–8]. On the other hand, group field theory aims at describing a rudimentary phase
of the geometry of spacetime, namely when this geometry is hypothetically still
in a discrete form, or at least not yet continuous (the geometrogenesis scenario)
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[9–12]. It is also named “pre-geometric” phase of our spacetime. Recently Tensor
models and group field theory have been combined to provide a new class of field
theories so-called tensorial group field theory (TGFT). TGFTs improve the group
field theories in order to allow for renormalization [13–17]. Moreover, it has been
shown that several TGFT models are asymptotically free in the UV, in other words,
near the Gaussian fixed point [17–26].

Much interest was focused on the FRG equation of various Matrix and TGFT
models [20–29]. The flow equations also called the Wetterich equations were
derived [30]. The fixed points were given and further evidence of asymptotically
safety and asymptotically freedom were derived around these fixed points in the
UV. The TGFT of the form T 6

5 on the U(1) group with closure constraint is proved
to be renormalizable [15]. The proof of this claim is performed using multi-scale
analysis. The closure constraint also called gauge invariance condition can help to
define the emergence of the metric on spacetime after phase transition and therefore
makes this type of model relevant for the understanding the quantum theory of
gravitation. This kind of model with closure constraint, namely the six-dimensional
TGFT with quartic interactions is studied recently in [20] and [22]. The perturbative
computation of the β-functions of the T 6

5 model is given in [19], in which we have
showed that this model is asymptotically free in the UV. This result seems to be
nonconsistent from the point of view of the FRG analysis. This work aims at giving
our new contributions on the U(1) TGFT such as the renormalization theorems and
the functional renormalization group analysis to show the asymptotically safety of
these type of models.

Our paper is organized as follows. Section 2 is devoted to present the model
which is analyzed in this work, namely the T 6

5 model with closure constraints.
In Sect. 3 the flow equations of the coupling constants and mass parameter are
derived by using the dimensional renormalization parameters. In Sect. 4 we give
the nontrivial fixed points and provide the numerical solution of the flow equations.
The behavior of the model we studied in the vicinity of these fixed points is also
given. The conclusion is made in Sect. 5.

2 U(1)d Tensorial Group Field Theory

In this section we give some basic notations and definitions of the TGFT that have
been used in this note. Particularly we will use a power counting theorem to discuss
the notion of canonical dimensions for each coupling. The canonical dimension
allows us to make sense of the exponentiation of the action in the partition function.

We start by defining an action S[ϕ̄, ϕ] of TGFT that depends on the field ϕ and
its conjugate ϕ̄ acting on the compact Lie group G, i.e.,

ϕ : Gd −→ C; (g1, · · · , gd) �−→ ϕ(g1, · · · , gd). (2.1)
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We will always consider G = U(1), but the analysis performed here can be extended
to over groups. We are using the Fourier transformation of the field and are defining
the momentum variable associated with the group elements 5g = (g1, g2, · · · , gd) ∈
U(1)d as 5p = (p1, p2, · · · , pd) ∈ Z

d . Using the parametrization gk = eiθk we
write

ϕ(g1, · · · , gd) =
∑

pi∈Z
ϕ(p1, · · · , pd)e

i
∑

k θkpk , θi ∈ [0, 2π), (2.2)

where we denote the Fourier transform of the field ϕ by ϕ12···d =: ϕ(p1, · · · , pd) =:
ϕ 5p for simplicity. The functional action S[ϕ̄, ϕ] is written in general case as

S[ϕ̄, ϕ] =
∑

pi

ϕ̄ 5p C−1( 5p, 5p ′) ϕ 5p
D∏

i=1

δpip
′
i
+ Sint [ϕ̄, ϕ] (2.3)

where C stands for the propagator and Sint collects all vertex contributions of the
interaction.

Let dμC be the field measure associated with the covariance C, we have the
relation

C( 5p, 5p ′) =
∫

dμC ϕ 5pϕ̄ 5p ′ , dμC =
∏

5p
dϕ̄ 5p dϕ 5p e−ϕ̄ 5p C−1( 5p, 5p ′) ϕ 5p . (2.4)

We introduce a cut-off Λ on C 5p, 5p′ , impose that to satisfy | 5p|�Λ. The generating
function or the vacuum–vacuum transition amplitude is

ZΛ[J, J̄ ] = eWΛ[J,J̄ ] =
∫

dμCΛ(ϕ̄, ϕ)e
Sint [ϕ̄,ϕ]+〈J̄ ,ϕ〉+〈ϕ̄,J 〉 (2.5)

where the notation 〈., .〉 means: 〈J̄ , ϕ〉 = ∑
5p∈Zd J̄ 5pϕ 5p, dμCΛ is the Gaussian

measure with the covariance CΛ such that:

∫
dμCΛϕ 5p ϕ̄ 5p ′ = e−( 5p2+m2)/Λ2

5p2 +m2 δ

( d∑

i=1

pi

)
δ 5p 5p′ = CΛ( 5p, 5p ′) (2.6)

and the delta δ(
∑d

i=1 pi) implements the closure constraint, see [13]. We keep in
mind that we must send the cut-off to infinity in any circumstances. We define a
model by its action at a high (UV) energy scale. The classical action Sint is defined
as a sum of tensorial invariants [3]:

Sint [ϕ̄, ϕ] =
∑

b∈B
λbTrb[ϕ̄, ϕ]. (2.7)
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A tensor invariant is a polynomial in the tensor ϕ and its conjugate ϕ̄ which is
invariant under the action of the tensor product of d independent copies of the
unitary group U(N). The sum is taken over a finite set B of such invariants d-
bubbles [3] associated with the couplings λb. The interaction (2.7) of a tensor field
theory in dimension d = 5 [15] is

Sint [ϕ̄, ϕ] = λ1

2

5∑

�=1

∑

5pi

W(�)

5p1, 5p2, 5p3, 5p4
ϕ 5p1 ϕ̄ 5p2ϕ 5p3 ϕ̄ 5p4

+λ2

3

5∑

�=1

∑

5pi

X (�)

5p1, 5p2, 5p3, 5p4, 5p5, 5p6
ϕ 5p1 ϕ̄ 5p2ϕ 5p3 ϕ̄ 5p4ϕ 5p5 ϕ̄ 5p6

+λ3

5∑

�i=1,i=1,2,3

∑

5pi

Y(�1,�2,�3)

5p1, 5p2, 5p3, 5p4, 5p5, 5p6
ϕ 5p1 ϕ̄ 5p2ϕ 5p3 ϕ̄ 5p4ϕ 5p5 ϕ̄ 5p6 , (2.8)

where the symbols W(�), X (�), and Y(�) are products of delta functions associated
with tensor invariant interactions, and λi(Λ) are coupling constants. For instance:

W(�)

5p1, 5p2, 5p3, 5p4
= δp1�p4�δp2�p3�

∏

j �=�

δp1j p2j δp3j p4j . (2.9)

Such a kernel is called bubble [3], and can be pictured graphically as a 6-colored
bipartite regular graph, with black and white vertices corresponding, respectively,
to the fields ϕ and ϕ̄, and each line corresponding to a Kronecker delta.

W(�)(g1,g2,g3,g4) = � �

X (�)(g1,g2,g3,g4,g5,g6) =

�

�

�

Y(�1,�2,�3)(g1,g2,g3,g4,g5,g6) = �1
�2
�3

(2.10)
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X (�)(g1, g2, g3, g4, g5, g6) =
S S̄

↘ ↙
S1
↓
S0

(2.11)

Y(�1,�2,�3)(g1, g2, g3, g4, g5, g6) = (2.12)

Let G be a 2- or 4 or 6-point Feynman graph of model (2.8). Let be denoted by
ω(G) the degree of the tensor graph G, i.e.:

ω(G) =
∑

J jacket of G
gJ (2.13)

where gJ is the genus of the jacket J . A simple way of computing the degree ω of
a graph is to count its number F of faces. Let us pick an arbitrary orientation for all
of the edges e and for all of the faces f . Then R is the rank of the incidence matrix
εf e:

εf e =

⎧
⎪⎪⎨

⎪⎪⎩

1 if e ∈ f and their orientation match

−1 if e ∈ f and their orientation do not match

0 otherwise.

(2.14)

One can show that the rank R does not depend on the chosen orientation. We get the
following results (see [15] for more detail):

Proposition 2.1 (Divergence Degree) The degree of divergence ωd of a ϕn
d U(1)d

model is given by

ωd(G) = (−2L+ F − R)(G) (2.15)

= − 2

(d − 1)!
(
ω(G)− ω(∂G)

)− (C∂G − 1)− d − 3

2
N(G)+ (d − 1)

+d − 3

2
nV (G)− (d − 1)V (G)− R(G) (2.16)

where V (G) is the number of vertices of G, N(G) its number of external legs, and
C∂G is the number of connected components of its boundary graph ∂G and ω̃(G) =∑

J̃⊂G gJ̃ with J̃ the pinched jacket associated with a jacket J of G, C∂G is the
number of vertex-connected components of ∂G.

Lemma 2.2 Let G be a connected Feynman graph and T one of its spanning trees.
If the rosette G/T is fully melonic and
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Table 1 Classification of
divergent graphs

N ω̃(G) ω(∂G) C∂G − 1 ωd(G)
2 0 0 0 2

4 0 0 0 1

4 0 0 1 0

6 0 0 0 0

F(G) =(d − 1)(L(G)− V (G)+ 1), (2.17a)

R(G) =Rm(G) = L(G)− V (G)+ 1, (2.17b)

2ωd(G) =− (d − 4)N(G)+ (d − 4)nV (G)− 2(d − 2)V (G)+ 2(d − 2).
(2.17c)

Proposition 2.3 The divergent graphs of the models are classified in Table 1.

Another important definition for our purpose concerns the notion of canonical
dimension. We will only give the essential here, and the reader interested in the
details may consult [22]. In our model, the divergence degree for an arbitrary
Feynman graph G is given in proposition (2.1) Denoting by ni(G) the number of
bubbles in G with 2i black and white nodes, the divergent sub- graphs are said to be
melonic [7, 13], if and only if they satisfy the following relation:

F(G)− R(G) = 3(L(G)−
∑

i

ni(G)+ 1) (2.18)

which together with the topological relation L(G) =∑
i ini(G)−N(G)/2 leads to:

ωd(G) = 3− N(G)
2

− 2n1(G)− n2(G) , (2.19)

where N(G) denote the number of external lines of G. For the rest n1(G) = 0.
For N = 4, ω�1, the value 1 corresponding to melonic graphs with only 6-
point interactions bubble. This conclusion indicates that perturbatively around the
Gaussian Fixed Point (GFP), the coupling constant λ1 scales as Λ for some cut-off
Λ, and we associate a canonical dimension [λ1] = 1 to this constant. In the same
way, we deduce that for a generic coupling λb, associated to a melonic bubble with
Nb external lines:

[λb] = 3− Nb

2
(2.20)

giving explicitly:

[m] = 1 [λ1] = 1 [λ2] = [λ3] = 0. (2.21)
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3 Functional Renormalization Group with Closure
Constraint

The FRG method is based on the following deformation to our original partition
function given in Eq. (2.5), i.e.,

Zs[J, J̄ ] =
∫

dμCΛ(T̄ , T )eSint [T̄ ,T ]−ΔSs [T̄ ,T ]+〈J̄ ,T 〉+〈T̄ ,J 〉 (3.1)

where T 5p denotes the mean field T 5p := ∂ logZs

∂J̄ 5p
, and is a gauge invariant field in the

sense that: T 5p = T 5p δ
(∑5

i=1 pi

)
, and we have added to the original action an IR

cut-off ΔSs[T̄ , T ], defined as:

ΔSs[T̄ , T ] =
∑

5p∈Z5

Rs(| 5p|)T̄ 5pT 5p. (3.2)

The cut-off function Rs depends on the real parameter s playing the role of a running
cut-off, and is chosen such that:

• Rs( 5p)�0 for all 5p ∈ Z
d and s ∈ (−∞,+∞).

• lims→−∞ Rs( 5p) = 0, implying: Zs=−∞[J̄ , J ] = Z[J̄ , J ]. This condition
ensures that the original model is in the family (3.1). Physically, it means that
the original model is recovered when all the fluctuations are integrated out.

• lims→lnΛ Rs( 5p) = +∞, ensuring that all the fluctuations are frozen when es =
Λ. As a consequence, the bare action will be represented by the initial condition
for the flow at s = lnΛ.

• For −∞ < s < lnΛ, the cut-off Rs is chosen so that Rs(|p| > es) 6 1, a
condition ensuring that the UV modes |p| > es are almost unaffected by the
additional cut-off term, while Rs(|p| < es) ∼ 1, or Rs(|p| < es) 7 1, will
guarantee that the IR modes |p| < es are decoupled.

• d
d| 5p|Rs( 5p)�0, for all 5p ∈ Z

d and s ∈ (−∞,+∞), which means that high modes
should not be suppressed more than low modes.

The equation describing the flow of the couplings, the so-called Wetterich equation
has been established in [30] in the case of a theory with closure constraint: For
a given cut-off Rs , the effective average action satisfies the following first order
partial differential equation:

∂s�s =
∑

5p∈Z5

∂sRs(| 5p|) ·
[
�(2)
s + Rk

]−1
( 5p, 5p)δ

( 5∑

i=1

pi

)
. (3.3)

where �s , the effective average action and is defined as the Legendre transform of
the free energy Ws := ln[Zs] as :
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�s[T̄ , T ] +
∑

5p∈Z5

Rs(| 5p|)T̄ 5pT 5p := 〈J̄ , T 〉 + 〈T̄ , J 〉 −Ws[J, J̄ ] (3.4)

and

�(2)
s ( 5p, 5p′) := ∂2�s

∂T 5p∂T̄ 5p′
. (3.5)

The Wetterich flow equation is an exact differential equation which must be
truncated, i.e. it must be projected to functions of few variables or even onto
some finite-dimensional sub-theory space. In this section, we adopt the simplest
truncation, consisting in a restriction to the essential and marginal coupling with
respect to the perturbative power counting (i.e., whose canonical dimension is upper
or equal to zero). As mentioned before, such a truncation makes sense as long as the
anomalous dimension remains small, and a qualitative argument is the following.
Let us define the anomalous dimension η := ∂s ln(Z) (see Eq. (3.9) below). In the
vicinity of a fixed point, η can reach to a non-zero value η∗. As a result, the effective
propagator becomes:

Z−1

5p 2 + (m2
s /Z)

≈ e−η∗s

5p 2 +m2∗
, (3.6)

and then modifies the power counting (2.19), which becomes in the melonic sector
(all the star-quantities refers to the non-Gaussian fixed point that we consider):

ω∗(G) = −(2+ η∗)L(G)+ (F (G)− R(G))

= 3− N

2
(1− η∗)− 3η∗n3 − (1+ 2η∗)n2 − (2+ η∗)n1 . (3.7)

As a result, the canonical dimension (2.21) turns to be

[tb]∗ = 3− Nb

2
(1− η∗) = [tb] + Nb

2
η∗ , (3.8)

from which one can argue that, as long as η∗ 6 1, the classification in terms of
relevant, irrelevant and marginal couplings remains unchanged, and the truncation
around marginal couplings with respect to the perturbative power counting makes
sense. Note that for more specific explanations the study of the critical exponent will
help to prove whether or not the truncation given below equation should improve
or not. Unlike the case of standard local field theory, each line here has several
strands (the theory is non-local). The contractions in the loop of the tadpole concern
only 4 strands out of 5. The last strand circulates freely, and corresponds to an
external momentum. It is by developing on this external variable that we generate
the contribution to the anomalous dimension η. Thus, the quantity W(�)

5p1, 5p2, 5p3, 5p4
does
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not explicitly depend on the momenta. The dependence on the momenta is due to the
non-locality of the interactions. Up to these considerations, our choice of truncation
is the following:

�k[T̄ , T ] =
∑

5p∈Z5

(
Z(k) 5p 2 +m2(k)

)
T 5pT̄ 5p +

λ1(k)

2

5∑

�=1

∑

5pi

W(�)
5p1, 5p2, 5p3, 5p4

T 5p1
T̄ 5p2

T 5p3
T̄ 5p4

+λ2(k)

3

5∑

�=1

∑

5pi

X (�)
5p1, 5p2, 5p3, 5p4, 5p5, 5p6

T 5p1
T̄ 5p2

T 5p3
T̄ 5p4

T 5p5
T̄ 5p6

+λ3(k)

5∑

�i=1,i=1,2,3

∑

5pi

Y(�1,�2,�3)
5p1, 5p2, 5p3, 5p4, 5p5, 5p6

T 5p1
T̄ 5p2

T 5p3
T̄ 5p4

T 5p5
T̄ 5p6

. (3.9)

We derive the truncated flow equations for m2, Z, and λi from the full Wetterich
equation (3.3). We write the second derivative of �k as:

�
(2)
k [T̄ , T ]( 5p, 5p′) =

(
−Z(k) 5p 2 +m2(k)

)
δ

( 5∑

i=1

pi

)
δ 5p 5p′

+ Fk,(1)[T̄ , T ] 5p, 5p′ + Fk,(2)[T̄ , T ] 5p, 5p′

in such a way that all the field-dependent terms of order 2n are in Fk,(n). In
particular, Fk,(1) depends on λ1(k), while Fk,(2) depends on λ2(k) and λ3(k). For
the regulator Rk , we adopt the Litim cut-off [31], in which we set s = ek:

Rk(| 5p|) = Z(k)(k2 − 5p 2)Θ(k2 − 5p 2), (3.10)

and computing the first derivative with respect to k, we find:

k∂kRk(| 5p|) =
{
k∂kZ(k)(k2 − 5p 2)+ 2Z(k)k2}Θ(k2 − 5p 2). (3.11)

Hence, we are now in a position to extract the flow equations for each couplings,
which is the subject of the next section.

3.1 Flow Equations in the UV Regime

We will deduce the flow equation in the UV regime. In this regime, all the sums
can be replaced by integration, following the arguments of [22], essentially because
the divergences of the integral approximations are the same as the exact sums.
The method consists of a formal expansion of the r.h.s of the Wetterich equation
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Fig. 1 Contributions coming
from the 6-point interactions
to the 4-point interaction

a b

(3.3) in power of couplings, and an identification of the corresponding terms in
the l.h.s. The r.h.s involves in general some contractions between the Fk(n) and
the effective propagator ∂kRk . And in this UV regime, only the melonic graphs
contribute (Fig. 1). We get the flow equation of m(k) as

k∂km
2(k) = −4π

3
λ1(k)

η(k)+ 5

[Z(k)k2 +m2(k)]2 k
5 (3.12)

with the anomalous dimension η(k) defined as:

η(k) := k∂k ln(Z(k)) = 5π

2
λ1(k)

k3

[Z(k)k2 +m2(k)]2 − λ1(k)
5
6πk3

. (3.13)

Note that, in this case, the extraction of the local approximation in the UV limit
brings up a very nice property of the melonic sector, called traciality. Traciality is
a concept firstly introduced in a perturbative renormalization framework, ensuring
that local approximation of high subgraphs makes sense in the TFGT context [13].
The contributions to λ1(k), λ2(k), and λ3(k) are given in Figs. 2, 3 and 4 and are
explicitly written as

k∂kλ1(k) = −(λ2(k)+ 4λ3(k))
4π

15

η(k)+ 5

[Z(k)k2 +m2(k)]2 k
5

+ λ2
1(k)

4π

15

η(k)+ 5

[Z(k)k2 +m2(k)]3 k
5 (3.14)

k∂kλ3(k) = 16π

15
λ1(k)λ3(k)

η(k)+ 5

[Z(k)k2 +m2(k)]3 k
5. (3.15)

k∂λ2(k)=24π

15
λ1(k)λ2(k)

η(k)+ 5

[Z(k)k2 +m2(k)]3 k
5−12π

15
λ3

1(k)
η(k)+ 5

[Z(k)k2+m2(k)]4 k
5.

(3.16)

Taking into account the canonical dimension the renormalized dimensionless
couplings are defined as:

m(k) = √
Z(k)km̄ λ1 = Z2kλ̄1(k)
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Fig. 2 Contribution to the
4-point interaction involved
two vertices

a b

Fig. 3 Contributions to the flow of λ2

Fig. 4 Contribution to the
flow of λ3

λ2(k) = Z3(k)λ̄2(k) λ3(k) = Z3(k)λ̄3(k) (3.17)

Using the flow equations (3.13), (3.12), (3.14), (3.16), and (3.15), we find for the
dimensionless renormalized couplings the following autonomous system:

η(k) = 5π

2
λ̄1(k)

1

[1+ m̄2(k)]2 − λ̄1(k)
5
6π

(3.18)

βm2 = −(2+ η)m̄2(k)− 4π

3
λ̄1(k)

η(k)+ 5

[1+ m̄2(k)]2 (3.19)
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βλ1 = −(1+ 2η)λ̄1(k)− (λ̄2 + 4λ̄3)
4π

15

η(k)+ 5

[1+ m̄2(k)]2 + λ̄2
1(k)

4π

15

η(k)+ 5

[1+ m̄2(k)]3
(3.20)

βλ3 = −3ηλ̄3(k)+ 16π

15
λ̄1λ̄3

η(k)+ 5

[1+ m̄2(k)]3 . (3.21)

βλ2 = −3ηλ̄2(k)+ 24π

15
λ̄1λ̄2

η(k)+ 5

[1+ m̄2(k)]3 − λ̄3
1

12π

15

η(k)+ 5

[1+ m̄2(k)]4 , (3.22)

with the definition: βσ := k∂kσ̄ , σ ∈ {m2, λ1, λ2, λ3}.

4 Fixed Points in the UV Regime

At vanishing β-functions we obtain the fixed points. In the neighborhood of these
fixed points, the stability is determined by the linearized system of β-functions. All
these points are studied in detail in this section.

4.1 Vicinity of the Gaussian Fixed Point

The autonomous system describing the flow of the dimensionless couplings admits a
trivial fixed point for the values λ̄1 = λ̄2 = λ̄3 = m̄ = 0 called Gaussian fixed point
(GFP). Expanding our equations around this point, we find the reduced autonomous
system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βm2 ≈ −2m̄2 − 20πλ̄1
3 ,

βλ1 ≈ −λ̄1 − 4π
3 (λ̄2 + 4λ̄3)

(
1+ π

2 λ̄1 + 2m̄2
)− 11π

3 λ̄2
1 ,

βλ2 ≈ π
2 λ̄1λ̄2 ,

βλ3 ≈ − 13π
6 λ̄1λ̄3

(4.1)

and the anomalous dimension:

η(k) ≈ 5πλ̄1

2
. (4.2)

These equations give the qualitative behavior of the RG trajectories around the GFP.
In order to study its stability, we compute the stability matrix βij := ∂iβj i ∈
{m2, λ1, λ2, λ3}, and evaluate each coefficient at the GFP. We find:
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βGFP
ij :=

⎛

⎜⎜⎝

−2 0 0 0
− 20π

3 −1 0 0
0 − 4π

3 0 0
0 − 16π

3 0 0

⎞

⎟⎟⎠ , (4.3)

with eigenvalues (−2,−1, 0, 0) and eigenvectors eGFP
1 = ( 9

160π2 ,
3

8π ,
1
4 , 1);

eGFP
2 = (0, 3

16π ,
1
4 , 1); eGFP

3 = (0, 0, 0, 1); eGFP
4 = (0, 0, 1, 0). One recall that

the critical exponents are the opposite values of the eigenvalues of the βij , and that
the fixed point can be classified following the sign of their critical exponents. Hence,
we have two relevant directions in the UV, with critical exponents 2 and 1, and two
marginal couplings with zero critical exponents. Moreover, note that the critical
exponents are equal to the canonical dimension around the GFP. Finally, note that
the previous system of equations admits other fixed points, or a line of fixed points
λ̄1 = m̄ = 0; λ̄3 = −λ̄2/4, in addition to the Gaussian one. The same phenomenon
happens away from the Gaussian fixed point. We will discuss this property in the
next section.

For the moment, we are in a position to discuss the qualitative flow diagram
around the Gaussian fixed point. First of all, note that all the coefficients of the
β-function of the system (4.1) (i.e., the coefficients in the right-hand side of the
system) are not negative. This fact seems to be a special feature of this model,
meaning that the weight of the anomalous dimension does not dominate the vertex
contribution. This fact is a first difference with respect to the similar non-Abelian φ6

model studied in [14]. However, the analysis provided in this reference remains true,
and the model is not asymptotically free. We will not repeat the complete analysis
given in [14], but a qualitative argument is the following. Exploiting the fact that
the hyperplans λ̄2 = 0 and λ̄3 = 0 are invariant under the flow, we can look at only
a two-dimensional reduction of the complete system (4.1). We choose λ̄2 = 0, and
plot the numerical integration of the reduced flow equation in Fig. 5 (on the left)
below. In the domain, λ̄3 > 0, even if a given trajectory approaches of the Gaussian
fixed point, λ̄1 reaches a negative value, and it is ultimately repelled for k sufficiently
large. The same phenomenon occurs for λ̄2 in the plan λ̄2 < 0 (see Fig. 5 on the
right). We will give additional precision about the issue of the asymptotic freedom
and/or safety in the next section.

4.2 Non-Gaussian Fixed Points

Solving numerically the systems (3.12)–(3.15), we find some non-Gaussian fixed
points, whose relevant characteristics are summarized in Table 2. In addition to the
Gaussian one, the system admits a line of fixed points, LFP :

LFP = {m̄2 = 0, λ̄1 = 0, λ̄2 = −4λ̄3} , (4.4)
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Table 2 Summary of the properties of the non-Gaussian fixed points

FP m̄2 λ̄1 λ̄2 λ̄3 η θ(1) θ (2) θ (3) θ (4)

FP1 −0.3 0.005 0.0009 −0.0002 −6.3 −299 56.1 −11.7 5.8

FP2 −0.7 0.008 0.0006 −0.0002 0.76 −7.4− 1.9i −7.4+ 1.9i 3.34 −0.12

FP3 −0.9 0.0007 3.32.10−6 0. 1.3 −66.7 −42.63 −27.7 1.80

FP4 −0.8 0.04 −0.02 0. −5.9 −144.8 −14.4 −7.5 −5.4

FP5 0.06 −0.006 0.002 0. −0.04 1.9 1.09 −0.04 −0.01

FP6 1.32 −0.5 −0.06 0. −0.6 3.0 −1.23 −1.13 −0.39

Again, the critical exponents θi are the opposite values of the eigenvalues of the stability matrix:
β∗ =: diag(−θ1∗ ,−θ2∗ ,−θ3∗ ,−θ4∗ )

with critical exponents:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(1) = −2 ,

θ(2) = 0 ,

θ(3) = − 1
2

(
1+

√
1− 128

9 π2λ̄2
)
,

βλ3 = − 1
2

(
1−

√
1− 128

9 π2λ̄2
)
.

(4.5)

The denominator of η, D := [1+ m̄2(k)]2− λ̄1(k)
5
6π introduces a singularity in the

flow. At the Gaussian fixed point, and in a sufficiently small domain around, we have
D > 0. But further away from the GFP, D may cancel, creating in the (λ̄1, m̄

2)-plan
a singularity line. The area below this line where D < 0 is thus disconnected from
the region D > 0 connected to GFP. Then, we ignore for our purpose the fixed
points in the disconnected region, for which D < 0. A direct computation shows
that only the fixed points FP2, FP3, FP5, and FP6 are relevant for an analysis in
the domain connected to the Gaussian fixed point.
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Fig. 5 Phase portrait in the plans (λ̄1, λ̄3) for λ̄2 = 0 (on the left) and in the plan (λ̄1, λ̄2), for
λ̄3 = 0
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Fig. 6 Qualitative behavior
of the RG trajectories around
an IR fixed point. The critical
surface is spanned by the
relevant directions in the IR,
and the arrows are oriented
toward the IR direction. This
illustrates the scenario of
asymptotically safety

• The fixed points FP2 and FP3 are very similar. They have three irrelevant
directions and one relevant direction in the UV. For each of these fixed points,
the three irrelevant directions span a three-dimensional manifold on which
trajectories run toward the fixed points in the IR, while the trajectories outside
are repelled of this critical surface, as pictured in Fig. 6. This picture, the
existence of a separatrix between two regions of the phase space is reminiscent
of a critical behavior, with phase transition between a broken and a symmetric
phase, and these separatrix are IR-critical surfaces. This interpretation is
highlighted for the two fixed points in the zero momentum limit. Indeed, in
both cases, the contributions in the effective action of the terms proportional
to λ̄2 and λ̄3 can be neglected in comparison with the contributions to the first
approximation of Ginsburg-Landau equation for φ4 scalar complex theory. Note
that for FP2 two critical exponents are complex, providing some oscillations of
the trajectories, and implying that the fixed point is an IR-attractor in the two-
dimensional manifold spanned by the eigenvectors corresponding to these two
critical exponents. Moreover, the fixed point FP6 appears to be an IR fixed point,
with coordinates of opposite sign.

• The fixed point FP5 has two relevant and two irrelevant directions in the UV. The
relevant directions in the UV span a two-dimensional manifold corresponding
to a UV-multicritical surface [32]. Such a surface is interesting for the UV-
completion of the theory. Indeed, all the trajectories in the surface are oriented
toward the fixed point in the UV, while the dimension of the surface gives an
interesting number of physical parameter, providing an evidence in favor of the
asymptotic safety.

• Finally, we have the line of fixed point, for which we will distinguish four cases:

1. In the domain d1 = {λ̄2 < 0} we have two relevant, one marginal and one
irrelevant directions.

2. At the point d2 = {λ̄2 = 0}, we recover the GFP, with two relevant and two
marginal directions.
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3. In the domain d3 = {λ̄2 ∈]0,
( 3

8π

)2] }we have three relevant and one marginal
directions. One more time, this section of the critical line is interesting in view
of the UV-completion of the theory and provides a supplementary evidence in
favor of asymptotic safety. Indeed, in each point, the relevant directions in the
UV span a three-dimensional UV-critical surface, in favor of the existence
of a nontrivial asymptotically safe theory with three independent physical
parameters. This line of fixed point has been recently discussed in [26] for a
similar model improved by unconnected interaction bubbles.

4. In the domain d4 = {λ̄2 >
( 3

8π

)2 }, the situation is very reminiscent of the
previous one. We have three eigenvalues with negative real part and one equal
to zero. Hence, we have three relevant and one marginal directions. The only
difference in comparison with the domain d3 is that the eigenvalue has non-
zero imaginary parts, giving some oscillations and attractor phenomena in the
trajectories.

Finally, we briefly discuss the values of the anomalous dimensions. With our
conventions, the couplings of the relevant operator are suppressed as a power of
k in the UV limit k → ∞. The couplings decrease when the trajectory goes away
from the UV regime. However, the power law behavior is limited to the attractive
region of the fixed point, far from its scaling regime it can deviate from the power
law one. And we can evaluate this deviation. For instance, in the vicinity of FP5,
one deduce from (3.8) that the canonical dimension becomes:

[tb]FP5 ≈ 3− 1.6
Nb

2
, (4.6)

from which we deduce that all the interactions of valence up or equal to four become
inessentials. The same phenomenon occurs in the vicinity of FP4, where all the
interactions up to these of valence four become irrelevant/relevant (according to
their convention or inessential/essential). On the contrary, at the fixed points FP2
and FP4 the anomalous dimension is positive, meaning that the power counting is
improved with respect to the Gaussian one, and irrelevant operators are enhanced in
the UV.

5 Concluding Remarks

In this work we have studied the functional renormalization group applied to a U(1)
tensor model. The flow equations of the coupling constants and mass parameter
are deduced. The nontrivial behavior around the fixed point is also given. We have
compelling evidence that the model studied in this paper is asymptotically safe in
the UV regime. Let us remark that it is possible to extend the truncation to higher
orders. Also, over regulators maybe tested. In this case the convergence of the fixed
points can be studied order by order. For more detail, see [24] and [25].
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Abstract We discuss cubic and ternary algebras which are a direct generalization
of Grassmann and Clifford algebras, but with Z3-grading replacing the usual Z2-
grading. Combining Z2 and Z3 gradings results in algebras with Z6 grading, which
are also investigated. We introduce a universal constitutive equation combining
binary and ternary cases.

Elementary properties and structures of such algebras are discussed, with special
interest in low-dimensional ones, with two or three generators.

Invariant anti-symmetric quadratic and cubic forms on such algebras are intro-
duced, and it is shown how the SL(2, C) group arises naturally in the case of lowest
dimension, with two generators only, as the symmetry group preserving these forms.

In the case of lowest dimension, with two generators only, it is shown how the
cubic combinations of Z3-graded elements behave like Lorentz spinors, and the
binary product of elements of this algebra with an element of the conjugate algebra
behave like Lorentz vectors.

Then Pauli’s principle is generalized for the case of the Z3 graded ternary
algebras leading to cubic commutation relations. A generalized Dirac equation is
introduced.
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1 Introduction

1.1 Z2 and Z3 Symmetries and Gradings

Of all symmetry groups characterizing physical phenomena and their mathematical
models, the discrete groups seem to be most fundamental. Among those, the
simplest discrete group Z2 is omnipresent and plays a crucial role in fundamental
interactions between elementary particles and fields: all theoretical models are
checked by their response to the three representations of the Z2 group, called “C”
(charge conjugation, reflecting the symmetry between particles and anti-particles),
“P ” (parity, consisting in space reflection), and “T ” (time reversion). Although in
some situations parity or time reflection may be broken, all known phenomena are
invariant under the simultaneous application of all these idempotents. This is often
referred to as the “CPT ”-theorem in elementary particle physics.

Another important manifestation of Z2 symmetry in physics is the distinction
between bosons and fermions, which in the language of quantum field theory
corresponds to commutators (for bosons) or anti-commutators (for fermions) in the
constitutive relations between the creation and annihilation operators:

a
†
i ak − aka

†
i = δik, a

†
i ak + aka

†
i = δik. (1)

for the Bose-Einstein or Fermi-Dirac statistics, respectively.
What we have here is the example of two distinct representations of the Z2

symmetry group, the first trivial, another faithful. Let us analyze the structure of
all possible representations of Z2 in the complex plane.

All bilinear maps of vector spaces into complex numbers can be divided into
irreducible symmetry classes according to the representations of the Z2 group, e.g.
symmetric, anti-symmetric, hermitian, or anti-hermitian:

1. The trivial representation defines the symmetric tensors:

Sπ(AB) = SBA = SAB,

2. The sign inversion defines the anti-symmetric tensors:

Aπ(CD) = ADC = −ACD,

3. The complex conjugation defines the hermitian tensors:

Hπ(AB) = HBA = H̄AB,

4. (−1)× complex conjugation defines the anti-hermitian tensors.

Tπ(AB) = TBA = −T̄AB,
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Fig. 1 Representation of the symmetry group S3 (three rotations, including identity, and three
reflections), and the complex representation of its Z3 cyclic subgroup

The tri-linear mappings can be distinguished by their symmetry properties with
respect to the permutations belonging to the Z3 symmetry group.

There are several different representations of the action of the Z3 permutation
group on tensors with three indices. Consequently, such tensors can be divided into
irreducible subspaces which are conserved under the action of Z3 (Fig. 1).

There are three possibilities of an action of Z3 being represented by multipli-
cation by a complex number: the trivial one (multiplication by 1), and the two
other representations, the multiplication by j = e2πi/3 or by its complex conjugate,
j2 = j̄ = e4πi/3.

T ∈ T : TABC = TBCA = TCAB, (2)

Λ ∈ L : ΛABC = j ΛBCA = j2 ΛCAB, (3)

Λ̄ ∈ L̄ : Λ̄ABC = j2 Λ̄BCA = j Λ̄CAB, (4)

which can be called, respectively, totally symmetric, j -skew-symmetric, and j2-
skew-symmetric. The space of all tri-linear forms is the sum of three irreducible
subspaces,

Θ3 = T ⊕L ⊕ L̄

the corresponding dimensions being, respectively, (N3 + 2N)/3 for T and (N3 −
N)/3 for L and for L̄ .

Any three-form Wα
ABC mapping A ⊗A ⊗A into a vector space X of dimension

k, α, β = 1, 2, . . . k, so that Xα = Wα
ABC θAθBθC can be represented as a linear

combination of forms with specific symmetry properties, Wα
ABC = T α

ABC+Λα
ABC+

Λ̄α
ABC, with
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T α
ABC :=

1

3
(Wα

ABC +Wα
BCA +Wα

CAB), (5)

Λα
ABC :=

1

3
(Wα

ABC + j Wα
BCA + j2 Wα

CAB), (6)

Λ̄α
ABC :=

1

3
(Wα

ABC + j2 Wα
BCA + j Wα

CAB), (7)

As in the Z2 case, the three symmetries above define irreducible and mutually
orthogonal 3-forms.

Consequently, two different cubic commutation relations can be imposed on an
associative algebra, say Λ-type and Λ̄-type: for any three elements a, b, c belonging
to algebra AΛ we shall have abc = j bca = j2 cab, and for any three elements
ā, b̄, c̄ belonging to algebra ¯AΛ̄ we shall have āb̄c̄ = j2 b̄c̄ā = j c̄āb̄. The Z2-
grading of ordinary (binary) algebras is well known and widely studied and applied
(e.g., in the super-symmetric field theories in Physics [1, 2]). The Grassmann and
Clifford algebras are perhaps the oldest and the best known examples of a Z2-graded
structure. Other gradings are much less popular. The Z3-grading was introduced and
studied in the paper [3]; the ZN grading was discussed in [4]. An approach to ternary
Clifford algebra based on ternary triples and a successive process of ternary Galois
extensions is proposed in [5]. More general case of N -algebras, in which only the
product of N elements is defined, was studied in [6].

2 Examples of Z3-Graded Ternary Algebras

In the case of ternary algebras of type Λ or Λ̄, the grade 1 is attributed to the
generators θA and the grade 2 to the conjugate generators θ̄ Ḃ . Consequently, their
products acquire the grade which is the sum of grades of the factors modulo 3. When
we consider an algebra including a ternary Z3-graded subalgebra and a binary Z2-
graded one, we can quite naturally introduce a combination of the two gradings
considered as a pair of two numbers, say (a, λ), with a = 0, 1, 2 representing the
Z3-grade, and λ = 0, 1 representing the Z2 grade, λ = 0, 1. The first grades add up
modulo 3, the second grades add up modulo 2. The six possible combined grades
are then

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1) and (2, 1). (8)

To add up two of the combined grades amounts to adding up their first entries
modulo 3, and their second entries modulo 2. Thus, we have

(2, 1)+ (1, 1) = (3, 2)  (0, 0), or ((2, 1)+ (1, 0) = (3, 1)  (0, 1), and so forth.
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Fig. 2 Representation of the
cyclic group Z6 in the
complex plane

It is well known that the cartesian product of two cyclic groups ZN × Zn, N and
n being two prime numbers, is the cyclic group ZNn corresponding to the product of
those prime numbers. This means that there is an isomorphism between the cyclic
group Z6, generated by the sixth primitive root of unity, q6 = 1, satisfying the
equation

q + q2 + q3 + q4 + q5 + q6 = 0.

This group can be represented on the complex plane, with q = e
2πi

6 , as shown in
Fig. 2:

The elements of the group Z6 represented by complex numbers multiply modulo
6, e. g. q4 · q5 = q9  q3, etc. The six elements of Z6 can be put in the one-to-one
correspondence with the pairs defining six elements of Z3 × Z2 according to the
following scheme:

(0, 0)  q0=1, (2, 1)  q, (1, 0)  q2, (0, 1)  q3, (2, 0)  q4, (1, 1)  q5.

(9)
The same result can be obtained directly using the representations of Z3 and Z2 in
the complex plane. Taken separately, each of these cyclic groups is generated by one

non-trivial element, the third root of unity j = e
2πi

3 for Z3 and −1 = eπi for Z2.
It is enough to multiply these complex numbers and take their different powers in
order to get all the six elements of the cyclic group Z6. One easily identifies then

−j2 = q, j = q2, −1 = q3, j2 = q4, −j = q5, 1 = q6.

This reminds the color symmetry in Quantum Chromodynamics, where exclusively
the “white” combinations of three quarks and three anti-quarks, as well as the
“white” quark-anti-quark pairs are declared observable. Replacing the word “white”
by 0, we see that there are two vanishing linear combinations of three powers of q,
and three pairs of powers of q that are also equal to zero. Indeed, we have:

q2+ q4+ q6 = j + j2+ 1 = 0, and q + q3+ q5 = −j2− 1− j = 0, (10)
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Fig. 3 Representation of the cyclic group Z6 in the complex plane with three colors and three
“anti-colors” attributed to even and odd powers of q, accordingly with colors attributed in Quantum
Chromodynamics to quarks and to anti-quarks

as well as

q + q4 = 0, q2 + q5 = 0, q3 + q6 = 0. (11)

The Z6-grading should unite both Z2 and Z3 gradings, reproducing their essential
properties. Obviously, the Z3 subgroup is formed by the elements 1, q2 and q4,
while the Z2 subgroup is formed by the elements 1 and q3 = −1. In what follows,
we shall see that the associativity imposes many restrictions which can be postponed
in the case of non-associative ternary structures (Fig. 3).

