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Dedication

Mahouton Norbert Hounkonnou is a full professor of Mathematics and Physics
at the University of Abomey-Calavi, Cotonou, Benin. His research deals with non-
commutative and nonlinear mathematics including differential equations, operator
theory, coherent states, quantization techniques, orthogonal polynomials, special
functions, graph theory, nonassociative algebras, nonlinear systems, noncommuta-
tive field theories, and geometric methods in physics.

Professor Hounkonnou has authored/coauthored and reviewed several books and
refereed and served as an associate editor for renowned journals in mathematics,
mathematical physics, and theoretical physics. He has published over 200 refereed
research papers in outstanding ISI-ranked journals and international conference
proceedings in the fields of mathematics, mathematical physics, and theoretical
physics.

Norbert has been a visiting professor at several African, Asian, European, and
North American universities. Together with his peers at the international level,



vi Dedication

he founded the International Chair in Mathematical Physics and Applications
(ICMPA-UNESCO Chair) of the University of Abomey-Calavi offering multi-
university master degrees and PhD programs in mathematics with connections,
motivations, or applications to physics or in physics with important relationships
to mathematics. The best African students from about 13 French- and English-
speaking countries are selected to follow these graduate programs, which attracted
prominent and leading mathematicians and mathematical physicists around the
world who come to give lectures and supervise students’ research, what has
substantially increased international collaboration with African, Asian, American,
European, and Indian scientists and mathematicians.

The ICMPA-UNESCO Chair presently hosts an International Conference Series
(respectively, School) on Contemporary Problems in Mathematical Physics, which
is held in Cotonou (Benin) every 2 years since 1999 (respectively, each year since
2005). These activities have led to a significant network of researchers connected
with the ICMPA-UNESCO Chair. The ICMPA-UNESCO Chair gets its funding
from various sources that are available in mathematics and mathematical physics
and for the development of world-class mathematics and science in Africa. Professor
Hounkonnou has directed/co-directed 32 PhD theses and 21 masters. His PhD and
master students are from several countries including Belgium, Benin, Burkina Faso,
Burundi, Cameroon, Democratic Republic of Congo, Niger, Nigeria, Senegal, Togo,
and Zambia.

Professor Hounkonnou is the chair of the African Academy of Sciences Commis-
sion on Pan-African Science Olympiad (2014 to present), the chair of the African
Academy of Sciences Membership Advisory Committee (MAC) on Mathematical
Sciences (2013 to present), reviewer for the NANUM 2014 Award Committee
Member of the International Congress of Mathematicians (ICM 2014), and TWAS
research professor in Zambia and enjoys the membership of several important
international scientific organizations.

Professor Hounkonnou is the current president of the Benin National Academy of
Sciences, Arts and Letters. His membership extends to the International Association
of Mathematical Physics, American Mathematical Society, African Academy of
Sciences (AAS), The World Academy of Sciences (TWAS), UNESCO Scientific
Board for International Basic Sciences Programme (IBSP), and to many others.

Among other things, Professor Hounkonnou is a Knight of the National Order
of Benin (Chevalier de I’Ordre National du Benin). He has received a series of
recognition for the excellence of his work such as the Prize of the Third World
Academy of Sciences (TWAS) in 1996, the 2015 Tokyo University of Science
President Award, and the 2016 World Academy of Sciences C.N.R. Rao Prize
for Scientific Research “for his incisive work on noncommutative and nonlinear
mathematics and his contributions to world-class mathematics education.”



Preface

The multidisciplinary STEAM-H series (Science, Technology, Engineering, Agri-
culture, Mathematics, and Health) brings together leading researchers to present
their work in the perspective to advance their specific fields and in a way to generate
a genuine interdisciplinary interaction transcending disciplinary boundaries. All
chapters therein were carefully edited and peer-reviewed; they are reasonably
self-contained and pedagogically exposed for a multidisciplinary readership. Con-
tributions are invited only and reflect the most recent advances delivered in a high
standard, self-contained way. The goals of the series are as follows:

1. To enhance multidisciplinary understanding between the disciplines by showing
how some new advances in a particular discipline can be of interest to the other
discipline or how different disciplines contribute to a better understanding of a
relevant issue at the interface of mathematics and the sciences

2. To promote the spirit of inquiry so characteristic of mathematics for the advances
of the natural, physical, and behavioral sciences by featuring leading experts and
outstanding presenters

3. To encourage diversity in the readers’ background and expertise while struc-
turally fostering genuine interdisciplinary interactions and networking

Current disciplinary boundaries do not encourage effective interactions between
scientists; researchers from different fields usually occupy different buildings,
publish in journals specific to their field, and attend different scientific meetings.
Existing scientific meetings usually fall into either small gatherings specializing on
specific questions, targeting specific and small group of scientists already aware of
each other’s work and potentially collaborating, or large meetings covering a wide
field and targeting a diverse group of scientists but usually not allowing specific
interactions to develop due to their large size and a crowded program. Traditional
departmental seminars are becoming so technical as to be largely inaccessible to
anyone who did not coauthor the research being presented. Here contributors focus
on how to make their work intelligible and accessible to a diverse audience, which
in the process enforces mastery of their own field of expertise.

vii
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This volume, as the previous ones, strongly advocates multidisciplinarity with
the goal to generate new interdisciplinary approaches, instruments, and models
including new knowledge, transcending scientific boundaries to adopt a more
holistic approach. For instance, it should be acknowledged, following Nobel
Laureate and president of the UK’s Royal Society of Chemistry, Professor Sir Harry
Kroto, “that the traditional chemistry, physics, biology departmentalised univer-
sity infrastructures—which are now clearly out-of-date and a serious hindrance
to progress—must be replaced by new ones which actively foster the synergy
inherent in multidisciplinarity.” The National Institutes of Health and the Howard
Hughes Medical Institute have strongly recommended that undergraduate biology
education should incorporate mathematics, physics, chemistry, computer science,
and engineering until “interdisciplinary thinking and work become second nature.”
Young physicists and chemists are encouraged to think about the opportunities
waiting for them at the interface with the life sciences. Mathematics is playing
an ever more important role in the physical and life sciences, engineering, and
technology, blurring the boundaries between scientific disciplines.

The series is to be a reference of choice for established interdisciplinary scientists
and mathematicians and a source of inspiration for a broad spectrum of researchers
and research students, graduate, and postdoctoral fellows; the shared emphasis of
these carefully selected and refereed contributed chapters is on important methods,
research directions, and applications of analysis including within and beyond
mathematics. As such the volume promotes mathematical sciences, physical and
life sciences, engineering, and technology education, as well as interdisciplinary,
industrial, and academic genuine cooperation.

Toward such goals, the following chapters are featured in the current volume.

The present volume contains the contributions from the participants of the
conference in honor of Professor Mahouton Norbert Hounkonnou on his 60th
birthday held in Cotonou, Benin. It features the following chapters.

Chapter “Metric Operators, Generalized Hermiticity, and Partial Inner Product
Spaces”, by Jean-Pierre Antoine and Camillo Trapani, analyzes the structure of
metric operators, bounded or unbounded, drawing from recent results on pseudo-
Hermitian quantum mechanics.

In chapter “Beyond Frames: Semi-frames and Reproducing Pairs”, Jean-Pierre
Antoine and Camillo Trapani study semi-frames (upper and lower) and reproducing
pairs which generate two Hilbert spaces conjugates of each other.

Chapter “On Hilbert-Schmidt Operator Formulation of Noncommutative Quan-
tum Mechanics”, by Isiaka Aremua, Ezinvi Baloitcha, Mahouton Norbert Hounkon-
nou, and Komi Sodoga, investigates a system of charged particle in a constant
magnetic field as a way to emphasize the importance of Hilbert-Schmidt operators
in the formulation of noncommutative quantum theory.

In chapter “Symplectic Affine Action and Momentum with Cocycle”, Augustin
Batubenge and Wallace Haziyu show that a symplectic structure can be defined on
the orbit, a symplectic manifold, of a certain affine action.
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Chapter “Some Difference Integral Inequalities”, by Gaspard Bangerezako and
Jean-Paul Nuwacu, uses the Lagrange method of linear difference equation of first
order to establish different versions of some classical integral inequalities.

In chapter “Theoretical and Numerical Comparisons of the Parameter Estimator
of the Fractional Brownian Motion”, Jean-Marc Bardet presents theoretical and
numerical comparisons of the most important methods of parameter estimators of
the fractional Brownian motion.

Chapter “Minimal Lethal Disturbance for Finite Dimensional Linear Systems”,
by Abdes Samed Bernoussi, Mina Ambharref, and Mustapha Ouardouz, considers
the problem of robust viability giving some characterizations of the viability radius
for finite dimensional disturbed linear systems leading to the determination of the
so-called minimal lethal disturbance.

In chapter “Walker Osserman Metric of Signature (3, 3)”, Abdoul Salam Diallo,
Mouhamadou Hassirou, and Ousmane Toudou Issa investigate a torsion-free affine
manifold and the related Riemann extension to produce an example of Walker
Osserman metric of signature (3, 3).

Chapter “Conformal Symmetry Transformations and Nonlinear Maxwell Equa-
tions”, by Gerald A. Goldin, Vladimir M. Shtelen, and Steven Duplij, explores ways
to describe general, nonlinear Maxwell fields with conformal symmetry, making use
of the conformal compactification of Minkowski spacetime.

Laure Gouba, in chapter “The Yukawa Model in One Space - One Time Dimen-
sions”, revisits the Yukawa model in one space-one time dimensions showing it as a
constrained system at the classical level using the Dirac method and reformulating
the model as a quantum level of scalar field by a bosonization procedure.

Chapter “Towards the Quantum Geometry of Saturated Quantum Uncertainty
Relations: The Case of the (Q, P) Heisenberg Observables”, by Jan Govaerts,
outlines a program to identify geometric structures associated to the manifold
in Hilbert space of the quantum states that saturate the Schrodinger-Robertson
uncertainty relation to a specific set of quantum observables characterizing a given
quantum system and its dynamics.

In chapter “The Role of the Jacobi Last Multiplier in Nonholonomic Systems
and Locally Conformal Symplectic Structure”, Partha Guha studies the geometric
structure of nonholonomic system with almost symplectic structure in relation to
Jacobi’s last multiplier.

Chapter “Non-perturbative Renormalization Group of a U(1) Tensor Model”,
by Vincent Lahoche and Dine Ousmane Samary, discusses the non-perturbative
renormalization group of a U(1) tensor model.

Richard Kerner, in chapter “Ternary Z, and Z3 Graded Algebras and Generalized
Color Dynamics”, studies cubic and ternary algebras as a direct generalization of
Grassmann and Clifford algebras with Z3 grading.

Using the fuel smuggling trade between Benin and Nigeria as a background,
chapter “Pseudo-Solution of Weight Equations in Neural Networks: Application for
Statistical Parameters Estimation”, by Vincent J. M. Kiki, Villevo Adanhounme, and
Mahouton Norbert Hounkonnou, presents a pseudo-solution to weight equations in
a class of neural networks using an algebraic approach.
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In chapter “A Note on Curvatures and Rank 2 Seiberg—Witten Invariants”,
Fortuné Massamba discusses lower bounds for certain curvature functionals on the
space of Riemannian metrics of a smooth compact 4-manifold with nontrivial rank
2 Seiberg-Witten invariants.

In chapter “Shape Invariant Potential Formalism for Photon-Added Coher-
ent State Construction”, Komi Sodoga, Isiaka Aremua, and Mahouton Norbert
Hounkonnou introduce the so-called shape invariant potential method, an algebro-
operator approach to construct generalized coherent states for photon-added particle
system, with illustrations on Poschl-Teller potentials.

Mawoussi Todjro and Yaogan Mensah, in chapter “On the Fourier Analysis for
L? Operator-Valued Functions”, describe the construction of the Fourier transform
of Hilbert-Schmidt operator-valued function on compact groups.

Chapter “Electrostatic Double Layers in a Magnetized Isothermal Plasma with
two Maxwellian Electrons”, by Odutayo Raji Rufai, discusses finite amplitude
nonlinear ion-acoustic double layers in a magnetized plasma of warm isothermal
ions fluid and two Boltzmann distributed electron species assuming the charge
neutrality condition at equilibrium.

Finally Akira Yoshioka, in chapter “Star Products, Star Exponentials, and
Star Functions”, presents nonformal star products on polynomials with positive
deformation parameter, star exponentials in the star product algebra, leading to the
so-called star functions in the algebra with some noncommutative identities.

The book as a whole certainly enhances the overall objective of the series, that is,
to foster the readership interest and enthusiasm in the STEAM-H disciplines (Sci-
ence, Technology, Engineering, Agriculture, Mathematics, and Health), stimulate
graduate and undergraduate research, and generate collaboration among researchers
on a genuine interdisciplinary basis.

The STEAM-H series is now hosted at Howard University, Washington, DC,
USA, an area that is socially, economically, intellectually very dynamic and home
to some of the most important research centers in the USA. This series, by now
well established and published by Springer, a world-renowned publisher, is expected
to become a national and international reference in interdisciplinary education and
research.

Washington, DC, USA Bourama Toni
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Metric Operators, Generalized m)
Hermiticity, and Partial Inner ke
Product Spaces

Jean-Pierre Antoine and Camillo Trapani

Abstract A quasi-Hermitian operator is an operator in a Hilbert space that is
similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive
self-adjoint operator. Motivated by the recent developments of pseudo-Hermitian
quantum mechanics, we analyze the structure of metric operators, bounded or
unbounded. We introduce several generalizations of the notion of similarity between
operators and explore to what extent they preserve spectral properties.

Next we consider canonical lattices of Hilbert space s generated by unbounded
metric operators. Since such lattices constitute the simplest case of a partial inner
product space (PIP-space), we can exploit the technique of PIP-space operators.
Thus we apply some of the previous results to operators on a particular PIP-space,
namely, the scale of Hilbert space s generated by a single metric operator. Finally, we
reformulate the notion of pseudo-hermitian operators in the preceding formalism.

Keywords Metric operators - Quasi-Hermitian operators - Similar operators -
Lattices and scales of Hilbert spaces - Partial inner product spaces (PIP spaces)

1 Introduction

Non-self-adjoint operators with real spectrum appear in different contexts: the
so-called P7 -symmetric quantum mechanics [10], pseudo-Hermitian quantum
mechanics [19, 20], three-Hilbert-space formulation of quantum mechanics [27],

Based on a talk given at the COPROMAPHS conference [3].
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nonlinear pseudo-bosons [9], nonlinear supersymmetry, and so on. In addition, they
appear under various names: pseudo-Hermitian, quasi-Hermitian, cryptohermitian
operators.

The PT -symmetric Hamiltonians, that is, Hamiltonians invariant under the joint
action of space reflection (P) and complex conjugation (7), are usually pseudo-
Hermitian operators. This term was introduced a long time ago by Dieudonné [14]
(under the name “quasi-Hermitian™) for characterizing those bounded operators A
which satisfy a relation of the form

GA = A*G, (1.1)

where G is a metric operator, i.e., a strictly positive self-adjoint operator. This
operator G then defines a new metric (hence the name) and a new Hilbert space
(sometimes called physical) in which A is symmetric and possesses a self-adjoint
extension. For a systematic analysis of pseudo-Hermitian QM, we may refer to the
review of Mostafazadeh [19] and the special issues [11, 12], which contain a variety
of concrete applications in quantum physics.

According to (1.1), the generic structure of these operators is A* = GAG™!.
Thus A* is similar to A, in some sense, via a metric operator G, i.e., a strictly
positive self-adjoint operator G > 0, thus invertible, with (possibly unbounded)
inverse G~!. Now, in most of the literature, the metric operators are assumed
to be bounded. In some recent works, however, unbounded metric operators are
introduced [7-9, 20].

On the other hand, if G~! is bounded, (1.1) implies that A is similar to a self-
adjoint operator, thus it is a spectral operator of scalar type and real spectrum, in the
sense of Dunford [15]. This is the case treated by Scholtz et al. [25] and Geyer et al.
[17], who introduced the concept in the physics literature.

The aim of this chapter is to study in a rigorous way the problem of operator
similarity under a metric operator, bounded or unbounded. In particular, we will
formulate the analysis in the framework of partial inner product spaces (PIP-spaces),
since the latter appear naturally in this context. Most of the information contained
here comes from our papers [4-6].

To conclude, we fix our notations. The framework is a separable Hilbert space H,
with inner product (-|-), linear in the first entry. Then, for any operator A in H, we
denote its domain by D(A), its range by R(A) and, if A is positive, its form domain
by Q(A) := D(A/?).

2 Metric Operators

By a metric operator, in a Hilbert space H, we mean a strictly positive self-adjoint
operator G, thatis, G > 0 or (G&|&) > O for every £ € D(G) and (G&|§) = O if
and only if £ = 0.



Metric Operators, Generalized Hermiticity, and Partial Inner Product Spaces 3

Of course, G is densely defined and invertible, but need not be bounded; its
inverse G~! is also a metric operator, bounded or not (in this case, in fact, 0 belongs
to the continuous spectrum of G).

Let G, G1, G be metric operators. Then

(1) If Gy and G, are both bounded, then G| + G is a bounded metric operator;
(2) AG is a bounded metric operator for every A > 0;

(3) if G| and G, commute, their product GG is also a bounded metric operator;
(4) G'/% and, more generally, G*(a € R) are bounded metric operators.

Given a bounded metric operator G, define (£|n)g = (G&|n), &, n € H. This is
a positive definite inner product on # with corresponding norm |||l = ||G!/%£]).
We denote by H(G) the completion of H in this norm. Thus we get H C H(G).
If G~/2 is bounded, # and H(G) are the same as vector spaces and they carry
different, but equivalent, norms.

Clearly, the conjugate dual space H(G)* of H(G) is a subspace of H and
H(G)* = H(G™Y) = D(G~'/?) with inner product (£|n)g-1 = (G~'&|n). The
upshot is a triplet of Hilbert spaces

H(G™YH & H — H(G), 2.1)

where <> denotes a continuous embedding with dense range. If G~ is bounded,
H(G™!) = H(G) = H with norms equivalent to (but different from) the norm of
#. In the triplet (2.1), G™'/? is a unitary operator from 7(G~') onto A and from
# onto H(G). In the same way, G'/2 is a unitary operator from 7 onto H(G~")
and from H(G) onto H.