3 Ternary and Cubic Algebras

The usual definition of an algebra involves a linear space A (over real or complex
numbers) endowed with a binary constitutive relations

A ×A → A . (12)

In a finite dimensional case, dim A = N, in a chosen basis e1, e2, . . . , eN , the
constitutive relations (12) can be encoded in structure constants f k

ij as follows:

eiej = f k
ij ek. (13)

With the help of these structure constants all essential properties of a given algebra
can be expressed, e.g. they will define a Lie algebra if they are anti-symmetric and
satisfy the Jacobi identity:

f k
ij = −f k

ji, f k
imf

m
jl + f k

jmf
m
li + f k

lmf
m
ij = 0, (14)

whereas an abelian algebra will have its structure constants symmetric, f k
ij = f k

ji .
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Usually, when we speak of algebras, we mean binary algebras, understanding
that they are defined via quadratic constitutive relations (13). On such algebras the
notion of Z2-grading can be naturally introduced. An algebra A is called a Z2-
graded algebra if it is a direct sum of two parts, with symmetric (abelian) and anti-
symmetric product, respectively,

A = A0 ⊕A1, (15)

with grade of an element being 0 if it belongs to A0, and 1 if it belongs to A1.
Under the multiplication in a Z2-graded algebra the grades add up reproducing the
composition law of the Z2 permutation group: if the grade of an element A is a, and
that of the element B is b, then the grade of their product will be a + b modulo 2:

grade(AB) = grade(A)+ grade(B). (16)

A Z2-graded algebra is called a Z2-graded commutative if for any two homogeneous
elements A,B we have

AB = (−1)abBA. (17)

It is worthwhile to notice at this point that the above relationship can be written in
an alternative form, with all the expressions on the left side as follows:

AB − (−1)a bBA = 0, or AB + (−1)(a b+1)BA = 0 (18)

The equivalence between these two alternative definitions of commutation (anti-
commutation) relations inside a Z2-graded algebra is no more possible if by analogy
we want to impose cubic relations on algebras with Z3-symmetry properties, in

which the non-trivial cubic root of unity, j = e
2πi

3 plays the role similar to that of
−1 in the binary relations displaying a Z2-symmetry [3].

The Z3 cyclic group is an abelian subgroup of the S3 symmetry group of
permutations of three objects. The S3 group contains six elements, including the
group unit e (the identity permutation, leaving all objects in place: (abc)→ (abc)),
the two cyclic permutations

(abc)→ (bca) and (abc)→ (cab),

and three odd permutations,

(abc)→ (cba), (abc)→ (bac) and (abc)→ (acb).

There was a unique definition of commutative binary algebras given in two
equivalent forms,

xy + (−1)yx = 0 or xy = yx. (19)
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In the case of cubic algebras [6] we have the following four generalizations of the
notion of commutative algebras:

(a) Generalizing the first form of the commutativity relation (19), which amounts
to replacing the −1 generator of Z2 by j -generator of Z3 and binary products
by products of three elements, we get

S : xμxνxλ + j xνxλxμ + j2 xλxμxν = 0, (20)

where j = e
2πi

3 is the primitive third root of unity.

(b) Another primitive third root, j2 = e
4πi

3 can be used in place of the former
one; this will define the conjugate algebra S̄, satisfying the following cubic
constitutive relations:

S̄ : xμxνxλ + j2 xνxλxμ + j xλxμxν = 0. (21)

Clearly enough, both algebras are infinitely dimensional and have the same
structure. Each of them is a possible generalization of infinitely dimensional
algebra of usual commuting variables with a finite number of generators.
In the usual Z2-graded case such algebras are just polynomials in variables
x1, x2, . . . , xN ; the algebras S and S̄ defined above are also spanned by
polynomials, but with different symmetry properties, and as a consequence,
with different dimensions corresponding to a given power.

(c) Then we can impose the following “weak” commutation, valid only for cyclic
permutations of factors:

S1 : xμxνxλ = xνxλxμ �= xνxμxλ, (22)

(d) Finally, we can impose the following “strong” commutation, valid for arbitrary
(even or odd) permutations of three factors:

S0 : xμxνxλ = xνxλxμ = xνxμxλ (23)

The four different associative algebras with cubic commutation relations can be
represented in the following diagram, in which all arrows correspond to surjective
homomorphisms. The commuting generators can be given the common grade 0.

S S̄

↘ ↙
S1
↓
S0

Let us turn now to the Z3 generalization of anti-commuting generators, which in the
usual homogeneous case with Z2-grading define Grassmann algebras. Here, too, we
have four different choices:
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(a) The “strong” cubic anti-commutation,

L0 : Σπ∈S3 θπ(A)θπ(B)θπ(C) = 0, (24)

i.e., the sum of all permutations of three factors, even and odd ones, must vanish.
(b) The somewhat weaker “cyclic” anti-commutation relation,

L1 : θAθBθC + θBθCθA + θCθAθB = 0, (25)

i.e., the sum of cyclic permutations of three elements must vanish. The same
independent relation for the odd combination θCθBθA holds separately.

(c) The j -skew-symmetric algebra:

L : θAθBθC = j θBθCθA. (26)

and its conjugate algebra L̄ , isomorphic with L , which we distinguish by
putting a bar on the generators and using dotted indices:

(d) The j2-skew-symmetric algebra:

L̄ : θ̄ Ȧθ̄ Ḃ θ̄ Ċ = j2θ̄ Ḃ θ̄ Ċ θ̄ Ȧ (27)

Both these algebras are finite dimensional. For j or j2-skew-symmetric algebras
with N generators the dimensions of their subspaces of given polynomial order
are given by the following generating function:

H(t) = 1+Nt +N2t2 + N(N − 1)(N + 1)

3
t3, (28)

where we include pure numbers (dimension 1), the N generators θA (or θ̄ Ḃ ),
the N2 independent quadratic combinations θAθB , and N(N − 1)(N + 1)/3
products of three generators θAθBθC .

It is easy to see that all higher-order monomials starting from 4-th power must
identically vanish if associativity holds:

θAθBθCθD = j θBθCθAθD = j2θBθAθDθC = j3θAθDθBθC = j4θAθBθCθD.

(29)
As j4 = j �= 1, the expression θaθBθCθD must identically vanish. The
above four cubic generalization of Grassmann algebra are represented in the
following diagram, in which all the arrows are surjective homomorphisms.

L0
↓

L1
↙ ↘

L L̄
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4 Examples of Z3-Graded Ternary Algebras

4.1 The Z3-Graded Analogue of Grassmann Algebra

Let us introduce N generators spanning a linear space over complex numbers,
satisfying the following cubic relations [3, 7]:

θAθBθC = j θBθCθA = j2 θCθAθB, (30)

with j = e2iπ/3, the primitive root of 1. We have 1 + j + j2 = 0 and j̄ = j2. It is
worth to mention that there are no relations between binary products θAθB , i.e. all
these products are linearly independent. Let us denote the algebra spanned by the
θA generators by A .

We shall also introduce a similar set of conjugate generators, θ̄ Ȧ, Ȧ, Ḃ, . . . =
1, 2, . . . , N , satisfying similar condition with j2 replacing j :

θ̄ Ȧθ̄ Ḃ θ̄ Ċ = j2 θ̄ Ḃ θ̄ Ċ θ̄ Ȧ = j θ̄ Ċ θ̄ Ȧθ̄ Ḃ , (31)

Let us denote this algebra by ¯A .
We shall endow the algebra A ⊕ ¯A with a natural Z3 grading, considering the

generators θA as grade 1 elements, their conjugates θ̄ Ȧ being of grade 2. The grades
add up modulo 3, so that the products θAθB span a linear subspace of grade 2, and
the cubic products θAθBθC being of grade 0. Similarly, all quadratic expressions
in conjugate generators, θ̄ Ȧθ̄ Ḃ are of grade 2 + 2 = 4 (mod 3) = 1, whereas their
cubic products are again of grade 0, like the cubic products of θA’s [8].

Combined with the associativity, these cubic relations impose finite dimension
on the algebra generated by the Z3-graded generators. As a matter of fact, cubic
expressions are the highest order that does not vanish identically. The proof is
immediate:

θAθBθCθD = j θBθCθAθD = j2 θBθAθDθC = j3 θAθDθBθC = j4 θAθBθCθD,

(32)
and because j4 = j �= 1, the only solution is θAθBθCθD = 0.

4.2 The Z3 Graded Differential Forms

Instead of the usual exterior differential operator satisfying d2 = 0, we can postulate
its Z3-graded generalization satisfying

d2 �= 0, d3f = 0
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The first differential of a smooth function f (xi) is as usual

df = ∂if dxi,

whereas the second differential is formally

d2f = (∂k∂if ) dxkdxi + (∂if ) d2xi

We shall attribute the grade 1 to the 1-forms dxi, (i, j, k = 1, 2, . . . N), and grade 2
to the forms d2xi, (i, j, k = 1, 2, . . . N); under associative multiplication of these
forms, the grades add up modulo 3

grade(ω θ) = grade(ω)+ grade(θ) (modulo3).

The Z3-graded differential operator d has the following property, compatible with
grading we have chosen:

d(ω θ) = (dω) θ + jgradeω ω dθ.

d2f = (∂i∂kf )dxidxk + (∂if ) d2xi,

d3f = (∂m∂i∂kf )dxmdxidxk + (∂i∂kf )d2xidxk

+j (∂i∂kf )dxid2xk + (∂k∂if )dxkd2xi + (∂if ) d3xi .

equivalent with

d3f = (∂m∂i∂kf )dxmdxidxk + (∂i∂kf )[d2xkdxi − j2 dxid2xk] + (∂if ) d3xi .

Consequently, assuming that d3xk = 0 and d3f = 0, to make the remaining
terms vanish we must impose the following commutation relations on the products
of forms:

dxidxkdxm = j dxkdxmdxi, dxid2xk = j d2xkdxi,

therefore

d2xkdxi = j2 dxid2xk

As in the case of the abstract Z3-graded Grassmann algebra, the fourth order
expressions must vanish due to the associativity of the product:

dxidxkdxldxm = 0.
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Consequently, we shall assume that also

d2xid2xk = 0.

This completes the construction of algebra of Z3-graded exterior forms (see, e.g.,
[4, 9, 10]).

4.3 Ternary Clifford Algebra

Let us introduce the following three 3× 3 matrices:

Q1 =
⎛

⎝
0 1 0
0 0 j

j2 0 0

⎞

⎠ , Q2 =
⎛

⎝
0 j 0
0 0 1
j2 0 0

⎞

⎠ , Q3 =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , (33)

and their hermitian conjugates

Q
†
1 =

⎛

⎝
0 0 j

1 0 0
0 j2 0

⎞

⎠ , Q
†
2 =

⎛

⎝
0 0 j

j2 0 0
0 1 0

⎞

⎠ , Q
†
3 =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ . (34)

These matrices can be endowed with natural Z3-grading,

grade(Qk) = 1, grade(Q†
k) = 2, (35)

The above matrices span a very interesting ternary algebra. Out of three independent
Z3-graded ternary combinations, only one leads to a non-vanishing result. One can
check without much effort that both j and j2 skew ternary commutators do vanish:

{Q1,Q2,Q3}j = Q1Q2Q3 + jQ2Q3Q1 + j2Q3Q1Q2 = 0,

{Q1,Q2,Q3}j2 = Q1Q2Q3 + j2Q2Q3Q1 + jQ3Q1Q2 = 0,

and similarly for the odd permutation, Q2Q1Q3. On the contrary, the totally
symmetric combination does not vanish; it is proportional to the 3 × 3 identity
matrix 1:

QaQbQc +QbQcQa +QcQaQb = 3 ηabc 1, a, b, . . . = 1, 2, 3. (36)

with ηabc given by the following non-zero components:

η111 = η222 = η333 = 1, η123 = η231 = η312 = 1, η213 = η321 = η132 = j2.

(37)
all other components vanishing. The relation (36) may serve as the definition of
ternary Clifford algebra [5, 11].
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Another set of three matrices is formed by the hermitian conjugates of Qa ,
which we shall endow with dotted indices ȧ, ḃ, . . . = 1, 2, 3: Qȧ = Q

†
a satisfying

conjugate identities

QȧQḃQċ +QḃQċQȧ +QċQȧQḃ = 3 ηȧḃċ 1, ȧ, ḃ, . . . = 1, 2, 3. (38)

with ηȧḃċ = η̄cba .
It is obvious that any similarity transformation of the generators Qa will keep

the ternary anti-commutator (36) invariant. As a matter of fact, if we define Q̃b =
P−1QbP , with P a non-singular 3× 3 matrix, the new set of generators will satisfy
the same ternary relations, because

Q̃aQ̃bQ̃c = P−1QaPP−1QbPP−1QcP = P−1(QaQbQc)P,

and on the right-hand side we have the unit matrix which commutes with all other
matrices, so that P−1 1 P = 1.

It is also worthwhile to note that the six matrices displayed in (33), (34) together
with two traceless diagonal matrices

B =
⎛

⎝
1 0 0
0 j 0
0 0 j2

⎞

⎠ , B† =
⎛

⎝
1 0 0
0 j2 0
0 0 j

⎞

⎠

form the basis for certain representation of the SU(3), which was shown in the
nineties by Kac [12].

5 Generalized Z� × Z�-Graded Ternary Algebra

Let us suppose that we have binary skew-symmetric and ternary j -skew-symmetric
products defined by corresponding structure constants:

ξαξβ = −ξβξα (39)

θAθBθC = j θBθCθA (40)

The unifying ternary relation is of the type Λ0, i.e.,

XiXjXk +XjXkXi +XkXiXj +XkXjXi +XjXiXk +XiXkXj = 0. (41)

It is obviously satisfied by both types of variables; the θA’s by definition of the
product, for which at this stage the associativity property can be not decided yet; the
product of grassmannian ξα variables (39) on the contrary should be associative in
order to make the formula (41) applicable.
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It can be added that the cubic constitutive relation (40) satisfies a simpler
condition with cyclic permutations only,

θAθBθC + θBθCθA + θCθAθB = 0,

but the cubic products of grassmannian variables are invariant under even (cyclic)
permutations, so that only the combination of all six permutations of ξαξβξγ , like
in (41) will vanish.

Now, if we want to merge the two algebras into a common one, we must impose
the general condition (41) to the mixed cubic products (see [13]). These are of two
types: θAξαθB and ξαθBξβ , with two θ ’s and one ξ , or with two ξ ’s and one
θ . These identities, all like (41) should follow from binary constitutive relations
imposed on the associative products between one θ and one ξ variable.

Let us suppose that one has

ξαθB = ω θBξα and consequently θAξβ = ω−1 ξβθA. (42)

A simple exercise leads to the conclusion that in order to satisfy the general
condition (41), the unknown factor ω must verify the equation ω+ω−1+ 1 = 0, or
equivalently, ω + ω2 + ω3 = 0. Indeed, we have, assuming the associativity:

θAξαθB = ω−1 ξαθAθB = ω θAθBξα,

θBξαθA = ω−1 ξαθBθA = ω θBθAξα.

From this we get, by transforming all the six products so that ξα should appear
always on the first position in the monomials:

θAξαθB = ω−1 ξαθAθB, θAθBξα = ω−2 ξαθAθB,

θBξαθA = ω−1 ξαθBθA, θBθAξα = ω−2 ξαθBθA.

Adding up all permutations, even (cyclic) and odd alike, we get the following result:

θAξαθB + ξαθBθA + θBθAξα + θBξαθA + ξαθAθB + θAθBξα =

(1+ ω + ω−1) ξαθAθB + (1+ ω + ω−1) ξαθBθA. (43)

The expression in (43) will identically vanish if ω = j = e
2πi

3 (or ω = j2, which
satisfies the same relation j + j2 + 1 = 0).

The second type of cubic monomials, ξαθBξβ , satisfies the identity

ξαθBξδ + θBξδξα + ξδξαθB + ξδθBξα + θBξαξδ + ξαξδθB = 0 (44)
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no matter what the value of ω is chosen in the constitutive relation (42), the anti-
symmetry of the product of two ξ ’s suffices. As a matter of fact, because we have
ξαξδ = −ξδξα , in the formula (44) the second term cancels the fifth term, and the
third term is cancelled by the sixth one. What remains is the sum of the first and the
fourth terms:

ξαθBξδ + ξδθBξα.

Now we can transform both terms so as to put the factor θ to the first position; this
will give

ξαθBξδ + ξδθBξα = ωθBξαξδ + ωθBξδξα = 0 (45)

because of the anti-symmetry between the two ξ ’s. This completes the construction
of the Z2 × Z3-graded extension of Grassmann algebra.

The existence of two cubic roots of unity, j and j2, suggests that one can
extend the above algebraic construction by introducing a set of conjugate generators,
denoted for convenience with a bar and with dotted indices, satisfying conjugate
ternary constitutive relation (31). The unifying condition of vanishing of the sum of
all permutations (algebra of Λ0-type) will be automatically satisfied.

But now we have to extend this condition to the triple products of the type
θAθ̄ ḂθC and θ̄ ȦθB θ̄ Ċ . This will be achieved if we impose the obvious condition,
similar to the one proposed already for binary combinations ξθ :

θAθ̄ Ḃ = −j θ̄ ḂθA, θ̄ ḂθA = −j2 θAθ̄ Ḃ (46)

The proof of the validity of the condition (41) for the above combinations is exactly
the same as for the triple products ξαθBξγ and θAξδθB .

We have also to impose commutation relations on the mixed products of the type

ξαθ̄ Ḃξβ and θ̄ Ḃ ξβ θ̄ Ċ .

It is easy to see that like in the former case, it is enough to impose the commutation
rule similar to the former one with θ ’s, namely

ξαθ̄ Ḃ = j2 θ̄ Ḃ ξα (47)

Although we could stop at this point the extension of our algebra, for the sake of
symmetry it seems useful to introduce the new set of conjugate variables ξ̄ α̇ of the
Z2-graded type. We shall suppose that they anti-commute, like the ξβ ’s, and not only
between themselves, but also with their conjugates, which means that we assume

ξ̄ α̇ ξ̄ β̇ = −ξ̄ β̇ ξ̄ α̇, ξαξ̄ β̇ = −ξ̄ β̇ ξα. (48)
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This ensures that the condition (41) will be satisfied by any ternary combination of
the Z2-graded generators, including the mixed ones like

ξ̄ α̇ξβ ξ̄ δ̇ or ξβ ξ̄ α̇ξ γ .

The dimensions of classical Grassmann algebras with n generators are well known:
they are equal to 2n, with subspaces spanned by the products of k generators having
the dimension Cn

k = n!/(n− k)!k!. With 2n anti-commuting generators, ξα and ξ̄ β̇

we shall have the dimension of the corresponding Grassmann algebra equal to 22n.
It is also quite easy to determine the dimension of the Z3-graded generalizations

of Grassmann algebras constructed above (see, e.g., in [7, 14, 15]). The Z3-graded
algebra with N generators θA has the total dimension N + N2 + (N3 − N)/3 =
(N3+N2+2N)/3. The conjugate algebra, with the same number of generators, has
the identical dimension. However, the dimension of the extended algebra unifying
both these algebras is not equal to the square of the dimension of one of them
because of the extra conditions on the mixed products between the generators and
their conjugates, θAθ̄ Ḃ = j θ̄ ḂθA.

6 Two Distinct Gradings: Z3 × Z2 Versus Z6

The natural choice for the Z3-graded algebra with cubic relations was to attribute
grade 1 to the generators θA, and grade 2 to their conjugates θ̄ Ḃ . All other
expressions formed by products and powers of those got the well-defined grade,
the sum of the grades of factors modulo 3. In a simple Cartesian product of two
algebras, a Z3-graded with a Z2-graded one, the generators of the latter will be
given grade 1, and their products will get automatically the grade which is the sum
of the grades of factors modulo 2, which means that all the products and powers of
generators ξα will acquire grade 1 or 0 according to the number and character of
factors involved.

The mixed products of the type θAξβ, ξβθBθC , etc. can be given the double
Z3×Z2 grade according to (8). According to the isomorphism defined by (9), this is
equivalent to a Z6-grading of the product algebra. As long as the algebra is supposed
to be homogeneous in the sense that all the constitutive relations contain exclusively
terms of one and the same type, like in the extension of Grassmann algebra discussed
above, the supposed associativity does not impose any particular restrictions.

However, this is not the case if we consider the possibility of non-homogeneous
constitutive equations, including terms of different nature, but with the same Z6-
grade. The grading defined by (9) suggests a possibility of extending the constitutive
relations by comparing terms of the type θAθBθC , whose Z6-grade is 3, to the
generators ξα having the same Z6-grade. This will lead to the following constitutive
relations:

θAθBθC = ρABC
α ξα and θ̄ Ȧθ̄ Ḃ θ̄ Ċ = ρ̄ȦḂĊ

α̇ ξ̄ α̇ (49)
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with the coefficients (structure constants) ρABC
α and ρ̄ȦḂĊ

α̇ displaying obvious
symmetry properties mimicking the properties of ternary products of θ -generators
with respect to cyclic permutations:

ρABC
α = j ρBCA

α = j2 ρCAB
α and ρ̄ȦḂĊ

α̇ = j2 ρ̄ḂĊȦ
α̇ = j ρ̄ĊȦḂ

α̇ . (50)

If all products are supposed to be associative, then we see immediately that the
products between θ and ξ generators, as well as those between θ̄ and ξ̄ generators
must vanish identically, because of the vanishing of quartic products θθθθ = 0 and
θ̄ θ̄ θ̄ θ̄ = 0. This means that we must set

θA ξβ = 0, ξβθA = 0, as well as θ̄ Ḃ ξ̄ α̇ = 0, ξ̄ α̇ θ̄ Ḃ = 0. (51)

But now we want to unite the two gradings into a unique common one. Let us
start by defining a ternary product of generators, not necessarily derived from an
ordinary associative algebra. We shall just suppose the existence of ternary product
of generators, displaying the j -skew symmetry property:

{θA, θB, θC} = j{θB, θC, θA} = j2{θC, θA, θB}. (52)

and similarly, for the conjugate generators,

{θ̄ Ȧ, θ̄ Ḃ , θ̄ Ċ} = j2 {θ̄ Ḃ , θ̄ Ċ , θ̄ Ȧ} = j {θ̄ Ċ , θ̄ Ȧ, θ̄ Ḃ}. (53)

Let us attribute the Z6-grade 1 to the generators θA. Then it is logical to attribute the
Z6 grade 5 to the conjugate generators θ̄ Ḃ , so that mixed products θAθ̄ Ḃ would be of
Z6 grade 0. Ternary products (52) are of grade 3, and ternary products of conjugate
generators (53) are also of grade 3, because 5+ 5+ 5 = 15, and 15 modulo 6 = 3.
But we have also q3 = −1, which is the generator of the Z2-subalgebra of Z6.
Therefore we should attribute the Z6-grade 3 to both kinds of the anti-commuting
variables, ξα and ξ̄ β̇ , because we can write their constitutive relations using the root
q as follows:

ξαξβ = −ξβξα = q3 ξβξα, ξ̄ α̇ ξ̄ β̇ = −ξ̄ β̇ ξ̄ α̇ = q3 ξ̄ β̇ ξ̄ α̇,

ξαξ̄ β̇ = −ξ̄ β̇ ξα = q3 ξ̄ β̇ ξα, (54)

On the other hand, we can consider products of θ with ξ̄ and θ̄ with ξ :

θAξ̄ α̇ and θ̄ Ḃ ξβ

The first expression has the Z6-grade 1 + 3 = 4, and the second product has the
Z6-grade 5+ 3 = 8 modulo 6 = 2. Other products endowed with the same grade in
our associative Z6-grade algebra are θ̄ Ȧ θ̄ Ḃ (grade 4, because 5+ 5 = 10 modulo
6 = 4), and θAθB (grade 2, because 1+ 1 = 2).
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This suggests that the following non-homogeneous constitutive relations can be
proposed:

θAξ̄ α̇ = f Aα̇

ĊḊ
θ̄ Ċ θ̄ Ḋ, and θ̄ Ȧξα = f̄ Ȧα

CD θCθD, (55)

where the coefficients should display the symmetry properties contravariant to those
of the generators themselves, which means that we should have

f Aα̇

ĊḊ
= j2 f α̇A

ĊḊ
and f̄ Ȧα

CD = j f̄ αȦ
CD (56)

7 Low-Dimensional Algebras

Let us consider the simplest case of a Z2-graded algebra spanned by two generators
ξα, α, β = 1, 2. The anti-commutation property can be encoded in the invariant
2-form εαβ . We can obviously write

εαβξ
αξβ = εβαξ

βξα = −εβαξ
αξβ,

from which we conclude that εαβ = −εβα . We can choose the basis in which

ε11 = 0, ε22 = 0, ε12 = −ε21 = 1.

After a change of basis, ξβ → Sα′
β ξβ = ηα

′
the 2-form εαβ , as any tensor, also

undergoes the inverse transformation:

Sα
α′S

β

β ′ εαβ,

with Sα
β ′ the inverse matrix of the matrix S

β ′
β . Whatever non-singular linear

transformation S
β

β ′ is chosen, the new components εα′β ′ remain anti-symmetric, but
they have not necessarily the same values as those of εαβ . However, if we require
that also in new basis

ε1′1′ = 0, ε2′2′ = 0, ε1′2′ = −ε2′1′ = 1,

then it is easy to show that this imposes extra condition on the 2 × 2 matrix Sα′
β ,

namely that det S = 1. This defines the SL(2,C) group as the group of invariance
of the subalgebra spanned by two anti-commuting generators ξα , α, β, . . . = 1, 2.
This may be considered as the most elementary example of the spin–statistics
relationship established by Pauli ([16], see also [17]).
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Now let us turn to the invariance properties of the ternary subalgebra spanned
by two generators θ1, θ2, satisfying homogeneous cubic cyclic j -skew-symmetric
relations θAθBθC = j θBθCθA, and their conjugate counterparts θ̄ 1̇, θ̄ 2̇ satisfying
homogeneous cubic cyclic j2-skew-symmetric relations θ̄ Ȧθ̄ Ḃ θ̄ Ċ = j2 θ̄ Ḃ θ̄ Ċ θ̄ Ȧ

We shall also impose binary constitutive relations between the generators θA and
their conjugate counterparts θ̄ Ḃ , making the choice consistent with the introduced
Z6-grading

θAθ̄ Ḃ = −j θ̄ ḂθA, θ̄ ḂθA = −j2 θAθ̄ Ḃ . (57)

Consider a tri-linear form ρα
ABC . We shall call this form Z3-invariant if we can

write:

ρα
ABC θAθBθC = 1

3

[
ρα
ABC θAθBθC + ρα

BCA θBθCθA + ρα
CAB θCθAθB

]
=

= 1

3

[
ρα
ABC θAθBθC + ρα

BCA (j2 θAθBθC)+ ρα
CAB j (θAθBθC)

]
, (58)

by virtue of the commutation relations (30). From this it follows that we should have

ρα
ABC θAθBθC = 1

3

[
ρα
ABC + j2 ρα

BCA + j ρα
CAB

]
θAθBθC, (59)

from which we get the following properties of the ρ-cubic matrices:

ρα
ABC = j2 ρα

BCA = j ρα
CAB. (60)

Even in this minimal and discrete case, there are covariant and contravariant
indices: the lower and the upper indices display the inverse transformation property.
If a given cyclic permutation is represented by a multiplication by j for the upper
indices, the same permutation performed on the lower indices is represented by
multiplication by the inverse, i.e. j2, so that they compensate each other.

Similar reasoning leads to the definition of the conjugate forms ρ̄α̇

ĊḂȦ
satisfying

the relations similar to (60) with j replaced by its conjugate, j2:

ρ̄α̇

ȦḂĊ
= j ρ̄α̇

ḂĊȦ
= j2 ρ̄α̇

ĊȦḂ
(61)

In the simplest case of two generators, the j -skew-invariant forms have only two
independent components:

ρ1
121 = j2 ρ1

211 = j ρ1
112,

ρ2
212 = j2 ρ2

122 = j ρ2
221,



330 R. Kerner

and we can set

ρ1
121 = 1, ρ1

211 = j, ρ1
112 = j2,

ρ2
212 = 1, ρ2

122 = j, ρ2
221 = j2.

The constitutive cubic relations between the generators of the Z3-graded algebra
can be considered as intrinsic if they are conserved after linear transformations with
commuting (pure number) coefficients, i.e. if they are independent of the choice of
the basis.

Let UA′
A denote a non-singular N × N matrix, transforming the generators θA

into another set of generators, θB
′ = UB ′

B θB . In principle, the generators of the
Z2-graded subalgebra ξα may or may not undergo a change of basis. Uniting the
two subalgebras in one Z6-graded algebra suggests that a change of basis should
concern all generators at once, both ξα and θA. This means a simultaneous change
of basis

ξα → ξ̃ β
′ = Sβ ′

α ξα ξα, θA → θ̃B
′ = UB ′

A θA. (62)

It seems natural to identify the upper indices α, β appearing in the ρ-tensors with
the indices appearing in the generators ξα of the Z2-graded subalgebra. Therefore,
we are looking for the solution of the simultaneous invariance condition for the εαβ
and ρα

ABC tensors:

εα′β ′ = Sα
α′S

β

β ′ εαβ, Sα′
β ρ

β
ABC = UA′

A UB ′
B UC′

C ρα′
A′B ′C′ , (63)

so that in new basis the numerical values of both tensors remain the same as
before, just like the components of the Minkowskian space-time metric tensor
gμν remain unchanged under the Lorentz transformations. Notice that in the last
formula above, (63), the matrix Sα′

α is the inverse matrix for Sα
α′ appearing in the

transformation of the basis ξβ .
Now, ρ1

121 = 1, and we have two equations corresponding to the choice of values
of the index α′ equal to 1 or 2. For α′ = 1′ the ρ-matrix on the right-hand side is
ρ1′
A′B ′C′ , which has only three components,

ρ1′
1′2′1′ = 1, ρ1′

2′1′1′ = j, ρ1′
1′1′2′ = j2,

which leads to the following equation:

S1′
1 = U1′

1 U2′
2 U1′

1 + j U2′
1 U1′

2 U1′
1 + j2 U1′

1 U1′
2 U2′

1 = U1′
1 (U2′

2 U1′
1 − U2′

1 U1′
2 ),

(64)
because j + j2 = −1. For the alternative choice α′ = 2′ the ρ-matrix on the right-
hand side is ρ2′

A′B ′C′ , whose three non-vanishing components are

ρ2′
2′1′2′ = 1, ρ2′

1′2′2′ = j, ρ2′
2′2′1′ = j2.
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The corresponding equation becomes now:

S2′
1 = U2′

1 U1′
2 U2′

1 + j U1′
1 U2′

2 U2′
1 + j2 U2′

1 U2′
2 U1′

1 = U2′
1 (U1′

2 U2′
1 − U1′

1 U2′
2 ).

(65)
The two remaining equations are obtained in a similar manner. We choose now the
three lower indices on the left-hand side equal to another independent combination,
(212). Then the ρ-matrix on the left-hand side must be ρ2 whose component ρ2

212
is equal to 1. This leads to the following equation when α′ = 1′:

S1′
2 = U1′

2 U2′
1 U1′

2 + j U2′
2 U1′

1 U1′
2 + j2 U1′

2 U1′
1 U2′

2 = U1′
2 (U1′

2 U2′
1 − U1′

1 U2′
2 ),

(66)
and the fourth equation corresponding to α′ = 2′ is:

S2′
2 = U2′

2 U1′
1 U2′

2 + j U1′
2 U2′

1 U2′
2 + j2 U2′

2 U2′
1 U1′

2 = U2′
2 (U1′

1 U2′
2 − U2′

1 U1′
2 ).

(67)
The determinant of the 2× 2 complex matrix UA′

B appears everywhere on the right-
hand side. Indeed Eq. (64) can be written in the form

S1′
1 = U1′

1 [det(U)]. (68)

The remaining two equations are obtained in a similar manner, resulting in the
following:

S2′
1 = −U2′

1 [det(U)], S1′
2 = −U1′

2 [det(U)], S2′
2 = U2′

2 [det(U)]. (69)

The determinant of the 2× 2 complex matrix UA′
B appears everywhere on the right-

hand side. Taking the determinant of the matrix Sα′
β one gets immediately

det (S) = [det (U)]3. (70)

However, the U -matrices on the right-hand side are defined only up to the phase,
which is due to the cubic character of the covariance relations (64)–(69), and they
can take on three different values: 1, j , or j2, i.e. the matrices j UA′

B or j2 UA′
B

satisfy the same relations as the matrices UA′
B defined above. The determinant of U

can take on the values 1, j, or j2 if det (S) = 1
Another reason to impose the unitarity condition is as follows. It can be derived

if we require the same behavior for the duals, ρDEF
β . This extra condition amounts

to the invariance of the anti-symmetric tensor εAB , and this is possible only if the
determinant of U -matrices is 1 (or j or j2), because only cubic combinations of
these matrices appear in the transformation law for ρ-forms.

We have determined the invariance group for the simultaneous change of the
basis in our Z6-graded algebra. However, these transformations based on the
SL(2,C) groups combined with complex representation of the Z3 cyclic group keep
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invariant the binary constitutive relations between the Z2-graded generators ξα and
the ternary constitutive relations between the Z3-graded generators alone, without
mentioning their conjugates ξ̄ α̇ and θ̄ Ḃ .

Let us put aside for the moment the conjugate Z2-graded variables, and concen-
trate our attention on the conjugate Z3-graded generators θ̄ Ȧ and their commutation
relations with θB generators, which we shall modify as:

θA θ̄ Ḃ = −j θ̄ Ḃ θA, θ̄ Ḃ θA = −j2 θA θ̄ Ḃ . (71)

A similar covariance requirement can be formulated with respect to the set of
2-forms mapping the quadratic θA θ̄ Ḃ combinations into a four-dimensional linear
real space.

It is easy to see, by counting the independent combinations of dotted and
undotted indices, that the symmetry (71) imposed on these expressions reduces
their number to four: (11̇), (1, 2̇), (2 1̇), (2, 2̇), the conjugate combinations of
the type (Ȧ B) being dependent on the first four because of the imposed symmetry
properties.

Let us define two quadratic forms, πμ

AḂ
and its conjugate π̄

μ

ḂA

π
μ

AḂ
θAθ̄ Ḃ and π̄

μ

ḂA
θ̄ ḂθA. (72)

The Greek indices μ, ν . . . take on four values, and we shall label them 0, 1, 2, 3.
The four tensors π

μ

AḂ
and their hermitian conjugates π̄

μ

ḂA
define a bilinear

mapping from the product of quark and anti-quark cubic algebras into a linear four-
dimensional vector space, whose structure is not yet defined.

Let us impose the following invariance condition:

π
μ

AḂ
θAθ̄ Ḃ = π̄

μ

ḂA
θ̄ ḂθA. (73)

It follows immediately from (71) that

π
μ

AḂ
= −j2 π̄

μ

ḂA
. (74)

Such matrices are non-hermitian, and they can be realized by the following
substitution:

π
μ

AḂ
= j i σ

μ

AḂ
, π̄

μ

ḂA
= −j2 i σ

μ

ḂA
(75)

where σ
μ

AḂ
are the unit 2 matrix for μ = 0, and the three hermitian Pauli matrices

for μ = 1, 2, 3.
Again, we want to get the same form of these four matrices in another basis.

Knowing that the lower indices A and Ḃ undergo the transformation with matrices

UA′
B and Ū Ȧ′

Ḃ
, we demand that there exist some 4× 4 matrices Λ

μ′
ν representing the
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transformation of lower indices by the matrices U and Ū :

Λμ′
ν πν

AḂ
= UA′

A Ū Ḃ ′
Ḃ

π
μ′
A′Ḃ ′ , (76)

It is clear that we can replace the matrices πν

AḂ
by the corresponding matrices σν

AḂ
,

and this defines the vector (4× 4) representation of the Lorentz group.

The first four equations relating the 4×4 real matrices Λμ′
ν with the 2×2 complex

matrices UA′
B and Ū Ȧ′

Ḃ
are as follows:

Λ0′
0 −Λ0′

3 = U1′
2 Ū 1̇′

2̇
+ U2′

2 Ū 2̇′
2̇
,

Λ0′
0 +Λ0′

3 = U1′
1 Ū 1̇′

1̇
+ U2′

1 Ū 2̇′
1̇
,

Λ0′
0 − iΛ0′

2 = U1′
1 Ū 1̇′

2̇
+ U2′

1 Ū 2̇′
2̇
,

Λ0′
0 + iΛ0′

2 = U1′
2 Ū 1̇′

1̇
+ U2′

2 Ū 2̇′
1̇
.

The next four equations relating the 4× 4 real matrices Λμ′
ν with the 2× 2 complex

matrices UA′
B and Ū Ȧ′

Ḃ
are as follows:

Λ1′
0 −Λ1′

3 = U1′
2 Ū 2̇′

2̇
+ U2′

2 Ū 1̇′
2̇
,

Λ1′
0 +Λ1′

3 = U1′
1 Ū 2̇′

1̇
+ U2′

1 Ū 1̇′
1̇
,

Λ1′
1 − iΛ1′

2 = U1′
1 Ū 2̇′

2̇
+ U2′

1 Ū 1̇′
2̇
,

Λ1′
1 + iΛ1′

2 = U1′
2 Ū 2̇′

1̇
+ U2′

2 Ū 1̇′
1̇
.

We skip the next two groups of four equations corresponding to the “spatial” indices
2 and 3, reproducing the same scheme as the last four equations with the space index
equal to 1.

It can be checked that now det (Λ) = [detU ]2 [
detŪ

]2
. The group of

transformations thus defined is SL(2,C), which is the covering group of the Lorentz
group. With the invariant “spinorial metric” in two complex dimensions, εAB and
εȦḂ such that ε12 = −ε21 = 1 and ε1̇2̇ = −ε2̇1̇, we can define the contravariant
components πν AḂ . It is easy to show that the Minkowskian space-time metric,
invariant under the Lorentz transformations, can be defined as

gμν = 1

2

[
π

μ

AḂ
πν AḂ

]
= diag(+,−,−,−). (77)
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Together with the anti-commuting spinors ψα the four real coefficients defining
a Lorentz vector, xμ π

μ

AḂ
, can generate now the supersymmetry via standard

definitions of super-derivations. Let us then choose the matrices Λα′
β to be the usual

spinor representation of the SL(2,C) group, while the matrices UA′
B will be defined

as follows:

U1′
1 = jΛ1′

1 , U1′
2 = −jΛ1′

2 , U2′
1 = −jΛ2′

1 , U2′
2 = jΛ2′

2 , (78)

the determinant of U being equal to j2. Obviously, the same reasoning leads to
the conjugate cubic representation of SL(2,C) if we require the covariance of the
conjugate tensor

ρ̄
β̇

ḊĖḞ
= j ρ̄

β̇

ĖḞ Ḋ
= j2 ρ̄

β̇

Ḟ ḊĖ
,

by imposing the equation similar to (63)

Λα̇′
β̇
ρ̄
β̇

ȦḂĊ
= ρ̄α̇′

Ȧ′Ḃ ′Ċ′Ū
Ȧ′
Ȧ

Ū Ḃ ′
Ḃ

Ū Ċ′
Ċ

. (79)

The matrix Ū is the complex conjugate of the matrix U , with determinant equal
to j .

8 Ternary Dirac Equation

After the discovery of spin of the electron (the Stern-Gerlach experiment [18]), Pauli
understood that a Schroedinger equation involving only one complex-valued wave
function is not enough to take into account this new degree of freedom, and proposed
to describe the dichotomic spin variable by introducing a two-component function
forming a column on which hermitian matrices can act as linear operators [19].

The basis of complex traceless 2 × 2 hermitian matrices contains just three
elements since then known as Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ1 =

(
1 0
0 −1

)
,

which can be arranged in a single 3-covector σ = [σ1, σ2, σ3].
The simplest linear relation between the operators of energy, mass, and momen-

tum acting on a column vector (called a Pauli spinor) would read then:

(
E 0
0 E

) (
ψ1

ψ2

)
=

(
mc2 0

0 mc2

) (
ψ1

ψ2

)
+ c σ · p

(
ψ1

ψ2

)
, (80)
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where

σ · p = σ1 p1 + σ2 p2 + σ3 p3 =
(

p3 p1 − i p2

p1 + i p2 −p3

)
.