Now, the triplet (2.1) is the central part of the infinite scale of Hilbert spaces built
on the powers of G Y2, vy := {H,,n € Z}, where H,, = D(G"?),n € N, with
a norm equivalent to the graph norm, and H_, = #,’:

.CHrCHI CHCH 1 CHLC ... (2.2)

The obvious question is how to identify the end spaces of the scale:

HoolGTVA) = (\Hae  Hooo(G'/?) = Ha (2.3)

nez nez

By quadratic interpolation [13], one may build the continuous scale H;,0 <t < 1,
between H; and H, where H, = D(G~'/?), with norm ||€||; = ||G~"/2&||. Next,
defining H_; = ”H,X and iterating, one obtains the full continuous scale V7 :=
{H:,t € R}, a simple example of a PIP-space [2]. Then, of course, one can replace
Z by R in the definition (2.3) of the end spaces of the scale.
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3 Similar and Quasi-Similar Operators

Before proceeding to our main topic, we quote two easy properties. Let A be a linear
operator in the Hilbert space H, with domain D(A). Then, (i) if D(A) is dense in
H, it is also dense in H(G); (ii) if A is closed in H(G), it is also closed in H.

Now we introduce the central definitions.

Definition 3.1

(1) Let H and K be Hilbert spaces, A and B densely defined linear operators in
‘H, resp. K. A bounded operator T : H — K is called a bounded intertwining
operator for A and B if

(io)) T : D(A) — D(B);
(iop) BTE = TAE, V& € D(A).

If T is a bounded intertwining operator for A and B, then T* : K — H is a
bounded intertwining operator for B* and A*.

(2) A and B are similar, which is denoted A ~ B, if there exists a bounded
intertwining operator T for A and B with bounded inverse 7! : K — #H,
which is intertwining for B and A. In addition, A and B are metrically similar
if T is a metric operator.

(3) A and B are unitarily equivalent (A ~ B)if A~ Band T : H — K is unitary.
yeq y

Obviously, ~ and < are equivalence relations.
The following properties are immediate. Let A ~ B. Then:

(i) TD(A) = D(B).
(i1) A is closed iff B is closed.
(iii) A ~ Biff B¥ ~ A*.
(iv) A~ L exists iff B! exists; in that case, B~} ~ A~L.

In the sequel, we will examine to what extent the spectral properties of operators
behave under the similarity relation. In order to do that, it is worth recalling the basic
definitions, especially since we are dealing with closed, non-self-adjoint operators.

Given a closed operator A in 7, consider A — Al : D(A) — H and the resolvent
RA(\) := (A — AI)~L. Then one defines:

* The resolvent set p(A) := {» € C : A — Al is one-to-one and (A — AI)~!
is bounded}.

e The spectrum o (A) := C\ p(A).

* The point spectrum 0, (A) := {A € C: A — AI is not one-to-one}, that is, the set
of eigenvalues of A.

* The continuous spectrum o,(A) := {A € C: A — A[ is one-to-one and has dense
range, different from #}, hence (A — Al )_1 is densely defined, but unbounded.

e The residual spectrum o,(A) := {A € C : A — A[ is one-to-one, but its range is
not dense}, hence (A — A1)~! is not densely defined.
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With these definitions, the three sets o, (A), o.(A), 0, (A) are disjoint and
0(A) = 0p(A)Uac(A) Uor(A). @3.1)

We note also that 0, (A) = 0,(A*) = (A:re a,,(A*)}. Indeed, for any A € o,(A),
there exists 1 # 0 such that

0= ((A = ADE[n) = (EI(A* —XDn), Y& € D(A),

which implies A € op (A*). Also 0, (A) = @ if A is self-adjoint.

Note that here we follow Dunford—Schwartz [16], but other authors give a
different definition of the continuous spectrum, implying that it is no longer disjoint
from the point spectrum, for instance, Reed—Simon [22] or Schmiidgen [24]. This
alternative definition allows for eigenvalues embedded in the continuous spectrum,
a situation common in many physical situations.

The answer to the question raised above is given in the following proposition.

Proposition 3.2 Let A, B be closed operators such that A ~ B with the bounded
intertwining operator T. Then,

(i) p(A) = p(B).

(ii)) 0p(A) = 0,(B). Moreover if & € D(A) is an eigenvector of A corresponding
to the eigenvalue A, then T& is an eigenvector of B corresponding to the same
eigenvalue. Conversely, if n € D(B) is an eigenvector of B corresponding to
the eigenvalue A, then T ™1 is an eigenvector of A corresponding to the same
eigenvalue. Moreover, the multiplicity of A as eigenvalue of A is the same as
its multiplicity as eigenvalue of B.

(iii) 0.(A) = o.(B) and 6,(A) = o,(B).

(iv) If A is self-adjoint, then B has real spectrum and o,(B) = 0.

The property (iv) means that B is then a spectral operator of scalar type with real
spectrum, a notion introduced by Dunford [15].

In conclusion, similarity preserves the various parts of the spectra, but it does
not preserve self-adjointness. This means we are on the good track, since we are
seeking a form of similarity that transforms a non-self-adjoint operator into a self-
adjoint one.

However, the notion of similarity just defined is too strong in many situations. A
natural step is to drop the boundedness of 77!

Definition 3.3 We say that A is quasi-similar to B, and write A - B, if there exists
a bounded intertwining operator 7 for A and B which is invertible, with inverse
T~! densely defined (but not necessarily bounded).
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Even if 7! is bounded, A and B need not be similar, unless 7! is also an
intertwining operator. Indeed, 7! does not necessarily map D(B) into D(A),
unless of course if TD(A) = D(B). Note that one can always suppose that T is
a metric operator

Actually there is a great confusion in the literature about the terminology of
(quasi-)similarity. We refer to our paper [6] for a detailed discussion.

We proceed now to show the stability of the different parts of the spectrum under
the quasi-similarity relation —, following mostly [4] and [6].

Proposition 3.4 Let A and B be closed operators and assume that A = B, with the
bounded intertwining operator T. Then the following statements hold.

(i) 0p(A) € o,(B) and for every A € 0,(A) one has ma(A) < mp(r), where
ma (L), resp. mp (L), denotes the multiplicity of A as eigenvalue of the operator
A, resp. B.

(ii) or(B) C or(A).

(iii) If TD(A) = D(B), then 6,,(B) = 0,(A).

(iv) If T~ is bounded and T D(A) is a core for B, then 0p(B) C o (A).

(v) If T~' is everywhere defined and bounded, then p(A) \ op(B) C
p(B) and p(B)\o;(A) S p(A).

(vi) Assume that T~V is everywhere defined and bounded and T D(A) is a core for
B. Then

op(A) S 0p(B) S a(B) Sa(A).

The situation described in Proposition 3.4 (vi) is quite important for possible
applications. Even if the spectra of A and B may be different, it gives a certain
number of information on o (B) once o (A) is known. For instance, if A has a pure
point spectrum, then B is isospectral to A. More generally, if A is self-adjoint, then
any operator B quasi-similar to A by means of an intertwining operator T with
bounded inverse 7! has real spectrum.

We will illustrate the previous proposition by two examples, both taken from [4].
In the first one, A 4 B, A, B and T are all bounded, and the two spectra, which are
pure point, coincide.

Example 3.5 In H = L*(R, dx), take the operator Q of multiplication by x, on the
dense domain

D(Q) = {f e L*(R): / X2 f ()P dx < oo},
R

and define the two operators

* P, :=|p){gl, for g € L2(R), with [l¢]| = 1,
o Apf ={UT+ 0V fle)I +0H7 g, ¢ e D(Ay).
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Then

(1) Py - Ay with the bounded intertwining operator 7 = (I + 031
(ii) P, is everywhere defined and bounded, but the operator A, is closable iff
¢ € D(Q?).
(iii) If@ € D(Q?), Ay is bounded and everywhere defined, and 0 (Ay) = 0 (Py) =
{0, 1}.

In the second example, A and B are both unbounded. In that case, the two spectra
coincide as a whole, but not their individual parts. In particular, A has a nonempty
residual spectrum, whereas B does not.

Example 3.6 In H = LZ(R, dx), define the two operators

, 2x 12
c (AHx) = f'(x) — 1+xzf(x), f e D(A) = WH(R)

« (B)(x)=f'(x), feDB)=W?3R)
Then

(i) A - B with the bounded intertwining operator T = (I + 031
(i) 0(A) = o(B).
(iii) 0p(A) =0, 0,(A) = {0}, but 0 (B) = 0.(B) =iR.

It is easy to generalize the preceding analysis to the case of an unbounded
intertwining operator, but we have to adapt the definition.

Definition 3.7 Let A, B two densely defined linear operators on the Hilbert spaces
H, IC, respectively. A closed (densely defined) operator T : D(T) € H — K is
called an intertwining operator for A and B if

(iog) D(TA) = D(A) C D(T);
(io1) T :D(A) — D(B);
(iop) BTE =TAE, YVE € D(A).

The first part of condition (i0g) means that £ € D(A) implies A§ € D(T).

Then we say again that A is quasi-similar to B, A - B, if there exists a (possibly
unbounded) intertwining operator 7 for A and B which is invertible, with inverse
T~ densely defined. Note that A < B does not imply B* 4 A*, since (i0g) may
fail for B*. Furthermore, we say that A and B are mutually quasi-similar if we have
both A 4 B and B - A, which we denote by A 4 B. Clearly, -\ is an equivalence
relation and A 4 B implies A* - B*.

We add that quasi-similarity with an unbounded intertwining operator may occur
only under singular, even pathological, circumstances. For instance, one may note
that, if A - B with the intertwining operator 7 and the resolvent set p(A) is not
empty, then T is necessarily bounded.
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At this point, one may examine to what extent some parts of Proposition 3.4
survive when the intertwining operator 7 is no longer bounded, and also what
happens if A 4 B. We refer to [6] for a thorough analysis.

4 The Lattice Generated by a Single Metric Operator

Now we turn to the general case, where G and G ~! are both possibly unbounded.
Define #(Rg) as D(G'/?) equipped with the graph norm ”5”%?0 = |lE]> +

HGl/zf ||2 Then define H(G) as the completion of H(R¢) in the norm ||?;‘||2G =

HGl/zé ||2 It follows that H(Rg) = H N H(G), with the projective norm [2, Sec.
1.2.1].
Now, since D(G!/?) = Q(G), the form domain of G, we may write

&%, = (1 + G)&IE) = (RGEIE), €Il = (G&IE), with Rg =1+ G,

which justifies the notation H(Rg).
Next, the conjugate dual H(Rg)™ = ’H(REI), so that

H(RG) C H C H(RG) =H+HG™),

with the inductive norm [2, Sec. I.2.1]. Putting everything together, we get the lattice
shown in Fig. 1.

To give a concrete example, take G = x%in L?(R, dx), so that Rg = 1 + x2.
Then all the spaces in the diagram are weighted L? spaces, as shown in Fig. 2.

Actually one can go further, following a construction made in [1]. If G is
unbounded, R¢ = 1+ G > 1 and R(_;1 bounded, so that we have the triplet
H(RG) € H C H(RZY.

Iterating as before, we get the infinite Hilbert scale built on powers of RIG/ 2,

H, = D(RY*), n e N,and H_, = M-

.CHy CHI  CHCH CHo2C ... 4.1)
Fig. 1 The lattice of Hilbert H(G™Y)

space s generated by a metric " ~—
operator H(Rg-1) H(Rgl)

\ /

H

/ \
H(Re) H(RGL)

\ /
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LR,z 2dw)
/ \
L*(R, (1 +27%)dx) L3R, (1 + 2%~ 1) da)
e pEa T
/ ( tl ) \
L2(R, (1 + 2?)dx) LR, (1 +2~2%) "1 da)
\ /
L2(R, 22 dz)

Fig. 2 The lattice of Hilbert space s generated by G = x2

Taking H = L*(R, dx), we find familiar examples, namely,

o Gy = (1+x%2 s0that Hso (G;ﬂ) consists of fast decreasing L? functions.
* Gp,=(1- d?/dx*)1/? = FG,F—1, so that the scale consists of the Sobolev
spaces W™2(R).

An interesting variant of the last example is the LHS of analytic functions
described in [2, Sec. 4.6.3], in which the order parameter is the opening angle of a
sector, instead of the rate of growth at infinity. This LHS simplifies considerably the
formulation of scattering theory, in the form presented by van Winter, as explained
in [2, Sec. 7.2]. Let us give some details.

Define G(a, b) (—w < a < b < m) as the space of all functions f(z), z = re'?,
which are analytic in the open sector S, ;, = {z = re'?, a < ¢ < b}, and such
that the integral fooo |f (re'?) |2 dr < oo is uniformly bounded in ¢ € (a, b). It turns
out that the family {G(a, b), =5 < a < b < %} may be identified, via a Mellin
transform, with a part of an LHS of weighted L? spaces. First, for —% <a < %,
define the Hilbert space

+o0
L*a) = {f :/ e | F(x)> dx < 00} = L(ry), withra(t) = e~ .

4.2)
Then consider the lattice generated by the family Lz(a), L2(0) = L% and Lz(—a),
following the construction described previously. The infimum is Lz(a) A Lz(b) =
L%*(a)NL?(b) = L?(a Ab) and the supremum is L2(a) v L2(b) = L*(a)+ L?*(b) =
Lz(a Vv b), with ryap(x) = min(r,(x), rp(x)) and rgvp(x) = max(rg(x), rp(x)).
As usual, these norms are equivalent to the projective, resp. inductive, norms. For
instance, the following two norms are equivalent

—+0o0 —+00
T / e F P dy / (e + &) f () da.

(ran—a) —
—0oQ

Next, the discrete lattice of nine spaces may be converted into a continuous one
by interpolation. This yields {L?(a), —% < a < %}. Thus we obtain an LHS,
with extreme spaces V¥ = L2(—%) N Lz(%), V = LZ(—%) + LZ(%), which are
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...\
/

=
>
=
h
M
S|
<
=

/e

< LA(=bAb) -

\:/
LN

Fig. 3 The van Winter LHS (from [2])

themselves Hilbert space s. In addition, all spaces are obtained at the first generation,
i.e., they are all of the form L%(c Ad) or L*(c Vv d).

In the case 0 < a < b, one gets the picture shown in Fig. 3. Duality corresponds
to symmetry with respect to the center (i.e., L?):a Ab <= —bV —a.

5 Quasi-Hermitian Operators

According to Dieudonné [14], a bounded operator A is called quasi-Hermitian if
there exists a metric operator G such that GA = A*G. However, this definition is
too restrictive for applications, hence we generalize it in order to cover unbounded
operators.

Definition 5.1 A closed operator A is called quasi-Hermitian if there exists a
metric operator G such that D(A) C D(G) and

(Ag|Gn) = (G&|An), &.ne D(A) G.D
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Let us consider first a bounded quasi-Hermitian operator A. If in addition, the
metric operator G is bounded with bounded inverse, then (5.1) implies immediately
that G A is self-adjoint in . Actually, there is more.

Proposition 5.2 Let A be bounded. Then the following statements are equivalent.

(i) A is quasi-Hermitian.
(ii) There exists a bounded metric operator G, with bounded inverse, such that
GA (= A*G) is self-adjoint.
(iii) A is metrically similar to a self-adjoint operator K.

We turn now to unbounded quasi-Hermitian operators. The following results are
easy.

Proposition 5.3 Let A be an unbounded quasi-Hermitian operator and G a
bounded metric operator. Then (i) A is quasi-Hermitian iff G A is symmetric in H,;
(ii) If A is self-adjoint in H(G), then G A is symmetric in H. If G~ is also bounded,
A is self-adjoint in H(G) iff GA is self-adjoint in H.

Now we turn the problem around. Namely, given the closed densely defined
operator A, we seek whether there is a metric operator G that makes A quasi-
Hermitian and self-adjoint in H(G). We first obtain a metric operator with bounded
inverse.

Proposition 5.4 Let A be closed and densely defined. Then the following state-
ments are equivalent:

(i) There exists a bounded metric operator G, with bounded inverse, such that A

is self-adjoint in H(G).

(ii) There exists a bounded metric operator G, with bounded inverse, such that
GA = A*G, i.e., A is similar to its adjoint A*, with intertwining operator G.

(iii) There exists a bounded metric operator G, with bounded inverse, such that
G'2AG~% is self-adjoint.

(iv) A is a spectral operator of scalar type with real spectrum, ie., A =
fR A dX (L), where {X (L)} is a spectral family (not necessarily self-adjoint).

Instead of requiring that A be similar to A*, we may ask that they be only quasi-
similar. The price to pay is that now G~! is no longer bounded and, therefore, the
equivalences stated above are no longer true. Instead Proposition 5.4 is replaced by
the following weaker result [5].

Proposition 5.5 Let A be closed and densely defined. Consider the statements

(i) There exists a bounded metric operator G such that GD(A) = D(A%),
A*GE = GAE, for every & € D(A), in particular, A is quasi-similar to its
adjoint A*, with intertwining operator G.

(ii) There exists a bounded metric operator G, such that GV2AG~1/? is self-
adjoint.

(iii) There exists a bounded metric operator G such that A is self-adjoint in H(G);
then we say that A is quasi-self-adjoint.
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(iv) There exists a bounded metric operator G such that GD(A) = D(G~'A*),
A*GE = GAE, for every &€ € D(A), in particular, A is quasi-similar to its
adjoint A*, with intertwining operator G.

Then, the following implications hold:

@) = @i) = (ii) = @(v).
If the range R(A®) of A* is contained in D(G™"), then the four conditions (i)-(iv)
are equivalent.

When G is unbounded, we say that A is strictly quasi-Hermitian if it is quasi-
Hermitian, in the sense of Definition 5.1, and AD(A) C D(G) or, equivalently,
D(GA) = D(A). Therefore, A is strictly quasi-Hermitian iff A — A*,

More results may be obtained if one uses the PIP-space formalism, as we shall
see below.

6 The LHS Generated by Metric Operators

Denote by M (H) the set of all metric operators and by M, () the set of bounded
ones. There is a natural order on M (H)

G| X Gy <= 3Ty > Osuchthat G, < yG,
<= H(G1) C H(G3), where the embedding is continuous and has a
dense range.
As a consequence, we have
G,' <G' <= Gi <G, if G1,G2 € M(H)
G'<I1=<G, VG e MyH)

Thus, given X, Y € M(H),onehas X <Y < H(X) — H(Y). We will show
that the spaces {H(X) : X € M(H)} constitute a lattice of Hilbert spaces (LHS).

Let O € M(H) be a family of metric operators, containing / and at least one
unbounded element, and assume that

D:= () DG
GeO

is a dense subspace of H. Since every operator G € O is self-adjoint and invertible,
one can define on D, the graph topology t» by means of the norms

EeDm |GY%|, GeO.
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Let D> denote the conjugate dual of D[t»], with strong dual topology té. Then the
triplet

Dlto] = H = D*[t}]
is the Rigged Hilbert Space associated with O. We will show that O generates a
canonical lattice of Hilbert spaces (LHS) interpolating between D and D*.
On the family {#(X) : X € O~} define the lattice operations as
HXAY) =HX)NH),
HX VY) :=HX)+H),

equipped, respectively, with the projective and the inductive norms, namely,

IENZ Ay = IENL + IEN3,

€150y = ,dnt (Inl 1215 ) 0 e HOO. £ € HO).

The corresponding operators read as

XAY:=X+7Y,
XvYy: =X 14y Ht.

Here 4 stands for the form sum and X,Y € O~! : given two positive operators,
T := T + T is the positive operator associated with the quadratic form t = t; + tp,
where t1, tp are the quadratic forms of 71, 75, respectively [18, §VI.2.5]. Note that
both X VY and X A Y are inverses of a metric operator, but they need not belong to
O~!. In particular, for O = M(H), the corresponding family M (#)~! is a lattice
by itself, but the domain D usually fails to be dense.

Define R = {G*'/2, G € O} and the domain Dy := Nxer D(X). Let = be
the minimal set of self-adjoint operators containing @ U O, stable under inversion
and form sums, such that Dy, is dense in H(Z), forevery Z € X.

Then O generates a lattice of Hilbert space s Jyx = {H(X) : X € X}
and a PIP-space Vyx with central Hilbert space H = H(I). The total space is
V = 3 ges H(G) (algebraic inductive limit, in general) and the “smallest” space
is V¥ = Dp. The compatibility and the partial inner product read, respectively, as

g#n < 3G € T suchthat & € H(G), n € H(G™),

Ens = (GV2E1G™ ).

For simplicity, we write (£|n)s = (£|n).
For instance, for O = {I, G}, the lattice X consists of the nine operators shown
in Fig. 4.
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Fig. 4 The lattice X generated by the metric operator G

7 (Quasi-)Similarity for PIP-Space Operators

7.1 General PIP-Space Operators

Given the PIP-space Vyx, an operator A on Vy is a map from a subset D(A) C V
into V, such that

i) DA) = UXed(A) H(X), where d(A) is a nonempty subset of 2;
(ii) Forevery X € d(A), there exists Y € X such that the restriction of A to H(X)
is a continuous linear map into H(Y) (we denote this restriction by Ayy);
(iii) A has no proper extension satisfying (i) and (ii).

We denote by Op(Vy) the set of all operators on Vyx. The continuous linear operator
Ayyx : H(X) — H(Y) is called a representative of A.

The properties of the operator A are encoded in the set j(A) of couples (X, Y) €
¥ x ¥ such that A : H(X) — H(Y), continuously. Thus the operator A may be
identified with the collection of its representatives, A >~ {Ayy : (X, Y) € j(A)}.
This is a coherent family, that is, if H(W) C H(X) and H(Y) C H(Z), then
one has Azw = EzyAyxExw (E.. =~ identity). More generally, (X, Y) € j(A) if
Y!/2AX~1/2 is bounded in H.

Every operator has an adjoint A* defined as follows: (X, Y) € j(A) implies
¥~ x 1 ej(A*) and

(A*nl§) = (m|Ag), fors € H(X),n e H(Y ™).

In particular, (X, X) € j(A) implies (X!, X~1) € j(A%).

An operator A is symmetric if A = A*. Therefore, (X, X) € j(A) implies
(X~', X~1) € j(A). Then, by interpolation, (I, I) € j(A), that is, A has a bounded
representative Ay; : H — H.

We will now examine the quasi-similarity properties of PIP-space operators.

(1) Let first (G, G) € j(A), for some G € M(H). Then the operator B =
G2 A;6G 12 is bounded on H and Agg - B.
(2) Next, let (G, G) € j(A), with G bounded and G~! unbounded, so that

H(G™Y c H C H(G).
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Consider the restriction A of Agg to H and assume that D(A) = {§ € H :
AE € H} is dense in . Then G'/?2 : D(A) — D(B) and BG'/?p =
G'?An, Yn € D(A), i.e. A 4 B, where the two operators act in .

Now we have BG'/2p = G'2An, VYn € H(G) and G'/? : H(G) — H
is a unitary operator. Therefore, A and B are unitarily equivalent (but acting in
different Hilbert spaces).

(3) Let finally (G, G) € j(A) with G unbounded and G~ bounded, so that

H(G) C H c H(G™Y.

Then A : H(G) — H(G) is a densely defined operator in . Since B =
G'/2AG6G1/? is bounded and everywhere defined on 7{, one has G~!/?B¢ =
AgG™1/%€, YE € H,ie., B - Agg. However, by (1), Agg - B, hence we
have Agg -+ B. In addition Agg ~ B, since G¥/2 are unitary between H
and H(G).

7.2 The Case of Symmetric PIP-Space Operators

If A € Op(Vy) is symmetric, A = A*, there is a possibility of self-adjoint
restrictions to H, that is, candidates for quantum observables.

However, if A = A%, then (G, G) € j(A) iff (G™!, G™!) € j(A), which implies
(I, 1) € j(A). Thus, every symmetric operator A € Op(Vy) such that (G, G) €
j(A), with G € M(H), has a bounded restriction Aj; to H.

Therefore, we conclude that the assumption (G, G) € j(A) is too strong for
applications ! Thus we will assume instead that (G™', G) € j(A), where G is
bounded with unbounded inverse, so that

H(G™Y c H Cc H(G).

In that case, one can apply the KLMN theorem,' namely,

Given a symmetric operator A = A, assume there is a metric operator G €
M (H) with an unbounded inverse, for which there exists a A € R such that
A — Al has a boundedly invertible representative (A — Al)gg-1 : HGH —
H(G). Then A;;-1 has a unique restriction to a self-adjoint operator A in the
Hilbert space H, with dense domain D(A) = {§ € H : A& € H}. In addition,
A€ p(A).

If there is no bounded G as before, i.e. (G’l, G) € j(A), one can still use
the KLMN theorem, but in the Hilbert scale Vg built on the powers of G2 or
(Re)™'/2.

TKLMN stands for Kato, Lax, Lions, Milgram, Nelson.
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Fig. 5 The semi-similarity K1y

scheme ,T/

Let Vg = {H,, n € Z} be the Hilbert scale built on the powers of the operator
G*'/2 or (Rg)~'/?, depending on the (un)boundedness of G*! € M(#) and
let A = A* be a symmetric operator in V.

(i) Assume there is a A € R such that A — Al has a boundedly invertible
representative (A — M)y, : Hm — Hp, with H,, C H,. Then Ay, has
a unique restriction to a self-adjoint operator A in the Hilbert space H, with
dense domain D(A) = {&£ € H : A§ € H]}. In addition, A € p(A).

(ii) If the natural embedding H,, — H, is compact, the operator A has a purely
point spectrum of finite multiplicity, thus o (A) = 0,(A), ma(r;) < oo for
every A; € 0,(A) and o.(A) = 0.

Note, however, that there is so far no known (quasi-)similarity relation between
Agg-1 or A and another operator! On the contrary, under the previous assumption
A H(G™YH - H(G), B = G/2A;5-1G'/? is bounded on H, but Ag;-1 # B.
Indeed, (i0;) imposes T = G~1/2, hence unbounded, but then conditions (i0g) and
(i02) cannot be satisfied.

8 Semi-Similarity of PIP-Space Operators

So far we have considered only the case of one metric operator G in relation to A.
Assume now we take two different metric operators G1, G, € M(H). What can be
said concerning A if it maps H(G1) into H(G3)?

One possibility is to introduce, following [4], a notion slightly more general than
quasi-similarity, called semi-similarity.

Definition 8.1 Let 7, K1, and K, be three Hilbert spaces, A a closed, densely
defined operator from K; to Ko, B a closed, densely defined operator on . Then
A is said to be semi-similar to B, which we denote by A —H B, if there exist two
bounded operators 7 : K1 — H and S : K — H such that (see Fig. 5):

(i) T:D(A) - D(B);

(i) BTE = SAE, V& € D(A).

The pair (T, S) is called an intertwining couple.

Of course, if 1 = K, and S = T, we recover the notion of quasi-similarity and
A - B (with a bounded intertwining operator).

Assume there exist two bounded metric operators Gi, G> such that A
H(G1) — H(G3) continuously. Then By := Gé/ZAGZGIGl_l/2 has a bounded
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extension B to H (its closure) and Ag,g, —H B, with respect to the intertwining
couple T = G}, 5 = G)/*.

Take now A = A symmetric. Then A : H(G;) — H(G;) implies A :
H(G;") — H(GY). Assume that G| < Ga, that is, H(G1) C H(G2). Then

we have
H(G,") € H(GT") € H C H(G1) C H(Gy).

It follows that the KLMN theorem applies. Assume indeed there exists A € R such
that A — A7 has an invertible representative (A — M)Gqu : H(G;l) — H(G»?).
2

Then A G>G7! has a unique restriction to a self-adjoint operator A in H, hence
2
A -1 H Band A +H B. A question remains open, namely, A is self-adjoint,
2V

but is the spectrum of B real?
In conclusion, there are three cases: if A : H(G1) — H(G»), then

(i) G is unbounded and G is bounded: then
H(G1) C H C H(G),

and A maps the small space into the large one, thus the KLMN theorem applies.
(i) G and G, are both unbounded, with H(G1) C H(G2); then the KLMN
theorem applies.
(iii) G is bounded and G is unbounded: then

H(G2) € H C H(G1) and H(GTH) € H C H(GH,

so that, in both cases, A maps the large space into the small one; hence, the
KLMN theorem does not apply.

9 Pseudo-Hermitian Hamiltonians

Non-self-adjoint Hamiltonians appear in Pseudo-Hermitian quantum mechanics
[19, 20]. In general, they are P77 -symmetric operators, that is, invariant under the
joint action of space reflection () and complex conjugation (7). Typical examples
are H = p2 +ix3and H = p2 — x*, which are both PT -symmetric, but non-self-
adjoint, and have both a purely point spectrum, real and positive.

Now, the usual assumption is that H is pseudo-Hermitian in the sense of
Dieudonné [14], that is, there exists an (unbounded) metric operator G satisfying
the relation H*G = GH.
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Assume instead that H is pseudo-Hermitian, that is, D(H) C D(G) and
(HE§|Gn) = (G§[Hn), V&, neDH).

Then, if G is bounded, one gets H -4 H* and GY2HG 12 s self-adjoint. If G is
unbounded and H is strictly quasi-Hermitian, then H 4 H * If, in addition, G !
is bounded, then G"'H*Gn = Hn, Vn € D(H), which is a restrictive form of
similarity.

Finally, assume that H is a quasi-Hermitian operator which possesses a (large)
set of vectors, ¢ € Dg (H), analytic in the norm |- || and contained in D(G) [21],
that is,

]

Hn
th" < 00, forsomer € R.
n!
n=0

Thus, D2(H) C D(H) C D(G) C D(G'/?) C H.

Under this assumption, we can proceed to the construction of the physical
system, following [4, Sec.6]. Define H¢ as the completion of Dg (H) in the norm
I-Ilg- This is a closed subspace of H(G) and one has

(@IHY)G = (HPlY)g, V¢, ¥ € DG(H).

Thus H is a densely defined symmetric operator in H ¢, with a dense set of analytic
vectors. Therefore, H essentially self-adjoint, according to Nelson’s theorem [21].

Then the closure H of H is self-adjoint in #g. The pair (Hg, H) may be
interpreted as the physical quantum system.

Next, Wp = G'/2 FDg (H) is isometric from D¢ (H) into H, hence it extends
to an isometry W = Wp : Hg — H. The range of W is a closed subspace of 7,
denoted by Hphys, and the operator W is unitary from Hg to Hpnys. Therefore, the
operator h = W H W~ is self-adjoint in Hphys. This operator £ is interpreted as
the genuine Hamiltonian of the system, acting in the physical Hilbert space Hphys.

The situation becomes simpler if Dg(H ) is dense in . Then, indeed,
W(DE(H)) is also dense, Hg = H(G), Hphys = H and W = G'/? is unitary
from H(G) onto H.

Now, every eigenvector of an operator is automatically analytic, hence this
construction generalizes that of [20]. This applies, for instance, to the example given
there, namely, the P77 -symmetric operator H = %( p—ia)?+ %a)zx2 inH = LX(R),
for any o € R, which has an orthonormal basis of eigenvectors.

A beautiful example of the situation just analyzed has been given recently by
Samsonov [23], namely, the second derivative on the positive half-line, with special
boundary conditions at the origin (this example stems from Schwartz [26]).
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Beyond Frames: Semi-frames m)
and Reproducing Pairs i

Jean-Pierre Antoine and Camillo Trapani

Abstract Frames are nowadays a standard tool in many areas of mathematics,
physics, and engineering. However, there are situations where it is difficult, even
impossible, to design an appropriate frame. Thus there is room for generalizations,
obtained by relaxing the constraints. A first case is that of semi-frames, in which one
frame bound only is satisfied. Accordingly, one has to distinguish between upper
and lower semi-frames. We will summarize this construction. Even more, one may
get rid of both bounds, but then one needs two basic functions and one is led to
the notion of reproducing pair. It turns out that every reproducing pair generates
two Hilbert spaces, conjugate dual of each other. We will discuss in detail their
construction and provide a number of examples, both discrete and continuous. Next,
we notice that, by their very definition, the natural environment of a reproducing pair
is a partial inner product space (PIP-space) with an L? central Hilbert space. A first
possibility is to work in a rigged Hilbert space. Then, after describing the general
construction, we will discuss two characteristic examples, namely, we take for the
partial inner product space a Hilbert scale or a lattice of L? spaces.
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1 Introduction

Representing functions in terms of simple ones, preferably with a small number
of them, is a recurrent problem in analysis. It is particularly acute in signal and
image processing, where transmission imposes severe constraints. Such signals are
usually taken as square integrable functions on some manifold, hence they constitute
a Hilbert space.

More generally, given a separable Hilbert space H, one seeks to expand an
arbitrary element f € H in a sequence of simple, basic elements (atoms) ¥ =
(Y), k € T, with I a countable index set:

f=zckl/fk, (1.1

kel

where the sum converges in an adequate fashion (e.g., in norm or unconditionally)
and the coefficients c; are (preferably) unique and easy to compute. There are
several possibilities for obtaining that result. Namely, we can require that W be:

(1) an orthonormal basis: the coefficients are unique, namely, c; = (Y| f), the
convergence is unconditional;
(i) a Riesz basis, i.e., ¥ = Ver, where (ex) is an orthonormal basis and

V is bounded bijective operator; the coefficients are unique, namely, ¢, =
(px| f), where (¢r) is a unique Riesz basis dual to (Vey); the convergence is
unconditional.

These two notions solve the problem, but they are very rigid and often not very
manageable, leading mostly to infinite expansions. Thus frames were introduced
for ensuring a better flexibility, originally in 1952 by Duffin and Schaeffer [19]
in the context of nonharmonic analysis. The notion was revived by Daubechies,
Grossmann, and Meyer [18] in the early stages of wavelet theory and then became a
very popular topic, in particular in Gabor and wavelet analysis [14, 16, 17, 24]. The
reason is that a good frame in a Hilbert space is almost as good as an orthonormal
basis for expanding arbitrary elements (albeit non-uniquely) and is often easier to
construct. In order to put the present work in perspective, we recall that a sequence
W = () is a frame for a Hilbert space H if there exist constants 0 < m<M < oo
(the frame bounds) such that

mIfIZ <Y Wl P <MIFI2 Y f e H. (12)

kel

Actually frames are most often considered in the discrete case, for instance in
signal processing [16]. However, continuous frames have also been studied and
offer interesting mathematical problems. They have been introduced originally by
Ali, Gazeau, and one of us [1, 2] and also, independently, by Kaiser [25]. Since
then, several papers dealt with various aspects of the concept, see, for instance,
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[13,21,22] or [27]. The next step towards numerical applications will be, of course,
discretization, but this is not our purpose in this chapter.

However, there may occur situations where it is impossible to satisfy both frame
bounds at the same time. Therefore, several generalizations of frames have been
introduced. Semi-frames [4, 5], for example, are obtained when functions only
satisfy one of the two frame bounds. It turns out that a large portion of frame theory
can be extended to this larger framework, in particular the notion of duality.

More recently, a new generalization of frames was introduced by Balazs and
Speckbacher [30], namely, reproducing pairs. Here, given a measure space (X, u),
one considers a couple of weakly measurable functions (v, ¢), instead of a single
mapping, and one studies the correlation between the two (a precise definition is
given below). This definition also includes the original definition of a continuous
frame [1, 2] to which it reduces when ¥y = ¢. The increase of freedom in choosing
the mappings ¥ and ¢, however, leads to the problem of characterizing the range of
the analysis operators, which in general need no more be contained in L2(X , dw),
as in the frame case. Therefore, it is natural to extend the theory to the case where
the weakly measurable functions take their values in a partial inner product space
(PIP-space), for instance, a rigged Hilbert space or a Hilbert scale.

The paper is organized as follows. In Sect. 2, we review the notions of frames and
semi-frames and recall their salient properties. In Sect. 3 we introduce reproducing
pairs, in particular their duality properties. Then, in Sect. 4, we discuss briefly the
existence and uniqueness of reproducing partners. In Sect. 6, we motivate the link
between reproducing pairs and PIP-spaces, first a Rigged Hilbert space (RHS) in
Sect. 7, then a general PIP-space, more precisely a lattice of Banach spaces (LBS) or
a lattice of Hilbert spaces (LHS), in Sect. 8. Finally, in Sects. 9 and 10, respectively,
we examine two particular cases, namely, a Hilbert scale and a lattice of L? spaces.