We can write (80) in a simplified manner, denoting the Pauli spinor by one letter ψ
and treating the unit matrix symbolically like a number:

E ψ = mc2 ψ + σ · p ψ. (81)

Such an equation is not invariant under Lorentz transformations. Indeed, by
iterating, which amounts just to take the square of the same operator, we arrive
at the following relation: between the operators of energy and momentum and the
mass of the particle:

E2 = m2c4 + 2mc3 | p |2 σ · p+ c2p2, (82)

instead of the relativistic relation

E2 − c2 p2 = m2c4. (83)

The double product in the expression for the energy squared can be removed if one
introduces a second Pauli spinor satisfying a similar equation, and in such way that
the two equations intertwine the two spinors. So let the first Pauli spinor be denoted
by ψ+ and the second one by ψ−, and let them satisfy the following coupled system
of equations:

E ψ+ = mc2 ψ+ + σ · p ψ−,

E ψ− = −mc2 ψ− + σ · p ψ+, (84)

which coincides with the relativistic equation for the electron found by Dirac a
few years later [20]. The relativistic invariance is now manifest, because due to
the negative mass term in the second equation, the iteration leads to the separation
of variables, and all the components satisfy the desired relation

[E2 − c2 p2]ψ+ = m2c4 ψ+, [E2 − c2 p2]ψ− = m2c4 ψ−.

The side effect of this modification was the presence of solutions with negative
mass, which led Dirac to the conclusion that the “holes” in the sea of such solutions
could be interpreted as electrons with the same mass as the usual ones, but with
opposite charge.

But at the time Pauli was considering the inclusion of spin of the electron in
a quantum mechanical Schroedinger-like equation, the positron has not yet been
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discovered, and the introduction of negative mass states seemed absurd. This is why
Pauli introduced the following non-relativistic equation:

E ψ=
[

1

2m
(σ · (p−eA))2+eV (x)

]
ψ. =

[
1

2m
(p− eA)2 + eσ · B+ eV (x)

]
ψ.

(85)
Later on it turned out that the Pauli equation (85) is the non-relativistic limit of the
Dirac equation.

The two Eqs. (84) can be re-written using a matrix notation:

(
E 0
0 E

) (
ψ+
ψ−

)
=

(
mc2 0

0 −mc2

) (
ψ+
ψ−

)
+

(
0 c σp

σp 0

) (
ψ+
ψ−

)
, (86)

where the entries in the energy operator and the mass matrix are in fact 2×2 identity
matrices, as well as the sigma-matrices appearing in the last matrix, so that in reality
the above equation represents the 4×4 Dirac equation, only in a different basis [20].

Now we want to describe three different two-component fields (which can be
incidentally given the names of three colors [21, 22], the “red” one ϕ+, the “blue”
one χ+, and the “green” one ψ+); more explicitly,

ϕ+ =
(
ϕ1+
ϕ2+

)
, χ+ =

(
χ1+
χ2+

)
, ψ+ =

(
ψ1+
ψ2+

)
, (87)

In order to satisfy the required existence of anti-particles, we should introduce three
“anti-colors,” denoted by the “minus” underscript, corresponding to the opposite
colors: “cyan” for ϕ−, “yellow” for χ−, and “magenta” for ψ−; here, two, we have
to do with two-component columns:

ϕ− =
(
ϕ1−
ϕ2−

)
, χ− =

(
χ1−
χ2−

)
, ψ− =

(
ψ1−
ψ2−

)
, (88)

all in all twelve components. This reflects the overall Z2 × Z2 × Z3 symmetry: one
Z2 group corresponding to the spin-like dichotomic degree of freedom, describing
two accessible states; the second Z2 required to account for the particle–anti-particle
symmetry, and the Z3 group corresponding to color symmetry.

The “colors” should satisfy first order equations conceived in such a way that
neither can propagate by itself, just like in the case of E and B components of
Maxwell’s tensor in electrodynamics, or the couple of two-component Pauli spinors
which cannot propagate alone, but constitute one single entity, the four-component
Dirac spinor [23].

This leaves little space for the choice of the system of intertwined equations;
here is the ternary generalization of Dirac’s equation, intertwining not only particles
with anti-particles, but also the three “colors,” in such a way that the entire system
becomes invariant under the action of the Z2 × Z2 × Z3 group:
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E ϕ+ = mc2 ϕ+ + c σ · pχ−

E χ− = −j mc2 χ− + c σ · pψ+

E ψ+ = j2 mc2 ψ+ + c σ · pϕ−

E ϕ− = −mc2 ϕ− + c σ · pχ+

E χ+ = j mc2 χ+ + c σ · pψ−

E ψ− = −j2 mc2 ϕ+ + c σ · pϕ+ (89)

where ϕ+ =
(
ϕ1+
ϕ2+

)
, ϕ− =

(
ϕ1−
ϕ2−

)
, χ+ =

(
χ1+
χ2+

)
,

χ− =
(
χ1−
χ2−

)
, ψ+ =

(
ψ1+
ψ2+

)
, ψ− =

(
ψ1−
ψ2−

)
, (90)

on which Pauli sigma-matrices act in a natural way.
On the right-hand side, the mass terms form a diagonal matrix whose entries

follow an ordered row of powers of the sixth root of unity q = e
2πi

6 . Indeed,
we have

m=q6m, −jm = q5m, j2m = q4m, −m = q3m, jm = q2m, −j2m = qm.

Let us start the diagonalization of our system by deriving two third-order
equations relating between them the ϕ+ and ϕ− fields. By iterating the E operator
three times, we get the following equation:

E3 ϕ+ = m3c6 ϕ+−2j m2c5 σ ·pχ−−2j mc3 σ ·pψ++ | p |2 σ ·pϕ− (91)

As one can see, at the third iteration diagonalization is not yet achieved because
of the presence, besides the fields ϕ+ and ϕ−, of two other fields, namely ψ+ and
χ−. Similar third-order equations are produced when we start the iteration from
any of the five remaining components; in all cases, they contain four terms mixing
other components. Total diagonalization is achieved only after the sixth iteration;
the explicit calculus is quite tedious, but it can be performed using representation of
our system in terms of tensor products of matrices.

The final result is extremely simple: all the components satisfy the same sixth-
order equation,

E6 ϕ+ = m6c12 ϕ+ + c6 | p |6 ϕ+,

E6 ϕ− = m6c12 ϕ− + c6 | p |6 ϕ−. (92)
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The energy operator is obviously diagonal, and its action on the spinor-valued
column-vector can be represented as a 6× 6 operator valued unit matrix. The mass
operator is diagonal, too, but its elements represent all powers of the sixth root of
unity q, which are q = −j2, q2 = j, q3 = −1, q2 = j2, q5 = −j , and q6 = 1.
Finally, the momentum operator is proportional to a circulant matrix which mixes
up all the components of the column vector.

On the basis in which the original system (89) was proposed, the matrix operators
can be expressed as follows:

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

m 0 0 0 0 0
0 −m 0 0 0 0
0 0 jm 0 0 0
0 0 0 −jm 0 0
0 0 0 0 j2m 0
0 0 0 0 0 −j2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 σ · p 0 0
0 0 σ · p 0 0 0
0 0 0 0 0 σ · p
0 0 0 0 σ · p 0
0 σ · p 0 0 0 0

σ · p 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(93)
In fact, the dimension of the two matrices M and P displayed in (93) above is
12× 12: all the entries in the first one are proportional to the 2× 2 identity matrix,

so that in the definition one should read

(
m 0
0 m

)
instead of m,

(
jm 0
0 jm

)
instead of

j m, etc. The entries in the second matrix P contain 2×2 Pauli’s sigma-matrices, so
that P is also a 12×12 matrix. The energy operator E is proportional to the 12×12
identity matrix.

Using a more rigorous mathematical language the three operators can be
expressed in terms of tensor products of matrices of lower dimensions. Let us
introduce the two following 3× 3 matrices:

B =
⎛

⎝
1 0 0
0 j 0
0 0 j2

⎞

⎠ and Q3 =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ (94)

Then the 12 × 12 matrices M and P can be represented as the following tensor
products:

M = m B ⊗ σ3 ⊗ l12, P = Q3 ⊗ σ1 ⊗ (σ · p) (95)

with as usual, l12, σ1 and σ3 denote the well-known 2× 2 matrices

l12 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
.

The energy operator, proportional to the 12× 12 unit matrix, can be written in a
similar manner as a product of three unit matrices, l13 ⊗ l12 ⊗ l12.
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On the basis in which the functions are aligned in a column like in (90), the
matrix operators take on another form, namely

M = m σ3 ⊗ B ⊗ 12, P = σ1 ⊗Q3 ⊗ σ · p (96)

Our system of twelve equations can be now encoded in the following form, using
the matrices M and P defined above:

E Ψ =
(
c2 M + c P

)
Ψ. (97)

Then we need to evaluate the sixth power of this operator acting on the vector
column Ψ to prove that we have indeed E6 = m6c12+ c6 | p |6 .

The fact that Eq. (97) is a necessary condition for the system (89) to be satisfied
can be inferred from the following simple exercise. Let us write Eq. (97) in a slightly
different form, by moving the mass matrix to the left-hand side. We get the formal
equality between the actions of two matrices, when applied to the space of solutions
of our system:

(
E − c2 M

)
Ψ = c P Ψ. (98)

We suppose that as far as Ψ satisfies the above Eq. (98), the determinants of the
two matrices should be equal. On the right-hand side we can treat the operator σ · p
as a number whose square is just p2 multiplied by a 2× 2 unit matrix. This enables
us to reduce the problem to a 6×6 matrix form, forgetting for a while that the fields
ϕ+, ϕ−, etc. are in fact two-component quantities. Then the 6 × 6 matrix on the
left-hand side will read:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

E −mc2 0 0 0 0 0
0 E +mc2 0 0 0 0
0 0 E − jmc2 0 0 0
0 0 0 E + jmc2 0 0
0 0 0 0 E − j2mc2 0
0 0 0 0 0 E + j2mc2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

while the matrix P is as given in (93).
The determinant of the diagonal matrix E − c2 M is equal to the product of its

six diagonal elements:

(E −mc2)(E +mc2)(E − jmc2)(E + jmc2)(E − j2mc2)(E + j2mc2) =

(E2 −m2c4)(E2 − j2m2c4)(E2 − jm2c4) = E6 −m6c12,

while the determinant of the matrix c P is easily proved to be c6 | p |6, so that
from equality of determinants we get the condition E6 − c6 | p |6= m6c12.
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This, however, is not the proof that all the twelve components of the column-
vector Ψ satisfy the unique differential equation of sixth order, resulting from the
quantum correspondence principle. The rigorous proof is done by applying six times
the matrices appearing on both sides of the equation and showing that the result
is proportional to the unit 12 × 12 matrices multiplied by the three expressions
appearing in (98), i.e. the sixth powers of energy, momentum, and mass.

Before we proceed to the discussion of the properties of general solutions of
our system, we would like to draw attention to the similarity between this system,
and the systems of Maxwell and Dirac equations in vacuo, i.e. describing free
fields without any interactions. The Maxwell equations, which after gauge fixing
on the 4-potential Aμ reduce to a system of four linear differential equations for
four functions of t and r. In general, the characteristic equation of such a system
must be of the fourth order; however, due to the particular symmetry of Maxwell’s
equations, the characteristic equation is of the second order (in fact, it is a fourth-
order equation which is a square of the second-order equation). This ensures the
existence of a single light cone and the absence of bi-refringence in vacuum.

The same phenomenon occurs for the characteristic equation od the Dirac
equation, which is also a system of four linear differential equations for the four
components of a Dirac spinor. The diagonalization of the Dirac system occurs
already at the level of the second order Klein-Gordon equation, although in the most
general case of four linear differential equations the characteristic equation could be
of the fourth order.

In our case we have as much as twelve linear equations imposed on twelve
independent functions of time and space; therefore, one could expect a twelfth-order
characteristic equation. However, due to the particular properties of Pauli’s matrices
and the symmetry of our system, the characteristic equation is of the sixth order
only.

9 Solutions

The system (89) of twelve linear equations supposed to describe the dynamics of
three intertwined fields was shown to be represented by a single matrix operator (98)
acting on a 12-component vector: symbolically EΨ = (c2M + cP )Ψ. By
consecutive application of this matrix operator we are able to separate the variables
and find the common equation of sixth order that is satisfied by each of the
components:

E6Ψ = m6c12Ψ + c6 p6Ψ. (99)

Applying the quantum correspondence principle, the above equation relating mass,
energy, and momentum (99) is transformed into a linear differential equation of the
sixth order. Indeed, according to

E →−i h̄
∂

∂t
, p →−i h̄∇, (100)
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we get the following sixth-order partial differential equation to be satisfied by each
of the components of the wave function Ψ :

− h̄6 ∂6

∂t6 ψ −m6c12ψ = −h̄6Δ3ψ. (101)

Let us write the algebraic expression relating mass, energy, and momentum (99)
simply as follows:

E6 −m6c12 =| p |6 c6. (102)

This equation can be factorized showing how it was obtained by subsequent action
of the operators of the system (89):

E6 −m6c12 = (E3 −m3c6)(E3 +m3c6) =

(E −mc2)(jE −mc2)(j2E −mc2)(E +mc2)(jE +mc2)(j2E +mc2) =| p |6 c6.

Equation (101) can be solved by separation of variables; the time-dependent and
the space-dependent factors have the same structure:

A1 e
ω t + A2 e

j ω t + A3e
j2 ω t , B1 e

k.r + B2 e
j k.r + B3 e

j2 k.r

with ω and k satisfying the following dispersion relation:

ω6

c6
+ m6c6

h̄6
=| k |6, (103)

where we have identified E = h̄ω and p = h̄k.
Up to this point we follow exactly the way in which the Klein-Gordon equation

is deduced from the Dirac equation as the common condition to be satisfied by each
of the components of the Dirac spinor:

E2ψ = m2c4ψ + c2p2ψ → −h̄2 ∂
2ψ

∂t2
= m2c4ψ − h̄2?ψ. (104)

The solutions of (104) are sought in the plane wave form ψ ∼ ei(ωt+k·r). Due to the
purely imaginary exponential, after such a substitution the Klein-Gordon equation
reduces to the well-known algebraic condition

h̄2ω2 = m2c4 + h̄2k2, (105)

which coincides with the previously established relation between the energy,
momentum, and mass due to the correspondence E = h̄ω and p = h̄k introduced
by de Broglie. The relation (103) is invariant under the action of Z2 × Z3 = Z6
symmetry, because to any solution with given real ω and k one can add solutions
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with ω replaced by jω or j2ω, jk or j2k, as well as −ω; there is no need to
introduce also −k instead of k because the vector k can take on all possible
directions covering the unit sphere.

The nine complex solutions with positive frequency ω as well as with j ω and
j2 ω obtained by the action of the Z3-group can be displayed in a compact manner
in form of a 3× 3 matrix. The inclusion of the essential Z2-symmetry ensuring the
existence of anti-particles leads to the nine similar solutions with negative ω. The
two matrices are displayed below:

⎛

⎜⎝
eω t+k·r eω t+jk·r eω t+j2k·r

ejω t+k·r ejω t+jk·r ejω t+j2k·r

ej
2ω t+k·r ej

2ω t+k·r ej
2ω t+j2k·r

⎞

⎟⎠ ,

⎛

⎜⎝
e−ω t−k·r e−ω t−jk·r e−ω t−j2k·r

e−jω t−k·r e−jω t−jk·r e−jω t−j2k·r

e−j2ω t−k·r e−j2ω t−k·r e−j2ω t−j2k·r

⎞

⎟⎠

(106)
and their nine real linear combinations can be represented in the following 3 × 3
matrix of functions as follows:

⎛

⎜⎝
eω t+k·r eω t− k·r

2 cos(K · r) eω t− k·r
2 sin(K · r)

e− ω t
2 +k·r cosΩ t e− ω t

2 − k·r
2 cos(Ω t −K · r) e− ω t

2 − k·r
2 cos(Ω t −K · r)

e− ω t
2 +k·r sinΩ t e− ω t

2 − k·r
2 sin(Ω t −K · r) e− ω t

2 − k·r
2 sin(Ω t −K · r)

⎞

⎟⎠ ,

(107)
where Ω =

√
3

2 ω and K =
√

3
2 k; the same can be done with the conjugate

solutions (with −ω instead of ω). A similar matrix, of course, can be produced for
the alternative negative ω choice.

The functions displayed in the matrix do not represent a wave; however, one can
produce a propagating solution by forming certain cubic combinations, e.g.

eω t+k·r e−
ω t
2 − k·r

2 cos(Ω t−K ·r) e− ω t
2 − k·r

2 sin(Ω t−K ·r) = 1

2
sin(2Ω t−2K ·r).

What we need now is a multiplication scheme that would define triple products
of non-propagating solutions yielding propagating ones, like in the example given
above, but under the condition that the factors belong to three distinct subsets (which
can be later on identified as “colors”).

Before we proceed farther, let us remind that the set of six independent
functions is expected to generate the most general solution of our sixth-order
differential equation. Therefore, among the nine functions displayed in the above
matrices (106), as well as in the real basis (107), three are superfluous.

Indeed, the determinants of the two complex matrices (106), as well as that of the
real matrix (107), identically vanish. Their lower 2× 2 minors are also zero, which
confirms the idea that only six out of nine functions are independent. In principle,
we could pick up any six functions, but for symmetry reasons we shall remove the
diagonal ones. The remaining six functions are displayed in the truncated matrix:
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⎛

⎜⎝
0 eω t− k·r

2 cos(K · r) eω t− k·r
2 sin(K · r)

e− ω t
2 +k·r cosΩ t 0 e− ω t

2 − k·r
2 cos(Ω t −K · r)

e− ω t
2 +k·r sinΩ t e− ω t

2 − k·r
2 sin(Ω t −K · r) 0

⎞

⎟⎠ ,

(108)
In what follows, we shall choose the Cartesian system of space coordinates

with its x-axis aligned with the vector k, so that in all the six remaining functions
displayed in the real matrix (107) we can replace the scalar product k · r by kx, and

K · r by Kx, with K =
√

3
2 k.

With this in mind, let us display the six independent solutions in the following
two groups of three:

F1 = e−
ωt
2 +kx sinΩt, F2 = e−

ωt
2 +kx cosΩt,

G1 = eωt−
kx
2 sinKx, G2 = eωt−

kx
2 cosKx,

H1 = e−
ωt
2 − kx

2 sin(Ωt −Kx), H2 = e−
ωt
2 − kx

2 cos(Ωt −Kx). (109)

Neither of the six functions above can represent a freely propagating wave: even
the last two functions H1 and H2 contain, besides the running sinusoidal waves,
the real exponentials which have a damping effect. (The wave cannot penetrate
distances greater than a few wavelengths, and can last only for times comparable
with few oscillations.) However, we shall show that certain cubic expressions can
represent a freely propagating wave, without any damping factors. Taking a closer
look at the six solutions displayed in (109), we see that the only way to get rid of
the real exponents present in all those functions, but different damping factors, is to
form cubic expressions constructed with three functions labelled with three different
letters. Here is the exhaustive list of eight admissible cubic combinations:

F1 G1 H1, F2 G1 H1;

F1 G1 H2, F2 G1 H2;

F1 G2 H1, F2 G2 H1;

F1 G2 H2, F2 G2 H2;
But these expressions still contain, besides running waves with double frequency
2Ω , undesirable functions like sinΩt or cosKx. To take an example, we have

F1 G2 H2 = sinΩt cosKx cos(Ωt −Kx) =
1

2
[sin(Ωt +Kx)+ sin(Ωt −Kx)] cos(Ωt −Kx) =

1

4
sin(2Ωt − 2Kx)+ 1

4
sin(2Ωt)+ 1

4
sin(2Kx).
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The explicit expressions, in terms of the trigonometric functions, of the eight
independent cubic expressions displayed above, are quite cumbersome. Here we
give the final result, showing that there are only two combinations of cubic products
of solutions of the generalized ternary Dirac equation that represent running waves,
which are the following:

F1G2H2 + F1G1H1 − F2G1H2 + F2G2H1 = sin(2Ωt − 2Kx), (110)

F2G2H2 + F2G1H1 + F1G1H2 − F1G2H1 = cos(2Ωt − 2Kx). (111)

The symmetry of these expressions appears better when grouped as follows:

F1(G2H2 +G1H1)+ F2(G2H1 −G1H2) = sin(2Ωt − 2Kx), (112)

F2(G2H2 +G1H1)+ F1(G1H2 −G2H1) = cos(2Ωt − 2Kx). (113)

Similarly two running waves are produced by forming corresponding cubic
combinations of negative frequency solutions obtained by substituting −ω instead
of ω and−k instead of k. The four running waves so obtained could represent freely
propagating Dirac spinor if the dispersion relation relating ω and k was the usual
quadratic one, but here it is not. So we are still unable to produce a Dirac particle
from cubic combinations of solutions of our sixth-order system.

Functions describing running waves can also be obtained via binary combina-
tions of solutions belonging to classes with opposite sign of ω. The “singlets”
corresponding to product of a solution with its “anti-solution,” i.e. the mirror image
obtained by the mere change of signs in the exponentials will not give anything
interesting, because such products are equal to a constant, e.g.,

ejωt+j2kx · e−jωt−j2kx = e0 = 1.

But with two functions which are not complex conjugates the result is different:

ejωt+j2kx · e−j2ωt−jkx = e(j−j2) ωt−(j2−j) kx = ei(Ωt−Kx), (114)

with Ω =
√

3
2 ω, K =

√
3

2 k. An alternative choice of two elementary solutions
leads to a free wave running in the opposite direction:

e−j2ωt−j2kx · ejωt+jkx = ei(Ωt+Kx).
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10 Relativistic Invariance

Let us rewrite the matrix operator generating the system (89) when it acts on the
column vector containing twelve components of three “color” fields,

E l12 ⊗ l13 ⊗ l12 = mc2 σ3 ⊗ B ⊗ l12 + σ1 ⊗Q3 ⊗ c σ · p

in a slightly different way, with energy and momentum operators on the left-hand
side, and the mass operator on the right-hand side:

E l12 ⊗ l13 ⊗ l12 − σ1 ⊗Q3 ⊗ σ · p = mc2 σ3 ⊗ B ⊗ l12 (115)

Following a similar procedure known from the treatment of the standard Dirac equa-
tion, let us transform this equation so that the mass operator becomes proportional
to the unit matrix. To do so, let us multiply Eq. (115) from the left by the matrix
σ3 ⊗ B† ⊗ l12. Now we get the following equation which enables us to interpret
the energy and the momentum as the components of a Minkowskian four-vector
c pμ = [E, cp]:

E σ3 ⊗ B† ⊗ l12 − iσ2 ⊗ j2 Q2 ⊗ c σ · p = mc2 l12 ⊗ l13 ⊗ l12, (116)

where we used the fact that under matrix multiplication, σ3σ3 = l12, B†B = l13, and
B†Q3 = j2 Q2.

One can check by direct computation that the sixth power of this operator gives
the same result as before,

[
E σ3 ⊗ B† ⊗ l12 − iσ2 ⊗ j2 Q2 ⊗ c σ · p

]6 =
[
E6 − c6p6

]
l112 = m6c12 l112

(117)
Equation (116) can be written in a concise manner using the Minkowskian indices
and the usual pseudo-scalar product of two four-vectors as follows:

Γ μpμ = mc l112, with p0 = E

c
, pk = mc

dxk

ds
. (118)

with 12× 12 matrices Γ μ,μ = 0, 1, 2, 3 defined as follows:

Γ 0 = σ3 ⊗ B† ⊗ l12, Γ k = −iσ2 ⊗ j2 Q2 ⊗ σk (119)

The four 12×12 matrices do not satisfy usual anti-commutation relations similar to
those of the 4× 4 Dirac matrices γ μ, i.e. γ μγ ν + γ νγ μ = 2 gμν 14.

Nevertheless, the system of equations satisfied by the 12-dimensional wave
function Ψ

− ih̄ Γ μ ∂μ Ψ = mcΨ (120)



346 R. Kerner

is a hyperbolic one, and has the same light cone as the Klein-Gordon equation. To
corroborate this statement, let us first consider the massless case,

− ih̄ Γ μ ∂μ Ψ = 0. (121)

Assuming the general solution as usual in the form of an exponential function ekμx
μ

,
we can replace the derivations by the components of the wave 4-vector kμ, and take
the sixth power of the matrix Γ μkμ. The resulting dispersion relation in the dual
space is shown to be

k6
0− | k |6 =

(
k2

0− | k |2
) (

k2
0 − j | k |2

) (
k2

0 − j2 | k |2
)

=
(
k2

0− | k |2
) (

k4
0 + k2

0 | k |2 + | k |4
)
= 0. (122)

Here first factor defines the usual relativistic light cone, while next factor of degree
four is strictly positive (besides the origin 0), which means that the system has only
one characteristic surface which is the same for all massless fields. Each of the three
factors remains invariant under a different representation of the SL(2,C) group.

Let us introduce the following three matrices representing the same four-
vector kμ:

K3 =
(
k0 kx

kx k0

)
, K1 =

(
k0 jkx

jkx k0

)
, K2 =

(
k0 j2kx

j2kx k0

)
, (123)

whose determinants are, respectively,

det K1 = k2
0 − j2k2

x, det K2 = k2
0 − jk2

x, det K3 = k2
0 − k2

x. (124)

Let us notice that only the third matrix K3 is hermitian, and corresponds to a real
space-time vector kμ, while neither of the remaining two matrices K1 and K2 is
hermitian; however, one is the hermitian conjugate of another.

In what follows, we shall replace the absolute value of the wave vector | k | by
a single spatial component, say kx , because for any given four-vector kμ = [k0,k]
we can choose the coordinate system in such a way that its x-axis shall be aligned
along the vector k. Then it is easy to check that if we set

(
k′0
k′x

)
=

(
cosh u sinh u

sinh u cosh u

) (
k0

kx

)
, (125)

then

(
cosh u j2 sinh u

j sinh u cosh u

)(
k0

j kx

)
=

(
k′0
j k′x

)
and
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(
cosh u j sinh u

j2 sinh u cosh u

) (
k0

j2kx

)
=

(
k′0

j2k′x

)
, (126)

where the transformed 4-vectors are given by the following expressions, for each
case above:

i) k
′
0 = k0 cosh u+ kx sinh u, k

′
x = k0 sinh u+ kx cosh u

ii) k
′
0 = k0 cosh u+ j2 kx sinh u, k

′
x = j k0 sinh u+ kx cosh u

iii) k
′
0 = k0 cosh u+ j kx sinh u, k

′
x = j2 k0 sinh u+ kx cosh u

Let us now introduce a 6× 6 matrix composed with the above three 2× 2 matrices:

⎛

⎝
0 k0 l12 + k · σ 0
0 0 k0 l12 + j k · σ

k0 l12 + j2 k · σ 0 0

⎞

⎠ (127)

or, more explicitly,

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 k0 kx 0 0
0 0 kx k0 0 0
0 0 0 0 k0 jkx

0 0 0 0 jkx k0

k0 j2kx 0 0 0 0
j2kx k0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(128)

It is easy to check that

det K = (detK1) · (detK2) · (detK3)

= (k2
0 − k2

x)(k
2
0 − j2k2

x)(k
2
0 − jk2

x) = k6
0 − k6

x. (129)

It is also remarkable that the determinant remains the same on the basis in which
the ternary Dirac operator was proposed, namely when we consider the matrix

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

k0 0 0 kx 0 0
0 k0 kx 0 0 0
0 0 k0 0 0 jkx

0 0 0 k0 jkx 0
0 j2kx 0 0 k0 0

j2kx 0 0 0 0 k0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(130)
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Let us show now that the spinorial representation of Lorentz boosts can be applied
to each of the three matrices K1,K2, and K3 separately, keeping their determinants
unchanged. As a matter of fact, besides the well-known formula:

(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

) (
k0 kx

kx k0

) (
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)
=

(
k′0 k′x
k′x k′0

)
, (131)

with

k′0 = k0 cosh u+ kx sinh u, k′x = k0 sinh u+ kx cosh u. (132)

which becomes apparent when we remind that cosh2 u
2 + sinh2 u

2 = cosh u and
2 sinh u

2 cosh u
2 = sinh u, keeping unchanged the Minkowskian square invariant:

k′20 − k′2x = k2
0 − k2

x , we have also two transformations of the same kind which
keep invariant the “complexified” Minkowskian squares appearing as factors in the
sixth-order expression k6

0 − k6
x , namely

k2
0 − j k2

x and k2
0 − j2 k2

x.

Notice that the expressions above can be identified as the determinants of the
following 2× 2 matrices:

k2
0 − j k2

x = det

(
k0 j2k2

x

j2 kx k0

)
, k2

0 − j2 k2
x = det

(
k0 jk2

x

j kx k0

)
. (133)

It is easy to check that we have:

(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)(
k0 jkx

jkx k0

)(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)
=

(
k′0 j k′x
j k′x k′0

)
, (134)

with k′0 = k0 cosh u+ j k′x sinh u, so that k′20 − jk′2x = k2
0 − jk2

x , as well as

(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)(
k0 j2 kx

j2 kx k0

)(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)
=

(
k′0 j2 k′x

j2 k′x k′0

)
, (135)

This shows that spinorial representation of the SL(2,C) group acts on the gener-
alized Dirac matrix operator through three peculiar representations associated with
the elements of the Z3 group. Each of these representations acts separately on one
ordinary 4-vector and two complex conjugate 4-vectors:

[k0,k], [k0,k], and [k0,k].
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11 Propagators

Let us introduce the Fourier transform of a real function of one variable, and the
inverse Fourier transform as follows [24]:

f̂ (k) =
∫ ∞

−∞
f (x) eikx dx, f (x) = 1

2π

∫ ∞

−∞
f̂ (k) e−ikx dk. (136)

In this convention, the constant function f (x) = 1 is transformed into the Dirac
delta function δ(k) multiplied by 2π .

In terms of their Fourier transforms, linear differential operators of any order
are represented by corresponding algebraical expressions multiplying the Fourier
transform of the unknown function. The Fourier transform of the Green function is
then given by the inverse of this expression, for example, the Fourier transform of
the Green function of the Klein-Gordon operator is defined as

Ĝ(kμ) = 1

k2
0 − k2 −mu2

,

(with μ = mc
h̄

). The Fourier transform of Green’s function for the Dirac equation is
a 4× 4 matrix:

D̂(kμ) = γ μkμ +m l14

−k2
0 + k2 −m2

,

because quite obviously one has

(γ μkμ +m l14)(γ
μkμ −m l14) = −k2

0 + k2 −m2 l14.

The ternary generalization of Dirac’s equation being written in the most compact
form as in (121), in terms of Fourier transforms it becomes

(
Γ μ kμ −m l112

)
Ψ̂ (k) = 0. (137)

The sixth power of the matrix Γ μkμ is diagonal and proportional to m6, so that we
have

(
Γ μkμ

)6 −m6 l112 =
(
k6

0− | k |6 −m6
)

l112 = 0. (138)

Now we have to find the inverse of the matrix
(
Γ μ kμ −m l112

)
. To this effect, let us

note that the sixth-order expression on the left-hand side in (138) can be factorized
as follows:
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(
Γ μkμ

)6 −m6 =
((

Γ μkμ
)2 −m2

) ((
Γ μkμ

)2 − j m2
) ((

Γ μkμ
)2 − j2 m2

)
.

(139)
The first factor is in turn the product of two linear expressions, one of which is the
ternary Dirac operator:

(
Γ μkμ

)6 −m6

= (
Γ μkμ −m

) (
Γ μkμ +m

) ((
Γ μkμ

)2 − j m2
) ((

Γ μkμ
)2 − j2 m2

)
.

(140)

Therefore the inverse of the Fourier transform of the ternary Dirac operator is given
by the following matrix:

[(
Γ μkμ

)6 −m6
]−1 =

(
Γ μkμ +m

) ((
Γ μkμ

)2 − j m2
) ((

Γ μkμ
)2 − j2 m2

)

(
k6

0− | k |6 −m6
) .

(141)
It takes almost no effort to prove that the numerator can be given a more symmetric
form. Taking into account that

((
Γ μkμ

)2 − j m2
) ((

Γ μkμ
)2 − j2 m2

)
= (

Γ μkμ
)4 +m2 (

Γ μkμ
)2 +m4,

we find that

(
Γ μkμ +m

) ((
Γ μkμ

)2 − j m2
) ((

Γ μkμ
)2 − j2 m2

)
=

(
Γ μkμ

)5 +m
(
Γ μkμ

)4 +m2 (
Γ μkμ

)3 +m3 (
Γ μkμ

)2 +m4 (
Γ μkμ

)+m5,

so that the final expression can be written in a concise form as

[(
Γ μkμ

)6 −m6
]−1 =

5∑

s=0

ms
(
Γ μkμ

)(5−s)

(
k6

0− | k |6 −m6
) . (142)

In the massless case, the operator equation whose Green’s function we want to
evaluate reduces to

[
1

c6

∂6

∂t6 −
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)3]
G(t, r) = δ4(x) = δ(ct)δ(x)δ(y)δ(z).

Using the Fourier transformation method, we can write:
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[
ω6

c6
− | k |6

]
Ĝ(k0,k) = 1, where k0 = ω

c
, (143)

from which we get

Ĝ(k0,k) = 1

k6
0− | k |6 +Φ(k0,k), (144)

where Φ(k0,k) is a solution of the homogeneous equation,

[
k6

0− | k |6
]
Φ(k0,k) = 0 → Φ(k0,k) = δ(k6

0− | k |6). (145)

The sixth-order polynomial k6
0− | k |6 can be split into the product of three second-

order factors as follows:

k6
0− | k |6= (k2

0− | k |2) (k2
0 − j | k |2) (k6

0 − j2 | k |2), (146)

each of which being a product of two linear expressions with opposite signs of | k |:

(k2
0− | k |2) = (k0+ | k |) (k0− | k |),

(k2
0 − j | k |2) = (k0 + j2 | k |) (k0 − j2 | k |),

(k2
0 − j2 | k |2) = (k0 + j | k |) (k0 − j | k |),

so that the sixth-order expression appearing in (143) can be decomposed into
a product of six linear terms. Let us represent the inverse of this expression
appearing in (144) as a sum of three fractions with second-order expressions in
their denominators:

1

k6
0− | k |6 =

1

3 | k |4
[

1

k2
0− | k |2 +

j

k2
0 − j | k |2 +

j2

k2
0 − j2 | k |2

]
,

(147)
which is to be compared with the usual Fourier inverse of the d’Alembert operator:

1

k2
0− | k |2 =

1

2 | k |2
[

1

k0− | k | −
1

k0+ | k |
]

(148)

The difference in the order of the equation leads to the difference in the algebraic
structure of the polynomial representing the equation for the Fourier transform. Its
inverse displays not just two, but as much as six simple poles displayed in Fig. 4:
In the case of the usual d’Alembertian several different Green’s functions can be
obtained by taking the inverse Fourier transform of the (148). The most widely used
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Fig. 4 The six simple poles
of the integral representation
of zero-mass propagator of
the sixth-order equation

-½k½ ½k½

j½k½

-j½k½

-j2½k½

j2½k½

is the retarded Green’s function, proportional to the well-knwon expression

Gret (x
μ) = δ(ct − kr)

4πr
(149)

Now we have to perform the following integration (in spherical coordinates):

G(xμ)= 1

16π4

∫ 2π

0
dϕ

∫ π

0
sin θdθ

∫ ∞

0
k2d | k |

∫ ∞

−∞
dk0e

−i(k0ct−|k|r cos θ) Ĝ(kμ),

(150)
with Ĝ(kμ) given by the expression (147). Each of its three terms contains an
inverse of quadratic expression resembling the usual d’Alembertian, but multiplied
by the extra factor | k |−4, and with | k2 | appearing with factors 1, j and j2. In
what follows, we shall write k instead of | k | when there is no risk of ambiguity.
Supposing that G(kμ) is spherically symmetric, the integration over dϕ gives just
the factor 2π . Next, we can perform integration over dθ , factorizing the only term
depending on θ , which is eikr cos θ . This integral gives

∫ π

0
eikr cos θ sin θdθ =

∫ 1

−1
eikru du = 2 sin kr

kr
. (151)

Here we have the sum of three contributions:

Ĝ1 = 1

3 | k |4
[

1

k2
0− | k |2

]
Ĝ2 = 1

3 | k |4
[

j

k2
0 − j | k |2

]

Ĝ3 = 1

3 | k |4
[

j2

k2
0 − j2 | k |2

]
, (152)

All three look like the Fourier transforms of the usual d’Alembert operator, but are
marred by a severe infrared singularity due to the common factor | k |−4. They
can be evaluated by performing the contour integrations in the complex plane with
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Fig. 5 Left: The upper contour, containing the poles at j | k | and −j2 | k |, for t < 0; Right:
The lower contour, containing the poles at −j | k | and j2 | k |, for t > 0

respect to the variable k0, as in the usual case: The resulting integrals yield the
following expressions:

−2πi Y (t)
[
j eijkct − j2 eij

2kct
]

2πi Y (−t)
[
j2 eij

2kct − j e−ijkct
]

(153)

Substituting explicit expressions for all complex numbers appearing in these
expressions, we get two real functions:

2π Y(t) e−
√

3
2 kct

[√
3 cos

k

2
ct + sin

k

2
ct

]
,

2π Y(−t) e

√
3

2 kct

[√
3 cos

k

2
ct − sin

k

2
ct

]
,

Both expressions contain the damping factor e

√
3

2 kct which is absent in the first
contribution proportional to the usual d’Alembertian. But as all three components
mix together, all will acquire these damping factors and fade away very quickly
(Fig. 5).

These expressions multiply the Fourier transforms of each of the three k-
dependent parts of Fourier images of Green’s function, G2 and G3, while
the first one, G1 similar to the usual d’Alembertian, has to be multiplied by
2π Y(t) sin(kct). Before performing the last integration over dk, they should
be multiplied by the factor 2π sin(kr)

kr
.

If it were not for the extra | k |−4 factor, the subsequent calculus would follow
the usual computation of the Green’s function by performing the last integral with
respect to k2 dk. Here the integral is very strongly divergent.

However, the Green function we are looking for can be used to investigate
propagation properties if we restrict the class of smooth functions describing the
sources. As a matter of fact, it is enough to consider a rapidly decreasing function
multiplied by the fourth power of k, e.g.

f̂ (k) =| k |4 e−a2 k2
, with real a, (154)
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then the Fourier transform of the convolution of G(x) with the original source
function f (x) will behave as the convolution of a much more “regular” Green
function whose Fourier image is equal to | k |4 Ĝ(k) with a Gaussian source which
is the inverse Fourier transform of e−a2 k2

proportional to another Gaussian function

e
− x2

2a2 . On a source whose Fourier transform is given by (154) the propagator acts
as a Green’s function given by the following expression:

G(xμ)  δ(k(ct − r))

r
+ j δ(k(ct − j r))

r
+ j2 δ(k(ct − j2 r))

r
.

12 Conclusion

We have presented a consistent ternary generalization of both Pauli’s exclusion
principle and the Dirac equation. Both novelties are based on the extension of
fundamental symmetry including the cyclic group Z3, besides the two fundamental
groups Z2 present in the usual Dirac equation of the electron. Adding of Z3 to
the set of fundamental symmetries enabled us to include color in the picture, and
formulate a generalization of Dirac’s equation acting on a 12-component column
containing the equivalent of three Dirac spinors; however, their properties are
radically different.The generalized Z3 Pauli’s principle makes possible coexistence
of three particle states, two similar and one different, contrary to the usual Z2 case
when only two different states of opposite spin can coexist.

The “ternary” Dirac equation also displays very unusual properties. Once
diagonalized, it leads to the common sixth-order equation which all the components
must satisfy. The equation of sixth order gives rise to propagators with very strong
infrared singularity; nevertheless, we can get some insight into the way fields
propagate if the sources we choose display a sufficiently fast decaying behavior
at space infinity,

Perhaps the more interesting feature of this construction appears when we
consider the overall symmetry of this generalization of the Dirac equation. Let us
rewrite again the first-order matrix operator:

E σ3 ⊗ B† ⊗ l12 − iσ2 ⊗ j2 Q2 ⊗ c σ · p = mc2 l12 ⊗ l13 ⊗ l12, (155)

Let us look for possible similarity transformations performed on the matrices
entering this definition, keeping invariant the result of the sixth iteration, i.e. the
matrix equation (E6 − c6 | p |6) l112.

Let us remind that performing the same similarity transformation on the σ -
matrices appearing in the first factors in (155) will not change their commutation
properties: if we set

σk → σ
′
k = MσkM

−1, then [σ ′k, σ
′
m] = M [σk, σm] M−1.
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The matrices that keep the Lie algebra structure generated by the three Pauli
matrices belong to the SU(2) group.