2 Preliminaries: Frames and Semi-frames

2.1 Frames

Before proceeding, we list our definitions and conventions. The framework is a
(separable) Hilbert space H, with the inner product (-|-) linear in the first factor.
Given an operator A on H, we denote its domain by D(A), its range by Ran (A) and
its kernel by Ker (A). G L(H) denotes the set of all invertible bounded operators on
‘H with bounded inverse. Throughout the paper, we will consider weakly measurable
functions ¥ : X — H, where (X, u) is a locally compact space with a Radon
measure [, that is, (f|{,) is u-measurable for every f € H.

The weakly measurable function v is a continuous frame if there exist constants
m > 0 and M < oo (the frame bounds) such that

m||f||2</X (1)) dux) <MIFIP,Y f € A 2.1)



24 J.-P. Antoine and C. Trapani

Given the continuous frame v, the analysis operator Cy, : H — L3(X, dp) is
defined! as

(Cy Hx) = (flYx), [ eH, (2.2)

and the corresponding synthesis operator Cf/j : L2(X, du) — H as (the integral
being understood in the weak sense, as usual)

Cy€ = fx E() ¥ du(x), for & € L*(X, du). (2.3)

We set Sy := €y Cy, e,

(fISy f) = /X (1) P dpa(x). (2.4)

Thus the so-called frame or resolution operator Sy is self-adjoint, invertible,
bounded with bounded inverse S;l, thatis, Sy € GL(H).

In particular, if X is a discrete set with u being a counting measure, we recover
the standard definition (1.2) of a (discrete) frame [14, 16, 19].

An important concept in frame theory is that of duality. Given a frame W = {y, },
one says that a frame ® = {¢,} is dual to the frame {1/, } if one has

(flg) = fX(flqﬁx) (Wxlg) du(x), V f.g € H. (2.5)

Then W is dual to ® as well. The dual of a given frame W is not unique in general,
but one of them is distinguished, namely, the canonical dual ¥, := S™!v,.

2.2 Semi-frames

In practice, there are situations where the notion of frame is too restrictive, in the
sense that one cannot satisfy both frame bounds simultaneously. Thus there is room
for two natural generalizations, namely, we say that a family W is an upper (resp.
lower) semi-frame, if

(i) Wistotalin H;
(i) W satisfies the upper (resp. lower) frame inequality in (2.1).

Note that the lower frame inequality automatically implies that the family is total,
i.e., (ii) = (i) for a lower semi-frame.

TAs usual, we identify a function f with its residue class in L2(X, dp).
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Let first W be a (continuous) upper semi-frame, that is, there exists a constant
0 < M < oo such that

0 </X|(f|1/fx>|2 du)SMIfI?, YV f € H, [ #0. (2.6)

In this case, W is a total set in H, the operators Cy, and Sy are bounded, Sy is
injective and self-adjoint. Therefore Ran (Sy ) is dense in H and Sy !is also self-

adjoint. Thus, if W is an upper semi-frame and not a frame, Sy, is bounded and Slzl
is unbounded, as follows immediately from (2.6).

Note that, if a family W verifies the upper frame bound only, the map x
Yy is often called a Bessel mapping. More precisely, Bessel maps are those for
which f x [ 1) 12du(x) < oo. By a standard argument based on the closed graph
theorem, one gets the inequality on the right of (2.6).

We notice that an upper semi-frame W is a frame if and only if there exists another
upper semi-frame ® which is dual to W, in the sense of (2.5) [22].

Next, we say that a family ® = {¢,} is a lower semi-frame if it satisfies the lower
frame condition, that is, there exists a constant m > 0 such that

mlf|? < fX (el )P dux), ¥ f e 2. @.7)

Clearly, (2.7) implies that the family & is total in .

Following the terminology of Young [34] in the discrete case, we may call
moment space of a measurable function v the range of its analysis operator, Cy, (H).
Then one may say that a measurable function ¥ is Bessel or an upper semi-frame if
its moment space is contained in L2(X , du). On the contrary, a measurable function
¢ is a lower semi-frame if its moment space contains L2(X, du).

In the lower case, the definition of Sy must be changed, since Cy need not be
densely defined, so that C;‘; may not be well-defined. Instead, following [4, Sec.2]
one defines the analysis operator (2.2) on the domain

D(Cy) = {f €t : /X (F162) P duu(x) < oo),

which need not be dense. As for the synthesis operator, we put

DyF =/ F(x) ¢y du(x), F e L*(X, dw), (2.8)
X

on the domain of all elements F for which the integral in (2.8) converges weakly in
‘H. Defining Sy := Dy Cy, it is shown in [4, Sec.2] that Sy is unbounded and S;l is
bounded.

With these definitions, we obtain a nice duality property between upper and
lower semi-frames. In the discrete case, the role of upper, resp. lower semi-frame, is
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played by Bessel, resp. Riesz-Fischer sequences [34]. A Riesz-Fischer sequence is a
sequence for which, for every sequence {a,} € €2, there is a solution of the equation
(f¢n) = a,. One knows that every total Riesz-Fischer sequence satisfies the lower
frame condition, which is equivalent to the existence of a Bessel sequence dual to it
[15]. The same result holds here.

Proposition 2.1

(i) Let ¥ = {y,} be an upper semi-frame, with upper frame bound M and let
® = {¢y} be a total family dual to V. Then ® is a lower semi-frame, with
lower frame bound M~ 1.

(ii) Conversely, if ® = {¢,} is a lower semi-frame, there exists an upper semi-frame
U = {Y,} dual to D, that is, one has, in the weak sense,

f=/x(f|¢x>1ﬂx du(x), Vf e D(Co).

A proof may be found in [4, Lemma 2.5 and Proposition 2.6]. However, the
latter is slightly incomplete. Here is a corrected proof (M. Speckbacher, private
communication).

Proof of (ii) The ‘if” part is Lemma 2.5 of [4]. Let ® be a lower semi-frame. Then
Ran (Cy) is a closed subspace of L2(X, dp), in virtue of the lower frame bound
condition, and it is a reproducing kernel Hilbert space (RKHS), since one has, for
F =Cyf € Ran(Cy),

IF()| = Co fFOOISIFN gl <YM sl |Co £], = Cx IF N2,

where m is the lower frame bound of @, i.e., the evaluation functional is bounded.
Let P be the orthogonal projection on Ran (Cy) and let {e,},cn be an arbitrary
orthonormal basis of L2(X, du).

Define a linear operator V : L*(X, du) — H by V = Cdjl on Ran (Cy),
by V = 0 on Ran (C¢)L and extending by linearity. Then V is bounded, since
C;l :Ran (Cy) — H is bounded. Then, for all f € D(Cy), g € H, we have

(f18) = (VCyflg) = (CofIV*g)a = (Co FIV*(D _(glenden))a

neN

= (Co f1D_(glen)V¥en)r = (Co £ _(8len) PV¥en)2 = (Cy fICy )2,
neN neN

where we have put ¥, := ZneN e, (PV*e,)(x). It remains to show that ¥, is well
defined for every x € X. This is the case if and only if

D IPVFe) ) < o0, Vx € X.
neN
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But this follows from the fact that { P V*¢, },en is a Bessel sequence in the RKHS
Ran (Cy). One has indeed, for any F' € Ran (Cyp),

Y UFIPV*en)a* =Y [(VPFleaal* = [VFI?<CIIF|3.
neN neN

since V is bounded and PF = F. (I
In the same paper [4], concrete examples are presented, namely an upper semi-
frame of affine coherent states and a lower semi-frame of wavelets on the 2-sphere.
We will come back to these examples in Sect. 5.2.
In conclusion, if two semi-frames are in duality, either they are both frames, or
else at least one of them is a lower semi-frame.

3 Reproducing Pairs

Quite recently, a new generalization of frames was introduced by Balazs and
Speckbacher [30], namely, reproducing pairs. Here, given a measure space (X, u),
one considers a couple of weakly measurable functions (v, ¢), instead of a
single mapping. The advantage is that no further conditions are imposed on these
functions, which results in an increased flexibility.

More precisely, the couple of weakly measurable functions (¢, ¢) is called a
reproducing pair if [12]

(a) The sesquilinear form

Qyo(f.8) = f){(fllﬁx)(dbclg) dpe(x) (3.1

is well-defined and bounded on H x H, that is, |Qy ¢ (f, &) I<c | fl lIgll, for
some ¢ > 0.
(b) The corresponding bounded (resolution) operator Sy 4 belongs to GL(H).

Under these hypotheses, one has

Sy f = /)((fl%)% du(x), VY f € H, (3.2)

the integral on the r.h.s. being defined in weak sense. If ¥ = ¢, we recover the
notion of continuous frame, as introduced in [1, 2], so that we have indeed a genuine
generalization of the latter.

Notice that Sy ¢ is in general neither positive nor self-adjoint, since S , = S¢.y .

However, if (¢, ¢) is a reproducing pair, then (i, S;,]ﬂ’) is also a reproducing pair,
for which the corresponding resolution operator is the identity, that is, ¥ and ¢ are
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in duality. Therefore, there is no restriction of generality to assume that Sy y = 1
[30]. The worst that can happen is to replace some norms by equivalent ones.

3.1 The Hilbert Spaces Generated by a Reproducing Pair

It has been shown in [12] that each weakly measurable function ¢ generates an
intrinsic pre-Hilbert space Vy (X, ) and, moreover, a reproducing pair (¥, ¢)
generates two Hilbert spaces, Vy (X, u) and Vi (X, n), conjugate dual of each
other with respect to the L2(X , ) inner product. Let us sketch that construction,
following closely [12]. Further generalizations will follow.

Given a weakly measurable function ¢, let us denote by Vy (X, 1) the space of all
measurable functions £ : X — C such that the integral f x E(xX){@xlg) du(x) exists
for every g € H (in the sense that £(¢.|g) € L' (X, du)) and defines a bounded
conjugate linear functional on H, i.e., 3 ¢ > 0 such that

‘/XS(X)(%IgNM(X) <cligl, Vg e H. (3.3)

Clearly, if (¢, ¢) is a reproducing pair, all functions £(x) = (f|y,) belong to

Vo (X, ).
By the Riesz lemma, we can define a linear map Ty : Vy(X, u) — H by the
following weak relation

(TyElg) = fx E()(sg) du(x), VE € Vp(X. ). g € H. (3.4)

Next, we define the vector space
Vi (X, 1) = Vy(X, w)/Ker Ty

and equip it with the norm

/ £C0) (xlg) du ()| = (3.5)

[1£1g ], = sup

el <1 lell<1

where we have put [£]y = & + Ker Ty for & € Vy(X, ). Clearly, Vg (X, ) is
a normed space. However, the norm ||-||4 is in fact Hilbertian, that is, it derives
from an inner product, as can be seen as follows. First, it turns out that the map
’7?4, s Ve(X, w) — H, ’T;[S]d, := Ty& is a well-defined isometry of V4 (X, u) into
‘H. Next, one may define on V (X, () an inner product by setting

([E161 g (9) = (TylE1 | Tplnly). [Elg. Inlp€ Vi (X. o).
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and one shows that the norm defined by (-|-)(¢) coincides with the norm || - || defined
in (3.5). One has indeed

[€16]l gy = 1Tol€1s| = [ Ts ]| = sup |(Toglo)| = [1£1s]],-

lell<1

Thus we may state:

Proposition 3.1 Let ¢ be a weakly measurable function. Then Vi (X, ) is a pre-
Hilbert space with respect to the norm ||-|l4 and the map T¢ Vo(X, ) — H,

T¢[$]¢ = Ty is a well-defined isometry of Vi (X, ) into H.

Let us denote by Vy (X, u)* the Hilbert dual space of Vi3 (X, u), that is, the set of
continuous linear functionals on V (X, w). The norm ||- || ¢+ of Vi (X, n)* is defined,
as usual, by

[Fllgr = sup |F([Elp)l. F € V(X )"
IElpllp <1

Now we define a conjugate linear map Cy : H — V4 (X, n)* by

(Co )([E]y) = /X Q) (el f) du(o), f € H, (3.6)

which will take the role of the analysis operator Cy of Sect.2. Notice that Cy
is a linear map, whereas Cgy is conjugate linear. The discrepancy is explained in
Remark 3.11 below.

Of course, (3.6) means that (Cy f)([£1p) = (Tp&lf) = (T};,[E]¢|f), for every
f € H. Thus Cy = f;, the adjoint map of Ty. By (3.3) it follows that Cy is
continuous. This implies that

H = [Ran Ty~ @ Ker Cy, (3.7)

where the first summand denotes the closure of Ran Ts. Hence Cj = f;‘* =Ty, if
Vs (X, ) is complete.

By modifying in an obvious way the definition given in Sect. 2, we say that ¢ is
p-total if Ker Cy = {0}, that is Ran Ty = H.

Remark 3.2 Whenever no confusion may arise, we will omit the explicit indication
of residues classes and write simply, for instance, § € Vy(X, 1) instead of [£§]y €
Vg (X, ). Similarly, for the operator Cy introduced in (3.6), we will often identify
Cof, f € H, with (¢;] f), as a shorteut to (Cy £)(§) = [y E@) (] f) duu(x).

Itis easy to see that Vi (X, w)[(-]-)4)] is complete, i.e., it is a Hilbert space if
and only if T¢ has closed range [12].
As a consequence of (3.7) we get

Corollary 3.3 The following statements hold.
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(i) A weakly measurable function ¢ is p-total if and only if Ran 7":/) is dense in ‘H.
(ii) If Vo (X, w) is a Hilbert space, Ran Ty is equal to H if and only if ¢ is u-total.

Now, things get simpler in the case of a reproducing pair. Namely,
Lemma 3.4 If (V, ¢) is a reproducing pair, then Ran Td) =H.

Proof Since Sy 4 € GL(H), for every h € H, there exists a unique f € H such
that Sy ¢ f = h. But, by (3.2), we get

(hlg) = /X(fll//x)<¢x|g) dux), ¥V f.geH,

that is, h = T;;,[Cl/, flp, where the overbar denotes complex conjugation, as
usual. O

Notice that, if (¥, ¢) is a reproducing pair, both functions are necessarily p-total.

3.2 Duality Properties of the Spaces V4 (X, )

When the space V4 (X, 1) is a Hilbert space, it is conjugate isomorphic to its dual,
via the Riesz operator. In addition, if (¥, ¢) is a reproducing pair, the dual of
Vs (X, 1) can be identified with Vi (X, i) as we shall prove below. We emphasize
that the duality is taken with respect to the sesquilinear form

(Elny, = /X E(X)n(x) du(x), (3.8)

which coincides with the inner product of L2(X , u) whenever the latter makes
sense.

Theorem 3.5 Let ¢ be a weakly measurable function. If F is a continuous linear
functional on Vg (X, ), then there exists a unique g € [Mg]~, the closure of the
range of Ty, such that

F([5lp) = /Xé(X)(¢x|g)dM(X), VE e Ve(X, 1) 3.9)

and || Fllg« = ligll, where |||« denotes the (dual) norm on Vy(X, w)*. More-
over, every g € H defines a continuous linear functional F on Vg (X, ) with
I Flig= < llgll, by (3.9). In particular, if g € Ran Ty, then || F |4« = ligl|.
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Proof Let F € Vi (X, n)*. Then, there exists ¢ > 0 such that
IF(Elp)I<c [[Elg], = | To| . V& € Vp(X, ).

Let My := {Tp& : £ € Vp(X, n)} = Ran 7"; Then My is a vector subspace of H,
with closure [Mg]™
Let F be the linear functional defined on Mg by

F(Tpé) := F([£]y), £ € Vp(X, ).

We notice that F is well-defined. Indeed, if Ty = Typ&', then & — &' € Ker Ty.

Hence, [£]y = [§']p and F([£]p) = F([£]y).
Hence, F is a continuous linear functional on My. Thus there exists a unique
g € [Mg] such that

F(Ty&) = (TylElslg) = /Xé(X)(%Ig)dM(X)

and gl = I F.
In conclusion,

F([§lp) = /Xé(X)(cbxlg)dM(X), VE e Ve(X, ).

and || Fllg = llgll-

Moreover, every g € 7 obviously defines a continuous linear functional F
by (3.9) as |F([£]p)I< llgll || [E]g ||¢ This inequality implies that || F||4« < [|g]. In
part1cular if g € Ran T¢, then there exists [$]¢ € Vp(X, 1), llElglls = 1, such
that Ty[£]s = gllgll~". Hence F([£]s) = (Tyl£1glg) = I8l O

Corollary 3.6 Let ¢ be a u-total weakly measurable function, then Gy @ H —
Vs (X, u)* is a conjugate linear isometric isomorphism.

Proof C¢ is surjective by Theorem 3.5. As ¢ is p-total, it follows by Corollary 3.3
that Ran T¢ is dense in /. Consequently, for f € H it follows that

/ E(x)(@x | f) dpn(x)

18101l 4=1

= sup [Tp&lf)l=  sup  I&lAI=IfIl. O

116 1l 5=1 ligll=1. gcRanTy
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Theorem 3.7 If (Y, @) is a reproducing pair, then every continuous linear func-
tional F on Vy(X, w), i.e., F € Vy(X, u)*, can be represented as

F([£]p) = /X EN(x) du(x), Y[Ely € Vp(X, w), (3.10)

with n € Vy (X, w). The residue class [n]y € Vy (X, w) is uniquely determined.

Proof By Theorem 3.5, we have the representation

F(&) =/X§(X)<¢xlg) dpu(x).

It is easily seen that n(x) = (g|¢x) € Vy (X, u). Uniqueness is easy. ([

The lesson of the previous statements is that the map
J i F € VX, )" v [nly € Vy (X, ) G.11)

is well-defined and conjugate linear. On the other hand, j(F) = j(F’) implies
easily F = F'. Therefore Vy(X, u)* can be identified with a closed subspace of
Vo (X, ) = {[E]y 1 £ € Vy (X, w)).

Let (¥, ¢) be a reproducing pair. We want to prove that the spaces V4 (X, u)*
and V_¢(X ) can be identified. This is the first essential result of [12], to which
we refer for a proof, see [12, 12, Lemmas 3.11 and 3.12]. Corresponding to T¢, we
introduce the linear - operator CI/, o H — Vu(X, ) by Cl[/ of = [Cy flp. We
note that C, vof = C, v.¢f  implies f = f’, as can be seen easily.

Thus we state:

Theorem 3.8 If (\/, ¢) is a reproducing pair, the map j defined in (3.11) is surjec-
tive. Hence Vi (X, u)* >~ VI/, (X, ), where >~ denotes a bounded isomorphism and
the norm ||- ||1/, is the dual norm of ||-|| 4. Moreover; Ran C,/, olll-llgl = Vo (X, wll -

ly] and Ran Cy,y[1I-ly1 = Vi (X, Ll - 1y 1.

Proof Let (v, ¢) be a reproducing pair. First one shows that Ran a/;,¢ is closed
in Vp(X, wll-lg]. Moreover, every [n]y € Vy (X, ) defines a continuous linear

functional on the closed subspace RanCy, ¢[|| ], which implies that the map

jis surjectlve Next, it turns out that Ran szz) is dense in Vy(X, u). Hence,
Ran C]/, olll-llg] and Vi (X, | - [l4] coincide, and similarly for the other pair. [

The first statement of the theorem implies that there exist 0 < m<M < oo such that

mIIfII<||5¢/,¢fH¢ <MIIfI, VfeH, (3.12)

a relation that may have an independent interest. The inequalities (3.12) are, of
course, very similar to the ones defining a frame, viz. (1.2) or (2.1). Yet they are
more general, since they are satisfied for any reproducing pair, be it a frame or not.
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By Theorems 3.7 and 3.8, it follows that, if (v, ¢) is a reproducing pair, then for
every n € Vy (X, ), there exists g € H such that n = (¢.|g).
In conclusion, we may state

Theorem 3.9 If (, ¢) is a reproducing pair, the spaces Vy (X, ) and Vy (X, )
are both Hilbert spaces, conjugate dual of each other with respect to the sesquilin-
ear form (3.8).

Corollary 3.10 If (, ¢) is a reproducing pair and ¢ = , then \ is a continuous
Sframe and Vy (X, ) is a closed subspace of L2(X, ”m).

Proof Since the duality takes place with respect to the L? inner product, Vy (X, p)
is a subspace of L%(X, ). The equality Ran Cl/, v = Vy (X, n) and the fact that
C,p  is bounded from below with respect to the L%-norm, by (3.12), imply that it is
closed. U

Remark 3.11 The operator Cy4 defined by (2.2) is linear, but the operator Cy given
in (3.6) is conjugate linear. However the latter maps H into Vi (X, w)*, which is
identified with Vy, (X, u), thus Cy maps H linearly into Vy, (X, u).

Actually Theorem 3.9 has an inverse. Indeed:

Theorem 3.12 Let ¢ and v be weakly measurable and -total. Then, the couple
(¥, @) is a reproducing pair if and only if Vy(X, n) and Vy (X, ) are Hilbert
spaces, conjugate dual of each other with respect to the sesquilinear form (3.8).

Proof The “if” part is Theorem 3.9. Let now V4 (X, ) and Vi (X, u) be Hilbert
spaces in conjugate duality. Consider the sesquilinear form

Qyo(f8) = A<f|wx)<¢x|g>dﬂ(x)s f.g €H.

By the definition of the norms ||-[|4 , [I-|l, and the duality condition, we have, for
every f, g € H, the two inequalities

19206 (£ DI L1, gl
129,06, DI< |1l |, 1£1-

This means, the form Qy 4 is separately continuous, hence jointly continuous.
Therefore there exists a bounded operator Sy, ¢ such that 2y 4 (f, §) = (Sy.¢ f18)-
First the operator Sy, g is injective. Indeed, since Cj = Ty, we have

(Sy.618) = (Cy f1Cs8) = (Cy.s f1Cs8) = (TyCy 4 f12), Vf, g € H.

Now T};, is isometric and a/,,¢ is injective, hence T};}a/,,d, f = O implies f = 0.
Next, Sy ¢ is also surjective, by Corollary 3.3. Hence Sy ¢ belongs to GL(H). [
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In addition to Lemma 3.8, there is another characterization of the space
Vy (X, w), in terms of an eigenvalue equation, based on the fact that (SJ,1¢¢y K/RH
a reproducing kernel [30, Prop.3].

Proposition 3.13 Let (Y, ¢) be a reproducing pair. Let§ € Vy (X, 1) and consider
the eigenvalue equation

/X E((Sy 8y I¥) din(y) = RE(). (3.13)

Then & € RanCy if and only if . = 1, and & € KerTy if and only if A = 0.
Moreover, there are no other eigenvalues.

4 Existence and Nonuniqueness of Reproducing Partners

Given a weakly measurable function ¥, it is not obvious that there exists another
function ¢ such that (¥, ¢) is a reproducing pair. Here is a criterion towards the
existence of a specific dual partner.

Theorem 4.1 Let ¢ be a weakly measurable function and e = {ey}nen an
orthonormal basis of H. There exists another measurable function r, such that
(¥, @) is a reproducing pair if and only if Ran ?d) = H and there exists a family
{&n}nen C Vp(X, 1) such that

Enlp = [f¢7]en]¢, Vn e N, and Z |§n()c)|2 < 00, fora.e x € X.

neN
4.1)

The proof of this theorem is quite technical and may be found in [12, Sec.4].
Note that, if ¢ is a frame, then the reproducing partner i given by the proof of
Theorem 4.1 is also a frame.

Actually, given the weakly measurable function ¢, the fact that (¥, ¢) is a
reproducing pair does not determine the function ¥ uniquely. Indeed we have:

Theorem 4.2 Let (, ¢) be a reproducing pair. Then (0, ¢) is a reproducing pair
if and only if 0 = Ay + 6o, where A € GL(H) and [{f|60(1))lp = [0]y, Vf €
H, l..e.,CQO’q)f =0,VfeH

Proof If 6 = Ay + 6y as above, then Spqf = @(6,41/,,(,5 + 6@0,¢)f =
T¢(CA1/,,¢f) = T¢C¢’¢A*f = S,/,,d,A*f, hence Sgy,p = Sw’(ﬁA* € GL(H).

Conversely, assume that (6, ¢) is a reproducing pair. By Theorem 3.8, we have
Vo (X, u) = RanCy /Ker Ty = Ran Cy/Ker Ty, i.e., forevery f € H there exists
g € H suchthat [Cy fly = [Cy gle. Then, using successively the definition of Sy g,
the relation above and the reproducing kernel (3.13), we obtain
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(F1Sp0(S; ) ¥ () = /X (F16:) {2 1(S L) ) dpao)
=fX<g|x/fx><¢x|<s;i,,>*w>du(x)=<g|w.>=<f|9.>, Y feH.

This means that, for all f € H, we have [Cyg fly = [Cay flp or, equivalently,
69,(,) = 6A¢,¢, where A = S¢,9(SK;’1¢)* € GL(H). Moreover, Cy f(x) =
Cay f(x) + F(f,x) forae. x € X and every f € H, where F(f, ) € KerTy,
ie., F(f,x)=(fl00 —AY)x) = (fl0ox)- U
In addition, the existence of a reproducing partner to a given function ¢ is
preserved if one replaces Vi (X, 1) by an isomorphic space ng(X , ). Indeed:

Corollary 4.3 Let ¢, ¢’ be weakly measurable functions and Vy(X,pn) =~
Vi (X, ), where >~ denotes a bounded isomorphism. There exists v such that
(Y, @) is a reproducing pair if and only if there exists ' such that (Y', ¢') is a
reproducing pair.

Proof Suppose that (v, ¢) is a reproducing pair. Let j be the bounded isomorphism
J i Ve(X, ) = Vg (X, ). Then j* : Vg (X, n)* — Vyu(X, n)* is also a bounded
isomorphism. Since Cy is bounded by (3.3), in order to verify that there exists ¥’
such that Sy’ v € GL(H), we only need to check that C(;,l is bounded. For every
f € H, there exists g € H such that Cy f = j*Cyg. Hence, g — Cdjlj*Cd)/g
is surjective and bounded. It is moreover injective since u-totality of ¢ implies
injectivity of Cy . Thus, the bounded inverse theorem implies that (C(;1 j*qu)’1

and consequently C(;,l are bounded. Since the statement is symmetric in (¥, ¢) and
(y’, ¢'), the converse implication holds as well. O

5 Examples of Reproducing Pairs

In this section, we present a few concrete examples of the construction of Sect. 3.
More details may be found in [12]. We begin with discrete examples, thatis, X = N
with the counting measure.

5.1 Discrete Examples
5.1.1 Orthonormal Basis

Let ¢ = {e,},en be an orthonormal basis, then e is a frame and V,(N) = V,(N) =
£2(N). Indeed, for & € V,(N), we have

> eutenle)| = | Dz
neN neN

<cligll = cll{gnlnenllez , Vg € H,
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where g, := (glen). Hence, & € £2(N)* = ¢2(N). Moreover, since Ker T, = {0}, it
follows that V,(N) = V,(N) and [|-[l,2 = - ll,-

5.1.2 Riesz Basis

Now consider a Riesz basis r = {r,},en. Then r, = Ae, for some A € GL(H)
[16]. Therefore V, (N) = V,(N) = ¢2(N) as sets, but with equivalent (not necessary
equal) norms, as can be seen easily. Hence r is a frame.

5.1.3 Discrete Upper and Lower-Semi Frames

Let 6 = {6,},en be a discrete frame, m = {m,},en C C\{0} and define ¢ :=
(M0, nen. If {|my]}nen € co, then ¢ is an upper semi-frame and if {|n,| ™' },en €
o, then ¢ is a lower semi-frame. Observe that in both cases ¢ is not a frame.

It can easily be seen that V4 (N) = My, (Vo(N)) = M/, (RanCy) as sets,
where M, is the multiplication operator defined by (M,,£), = m,&,. Moreover,
-y = -2 . where [Ells = 3 ey 1wmal?. Also, Vo(N)* = My, (Ve (N)) =
M,,(Vo(N)) = M,,(Ran Cy) as sets.

Using Theorem 4.1, one may show that there exists v such that (y, ¢) is
a reproducing pair [12]. A natural choice of a reproducing partner is ¢ :=
{(1/PT)0u nen a5 Syp = Sy € GL(H).

5.2 Continuous Examples
5.2.1 Continuous Frames

If ¢ is a continuous frame, Corollary 3.10 implies that V4 (X, p) is a closed
subspace of L?(X, iu). Now, since L>(X, u) = Ran Cy @ Ker Dy, it follows that
Vo (X, ill-llg] =~ Ran Cylll-Il 2]

5.2.2 1D Continuous Wavelets

Let ¥, ¢ € L*>(R, dx) and consider the continuous wavelet systems ¢x.a = Tx Dy,
where, as usual, 7 denotes the translation operator and D,, the dilation operator. If

dw
— < 5.1
2]

/ 1Y ()¢ ()]
R
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then (v, @) is a reproducing pair for L%(R, dx) with Sy, = cy.¢l [24, Theorem
10.1], where
dw

Cyp = /R Y ()p(w)

|l

Actually the relation Sy, ¢ = ¢y 41 simply expresses the well-known orthogonality
relations of wavelet transforms. A similar result holds true for D-dimensional
continuous wavelets [3] and, more generally, for all coherent states associated with
square integrable group representations [3, Chaps. 8 and 12].

For v = ¢, the cross-admissibility condition (5.1) reduces to the classical
admissibility condition

Co :=/ |p(w)|"— < o0. 5.2)
R o]

Considering the obvious inequalities

@gcl/z 12

cusl< [ T@F@I < e

we see that condition (5.1) is automatically satisfied whenever ¢ and ¢ are both
admissible. However, it is possible to choose a mother wavelet ¢ that does not
satisfy the admissibility condition (5.2) and still obtain a reproducing pair (, ¢).
Consider, for example, the Gaussian window ¢(x) = e‘”z, then ¢y = o0,
which implies that ¢ is not a continuous wavelet frame. However, if one defines
¥ € L*(R,dx) in the Fourier domain via @\(w) = |a)|$(a)), it follows that
0 < cygp = ||¢||% < oo. Hence (¢, ¢) is a reproducing pair. This example
clearly shows the increasing flexibility obtained when replacing continuous frames
by reproducing pairs.

5.2.3 A Continuous Upper Semi-frame: Affine Coherent States

In [4, Sec. 2.6] the following example of an upper semi-frame is investigated. Define
H® = L2RY, r"1dr), n € N, and the measure space (X, u) = (R, dx). Let
¥ € H™ and define the affine coherent state

U (r) = e Y (r), reRT,
Then v is admissible if sup, p+ 5(r) = 1, where s(r) := 277" (r)|?, and

[¥(r)| # O, for a.e. r € RT. The frame operator is given by the multiplication
operator on H"

Sy () =s(r) f(r),
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and, more generally,
Sy @) =[s()]" f(r), Vm € L.

Hence Sy, is bounded and Sl; !is unbounded.

The function ¥ enjoys the interesting property that we can characterize the space
Vy (R, dx) and its norm. First, we show that 74,6 = Ew, which in turn implies
that E has to be given by an almost everywhere defined function which satisfies
£y € H™. Hence & € Vy (R, dx) provided €y € H™ and then [|£]|, = [&v|.

When looking for a reproducing partner for ¥, we first ask whether there exists
an affine coherent state ¢, (r) = e " p(r), r € RT, ¢ € H™, such that (v, ¢)
forms a reproducing pair. The answer is negative. Indeed, since v is Bessel and not
a frame, its dual ¢ is by necessity a lower semi-frame, whereas an affine coherent
state must be Bessel, but can never satisfy the lower frame bound. Hence, there is
no pair of affine coherent states forming a reproducing pair. This fact can also be
proven by an explicit calculation.

More generally, we may look for a reproducing partner which is not an affine
coherent state. First Cy, is an isometry by Corollary 3.6, but Ran Tw # H. Indeed,
if we had Ran T,/, = H, an arbitrary element 1 € H® = L2(RT, "1 dr) could be
written as h = Ty § = é§ Y for some & € Vi (R, dx). This applies, in particular, to ¥
itself, which also belongs to %. This in turn implies that there exists &, such that
g(r) = 1 for a.e. r>0. But there is no function that satisfies this condition (however,
the §-distribution does the job).

This discussion has two major consequences. First, it shows that Vy (R, dx) is
not a Hilbert space, since it is not complete. Second, v has no reproducing partner
at all.

5.2.4 Continuous Wavelets on the Sphere

Next we consider the continuous wavelet transform on the 2-sphere S? [3, 10]. For
a mother wavelet ¢ € H = L>(S?, du), define the family of spherical wavelets

$o,a = RyDyp, where (0,a) € X :=50(3) x RT.

Here, D, denotes the stereographic dilation operator and R, the unitary rotation on
S2.

It has been shown in [10, Theorem 3.3] that the operator Sy is diagonal in
Fourier space (harmonic analysis on the 2-sphere reduces to expansions in spherical
harmonics Ylm, l e N,m = —I,...,1), thus it is a Fourier multiplier Sy (I, m) =
s¢ (D) f (I, m) with the symbol sy given by

sp(0) : _21+1 Z/ D¢, m)\ 3,Ze{O}UN

im<l

where D/\u¢>(l ,m) := (Y/"|D,¢) is the Fourier coefficient of D,¢.
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The result of the analysis is twofold. First, the wavelet ¢ € Lz(Sz, du) is
admissible if and only if there exists a constant ¢ > 0 such that s4(/)<C, VI € N,
equivalently, if the frame operator Sy is bounded. In addition, for any admissible
axisymmetric wavelet ¢, there exists a constant d > 0 such that d<s4(/)<c, VI €
N. Equivalently, Sy and qul are both bounded, i.e., the family of spherical wavelets
{¢a,0, (0,a) € X = SO(3) x R%} is a continuous frame. One notices, however,
that the upper frame bound, which is implied by the constant ¢, does depend on ¢,
whereas the lower frame bound, which derives from d, does not, it follows from the
asymptotic behavior of the function ¥;" for large /.

However, it turns out [33] that the reconstruction formula converges if d<s¢ (/) <
oo for all / € {0} UN, and this implies that ¢ (which is not admissible) is in fact a
lower semi-frame and Sy is unbounded, but densely defined.

We may now apply Theorem 4.1 to investigate the existence of a reproducing
partner for ¢. First, we show that Ran fd, = H. The operator My defined by
A/Jﬁ (,m) = sy (l)_lf(l ,m) is bounded and constitutes a right inverse to Sy.
Hence, for every f € H, it holds

f=SsMyf = Ty[CyMyfly € RanTy.

Choosing &, (0, a) = C¢(S¢71Ylm)(g, a) = (S;lYlm|¢Q,a) as a representative of
[f¢_1Ylm]¢ yields for every (0, a) € R x R™:

Do Mm@l =Y ) WSy Vo) =D D Isg() Po.all, m)?

=0 |m|<I 1=0 |m|<I =0 |m|<I
1 & ~ , 1 2
<G D 1Boall.m)P = 5 [doa” < oo,
1=0 |m|<I

Thus there exists (at least one) function ¥ € L2(S?, du) such that (¥, ¢) is a
reproducing pair.

Moreover, as for the wavelets on RY, it is possible to choose another continuous
wavelet system v, , as reproducing partner if the symbol sy ¢, defined by

0= Z/OODAW ) Dol )
h BT B

satisfies m<|sy, ¢ ()|<M forall I € {0} UN.
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5.2.5 Genuine Reproducing Pairs, Applications

Explicit examples of reproducing pairs, some of them containing neither frames,
nor semi-frames, have been given in the original paper [30]. An interesting class
of such objects arises in the context of the Gabor transform, or rather the so-called
continuous nonstationary Gabor transform. The latter relies on representations of
the Weyl-Heisenberg group, pioneered by Torrésani [32]. These techniques, and in
particular their discretized versions, seem to have a rich future in signal analysis.
The same can be said of the «-modulation transform and the attending «-modulation
frames [20, 31]. Obviously the whole analysis described in the present chapter,
including semi-frames and reproducing pairs, could and should be extended to
these more general frameworks. This offers interesting perspectives, both from the
mathematical point of view and towards applications in signal processing. But this
is another story. ..

6 Interlude: Reproducing Pairs and PIP-Spaces

Let (¢, ¢) be a reproducing pair. By definition,

(Sy.oflg) = fx CF 1) (dxlg) dp(x) = fx Cof() Cog@dutx)  (6.1)

is well-defined for all f, g € H (here we revert to the linear maps Cy, Cy defined
in (2.2)). The r.h.s. coincides with the sesquilinear form (3.8), that is, the L? inner
product, but generalized, since in general Cy, f, Cyg need not belong to LZ(X , du).