Similarly, we can perform the same similarity transformation on the two 3 × 3
matrices appearing as the second factor in the tensor product defining the ternary
Dirac operator:

B† → B̃† = PB†P−1, Q2 → Q̃2 = PQ2P
−1.

The Lie group that preserves all commutation relations necessary to keep the result
invariant is the SU(3) group.

Finally, the last factor in the tensor products (155) is either the 2 × 2 identity
matrix, or has its σ -matrices multiplied scalarly by the momentum vector p.
Nevertheless, the last factor can be multiplied by one of the elements of the Z6
group, represented by one of the entire powers of the sixth root of unity q without
changing the result of the diagonalization. These three symmetries span the full
symmetry of the Standard Model.

The minimal coupling between the Dirac particles (electrons and positrons) with
the electromagnetic field is obtained by inserting the four-potential Aμ into the Dirac
equation:

γ μ(pμ − e Aμ) ψ = m ψ. (156)

Ternary generalization of Dirac’s equation, when expressed in the form (120)
with explicit Minkowskian indices, offers a similar possibility to introduce gauge
fields.The particular structure of 12 × 12 matrices Γμ makes possible the accom-
modation of three types of gauge fields, corresponding to three factors from which
the tensor product results. The overall gauge field can be decomposed into a sum
of three contributions: the SU(3) gauge field λaB

a
μ, with λa, a = 1, 2, ..8

denoting the eight 3 × 3 traceless Gell-Mann matrices, the SU(2) gauge field
σk A

k
μ, k = 1, 2, 3 and the electric field potential Aem

μ . We propose to insert
each of these gauge potentials into a common 12× 12 matrix as follows:

The strong interaction gauge potential is aligned on the SU(3) matrix basis:

Bμ = l12 ⊗ λaB
a
μ ⊗ l12, a, b, .. = 1, 2, . . . , 8.

appearing as the second factor in the tensor product;
The SU(2) weak interaction potential Ai

μ aligned along the three σ -matrices of
the first tensorial factor

σk A
k
μ ⊗ l13, i, k, .. = 1, 2, 3.

appearing in the first factor of the tensor product; and finally the electromagnetic
field potential

Aem
μ l12
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aligned along the unit 2×2 matrix, appearing in the last factor of the tensor product,
so that the overall expression for the gauge potential becomes:

Aμ = l12 ⊗ λaB
a
μ ⊗ l12 + σk A

k
μ ⊗ l13 ⊗ l12 + l12 ⊗ l13 ⊗ Aem

μ l12 (157)

This scheme is in agreement with the no-go theorem stipulating that the only way to
combine the Lorentz symmetry with internal symmetries is a trivial direct product
of groups (as shown in [25, 26]). It would be interesting to try to solve ternary Dirac
equation with some special form of gauge potentials fixed in advance, describing
the field created by two quarks acting on the third one.

The approach presented here is still at its first stages [27, 28], and many of its
aspects need further development. A lot of questions raised here remain without
answer yet, and we hope that new developments will see the light, as we do hope,
in a not very distant future.
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Pseudo-Solution of Weight Equations in
Neural Networks: Application for
Statistical Parameters Estimation

Vincent J. M. Kiki, Villévo Adanhounme,
and Mahouton Norbert Hounkonnou

Abstract An algebraic approach for representing multidimensional nonlinear func-
tions by feedforward neural networks is implemented for the approximation of
smooth batch data containing input–output of the hidden neurons and the final neural
output of the network. The training set is associated with the adjustable parameters
of the network by weight equations that may be compatible or incompatible.Then
we have obtained the exact input weight of the nonlinear equations and the
approximated output weight of the linear equations using the conjugate gradient
method with an adaptive learning rate. Using the multi-agent system as the different
rates of traders of five regions in the Republic of Benin smuggling the fuel from
the Federal Republic of Nigeria and the computational neural networks, one can
predict the average rates of fuel smuggling traders thinking of this activity in terms
of its dangerous character and those susceptible to give up this activity, respectively.
This information enables the planner or the decision-maker to compare alternative
actions, to select the best one for ensuring the retraining of these traders.

Keywords Function approximation · Conjugate gradient method · Adaptive
training

1 Introduction

Artificial Neural Networks have been widely used in many application areas in
recent years and have shown their strength in solving complex problems in Artificial
Intelligence as well as in Statistics. Although many different models of neural
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networks have been proposed, multilayered FNNs are the commonest [1]. In this
paper, we propose to use the Artificial Feedforward Neural Network in statistical
applications for estimating specific statistical parameters. Those are proportions of
contraband fuel sellers in Benin that have a certain behavior. It should be noted that
this is a population without sampling frame, and thus a population whose parameters
are not identifiable. In this case, the conventional estimation methods are irrelevant
[2] and [3]. As in [2], many other authors, believe that in this case, we obtain
better estimators by using artificial neural networks, and especially the feedforward
networks. More specifically, according to[2], the neural network, in its operation,
produces solutions to very complex problems by adjusting weight coefficients in a
fairly consistent learning scheme.

These authors showed that when the parameters of the studied population
are not identifiable (as in the case of populations without sampling frame), the
theoretical statistical methods (such as maximum likelihood, ordinary least squares,
and moments methods) lose their relevance. They advocate in this case the use of
neural networks for constructing the prediction intervals, and therefore the necessary
estimators.

There are two main categories of neural networks, namely supervised learning
neural networks and unsupervised learning neural networks including the Multilayer
Feedforward Neural Networks. The latter is the one used in this research.

The statistical parameters that we estimate using neural networks in this research
are exclusively descriptive proportions of an opinion poll. An application was
made to the case of contraband fuel sellers. What seems very interesting in this
application is the fact that an artificial neural network is, like biological neurons, an
interconnected set of neurons acting towards solving complex problems.

For example, when a physical person records information, those (biological) neu-
rons are activated depending on the importance (input weights) of such information
in an intelligent thought process. This information undergoes changes before being
issued with a certain degree of efficiency (output weights) resulting in decisions or
actions from this person. Similarly, when it comes to an artificial neural network,
the information is introduced with input weights wi in an input layer.

With activation functions, this information is processed in hidden layers before
it comes out with output weights νi towards the output layer in the form of results.
Some artificial neural networks, in terms of their functioning, are classified in the
category of statistical applications. Thus, just as a neural network can be used to
solve specific problems in artificial intelligence, so can it be used in statistical
applications to test hypotheses or make estimates, and therefore produce results in
statistical inference.

Many studies highlight the wide variety of application areas of neural networks.
Those include, as regards the use of neural networks in artificial intelligence, very
recent works such as those published by Kokkinos and Margaritis [4] that made use
of neural networks for static hand gesture recognition on granular neural networks
[5].

Besides studies on artificial intelligence methods, there are numerous relevant
studies on statistical applications using neural networks.
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The authors in [6] published the paper on Nonlinear Time Series Modeling by
using neural networks. This is an innovative approach in which the proposed model
is a combination of several other stationary and non-stationary linear models. It’s
a model that works thanks in part to the adjustment of the weighting coefficients
of inputs and outputs. Another very interesting research in statistical application
dedicated in February 2012 to confidence and prediction intervals for determining
the number of nodes in artificial neural networks was carried out by Hwang et
al. [2]. The authors show that here the classical statistical theory for constructing
prediction intervals is inappropriate. The reason they mention is that the parameters
are not identifiable. They establish that this inadequacy can be solved by using
neural network. In their work, the authors in [2] proceeded to the construction of
confidence intervals and asymptotically valid predictions. They propose a more or
less operational approach that allows using prediction intervals for choosing the
number of nodes in the network. They have successfully applied this method to a
specific case of electrical load prediction.

Another model for statistical prediction was published by Poli and Jones [7].
This is a nonlinear statistical prediction using neural networks. Their study is based
on a stochastic model featuring a multilayer feedforward architecture with random
connections between units and noisy response functions.

The proportions estimated by using neural networks in this paper are those of the
contraband fuel sellers who are aware of the dangerous nature of their trade on the
one hand, and those who are in favor of abandoning this activity on the other hand.

In order to train an FNN, supervised training is probably the most frequently used
technique. The training process is an incremental adaptation of connection weights
that propagate information between simple processing units called neurons. The
neurons are arranged in layers and connections between the neurons of one layer
and those of the next exist. Also, one can use an algebraic training [1] which is the
approach for approximating multidimensional nonlinear functions by FNNs based
on available input–output. Typically, training involves the numerical optimization
of the error between the data and the actual network’s performance with respect to
its adjustable parameters or weights. Considerable effort has put into developing
techniques for accelerating the convergence of these optimization-based training
algorithms [8–10]. Another line of research has focused on the mathematical
investigation of network’s approximation properties [11–15]. The latter results
provide few practical guidelines for implementing the training algorithms, and they
cannot be used to evaluate the properties of the solutions obtained by numerical
optimization. The algebraic training approach provides a unifying framework that
can be used both to train the network and to investigate their approximation
properties. The data are associated with the adjustable parameters by means of
neural network input–output. Hence the nonlinear training process and related
approximation properties can be investigated via linear algebra. For the first time
to our best knowledgde of the literature, the approach as an extension of typical
neural network methodology we propose in this paper has been applied to train a
feedforward neural network that predicts the average rate of sellers smuggling the
fuel from the Federal Republic of Nigeria to the Republic of Benin, considering this
trade as dangerous and susceptible to give up trading.
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Taking account of the historical, geographical, and sociological realities of the
different peoples of Benin, we aimed to study the behavior of the fuel sellers
in five main regions of Benin smuggling the fuel from the Federal Republic of
Nigeria. Furthermore Porto-Novo, Cotonou, Tchaourou, and Parakou are located
at the neighborhood of the border Benin-Nigeria and Natitingou is the main region
in the North of Benin where the economic activities are well developed. From this
point of view, these regions remain of a great importance for studying the behavior
of the fuel smuggling traders and are worthy of interest for estimating the statistical
parameters derived from this sample.

Indeed, in order to execute the survey one selects 70 interviewers through five
regions, namely Natitingou, Parakou, Tchaourou, Porto Novo, and Cotonou where
the smuggling fuel is well spread. The goal of the interview is to provide the
collection of answers to the two following questions: Are you conscious of the
dangerous character of smuggling fuel trade on the shelves, in the streets end, in
the houses? Do you get involved with giving up trading the smuggling fuel if the
government of Benin decides your retraining? By virtue of the above two questions,
one interviewed 660 fuel smuggling sellers in Benin in 2013 from 15 to 31 May,
during 17 days following the steps: 40 interviewees per day during the first 16 days;
20 interviewees during the last day. In this paper, the Neural Networks have been
applied efficiently for the prediction of the average rates of traders in five regions
of the Republic of Benin smuggling the fuel from the Federal Republic of Nigeria
who think of this trade in terms of its dangerous character and susceptible to give
up trading. The remaining part of the paper is organized as follows: In Sect. 2 we
propose an algebraic training algorithm with an adaptive learning rate based on the
conjugate gradient method [16, 17]. In Sect. 3, a system containing five variables
denoting the rates of traders of five regions in the Republic of Benin smuggling
the fuel from the Federal Republic of Nigeria are considered and experiments,
simulation results are presented. The last two sections contain the discussion and
the conclusion.

2 Framework

2.1 Development of the Algebraic Approach

The objective is to approximate smooth scalar functions of q inputs [1]:

h, gi : Rq → R i = 1 · · · s (2.1)

using a feedforward neural network. Typically, the functions to be approximated are
unknown analytically, but a precise set of input-to-nodes samples {xk, vi

k}k=1,··· ,p
and a precise set of input–output samples {xk, uk}k=1,··· ,p can be generated as
follows:

vi
k = gi(x

k) , uk = h(xk) ∀ k (2.2)
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These sets of samples are referred to as training sets. We assume that:

• the scalar output yi of the i-th neuron belonging to the hidden layer is com-
puted as:

yi = f [xT wi + θi] , wi = [wi1 · · ·wiq ]T , (2.3)

where wij , 1 ≤ j ≤ q are the weights connecting q inputs to the i-th hidden
neuron of the network, θi is the input bias of the i-th neuron, and f the logistical
function of the hidden layer defined as follows:

f (τ) = 1

1+ e−τ
(2.4)

• the final scalar output of the network z is computed as a nonlinear transformation
of the weighted sum of the input-to-node variables ni with i = 1, · · · , s:

z = νT f [wx + θ ] + λ (2.5)

where

f [n] = [f (n1) · · · f (ns)]T ; (2.6)

n = wx + θ = [n1 · · · ns]T (2.7)

w = (wij )1�i�s;1�j�q; θ = [θ1 · · · θs]T (2.8)

and λ the output bias.

Remark In the general case, one can choose s hidden layer activation functions
fi, 1�i�s. The activation function for the output neuron is chosen as the identity
function.

The computational neural network matches the training set {xk, vi
k, uk}k=1,··· ,p

exactly if, given the input xk , it produces vi
k and uk as follows:

yi(x
k) = vi

k; z(xk) = uk (2.9)

which leads to

vi
k = f [(xk)T wk

i + θi] (2.10)

uk = νT f [wkxk + θ ] + λ (2.11)

where νi, 1 ≤ i ≤ s are the weights connecting s hidden neurons to the output
neuron. Grouping the known elements vik and uk from the training set in the vectors
vi = [vi1 · · · vip]T ; u = [u1 · · · up]T Eqs. (2.10) and (2.11) can be written using
matrix notation
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vi = f [ni] (2.12)

u = Sν +$ (2.13)

which are referred to as weight equations, where

ni = [ni1 · · · nip]T ; ni
k = (xk)T wk

i + θi; (2.14)

f [ni] = [f [ni1] · · · f [nip]]T ; $ = [λ · · · λ]T ; (2.15)

S =

⎛

⎜⎜⎝

f [n1
1] f [n2

1] · · · f [ns1]
f [n1

2] f [n2
2] · · · f [ns2]

· · · · · · · · ·
f [n1

p] f [n2
p] · · · f [nsp]

⎞

⎟⎟⎠

2.2 Proposed Algorithm

In this subsection we aim at solving the weight equations (2.12) and (2.13), where
the unknowns are wi and ν. For this purpose, we define a pseudo-solution of
the system of linear equations, for which we will prove the existence and the
uniqueness.

Consider the system (2.12) of linear equations

A(k)wk
i = bki , wk

i ∈ Rq, bki ∈ R, i = 1, . . . , s, k = 1, . . . , p (2.16)

where A(k) = (xk)T are the 1×q matrixes, bki = f−1(vki )−θi , f−1(ξ) = ln
(

ξ
1−ξ

)
,

Rq and R are two q, 1-dimensional vector spaces, respectively. For fixed k, A(k) is
constant and we set A = A(k),wi = wk

i , bi = bki . In the sequel, i and k are
considered as fixed.

Definition 2.1 A pseudo-solution of the system (2.16) is called the vector with the
least norm belonging to the set of vectors wi such that the error function �(wi) =
[bi − Awi]2 can be minimized.

Consider the vector space Rq endowed with the inner product defined as follows:
〈ξ, η〉 = ξT η. The following statement holds [18]

Theorem 21 The system of linear equation (2.16) admits a unique pseudo-solution.

Proof Let us consider the error function � defined as follows

�(wi) = (bi − Awi)
T (bi − Awi), wi ∈ Rq (2.17)
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This function can reach its extremum only at the points where d�(wi) = 0, i.e.,

ATAwi = AT bi (2.18)

First of all, we have to prove the compatibility of the system (2.18), independently
of the fact that the system (2.16) is compatible or not. Taking into account that the
matrix ATA is symmetric, we can write the homogeneous adjoint system associated
with the system (2.18) in the form

ATAη = 0, η ∈ Rq (2.19)

Then, for every nonzero solution of (2.19) we can write the relation

ηT AT Aη = (Aη)T (Aη) = 0 (2.20)

which leads to

Aη = 0 *⇒ ηT (AT bi) = 0. (2.21)

This last relation means that the assumption of Fredholm’s theorem (see Appendix)
is satisfied; therefore, the system (2.18) is compatible.

Now, let us prove that the infimum of the function � is reached on the set

� =
{
wi ∈ Rq : ATAwi = AT bi

}
.

Indeed, for wi0 ∈ Rq, wi0 + δwi ∈ Rq we have

�(wi0 + δwi) = �(wi0)− 2(δwi)
T AT (bi − Awi0)+ (Aδwi)

T (Aδwi) (2.22)

yielding

�(wi0 + δwi)��(wi0), wi0 ∈ �, ∀δwi. (2.23)

Conversely, the function � : wi �→ �(wi) can reach its infimum only at the local
extremum points where d�(wi) = 0, i.e. there follows the system (2.18). Finally
we obtain that the infimum of the function � is reached on the set �.

In order to prove the existence and the uniqueness of the pseudo-solution we
define the sets K ⊂ Rq and L ⊂ Rq as follows:

K = {
z ∈ Rq : Az = 0

}
, L =

{
AT bi ∈ Rq, bi ∈ R

}
.

The condition ξ ∈ L means that the system AT χ = ξ, ∀χ ∈ R is compatible.
On the other hand, according to Fredholm’s theorem the latter system is

compatible if and only if ∀z ∈ K, zT ξ = 0 which means that K = L⊥. For the
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subsets L and Kof the Euclidean space Rq , we can write

wi = wi0 + z

where wi0 ∈ L, z ∈ K . So, every vector wi ∈ � can be expressed in the form

wi = wi0 + wi1, wi0 ∈ L, wi1 ∈ K

since

ATAwi = ATA(wi0 + wi1) = AT (Awi0)+ AT (Awi1) = AT bi.

If η is another vector of �, then η = wi0 ∈ L because of the uniqueness of the
orthogonal projection

η = (η − wi + wi1)+ wi0

with (η−wi)+wi1 ∈ K . Therefore, for all vectors of �, the vector wi0 is the same.
For an arbitrary vector wi ∈ �, we can write

||wi ||2 = (wi0 + wi1)
T (wi0 + wi1) = ||wi0||2 + ||wi1||2 (2.24)

where wT
i1wi0 = 0; it follows that ||wi ||�||wi0||. Therefore there exists a unique

common vector wi belonging to the sets � and L which has the minimal norm. In
other words, the unique pseudo-solution of the system (2.16) is of the form

wi = AT z (2.25)

where z is the solution of a system

AAT z = bi. (2.26)

Replacing AT by xk , wi by wk
i , and bki by f−1(vki ) − θi , we can write the pseudo-

solution of the system as

wk
i = xkz (2.27)

where z is the solution of the equation

(xk)T xkz = f−1(vki )− θi . (2.28)

Finally we get

wk
i =

f−1[vki ] − θi

〈xk, xk〉 xk (2.29)

for fixed k, where 〈., .〉 denotes the inner product; that ends the proof. �.
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As the weights wk
i are known from the relation (2.29), the p × s matrix S is

known. Without loss of generality we can choose $ = 0 [1] and the system (2.13)
takes the form

Sν = u (2.30)

As mentioned before, the system (2.30) admits a unique pseudo-solution ν3.
In order to construct the sequence of approximated solutions {νm} of the

system (2.30) convergent to the unique pseudo-solution ν3, we use the conjugate
gradient method for the minimization of the function � defined by �(ν) = |u −
Sν|2, giving the following iteration [16]:

ST Sν3 = ST u ; (2.31)

νm+1 = νm + αmd
m; m = 0, 1, 2, 3, . . . (2.32)

where νm is the current point, dm a searched direction, and αm the step length.
Various choices of the direction dm give rise to distinct algorithms. A broad class

of methods uses −dm = ∇�(νm) as a searched direction and the step length αm is
provided either by the relation

min
αm>0

�
(
νm − αm∇�(νm)

)
(2.33)

or by Wolfe’s conditions [9]. The widely used gradient-based training algorithm,
termed batch back-propagation (BP), minimizes the error function using the follow-
ing steepest descent method with constant, heuristically chosen learning rate α:

νm+1 = νm − α∇�(νm). (2.34)

Clearly, the behavior of any algorithm depends on the choice of the step length not
less than the choice of the searched direction. It is well known that pure gradient
descent methods with fixed learning rate tend to be inefficient [10]. The proposed
algorithm is an adaptive learning rate algorithm based on the conjugate gradient
method. The motivation for this choice is that it provides the fast convergence of the
approximation method which yields the iteration [16] and [17]:

νm+1 = νm − 〈Sd
m; Sνm − u〉
〈Sdm; Sdm〉 dm; (2.35)

where

d0 = 2[ST Sν0 − ST u], (2.36)

dm = 2[ST Sνm−ST u]+ 〈ST Sνm − ST u; ST Sνm − ST u〉
〈ST Sνm−1 − ST u; ST Sνm−1 − ST u〉d

m−1, (2.37)

where m = 1, 2, 3, · · · .
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Furthermore the learning rate αm can be written in the form:

αm = 〈Sdm; Sνm − u〉
〈Sdm; Sdm〉 (2.38)

3 Experiments and Results

Modelling has become a very important tool in the modern science and research.
Scientists use modelling to test hypotheses, to evaluate the performance of systems,
to explore some fields that are difficult to assess by experimentation. Many
researches on plant growth and physical system modellings [19–23], on estimation
of model parameters [24], on motion estimation [25, 26], on statistical properties of
transactional databases [27], and on biological population growth modelling were
done during the few past years. Those works are based on various mathematical
approaches. A Sequential Learning Neural Network (SLNN) is applied in [28] to
agriculture. De Reffye and his team [29] have built a model based on the probability
theory.

Since a statistical model is often constructed in order to make conclusions,
predictions, or inferences from data, an estimate of statistical parameters can be
obtained using the computational neural network matching the data set provided
by statistical model to predict future data as accurately as possible. In this work
we established the new formulas suitable for computing the weights as the pseudo-
solutions of the system of linear equations compatible or not. These results can
be used in the other branches of mathematics. In this paper, on the basis of daily
sampling surveys we carry out the rates of traders obtained during 17 days of five
regions in the Republic of Benin, namely Natitingou (region F1), Parakou (region
F2), Tchaourou (region F3), Porto-Novo (region F4), and Cotonou (region F5)
where the smuggling fuel trade from the Federal Republic of Nigeria is widespread.
The method we propose in this paper has been applied in this section to train a
feedforward neural network that predicts the average rates of traders of these five
regions in the Republic of Benin who think of the fuel smuggling trade in terms of
its dangerous character and those susceptible to give up the fuel smuggling trade.

3.1 Rates of Traders Thinking of the Trade in Terms of Its
Dangerous Character

Considering the rates of traders of five regions in the Republic of Benin who think of
the fuel smuggling trade in terms of its dangerous character, we have a multi-agent
system which contains five variables :

• the rate of traders in the region F1 ;
• the rate of traders in the region F2 ;
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• the rate of traders in the region F3 ;
• the rate of traders in the region F4 ;
• the rate of traders in the region F5.

In order to construct an approximately unbiased estimator of the rate of traders, we
use the estimate of average rate defined as follows [30]:

σ = 1

5

5∑

i=1

xi (3.1)

where xi, 1�i�5 is the rate of traders in the region Fi .
The data set during 17 days gets the form:

{xk = (xk
1 , x

k
2 , x

k
3 , x

k
4 , x

k
5 )

T ; uk = σk; vki ; k = 1, . . . , 17} (3.2)

where xk
i is the rate of traders in the region Fi at a day k, vik are chosen randomly

in the interval [0.5; 1[.
Putting

wk
i = (wk

i1, w
k
i2, w

k
i3, w

k
i4, w

k
i5)

T (3.3)

Eq. (2.29) can be written

wk
i1 =

f−1(vki )− θi

(xk
1 )

2 + (xk
2 )

2 + (xk
3 )

2 + (xk
4 )

2 + (xk
5 )

2
xk

1 (3.4)

wk
i2 =

f−1(vki )− θi

(xk
1 )

2 + (xk
2 )

2 + (xk
3 )

2 + (xk
4 )

2 + (xk
5 )

2
xk

2 (3.5)

wk
i3 =

f−1(vki )− θi

(xk
1 )

2 + (xk
2 )

2 + (xk
3 )

2 + (xk
4 )

2 + (xk
5 )

2
xk

3 (3.6)

wk
i4 =

f−1(vki )− θi

(xk
1 )

2 + (xk
2 )

2 + (xk
3 )

2 + (xk
4 )

2 + (xk
5 )

2
xk

4 (3.7)

wk
i5 =

f−1(vki )− θi

(xk
1 )

2 + (xk
2 )

2 + (xk
3 )

2 + (xk
4 )

2 + (xk
5 )

2
xk

5 (3.8)

Choosing θi = −1 the 17 × 5 matrix S is known and choosing the initial
approximated solution ν0 randomly we can apply Eq. (2.35).

The network consists of three layers whose input layer has five nodes and the
number of hidden nodes is 5; in this case, the training is suitable since too few hidden
nodes limit a network’s generalization capabilities while too many hidden nodes
can result in overtraining or memorization by the network. The output layer consists
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Table 1 Simulation results

k xk
1 xk

2 xk
3 xk

4 xk
5 σk MSE n αm

1 0.941 0.906 0.865 0.830 0.823 0.67 0.26 1 0.012

2 0.98 0.911 0.865 0.804 0.916 0.75 0.26 1 0.012

3 0.947 0.910 0.812 0.804 0.915 0.72 0.26 1 0.012

4 0.963 0.906 0.833 0.833 0.920 0.97 0.26 1 0.012

5 0.963 0.860 0.812 0.828 0.920 0.78 0.26 1 0.012

6 0.947 0.941 0.920 0.820 0.820 0.72 0.26 1 0.012

7 0.980 0.917 0.865 0.820 0.915 0.95 0.26 1 0.012

8 0.989 0.906 0.920 0.804 0.680 0.94 0.26 1 0.012

9 0.947 0.990 0.833 0.833 0.678 0.78 0.26 1 0.012

10 0.989 0.991 0.842 0.828 0.681 0.97 0.26 1 0.012

11 0.941 0.980 0.920 0.804 0.823 0.78 0.26 1 0.012

12 0.963 0.989 0.812 0.868 0.890 0.77 0.26 1 0.012

13 0.941 0.860 0.812 0.828 0.823 0.97 0.26 1 0.012

14 0.947 0.906 0.865 0.804 0.823 0.75 0.26 1 0.012

15 0.963 0.861 0.834 0.832 0.689 0.95 0.26 1 0.012

16 0.941 0.820 0.865 0.804 0.916 0.73 0.26 1 0.012

17 0.963 0.906 0.865 0.833 0.864 0.81 0.26 1 0.012

of a single node representing the estimate of the average rate of fuel smuggling
traders who think of this activity in terms of its dangerous character. SOFTWARE
R is used for the implementation. Simulations show that the choice of the proper
initial weights is important for algorithms convergence. Results are shown in Table 1
where σk, 1 . . . , 17 are the average rates, MSE is the mean square error, αm is the
variable learning rate, and n the total number of epochs to be trained. For the variable
learning rate around 0.012 and for MSE around 0.26, the stability of the computation
is obtained and the average rates σk, 1 . . . , 17 belong to the interval [0.67; 0.97].

3.2 Rates of Traders Susceptible to Give Up Trading

Our method can also be applied to the prediction of the average rate of traders
susceptible to give up the fuel smuggling trade. We have a system containing five
variables :

• the rate of traders in the region F1 ;
• the rate of traders in the region F2 ;
• the rate of traders in the region F3 ;
• the rate of traders in the region F4 ;
• the rate of traders in the region F5.
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In order to construct an approximately unbiased estimator of the rate of traders, we
use the estimate of average rate defined as follows [30]:

δ = 1

5

5∑

i=1

x̃i (3.9)

where x̃i , 1�i�5 is the rate of traders of the region Fi .
During 17 days the data set gets the form :

{̃xk = (̃xk
1 , x̃

k
2 , x̃

k
3 , x̃

k
4 , x̃

k
5 )

T ; uk = δk; vki ; k = 1, . . . , 17} (3.10)

where x̃k
i is the rate of traders in the region Fi at a day k, vik are chosen randomly

in the interval [0.5; 1[. Putting

w̃k
i = (w̃k

i1, w̃
k
i2, w̃

k
i3, w̃

k
i4, w̃

k
i5)

T (3.11)

Eq. (2.29) can be written

w̃k
i1 =

f−1(vki )− θi

(̃xk
1 )

2 + (̃xk
2 )

2 + (̃xk
3 )

2 + (̃xk
4 )

2 + (̃xk
5 )

2
x̃k

1 (3.12)

w̃k
i2 =

f−1(vki )− θi

(̃xk
1 )

2 + (̃xk
2 )

2 + (̃xk
3 )

2 + (̃xk
4 )

2 + (̃xk
5 )

2
x̃k

2 (3.13)

w̃k
i3 =

f−1(vki )− θi

(̃xk
1 )

2 + (̃xk
2 )

2 + (̃xk
3 )

2 + (̃xk
4 )

2 + (̃xk
5 )

2
x̃k

3 (3.14)

w̃k
i4 =

f−1(vki )− θi

(̃xk
1 )

2 + (̃xk
2 )

2 + (̃xk
3 )

2 + (̃xk
4 )

2 + (̃xk
5 )

2
x̃k

4 (3.15)

w̃k
i5 =

f−1(vki )− θi

(̃xk
1 )

2 + (̃xk
2 )

2 + (̃xk
3 )

2 + (̃xk
4 )

2 + (̃xk
5 )

2
x̃k

5 (3.16)

One can apply the same process used in the previous implementation. Results are
shown in Table 2. For the variable learning rate around 0.004 and for MSE around
0.21, the stability of the computation is obtained and the average rates δk, k =
1, . . . , 17 belong to the interval [0.63; 0.99].

4 Discussion

Using the algebraic approach we obtain the weight equations which can be
compatible or not. The pseudo-solutions for these equations are the generalization
of the solutions obtained in [1]. The approach with these solutions can be used
efficiently for the identification and control of dynamical systems, mapping the
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Table 2 Simulation results

k x̃k
1 x̃k

2 x̃k
3 x̃k

4 x̃k
5 δk MSE n αm

1 0.941 0.969 0.946 0.965 0.946 0.97 0.21 1 0.004

2 0.98 0.958 0.946 0.980 0.961 0.92 0.21 1 0.004

3 1.000 0.970 0.933 0.960 0.951 0.71 0.21 1 0.004

4 0.989 0.969 0.933 0.960 0.940 0.94 0.21 1 0.004

5 0.980 0.977 0.917 0.983 0.960 0.73 0.21 1 0.004

6 0.989 0.971 0.917 0.981 0.989 0.83 0.21 1 0.004

7 0.989 0.958 0.946 0.960 0.982 0.88 0.21 1 0.004

8 0.980 0.969 0.960 0.981 0.946 0.80 0.21 1 0.004

9 0.980 0.959 0.933 0.960 0.960 0.71 0.21 1 0.004

10 0.989 0.975 0.947 0.983 0.895 0.69 0.21 1 0.004

11 0.989 0.977 0.920 0.980 0.890 0.97 0.21 1 0.004

12 0.980 0.956 0.946 0.961 0.892 0.86 0.21 1 0.004

13 0.990 0.958 0.926 0.983 0.946 0.63 0.21 1 0.004

14 0.991 0.977 0.920 1.000 0.946 0.99 0.21 1 0.004

15 0.980 0.971 0.922 0.990 0.892 0.81 0.21 1 0.004

16 0.980 0.969 0.946 0.989 0.964 0.81 0.21 1 0.004

17 0.989 0.969 0.946 0.981 0.983 0.74 0.21 1 0.004

input–output representation of an unknown system and its control law [1]. Using
the conjugate gradient method we construct the sequence convergent to the pseudo-
solution, in other words we predict the average rates of fuel smuggling traders
who think of this trade in terms of its dangerous character and the average rates of
traders susceptible to give up the fuel smuggling trade. The simulations show that
the method with the adaptive learning rate is more stable and converge very fast.

As the smuggling fuel is stored not suitably, its volatile contaminant components
may evaporate to become components of the gaseous phase (air) present in the
void space. Therefore the quality of this fuel has been continuously deteriorating,
causing much concern to both suppliers and users. The prediction of the average
rates of these fuel smuggling traders derived from the statistical models enables the
planner or the decision-maker to compare alternatives action, to select the best one
for ensuring the retraining of these traders.

5 Conclusion

The techniques developed in this paper match input–output information approxi-
mately or exactly by neural networks. The adjustable parameters or weights are
determined by solving algebraic equations and by using the conjugate gradient
method. The algorithms used are derived based on the exact and approximated
solutions of input–output weight equations. Their effectiveness is demonstrated by
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training feedforward neural networks which produce average rates of the smuggling
traders thinking of this trade in terms of its dangerous character and susceptible to
give up this trade. The experimentations show that our combination of the algebraic
approach and the fast convergent conjugate gradient method is a useful approach to
solve many complex problems.
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Appendix

Theorem 51 (Fredholm) The system (2.16) is compatible if and only if every
solution of homogeneous adjoint system

AT η = 0 η ∈ Rq (5.1)

satisfies the equation

biη = 0 (5.2)
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Abstract In this paper, we investigate rank 2 Seiberg–Witten equations which were
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2006). We derive some lower bounds for certain curvature functionals on the space
of Riemannian metrics of a smooth compact 4-manifold with non-trivial rank 2
Seiberg–Witten invariants. Existence of Einstein and anti-self-dual metrics on some
compact oriented 4-manifolds is also discussed.

Keywords Seiberg–Witten equation · Weyl curvature · Kähler metric · Einstein
metric · Anti-self-dual metric

2010 Mathematics Subject Classification: 81T13; 70S15; 58D27

1 Introduction

One of the goals of modern Riemannian geometry is to understand the relationship
between topology and curvature. In this note, the subject matter is the existence of
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Let (X, g) be an oriented, compact, smooth Riemannian manifold. Recall that
such a manifold is said to be Einstein if its Ricci curvature r is a constant multiple
of the metric, that is

r = λ g.

As is known, not every smooth compact oriented 4-manifold admits such a metric.
A well known obstruction is given by the following result due to N. Hitchin and J.
Thorpe (see [12]):

If a compact, oriented 4-manifold X satisfies 2χ(X) < 3 |τ(X)|, then X does
not admit an Einstein metric. Moreover, if 2χ(X) = 3 |τ(X)|, then X admits no
Einstein metric unless it is either flat or a K3 surface or an Enriques surface or the
quotient of an Enriques surface by a free anti-holomorphic involution.

Here χ(X) and τ(X) denote the Euler characteristic and the signature of X,
respectively. The Gauss-Bonnet-like formula

(2χ ± 3 τ)(X) = 1

4π2

∫

X

(
R2

24
+ 2 |W±|2 − |r0|2

2

)
dμ, (1.1)

implies Hitchin-Thorpe’s inequality because Einstein metrics are characterized by
the vanishing of r0, and this is the only negative term in the above integrand. In the
formula, R, r0, W+, W− denote the scalar, trace-free Ricci, self-dual Weyl, and
anti-self-dual Weyl curvature tensors of a Riemannian metric, respectively.

This result has been improved by Lebrun (see [6] or [7] for more details), using
carefully estimates on the L2-norm of the scalar-curvature tensor R and the L2-norm
of the self-dual part of the Weyl tensor W+ arising from the rank 1 Seiberg–Witten
equations. To obtain these estimates LeBrun in [6, 7] used the fact that such an X

admits irreducible solutions to the rank 1 SW equations for every metric.
In this paper, we follow LeBrun’s approach but in the rank 2 case. The estimates

found in our case, fortunately, do lead to new obstructions to the existence of
Einstein metrics for the special case of SpinC structure chosen by LeBrun [6, 7].

This paper is organized as follows. In the next section we recall the rank
2 Seiberg–Witten equations. Estimates on the curvatures (scalar curvature, Weyl
curvature, etc.,) are found and compared with those of LeBrun (see [6, 7]) in the
third section.

2 The Seiberg–Witten Equations

We fix an oriented, compact, Riemannian 4-manifold (g,X). By Theorem 2.9 in [8,
p. 16], X admits a SpinC-structure. This can be described as a choice of rank two
complex vector bundles, which we write as S± ⊗ L. Note that the bundles S+ ⊗ L

and S− ⊗ L exist as genuine vector bundles even though the factors S+, S−, and L

do not unless X is a spin manifold. The sections of S+ ⊗ L and S− ⊗ L are called
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spinor fields of positive or negative chirality, respectively. In general case L is not
well-defined, but L⊗2 is (see [10] for more details).

Now, let E be rank r vector bundle on X. Denote the self-dual 2-forms by �2+(X).
Let ψ be a section of W+ = SpinC(X)⊗E. For φ and λ in W+, let q : W+×W+ →
�2+(X)⊗ End E be the trace free part of the endomorphism

θ �→< θ, φ > λ.

Let � be a section of End (End E). The equations of interest are

F+A +� . q(ψ,ψ) = 0,

/D�+Aψ = 0,

dA� = 0, (2.1)

where A is a connection on E, � is the Levi-Civita connection on SpinC, and
dA is the covariant derivative on End (End E) with the connection induced from that
on E.

One possible solution to these equations would have � equal to a scalar times the
identity endomorphism. In this case, on a Kähler manifold, the equations become
(up to a perturbation) equivalent to a set of equations discussed in [3]. Those
equations are shown to have a notion of stability.

If � is not proportional to the identity endomorphism then, to have a solution to
the last equation in (2.1), the bundles must split. The equations that we consider in
this paper correspond to such a situation. In this case, we have

SpinC(X)⊗ E =
⊕

i

(
L
Ei1
1 ⊗ · · · ⊗ LEir

r ⊗ S+
)
.

The r line bundles Li , i = 1, . . . , r , on X are considered so that S+ ⊗Li are SpinC
structures on X for all i. However, the SpinC structures of interest are

Li ⊗ S+ = L
Ei1
1 ⊗ · · · ⊗ LEir

r ⊗ S+,

and neither the spin bundle S+ nor the line bundles Li need exist. Here the matrix
Eij may well be the identity matrix, though in general we only demand that
detE �= 0, that the entries be integers and they are such that the L⊗2

i are honest
line bundles. Summing over all tuples (L1, . . . , Lr) for a general matrix E means
that one does not sum over all possible tuples of SpinC structures on X. However,
for E ∈ SL(r,Z) then one does sum over all such tuples of SpinC structures.

Let 2Ai be connections on the line bundles L⊗2
i , with an abuse of language we

will say that the Ai are connections on Li . The connection forms are
√−1Ai so that

the Ai are real. Denote by Mi charged positive chirality spinors, that is sections of
the bundles S+ ⊗ Li . The rank r Seiberg–Witten equations are
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F+Ai
+

∑

j

Dij q(Mj ,Mj ) = 0, (2.2)

/D(Ai )Mi = 0. (2.3)

where, locally, qμν(Mi,Mi) =
√−1

2

(
MiσμνMi

)
, and Ai = ∑

j EijAj is a

connection on Li . Here σμν = 1
2 [γμ, γν], where the gamma matrices satisfy

{γμ, γν} = 2gμν .
The choice of � in (2.1) fixes the matrix D. The equations under consideration

were proposed in the context of studying the Rozansky–Witten invariants on a 3-
manifold, Y , [1]. Higher rank equations of this type should correspond to higher
rank Rozansky–Witten invariants, that is to higher order LMO or Casson invariants
[5]. One would expect that considering these equations on X = Y × S1 one would
get something like the Euler characteristic of a suitable Floer theory. This was part
of our motivation for studying the higher rank case on a 4-manifold.

The two matrices E and D that appear in the equations are related. That relation
is dictated by wishing to emulate the use of the Weitzenböck trick to get a vanishing
theorem as in the case of the rank 1 Seiberg–Witten equation [14]. The condition
on the matrices is that D−1.E be a symmetric positive definite matrix. In fact the
matrix D need not have integer entries.

Though not strictly necessary we impose the further condition that D−1 have
integral entries. With this assumption in hand we can write (2.2) as

F+B = −q(M,M), (2.4)

with B = D−1.A, and so that Bi is a connection on L
⊗D−1

i1
1 ⊗ · · · ⊗ L

⊗D−1
ir

r .
Note that conformal classes of a metric on X yield related equations. Denote the

Dirac operator and sections on (g,X) by /D and Mi (as above) and those on (eρg,X)

by /Dρ and M
ρ
i . The rank r SW equations on (eρg,X) are

F+B = −q(Mρ,Mρ, ), /D(Ai )
ρM

ρ
i = 0,

with M
ρ
i = e−3ρ/2 Mi . Note that the Hödge star operator acting on 2-forms is

conformal invariant and so the + superscript is the same for (g,X) and (e2ρg,X).
Therefore, the equations for (e2ρg,X) are F+B = −e−ρq(M,M), /D(Ai )Mi = 0.
Let Gi denote the gauge group of bundle automorphisms of Li . The space of gauge
transformations, G, is the product of these spaces of bundle automorphisms,

G = G1 × · · · × Gr .