This fact clearly indicates that the analysis should be performed in the framework
of a partial inner product space (PIP-space) of measurable functions on X [6]. The
question is, how to embed Ran (Cy,) and Ran (Cy) into the corresponding assaying
subspaces. Next we have to determine how the Hilbert spaces Vy, and V are related
to the latter. Following [9], we will examine successively the cases of a rigged
Hilbert space (RHS) and a genuine PIP-space. Then we particularize the results to a
Hilbert scale and to a PIP-space of L? spaces. The motivation for the last case is the
following. If, following [30], we make the innocuous assumption that the map x —
Y is bounded, i.e., sup,y |V« Il <c for some ¢ > 0 (often ||/, |ly = const., e.g.
for wavelets or coherent states), then (Cy f)(x) = (fl¥x) € L*°(X, du) so that
a PIP-space based on the lattice generated by the family {L? (X, du), I<p<oo,}
may be a good solution.
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7 Reproducing Pairs and RHS

We begin with the simplest example of a PIP-space, namely, a rigged Hilbert space
(RHS). Let indeed D[t] € H C D*[t*] be an RHS, where D*[t*] denotes the
space of continuous conjugate linear functionals on D, equipped with the strong
dual topology 1*. We assume that D[¢] is reflexive, so that ¢ and ¢* coincide with
the respective Mackey topologies [29]. Given a measure space (X, u), we denote
by (-, -) the sesquilinear form expressing the duality between D* and D. As usual,
we suppose that this sesquilinear form extends the inner product of D (and ). This
allows to build the triplet above.

Letx € X — ¥y, x € X — ¢, be weakly measurable functions from X into
D*. Instead of (3.1), we consider the sesquilinear form

QD (f, ) = / () e 8) du(x). fog € D. (.1)
X
For short, we put QP .= QE’ ® and we assume that Q7 is jointly continuous on

D x D, that is, QP ¢ B(D, D) in the notation of [11, Sec.10.2]. Then the relation

(Syof.8) = /X oY) (@ §) du(x). ¥ fo g € D, (72)

tells us that the operator Sy ¢ belongs to £(D, D*), the space of all continuous
linear maps from D into D*.

7.1 A Hilbertian Approach

We first assume that the sesquilinear form QP is well-defined and bounded on D x D
in the topology of 4. Then QP extends to a bounded sesquilinear form on ‘H x H,
denoted by the same symbol.

The definition of the space V4(X, u) must be modified as follows. Instead
of (3.3), we suppose that the integral below exists and defines a conjugate linear
functional on D, bounded in the topology of H, i.e.,

‘/Xé(X)(dbc, g du(x)| <cligll, Vg €D. (7.3)

Then the functional extends to a bounded conjugate linear functional on H, since D
is dense in H. Hence, for every & € Vy (X, ), there exists a unique vector hy ¢ € H
such that

fx E() (. 8) du(x) = (hpelg). Vg € D.
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Next, we define a linear map Ty : Vy (X, u) — H by
Tok =hgp e e H, YE € Vp(X, 1), (7.4)

in the following weak sense
(Ty&18) = (hg,elg) = /XE(X)@x,g)du(x), g €D, §eV(X, ).

The rest proceeds as before. We consider the space Vy (X, ) = Vs (X, u)/Ker Ty,
with the norm |[£]4 ”¢ = ||Ty€|, where, for & € Vu(X,pn), we have put
[E]lp = & + Ker Ty. Then Vg (X, w) is a pre-Hilbert space for that norm.

Assume, in addition, that the corresponding bounded operator Sy, ¢ is an element
of GL(H). Then (¢, ¢) is a reproducing pair and Theorem 3.9 remains true, that is,

Theorem 7.1 If (Y, ¢) is a reproducing pair, the spaces Vo (X, 1) and Vy (X, i)
are both Hilbert spaces, conjugate dual of each other with respect to the sesquilin-
ear form (3.8) or (3.10), namely,

(Elpllnly) = (&I}, =/ E()n(x) du(x), VE € Vp(X, ), n € Vy (X, ).
X (7.5)
Example 7.2 To give a trivial example, consider the Schwartz rigged Hilbert space
SMR) C L*(R, dx) € S*(R), (X, u) = (R, dx), ¥ (1) = ¢ (1) = ﬁem. Then
Cof = f, the Fourier transform, so that (f|¢(-)) € L%(R, dx). In this case

QP (f.g) = /R U, e 2) dx = (FIB) = (f1g), Y/, g € SR),

and Vy (R, dx) = V4(R, dx) = L2(R, dx).

7.2 The General Case

In the general case, we only assume that the form Q7 is jointly continuous on
D x D, with no other regularity requirement. In that case, the vector space Vi (X, 1)
must be defined differently. Let the topology of D be given by a directed family
B of seminorms. Given a weakly measurable function ¢, we denote again by
Vs (X, 1) the space of all measurable functions £ : X — C such that the integral
/ ¥ E(X){Px, g) du(x) exists for every g € D and defines a continuous conjugate
linear functional on D, that is, there exists a constant ¢ > 0 and a seminorm p € B
such that

‘/Xé(X)@x,g) du(x)| <cp(g). Vg €D.
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This in turn determines a linear map Ty : V3 (X, u) — D> by the following relation

(Tp. 8) = /XS(X)(%,g)dM(X), VEeVs(X. ). 8 €D. (7.6)

Next, we define as before the vector space
Vo (X, ) = V(X, n)/Ker Ty,

and we put again [£]y = & 4 Ker Ty for & € Vy(X, ).
Now we define the topology of V4 (X, ) by means of the strong dual topology
t>* of D>, which we recall is defined by the seminorms

|Fllg = sup [(Flg), F eDx,
geQ

where Q runs over the family of bounded subsets of D[r]. As said above, the
reflexivity of D entails that ¢ is equal to the Mackey topology (D>, D). Define
the following seminorm on Vi (X, 1):

Po(&ly) = sug (TsE, 8)|, (7.7)

8

where Q is a bounded subset of D[¢]. Then we may state

Lemma 7.3 The map ﬁg : Vo(X, u) — DX, @[§]¢ = Ty& is a well-defined
linear map of Vg (X, p) into D> and, for every bounded subset Q of D[t], one has

Pol€ly) = ITpEllg, VE € Vyp(X, 1)

The latter equality obviously implies the continuity of T.

Next we investigate the dual Vy(X, n)* of the space Vi (X, ), that is, the set
of continuous linear functionals on Vi (X, n). We equip V4 (X, u)* with the strong
dual topology, which is defined by the family of seminorms

qr(F) = sup [F([§lg)l,
[ElpeR

where R runs over the bounded subsets of Vi (X, ).

Theorem 7.4 Assume that D[t] is a reflexive space and let ¢ be a weakly
measurable function. If F is a continuous linear functional on Vg(X, 1), then there
exists a unique g € D such that

F(E]y) = /X E() (rs ) dp(x), VE € Vp(X, ) (7.8)

Moreover, every g € H defines a continuous linear functional F on Vy (X, ) with
1 Fllge < lgll, by (7.8).
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The proof of this theorem follows closely that of Theorem 3.5, replacing Hilbertian
norms by appropriate seminorms and using the reflexivity of D. Details may be
found in [9].

In the present context, the analysis operator Cy is defined in the usual way,
given in (2.2). Then, particularizing the discussion of Theorem 3.5 to the functional
(-, Cyg), one can interpret the analysis operator Cy as a continuous operator from
D to Vu(X, n)*. As in the case of frames or semi-frames, one may characterize the
synthesis operator in terms of the analysis operator.

Proposition 7.5 For a weakly measurable function @, ?4, - C *. If, in addition,
Vo (X, 1) is reﬂexwe then T; = Cy. Moreover, ¢ is ju-total (i.e., KerC¢, ={0}) if
and only if Ran T¢ is dense in D*.

Proof AsCy : D — Vy(X, n)* is a continuous operator, it has a continuous adjoint
C;‘; : Ve (X, w** — H [29, Sec.IV.7.4]. Let Cct = C(’;TV(p(X, ). Then Cg) =
since, forevery f € D, [£]y € Vp (X, 1),

(Cof,[Elg) = /X (f, ) EC) dpe(x) = (f, TylElp). (7.9)

If Vy (X, ) is reflexive, we have, of course, CtI = C* = T};,

If ¢ is not pu-total, then there exists s f € D f # 0 such that (Cy f)(x) =
OforaexeXHencefe(RanT,/))J- = {fED (F, fy = 0,VF €
Ran T¢} by (7.9). Conversely, if ¢ is u-total, as (Ran T¢)J- Ker Cy = {0}, by the
reflexivity of D and DX, it follows that Ran T¢ is dense in D*. O

In a way similar to what we have done above, we can define the space Vy (X, ),
its topology, the residue classes [n]y, the operator Ty, etc., replacing ¢ by v. Then,
Vy (X, ) is a locally convex space.

Theorem 7.6 Assume that the form (7.1) is jointly continuous on D x D. Then,
every continuous linear functional F on Vg(X, ), ie, F € Vup(X, n)*, can be
represented as

F([£ly) = /X E()n(x) du(x), Y&l € Vu(X, p), (7.10)

with n € Vy (X, ). The residue class [n]y € Vy (X, 1) is uniquely determined.

Proof By Theorem 7.4, we have the representation

F(S)Z/}(S(X)((bx,g)dM(X).

It is easily seen that n(x) := (g, ¢x) € Vy (X, u).
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It remains to prove uniqueness. Suppose that
F(§) = fx £ (x) dp(x).
Then
fX £ () TG — n(0) dpu(x) = 0.

Now the function & (x) is arbitrary. Hence, taking in particular for £ (x) the functions
(Y, f), f € D, wegetnly = [nly. O

The lesson of the previous statements is that the map
J i F e Vo(X ) > [nly € V(X ) (7.11)

is well-defined and conjugate linear. On the other hand, j(F) = j(F’) implies
easily F = F'. Therefore V4 (X, u)* can be identified with a closed subspace of
Vy (X, ) = {[E]y & € Vy(X, ).

Working in the framework of Hilbert spaces, as in Sect.7.1, we proved in
Theorem 3.9 that the spaces Vi (X, u)* and VT,(X, 1) can be identified. The
conclusion was that if (v, ¢) is a reproducing pair, the spaces V4 (X, 1) and
Vy (X, ) are both Hilbert spaces, conjugate dual of each other with respect to
the sesquilinear form (3.10). And if ¢ and ¥ are also u-total, then the converse
statement holds true.

In the present situation, however, a result of this kind cannot be proved with
techniques similar to those of Sect.3.2, which are specific of Hilbert spaces. In
particular, the condition (b), Sy, € GL(H), which was essential in the proof of
[12, Lemma 3.11], is now missing, and it is not clear by what regularity condition it
should replaced.

8 Reproducing Pairs and Genuine PIP-Spaces

In this section, we will consider the case where our measurable functions take their
values in a genuine PIP-space. However, for simplicity, we will restrict ourselves
to a lattice of Banach spaces (LBS) or a lattice of Hilbert spaces (LHS). For
the convenience of the reader, we have summarized in the Appendix the basic
notions concerning LBSs and LHSs. Further information may be found in our
monograph [6].

Let (X, 1) be a locally compact, o-compact measure space. Let V; = {V,, p €
J} be an LBS or an LHS of measurable functions on X. Thus the central Hilbert
space is H := V, = L*(X, 1) and the spaces Vy, V5 are reflexive Banach spaces
or Hilbert spaces, conjugate dual of each other with respect to the L? inner product,
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as follows from (A.2). The partial inner product, which extends that of L3(X, ),
is denoted again by (|-). As usual we put V.=, V), and v# = Mpes V-
Thus ¥ : X — V really means that ¢ : X — V), for some p € J, since V is the
algebraic inductive limit of {V,,, p € J} [29] (see the Appendix).

Example 8.1 A typical example is the lattice generated by the Lebesgue spaces
LP (R, dx), 1<p<o0o, with % + % = 1 [6]. We shall discuss it in detail in Sect. 10.

Two approaches are possible, depending whether the functions ¥, themselves
belong to V or rather the scalar functions Cy f. However, the first possibility is
the exact generalization of the one used in the RHS case in Sect.7. Hence it does
not exploit the PIP-space structure, only the RHS V# c H C V! Thus we turn to
the second strategy.

Let v, ¢ be weakly measurable functions from X into . In view of (6.1), (A.2)
and the definition of V, we assume that the following condition holds:

(p) Ap € Jsuchthat Cy f = (f|y.) € V, and Cyg = (gld.) € V5, ¥ f. g € H.

Notice that, in Condition (p), the index p cannot depend on f, g. We need some
uniformity, in the form Cy (H) C V, and Cy(H) C V3. This is fully in line with
the philosophy of PIP-spaces: the building blocks are the (assaying) subspaces V,,,
not individual vectors.

Since V7 is the conjugate dual of V), the relation

Qyo(f.8) = /X(flwx><¢xlg) du(x), f.g €H,
defines a sesquilinear form on ‘H x H and one has

If Qy ¢ is bounded as a form on H x H (this is not automatic, see Proposition 8.2),
there exists a bounded operator Sy, 4 in H such that

/X(fllﬂx)(fﬁxlg)du(x) = (Sypflg). VS geH. (8.2)

Then (Y, ¢) is a reproducing pair if Sy 4 € GL(H).
Let us suppose that the spaces V), have the following property:

(k) If & — & in V), then, for every compact subset K C X, there exists a
subsequence {SHK } of {&,} which converges to £ almost everywhere in K.

We note that condition (k) is satisfied by the L”-spaces [28].
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As seen before, Cy, : H — V, in general. This means, given f € H, there exists
p € J such that Cy f = (f|.) € V,,. We define

D.(Cy)={feH:CyfeV} rel

In particular, D, (Cy) = H is equivalent to Cy (H) C V.
Proposition 8.2 Assume that (k) holds. Then

(i) Cy : D;(Cy) — V, is a closed linear map.
(ii) If, for somer € J, Cy(H) C V;, then Cy : H — V, is continuous.

Proof

(i) Let f, — f in H and {Cy f,} be Cauchy in V,. Since V, is complete, there
exists & € V, such that ||Cy f,, — &[l, — 0. By (K), for every compact subset
K C X, there exists a subsequence {an} of { fu} such that (Cy an)(x) — E(x)
a.e. in K. On the other hand, since f, — f in H, we get

(fal¥hx) = (fl¥x), VxeX,

and the same holds true, of course, for { nK }. From this we conclude that £ (x) =
(f W) almost everywhere. Thus, f € D,(Cy)and§ = Cy f.

(ii) As for the continuity of Cy : H — V; it follows from (i) and the closed graph
theorem. ([l

Combining Proposition 8.2(ii) with (8.1), we get

Corollary 8.3 Assume that (k) holds. If Cy(H) C Vj, and Cy(H) C V5, the form
Q is bounded on H x H, that is, |2y o (f, ©)I<c I 1 lgll.

If Cy (H) C V,, we will assume that Cy, : H — V, is continuous. According to
Proposition 8.2, this is automatic if condition (k) holds.

If Cy : H — V, continuously, then C:Z . V&7 — H exists and it is continuous.
By definition, if £ € V5,

(Cy fIE) =/X<f|wx>s(_x)du(x> = <f|/X Y E)du), YfeH.  (83)
Thus,
c:zs=fxwxs<x>du(x).

Assume now that for some p € J,Cy : H — V,and Cy : H — V5
continuously. Then, Cy : V), — H so that C5Cy, is a well-defined bounded operator
in H. As before, we have

C;’§77=/X77(x)¢x dux), Y € V.
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Hence,

c;c¢f=/x<f|wx>¢x ) = Sysf. VfeH,

the last equality following also from (8.2) and Corollary 8.3. Of course, this does not
yetimply that Sy, ¢ € GL(H), thus we don’t know whether (, ¢) is a reproducing
pair.

According to (3.3), the pre-Hilbert space Vs (X, 1) consists of the measurable
functions & such that

'/}(E(X)(ang)(X)du(x) <cligl, Vg eH. (8.4)

Since Cy : H — V7, the integral is well-defined for all £ € V),. This means, the
inner product on the L.h.s. is in fact the partial inner product of V, which coincides
with the L? inner product whenever the latter makes sense. Thus we may rewrite the
relation (8.4) as

I(E1Cs8)I<cligll . Vg eH, §€Vp,

where (-|-) denotes the partial inner product. Next, by (A.2), one has, for & € V,,,
g EH,

(EICs)I<NIEN, |Cog ], <cligl, lgl,

where the last inequality follows from Proposition 8.2 or the assumption of
continuity of Cy. Hence § € Vy(X, u), so that V, C Vy (X, ).

As for the adjoint operator, we have C; : V, — H. Then we may write, for
§eVy, geH, (E|Cyg) = (Tpélg), thus C(’; is the restriction from Vg (X, u) to V,
of the operator Ty : Vy — H introduced in Sect. 2, which reads now as

(Tp€lg) = /}(S(X)(qﬁxlg)du(x), VEeVy gel. (8.5)

Thus Cy C Ty.

From now on, the construction proceeds as in Sect.7. The space Vy (X, u) =
Vy (X, n)/Ker Ty, with the norm || [E1s ||¢ = || Ty& |, is a pre-Hilbert space. Then
Theorem 3.9 and the other results from Sect. 3.2 remain true. In particular, we have:

Theorem 8.4 If (\/, ¢) be a reproducing pair, the spaces Vg(X, ) and Vy (X, 1)
are both Hilbert spaces, conjugate dual of each other with respect to the sesquilin-
ear form (3.8), namely,

&, = fX E()n(x) du(x).

Note the form (3.8) coincides with the inner product of L2(X, ) whenever the latter
makes sense.
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Let (, ¢) is a reproducing pair. Assume again that Cy : H — V5 continuously,
which me may write ap,,,, : H — Vgz/Ker Ty, where @w CH = VX, )
is the operator defined by almﬁ f = [Cy fly, already introduced in Sect.3.2.
In addition, by Theorem 3.8, one has Ran ap,¢[||'||¢,] = Ve(X, wIll - llg] and
Ran Cy.y Lll-lly 1 = Vi (X, 0Ll - 1]

Putting everything together, we get

Corollary 8.5 Let (v, ¢) be a reproducing pair. Then, if Cy, : H — V), and Cy :
‘H — V5 continuously, one has

Coy i H — Vi/Ker Ty = Vy (X, 1) = Vy(X, 1), (8.6)
Cyg:H — Vy/Ker Ty = Vy(X, ) =~ Vg (X, 0)*. (8.7)

In these relations, the equality sign means an isomorphism of vector spaces, whereas
=~ denotes an isomorphism of Hilbert spaces.

Proof On the one hand, we have Ran @w, = Vy (X, ). On the other hand, under
the assumption Cy(H) C V5, one has Vi C Vy (X, ), hence V5/Ker Ty, = {£ +
KerTy, & € V5} C Vy(X, u). Thus we get Vy (X, u) = V5/Ker Ty, as vector
spaces. Similarly Vy (X, u) = V,/Ker Tj. ]

9 The Case of a Hilbert Triplet or a Hilbert Scale

9.1 The General Construction

We have derived in the previous section the relations V, C Vy(X, u), V5 C
Vy (X, ), and their equivalent ones (8.6)—(8.7). Then, since Vi (X, u) and
Vs (X, ) are both Hilbert spaces, it seems natural to take for V), V7 Hilbert
spaces as well, that is, take for V an LHS. The simplest case is then a Hilbert
chain, for instance, the scale (A.4) {H, k € Z} built on the powers of a self-adjoint
operator A > [. This situation is quite interesting, since in that case one may get
results about spectral properties of symmetric operators (in the sense of PIP-space
operators) [6, 8].

Thus, let (v, ¢) be a reproducing pair. For simplicity, we assume that Sy 4 = 1,
that is, v, ¢ are dual to each other.

If ¢ and ¢ are both frames, there is nothing to say, since then Cy, (H), Cy(H) C
L2(X, ) = H,, so that there is no need for a Hilbert scale. Thus we assume that ¥
is an upper semi-frame and ¢ is a lower semi-frame, dual to each other. It follows
that Cy (H) C L?(X, jv). Hence Condition (p) becomes: There is an index k>1
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such that Cy : H — Hy and Cy : H — Hg continuously, thus V, = H; and
V5 = Hz. This means we are working in the Hilbert triplet

V, =Hi CHo = L*(X, n) C Hy = V5. 9.1)

Next, according to Corollary 8.5, we have Vy(X,u) = Hg/Ker Ty and
Vo (X, ) = Hy/Ker Ty, as vector spaces.

In addition, since ¢ is a lower semi-frame, we know that Cy has closed range in
L2(X, w) and is injective [4, Lemma 2.1]. However its domain

D(Cy) :={feH: /X (1617 dun(x) < oo}

need not be dense, it could be {0}. Thus Cy maps its domain D(Cy) onto a closed
subspace of L2(X, i), possibly trivial, and the whole of A into the larger space Hz.

9.2 Examples

As for concrete examples of such Hilbert scales, we might mention two. First the
Sobolev spaces H*(R), k € Z, in Ho = L*(R, dx), which is the scale generated
by the powers of the positive self-adjoint operator A'/2, where A = 1 — d—22.

X
The other one corresponds to the quantum harmonic oscillator, with Hamiltonian

2

Agse 1= x° — %. The spectrum of Agsc is {2n + 1,n = 0, 1,2, ...} and it gets

diagonalized on the basis of Hermite functions. It follows that AL, which maps
every Hjy onto Hy—_1, is a Hilbert-Schmidt operator. Therefore, the end space of the
scale D (Aosc) = [\ Hk. which is simply Schwartz’ space S of C* functions of
fast decrease, is a nuclear space.

Actually one may give an explicit example, using a Sobolev-type scale. Let Hg
be a reproducing kernel Hilbert space (RKHS) of (nice) functions on a measure
space (X, u), with kernel function k,, x € X, thatis, f(x) = (flks)kx, Vf € Hk.
The corresponding reproducing kernel is K (x, y) = ky(x) = (ky|kx) k. Choose the
weight function m(x) > 1, the analog of the weight (1 + |x|%) considered in the
Sobolev case. Define the Hilbert scale H;, ! € Z, determined by the multiplication
operator Af (x) = m(x)f(x), Vx € X. Hence, for each [>1,

H; C Ho=Hk CHj.

Then, for some n>1, define the measurable functions ¢, = k,m"(x), ¥, =
kym™"(x), so that Cy, : Hx — H,, Cy : Hg — Hy continuously,
where H, C Hx C Hp, and v, ¢ are dual of each other. One has indeed
(Pxlg)k = (kem"(x)Ig)k = (kelgm"(x))k = gx)m"(x) € Hz and
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(Urlg)k = g(x)m™"(x) € H,, which implies duality. Thus (v, ¢) is a reproducing
pair with Sy 4 = I, ¥ is an upper semi-frame and ¢ a lower semi-frame.

In this case, one can compute the operators Ty, Ty explicitly. The definition (8.5)
reads as

(Ty€lg)k = /Xé(x)(ﬁbﬂg)l( du(x), V& € Hy, g € Hk,
=/X$(x)gmm"(X)du,

that is, (Tp€)(x) = &(x) m" (x) or Ty& = & m". However, since the weight m(x) >
1 is invertible, g m" runs over the whole of H; whenever g runs over Hg. Hence
& € Ker Ty C H, means that (T3€|g)x = 0, Vg € Hg, which implies & = 0, since
the duality between #,, and Hz is separating. The same reasoning yields Ker Ty, =
{0}. Therefore Vs (X, u) = RanCy = H,, and Vy (X, u) =~ Ran Cy = Hz.

A more general situation may be derived from the discrete example of Sec-
tion 6.1.3 of [12]. Take a sequence of weights m := {|m,|}pen € co,mn # O,
and consider the space 631 with norm || & ||g,2” =) en Imaén |2. Then we have the
following triplet replacing (9.1)

6, C O Cl 9.2)

Next, for each n € N, define y,, = m,6,, where 6 is a frame or an orthonormal
basis in ¢2. Then ¥ is an upper semi-frame. Moreover, ¢ = {(1/m,)0,},eN 1S
a lower semi-frame, dual to v, thus (v, ¢) is a reproducing pair. Hence, by [12,
Theorem 3.13] (see also Sect.5.1.3), Vy >~ RanCy = My, (Vo(N)) = E,zn and
Vo =~ RanCy = M, (Vp(N)) = Z%/m (here we take for granted that Ker T, =
Ker T, = {0}).

For making contact with the situation of (9.1), consider in ¢ the diagonal
operator A := diag[n], n € N (the number operator), that is (A¢), = n&,,n € N,
which is obviously self-adjoint and larger than 1. Then H; = D(A¥) with norm
IEll, = |A*g|| = Ef(k), where (r®)),, = n¥ (note that 1/r® e cy). Hence we have

Hi=Lw CHo=0 CHr =061, 9.3)
where (1/r®)), = n~*. In addition, as in the continuous case discussed above,
the end space of the scale, D*°(A) := (), Hi, is simply Schwartz’s space s of
fast decreasing sequences, with dual Ds5(A) = (J; Hr = ', the space of slowly
increasing sequences. Here too, this construction shows that the space s is nuclear,
since every embedding A~! : Hy41 — Hy is a Hilbert-Schmidt operator.

However, the construction described above yields a much more general family of
examples, since the weight sequences m are not ordered.
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10 The Case of L? Spaces

Following the suggestion made at the end of Sect.2, we present now several
possibilities of taking Ran Cy, in the context of the Lebesgue spaces L” (R, dx).

As it is well-known, these spaces don’t form a chain, since two of them are never
comparable. We have only

L?N LY C L*, forall s suchthat p <s <gq.

Take the lattice J generated by Z = {L? (R, dx), 1< p<oo}, with lattice operations
[6, Sec.4.1.2]:

e LP ALY = LP N LY is a Banach space for the projective norm || fll,ng =
If1lp+11fllg
e LPv L1 =LP+ L7isaBanach space for the inductive norm
I flpvg = infr=gsn {Igllp + llhlly; g € LP, h € L7}
e Forl < p,q < oo, both spaces L” A L? and L? v L7 are reflexive and (L? A
L1)* =LP v LY.

Moreover, no additional spaces are obtained by iterating the lattice operations to any
finite order. Thus we obtain an involutive lattice and an LBS, denoted by V; with
elements denoted generically by L), s = (p, ).

Following [6, Sec.4.1.2], we represent the space L(P-9) by the point (1/p, 1/q)
of the unit square J = [0, 1] x [0, 1]. In this representation, the spaces L? are on the
main diagonal, intersections L” N L4 above it and sums L? + LY below, the duality
is [LW]* = L® where s = (p, g) and 5 = (p, g), that is, symmetry with respect
to L2, Hence, L(P9) ¢ L4 if (1/p, 1/¢) is on the left and/or above (1/p’, 1/q")
The extreme spaces are

vi=1%nL" and V=L'4L>™
Note that the space L' + L has been considered by Gould [23]. For a full picture,
see [6, Fig.4.1].

There are three possibilities for using the L? lattice for controlling reproducing
pairs

(1) Exploit the full lattice J, that is, find (p, ¢) such thatVf, g € H, Cy f #Cypg
in the PIP-space V|, thatis, Cy, f € L9 and Cyg € LPD,
(2) Selectin V aself-dual Banach chain V|, centered around L?, symbolically.

L LW c...cLlPc...cLY ..., (10.1)
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such that Cy f € L® and Cyg € L® (or vice-versa). Here are three examples
of such Banach chains. Of course, in each case, one may also select a symmetric
subset of the chain.

» The anti-diagonal chain: g =p

L*nL'c...clinlfic...cl>c...cLi+1L7
=LINLH* c...c L' +L>®.
e The horizontal chaing = 2 :
L*NL*c...cl*c...cL' +L%
e The vertical chain p =2 :
L>’NnL'c...cl?c...cL>+L™.
All three chains are presented in Fig. 1. In each case, the full chain belongs to

the second and fourth quadrants (top left and bottom right). A typical point is
then s = (p, g) with, 2<p<oo, 1<g<2, so that one has the situation depicted

1/q
N 2N Lt L
<N
|
anpe | LO Lo
Lenr® | N Lo g
JIOR | |
L=nL* | . T v S L'+ r?
: L’ _—
i | L&)
renL® | A LN :
L® 1 LY LI=NLINLY)
I
I
|
o 1/p
L L?+ L= Lt + L

Fig. 1 (1) The threq full chains (black); (2) The pair L, L® for s in the second quadrant (blue);
(3) The pair L, L® for ¢ in the first quadrant (blue) (from [9])
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in (10.1), that is, the spaces LY L® to which Cy f, resp. Cyg, belong, are
necessarily comparable to each other and to L. In particular, one of them is
necessarily contained in L? (see Fig. 1).

(3) Choose a dual pair in the first and third quadrant (top right, bottom left). A
typical point is then t = (p’,¢’), with 1 < p’,q" < 2, so that the spaces
LO LO are never comparable to each other, nor to L2

Let us now add the boundedness condition already mentioned in Sect.2,
sup,ex 1V« ll3y <c and sup, cx l¢xllgy <c’ for some ¢, ¢’ > 0. Then Cy f(x) =
(flx) € L=(X, du) and Cy f (x) = (f|éx) € L*°(X, du). Therefore, the third
case reduces to the second one, since we have now (in the situation of Fig. 1).

L®NLD cL®nNL2cL®nL?, (10.2)

Note that none of these spaces is reflexive.

Following the pattern of Hilbert scales, we choose a (Gel’fand) triplet of
Banach spaces. One could have, for instance, a triplet of reflexive Banach spaces
such as

L® cL>cL®, (10.3)

corresponding to a point s inside of the second quadrant, as shown in Fig. 1. In this
case, according to (8.6) and (8.7), Vy = L) /Ker Ty, and Vy = L) /Ker Ty.

On the contrary, if we choose a point ¢ in the second quadrant, case (3) above,
it seems that no triplet arises. However, if (i, ¢) is a nontrivial reproducing pair,
with Sy 4 = I, that is, ¥, ¢ are dual to each other, one of them, say 1, is an upper
semi-frame and then necessarily ¢ is a lower semi-frame (see the remark at the end
of Sect. 2.2). Therefore Cy (H) C L2(X, w), that is, case (3) cannot be realized.

In conclusion, the only acceptable solution is a triplet of the type (10.3), with s
strictly inside of the second quadrant, thatis, s = (p, g) with, 2<p < 0o, 1 < ¢<2.

A word of explanation is in order here, concerning the relations Vy =
L® /Ker Ty and Vs = L) /Ker Ty. Both L®) and L® are reflexive Banach spaces,
with their usual norm, and so are the quotients by T, resp. Ty. On the other hand,
Vy (X, Ll - ly] and Vg (X, w)(ll - llg] are Hilbert spaces. However, there is no
contradiction, since the equality sign = denotes an isomorphism of vector spaces
only, without reference to any topology. Moreover, the two norms, Banach and
Hilbert, cannot be comparable, lest they are equivalent [26, Coroll. 1.6.8], which
is impossible in the case of L?, p # 2. The same is true for any LBS where the
spaces V), are not Hilbert spaces.

Although we don’t have an explicit example of a reproducing pair, we indicate a
possible construction towards one. Let 01 : R — L? be a measurable function such
that (h|9§1)) €li,1<qg <2 VYhelL?andletd® : R — L? be a measurable



Beyond Frames: Semi-frames and Reproducing Pairs 55

function such that (1|6\%) € L7, Yh € L2. Define ¢, := min(@”, 6?) = oV A
9;2) and ¢, = max(@ﬁl), 9;2)) = 9,51) \Y, 9)52). Then we have v, <¢, for almost all
x € R, and

(Cyh)(x) = (k) € LINLI, VI e L?
(Cyh)(x) = (hlpy) € LI+ LI, Vh € L?

and we have indeed LY N L9 C L? c L9 4 L9. It remains to guarantee that i and
¢ are dual to each other, that is,

/X CFl) (e ) dp(o) = fX Cy () Tpg@® dp(x) = (f1g). ¥ fg € L2,

11 Concluding Remarks

Starting with the well-known notion of frame, both discrete and continuous, we have
introduced a first natural generalization, namely, semi-frames, both upper and lower
ones. The main result is that the two types are dual of each other. Indeed, if two semi-
frames are in duality, either they are both frames, or else at least one of them is a
lower semi-frame. Take, for example, ¢ = {nen}U{%ek}k and ¢ = {ﬁen}n U{%ek}k
with e, an orthonormal basis, then ¥, ¢ are in duality and both are lower semi-
frames but not Bessel (M. Speckbacher, private communication).

Then the next step is to drop the restriction imposed by the frame bounds on
the two measurable functions in duality, and this leads to the notion of reproducing
pair. We have seen that the latter is quite rich. It generates a whole mathematical
structure, which ultimately leads to a pair of Hilbert spaces, conjugate dual to each
other with respect to the L>(X, 1) inner product. We have given several concrete
examples in Sect. 5. These, and additional ones, should allow one to better specify
the best assumptions to be made on the measurable functions or, more precisely, on
the nature of the range of the analysis operators Cy,, Cg.

This is clearly seen in the definition (6.1), which immediately suggests to perform
the analysis in the context of PIP-spaces [6], as already remarked in [30]. In
particular, a natural choice is a scale, or simply a triplet, of Hilbert spaces, the two
extreme spaces being conjugate duals of each other with respect to the L2(X, )
inner product. Another possibility consists of exploiting the lattice of all L” (R, dx)
spaces, or a subset thereof, in particular a (Gel’fand) triplet of Banach spaces. Some
examples have been described above, but obviously more work along these lines is
in order.

Another interesting direction consists in considering a whole family G of u-total,
weakly measurable functions ¢ : X — H, instead of only one. To each ¢ € G
we can associate the pre-Hilbert space Vi (X, w)[ll-|l4] and take its completion
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17:,,(X, LI-Ilg]. If ¢ has a partner ¥ € G such that (v, ¢) is a reproducing pair, both
spaces Vi (X, ) = Vp(X, wlll-llg] and Vy (X, ) = Vy (X, wlll-Il4] are Hilbert
spaces, conjugate dual to each other. In the general case, however, the question of
completeness of Vi (X, w)[ll-ll4] is open. Can one find conditions under which it
holds? Also once might study the relationship between different pre-Hilbert spaces
Ve (X, ). When is one contained in another one?
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Appendix: Lattices of Banach or Hilbert Spaces

For the convenience of the reader, we summarize in this Appendix the basic
facts concerning PIP-spaces and operators on them. However, we will restrict the
discussion to the simpler case of a lattice of Banach (LBS) or Hilbert spaces (LHS).
Further information may be found in our monograph [6] or our review paper [7].

Let thus J = {V,, p € I} be a family of Hilbert spaces or reflexive Banach
spaces, partially ordered by inclusion. Then Z generates an involutive lattice 7,
indexed by J, through the operations (p, g, r € I):

* involution: V, < V&= VX, the conjugate dual of V,
e infimum:  Vpag =V, AV, =V,NYV,
e supremum: Vyy, =V, VvV, =V, +V,.

It turns out that both V)., and V), are Hilbert spaces, resp. reflexive Banach
spaces, under appropriate norms (the so-called projective, resp. inductive norms).
Assume that the following conditions are satisfied:

(1) Z contains a unique self-dual, Hilbert subspace V,, = V5.
(2) forevery V, € Z, the norm || - ||z on V= = VX is the conjugate of the norm || - ||
on V,.

In addition to the family J = {V,, r € J}, it is convenient to consider the two
spaces V# and V defined as

v=>"v, vi=V,. (A.1)

qgel qel

These two spaces themselves usually do nof belong to Z. According to the general
theory of PIP-spaces [6], V is the algebraic inductive limit of the V),’s, and V#is the
projective limit of the V),’s.
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We say that two vectors f,g € V are compatible if there exists r €
J suchthat f € V,, g € Vr. Then a partial inner product on V is a Hermitian
form (-|-) defined exactly on compatible pairs of vectors. In particular, the partial
inner product (-|-) coincides with the inner product of V,, on the latter. A partial
inner product space (PIP-space) is a vector space V equipped with a partial inner
product. Clearly LBSs and LHSs are particular cases of PIP-spaces.