Each of the Gi is a copy of Map(X,U(1)) and their complexifications are copies
of Map(X,C∗). The space of solutions M(L,h) to the rank r SW equations is left
invariant under G. By moduli space we mean the space of solutions to the rank r



A Note on Curvatures and Rank 2 Seiberg–Witten Invariants 379

SW equations modulo gauge transformations. The virtual dimension of this moduli
space is d = −(2χ + 3τ)/2 + (ET .E)ij c1(Li) c1(Lj ). The basic classes are x =
(x1, . . . , xr ) = (−c1(L

⊗2
1 ), . . . ,−c1(L⊗2

r )). Note that in the special case that Eij =
δij the equations decouple. In that case the basic invariants are essentially r-tuples
of the usual SW basic classes.

Next, we give the Weitzenböck formula which is needed in the sequel of this
paper. We begin with a squaring argument.

Set

siμν = F i+
μν +

√−1

2

2∑

j=1

Dij
(
MjσμνMj

)
,

ki = /D(EijAj )Mi,

and for a solution to the SW equations we must have

∫

X

d4x
√
g

2∑

i=1

(
1

2
Gij sj .si + |ki |2

)
= 0, (2.5)

with G = ET .D−1 a symmetric and positive definite matrix. The explicit form of
Gij sj . si and |ki |2 are

Gij sj .si = GijF j+ F i+ +√−1GijF i+
2∑

k=1

DjkMkσMk

− 1

4
Gij (

2∑

k=1

DjkMkσMk)(

2∑

l=1

DilMlσMl),

∫

X

d4x
√
g|ki |2=

∫

X

d4x
√
g(|DMi |2 −

√−1

2

2∑

j=1

Eij F
j+MiσMi + 1

4
R |Mi |2).

Then, Weitzenböck formula is given by Massamba and Thompson [9]:

/D(EijA
j )2 Mi = Dμ Dμ Mi +

√−1

2

2∑

j=1

Eij F
j
μν · σμν Mi − 1

4
RMi. (2.6)

With the relation (2.6), we find that (2.5) becomes

∫

X

d4x
√
g

2∑

i=1

(
1

2
Gij sj .si + |ki |2

)
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=
∫

X

d4x
√
g

2∑

i,j=1

(
1

2
GijF i+Fj+ − 1

8

∑

μ, ν

MiσμνMi BijMjσ
μνMj

+δij |DMi |2 + 1

4
R δij |Mi |2

)
= 0, (2.7)

with B = DT .ET = DT .G.D a positive definite symmetric matrix. At this point
the choice of the matrix G becomes evident. It was chosen, so that the “mixed term”
F+.MσM.E would drop out of the equations. One of the terms of the last expression
above will be specified by using the Fierz identity (see [9]) for the gamma matrices
given by :

1

2
(σμν)

α
ε (σ

μν)
γ
β = −4δαβδ

γ
ε + δαε δ

γ
β + (γμ)

α
ε (γ

μ)
γ
β + (γ5)

α
ε (γ

5)
γ
β

− (γμγ5)
α
ε (γ

μγ5)
γ
β . (2.8)

We have

− 1

8

∑

μ, ν

MjσμνMj ·Mkσ
μνMk = 1

2

(
2|MjMk|2 − |Mj |2|Mk|2

)
. (2.9)

It is now easy to check that

|B12| |M1|2|M2|2�
(

2|M1M2|2 − |M1|2|M2|2
)
B12�− |B12| |M1|2|M2|2,

so that

− 1

8

2∑

j,k=1

∑

μ, ν

MjσμνMj BjkMkσ
μνMk

�1

2

(√
B11|M1|2 −

√
B22|M2|2

)2 +
(√

B11B22 − |B12|
)
|M1|2|M2|2,

where
√
Bij always represents the positive root. We can cast (2.5) in the form of an

inequality,

∫

X

d4x
√
g(

1

2

2∑

i,j=1

GijF
i+Fj+ +

2∑

i=1

|DMi |2 + 1

2
(
√
B11|M1|2 −

√
B22|M2|2)2

+ (
√
B11B22 − |B12|)|M1|2|M2|2 + 1

4
R

2∑

i=1

|Mi |2)�0. (2.10)
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One immediate consequence of (2.10) is that, just as for the usual SW invariants,
there are no solutions apart from the trivial ones if R is non-negative. In [9], the
authors used (2.10) to prove that the moduli space M(L,h) of interest is compact.
They also proved that it is orientable [9, Proposition 4.3].

If X is Kähler one has decompositions S+ ⊗Li = (K
1/2
X ⊗Li )⊕ (K

−1/2
X ⊗Li )

where, as before, neither K
±1/2
X nor Li necessarily exist. Denote the components

of Mi in K
1/2
X ⊗ Li by αi and those in K

−1/2
X ⊗ Li by

√−1βi . In this the Dirac

operator is /D(Ai ) =
√

2
(
∂Ai

+ ∂
∗
Ai

)
. The perturbed SW equations are

F
(2,0)
Bi

= αiβi − ηi

ω ∧ FBi
= 1

2
ω2

(
|αi |2 − |βi |2

)

∂Ai
αi = −

√−1 ∂
∗
Ai
βi , (2.11)

where the Bi =∑
j D

−1
ij Aj are connections on the bundles Li = L

D−1
i1

1 ⊗ L
D−1

i2
2 .

Does the system of equations (2.11) admit solutions? The answer is affirmative
and this was proven in [9]. What we have in [9] is that given a pair of holomorphic
sections to K

1/2
X ⊗ Li on the Kähler manifold (ω,X) we are guaranteed a solution

to the rank 2 Seiberg–Witten equations on (e2ρω,X).

3 Curvature Estimates

In this section, we derive new L2 estimates for combinations of the Weyl and
scalar curvatures of certain Riemannian 4-manifolds using the Gauss-Bonnet like
formula (4.3). Unfortunately, as we will see, these bounds are somewhat weaker
than the estimates previously found in [6, 7]. Many of the important consequences
of the rank 2 Seiberg–Witten theory stem from the fact that Eqs. (2.2) and (2.3)
implied the Weitzenböck formula of Proposition 2.6. This proposition allows us to
obtain the following useful inequalities.

Lemma 3.1 If (A1, A2, M1, M2) is a solution of (2.2), (2.3) on a compact oriented
Riemannian 4-manifold (X, g), then
∫

X

(
−R |M1|4 − 4 |M1|2|∇M1|2

)
≥ 4B11

∫

X

|M1|6 − 4 |B12|
∫

X

|M1|4|M2|2,
(3.1)

∫

X

(
−R |M2|4 − 4 |M2|2|∇M2|2

)
≥ 4B22

∫

X

|M2|6 − 4 |B12|
∫

X

|M1|2|M2|4,
(3.2)

where | . | is the point-wise norm determined by g.
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Proof Note that we have
∫
X
d4x

√
g |ki |2 f = 0, for any bounded function f .

We can expand the formula to obtain

∫

X

d4x
√
g(|DMi |2 −

√−1

2

2∑

j=1

Eij F
j+MiσMi + 1

4
R |Mi |2) f

=
∫

X

d4x
√
g(|DMi |2 − 1

4

2∑

j=1

Bij MiσMi.MjσMj + 1

4
R |Mi |2) f = 0.

Now set f = |Mi |2 and make use of (2.9) and the inequality that follows it to obtain
the lemma. �

We will see in a moment that the inequalities (3.1) and (3.2) imply some estimates
for the Weyl curvature of suitable 4-manifolds. But before doing this, we make
a digression on the Gauss-Bonnet like formula. Our interest being on the SpinC-
structures determined by the integral complex structure JX on X, that is,

c1(JX) = −1

2
c1(KX), (3.3)

the line bundles L⊗2
i become the anti-canonical line bundle K−1

X = $0,2(X).
From (3.3), we have

c1(Li )
2 = 1

4
(2χ + 3τ)(X), (3.4)

and for this reason we consider the formula (4.3) with the plus sign on the left-hand
side. It is the self-dual Weyl tensor which then appears on the right-hand side of the
equation. Let us recall that the self-dual Weyl tensor, W+, at a point x of (X, g),
may be viewed as the trace-free endomorphism W+(x) : $+x −→ $+x of self-
dual 2-forms at x. Let ω(x) denote the lowest eigenvalue of this endomorphism and
notice that is automatically a Lipschitz continuous function ω : X −→ (−∞, 0]
(see [6] for more details).

Theorem 3.2 Let (X, g) be a compact oriented Riemannian 4-manifold on which
there is a solution of the Rank 2 Seiberg–Witten equations. Let c1(Li ), with i =
1, 2, be the first Chern classes of the bundles Li and c+1 (Li ) denote their self-dual
parts with respect to g. Then, under conditions B11�|B12| and B22�|B12| on the
symmetric matrix (Bij )1≤i,j≤2, the metric g satisfies

V 1/3

(∫

X

∣∣∣∣
2

3
Rg + 2ωg

∣∣∣∣
3

dμg

)2/3

≥ 16π2

(detB)2

(
κ1|c+1 (L1)| − κ2|c+1 (L2)|

)2

+ 32π2

(detB)2
(κ1 · κ2 − κ2)|c+1 (L1)| · |c+1 (L2)|,
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where

κ2
1 = B2

22 (B11 − |B12|)2 + B2
21 (B22 − |B12|)2,

κ2
2 = B2

12 (B11 − |B12|)2 + B2
11 (B22 − |B12|)2,

κ2 = |B22B12| (B11 − |B12|)2 + |B21B11| (B22 − |B12|)2,

V = Vol(X, g) = ∫
X
dμg denotes the total volume of (X, g), dμg is the volume

form of g, and |c+1 (Li )| :=
√
(c+1 (Li ))2.

The proof of this proposition needs the following lemmas.

Lemma 3.3 ([2]) Any self-dual 2-form θ on any oriented 4-manifold satisfies

(
d + d∗

)2
θ = ∇∗∇θ − 2W+(θ, ·)+ R

3
θ. (3.5)

Lemma 3.4 For the self-dual 2-forms θ = q(M, M), we have

|∇θ |2 = 4|M|2 · |∇M|2 + (∇M ·M −M · ∇M)2

so that |∇θ |2 ≤ 4|M|2 · |∇M|2.
Proof By definition, the self-dual 2-form θ is given by θ = q(M,M) =

√−1
2 MσM

and its gradient is given by

∇θ =
√−1

2

{∇MσM +Mσ∇M
}
.

Since θ is real, so is ∇θ and we have

|∇θ |2 = −1

4

(∇MσM
)2 − 1

4

(
Mσ∇M

)2 − 1

2

(∇MσM
) (

Mσ∇M
)
. (3.6)

From Fierz identity given in (2.8), we can obtain

1

2

(∇MσM
)2 = 1

2

(∇MσμνM
) (∇MσμνM

)

= 1

2

(
(∇M)α(σμν)

α
εM

ε
) (

(∇M)γ (σ
μν)

γ
βM

β
)

= (∇M)αM
ε(∇M)γM

β

{
1

2
(σμν)

α
ε (σ

μν)
γ
β

}

= (∇M)αM
ε(∇M)γM

β
{
−4δαβδ

γ
ε + δαε δ

γ
β + (γμ)

α
ε (γ

μ)
γ
β
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+(γ5)
α
ε (γ

5)
γ
β − (γμγ5)

α
ε (γ

μγ5)
γ
β

}

= −2
(∇M ·M)2

. (3.7)

Likewise,

1

2

(
Mσ∇M

)2 = −2
(
M · ∇M

)2
, (3.8)

and
1

2

(∇MσM
) (

Mσ∇M
) = −4|∇M|2|M|2 + 2|∇M ·M|2 (3.9)

Putting (3.7)–(3.9) into (3.6), one obtains

|∇θ |2 = (∇M ·M)2 + (
M · ∇M

)2 + 4|∇M|2|M|2 − 2|∇M ·M|2

= 4|∇M|2|M|2 + (∇M ·M)2 + (
M · ∇M

)2 − 2
(∇M ·M) (

M · ∇M
)

= 4|M|2 · |∇M|2 + (∇M ·M −M · ∇M)2.

Since the term ∇M ·M −M · ∇M is pure imaginary, (∇M ·M −M · ∇M)2 ≤ 0
and |∇θ |2 ≤ 4|M|2 · |∇M|2, which completes the proof.

Proof of Theorem 3.2 Any self-dual 2-forms θi on any oriented 4-manifold sat-
isfy (3.5). It follows, by integration and the fact that the function ω is the smallest
eigenvalue, that

−
∫

X

2ωg |θi |2 dμg ≥
∫

X

−Rg

3
|θi |2 dμg −

∫

X

|∇θi |2 dμg

and hence

−
∫

X

(
2

3
Rg + 2ωg

)
|θi |2 dμg ≥

∫

X

−Rg |θi |2 dμg −
∫

X

|∇θi |2 dμg.

On the other hand, for the particular self-dual 2-forms given by θi = q(Mi, Mi),
with the inequality in Lemma 3.4, allows us to obtain

−
∫

X

(
2

3
Rg + 2ωg

)
|Mi |4 dμg ≥

∫

X

(
−R|Mi |4 dμg − 4|Mi |2 · |∇Mi |2

)
dμg.

The inequalities (3.1) and (3.2), the Holder inequality, and a tedious calculation
yield

(∫

X

∣∣∣∣
2

3
Gg

∣∣∣∣
3

dμg

)1/3

≥ 2(B11 − |B12|)
(∫

X

|M1|6 dμg

)1/3

+ 2(B22 − |B12|)
(∫

X

|M2|6 dμg

)1/3

,

where Gg = Rg + 3ωg .
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At this point, we want to take the square of the inequality. Under the conditions
B11�|B12| and B22�|B12|, the right-hand side of the inequality is positive semi-
definite we can square both sides and the inequality remains valid. Do that and use
once more the Holder inequality to obtain

V 1/3

(∫

X

∣∣∣∣
2

3
Gg

∣∣∣∣
3

dμ

)2/3

≥ 4 (B11 − |B12|)2
(∫

X

|M1|4 dμ
)

+ 4(B22 − |B12|)2
(∫

X

|M2|4 dμ
)
. (3.10)

Writing the norms of |Mi |4 as functions of the self-dual parts of the first Chern
classes c1(Li ), we easily deduce that the positive constants κ1, κ2, and κ are as
given in the proposition. �

There is an alternative inequality that one can obtain and that is useful, namely,

Theorem 3.5 With the conditions of the previous proposition with B22 > 0, and on
taking c1(L1) = c1(L2) = c1(L) we have that

V 1/3

(∫

X

∣∣∣∣
2

3
Rg + 2ωg

∣∣∣∣
3

dμg

)2/3

≥ 64π2
(

B22 − B12

B22 + |B12|
)2

(c+1 (L))2,

with a similar formula on exchanging B11 ↔ B22.

These are the keys to everything that follows, its direct utilities are limited by the
fact they are L3, rather than L2, estimates. Fortunately, we will be able to extract
L2 estimates by means of a conformal rescaling trick, the general idea of which is
drawn from LeBrun [6] or [7], which follows from the standard proof of the Yamabe
problem in the form developed by Gursky [4]. We have

Lemma 3.6 ([6]) Let (X, γ ) be a compact oriented 4-manifold with a fixed smooth
conformal class of Riemannian metrics. Suppose, moreover, that γ does not contain
a metric of positive scalar curvature. Then, for any α ∈ ]0, 1], there is a metric
gγ ∈ γ of differentiability class C2,α for which R + 3ω is a non-positive constant.

Let γ be a smooth conformal class of some adapted metric g on a smooth
oriented 4-manifold X such that there is a SpinC-structure on X for which the rank
2 SW equations (2.2), (2.3) have a solution for every metric γ . Then γ does not
contain any metrics of positive scalar curvature. This can be easily seen using the
Weitzenböck formula in Proposition 2.6. Lemma 3.6 therefore implies and tells
us that the conformal class γ contains a metric gγ for which that the function
Ggγ = Rgγ + 3ωgγ is a non-positive constant.

Proposition 3.7 [6] Let g be the conformally related metric g = u2 gγ , with u a
positive C2 function, then

∫

X

(
2

3
Rg + 2ωg

)2

dμg ≥
∫

X

(
2

3
Rgγ + 2ωgγ

)2

dμgγ .
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Lemma 3.8 The smallest eigenvalue ω of W+ is bounded as −
√

2
3 |W+|g ≤ ωg.

Proof The proof uses only the fact that the self-dual Weyl tensor W+ is trace-
free. �
Corollary 3.9 (to Theorem 3.2) Let (X, γ ) be a smooth compact oriented Rie-
mannian 4-manifold, as in Lemma 3.6, on which there is a solution of the Rank 2
Seiberg–Witten equations. Let c1(Li ), with i = 1, 2, be the first Chern classes of the
bundles Li and c+1 (Li ) denote their self-dual parts with respect to gγ . Then, with
Bij , κ1, κ2, and κ as given in Theorem 3.2

1

4π2

∫

X

(
R2

g

24
+ 2|W+|2g

)
dμg ≥ 1

3(detB)2

(
κ1 · |c+1 (L1)| − κ2 · |c+1 (L2)|

)2

+ 2

3(detB)2

(
κ1 · κ2 − κ2

)
|c+1 (L1)| · |c+1 (L2)|.

(3.11)

Proof We have the following:

(∫

X

|Gg|2
)1/2

�
(∫

X

|Ggγ |2
)1/2

=
(∫

X

|Ggγ |3
)1/3

the first inequality follows from Proposition 3.7 while the equality follows from
Lemma 3.6. One now applies Theorem 3.2 for the metric gγ to get the bound
involving the Chern classes. Lemma 3.8 allows us to exchange the eigenvalue for
the norm of W+. �
The same line of argument gives us the following:

Corollary 3.10 (to Theorem 3.5) Let (X, γ ) be a smooth compact oriented Rie-
mannian 4-manifold, as in Lemma 3.6, on which there is a solution of the Rank 2
Seiberg–Witten equations with c1(L1) = c1(L2) = c1(L) and let c+1 (L) denote the
self-dual part with respect to gγ . Then

1

4π2

∫

X

(
R2

g

24
+ 2|W+|2g

)
dμg ≥ 4

3
min{λ1, λ2}|c+1 (L)|2, (3.12)

where λ1 =
(

B11 − B12

B11 + |B12|
)2

and λ2 =
(

B22 − B12

B22 + |B12|
)2

.

LeBrun, [6, Proposition 3.1] finds the following bound:

1

4π2

∫

X

(
R2

g

24
+ 2|W+|2g

)
dμ ≥ 2

3
(2χ(X)+ 3τ(X)) .
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Given that for zero-dimensional moduli space, we have that c1(L) = ±c1(KX) and
that |c+1 (L)|2�|c1(L)|2 we have that Corollary 3.10 gives the bound,

1

4π2

∫

X

(
R2

g

24
+ 2|W+|2g

)
dμg ≥ 1

3
min{λ1, λ2} (2χ(X)+ 3τ(X)) .

As (B22 − B12)
2/(B22 + |B12|)2�1 and (B11 − B12)

2/(B11 + |B12|)2�1, we see
that our bound is somewhat weaker than that of LeBrun.

Many bounds may be obtained from the rank 2 SW equations. Thus, under
suitable conditions on the symmetric matrix (Bij )1≤i, j≤2, we shall not exclude
the fact that it may exist other bounds which could be stronger than that those of
LeBrun.

4 Einstein Metrics

In this section, we deal with non-existence results for Einstein metrics on suitable
smooth compact 4-manifolds.

Let X be a complex surface X = Y � l CP
2

obtained by blowing up l > 0 points
from a complex surface Y . We have

H 2(Y � l CP
2
, Z) = H 2(Y, Z)⊕

l⊕

p=1

H 2(CP
2
, Z) = H 2(Y, Z)⊕ Z

⊕l .

Lemma 4.1 Let KY be the canonical bundle on surface Y , and X = Y �CP
2
, with

E a generator of H 2(CP
2
, Z) which is an exceptional divisor such that E2 = −1.

Then, the first Chern class of the canonical line bundle KX on X is c1(KX) =
π∗(c1(KY ))± E, where π is the natural projection X −→ Y .

Proof Note that c1(KX) = π∗(c1(KY )) + a E, with a some constant. Using the
adjunction formula [11], we obtain the desired result. �
More generally, we have:

Lemma 4.2 The first Chern class of the canonical line bundle on X = Y � l CP
2

is c1(KX) = π∗(c1(KY )) + ∑l
p=1±Ep, where E1, . . . , El are the exceptional

divisors in X, introduced on blowing up l times, with Ep · Ep′ = − δpp′ , p, p′ =
1, 2, · · · , l. Moreover, 2c1(JX) = 2 c1(JY )+∑l

p=1±Ep.

Proof It follows from a straightforward calculation using (3.3). �
If E1, . . . , El are the exceptional divisors in X, introduced on blowing up l times,
with Ep · Ep′ = − δpp′ , p, p′ = 1, 2, · · · , l, the complex structure JX has
Chern class,
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2c1(JX) = 2c1(JY )+
l∑

p=1

±Ep.

By a result in [9], this is a monopole class of X for each choice of signs and the
basis classes are of the form (x1, x2) with

xi = −2
∑

j

Eij c1(Lj ) = −2c1(Li ),

that is,
∑

j

Eij c1(Lj ) = c1(Li ), (4.1)

with the right-hand side being an integral class. We now fix our choice of signs so
that

c+1 (JY ) · (±Ep) ≥ 0,

for each p, with respect to the decomposition induced by the given metric g.
Using (3.3), one has

[c+1 (JX)]2 = (c+1 (JY )+ 1

2

l∑

p=1

±Ep)
2

= [c+1 (JY )]2 + 2
l∑

p

c+1 (JY ) · (±Ep)+ (

l∑

p=1

±Ep)
2

≥ [c+1 (JY )]2

≥ 1

4
(2χ + 3τ)(Y ). (4.2)

This leads to the following result.

Theorem 4.3 Let (Y, JY ) be a compact complex surface with b+2 (Y ) > 1, and let
(X, JX) be the complex surface obtained from Y by blowing up l > 0 points on
which there is a solution of the Rank 2 Seiberg–Witten equations with c1(L1) =
c1(L2) = c1(L). Then any Riemannian metric g on the 4-manifold X = Y� l CP

2

satisfy

1

4π2

∫

X

(
R2

g

24
+ 2|W+|2g

)
dμg ≥ 1

3
min{λ1, λ2}(2χ(Y )+ 3τ(Y )),

where λ1 =
(

B11 − B12

B11 + |B12|
)2

and λ2 =
(

B22 − B12

B22 + |B12|
)2

.
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Assume that (2τ +3τ)(Y ) > 0, since otherwise the result follows from the Hitchin-
Thorpe inequality.

Now

(2χ + 3τ)(X) = 1

4π2

∫

X

(
R2

g

24
+ 2 |W+|2g −

|r0|2
2

)
dμg, (4.3)

for any metric on g on X . If g is an Einstein metric, the trace-free part r0 of the
Ricci curvature vanishes, and we then have

(2χ + 3τ)(Y )− l = (2χ + 3τ)(X)

= 1

4π2

∫

X

(
R2

g

24
+ 2 |W+|2g

)
dμg

≥ 1

3
min{λ1, λ2}(2χ(Y )+ 3τ(Y )), (4.4)

by Theorem 4.3. If M carries an Einstein metric, it therefore follows that

l ≤ 3−min{λ1, λ2}
3

(2χ(Y )+ 3τ(Y )). (4.5)

Therefore,

Theorem 4.4 Let (Y, JY ) be a compact complex surface with b+2 (Y ) > 1, and let
(X, JX) be the complex surface obtained from Y by blowing up l > 0 points on
which there is a solution of the Rank 2 Seiberg–Witten equations with c1(L1) =
c1(L2) = c1(L). Then the smooth compact 4-manifold X does not admit any
Einstein metrics if

l >
3−min{λ1, λ2}

3
(2χ(Y )+ 3τ(Y )), (4.6)

where λ1 and λ2 are defined as in Theorem 4.3.

Since λ1 ≤ 1 and λ2 ≤ 1, it is easy to check that the number 3−min{λ1, λ2} in (4.6)
is bounded below by 2, that is,

3−min{λ1, λ2} ≥ 2.

Theorem 4.5 Let (Y, JY ) be a compact complex surface with b+2 (Y ) > 1, and let
(X, JX) be the complex surface obtained from Y by blowing up l > 0 points on
which there is a solution of the Rank 2 Seiberg–Witten equations with c1(L1) =
c1(L2) = c1(L). If X is Kähler, every Riemannian metric g on the 4-manifold X =
Y� lCP

2
satisfies

1

4π2

∫

X

R2
gdμg ≥ 8

3
min{λ1, λ2}(2χ(Y )+ 3τ(Y )),

where λ1 and λ2 are defined as in Theorem 4.3.
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In [13], Taubes has shown that for any smooth compact orientable X4, there is an

integer l0 such that X = Y� l CP
2

admits metrics with W+ = 0 provided that l ≥
l0. In particular, there are many anti-self-dual 4-manifolds with rank 1 non-trivial
Seiberg–Witten invariants. If there are non-trivial rank 2 Seiberg–Witten invariants,
then, for such manifolds, we get an interesting scalar-curvature estimate.

Proposition 4.6 Let (X, JX) be a compact anti-self-dual 4-manifold with a non-
zero rank 2 Seiberg–Witten invariant with c1(L1) = c1(L2) = c1(L). Then every
Riemannian metric g on the 4-manifold X satisfies

1

4π2

∫

X

R2
gdμg ≥ 8 min{λ1, λ2}(2χ(Y )+ 3τ(Y )),

where λ1 and λ2 are defined as in Theorem 4.3.

One might instead ask whether X = Y� lCP
2

admits anti-self-dual Einstein
metrics, since Taubes’ theorem [13] tells us that anti-self-dual (but non-Einstein)
metrics exist when l is very large. Using Proposition 4.6, we have:

Theorem 4.7 Let (Y, JY ) be a compact complex surface with b+2 (Y ) > 1, and let
(X, JX) be the complex surface obtained from Y by blowing up l > 0 points on
which there is non-trivial Rank 2 Seiberg–Witten invariant with c1(L1) = c1(L2) =
c1(L). Then, X = Y� lCP

2
cannot admit anti-self-dual metrics.
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Shape Invariant Potential Formalism
for Photon-Added Coherent State
Construction

Komi Sodoga, Isiaka Aremua, and Mahouton Norbert Hounkonnou

Abstract An algebro-operator approach, called shape invariant potential method,
of constructing generalized coherent states for photon-added particle system is
presented. Illustration is given on Pöschl–Teller potentials.

Keywords Shape invariant potentials · Photon-added coherent states ·
Pöschl-Teller I Potential · Density operator

1 Introduction

Coherent states (CS) play an important role in many fields of quantum mechanics
since their early days. These states were first introduced by Schrödinger [36]
in 1926 for the harmonic oscillator. Then followed decades of intensive works
in order to extend the CS concept to other types of exactly solvable systems
[5, 6, 18, 19, 21, 30]. It was shown in the 1980s that a large class of solvable
potentials are characterized by a single property, i.e., a discrete reparametrization
invariance, called shape invariance [11, 14, 17, 25], introduced in the framework of
the supersymmetric quantum mechanics (SUSY QM) [10, 24]. It was then shown
that shape invariant potentials (SIP) [11, 25] have an underlying algebraic structure
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and the associated Lie algebras were identified [2, 7]. Using this algebraic structure,
a general definition of CS for shape invariant potentials was introduced by different
authors [2, 16].

In 1980s, a new class of nonclassical states, known as photon-added coherent
states (PACS), was introduced by Agarwal and Tara [1]. These states which
are intermediate states between CS and Fock states are constructed by repeated
applications of the creation operator on an ordinary CS. Since the works of Agarwal
and Tara, PACS were intensively studied, as shown in the different extensions
[15, 22, 26, 31, 32, 37]. Besides, PACS have various applications in quantum optics,
quantum information and quantum computation [8, 12] (and references therein).

In a recent work [38], we constructed photon-added CS for SIP and investigated
different cases following the Infeld-Hull [24] classification.

In the present paper, we aim at providing a rigorous mathematical formulation
of the CS and their photon-added counterparts for SIP. We apply this formalism
to Pöschl–Teller potentials of great importance in atomic physics. The diagonal
P -representation of the density operator ρ is elaborated with thermal expectation
values. This computation gives value on the use of Meijer G-functions. Novel results
are obtained and discussed.

The paper is organized as follows. In Sect. 2, we review the concepts of SUSY
QM factorization, give the algebraic formulation of the shape invariance condition,
and define the generalized shape invariant potential coherent states (SIPCS). In
Sect. 3, we construct the photon-added shape invariant potentials coherent states
(PA-SIPCS) by successive applications of the raising operator on the SIP-CS. We
calculate the inner product of two different PA-SIPCS in order to show that the
obtained states are not mutually orthogonal. In contrast, we prove that these states
are normalized. The resolution of unity is checked. Finally, we study the thermal
statistical properties of the PA-SIPCS in terms of the Mandel’s Q-parameter. In
Sect. 4, Pöschl–Teller potentials are investigated as illustration. We end, in Sect. 5,
with some concluding remarks.

2 Mathematical Formulation of SUSYQM: Integrability
Condition and Coherent State Construction

In this section, we introduce the SUSY QM factorization method [20] (and
references therein), give the integrability condition, known as shape invariance
condition, and define the associated generalized CS.

Let H = L2(]a, b[, dx) be the Hilbert space with the inner product defined by:

〈u, v〉 :=
∫ b

a

ū(x)v(x)dx, ∀ u, v ∈ H, (2.1)

where ū is the complex conjugate of u. Consider on H the one-dimensional bound-
state Hamiltonian (h̄ = 2m = 1)
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H = − d

dx

2

+ V (x), x ∈]a, b[⊂ R (2.2)

with the domain

D(H) = {
u ∈ H, −u′′ + V u ∈ H

}
, (2.3)

where V is a real continuous function on ]a, b[. Let us denote En and �n the
eigenvalues and eigenfunctions of H , respectively. Let the first-order differential
operator A be defined by:

A = d

dx
+W(x), with the domain D(A) = {

u ∈ H, u′ +Wu ∈ H
}
, (2.4)

W = − d

dx
[ln(�0)] is a real continuous functions on ]a, b[. The adjoint operator A†

of A is defined on [39]:

D(A†) = {u ∈ H| ∃ ṽ ∈ H : 〈Au, v〉 = 〈u, ṽ〉 ∀u ∈ D(A)} , A†v = ṽ. (2.5)

We infer D(A) dense in H since H 1,2 (]a, b[, ρ(x)dx) is dense in H, and
H 1,2 (]a, b[, ρ(x)dx) ⊂ D(H), where Hm,n(�) is the Sobolev spaces of indices
(m, n). We assume that the operator A is closed in H. The explicit expression of A†

is given through the following theorem.

Theorem 2.1 Suppose the following boundary condition:

u(x) v(x)

∣∣∣
b

a
= 0, ∀ u ∈ D(A) and v ∈ D(A†), (2.6)

is verified. Then the operator A† can be written as

A† =
[
− d

dx
+W(x)

]
. (2.7)

Proof The proof follows as:

〈Aū, v〉 ≡
∫ b

a

[
ū′(x)+W(x)ū(x)

]
v(x)dx

= ū(x)v(x)

∣∣∣
b

a
+

∫ b

a

ū(x)

[
− d

dx
+W(x)

]
v(x)dx

= 〈ū, A†v〉 for any u ∈ D(A), v ∈ D(A†). 	
Let H1 and H2 be the product operators A†A and AA†, respectively, with the
corresponding domains

D(H1) =
{
u ∈ D(A), v = Au ∈ D(A†) and A†v ∈ H

}
,
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D(H2) =
{
u ∈ D(A†), v = A†u ∈ D(A) and Av ∈ H

}
. (2.8)

Remark that

H 1,2 (]a, b[, dx) ⊂ D(A) ⊂ D(A†).

Then

D(H1),D(H2) ⊃ H 2,2 (]a, b[, dx) .

We infer then that D(H1) and D(H2) are dense in H. The following theorem
gives additional conditions on W so that the operator H factorizes in terms of A

and A†.

Theorem 2.2 Suppose that the function W verifies the Riccati type equation:

V − E0 = W 2 −W ′. (2.9)

Then the operators H1,2 are self-adjoint, and:

H1 = A†A = H − E0 = − d2

dx2 +W 2 −W ′,

H2 = AA† = − d2

dx2
+W 2 +W ′. (2.10)

Proof The operators A†A and AA† are self-adjoint since A and A† are mutually
adjoint and A is closed with D(A) dense in H. From the definitions (2.4) and (2.7)
of the differential operators A and A†, we have the following products

A† A = − d2

dx2 + (W 2 −W ′), AA† = − d2

dx2 + (W 2 +W ′).

Equation (2.9) are readily deduced from the above relations and (2.10). 	
We can rewrite the operators H1,2 as:

H1,2 = − d2

dx2 + V1,2, where V1,2 = W 2 ∓W ′. (2.11)

In SUSY QM terminology, H1,2 are called SUSY partner Hamiltonians; V1,2
are called SUSY partner potentials, and the function W is called the superpotential.

Now let us establish some results showing that the eigenvalues of partner
Hamiltonians are positive definite (E

1,2
n ≥ 0) and isospectral, i.e, they have almost

the same energy eigenvalues, except for the ground state energy of H1 [10].
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Proposition 2.3 The eigenvalues of H1 and H2 are non negative

E(1)
n ≥ 0, E(2)

n ≥ 0.

Proof Let E(1)
n be an eigenvalue of H1 corresponding to the eigenfunction �

(1)
n .

In Dirac notation, this reads as H1|�(1)
n 〉 = E

(1)
n |�(1)

n 〉. Then 〈�(1)
n |A†A|�(1)

n 〉 =
E

(1)
n 〈�(1)

n |�(1)
n 〉, i.e, ||A|�(1)

n 〉||2 = E
(1)
n |||�(1)

n 〉||2. Therefore E
(1)
n ≥ 0, since

||A|�(1)
n 〉||2 ≥ 0 and |||�(1)

n 〉||2 ≥ 0. Similarly, one can show that E(2)
n ≥ 0. 	

Proposition 2.4 Let |�(1)
n 〉 and |�(2)

n 〉 be the normalized eigenstates of H1 and H2

associated to the eigenvalues E
(1)
n and E

(2)
n , respectively. Then

A|�(1)
n 〉 = 0 ⇐⇒ E(1)

n = 0, A†|�(2)
n 〉 = 0 ⇐⇒ E(2)

n = 0.

Proof

A|�(1)
n 〉 = 0 ⇐⇒ ||A|�(1)

n 〉||2 = 0

⇐⇒ 〈�(1)
n |A†A|�(1)

n 〉 = 0

⇐⇒ E(1)
n 〈�(1)

n |�(1)
n 〉 = 0

⇐⇒ E(1)
n = 0.

By analogy, one can show that A†|�(2)
n 〉 = 0 ⇐⇒ E

(2)
n = 0. 	

As a consequence of this proposition E
(1)
0 = 0, since A�

(1)
0 = A�0 = 0.

Proposition 2.5 If H1 admits a normalized eigenstate |�(1)
0 〉 so that E(1)

0 = 0, then

H2 does not admit a normalized eigenstate |�(2)
0 〉 corresponding to the eigenvalue

E
(2)
0 = 0.

Proof If E
(1)
0 = 0, then from the Proposition 2.4, A�

(1)
0 = 0. We deduce from

this that

AA†A�
(1)
0 = H2(A�

(1)
0 ) = 0. (2.12)

Suppose that there exists a normalizable eigenstate |�(2)
0 〉 of H2 corresponding to

E
(2)
0 = 0. It follows from (2.12) that |�(2)

0 〉 ∝ A�
(1)
0 = 0, what is inconsistent. 	

This proposition shows that H2 cannot possess a normalized state
∣∣∣�(2)

0

〉
corre-

sponding to the eigenvalues E
(2)
0 = 0, since E

(1)
0 = 0, what means E

(2)
0 �= 0.

Proposition 2.6 Let |�(1)
n 〉 and |�(2)

n 〉 be normalized eigenstates of H1 and H2,
respectively, such that A|�(1)

n 〉 �= 0, A†|�(2)
n 〉 �= 0 and the corresponding

eigenvalues are, respectively, E
(1)
n �= 0 and E

(2)
n �= 0. Then E

(1)
n is also an

eigenvalue of H2 associated to the eigenstate
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|�(2)
n−1〉 = (E(1)

n )−1/2A|�(1)
n 〉;

E
(2)
n is also an eigenvalue of H1 associated to the eigenstate

|�(1)
n+1〉 = (E(2)

n )−1/2A†|�(2)
n 〉.

Proof We have H1|�(1)
n 〉 = E

(1)
n |�(1)

n 〉. From this, we deduce that AA†(A|�(1)
n 〉) =

E
(1)
n (A|�(1)

n 〉), or

H2(A|�(1)
n 〉) = E(1)

n (A|�(1)
n 〉), (2.13)

i.e, A|�(1)
n 〉 is an eigenstate of H2 associated to the eigenvalue E

(1)
n . Similarly,

H2|�(2)
n 〉 = E

(2)
n |�(2)

n 〉 implies A†A(A†|�(2)
n 〉) = E

(2)
n (A†|�(2)

n 〉), i.e,

H1(A
†|�(2)

n 〉) = E(2)
n (A†|�(2)

n 〉). (2.14)

This means that A†|�(2)
n 〉 is an eigenstate of H1 with the eigenvalue E

(2)
n . The

eigenvalues of H1 being non degenerate (since we consider only bound state of
H1), it follows that there exists a unique normalized eigenstate |�(1)

k 〉 of H1,

up to a multiplicative constant, corresponding to an eigenvalue E
(1)
k such that

|�(1)
k 〉 = cA†|�(2)

n 〉. The normalization constant c is given by c = (E
(2)
n )−1/2.

We have

|�(1)
k 〉 = (E(2)

n )−1/2A†|�(2)
n 〉. (2.15)

It follows from (2.15) that

H1|�(1)
k 〉 = (E(2)

n )−1/2H1

(
A†

∣∣∣�(2)
n

〉)

= (E(2)
n )−1/2E(2)

n

(
A†

∣∣∣�(2)
n

〉)
from (2.14)

= E(2)
n |�(1)

k 〉 from (2.15).

Then H1|�(1)
k 〉 = E

(1)
k |�(1)

k 〉 = E
(2)
n |�(1)

k 〉. It follows from this that E(1)
k = E

(2)
n .

Since E
(1)
0 �= E

(2)
0 (E(1)

0 = 0 and E
(2)
0 �= 0), a simplest solution of the index

equation is k = n+ 1. Hence

{
E

(1)
n+1 = E

(2)
n

|�(1)
n+1〉 = (E

(2)
n )−1/2(A†|�(2)

n 〉). (2.16)

One can similarly show from (2.13) that

{
E

(2)
n = E

(1)
n+1

|�(2)
n 〉 = (E

(1)
n+1)

−1/2A|�(1)
n+1〉.

(2.17)
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It follows from these propositions that the eigenvalues of H1 and H2 are positive
definite (E1,2

n ≥ 0), and the partner Hamiltonians are isospectral, i.e., they have
almost the same energy eigenvalues, except for the ground state energy of H1 which
is missing in the spectrum of H2. The spectra are linked as [10]:

E(2)
n = E

(1)
n+1, E

(1)
0 = 0, n = 0, 1, 2, . . . ,

�(2)
n =

[
E

(1)
n+1

](−1/2)
A�

(1)
n+1,

�
(1)
n+1 =

[
E(2)

n

](−1/2)
A†�(2)

n . (2.18)

Hence, if the eigenvalues and eigenfunctions of one of the partner, say H1, are
known, one can immediately derive the eigenvalues and eigenfunctions of H2.

However, the above relations (2.18) only give the relationship between the
eigenvalues and eigenfunctions of the two partner Hamiltonians, but do not allow to
determine their spectra. A condition of an exact solvability is known as the shape
invariance condition; that is, the pair of SUSY partner potentials V1,2 are similar in
shape and differ only in the parameters that appear in them. Gendenshtein states the
shape invariance condition as [10, 17]

V2(x; a1) = V1(x; a2)+R(a1), (2.19)

where a1 is a set of parameters and a2 is a function of a1, (a2 = f (a1)), and R(a1)

is the non-vanishing remainder independent of x. In such a case, the eigenvalues
and the eigenfunctions of H1 can explicitly be deduced [17]. If this Hamiltonian
H1 has p (p ≥ 1) bound states with eigenvalues E

(1)
n , and eigenfunctions �

(1)
n

with 0 ≤ n ≤ p − 1, the starting point of constructing the spectra is to generate
a hierarchy of (p − 1) Hamiltonians H2, . . . Hp such that the mth member of the
hierarchy (Hm) has the same spectrum as H1 except that the first m− 1 eigenvalues
of H1 are missing in the spectrum of Hm [10]. In order m, (m = 2, 3, . . . p), we
have partner Hamiltonians

Hm(x; a1) = A†
m(x; a1)Am(x; a1)+ E

(m)
0 = − d2

dx2 + Vm(x; a1),

Hm+1(x; a1) = Am(x; a1)A
†
m(x; a1)+ E

(m)
0 = − d2

dx2 + Vm+1(x; a1),

the spectra of which are related as

E(m+1)
n = E

(m)
n+1, �(m+1)

n =
(
E

(m)
n+1 − E

(m)
0

)−1/2
Am�

(m)
n+1.

In terms of the spectrum of H1 we have
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E
(m)
n = E

(m−1)
n+1 =E

(m−2)
n+2 = · · ·=E

(1)
n+m−1 (2.20)

�
(m)
n =

(
E
(1)
n+m−1−E

(1)
m−2

)−1/2 · · ·
(
E
(1)
n+m−1−E

(1)
0

)−1/2
Am−1 · · ·A1�

(1)
n+m−1(x; a1).

Theorem 2.7 The eigenvalues of H1 are given by [10, 17]

E(1)
n =

n∑

k=1

R(ak). (2.21)

Proof Consider the partner Hamiltonians Hm and Hm+1 of the hierarchy of
Hamiltonians constructed from H1. If the partner potentials are shape invariant, we
can write

Vm+1(x; a1) = Vm(x; a2)+R(a1)

= Vm−1(x; a3)+R(a2)+R(a1)

= Vm−2(x; a4)+R(a3)+R(a2)+R(a1)

...

= V2(x; am)+R(am−1)+R(am−2)+ · · · +R(a1)

= V1(x; am+1)+
m∑

k=1

R(ak).

It follows from the above that Hm(x; a1) = H1(x; am)+
m−1∑

k=1

R(ak). Hence E
(m)
0 =

m−1∑

k=1

R(ak). From Eq. (2.18), E(m)
0 = E

(1)
m−1. Then E

(1)
m−1 =

m−1∑

k=1

R(ak), i.e, E(1)
n =

n∑

k=1

R(ak) . 	

Theorem 2.8 The normalized eigenfunctions of H1 are given by [11]

�n(x; a1) =
⎧
⎨

⎩

n∏

k=1

⎛

⎝
k∑

p=1

R(ap)

⎞

⎠

⎫
⎬

⎭

−1/2

A†(x; a1) · · ·A†(x; an)�(1)
0 (x; an+1). (2.22)

Proof From the shape invariance condition (2.19), we deduce the following relation
between the eigenfunctions of the partner Hamiltonians H1 and H2

�(2)
n (x; a1) = �(1)

n (x; a2) (2.23)
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We know from (2.16) that

�
(1)
n+1(x; a1) = (E(2)

n )−1/2A†(x; a1)�
(2)
n (x; a1)

= (E(2)
n )−1/2A†(x; a1)�

(1)
n (x; a2) from (2.23)

= (E(2)
n )−1/2(E

(2)
n−1)

−1/2A†(x; a1)A
†(x; a2)�

(2)
n−1(x; a3)

= ...

= (E2
n)
−1/2 · · · (E2

0)
−1/2A†(x; a1) · · ·A†(x; an+1)�

(1)
0 (x; an+2).

It deduces from above equations that

�
(1)
n (x; a1)=

⎧
⎨

⎩

n∏

k=1

⎛

⎝
k∑

p=1

R(ap)

⎞

⎠

⎫
⎬

⎭

−1/2

A†(x; a1) · · ·A†(x; an)�(1)
0 (x; an+1). (2.24)

	
The shape invariance condition (2.19) can be rewritten in terms of the factorization
operators defined in Eqs. (2.4)–(2.7),

A(a1)A
†(a1) = A†(a2)A(a2)+R(a1), (2.25)

where a2 is a function of a1. Here, we only consider the translation class of shape
invariance potentials, that is the case where the parameters a1 and a2 are related as
a2 = a1+η [11] and the potentials are known in closed form. The scaling class [25]
is not treated here since the potentials, in this case, can only be written as Taylor
expansion.

Introducing a reparametrization operator Tη defined as

Tη : H −→ H Tη�(x; a1) := φ(x; a1 + η) = �(x; a2) (2.26)

which replaces a1 with a2 in a given operator [7]

TηO(a1)T
−1
η = O(a1 + η) := O(a2), (2.27)

and the operators

B−, B+ : H −→ H B+ = A†(a1)Tη, B− = T †
η A(a1), (2.28)

with the domains

D(B−) =
{
u ∈ H, v = u′ +Wu ∈ H and T †

η v ∈ H
}

(2.29)

D(B+) =
{
u ∈ H, v = Tηu ∈ H and − v′ +Wv ∈ H

}
. (2.30)
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The Hamiltonian factorizes in terms of the new operators as follow:

H − E0 = H1 = A†(a1)A(a1) = B+B− (2.31)

where

[B−, B+] = R(a0) , B− |�0〉 = 0 . (2.32)

The states Bn+ |�0〉 are eigenfunctions of H with eigenvalues En, ie,

H(Bn+ |�0〉) =
[

n∑

k=1

R(ak)

]

︸ ︷︷ ︸
En

Bn+ |�0〉 (2.33)

B± act as raising and lowering operators:

B+ |�n〉 =
√
En+1 |�n+1〉 , B− |�n〉 =

√
R(a0)+ En−1 |�n−1〉 . (2.34)

To define shape invariant potential CS, Balantekin et al. [2] introduced the right
inverse of B− as: B−B−1− = 1 and the left inverse H−1 of H such that: H−1B+ =
B−1− . The SIPCS defined by

|z〉 =
n∑

n=0

(zB−1− )n |�0〉 (2.35)

are eigenstates of the lowering operator B−:

B− |z〉 = z |z〉 . (2.36)

A generalization of the SIPCS (2.35) was done as [2]:

∣∣z; aj
〉 =

∞∑

n=0

{
zZjB

−1−
}n |�0〉 , z, Zj ∈ IC (2.37)

where Zj ≡ Z(aj ) ≡ Z(a1, a2, . . .). Observing that B−1− Zj = Zj+1 B−1− , and from

Zj−1 = T †(a1)ZjT (a1) (2.38)

one can readily show that

(zZjB
−1− )n = zn

n−1∏

k=0

Zj+kB
−n− . (2.39)
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Using (2.39), one can straightforwardly deduce that (2.37) are eigenstates of B−:

B−
∣∣z; aj

〉 = zZj−1
∣∣z; aj

〉
. (2.40)

Observing that

B−n− |�0〉 = Cn |ψn〉 , Cn =
[

n∏

k=1

(
n∑

s=k

R(as)

)]−1/2

(2.41)

and using (2.41), the normalized form of the CS (2.37) can be obtained as:

|z; ar 〉 = N (|z|2; ar)
∞∑

n=0

zn

hn(ar)
|�n〉 , (2.42)

where we used the shorthand notation ar ≡ [R(a1),R(a2), . . . ,R(an) ; aj , aj+1,

. . . , aj+n−1]. The expansion coefficient hn(ar) and the normalization constant
N (|z|2; ar) are:

hn(ar) =

√√√√
n∏

k=1

(
n∑

s=k

R(as)

)

n−1∏

k=0

Zj+k

for n ≥ 1, h0(ar ) = 1,

N (x; ar) =
[ ∞∑

n=0

xn

|hn(ar)|2
]−1/2

. (2.43)

It is shown [2] that these states (2.37) fulfill the standard properties of label
continuity, overcompleteness, temporal stability and action identity.

3 Construction of Photon-Added Coherent States for Shape
Invariant Systems

In this section, a construction of PA-SIPCS [38], and their physical and mathemati-
cal properties are presented.
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3.1 Definition of the PA-SIPCS

Let Hm be the Hilbert subspace of H defined as follows:

Hm := span {|�n+m〉}n≥0 . (3.1)

By successive applications of the raising operator B+ on the generalized
SIPCS (2.36), we can obtain photon-added shape invariant potential CS (PA-SIPCS)
denoted by |z; ar 〉m:

|z; ar 〉m := (Bm+ ) |z; ar 〉 (3.2)

where m is a positive integer standing for the number of added quanta or photons.
It is worth mentioning that the first m eigenstates |�n〉, n = 0, 1, . . . , m− 1 are

absent from the wavefunction |z; ar 〉m ∈ Hm. Therefore, from the orthonormality
relation satisfied by the states |�n〉 , the overcompleteness relation fulfilled by the
identity operator on Hm, denoted by 1Hm

, is written as [31, 37]

1Hm
=

∞∑

n=m

|�n〉 〈�n| =
∞∑

n=0

|�n+m〉 〈�n+m| . (3.3)

Here, 1Hm
is only required to be a bounded positive operator with a densely defined

inverse [3].
From (2.27) and using the relations B+R(an−1) = R(an)B+ and B+ |�n〉 =√
En+1 |�n+1〉, we obtain the PA-SIPCS as:

|z; ar 〉m = Nm(|z|2; ar)
∞∑

n=0

zn

Km
n (ar)

|�n+m〉 (3.4)

where the expansion coefficient takes the form:

Km
n (ar) =

[
n+m∏

k=m+1

(
n+m∑

s=k

R(as)

)]1/2

[
n+m−1∏

k=m

Zj+k

]
.

[
m∏

k=1

(
n+m∑

s=k

R(as)

)]1/2 , (3.5)

and the normalization constant Nm(|z|2; ar) is given by:

Nm(|z|2; ar) =
( ∞∑

n=0

|z|2n
|Km

n (ar)|2
)−1/2

. (3.6)
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The inner product of two different PA-SIPCS |z; ar 〉m and
∣∣z′; ar

〉
m′

m′
〈
z′; ar |z; ar 〉m = Nm′(|z′|2; ar)Nm(|z|2; ar)
∞∑

n,n′=0

z′3n
′
zn

Km′
n′

3
(ar )Km

n (ar)

〈
�n′+m′ |�n+m〉 (3.7)

does not vanish. Indeed, due to the orthonormality of the eigenstates |�n〉, the inner
product (3.7) can be rewritten as

m′
〈
z′; ar |z; ar 〉m = Nm′ (|z′|2; ar )Nm(|z|2; ar )z′3(m−m′)

∞∑

n=0

(z′3z)n

Km′
n+m−m′

3
(ar ) K

m
n (ar )

, (3.8)

showing that the PA-SIPCS are not mutually orthogonal.

3.2 Label Continuity

In the Hilbert space H, the PA-SIPCS |z, ar 〉m are labeled by m and z. The label
continuity condition can then be stated as:

|z− z′| → 0 and |m−m′| → 0 *⇒ |||z, ar 〉m − |z′, ar 〉m′ ||2
= 2

[
1−Re

(
m′

〈
z′; ar |z; ar 〉m

)]→ 0. (3.9)

This is satisfied by the states |z, ar 〉m, since from Eqs. (3.6), (3.8), we see that

m→ m′ and z→ z′ *⇒
m′

〈
z′; ar |z; ar 〉m → 1. (3.10)

Therefore the PA-SIPCS |z, ar 〉m are continuous in their labels.

3.3 Overcompleteness

We check the realization of the resolution of the identity in the Hilbert space (3.1)
with the identity operator defined as (3.3):

∫

IC
d2z |z; ar 〉m ωm(|z|2; ar) m 〈z; ar | = 1Hm

. (3.11)

Inserting the definition (3.4) of the PA-SIPCS |z; ar 〉m into Eq. (3.11) yields, after
taking the angular integration of the diagonal matrix elements:
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∫ ∞

0
dx xn Wm(x; ar) = |Km

n (ar)|2 with Wm(x; ar) = πN 2
m(x; ar) ωm(x; ar).

(3.12)

Therefore, the weight function ωm is related to the undetermined moment
distribution Wm(x; ar), which is the solution of the Stieltjes moment problem with
the moments given by |Km

n (ar)|2. In order to use Mellin transformation, we can
rewrite (3.12) as

∫ ∞

0
dx xn+m gm(x; ar) = |Km

n (ar)|2, where gm(x; ar)

= πN 2
m(x; ar)x−m ωm(x; ar) . (3.13)

By performing the variable change n+m→ s − 1, Eq. (3.13) becomes:

∫ ∞

0
dxxs−1gm(x; ar) = |Km

s (ar)|2 . (3.14)

Comparing this relation with the Meijer’s G-function and the Mellin inversion
theorem [28]

∫ ∞

0
dx xs−1Gm,n

p,q

(
αx

∣∣∣∣
a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

)

= 1

αs

m∏

j=1

�(bj + s)

n∏

j=1

�(1− aj − s)

q∏

j=m+1

�(1− bj − s)

p∏

j=n+1

�(aj + s)

, (3.15)

we see that if |Km
s (ar)|2 in the above relation can be expressed in terms of Gamma

functions, then gm(x; ar) can be identified as the Meijer’s G- function.

3.4 Thermal Statistics

In quantum mechanics, the density matrix, generally denoted by ρ, is an important
tool for characterizing the probability distribution on the states of a physical system.
For example, it is useful for examining the physical and chemical properties of a
system (see [6, 31] and the references listed therein). Consider a quantum gas of the
system in the thermodynamic equilibrium with a reservoir at temperature T , which
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satisfies a quantum canonical distribution. The corresponding normalized density
operator is given, in the Hilbert space Hm := span |�n+m〉n≥0, as

ρ(m) = 1

Z

∞∑

n=0

e−βEn |�n+m〉〈�n+m|, (3.16)

where, in the exponential, En is the eigen-energy, and the partition function Z is
taken as the normalization constant.

The diagonal elements of ρ(m), essential for our purpose, also known as the Q-
distribution or Husimi’s distribution, are derived in the PA-SIPCS basis as

m

〈
z; ar |ρ(m)|z; ar

〉

m
= N 2

m(|z|2;m)

Z

∞∑

n=0

|z|2n
|Km

n (ar)|2 e
−βEn. (3.17)

The normalization of the density operator leads to

Trρ(m) =
∫

IC
d2z ωm(|z|2; ar) m〈z; ar |ρ(m)|z; ar 〉m = 1. (3.18)

The diagonal expansion of the normalized canonical density operator over the PA-
SIPCS projector is

ρ(m) =
∫

IC
d2z ωm(|z|2; ar)|z; ar 〉mP (|z|2) m〈z; ar |, (3.19)

where the P -distribution function P(|z|2)| satisfying the normalization to unity
condition

∫

IC
d2z ωm(|z|2; ar)P (|z|2) = 1 (3.20)

must be determined.
Thus, given an observable O, one obtains the expectation value, i.e., the thermal

average given by

〈O〉m = T r(ρ(m)O) =
∫

IC
d2z ωm(|z|2; ar)P (|z|2) m〈z; ar |O|z; ar 〉m. (3.21)

One can check that for a PA-SIPCS (3.4) the expectation values of the operator
N := B+B− [38] are:

〈N〉 = N 2
m(|z|2; ar)

∞∑

n=0

En+m

|z|2n
|Km

n (ar)|2 ,
〈
N2

〉

= N 2
m(|z|2; ar)

∞∑

n=0

E2
n+m

|z|2n
|Km

n (ar)|2 . (3.22)
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Using (3.22), the pseudo-thermal expectation values of the operator N and of
its square N2, given by 〈N〉(m) = T r(ρ(m)N) and 〈N2〉(m) = T r(ρ(m)N2),
respectively, allow to obtain the thermal intensity correlation function as follows:

(g2)(m) = 〈N2〉(m) − 〈N〉(m)

(〈N〉(m)
)2 . (3.23)

Then, we deduce the thermal analogue of the Mandel parameter

Q(m) = 〈N〉(m)
[
(g2)(m) − 1

]
. (3.24)

4 Pöschl–Teller Potential

Consider the family of potentials

Vl,l′(x) =
⎧
⎨

⎩

1

4a2

[
l(l − 1)

sin2 u(x)
− l′(l′ − 1)

sin2 u(x)

]
− (l + l′)2

4a2
, u(x) = x

2a
, 0 < x < πa

∞, x ≤ 0, x ≥ πa

(4.1)

of continuously indexed parameters l, l′. This class of potentials called Pöschl–
Teller potentials of first type (PT-I), intensively studied in [4, 9, 15, 23], is closely
related to other classes of potentials, widely used in molecular physics, namely:
(1) the symmetric Pöschl–Teller potentials well (l = l′ ≥ 1), (2) the Scarf
potentials 1

2 < l′ ≤ 1 [35], (3) the modified Pöschl–Teller potentials which can be
obtained by replacing the trigonometric functions by their hyperbolic counterparts
[13, 33], (4) the Rosen-Morse potential which is the symmetric modified Pöschl–
Teller potentials [34].

Let us define the corresponding Hamiltonian operator Hl,l′ with the action

Hl,l′φ :=
(
− d2

dx2 +
1

4a2

[
l(l − 1)

sin2(x/2a)
− l′(l′ − 1)

sin2(x/2a)

]
− (l + l′)2

4a2

)
φ

for φ ∈ DHl,l′

(4.2)

in the suitable Hilbert space H = L2((0, πa), dx). DHl,l′ is the domain of definition
of Hl,l′ . We consider here the case where l, l′ ≥ 3/2, then the operator Hl,l′ is in the
limit point case at both ends x = 0, πa, therefore it is essentially self-adjoint. In
this case (see [4, 9] for more details) the Pöschl–Teller Hamiltonian can be defined
as the self-adjoint operator Hl,l′ in L2([0, πa], dx) acting as in (4.2), on the dense
domain
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DHl,l′ =
{
φ ∈ AC2(0, πa)|

(
1

4a2

[
l(l − 1)

sin2(x/2a)
− l′(l′ − 1)

sin2(x/2a)

]
− (l + l′)2

4a2

)

φ ∈ L2([0, πa], dx),
φ(0) = φ(πa) = 0

}
. (4.3)

with AC2(0, πa) = {
φ ∈ ac2(0, πa) : φ′ ∈ H

}
, where ac2(0, πa) denotes the set

of absolutely continuous functions with absolutely continuous derivatives.
PT-I potentials are SUSY and fulfill the property of shape invariance [10]. Their

superpotentials are:

W(x; l, l′) = − 1

2a

[
l cot(u(x))− l′ tan(u(x))

]
. (4.4)

One can define the first differential operators A,A† that factorize the Hamiltonian
operator in (4.2) as:

A := d

dx
+W(x; l, l′), A† := − d

dx
+W(x; l, l′) (4.5)

with the domains:

D(A) = {ψ ∈ ac[0, πa], (ψ ′ +W(x; l, l′)ψ) ∈ H} (4.6)

D(A†) =
{
φ ∈ ac[0, πa] | ∃φ̃ ∈ H : [ψ(x)φ(x)]a0 = 0,

〈Aψ, φ〉 =
〈
ψ, φ̃

〉
,∀ψ ∈ D(A)

}
(4.7)

with A†φ = φ̃. The partner potentials V1,2 satisfy the following shape invariance
relation:

V2(x, l, l
′) = V1(x, l + 1, l′ + 1)+ 1

a2 (l + l′ + 1). (4.8)

The potential parameters a1 ≡ (l, l′) and a2 ≡ (l + 1, l′ + 1) are related as

a2 = a1 + 2, (4.9)

while the remainder in the shape invariant condition (2.14) is R(a1) = 1
a2 (l+l′+1).

Then the products in terms of the quantity R(as) in the numerator and denominator
of the coefficient Km

n (ar), see Eq. (3.5), can be read, respectively, as:
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n+m∏

k=m+1

(
n+m∑

s=k

R(as)

)
= λ2n �(n+ 1)�(2n+ 2m+ 2ρ)

�(n+ 2m+ 2ρ)
(4.10)

m∏

k=1

(
n+m∑

s=k

R(as)

)
= λ2m�(n+m+ 1)�(n+ 2m+ 2ρ)

�(n+ 1)�(n+m+ 2ρ)
(4.11)

where we set λ = 1
a

and 2ρ = l + l′, ρ ≥ 3/2. The explicit form of the expansion
coefficient Km

n (ar) depends on the choice of the functional Zj .

4.1 First Choice of the Functional Zj

First we define the functional Zj as Zj = e−iαR(a1), then we obtain

n+m−1∏

k=m

Zj+k = eiαEn, En = λ2n(n+ 2ρ). (4.12)

Inserting this relation and the results (4.10) and (4.11) in (3.5), we obtain the
expansion coefficient as:

Km
n (ar ) = λn−m

√
�(n+ 1)2 �(2n+ 2m+ 2ρ) �(n+m+ 2ρ)

�(n+m+ 1)�(n+ 2m+ 2ρ)2
eiαEn . (4.13)

(i) Normalization

The normalization factor, in terms of the generalized hypergeometric functions 3F4,
can readily be deduced from (3.6) as:

Nm(|z|2; ar ) =
⎡

⎣λ2m�(m+1)�(2m+2ρ)

�(m+2ρ)
3F4

⎛

⎝
m+1, 2m+2ρ, 2m+2ρ ;

1,m+ρ,m+2ρ,m+ρ+1/2 ; |az|
2

4

⎞

⎠

⎤

⎦
−1/2

.

(4.14)

In terms of Meijer’s G-function, we have:

Nm(|z|2; ar) =
[
λ2m�(m+ ρ)�(m+ ρ + 1

2 )

�(2m+ 2ρ)
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G
1,3
3,5

(
−|az|

2

4

∣∣∣∣
−m, 1− 2m− 2ρ, 1− 2m− 2ρ
0, 0, 1−m− ρ, 1−m− 2ρ, 1/2−m− ρ

)]−1/2

. (4.15)

The explicit form of these PA-SIPCS are:

|z; ar 〉m = Nm(|z|2; ar )λm
∞∑

n=0

√
�(n+m+ 1)�(n+ 2m+ 2ρ)2

�(n+m+ 2ρ)�(2n+ 2m+ 2ρ)

(az)n

n! |n+m〉 (4.16)

defined on the whole complex plane. For m = 0, we recover the expansion
coefficient and the normalization factor obtained in [2] for the generalized SIPCS:

K0
n = λn

√
�(n+ 1)�(2ρ + 2n)

�(2ρ + n)
eiαEn = hn(ar),

N0(|z|2; ar) =
[

1F2

(
2ρ; ρ, ρ + 1/2; |az|

2

4

)]−1/2

= N (|z|2; ar) . (4.17)

(ii) Non-orthogonality

The inner product of two different PA-SIPCS |z; ar 〉m and
∣∣z′; ar

〉
m′ follows from

Eq. (3.8):

m′
〈
z′; ar

∣∣ z; ar 〉m = χ(z′, z,m,m′, ρ)3F4

(
m+ 1, 2m+ 2ρ,m+m′ + 2ρ ;

m−m′ + 1,m+ 2ρ,m+ ρ,m+ ρ + 1
2 ; a2z′3z

4

)

where χ(z′, z,m,m′, ρ) = Nm′(|z′|2; ar) Nm(|z|2; ar) z′3(m−m′)
λ(m+m′)

�(m+1)�(m+m′+2ρ)
�(m−m′+1)�(m+2ρ) .

(iii) Overcompleteness

The non-negative weight function ωm(|z|2; ar) is related to the function gm
satisfying (3.13):

∫ ∞

0
dx xn+m gm(x; ar) = ξ(x, n,m, ρ)

�(n+ 1)2�(n+m+ 2ρ)�(n+m+ ρ)�(n+m+ ρ + 1
2 )

�(n+m+ 1)�(n+ 2m+ 2ρ)2 (4.18)

where x stands for |z|2, ξ(x, n,m, ρ) = λ2(n−m) 2(2n+2m+2ρ)

2
√
π

and ωm =
xmgm(x; ar)
πN2

m(x; ar)
. After variable change n+m→ s − 1 and using the Mellin inversion

theorem in terms of Meijer’s G-function (3.15), we deduce:
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Fig. 1 Plots of the weight function (4.19) of the PA-SIPCS (4.16) versus |z|2 with the potential
parameters ρ = 2, λ = 1, for different values of the photon-added number m with m = 0 (thin
solid line), m = 1 (solid line), m = 2 (dot line), and m = 3 (dashed line)

ωm(|z|2; ar) = 1

2π
√
π

|z|2m
Nm(|z|2; ar)2

λ−2(1+2m)22(1−ρ)

G
5,0
3,5

( |az|2
4

∣∣∣∣
0,−1+ 2ρ +m,−1+ 2ρ +m

−m,−m, 2ρ − 1,−1+ ρ,−1/2+ ρ

)
. (4.19)

The weight function (4.19) is positive for the parameter ρ > 0 as shown in Figure 1,
where the curves are represented for ρ = 2 and for m = 0, 1, 2, 3. All the functions
are positive for x = |z|2 ∈ IR+ and tend asymptotically to the measure of the
conventional CS (m = 0). The measure has a singularity at x = 0 and tends to zero
for x →∞.

(iv) Thermal statistics

Consider the normalized density operator expression

ρ(m) = 1

Z

∞∑

n=0

e−βEn |n+m〉〈n+m| (4.20)

in which the exponent βEn is re-cast as follows: βEn = βλ2
[
n2 + 2nρ

] =
An2 − Bρn where A = βλ2, Bρ = −2βρλ2. Then, the energy exponential can
be expanded in the power series (see, e.g., [32]) such that

e−βEn = e−An

[ ∞∑

k=0

(Bρ)
k

k! n2k

]
=

{ ∞∑

k=0

(Bρ)
k

k!
(

d

dA

)2k
}(

e−A
)n

= exp

[
Bρ

(
d

dA

)2
](

e−A
)n

. (4.21)
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Thereby,

ρ(m) =
exp

[
Bρ

(
d
dA

)2
]

Z

∞∑

n=0

(
e−A

)n |n+m〉〈n+m|. (4.22)

From (4.16) and (4.22), we get, in terms of Meijer’s G functions, the Q-distribution
or Husimi distribution:

m〈z;m|ρ(m)|z;m〉m = �(2m+ 2ρ)

�(m+ ρ)�(m+ ρ + 1/2)

�( 1
2 )

22(m+ρ−1/2)

exp
[
Bρ

(
d
dA

)2
]

Z
×

×
G

1,3
3,5

(
− (a|z|)2

4 e−A

∣∣∣∣
−m, 1− 2m− 2ρ, 1− 2m− 2ρ;
0; 0, 1−m− ρ, 1−m− 2ρ, 1/2−m− ρ

)

G
5,0
3,5

(
− (a|z|)2

4

∣∣∣∣
−m, 1− 2m− 2ρ, 1− 2m− 2ρ;
0; 0, 1−m− ρ, 1−m− 2ρ, 1/2−m− ρ

) .

(4.23)

The angular integration achieved, taking x = |z|2, the condition (3.18) supplies

Trρ(m) =
exp

[
Bρ

(
d
dA

)2
]

Z

22[1−2ρ−m]

λ2(1+m)

∫ ∞

0
dx xm

G
1,3
3,5

(
−|a|

2

4
xe−A

∣∣∣∣
−m, 1− 2m− 2ρ, 1− 2m− 2ρ;
0; 0, 1−m− ρ, 1−m− 2ρ, 1/2−m− ρ

)
×

× G
5,0
3,5

( |a|2
4

x

∣∣∣∣
; 0,−1+ 2m+ ρ,−1+ 2ρ +m

−m,−m, 2ρ − 1,−1+ ρ,−1/2+ ρ;
)
. (4.24)

Then, the integral of Meijer’s G-function product provides the partition function

Z = 24(1−ρ)

(λ|a|)2(1+m)
exp

[
Bρ

(
d

dA

)2
] ∞∑

n=0

(
e−A

)n

. (4.25)

From (3.19), using the result 〈n + m|ρ(m)|n + m〉 = 1
Z

exp
[
Bρ

(
d
dA

)2
] (

e−A
)n

and

setting n̄A = (eA − 1)−1, we get the following integration equality:

1

n̄A+1

(
n̄A

n̄A+1

)n
�(n+1)2�(n+m+2ρ)�(2n+2m+2ρ)

�(n+m+1)�(n+2m+2ρ)2

√
πλ4(1+m)

25−6ρ |a|2(n−m−1)

=
∫ ∞

0
dx xn+mP (x)×

G
5,0
3,5

( |a|2
4

x

∣∣∣∣
; 0,−1+ 2m+ ρ,−1+ 2ρ +m

−m,−m, 2ρ − 1,−1+ ρ,−1/2+ ρ;
)
.
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After performing the exponent change n + m = s − 1 in order to get the Stieltjes
moment problem, we arrive at the P -function as

P(|z|2) = 1

n̄A

(
n̄A + 1

n̄A

)m
λ2|a|2(m+1)

24(1−ρ)

×
G

5,0
3,5

(
n̄A+1
n̄A

|az|2
4

∣∣∣∣
; 0,−1+ 2ρ +m,−1+ 2ρ +m

−m,−m, 2ρ − 1,−1+ ρ,−1/2+ ρ;
)

G
5,0
3,5

(
|az|2

4

∣∣∣∣
; 0,−1+ 2ρ +m,−1+ 2ρ +m

−m,−m, 2ρ − 1,−1+ ρ,−1/2+ ρ;
) (4.26)

which obeys the normalization to unity condition (3.20).
Then, the diagonal representation of the normalized density operator in terms of

the PA-SIPCS projector (3.19) takes the form

ρ(m) = 1

n̄A

(
n̄A + 1

n̄A

)m λ2|a|2(m+1)

24(1−ρ)

∫

IC
d2z ωm(|z|2; ar )|z; ar 〉mS5,0

3,5(|z|2; n̄A) m〈z; ar |
(4.27)

with S
5,0
3,5(|z|2, n̄A)—the Meijer’s G-function quotient given in (4.26). Using the

relations (4.26), (4.27), and the definition (3.21), the pseudo-thermal expectation
values of the operator N and its square are given by

〈N〉(m) =
( |a|2

4

)m+1
1

λ2(m−1)

m(m+ 2ρ)

(m+ 1)(m+ 1+ 2ρ)

×
[

1+
(

1

m+ 1
+ 1

m+ 1+ 2ρ

)
n̄+ 1

(m+ 1)(m+ 1+ 2ρ)

×
(

n̄

1− e−β
+ n̄2

)]
(4.28)

〈N2〉(m)=
( |a|2

4

)m+1
1

λ2(m−2)

[
m(m+ 2ρ)

(m+ 1)(m+ 1+ 2ρ)

]2

×
{

1+2

(
1

m+ 1
+ 1

m+ 1+ 2ρ

)
n̄+

+
(

1

(m+ 1)2 +
1

(m+ 1+ 2ρ)2 +
4

(m+ 1)(m+ 1+ 2ρ)

)(
n̄

1− e−β
+ n̄2

)
+

+2

(
1

(m+ 1)2(m+ 1+ 2ρ)
+ 1

(m+ 1)(m+ 1+ 2ρ)2

)[
n̄

(1− e−β)2 +
4n̄2

1− e−β
+ n̄3

]
+

+ 1

(m+ 1)2(m+ 1+ 2ρ)2

[
n̄

(1− e−β)3 +
11n̄2

(1− e−β)2 +
11n̄3

1− e−β
+ n̄4

]}
(4.29)

where n̄ = (e−β − 1)−1. Thereby,
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(g2)(m) = 1+
{(

1

(m+ 1)
+ 1

(m+ 1+ 2ρ)

)2
n̄

(1− e−β)
+

(
1

(m+ 1)2(m+ 1+ 2ρ)
+ 1

(m+ 1)(m+ 1+ 2ρ)2

)[
2n̄

(1− e−β)2 +
6n̄2

1− e−β

]
+

1

(m+ 1)2(m+ 1+ 2ρ)2

[
n̄

(1− e−β)3 +
10n̄2

(1− e−β)2 +
9n̄3

1− e−β

]}

× 1
( |a|2

4

)−(m+1)
λ2m

(〈N〉(m)
)2
− 1

( |a|2
4

)− m+1
2

λm〈N〉(m)

. (4.30)

Then, the thermal analogue of the Mandel parameter is given by

Q(m) =
( |a|2

4

)−m+1
2

λm〈N〉(m)
[
(g2)(m) − 1

]

=
{(

1

(m+ 1)
+ 1

(m+ 1+ 2ρ)

)2
n̄

(1− e−β)
+

(
1

(m+ 1)2(m+ 1+ 2ρ)
+ 1

(m+ 1)(m+ 1+ 2ρ)2

)[
2n̄

(1− e−β)2 +
6n̄2

1− e−β

]
+

1

(m+ 1)2(m+ 1+ 2ρ)2

[
n̄

(1− e−β)3 +
10n̄2

(1− e−β)2 +
9n̄3

1− e−β

]}

× 1
( |a|2

4

)− m+1
2

λm〈N〉(m)

− 1. (4.31)

4.2 Second Choice of the Functional Zj

We now take Zj = √
g(a1; κ, κ)g(a1; κ, 0) e−iαR(a1) with κ a real constant and

where we use the auxiliary function [2] g(aj ; c, d) = caj + d, c and d being real
constants. From the potential parameter relations (4.9) we obtain:

n+m−1∏

k=m

g(aj+k; c, d) = 2cn
�(n+m+ a1

2 + j − 1+ d/2c)

�(m+ a1
2 + j − 1+ d/2c)

. (4.32)

Setting a1 = 2ρ, we have:

n+m−1∏

k=m

Zj+k =
[
κ2n �(2n+ 2m+ 2ρ)

�(2m+ 2ρ)

] 1
2
e−iαEn (4.33)
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with the eigen-energy En given by (4.12). Inserting Eqs. (4.33), (4.10), and (4.11)
in the expansion coefficient (3.5), we obtain

Km
n (ar)=

[
1

κ2m

�(n+1)2 �(n+m+ν+1)�(2m+ ν + 1)

�(n+m+ 1)�(n+ 2m+ ν + 1)2

] 1
2
eiαEn, (4.34)

where we assume λ = 1
a
= κ and ρ = ν

2 + 1
2 , ν ≥ 1 in (4.10) and (4.11). For

m = 0, we recover the coefficient hn in [2]:

K0
n(ar) =

[
�(n+ 1)�(ν + 1)

�(n+ ν + 1)

] 1
2
eiαEn = hn(ar) . (4.35)

(i) Normalization

The normalization factor in terms of hypergeometric and Meijer’s G-functions is

Nm(|z|2; ar ) = κ2m�(m+ 1)
�(2m+ ν + 1)

�(m+ν+1)

[
3F2

(
m+1, 2m+ν + 1, 2m+ν+1 ;
1,m+ ν + 1 ; |z|2

)]− 1
2

(4.36)

Nm(|z|2; ar ) =
[

κ2m

�(2m+ ν + 1)
G

1,3
3,3

(
−|z|2

∣∣∣∣
−m,−2m− ν,−2m− ν

0, 0,−m− ν

)]− 1
2
. (4.37)

The explicit form of the PA-SIPCS, defined for |z| < 1, is provided by:

|z; ar 〉m=Nm(|z|2; ar )
∞∑

n=0

√

κ2m �(n+m+1)�(n+2m+ν+1)2

�(n+1)2�(n+m+ν+1)�(2m+ ν + 1)
zne−iαEn |n+m〉 .

(4.38)

For m = 0, we recover the normalization factor

N0(|z|2; ar)=1F0(ν+1;−; |z|2)− 1
2=(1− |z|2)−1/2−ν/2 = N (|z|2; ar) (4.39)

obtained in [2]. For m = 0, the PA-SIPCS is reduced to the SIPCS

|z; ar 〉 = (1− |z|2)(ν+1)/2
∞∑

n=0

√
�(n+ ν + 1)

�(ν + 1)�(n+ 1)
e−iαEn |�n〉 (4.40)

obtained in [2] and in [15] as CS of Klauder-Perelomov’s type for the PT-I.
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(ii) Non-orthogonality

The inner product of two different PA-SIPCS |z; ar 〉m and
∣∣z′; ar

〉
m′ is given by:

m′
〈
z′; ar

∣∣ z; ar 〉m = χ(z′, z,m,m′, ν) 3F2

(
m+ 1,m+m′ + ν + 1, 2m+ ν + 1 ;
m−m′ + 1,m+ ν + 1 ; z′3z

)

where

χ(z′, z,m,m′, ν) = Nm′(|z′|2; ar) Nm(|z|2; ar) z′3(m−m′)
κ(m+m′)

√
�(2m+ν + 1)�(2m′+ν+1)

×

×�(m+1)�(m+m′+ν + 1)�(2m+ ν + 1)

�(m−m′ + 1)�(m+ ν + 1)
eiα(En−En+m−m′ ).

(iii) Overcompleteness

Following the steps of Sect. 3.3, we obtain the weight-function of the PA-
SIPCS (4.38) as

ωm(|z|2; ar ) = 1

π
G

1,3
3,3

(
−|z|2

∣∣∣∣
−m,−2m− ν,−2m− ν

0, 0,−m− ν

)
G

3,0
3,3

(
|z|2

∣∣∣∣
m, 2m+ ν, 2m+ ν

0, 0,m+ ν

)
.

(4.41)

We recover, for m = 0, the result:

ω0(|z|2; ar) = �(ν + 1)

π
1F0(ν + 1;−; |z|2)G1,0

1,1

(
|z|2

∣∣∣∣
; ν

0 ;
)
= ν

π
(1− |z|2)−2

(4.42)

obtained in [2] for the corresponding ordinary SIPCS.

(iv) Thermal statistics

Since the eigen-energy En (4.12) is the same as before, we start by maintaining
the relations (4.20)–(4.22). From (4.38) and (4.22), we get, in terms of Meijer’s G
functions, the Q-distribution or Husimi distribution

m〈z;m|ρ(m)|z;m〉m =
exp

[
Bρ

(
d
dA

)2
]

Z

G
1,3
3,3

(
−|z|2e−A

∣∣∣∣
−m,−2m− ν,−2m− ν;
0; 0,−m− ν

)

G
1,3
3,3

(
−|z|2

∣∣∣∣
−m,−2m− ν,−2m− ν;
0; 0,−m− ν

) .

(4.43)



418 K. Sodoga et al.

The angular integration achieved, taking x = |z|2, the condition (3.18) supplies

Trρ(m) =
exp

[
Bρ

(
d
dA

)2
]

Z

∫ ∞

0
dx xmG

3,0
3,3

(
|z|2

∣∣∣∣
;m, 2m+ ν, 2m+ ν

0, 0,m+ ν;
)
×

G
1,3
3,3

(
−|z|2e−A

∣∣∣∣
−m,−2m− ν,−2m− ν;
0; 0,−m− ν

)
. (4.44)

Then, the properties of the integral of Meijer’s G-function product provide the

expression of the partition function Z = exp
[
Bρ

(
d
dA

)2
] ∞∑

n=0

(
e−A

)n

. From (3.19),

taking n̄A = (eA − 1)−1, we get the following integration equality

1

n̄A + 1

(
n̄A

n̄A + 1

)n
�(n+ 1)2�(n+m+ ν + 1)

�(n+m+ 1)�(n+ 2m+ ν + 1)2

=
∫ ∞

0
dx xnP (x)G

3,0
3,3

(
|z|2

∣∣∣∣
;m, 2m+ ν, 2m+ ν

0, 0,m+ ν;
)
.

Finally, we arrive at the P -function:

P(|z|2) = 1

n̄A

G
3,0
3,3

(
n̄A+1
n̄A
|z|2

∣∣∣∣
;m, 2m+ ν, 2m+ ν

0, 0,m+ ν;
)

G
3,0
3,3

(
|z|2

∣∣∣∣
;m, 2m+ ν, 2m+ ν

0, 0,m+ ν;
) (4.45)

which obeys the normalization to unity condition (3.20).
Then, the diagonal representation of the normalized density operator in terms of

the PA-SIPCS projector (3.19) takes the form

ρ(m) = 1

n̄A

∫

IC
d2z ωm(|z|2; ar)|z; ar 〉mS3,0

3,3(|z|2; n̄A) m〈z; ar | (4.46)

with S
3,0
3,3(|z|2, n̄A)—the Meijer’s G-function quotient given in (4.45). Using the

relations (4.45), (4.46), and the definition (3.21), the pseudo-thermal expectation
values of the operator N and its square are given by

〈N〉(m) = κ2m(m+ ν + 1)

[
1+

(
1

m+ 1
+ 1

m+ ν + 2

)
n̄

+ 1

(m+ 1)(m+ ν + 2)

(
n̄

1− e−β
+ n̄2

)]
(4.47)
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〈N2〉(m) = κ4m2(m+ ν + 1)2
{

1+2

(
1

m+ 1
+ 1

m+ ν + 2

)
n̄+

(
1

(m+ 1)2 +
1

(m+ ν + 2)2 +
4

(m+ 1)(m+ ν + 2)

)(
n̄

1− e−β
+ n̄2

)
+

2

(
1

(m+ 1)2(m+ ν + 2)
+ 1

(m+ 1)(m+ ν + 2)2

)(
n̄

(1− e−β)2+
4n̄2

1− e−β
+n̄3

)
+

1

(m+ 1)2(m+ ν + 2)2

[
n̄

(1− e−β)3 +
11n̄2

(1− e−β)2 +
11n̄3

1− e−β
+ n̄4

]}
.

(4.48)

Thereby,

(g2)(m) = 1+
{(

1

(m+ 1)
+ 1

(m+ ν + 2)

)2
n̄

(1− e−β)
+

(
1

(m+ 1)2(m+ ν + 2)

+ 1

(m+ 1)(m+ ν + 2)2

)[
2n̄

(1− e−β)2 +
6n̄2

1− e−β

]
+ 1

(m+ 1)2(m+ ν + 2)2
[

n̄

(1− e−β)3 +
10n̄2

(1− e−β)2 +
9n̄3

1− e−β

]}
1

(〈N〉(m)
)2 −

1

〈N〉(m)
. (4.49)

Then, the thermal analogue of the Mandel parameter is given by

Q(m) = 〈N〉(m)
[
(g2)(m) − 1

]
=

{(
1

(m+ 1)
+ 1

(m+ ν + 2)

)2
n̄

(1− e−β)
+

(
1

(m+ 1)2(m+ ν + 2)
+ 1

(m+ 1)(m+ ν + 2)2

)(
2n̄

(1− e−β)2 +
6n̄2

1− e−β

)
+

1

(m+ 1)2(m+ ν + 2)2

[
n̄

(1− e−β)3 +
10n̄2

(1− e−β)2 +
9n̄3

1− e−β

]}
1

〈N〉(m)
− 1.

(4.50)

5 Concluding Remarks

In this paper, we have shown the use of the shape invariant potential method to
construct generalized CS for photon-added particle systems under Pöschl–Teller
potentials. These states have fully been characterized and discussed from both
mathematics and physics points of view. This algebro-operator method can be
exploited to investigate a large class of solvable potentials.
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On the Fourier Analysis for L2

Operator-Valued Functions

Mawoussi Todjro and Yaogan Mensah

Abstract We endow the set of square integrable operator-valued functions on a
locally compact group with a pre-Hilbert module structure and define the ρ-Fourier
transform for such functions. We also describe the Fourier transform of Hilbert-
Schmidt operator-valued function on compact groups.

Keywords Fourier transform · Hilbert module · Hilbert-Schmidt operator ·
Topological groups

1 Introduction

Square integrable functions (L2-functions) play an important rôle in mathematics,
Physics, and Engineering. In Quantum Mechanics the L2-setting allows one to
apply the Hilbert space methods. In the context of the analysis on locally compact
groups, square integrable functions allows one to define, for instance, the regular
representations of a group. Also with L2-functions one can obtain the Fourier
transform as an isometry [2, 5].

In order to handle efficiently problems involving vector valued functions/
measures it may be interesting to deepen the L2-analysis for such functions/
measures. This paper brings its contribution in that direction.

Our work here put together the following concepts: topological group, bounded
operator, square integrability, and pre-Hilbert module. More precisely we are
interested in L2(G,B(H)) the space of square integrable bounded operator-valued
functions on locally compact groups.

In Sect. 2, we recall some basic definitions and facts which we may need and also
we fix some notations. In the Sect. 3 we construct a pre-Hilbert module structure
on L2(G,B(H)). Section 4 is devoted to the Fourier transform of Hilbert-Schmidt
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operator-valued functions on a compact group. In the last section we construct a
transform of Fourier type related to a representation of the group in a Hilbert module
over a B(H).

2 Preliminaries

We recall in this section some basic definitions and facts that we may need.
A topological group is a group together with a topology such that the map

G × G → G, (x, y) �→ xy−1 is continuous. A locally compact group is a
topological group whose neutral element e (hence all elements) has a compact
neighborhood. It turns out that each locally compact group G has a unique (up to
a positive constant) left invariant measure called the Haar measure of G. Then one
can perform integration against this measure of functions defined on G.

A representation π of the group G in a (complex) Hilbert space Hπ is an
homomorphism of G into Aut(Hπ ), the space of invertible bounded operators
on Hπ . The dimension of π is by definition the dimension of Hπ . If for each
x ∈ G, π(x) is unitary, then the representation π is said to be unitary. Two unitary
representations (π1,Hπ1) and (π2,Hπ2) of G are said to be equivalent if there exists
a unitary isomorphism . T : H1 → H2 such that

T ◦ π1(x) = π2(x) ◦ T , ∀x ∈ G. (2.1)

A closed subspace K of Hπ is said to be π -invariant if π(x)v ⊂ K for all x ∈ G.
If the only invariant subspaces of Hπ are {0} and Hπ , then π is said to be

irreducible.
Through this paper we denote by Ĝ the set of all the equivalence classes of

continuous irreducible unitary representations of G.
For a Hilbert space H we denote by B(H) the space of bounded operators on H.

The set B(H) is endowed with the operator norm

‖T ‖ := sup{‖T ψ‖ : ψ ∈ H, ‖ψ‖ = 1}. (2.2)

We will also consider the set B2(H) of Hilbert-Schmidt operators on H. These
are bounded operators T such that

∑
i

‖T ei‖2 <∞ where (ei)i is an arbitrary basis

of H. One may show that

‖T ‖2 = (
∑

i

‖T ei‖2)
1
2 = T r(A∗A) (2.3)

is a complete norm on B2(H) which is derived from the inner product

〈S, T 〉 = T r(S∗T ). (2.4)

Let f : G → B(H) be a strong measurable function. One says that f is square
integrable (Bochner integral) with respect to the left Haar measure dx of G if
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∫

G

‖f (x)‖2dx < ∞. We denote by L2(G,B(H)) the set of all the (equivalence

classes of ) square integrable B(H)-valued functions on G. One can easily verify
that L2(G,B(H)) is a vector space over C and it is endowed with the norm

‖f ‖ =
(∫

G

‖f (x)‖2dx

) 1
2

. (2.5)

For more details on the integration of vector valued functions with respect to a scalar
measure, we refer to [3] or [4].

In the next section we construct a pre-Hilbert module structure on L2(G,B(H)).
A pre-Hilbert module over a C∗-algebra A is a complex vector space E which is

also a right A-module such that there is a map

E × E → A, (X, Y ) �→ 〈X, Y 〉
with the following properties. For X, Y,Z ∈ E, λ ∈ C, a ∈ A,

1. 〈X, λY + Z〉 = λ〈X, Y 〉 + 〈X,Z〉
2. 〈X, Ya〉 = 〈X, Y 〉a
3. 〈Y,X〉 = 〈X, Y 〉∗
4. 〈X,X〉 is a positive element in A
5. 〈X,X〉 = 0 ⇒ X = 0.

The equality

‖X‖ = ‖〈X,X〉‖ 1
2 (2.6)

defines a norm on E. One has the Cauchy-Schwarz inequality

‖〈X, Y 〉‖�‖X‖‖Y‖. (2.7)

If E is complete with respect to the norm (2.6), then E is called a Hilbert A-
module or a Hilbert C∗-module over A. See [6, 7] for more details.

3 A Pre-Hilbert Module Structure on L2(G,B(H))

For f ∈ L2(G,B(H)) and T ∈ B(H), define

(f T )(x) = f (x)T , x ∈ G, (3.1)

where f (x)T is the composition of the operator T by the operator f (x).

Proposition 3.1 The map θ : L2(G,B(H))×B(H)→ L2(G,B(H)), (f, T ) �→
θ(f, T ) = f T is a right action of B(H) on L2(G,B(H)).
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Proof Let us firstly show that θ is well-defined. Assume f ∈ L2(G,B(H)) and
T ∈ B(H). Then

∫

G

||(f T )(x)||2dx =
∫

G

||f (x)T ||2dx

�
∫

G

||f (x)||2||T ||2dx

= ||T ||2
∫

G

||f (x)||2dx < +∞

So θ(f, T ) ∈ L2(G,B(H)) and therefore θ is well defined.
On the other hand, for S, T ∈ B(H) and x ∈ G we have

[(f S)T ](x) = (f (x)S)T = f (x)(ST ) = [f (ST )](x).

Hence (f S)T = f (ST ). �
Let us consider the map 〈·, ·〉 : L2(G,B(H)) × L2(G,B(H)) → B(H)

defined by

(f, g) �→ 〈f, g〉 =
∫

G

f (x)∗g(x)dx (3.2)

where f (x)∗ denotes the adjoint of the operator f (x).

Proposition 3.2 The space
(
L2(G,B(H)), 〈·, ·〉) is a pre-Hilbert module over

B(H).

Proof Let f, g, h ∈ L2(G,B(H)), λ ∈ C and T ∈ B(H).

1.

〈f, λg + h〉 =
∫

G

f (x)∗(λg(x)+ h(x))dx

=
∫

G

f (x)∗λg(x)dx +
∫

G

f (x)∗h(x)dx

= 〈f, λg〉 + 〈f, h〉
= λ〈f, g〉 + 〈f, h〉.

2.

〈f, gT 〉 =
∫

G

f (x)∗(gT )(x)dx

=
∫

G

f (x)∗(g(x)T )dx
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=
(∫

G

f (x)∗g(x)dx
)
T

= 〈f, g〉T .

3.

〈f, g〉 =
∫

G

f (x)∗g(x)dx

=
∫

G

(
g(x)∗f (x)

)∗
dx

=
(∫

G

g(x)∗f (x)dx

)∗

= 〈g, f 〉∗

4. 〈f, f 〉 =
∫

G

f (x)∗f (x)dx � 0 since for all x ∈ G, f (x)∗f (x) is a positive

operator on B(H).

5.
∫

G

f (x)∗f (x)dx = 0 implies f (x)∗f (x) = 0 a.e. Therefore f = 0 a.e.

It results that L2(G,B(H)) is a pre-Hilbert B(H)-module. �

4 The Fourier Transform of Functions in L2(G,B2(H))

In this section we assume that the group G is compact. We denote by Ĝ its unitary
dual, that is the set of equivalence classes of all the unitary representations of G. We
consider L2-functions on G with values in the class of Hilbert-Schmidt operators.
The space L2(G,B2(H)) is a Hilbert space under the inner product

〈f, g〉 =
∫

G

T r(f (x)∗g(x))dx. (4.1)

The Fourier transform for f ∈ L2(G,B2(H)) is the collection (f̂ (π))π∈Ĝ of
sesquilinear maps f̂ (π) : Hπ ×Hπ → B2(H) defined by

f̂ (π)(ξ, η) =
∫

G

〈π(x)∗ξ, η〉f (x)dx, ξ, η ∈ Hπ . (4.2)

Since G is compact, each representation of G is of finite dimension. For π ∈ Ĝ we
denote by dπ the dimension of Hπ and we fix a basis (ξπ1 , · · · , ξπdπ ) of Hπ . We set

uπ
ij (x) = 〈π(x)ξπj , ξπi 〉 (4.3)
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Then applying [1, Lemma 4.7] we have

f ∈ L2(G,B2(H))⇒ f (x)

=
∑

π∈Ĝ
dπ

dπ∑

i=1

dπ∑

j=1

uπ
ij (x)f̂ (π)(ξπj , ξπi ), ∀x ∈ G. (4.4)

We define S2(Ĝ,B2(H)) as the set of all the (φ(π))π∈Ĝ ∈ ∏

π∈Ĝ
S(Hπ ×

Hπ ,B2(H)) such that

∑

π∈Ĝ
dπ

dπ∑

i=1

dπ∑

i=1

‖φ(π)(ξπi , ξπj )‖2
2 <∞ (4.5)

Here S(Hπ ×Hπ ,B2(H)) is the set of sesquilinear maps from Hπ ×Hπ into
B2(H). From [1, Theorem 4.8], one obtains that the Fourier transform f → f̂ is
an isometry from L2(G,B2(H)) onto S2(Ĝ,B2(H)).

5 The ρ-Fourier Transform for L2(G,B(H)) Functions

Let E be a Hilbert module over B(H). We denote by L(E) the set of adjointable
operators on E.

Let ρ : G → L(E) be a strongly continuous representation of G on E with
ρ ∈ L2(G,L(E)).

Proposition 5.1 For all X, Y ∈ E, we have 〈ρ(·)X, Y 〉 ∈ L2(G,B(H)) and
〈ρ(·)∗X, Y 〉 ∈ L2(G,B(H)).

Proof Let X, Y ∈ E; we have:

∫

G

||〈ρ(x)X, Y 〉||2dx �
∫

G

||ρ(x)X||2||Y ||2dx
(the Cauchy-Schwarz inequality (2.7))

= ||Y ||2
∫

G

||ρ(x)X||2dx

� ||Y ||2
∫

G

||ρ(x)||||X||2dx

= ||X||2||Y ||2
∫

G

||ρ(x)||2dx < +∞.

The second affirmation is proved similarly. �
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We obviously denote by L1(G,B(H)) the set of integrable functions f : G →
B(H).

If f ∈ L2(G,B(H)), then the map 〈ρ(·)∗X, Y 〉f (·) is integrable. One can easily
prove the following proposition.

Proposition 5.2 Let f ∈ L2(G,B(H)). Then the map

(X, Y ) �→
∫

G

〈ρ(x)∗X, Y 〉f (x)dx

is well-defined and is sesquilinear from E × E into B(H).

From Proposition 5.2 and following [8] we set the following definition of the map
Fρ the well-definedness of which is ensured by the Proposition 5.2.

Definition 5.3 The ρ-Fourier transform of f ∈ L2(G,B(H)) is the B(H)-valued
sesquilinear map Fρf : E × E → B(H) defined by

Fρf (X, Y ) =
∫

G

〈ρ(x)∗X, Y 〉f (x)dx, (X, Y ) ∈ E × E. (5.1)

In the sequel we assume that E is of finite dimension n. Let (X1, · · · , Xn) be a
basis of E. Assume also the following orthogonal relations:

∫

G

〈ρ(x)∗Xk,Xl〉〈ρ(x)Xj ,Xi〉dx = δkj δliIH, (5.2)

where IH designates the identity operator on H.

Definition 5.4 The B(H)-valued functions U
ρ
ij : x �→ 〈ρ(x)Xj ,Xi〉 defined on G

will be called ρ- coefficients.

The ρ-Fourier transform of a function f ∈ L2(G,B(H)) is expressed in terms
of ρ-coefficients in the following theorem.

Proposition 5.5 Let f ∈ L2(G,B(H)). Then there exists a family (Tij )1�i,j�n of
bounded operators of such that

Fρf =
n∑

i=1

n∑

j=1

TijFρU
ρ
ij .

Proof Let X, Y ∈ E. We write X and Y on the basis (X1, · · · , Xn).

X =
n∑

k=1

βkXk, Y =
n∑

l=1

γlXl.

Let f ∈ L2(G,B(H)), then Fρf (X, Y ) =
n∑

k=1

n∑

l=1

βkγlFρf (Xk,Xl).



430 M. Todjro and Y. Mensah

On the other hand, we have:

FρU
ρ
ij (X, Y ) =

∫

G

〈ρ(x)∗X, Y 〉〈ρ(x)Xj ,Xi〉dx

=
n∑

k=1

n∑

l=1

βkγl

∫

G

〈ρ(x)∗Xk,Xl〉〈ρ(x)Xj ,Xi〉dx

=
n∑

k=1

n∑

l=1

βkγlδkj δliIH

= βjγiIH

Hence

Fρf (X, Y ) =
n∑

j=1

n∑

i=1

βjγiFρf (Xj ,Xi)

=
n∑

j=1

n∑

i=1

Fρf (Xj ,Xi)(βjγiIH )

=
n∑

j=1

n∑

i=1

Fρf (Xj Xi)FρU
ρ
ij (X, Y )

We set Tij = Fρf (Xj ,Xi). Hence

Fρf (X, Y ) =
n∑

i=1

n∑

j=1

TijFρU
ρ
ij (X, Y ). �
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Electrostatic Double Layers
in a Magnetized Isothermal Plasma
with two Maxwellian Electrons

Odutayo Raji Rufai

Abstract Finite amplitude nonlinear ion-acoustic double layers are discussed in
a magnetized plasma consisting of warm isothermal ion fluid and two Boltzmann
distributed electron species by assuming the charge neutrality condition at equilib-
rium. The model is compatible with the evolution of negative potential double layer
structures in the auroral acceleration region. The model predicts maximum electric
field amplitude of about ∼ 30 mV/m, which is within the satellite measurements in
the auroral acceleration region of the Earth’s magnetosphere.

Keywords Electrostatic waves · Double layers · Warm ions · Hot and cool
electrons · Quasineutrality condition · Auroral acceleration region

1 Introduction

S3-3 and Viking satellite observations have frequently indicated the propagation
of nonlinear electrostatic wave structures along the auroral magnetic field lines
of the Earth’s Magnetosphere [1–3]. Ergun et al. [4] reported the observation of
large-amplitude electromagnetic structures from the Fast Auroral Snapshot (FAST)
satellite called “fast solitary waves.” Further evidence of nonlinear electrostatic
structures in the presence of two electron components in the auroral plasma has
been received from [3].

Various theoretical models have been developed to describe the observed solitary
wave and double layer structures at different regions of Earth’s magnetosphere (for
example [5, 6]). Recently, several theoretical analyses [7–11] have been done to
explain the oblique propagation of finite amplitude nonlinear electrostatic waves
in the auroral acceleration region of the Earth’s magnetosphere with two electron
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components. In hot adiabatic ion temperature, Rufai et al. [8] presented the evolution
of nonlinear electrostatic solitary waves and double layers in a magnetized space
plasma with cool and hot Boltzmann electron population.

The present investigation extends the model of [7] by including a warm isother-
mal ion to investigate the characteristics of finite amplitude electrostatic double
layer structures in a magnetized auroral plasma with two Maxwellian electrons.

2 Theoretical Analysis

Consider a collisionless, magnetized plasma consisting of warm isothermal ions
(Ni ,Ti �= 0) and two distinct groups of Boltzmann distributed electron species, cool
electron (Nc, Tc) and hot electron (Nh, Th), respectively. Assuming the plasma is
embedded in an external magnetic field B0 = B0ẑ, where ẑ is the unit vector along
the z-axis. Then, the electron densities are

Nc = Nc0 exp

(
eφ

Tc

)
, (1)

Nh = Nh0 exp

(
eφ

Th

)
(2)

where φ is the potential and Nc, Nh are the cool and hot electron densities.
The dynamics of the warm isothermal ion fluid are governed by the hydrody-

namic (continuity, momentum, and pressure) equations

∂Ni

∂t
+∇.(NiVi) = 0, (3)

∂Vi

∂t
+ Vi∇.Vi = −e∇.φ

mi

+ e
Vi × B0

mic
(4)

and

∂Pi

∂t
+ Vi∇.Pi + γPi∇.Vi = 0, (5)

where Ni , Vi , and mi are the number density, fluid velocity, and mass of the ions,
e is the magnitude of the electron charge, c is the speed of the light in vacuum, and
the ion pressure Pi is given by the balance pressure equation (5). Further, the ion
pressure can be written as

Pi = Pi0

(
Ni

Ni0

)γ

, (6)
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where γ = (N+2)
N

is adiabatic index [8, 11]. N is the number of degrees of freedom.
For magnetized isothermal ions N = 1, hence γ = 3 and the ion pressure at
equilibrium is Pi0 = Ni0Ti .

At equilibrium, the charge neutrality assumption (i.e., Ni = Nc + Nh) is valid
for low-frequency electrostatic wave studies [8, 10, 11].

The three-species auroral plasma is normalized as follows: the quasi-neutrality
condition at equilibrium is given by Ni0 = Nc0+Nh0 = N0. Density is normalized
by total density N0, velocity is normalized by the effective ion-acoustic speed cs =
(Teff /mi)

1/2, ψ = eφ/Teff is the normalized electrostatic potential distance by
effective ion Larmor radius, ρi = cs/�, time t normalized by inverse of ion gyro-
frequency �−1, (� = eB0/mic). The temperature ratio is defined as τ = Tc/Th,
cool electron density ratio f = Nc0/N0, where Nj0(j = c, h, i), Teff = Tc/(f +
(1 − f )τ) is the effective electron temperature, αc = Teff /Tc, αh = Teff /Th,
σ = Ti/Teff , where Ti is the ion temperature. Also, α = kx/k = sin θ , γ =
kz/k = cos θ (θ is the propagating angle between k = (kx, 0, kz) and B0, in which

k =
√
k2
x + k2

z ).
In order to obtain the nonlinear localized traveling wave solution, the normalized

set of Eqs. (1)–(5) can be transformed in a stationary moving frame with position
ξ = (αx+βz−Mt)/M , where M is the Mach number. Then, solving for perturbed
densities with the quasi-neutrality condition using appropriate boundary conditions
for solitary wave solutions (namely, ni → 1, ψ → 0, and dψ/dξ → 0 at ξ →±∞)
to obtain

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0 (7)

where V (ψ,M) is the Sagdeev potential, given by

V (ψ,M) = −
[
A(ψ,M)+ B(ψ,M)+ C(ψ,M)

D(ψ,M)

]
(8)

where

A(ψ,M) = −M4(1− ni)
2

2n2
i

−M2(1− β2)ψ +M2H(ψ), (9)

B(ψ,M) = σM2

2
(2ni + 1)(ni − 1)2

+M2σβ2

2ni
(ni + 2)(ni − 1)2 − β2σ 2

2
(1− n3

i )
2, (10)

C(ψ,M) = β2σH(ψ)− β2

2
H 2(ψ)− (M2 + σn4

i )β
2

ni
H(ψ), (11)
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D(ψ,M) =
(

1−
(M2

n3
i

− 3σni
)
n′i

)2
, (12)

ni = f eαcψ + (1− f )eαhψ , (13)

n′i = αcf eαcψ + αh(1− f )eαhψ (14)

and

H(ψ) = f

αc

(eαcψ − 1)+ 1− f

αh

(eαhψ − 1). (15)

Equation (7) represents an energy integral for a particle moving with velocity
dψ/dξ in a potential V (ψ,M).

In order to obtain the solitary wave solution from the energy integral Eq. (7),
the Sagdeev potential (ψ,M) has to satisfy the following usual soliton conditions :
V (ψ,M) = 0, dV (ψ,M)/dψ = 0, d2V (ψ,M)/dψ2 < 0 at ψ = 0; V (ψ,M) = 0
at some ψ = ψm, and V (ψ,M) < 0 for 0 < |ψ | < |ψm|. For double layer
solutions, an additional condition dV (ψ,M)/dψ = 0 at ψ = ψm (ψm is maximum
amplitude) must be satisfied.

Since f αc + (1 − f )αh = 1, the analysis of the second derivative of the
Sagdeev potential V (ψ,M) [7, 9, 12], which has to be negative at origin, namely,
d2V (ψ,M)/dψ2 < 0 at ψ = 0, shows that the nonlinear solutions can be found to
exist within the Mach number range, M1 < M < M2, where M1 = β

√
1+ 3σ is

the critical Mach number and M2 =
√

1+ 3σ is the upper Mach number of which
no solution can be found beyond this range.

The energy integral Eq. (7) and Sagdeev potential Eq. (8) will be numerically
computed for the nonlinear electrostatic double layer structures with the plasma
parameters such as Mach number M , density ratio f , wave obliqueness β, ion
temperature ratio σ , and electron temperature ratio τ . Figure 1 shows the variation
of the Sagdeev potential with the real electrostatic potential for different values of
ion temperature ratio σ = 0.01 and 0.05 and wave obliqueness β = 0.80523 and
0.80955. The fixed parameters are f = 0.1, τ = 0.04 and M = 1.00.

The curves in Fig. 2 show the variation of the normalized electrostatic double
layer potential ψ against ξ for the fixed plasma parameters, f = 0.1, σ = 0.01, and
β = 0.966.

3 Conclusion

In this paper, the effect of finite ion temperature on the existence of nonlinear finite
amplitude ion-acoustic waves in a magnetized three-component plasma making up
of a warm isothermal ion fluid and Boltzmann distribution of cool and hot elec-
tron species has been investigated using the Sagdeev pseudo-potential technique.
The model is consistent with the existence of negative potential (compressive)
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Fig. 1 Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ , for M = 1.00,
f = 0.1, τ = 0.04
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Fig. 2 Electrostatic potential ψ vs ξ for f = 0.1, σ = 0.01, β = 0.966

double layer structures obliquely propagating along the magnetic field lines of the
Earth’s auroral acceleration region.

Related to the Viking Spacecraft observations in the auroral zone of the Earth’s
magnetosphere [3] recorded the electrostatic wave electric field amplitude of less
than 100 mV/m, width ≈ 100 m, pulse duration ≈ 20 ms, and velocities of about
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10–50 km/s. For the ion temperature in the auroral region, σ = 0.01, electron
density τ = 0.069396, Mach number M = 1.00 and wave obliqueness β = 0.966,
the maximum double layer electric field generated comes out to be 30.09 mV/m,
with the corresponding width, pulse duration, and velocity of about 148.7 m,
5.74 ms, and 25.90 km/s, respectively. These results agree with the spacecraft
measurements.
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Star Products, Star Exponentials,
and Star Functions

Akira Yoshioka

Dedicated to Professor Norbert Hounkonnou on the occasion of
his 60th birthday.

Abstract We give a brief review on non-formal star products and star exponentials
and star functions (Omori et al., Deformation of expressions for elements of an
algebra, in Symplectic, Poisson, and Noncommutative Geometry. Mathematical
Sciences Research Institute Publications, vol. 62 (Cambridge University Press,
Cambridge, 2014), pp. 171–209; Deformation of expressions for elements of
algebra, arXiv:1104.1708v1[math.ph]; Deformation of expressions for elements
of algebras (II), arXiv:1105.1218v2[math.ph]). We introduce a star product on
polynomials with a deformation parameter h̄ > 0. Extending to functions on
complex space enables us to consider exponential element in the star product
algebra, called a star exponential. By means of the star exponentials we can define
several functions called star functions in the algebra, with some noncommutative
identities. We show certain examples.

Keywords Star product · Star exponential · Star function

1 Star Product on Polynomials

First we start by considering well-known star product, the Moyal product. Also we
introduce typical star products, that is, normal product and anti-normal product.
These products are mutually isomorphic with explicit isomorphisms, which are
given by changing orderings in physics.
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Next we define a class of star products containing the Moyal, normal, and anti-
normal products as examples. The product is defined on the space of complex
polynomials and is given as power series with respect to a positive parameter h̄.

Also we discuss isomorphisms between these star products. We describe that
these objects naturally give rise to a bundle of star product algebras over space of
complex symmetric matrices.

1.1 Moyal Product

The Moyal product is a well-known example of star product [2, 4].
For polynomials f, g of variables (u1, . . . , um, v1, . . . , vm), we define a bideriva-

tion
(←−
∂v · −→∂u −←−∂u · −→∂v

)
by

f
(←−
∂v · −→∂u −←−∂u · −→∂v

)
g =

m∑

j=1

(
∂vj f ∂uj g − ∂uj f ∂vj g

)

Here the overleft arrow
←−
∂ indicates that the partial derivative is acting on the

polynomial on the left and the overright arrow indicates the right.
Then the Moyal product f ∗

O
g is given by the power series of the biderivation(←−

∂v · −→∂u −←−∂u · −→∂v
)

such that

f ∗
O
g = f exp ih̄

2

(←−
∂v · −→∂u −←−∂u · −→∂v

)
g = f

∞∑

k=0

1

k!
(
ih̄
2

)k (←−
∂v · −→∂u −←−∂u · −→∂v

)k

g

= fg + ih̄
2 f

(←−
∂v · −→∂u −←−∂u · −→∂v

)
g + 1

2!
(
ih̄
2

)2
f

(←−
∂v · −→∂u −←−∂u · −→∂v

)2
g

+ · · · + 1
k!

(
ih̄
2

)k

f
(←−
∂v · −→∂u −←−∂u · −→∂v

)k

g + · · · (1.1)

where h̄ is a positive number. Although the Moyal product is defined as a formal
power series of bidifferential operators, this becomes a finite sum on polynomials.
One can check the associativity of the product directly, hence we have

Proposition 1.1 The Moyal product is well-defined on polynomials, and associa-
tive.

Other typical star products are normal product ∗
N

, anti-normal product ∗
A

given
similarly with replacing biderivations, respectively, by

f ∗
N
g = f exp ih̄

(←−
∂v · −→∂u

)
g, f ∗

A
g = f exp−ih̄

(←−
∂u · −→∂v

)
g

These are also well-defined on polynomials and associative.
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By direct calculation we see easily

Proposition 1.2

(i) For these star products, the generators (u1, . . . , um, v1, . . . , vm) satisfy the
canonical commutation relations

[uk, vl]∗
L
= −ih̄δkl, [uk, ul]∗

L
= [vk, vl]∗

L
= 0, (k, l = 1, 2, . . . , m)

where ∗
L

stands for ∗
O

, ∗
N

, and ∗
A

.
(ii) Then the algebras (C[u, v], ∗L) (L = O,N,A) are mutually isomorphic and

isomorphic to the Weyl algebra.

The algebra isomorphisms have explicit expressions. For example, the algebra
isomorphism

INO : (C[u, v], ∗
O
)→ (C[u, v], ∗N)

is given by the power series of the differential operator such as

ION (f ) = exp
(
− ih̄

2 ∂u∂v

)
(f ) =

∞∑

l=0

1
l! (

ih̄
2 )l (∂u∂v)

l (f ) (1.2)

Other isomorphisms are given in similar forms (cf. [12]).

Remark 1.3 We remark here that these isomorphisms are well-known as ordering
problem in physics [1].

1.2 Star Product

Using complex matrices we generalize biderivations and we define a star product on
complex domain in the following way.

Let $ be an arbitrary n× n complex matrix. We consider a biderivation

←−
∂w$

−→
∂w = (

←−
∂w1 , · · · ,

←−
∂wn)$(

−→
∂w1 , · · · ,

−→
∂wn) =

n∑

k,l=1

$kl
←−
∂wk

−→
∂wl

(1.3)

where (w1, · · · , wn) is a generator of polynomials.
Now we define a star product similar to (1.1) by

Definition 1.4

f ∗$ g = f exp
(
ih̄
2
←−
∂w$

−→
∂w

)
g (1.4)
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Remark 1.5 ([13])

(i) The star product ∗$ is a generalization of the products ∗L (L = O,N,A).
Actually

• if we put $ =
(

0 −1m

1m 0

)
, then we have the Moyal product

• if $ = 2

(
0 0

1m 0

)
, then we have the normal product and

• if $ = 2

(
0 −1m

0 0

)
, then the anti-normal product

(ii) If $ is a symmetric matrix, the star product ∗$ is commutative.

Then similarly as before we see easily

Theorem 1.6 For an arbitrary $, the star product ∗$ is well-defined on polynomi-
als, and associative.

1.3 Equivalence and Geometric Picture of Weyl Algebra

In this section, we take $ as a special class of matrices in order to represent Weyl
algebra (cf. [5, 10]).

Let K be an arbitrary 2m × 2m complex symmetric matrix. We put a complex
matrix

$ = J +K

where J is a fixed matrix such that

J =
(

0 −1m

1m 0

)

Since $ is determined by the complex symmetric matrix K , we denote the star
product by ∗

K
instead of ∗$ .

We consider polynomials of variables (w1, · · ·, w2m)=(u1, · · ·, um, v1, · · ·, vm).
By easy calculation one obtains

Proposition 1.7

(i) For a star product ∗
K

, the generators (u1, . . . , um, v1, . . . , vm) satisfy the
canonical commutation relations

[uk, vl]∗
K
= −ih̄δkl, [uk, ul]∗

K
= [vk, vl]∗

K
= 0, (k, l = 1, 2, . . . , m)
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(ii) Then the algebra (C[u, v], ∗
K
) is isomorphic to the Weyl algebra, and the

algebra is regarded as a polynomial representation of the Weyl algebra.

Equivalence As in the case of typical star products, we have algebra isomorphisms
as follows.

Proposition 1.8 For arbitrary (C[u, v], ∗
K1

) and (C[u, v], ∗
K2

) we have an alge-

bra isomorphism I
K2
K1
: (C[u, v], ∗

K1
) → (C[u, v], ∗

K2
) given by the power series

of the differential operator ∂w(K2 −K1)∂w such that

I
K2
K1

(f ) = exp
(
ih̄
4 ∂w(K2 −K1)∂w

)
(f )

where ∂w(K2 −K1)∂w =∑
kl(K2 −K1)kl∂wk

∂wl
.

By a direct calculation we have

Theorem 1.9 Isomorphisms satisfy the following chain rule:

1. I
K1
K3

I
K3
K2

I
K2
K1
= Id, ∀K1,K2,K3

2.
(
I
K2
K1

)−1 = I
K1
K2

, ∀K1,K2

Remark 1.10

1. By Proposition 1.8 we see the algebras (C[u, v], ∗
K
) are mutually isomorphic

and isomorphic to the Weyl algebra. Hence we have a family of star product
algebras

{
(C[u, v], ∗

K
)
}
K

where each element is regarded as a polynomial
representation of the Weyl algebra.

2. The above equivalences are also valid for star products ∗$ and ∗$′ for arbitrary
$, $′ with a common skew symmetric part. More precisely, let J̃ by an arbitrary
n × n skew-symmetric matrix, and for any n × n symmetric matrices K,K ′ we
consider $ = J̃ +K and $′ = J̃ +K ′. Then IK

′
K gives an algebra isomorphism

IK
′

K : (C[w], ∗$) → (C[w], ∗$′), where w = (w1, . . . , wn) is the generator of
polynomials.

According to the previous theorem, we introduce an infinite dimensional bundle
and a connection over it and using parallel sections of this bundle we have a geo-
metric picture (cf. [14]) for the family of the star product algebras {(C[u, v], ∗K)}K .

Algebra Bundle We set S = {K} the space of all 2m × 2m symmetric complex
matrices. We consider a trivial bundle over S with fiber the star product algebras

π : E = 4K∈S(C[u, v], ∗K)→ S, π−1(K) = (C[u, v], ∗K).

Then Proposition 1.8 shows that each fiber (C[u, v], ∗K) is isomorphic to the Weyl
algebra and any fibers of the bundle are mutually isomorphic by the intertwin-
ers I

K2
K1

.
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Connection and Parallel Sections For a curve C : K = K(t) in the base space
S starting from K(0) = K , we define a parallel translation of a polynomial f ∈
(C[u, v], ∗K) by

f (t) = exp ih̄
4 ∂w(K(t)−K)∂w (f ).

It is easy to see f (0) = f . By differentiating the parallell translation we have a
connection of this bundle such that

∇Xf (K) = d
dt
f (t)|t=0(K) = ih̄

4 ∂wX∂w f (K)|t=0, X = K̇(t)|t=0

where f (K) is a smooth section of the bundle E.
We set P the space of all parallel sections of this bundle, namely, f is an

element of P iff f (K2) = I
K2
K1

f (K1) for any K1,K2 ∈ S . Since I
K2
K1

are algebra
isomorphisms, namely it holds for sections f, g

I
K2
K1

(f (K1) ∗K1 g(K1)) =
(
I
K2
K1

(f (K1)
)
∗K2

(
I
K2
K1

(g(K1)
)
,

we have a star product f ∗ g for the parallel sections f, g ∈ P by setting

f ∗ g (K) = f (K) ∗K g(K)

Then we have

Theorem 1.11

(i) The space of the parallel sections P consists of the sections such that ∇Xf =
ih̄
4 ∂wX∂w f = 0, ∀X.

(ii) The space P is canonically equipped with the star product ∗, and the associa-
tive algebra (P, ∗) is isomorphic to the Weyl algebra.

Remark 1.12 The algebra (P, ∗) is regarded as a geometric realization of the Weyl
algebra.

2 Extension to Functions

We consider to extend the star products ∗$ for an arbitrary complex matrix $ from
polynomials to functions (cf. [9]).

2.1 Star Product on Certain Holomorphic Function Space

For ordinary smooth functions, the star products ∗$ are not necessarily well-defined,
e.g., convergent in general. However, we can discuss star products by restricting the
product to certain class of smooth functions. Although there may be many classes
for such functions, we consider the following space of certain entire functions in
this note (cf. [6]).
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Semi-norm Let f(w) be a holomorphic function on C
n. For a positive number p,

we consider a family of semi-norms {| · |p,s}s>0 given by

|f |p,s = sup
w∈Cn

|f (w)| exp(−s|w|p), |w| =
√
|w1|2 + · · · + |wn|2.

Space We put

Ep = {f : entire | |f |p,s <∞, ∀s > 0}

With the semi-norms the space Ep becomes a Fréchet space.
As to the star products, we have for any matrix $

Theorem 2.1

(i) For 0 < p ≤ 2, (Ep, ∗$) is a Fréchet algebra. That is, the product converges
for any elements, and the product is continuous with respect to this topology.

(ii) Moreover, for any $′ with the common skew symmetric part with $, I$
′

$ =
exp( ih̄4 ∂w($

′ − $)∂w) is well-defined algebra isomorphism from (Ep, ∗$) to
(Ep, ∗$′). That is, the expansion converges for every element, and the operator
is continuous with respect to this topology.

(iii) For p > 2, the multiplication ∗$ : Ep × Ep′ → Ep is well-defined for p′ such
that 1

p
+ 1

p′ = 2, and (Ep, ∗$) is a Ep′ -bimodule.

In this topology, the parameter h̄ can be taken as h̄ ∈ C.

3 Star exponentials

Since we have a complete topological algebra, we can consider exponential elements
in the star product algebra (Ep, ∗$). (cf. [13]).

3.1 Definition

For a polynomial H∗, we want to define a star exponential e
t
H∗
ih̄∗ . However, except

special cases, the expansion
∑

n
tn

n!
(
H∗
ih̄

)n

is not convergent, so we define a star

exponential by means of a differential equation.

Definition 3.1 The star exponential e
t
H∗
ih̄∗ is given as a solution of the following

differential equation

d
dt
Ft = H∗ ∗$ Ft , F0 = 1. (3.1)
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3.2 Examples

We are interested in the star exponentials of linear and quadratic polynomials. For
these, we can solve the differential equation and obtain explicit form. For simplicity,
we consider 2m × 2m complex matrices $ with the skew symmetric part J =(

0 −1m

1m 0

)
. We write $ = J +K where K is a complex symmetric matrix.

First we remark the following. For a linear polynomial l = ∑2m
j=1 ajwj , we see

directly an ordinary exponential function el satisfies

el /∈ E1, ∈ E1+ε, ∀ε > 0.

Then put a Fréchet space

Ep+ = ∩q>pEq

Linear Case

Proposition 3.2 For l =∑
j ajwj =< a,w >, aj ∈ C, we have

e
t(l/ih̄)∗ = et

2aKa/4ih̄et (l/ih̄) ∈ E1+

Quadratic Case (Cf. [8]).

Proposition 3.3 For Q∗ = 〈wA,w〉∗ where A is a 2m × 2m complex symmetric
matrix,

e
t(Q∗/ih̄)∗ = 2m

√
det(I − κ + e−2tα(I + κ))

e
1
ih̄
〈w 1

I−κ+e−2tα(I+κ)
(I−e−2tα)J,w〉

where κ = KJ and α = AJ .

Remark 3.4 The star exponentials of linear functions are belonging to E1+ then
the star products are convergent and continuous. But for a quadratic polynomial
Q∗, it is easy to see

e
t(Q∗/ih̄)∗ ∈ E2+, /∈ E2

and hence star exponentials {et(Q∗/ih̄)∗ } are difficult to treat. Some anomalous
phenomena happen. (cf. [7]).

Remark 3.5 Beside solving differential equation, we also construct star expo-
nential of quadratic polynomial by so-called path-integral method. Namely, we
divide the time interval by a positive integer N . Consider commutative exponential
functions e(t/N)(Q/ih̄), N = 1, 2, . . . , and take N -multiple products e(t/N)(Q/ih̄) ∗
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· · · ∗ e(t/N)(Q/ih̄). Then taking a limit we have (cf. [3])

e
t(Q∗/ih̄)∗ = lim

N→∞ e(t/N)(Q/ih̄) ∗ · · · ∗ e(t/N)(Q/ih̄)

4 Star Functions

There are many applications of star exponential functions (cf. [11–14]). In this note
we show examples using linear star exponentials.

In what follows, we consider the star product for the simple case where $ has
only one nonzero entry

$ =
(
ρ 0
0 0

)
, ρ ∈ C

Then we see easily that the star product is commutative and explicitly given by p1∗$
p2 = p1 exp

(
ih̄ρ

2
←−
∂w1

−→
∂w1

)
p2. This means that the algebra is essentially reduced to

the space of functions of one variable w1. Thus, we consider functions f (w), g(w)

of one variable w ∈ C and we consider a commutative star product ∗τ with complex
parameter τ such that

f (w) ∗τ g(w) = f (w)e
τ
2
←−
∂ w
−→
∂ wg(w)

4.1 Star Hermite Function

Recall the identity

exp
(√

2tw − 1
2 t

2
)
=

∞∑

n=0

Hn(w) t
n

n!

where Hn(w) is an Hermite polynomial. We remark here that

exp
(√

2tw − 1
2 t

2
)
= exp∗(

√
2tw∗)τ=−1

Since exp∗(
√

2tw∗) =∑∞
n=0(

√
2tw∗)n tn

n! , we have Hn(w) = (
√

2tw∗)nτ=−1.
We define ∗-Hermite function by

Hn(w, τ) = (
√

2tw∗)n, (n = 0, 1, 2, · · · )
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with respect to ∗τ product. Then we have

exp∗(
√

2tw∗) =
∞∑

n=0

Hn(w, τ) tn

n!

Trivial identity d
dt

exp∗(
√

2tw∗) =
√

2w ∗ exp∗(
√

2tw∗) yields at every τ ∈ C

the identity

τ√
2
H ′

n(w, τ)+√2wHn(w, τ) = Hn+1(w, τ), (n = 0, 1, 2, · · · ).

The exponential law exp∗(
√

2sw∗) ∗ exp∗(
√

2tw∗) = exp∗(
√

2(s + t)w∗) yields at
every τ ∈ C the identity

∑

k+l=n

n!
k!l!Hk(w, τ) ∗τ Hl(w, τ) = Hn(w, τ).

4.2 Star Theta Function

In this note we consider the Jacobi’s theta functions by using star exponentials as an
application.

A direct calculation gives

exp∗τ i tw = exp(i tw − (τ/4)t2)

Hence for Aτ > 0, the star exponential exp∗τ ni w = exp(ni w − (τ/4)n2) is
rapidly decreasing with respect to integer n and then we can consider summations
for τ satisfying Aτ > 0

∞∑

n=−∞
exp∗τ 2ni w =

∞∑

n=−∞
exp

(
2ni w − τ n2

)
=

∞∑

n=−∞
qn2

e2ni w, (q = e−τ )

This is Jacobi’s theta function θ3(w, τ). Then we have expression of theta functions
as

θ1∗τ (w) = 1
i

∞∑

n=−∞
(−1)n exp∗τ (2n+ 1)i w, θ2∗τ (w) =

∞∑

n=−∞
exp∗τ (2n+ 1)i w

θ3∗τ (w) =
∞∑

n=−∞
exp∗τ 2ni w, θ4∗τ (w) =

∞∑

n=−∞
(−1)n exp∗τ 2ni w
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Remark that θk∗τ (w) is the Jacobi’s theta function θk(w, τ), k = 1, 2, 3, 4,
respectively. It is obvious by the exponential law

exp∗τ 2i w ∗τ θk∗τ (w) = θk∗τ (w) (k = 2, 3)

exp∗τ 2i w ∗τ θk∗τ (w) = −θk∗τ (w) (k = 1, 4)

Then using exp∗τ 2i w = e−τ e2i w and the product formula directly we have

e2i w−τ θk∗τ (w + i τ ) = θk∗τ (w) (k = 2, 3)

e2i w−τ θk∗τ (w + i τ ) = −θk∗τ (w) (k = 1, 4)

4.3 ∗-Delta Functions

Since the ∗τ -exponential exp∗(itw∗) = exp(itw − τ
4 t

2) is rapidly decreasing with
respect to t when Aτ > 0, then the integral of ∗τ -exponential

∫ ∞

−∞
exp∗(it (w−a)∗) dt =

∫ ∞

−∞
exp∗(it (w−a)∗)dt =

∫ ∞

−∞
exp(it (w−a)− τ

4 t
2)dt

converges for any a ∈ C. We put a star δ-function

δ∗(w − a) =
∫ ∞

−∞
exp∗(it (w − a)∗)dt

which has a meaning at τ with Aτ > 0. It is easy to see for any element p∗(w) ∈
P∗(C),

p∗(w) ∗ δ∗(w − a) = p(a)δ∗(w − a), w∗ ∗ δ∗(w) = 0.

Using the Fourier transform we have

Proposition 4.1

θ1∗(w) = 1
2

∞∑

n=−∞
(−1)nδ∗(w + π

2 + nπ)

θ2∗(w) = 1
2

∞∑

n=−∞
(−1)nδ∗(w + nπ)
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θ3∗(w) = 1
2

∞∑

n=−∞
δ∗(w + nπ)

θ4∗(w) = 1
2

∞∑

n=−∞
δ∗(w + π

2 + nπ).

Now, we consider the τ with the condition Aτ > 0. Then we calculate the integral

and obtain δ∗(w − a) = 2
√
π√
τ

exp
(
− 1

τ
(w − a)2

)
. Then we have

θ3(w, τ) = 1
2

∞∑

n=−∞
δ∗(w + nπ) =

∞∑

n=−∞

√
π√
τ

exp
(
− 1

τ
(w + nπ)2

)

=
√
π√
τ

exp
(
− 1

τ

) ∞∑

n=−∞
exp

(
−2n 1

τ
w − 1

τ
n2τ 2

)

=
√
π√
τ

exp
(
− 1

τ

)
θ3∗( 2πw

iτ
, π2

τ
).

We also have similar identities for other ∗-theta functions by the similar way.
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Einstein metric, 389
Hitchin-Thorpe inequality, 389
integral class, 388
monopole class, 388
Riemannian metric g, 388, 389

Electrostatic potential, 437
Equivariance, 120
Euler–Lagrange equations, 227, 279–280
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F
Fast Auroral Snapshot (FAST), 433
Federal Republic of Nigeria, 362
Finite differential derivative, 138
Fixed points

GFP, 304–305
non-Gaussian fixed points, 305–308

Flat affine connection, 201
Fock algebra, 238, 256, 257

complex quantity, 243
displacement operator, 243
final diagonal kernel integral representation,

246
Fock vacuum, 242–244
Heisenberg observables, 242
Hilbert space, 244
intrinsic physical scale, 241–242
non vanishing expectation value, 244
overcompleteness relation, 245, 246
reference Fock vacuum, 245
saturating quantum states (see Saturating

quantum states)
vanishing expectation value, 244

Fock vacuum, 242–244
Fourier transforms, 349, 350
Fractional Brownian motion (fBm)

centered Gaussian process, 154
classical parametric estimators

fractional Gaussian noise, 154
maximum likelihood estimation,

155–156
spectral density, 155
Whittle estimation, 156–157

classical semi-parametric estimators
DFA method, 161–163
increment ratio statistic, 163–166
R/S and modified R/S statistics,

157–159
second-order quadratic variations,

159–161
wavelet based estimator, 166–170

classical Wiener Brownian motion, 153
estimation of H, concrete procedures, 170
simulation results, 170, 171

Fractional Gaussian noise, 154
Frames, 22

continuous frame, 23–24
definitions, 23
dual, 24
resolution operator, 24
synthesis operator, 24

Fredholm’s theorem, 365, 373

Functional renormalization group (FRG)
method, 294

anomalous dimension, 300
flow equation in UV regime, 301–304
Legendre transform, 299
Litim cut-off, 301
non-Gaussian fixed point, 300
truncated flow equations, 301
Wetterich equation, 299, 301
Wetterich flow equation, 300

G
Gabor and wavelet analysis, 22
Gaussian fixed point (GFP), 298, 304–305
Gaussian probability density, 155
Gazeau-Klauder CS, 62
Generalized color dynamics
Ginsburg-Landau equation, 307
Gradient-based training algorithm, 367
Granular neural networks, 360
Grassmann algebras, 318–320
Grönwall inequality, 145–149
Group field theory, 293

H
Hamiltonian vector field, 134, 285, 286,

288–289
Harmonic oscillator Hamiltonian, 97
Heisenberg algebra, 236, 238–241
Heisenberg observables, 255
Heisenberg’s uncertainty principle, 236
Heisenberg uncertainty relation (H-UR), 236,

240
Hermitian tensors, 312
Hexaspherical space, 218, 220–221
Hilbert module, 424
Hilbert-Schmidt norm, 80
Hilbert-Schmidt operators, 51, 424

definition, 79–80
Hilbert space of, 80–81
modular theory, 81–84
von Neumann algebras

coherent states built from thermal state,
99–105

electron in a magnetic field, 98–99
generated by unitary operators, 88–96
trace norm, 79
trace of a linear operator, 79
vector state and, 84–88
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Hilbert spaces, 3, 4, 22, 62, 237, 238, 254, 407,
424

adjoint operation, 71
Yukawa models, 230

Hilbert triplet/scale, 49–52
Hitchin-Thorpe’s inequality, 376, 389
Hölder inequality, 143–144
Homomorphism, 125
Horizontal chain, 53
Hurst parameter, 157
Husimi’s distribution, 114, 407, 413

I
Increment ratio (IR) statistic, 163–166
Infeld-Hull classification, 394
Infinitesimal generator of the action, 121, 123,

129
Integral

definition, 139
fundamental principle of analysis, 139
integration by parts, 139
positivity of, 139

Intertwining couple, 16–17
Intertwining operator, 7
Inverse compactified Minkowski space, 218
Inverse Minkowski space

conformal inversion, 212, 215
conformal Lie algebra, 215
doubled, compactified Minkowski space,

216
motivation and definition, 214–215
Schrödinger group, 216

IR-critical surfaces, 307

J
Jacobi identity, 316
Jacobi last multiplier (JLM)

constrained Lagrangian, 282
constraint equation, 281
energy integral, 282
Euler–Lagrange equations, 279–281
Gaussian isokinetic dynamics, 276
Hamiltonian equations, 282
hamiltonization and reduction, 284–285
integrable Hamiltonian systems, 276, 277
l.c.s. structure and integrability properties

canonical Poisson structure, 287
commuting of vector fields, 288–289
inverse multiplier, 286–287
nonholonomic dynamical systems, role

of, 287–288

Lee forms, 277
Legendre transformation, 282
Leibniz property, 278
Lichnerowicz operator, 280
locally conformally symplectic, 276
nonholonomic systems, 285–286
Nóse–Hoovers dynamics, 276
Poisson structure, 283, 284
second-order equation field, 278–279

Jacobi’s identity, 125, 132
Jakson derivative, 138
j2-skew-symmetric algebra, 319

K
Kernel representation, 256–258
Klein-Gordon equation, 340, 341
Klein-Gordon operator, 349

KMS state, 97
Kubo-Martin-Schwinger (KMS)-condition, 83
K−viable, 176, 177

L
Lagrange method, 138
Lagrangian density, 226, 227
L2-analysis

Bochner integral, 424
bounded operator, 423

Fourier transform of functions, 427–428
Fourier transform of Hilbert-Schmidt

operator-valued functions, 423–424
Hilbert module, 424
Hilbert-Schmidt operators, 424
Hilbert space, 424
p-Fourier transform, 428–430
pre-Hilbert module structure, 425–427
square integrability, 423
topological group, 423, 424

Landau problem, 62
Lattice of Hilbert spaces (LHS)

generated by metric operators, 12–14
generated by single metric operator, 8–10

Lattices of Banach space (LBS), 56–58
Lattices of Hilbert spaces (LHS), 56–58
LD50 value, 197
Lebesgue spaces, 52–55
LeBrun’s analysis, 375
Legendre transformation, 282
Levi–Civita connection, 200, 204
Lie algebra, 120
Lie bracket, 123
Lie group action, 120–121
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Linear difference equations of first order
homogenous equation, 140–141
nonhomogenous cases, 141–142

Linear finite dimensional system, viability
example

autonomous system, 193
disturbed and controlled system,

194–196
disturbed and noncontrolled system,

193–194
state equation, 193

problem approach, 190–192
problem statement, 188–190

Linear operator
bounded, 80
trace of, 79

Liouville equation, 284
Liouville integrable Hamiltonian system., 289
Liouville tori, 288
Litim cut-off, 301
Locally conformally symplectic (l.c.s.), 277
Long memory process, 157
Lorentz symmetry, 212
Lorentz transformations, 335
Low-dimensional algebras

anti-commutation property, 328
Binary constitutive relations, 329
four-dimensional linear real space, 332
4 × 4 real matrices, 333
hermitian Pauli matrices, 332
invariance condition, 332
j -skew-invariant forms, 329
Lorentz transformations, 330

Lowest Landau level (LLL), 114–115
Lyapunov inequality, 150–152

M
Mach number, 436
Mackey topologies, 41, 43
Magnetized isothermal plasma

fast solitary waves, 433
theoretical analysis, 434–435

Mandel parameter, 408, 415
Mandel’s Q-parameter, 394
Matrix models, 293
Matrix vector coherent states (MVCS), 62
Maximum likelihood, 360
Maximum likelihood estimation (MLE),

155–156
Maxwell and Dirac equations, 340
Maxwell field strength tensors, 212

Maxwell theory with nonlinear constitutive
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conformal transformations in Y (6), 220
hexaspherical space Q(6), 220–221
nonlinear Maxwell equations in Y (6),

221–222
nonlinear Maxwell theory with conformal

symmetry, invariants for, 222–223
space Y (6), 219

Mean Square Error (MSE)
estimators of H, 170, 171

Meijer’s G-function, 394, 410, 411, 413
Metrically similar operators, 4
Metric operators, 2–3

single, 8–10
Metric topology, 63
Minimal lethal disturbance (MLD), 184–186
Minimal Lethal Dose (MLD), 176

in toxicity, 196–197
Minkowski inequality, 144
Minkowski space

conformal compactification, 212–214
conformal transformations, 212–213
(4 + 2)-dimensional spacetime, 212
doubled, compactified Minkowski space,

216
doubled spacetime, 216

Minkowski space-time, 226
Modular automorphism group, 83
Modular conjugation, 82
Modular operator, 82
Modular theory

Hilbert-Schmidt operators, 81–84
thermal state, 96–97

Moments methods, 360
Momentum mapping

coadjoint cocycle, 121–127
definition, 121
Hamiltonian mechanics, 135
orbits of an affine action, 127–132

Moyal product, 440–441
Multidimensional central limit theorem, 165,

166
Mutatis mutandis, 167
Mutually quasi-similar operator, 7

N
Nelson’s theorem, 18
Neural networks

algebraic approach, developmnet of,
362–364
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Neural networks (cont.)
artificial intelligence, 360
average rate of traders, 370–371
conjugate gradient method, 372
multilayer feedforward neural networks,

360
nonlinear time series modeling, 361
physical person records information, 360
proposed algorithm, 364–368
rates of traders, 368–370
sampling surveys, 368
SLNN, 368
stationary and non-stationary linear models,

361
statistical prediction, 361
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Hilbert space, 105–106

Noncommutative quantum mechanics
Gazeau-Klauder CS, 62

Nonflat affine Osserman, 206
Non-Gaussian fixed points, 305–308
Nonholonomic oscillator equation, 289
Nonlinear conformal-invariant Maxwell
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Nonlinear electrodynamics

nonlinear Maxwell fields, 216–217
transformations under conformal inversion

electromagnetic potential, 217
inverse compactified Minkowski space,

218
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218
steps, 218

Nonlinear Maxwell theory with conformal
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Non-self-adjoint operators, 1–2

O
1D continuous wavelets, 36–37
Ordinary differential derivative, 138
Ordinary least squares, 360
Orthonormal basis, 35–36
Osserman geometry, 209

P
Pairwise nonisomorphic factors, 61
Partial inner product, 57
Partial inner product (PIP)-space operators, 57

(quasi-)similarity
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semi-similarity, 16–17

Pauli matrices, 334
Pauli spinor, 334
P -distribution function, 407
Photon-added coherent ates (PACS), 394
Photon-added shape invariant potentials
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overcompleteness, 405–406
thermal statistics, 406–408

Pi meson, 225
Pion, 225
Planck’s constant, 236
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Point spectrum, 4
Poisson bracket, 123, 133
Poisson manifold, 134
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first choice of functional Zj, 410
Meijer’s G-function, 410
non-orthogonality, 411
normalization, 410–411
overcompleteness, 411–412
superpotentials, 409
thermal statistics, 412–415

Hamiltonian operator, 408, 409
Mandel parameter, 415
second choice of functional Zj

Husimi distribution, 417
Mandel parameter, 419
Meijer’s G-function, 418
non-orthogonality, 417
normalization factor, 416+417
overcompleteness, 417
potential parameter relation, 415
thermal statistics, 417

pre-Hilbert module structure, 425–427
Product inequality, 63
Prolongation condition, 223
Pseudo-generalized estimator, 160
Pseudo-generalized least squares estimator,

166
Pseudo-Hermitian Hamiltonians, 17–18
Pseudo-Hermitian operators, 2
Pseudo-Hermitian quantum mechanics, 17
Pseudo-Riemannian geometry, neutral

signature
affine manifold, 200–202
affine Osserman manifolds, 202
Riemann extension construction,

203–204
Walker Osserman metric, 206–208

Pseudo-solutions, 364, 365, 371
ΠT-symmetric Hamiltonians, 2
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Q-distribution, 413
Quadratic interpolation, 3
Quantum Hamiltonian density, 230, 232
Quantum system

classical-like regimes, 237
Quantum uncertainty relations, 265–268
Quasi-Hermitian operators, 10–12
Quasi-similar operators, 5–7
Quaternionic vector coherent states (QVCS),

62

R
Rank 2 Seiberg–Witten equations, 376
Reflexive Banach spaces, 54, 57
Representation of a C*-algebra, 64–67
Reproducing kernel, 115–116
Reproducing kernel Hilbert space (RKHS), 26
Reproducing pairs, 23

applications, 40
bounded (resolution) operator, 27
continuous examples

continuous frames, 36
continuous upper semi-frame, 37–38
continuous wavelets on sphere, 38–39
1D continuous wavelets, 36–37
genuine reproducing pairs, 40

definition, 27
discrete examples

discrete upper and lower-semi frames,
36

orthonormal basis, 35–36
Riesz basis, 36

duality properties of spaces, 30–34
existence and nonuniqueness, 34–35
and genuine PIP-spaces, 45–49
Hilbert spaces, 28–30
and PIP-spaces, 40
and rigged Hilbert space (RHS)

general case, 42–45
Hilbertian approach, 41–42
Mackey topologies, 41
sesquilinear form, 41

sesquilinear form, 27
Residual spectrum, 4
Resolvent set, 4
Ricci tensor

components in local coordinates, 201
definition, 201
non-zero components, 204
skew-symmetry, 200, 204–206

Riemann extension construction, 203–204
Riemannian metric structure, 238

Riesz basis, 36
Riesz representation theorem, 75
Rigged Hilbert space (RHS), 41

general case, 42–45
Hilbertian approach, 41–42

Rosen-Morse potential, 408
Rozansky–Witten invariants, 378
R/S and modified R/S statistics, 157–159

S
S3-3, 433
Sagdeev potential, 436, 437
Saturating quantum states, 239

reversible parametrisation packages
correlated displaced squeezed Fock

algebra, 252
correlated squeezed Fock algebras, 252
correlation parameter, 250
expectation values, 249
general Bogoliubov transformations,

253
Heisenberg algebra, 247
Heisenberg observables, 251, 254
real parameter r, 248
Schrödinger–Robertson uncertainty

relation, 251
squeezed states, 251
squeezing parameter, 250
uncertainties, 249

squeezed Fock Vacua and SR-UR,
254–256

Scale of Sobolev spaces, 58
Schrödinger–Robertson uncertainty relation

(SR-UR), 236–238, 240, 255, 265
Schroedinger-like equation, 335
Schwarz inequality, 57
Second-order quadratic variations, 159–161
Seiberg–Witten invariants

Einstein metrics, 376
equations of interest, 377
Fierz identity, 380
higher order LMO/Casson invariants, 378
Hitchin-Thorpe’s inequality, 376
Kähler manifold, 377
Levi-Civita connection, 377
perturbed SW equations, 381
Riemannian metric, 376
Rozansky–Witten invariants, 378
smooth Riemannian manifold, 376
spinor fields, 377
Weitzenböck formula, 379

Self-adjoint operator, 17
Self-dual Banach chain, 52
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Semi-frames, 23
Bessel mapping, 25
Bessel sequence, 26, 27
linear operator, 26
lower semi-frame, 25–27
moment space, 25
Riesz-Fischer sequence, 26
RKHS, 26
upper semi-frame, 24–27

Separating subset, 72
Separating vector, 72
Sequential learning neural network (SLNN),

368
Shape invariance, 393
Shape invariant potential coherent states

(SIPCS), 394
Shape invariant potentials (SIP), 393
Similar operators, 4–5
Single metric operator, 8–10
Skew symmetric bilinear, 126, 131
Smooth Riemannian manifold, 376
Spectral density, 155
Spectrum, 4
Splitting relation, 223
Squeezed states, 251
*-algebra, 63
*-delta function, 449–450
Star exponential functions

Hermite polynomial, 447–448
*-delta function, 449–450
theta function, 448–449

Star exponentials
complex symmetric matrix, 446
definition, 445
Fréchet space, 446
linear and quadratic polynomials, 446
linear case, 446
quadratic case, 446

Star Hermite function, 447–448
*-morphism between two *-algebras, 64
Star products

definition, 441–442
holomorphic function space, 444–445
Moyal product, 440–441
Weyl algebra, 442–444

Star theta function, 448–449
State over of a C*-algebra, 68–70
State ω, 74, 76–79
Stieltjes moment problem, 414
Sturm-Liouville difference equation, 150
Supersymmetric quantum mechanics (SUSY

QM), 393
Surjective homomorphisms, 318

SUSY QM factorization method
Hamiltonian factorizes, 402
Hilbert space, 394
normalization constant c, 398
partner Hamiltonians, 399, 400
real continuous function, 395
Riccati type equation, 396
shape invariance condition, 401

σ−weak topology, 73, 74, 76
Symmetric tensors, 312
Symplectic manifold, 121, 132
Symplectic structure, 238

T
Tensorial group field theory (TGFT), 294
Ternary clifford algebra, 322–323
Ternary dirac equation

anti-particles, 342
Cartesian system of space coordinates, 343
circulant matrix, 338
dispersion relation, 341
4 × 4 Dirac equation, 334, 335
Klein-Gordon equation, 340, 341
Lorentz transformations, 335
Maxwell and Dirac equations, 340
Pauli matrices, 334, 335
Pauli spinor, 334, 335
Schroedinger-like equation, 335
single light cone, 340
6 × 6 matrix, 338
sixth-order partial differential equation, 341
total diagonalization, 337
truncated matrix, 342

Ternary Z2 and Z3 graded algebras
binary skew-symmetric products, 323
classical Grassmann algebras, 326
cubic monomials, 324
d’Alembert operator, 352
Fourier transforms, 349, 350, 354
Gaussian function, 354
graded differential forms, 320–322
grassmann algebra, 319–320
Green’s functions, 351, 354
j -skew-symmetric products, 323
Klein-Gordon operator, 349
low-dimensional algebras

anti-commutation property, 328
Binary constitutive relations, 329
four-dimensional linear real space, 332
hermitian Pauli matrices, 332
invariance condition, 332
j -skew-invariant forms, 329
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Lorentz transformations, 330, 333
non-vanishing components, 330
p-cubic matrices, 329
4 × 4 real matrices, 333
spin–statistics relationship, 328
two quadratic forms, 332
U -matrices, 331

quantum chromodynamics, 315
relativistic invariance, 345–348
retarded Green’s function, 352
symmetries and gradings, 312–314
ternary and cubic algebras, 316–319
ternary clifford algebra, 322–323
ternary dirac equation

anti-particles, 342
Cartesian system of space coordinates,

343
circulant matrix, 338
dispersion relation, 341
4 × 4 Dirac equation, 334, 335
Klein-Gordon equation, 340, 341
Lorentz transformations, 335
Maxwell and Dirac equations, 340
Pauli matrices, 334, 335
Pauli spinor, 334, 335
Schroedinger-like equation, 335
single light cone, 340
6 × 6 matrix, 338
sixth-order partial differential equation,

341
total diagonalization, 337
truncated matrix, 342

two distinct gradings, 326–328
Z2 and Z3 gradings, 316
Z3-graded subalgebra, 314

Theoretical statistical methods, 360
Thermal intensity correlation function, 408
Thermal mean occupancy, 113
Thermal state, 96
Thermal statistics, 406–408
Tomita-Takesaki theory, 61, 62

principal result, 83
Torsion tensor field, 201
Trace norm, 79
Trace of linear operator, 79
Traciality, 302
Triangle inequality, 63

U
U(1)d tensorial group field theory

bubble, 296
canonical dimension, 298
classical action Sint , 295

degree of divergence, 297
divergent graphs, classification of, 298
Feynman graph of model, 297
Fourier transformation, 295
Gaussian measure, 295
GFP, 298
incidence matrix, 297
Kronecker delta, 296
tensor field theory, 296
tensor invariant interactions, 296
vacuum–vacuum transition amplitude, 295

Uniform topology, 63
U(1) tensor model

fixed points
GFP, 304–305
non-Gaussian fixed points, 305–308

FRG method
anomalous dimension, 300
flow equation in UV regime, 301–304
Legendre transform, 299
Litim cut-off, 301
non-Gaussian fixed point, 300
truncated flow equations, 301
Wetterich equation, 299, 301
Wetterich flow equation, 300

UV-multicritical surface, 307

V
Vector state, 73, 84–88
Vertical chain, 53
Viability

characterization, 182–184
control and, 175
controlled system, 187–196
kernel, 175–176
minimal lethal disturbance, 184–186
notion, 175
radius

definitions and examples, 176, 178–182
and robust viability, 188–196
and viability kernel, 187–188

robustness, 176
signed distance, 177
theorems, 176
viable state and nonviable one, 177, 178

Viking satellite, 433
Viking Spacecraft, 437
von Neumann algebras, 61

application, 106–109
coherent states construction, 109–112
density matrix and diagonal elements,

112–114
lowest Landau level, 114–115
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von Neumann algebras (cont.)
reproducing kernel, 115–116
statistical properties, 116

C*-algebra, 64
canonical cyclic representation of G

associated with ω, 68
closure-orthogonal projection, 71–72
coherent states built from harmonic

oscillator thermal state, 99–105
cyclic and separating subset, 72
cyclic representation of a C*-algebra, 68
cyclic vector, 72
definition, 70–71
electron in a magnetic field, 98–99
generated by unitary operators, 88–96
Hilbert-Schmidt operators

definition, 79–80
Hilbert space of, 80–81
modular theory, 81–84
trace norm, 79
trace of a linear operator, 79

involution/adjoint operation, 63
modular theory-thermal state, 96–97
representation of a C*-algebra, 64–67
Riesz representation theorem, 75
separating subset, 72
separating vector, 72
*-algebra, 63
*-morphism between two *-algebras, 64
state over of a C*-algebra, 68–70
state ω, 74, 76–79
σ−weak topology, 73, 74, 76
Tomita-Takesaki theory, 62
vector state, 73, 84–88
weak topology, 73–75

W
Walker Osserman metric

matrix with Jacobi operator, 208
nonvanishing components of curvature

tensor, 208
nonvanishing covariant derivatives, 207
parallel distribution, 206–207
Riemann extension, 207
of signature, 208
Walker manifolds, 207

Wavelet based estimator, 166–170
Weak topology, 73–75
Weitzenböck formula, 379
Wetterich equations, 294, 299, 301
Weyl algebra, 442–444
Whittle estimation, 156–157
Wigner map, 101, 105

Y
Yang–Mills theories, 212
Yukawa models, one space-one time

dimensions
bosonization, 226, 231
canonical Hamiltonian density, 228–229
Casimir Energy, 232
chiral bosonic operators, 231
Dirac brackets, 229–230
Dirac method of quantization, 226
elementary Poisson brackets, 228
equation of motion, 227
Euler Lagrange equations, 227
fermionic operators, 230–232
fundamental Hamiltonian density, 230
Higgs field and massless quark and lepton

fields, 225
Hilbert space, 230
Klein factors, 231
Lagrangian density, 226, 227
Minkowski space-time, 226
momenta variables, 228
nucleons and pion coupling, 225
Pauli matrices, 226
phase space, 228
primary constraints, 228
primary Hamiltonian, 229
pseudo-scalar field and Dirac field

coupling, 226
quantum Hamiltonian density, 230, 232
two-dimensional Minkowski space-time,

226
Yukawa’s interaction/coupling, 225

Z
Zero-mean Gaussian variable, 167


	Dedication
	Preface
	Acknowledgments
	Contents
	Contributors
	Metric Operators, Generalized Hermiticity, and Partial Inner Product Spaces
	1 Introduction
	2 Metric Operators
	3 Similar and Quasi-Similar Operators
	4 The Lattice Generated by a Single Metric Operator
	5 Quasi-Hermitian Operators
	6 The LHS Generated by Metric Operators
	7 (Quasi-)Similarity for pip-Space Operators
	7.1 General pip-Space Operators
	7.2 The Case of Symmetric pip-Space Operators

	8 Semi-Similarity of pip-Space Operators
	9 Pseudo-Hermitian Hamiltonians
	References

	Beyond Frames: Semi-frames and Reproducing Pairs
	1 Introduction
	2 Preliminaries: Frames and Semi-frames
	2.1 Frames
	2.2 Semi-frames

	3 Reproducing Pairs
	3.1 The Hilbert Spaces Generated by a Reproducing Pair
	3.2 Duality Properties of the Spaces Vϕ(X, μ) 

	4 Existence and Nonuniqueness of Reproducing Partners
	5 Examples of Reproducing Pairs
	5.1 Discrete Examples
	5.1.1 Orthonormal Basis
	5.1.2 Riesz Basis
	5.1.3 Discrete Upper and Lower-Semi Frames

	5.2 Continuous Examples
	5.2.1 Continuous Frames
	5.2.2 1D Continuous Wavelets
	5.2.3 A Continuous Upper Semi-frame: Affine Coherent States
	5.2.4 Continuous Wavelets on the Sphere
	5.2.5 Genuine Reproducing Pairs, Applications


	6 Interlude: Reproducing Pairs and pip-Spaces
	7 Reproducing Pairs and RHS
	7.1 A Hilbertian Approach
	7.2 The General Case

	8 Reproducing Pairs and Genuine pip-Spaces
	9 The Case of a Hilbert Triplet or a Hilbert Scale
	9.1 The General Construction
	9.2 Examples

	10 The Case of Lp Spaces
	11 Concluding Remarks
	Appendix: Lattices of Banach or Hilbert Spaces
	References

	On Hilbert-Schmidt Operator Formulation of Noncommutative Quantum Mechanics
	1 Introduction
	2 von Neumann Algebras: Modular Theory, Hilbert-Schmidt Operators, and Coherent States
	2.1 Basics on von Neumann Algebras
	2.2 Hilbert Space of Hilbert-Schmidt Operators
	2.3 Modular Theory and Hilbert-Schmidt Operators
	2.3.1 Modular Theory
	2.3.2 Vector State and von Neumann Algebras
	2.3.3 von Neumann Algebras Generated by Unitary Operators

	2.4 Modular Theory-Thermal State
	2.5 Coherent States Built from the Harmonic Oscillator Thermal State
	2.5.1 Electron in a Magnetic Field
	2.5.2 Coherent States built from the Thermal State


	3 Noncommutative Quantum Harmonic Oscillator Hilbert Space
	4 Application
	4.1 Coherent States Construction
	4.2 Density Matrix and Diagonal Elements
	4.3 Lowest Landau Levels and Reproducing Kernel
	4.4 Statistical Properties

	5 Concluding Remarks
	References

	Symplectic Affine Action and Momentum with Cocycle
	1 Introduction
	2 Lie Group Action
	2.1 Preliminaries

	3 Momentum Mapping
	3.1 Coadjoint Cocycle
	3.2 The Orbits of an Affine Action

	4 Towards a Generalization
	References

	Some Difference Integral Inequalities
	1 Introduction
	2 Preliminaries
	2.1 Difference Derivative and Integral
	2.2 Linear Difference Equations of First Order

	3 Difference Integral Inequalities
	3.1 Hölder and Cauchy-Schwartz Inequalities
	3.2 Minkowski Inequality
	3.3 Grönwall Inequality
	3.4 Bernoulli Inequality
	3.5 Lyapunov Inequality

	References

	Theoretical and Numerical Comparisons of the Parameter Estimator of the Fractional Brownian Motion
	1 Introduction
	2 Two Classical Parametric Estimators
	2.1 Maximum Likelihood Estimation
	2.2 Whittle Estimation

	3 Other Classical Semi-parametric Estimators
	3.1 R/S and Modified R/S Statistics
	3.2 Second-Order Quadratic Variations
	3.3 Detrended Fluctuation Analysis (DFA)
	3.4 Increment Ratio Statistic
	3.5 Wavelet Based Estimator

	4 Numerical Applications and Results of Simulations
	4.1 Concrete Procedures of Estimation of H
	4.2 Results of Simulations

	5 Conclusion
	References

	Minimal Lethal Disturbance for Finite Dimensional Linear Systems
	1 Introduction
	2 Viability Radius and Minimal Lethal Disturbance
	2.1 Viability Concept: Definition and Characterization
	2.2 Viability Radius
	2.2.1 Definitions and Examples
	2.2.2 Characterization

	2.3 Minimal Lethal Disturbance (MLD) 

	3 Controlled System
	3.1 Viability Kernel and Viability Radius
	3.2 Robust Viability and Viability Radius for Linear Finite Dimensional System
	3.2.1 Problem Statement
	3.2.2 Problem Approach
	3.2.3 Example


	4 Connection with Minimal Lethal Dose in Toxicity
	5 Conclusion
	References

	Walker Osserman Metric of Signature (3,3)
	1 Introduction
	2 Preliminaries
	2.1 Affine Manifolds
	2.2 Affine Osserman Manifolds
	2.3 The Riemann Extension Construction

	3 Example of Affine Osserman Connections
	4 Example of Walker Osserman Metric
	Appendix 1: Components of the Curvature Tensor
	Appendix 2: Osserman Geometry
	References

	Conformal Symmetry Transformations and Nonlinear Maxwell Equations
	1 Introduction
	2 Conformal Transformations and Compactification
	2.1 Conformal Transformations in Minkowski Space
	2.2 Conformal Compactification

	3 Inverse Minkowski Space
	3.1 Motivation and Definition
	3.2 Conformal Lie Algebra
	3.3 Some Comments

	4 Nonlinear Electrodynamics: General Approach
	4.1 Motivation and Framework for Nonlinear Maxwell Fields
	4.2 Transformations Under Conformal Inversion
	4.3 Steps Toward General Nonlinear Conformal-Invariant Electrodynamics

	5 Related (4+2)-Dimensional Spaces
	5.1 The Space Y(6 )
	5.2 Conformal Transformations in Y(6)
	5.3 The Hexaspherical Space Q(6)

	6 Maxwell Theory with Nonlinear Constitutive Equations in (4+2)-Dimensional Spacetime
	6.1 Nonlinear Maxwell Equations in Y(6)
	6.2 Invariants for the General Nonlinear Maxwell Theory with Conformal Symmetry

	7 Dimensional Reduction to (3+1) Dimensions
	References

	The Yukawa Model in One Space - One Time Dimensions
	References

	Towards the Quantum Geometry of Saturated Quantum Uncertainty Relations: The Case of the (Q,P) Heisenberg Observables
	1 Introduction
	2 The Uncertainty Relation for the Heisenberg Algebra
	3 A Reference Fock Algebra
	4 Fock Algebras for the Saturating Quantum States
	4.1 Reversible Parametrisation Packages
	4.2 Correlated Squeezed Fock Algebras and Their Vacua
	4.3 Squeezed Fock Vacua and SR-UR Saturating Quantum States

	5 Overcompleteness and Kernel Representation
	6 Correlated Squeezed State Wavefunctions
	6.1 Squeezed State Configuration Space Wave Functions
	6.2 The Fundamental Overlap "426830A Ωz2(u2)|Ωz1(u1)"526930B  of Squeezed States

	7 Conclusions
	Appendix 1: Cauchy–Schwarz Inequality and Quantum Uncertainty Relations
	Appendix 2: Baker–Campbell–Hausdorff Formulae
	References

	The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally Conformal Symplectic Structure
	1 Introduction
	2 Preliminaries
	2.1 Inverse Problem and the Jacobi Last Multiplier

	3 Nonholonomic Free Particle, Conformal Structure, and Jacobi Last Multiplier
	3.1 Reduction, Constrained Hamiltonian and Nonholonomic Systems
	3.2 Hamiltonization and Reduction Using Jacobi Multiplier
	3.3 Conformally Hamiltonian Formulation of Nonholonomic Systems

	4 Integrability of Nonholonomic Dynamics and Locally Conformally Symplectic Structure
	4.1 Role of Jacobi's Multiplier and Integrability of Nonholonomic Dynamical Systems
	4.2 JLM and Commuting of Vector Fields

	5 Final Comments and Outlook
	References

	Non-perturbative Renormalization Group of a U(1) Tensor Model
	1 Introduction
	2 U(1)d Tensorial Group Field Theory
	3 Functional Renormalization Group with Closure Constraint
	3.1 Flow Equations in the UV Regime

	4 Fixed Points in the UV Regime
	4.1 Vicinity of the Gaussian Fixed Point
	4.2 Non-Gaussian Fixed Points

	5 Concluding Remarks
	References

	Ternary Z2 and Z3 Graded Algebras and Generalized Color Dynamics
	1 Introduction
	1.1 Z2 and Z3 Symmetries and Gradings

	2 Examples of  Z3-Graded Ternary Algebras
	3 Ternary and Cubic Algebras
	4 Examples of  Z3-Graded Ternary Algebras
	4.1 The Z3-Graded Analogue of Grassmann Algebra
	4.2 The Z3 Graded Differential Forms
	4.3 Ternary Clifford Algebra

	5 Generalized Z2 Z3-Graded Ternary Algebra
	6 Two Distinct Gradings: Z3 Z2 Versus Z6
	7 Low-Dimensional Algebras
	8 Ternary Dirac Equation
	9 Solutions
	10 Relativistic Invariance
	11 Propagators
	12 Conclusion
	References

	Pseudo-Solution of Weight Equations in Neural Networks: Application for Statistical Parameters Estimation
	1 Introduction
	2 Framework
	2.1 Development of the Algebraic Approach
	2.2 Proposed Algorithm 

	3 Experiments and Results
	3.1 Rates of Traders Thinking of the Trade in Terms of Its Dangerous Character 
	3.2  Rates of Traders Susceptible to Give Up Trading

	4 Discussion
	5 Conclusion
	Appendix
	References

	A Note on Curvatures and Rank 2 Seiberg–Witten Invariants
	1 Introduction
	2 The Seiberg–Witten Equations
	3 Curvature Estimates
	4 Einstein Metrics
	References

	Shape Invariant Potential Formalism for Photon-Added Coherent State Construction
	1 Introduction
	2 Mathematical Formulation of SUSYQM: Integrability Condition and Coherent State Construction
	3 Construction of Photon-Added Coherent States for Shape Invariant Systems
	3.1 Definition of the PA-SIPCS
	3.2 Label Continuity
	3.3 Overcompleteness
	3.4 Thermal Statistics

	4 Pöschl–Teller Potential
	4.1 First Choice of the Functional  Zj
	4.2 Second Choice of the Functional  Zj

	5 Concluding Remarks
	References

	On the Fourier Analysis for L2 Operator-Valued Functions
	1 Introduction
	2 Preliminaries
	3 A Pre-Hilbert Module Structure on L2(G, B(H))
	4 The Fourier Transform of Functions in L2(G, B2(H)) 
	5 The ρ-Fourier Transform for  L2(G, B(H)) Functions
	References

	Electrostatic Double Layers in a Magnetized Isothermal Plasma with two Maxwellian Electrons
	1 Introduction
	2 Theoretical Analysis
	3 Conclusion
	References

	Star Products, Star Exponentials, and Star Functions
	1 Star Product on Polynomials
	1.1 Moyal Product
	1.2 Star Product
	1.3 Equivalence and Geometric Picture of Weyl Algebra

	2 Extension to Functions
	2.1 Star Product on Certain Holomorphic Function Space

	3 Star exponentials
	3.1 Definition
	3.2 Examples

	4 Star Functions
	4.1 Star Hermite Function
	4.2 Star Theta Function
	4.3 *-Delta Functions

	References

	Index