We will assume that our PIP-space (V, (-|-)) is nondegenerate, that is, (f|g) =
0 for all f € V¥ implies ¢ = 0. As a consequence, (V¥, V) and every couple
Vi, V&), r € J, are a dual pair in the sense of topological vector spaces [29]. In
particular, the original norm topology on V, coincides with its Mackey topology
7(V;, V¥), so that indeed its conjugate dual is (V,)* = V5, Vr € J. Then,r < s
implies V, C Vi, and the embedding operator Ey, : V.. — Vj is continuous and has
dense range. In particular, V¥ is dense in every V,. In the sequel, we also assume
the partial inner product to be positive definite, ( f|f) > O whenever f # 0.

Then we have the familiar (Schwarz) inequality

g£eV, neVy implies &7eL'(X,u) and

/ E(x)n(x) du(x)
X

<I&llp Inllz- (A2)

A standard, albeit trivial, example is that of a rigged Hilbert space (RHS) & C
H C & (it is trivial because the lattice Z contains only three elements).

Familiar concrete examples of PIP-spaces are sequence spaces, with V = o the
space of all complex sequences x = (x,), and spaces of locally integrable functions
with V = L]IOC (R, dx), the space of Lebesgue measurable functions, integrable over
compact subsets.

Among LBSs, the simplest example is that of a chain of reflexive Banach spaces.
The prototype is the chain Z = {L? := L?([0, 1]; dx), 1 < p < oo} of Lebesgue
spaces over the interval [0, 1].

L*c..cllicl c..cl*c..clL clLfc..cl'
(A.3)
where 1 < ¢ < r < 2 (of course, L> and L' are not reflexive). Here L7 and L7
are dual to each other (1/g + 1/g = 1), and similarly L™, L™ (1/r + 1/7 = 1).

As for an LHS, the simplest example is the Hilbert scale generated by a self-
adjoint operator A > [ in a Hilbert space H,,. Let H,, be D(A"), the domain of A",
equipped with the graph norm || £, = [|A" f|l, f € D(A"),forn € Norn € RY,
and Hy := H_, = H,’ (conjugate dual):

D®(A) = Ha C...CHa CHi CHo CH CHy...C Ds(A) = Ha
’ a4
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Note that here the index n may be integer or real, the link between the two cases
being established by the spectral theorem for self-adjoint operators. Here again the
inner product of H( extends to each pair H,, H_,, but on Dx(A) it yields only a
partial inner product. A standard example is the scale of Sobolev spaces H*(R), s €
Z,in Ho = L*(R, dx).
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On Hilbert-Schmidt Operator m)
Formulation of Noncommutative e
Quantum Mechanics
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Abstract This work gives value to the importance of Hilbert-Schmidt operators in
the formulation of noncommutative quantum theory. A system of charged particle
in a constant magnetic field is investigated in this framework.

Keywords Hilbert spaces - Operator theory - Hilbert-Schmidt operators -
von Neumann algebra - Modular theory - Density matrix - Coherent states -
Noncommutative quantum mechanics

1 Introduction

The theory of Hilbert-Schmidt operators plays a key role in the formulation
of the noncommutative quantum mechanics. In the past three decades, the von
Neumann algebras [19, 27] underwent a vigorous growth after the discovery of
a natural infinite family of pairwise nonisomorphic factors, and the advent of
Tomita-Takesaki theory [25] and Connes noncommutative geometry [11]. The latter
was initiated with the classification theorems for von Neumann algebras and the
extensions of C*-algebras [10]. The modular theory of von Neumann algebras was
created by Tomita [26] in 1967 and perfectioned by M. Takesaki around 1970.
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From physical point of view, a charged particle interacting with a constant
magnetic field is one of the important problems in quantum mechanics described
by the Hamiltonian ‘H = ﬁ(p + %A)z, inspired by condensed matter physics,
quantum optics, etc. The Landau problem [18] is related to the motion of a charged
particle on the flat plane xy in the presence of a constant magnetic field along the
z-axis. In metals, the electrons occupy many Landau levels [13] E,, = fiw.(n + %),
each level being infinitely degenerate, with w, = eB/Mc, the cyclotron frequency,
which are those of the one-dimensional harmonic oscillator, and correspond to the
kinetic energy levels of electrons.

This physical model represents an interesting application [1] of the Tomita-
Takesaki modular theory [25, 26]. Taking into account the sense of the magnetic
field, one obtains a pair of commuting Hamiltonians. Both these Hamiltonians can
be written in terms of two pairs of mutually commuting oscillator-type creation
and annihilation operators, which then generate two mutually commuting von
Neumann algebras, commutants of each other. The associated von Neumann algebra
of observables displays a modular structure in the sense of the Tomita-Takesaki
theory, with the algebra and its commutant referring to the two orientations of the
magnetic field.

Hilbert spaces, at the mathematical side, realize the skeleton of quantum theories.
Coherent states (CS), defined as a specific overcomplete family of vectors in the
Hilbert space describing quantum phenomena [3, 12, 17, 20, 23], constitute an
important tool of investigation. In the studies and understanding of noncommutative
geometry, CS were proved to be useful objects [14]. Based on the approach devel-
oped in [22], Gazeau-Klauder CS were constructed in noncommutative quantum
mechanics [6]. Besides, in studying, in the noncommutative plane [15], the behavior
of an electron in an external uniform electromagnetic background coupled to a
harmonic potential, matrix vector coherent states (MVCS) as well as quaternionic
vector coherent states (QVCS) were constructed and discussed.

Our present contribution paper is organized as follows:

e First, we formulate the Hilbert-Schmidt operators and the Tomita-Takesaki
modular theories in the framework of noncommutative quantum mechanics.

* Detailed proofs are given for main frequently used statements in the study of
modular theory and Hilbert-Schmidt operators. As application, a construction of
CS from the thermal state is achieved as in a previous work [1]. Relevant proper-
ties are discussed. Then, a light is put on the Wigner map as an interplay between
the noncommutative quantum mechanics formalism [22] and the modular theory
based on Hilbert-Schmidt operators.

 Finally, the motion of a charged particle on the flat plane xy in the presence of a
constant magnetic field along the z-axis with a harmonic potential is studied.
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2 von Neumann Algebras: Modular Theory, Hilbert-Schmidt
Operators, and Coherent States

This section recapitulates fundamental notions and main ingredients of the modular
theory used in the sequel. More details on these mathematical structures and their
applications may be found in a series of works [1, 2, 7, 8, 10, 19, 21, 25-27] (and
references therein), widely exploited to write this review section.

2.1 Basics on von Neumann Algebras

In this paragraph, $ denotes a Hilbert space over C. §) is assumed to be separable,
of dimension N, which could be finite or infinite. Denote by £(5)) the C*-algebra
of all bounded operators on §). The following definitions are in order:

Definition 2.1 Let & be an algebra. A mapping A € & > A* € & is called
an involution, or adjoint operation, of the algebra &, if it has the following
properties:

1. A=A
2. (AB)* = B*A*, withA,Be ®, A*, B* e &
3. (@A + BB)* =aA* + BB*, a,p eC.

(o is the complex conjugate of «.)

Definition 2.2 *-algebra
An algebra with an involution is called *-algebra and a subset 28 of & is called
self-adjoint if A € B implies that A* € B.

The algebra ® is a normed algebra if to each A € & there is associated a real
number |[|A||, the norm of A, satisfying the requirements

1. ||A]||=0and ||A|| = 0if, and only if, ||A|| = 0,
2. |l All = |al[|All,

3. [IA + BlI<||All + [IBI],

4. ||AB|I</|AlIlIBII.

The third of these conditions is called the triangle inequality and the fourth the
product inequality. The norm defines a metric topology on & which is referred to as
the uniform topology. The neighborhoods of an element A € & in this topology are
given by

U(Ase) ={B; B €&, ||B— Al <e&}, 2.1)
where ¢ > 0. If & is complete with respect to the uniform topology, then it is called

a Banach algebra. A normed algebra with involution which is complete and has the
property ||A|| = ||A*|] is called a Banach *-algebra. Then, follows the definition:
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Definition 2.3 A C*-algebra is a Banach *-algebra & with the property
IA*All = [|Al? (2.2)

forall A € &.

Before going further, let us deal, in the following, with some notions about
representations and states.

Definition 2.4 *-Morphism between two *-algebras
Let & and B be two *-algebras. The *-morphism between & and B is given by
the mapping 7 : A € & > 7w (A) € ‘B, satisfying:

1. n(¢A+ BB) =an(A) + fr(B)
2. 1(AB) = n(A)m(B)
3. 1(A*) = (A)*

forall A, B € &,a € C.

Remark 2.5 Each *-automorphism 7 between two *-algebras & and ‘B is positive
because if A>0, then A = B*B for some B € &. Hence,

7(A) = n(B*B) = n(B)*7(B)>0. 2.3)

Definition 2.6 Representation of a C*-algebra

A representation of a C*-algebra & is defined to be a pair (), ), where §) is a
complex Hilbert space and 7 is a *-morphism of & into £(£)). The representation
(9, ) is said to be faithful if, and only if, 7 is a *-isomorphism between & and
7 (®), i.e., if, and only if, ker 7 = {0}.

Each representation (), ) of a C*-algebra & defines a faithful representation of
the quotient algebra &, = & /ker 7.
Then, follows the proposition on the criteria for faithfulness:

Proposition 2.7 ([8], p. 44)
Let (9, w) be a representation of the C*-algebra &. The representation is faithful
if, and only if, it satisfies each of the following equivalent conditions:

1. kermt = {0};
2. |lm(A)]| = ||Al| forall A € &;
3. n(A) > Oforall A > 0.

The proof of this proposition is achieved by the following proposition:

Proposition 2.8 ([8], pp. 42—43)
Let & be a Banach *-algebra with identity, B a C*-algebra, and 7w a *-morphism of
& into B. Then 7 is continuous and

[l (D<Al (2.4)

forall A € &. Moreover, if  is a C*-algebra, then the range 5, = {n(A); A € &}
of w is a C*-subalgebra of B.
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Proof (See [8], p. 43)
First assume A = A*. Then since 85 is a C*-algebra and 7 (A) € B, one has

[l ()] = sup {|A]; & € o ((A))} (2.5)

by Theorem 2.2.5(a) (see [8, p. 29]). Next, define P = m(ll¢) where 1l denotes
the identity of &. It follows from the definition of & that P is a projection in ‘B.

Hence replacing 5 by the C*-algebra P*B P, the projection P becomes the identity
Ilss of the new algebra 5. Moreover, 7(®) < *B. Now it follows from the
definitions of a morphism and of the spectrum that o3 (7 (A)) € o (A). Therefore,

I (A)]|<sup {|A]; A € o (A)} <[|All (2.6)

by the following Proposition:

Proposition 2.9 ([8], p. 26)
Let A be an element of a Banach algebra with identity and define the spectral radius

p(A) of A by

p(A) = sup{|Al; » € 0@ (A)}. (2.7)
It follows that
p(A) = lim [|A"||Y" = inf||A"||"/"<||A]l. (2.8)
n— 00 n

In particular, the limit exists. Thus the spectrum of A is a nonempty compact set.

Proof (See [8], p. 26) Let [A|" > ||A"|| for some n > 0. As each m € Z can be
decomposed as m = pn + g with p, g € Z and 0<q < n one again establishes that
the series

Y (%)m (2.9)

m=0

is Cauchy in the uniform topology and defines (A1l — A)~!. Therefore,
p(A<|A"| " (2.10)
for all n > 0, and consequently
p(A)<inf||A™||V/"< lim inf]|A™||Y/". (2.11)
n n—od
Thus to complete the proof it suffices to establish that p(A)>r4, where
ra = lim sup|lA™||!/". (2.12)
n—od

There are two cases.
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Firstly, assume O € rgs (A), i.e., A isinvertible. Then 1 = ||A" A7"||<[|A"|| [|[A™"]]
and hence 1<rqr4-1. This implies r4 > 0. Consequently, if r4 = 0, one must have
0 erg(A)and p(A)>ra.

Secondly, we may assume r4 > 0. We will need the following observation. If
A, is any sequence of elements such that R, = (Il — An)_l exists, then I — R, =
—A,(1—A)land A, = —(1 = R,)(1 — (1 — R,))) L. Therefore, ||1 — R, || — O
is equivalent to ||A,|| — O by power series expansion.

Define S4 = {A; A € C, [A|>ra}. We assume that S4 C rg(A) and obtain a
contradiction. Let w be a primitive nth root of unity. By assumption

n k —1
Ru(As ) =n"' 3" (11 - “’)\—A> (2.13)
k=1

is well defined for all A € S4. But an elementary calculation shows that

A\ !
R,(A;)) = (11 - Tn) . (2.14)

Next one has the continuity estimate
kAN kAN
- 11— —
A A
kg L k
A 1 1 A
1-22) ofa(-——) (=22
ra A ra A

<A —ralllAll sup [[(y 1 —A)H2, (2.15)
YESA

-1

which is uniform in k. The supremum is finite since A +— |[(All — A7 s
continuous on rg (A) and for |A| > ||A|| one has

100 = AT Y HAL /A" = (= 1A~ (2.16)
n>=0

It follows then that for each ¢ > O there is a A > r4 such that

-5y (-2

uniformly in n. But ||A"||/A" — 0 and by the above observation ||(1l — A/~ -
I|] — 0. This implies that ||(1 — A”/rﬁ)_1 — 1| — 0 and [|[A"[|/r} — O
by another application of the same observation. This last statement contradicts,
however, the definition of r4 and hence the proof is complete. ]

<e (2.17)
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Finally, if A is not self-adjoint one can combine this inequality with the C*-norm
property and the product inequality to deduce that

I (A1 = || (A*A)||<||A* A< A% (2.18)

Thus ||7(A)]|<||A]| for all A € & and 7 is continuous.

The range 9B, is a *-subalgebra of B by definition and to deduce that it is a
C*-subalgebra we must prove that it is closed, under the assumption that & is a
C*-algebra.

Now introduce the kernel ker 7 of 7 by

kerm ={A € &; 7(A) = 0} (2.19)

then ker m is closed two-sided *-ideal. Given A € & and B € kerm then
7w(AB) = n(A)n(B) = 0,7 (BA) = n(B)n(A) = 0, and n(B*) = n(B) = 0.
The closedness follows from the estimate ||7(A)||<||A]||. Thus we can form the
quotient algebra &, = &/kerw and &, is a C*-algebra. The elements of &, are
the classes A = {A+1; I € ker 7} and the morphism 7 induces a morphism 77 from
&, onto B by the definition 7 (A) = 7 (A). The kernel of 7 is zero by construction
and hence 7 is an isomorphism between &, and ‘B, . Therefore, one can deﬁne a
morphism 7 ~! from the *-algebra B, onto the C*-algebra &, by 7! (& (A)) =
and then applying the first statement of the proposition to 7~ and 7 successwely
one obtains

1A|] = |17~ @A) I<I17 (A)IIA]]. (2.20)

Thus ||A|| = ||7T(A)|| = ||7T(A)|| Consequently, if w(A,) converges umformly in
B to an element A, then A converges in &, to an element A and Ap = JT(A)
m(A) where A is any element of the equivalence class A. Thus Ay € B, and B,
is closed. ([l

Proof of Proposition 2.7 (See [8], p. 44) The equivalence of condition (1) and
faithfulness is by definition. Prove that (1) = (2) = (3) = (1).

(1) = (2) Since kerm = {0}, we can define a morphism 7 ~! from the range of
7 into & by 771 (m(A)) = A and then applying Proposition 2.8 to 7! and 7
successively one has

Al = [l (A< 17 (A) <Al 2.21)

2)= B3)If A > 0, then ||A|| > 0 and hence ||7(A)|| > 0, or 7(A) # 0. But
1 (A)>=0 by Proposition 2.8 and therefore 7(A) > 0. (3) = (1) If condition (1) is
false, then there is a B € ker & with B # 0 and 7 (B*B) = 0. But ||B*B||>0 and
as ||B*B|| = ||B||* one has B*B > 0. Thus condition (3) is false. O
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Definition 2.10 Cyclic representation of a C*-algebra

A cyclic representation of a C*-algebra & is defined to be a triplet (9, , ),
where (£, ) is a representation of & and 2 is a vector in § which is cyclic for 7,
in $). Q is called cyclic vector or cyclic vector for w. If K is a closed subspace of )
then R is called a cyclic subspace for $) whenever the set

Y AV A € B,y € R (2.22)

is dense in §).
Definition 2.11 State over a C*-algebra
A linear functional w over the C*-algebra & is defined to be positive if
w(A*A)>0 (2.23)
for all A € &. A positive linear functional w over a C*-algebra & with ||w|| = 1 is
called a state.
Remark 2.12

1. Every positive element of a C*-algebra is of the form A*A and hence positivity
of w is equivalent to w being positive on positive elements.

2. Considering a representation (), 7) of the C*-algebra &, taking Q2 € §) being a
nonzero vector and define wg by

wo(A) = (,7(A)Q2) (2.24)

for all A € &. It follows that wg is a linear function over &, it is also positive
since

wa(A*A) = [|7(A)|>>0. (2.25)

llwq|| = 1 whenever ||2|| = 1 and then, 7 is nondegenerate. In this case wgq is a
state, and is usually called vector state for the representation (£, ).

Definition 2.13 The cyclic representation (£, 7, £2,), constructed from the state
w over the C*-algebra &, is defined as the canonical cyclic representation of &
associated with .

Next it will be demonstrated that the notions of purity of a state @ and irreducibility
of the representation associated with w are intimately related.
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Theorem 2.14 ([8], p. 57)
Let w be a state over the C*-algebra & and (9, 7y, R2y) the associated cyclic
representation. The following conditions are equivalent:

1. (9w, Ty) is irreducible;

2. wis pure;

3. w is an extremal point of the set Eg of states over &. Furthermore, there is
one-to-one correspondence

wr(A) = (TQq, 7,(A)20) (2.26)

between positive functionals wr, over &, majorized by w and positive operators
T in the commutant 7w, of 7., with ||T||<1.

Proof (See [8], pp. 57-58)

(1) = (2) Assume that (2) is false. Thus there exists a positive functional p such
that p(A*A)<w(A*A) for all A € &. But applying the Cauchy-Schwarz inequality
one then has

Ip(B*A)|> < p(B*B)p(A*A)
o (B*B)w(A*A)
11770 (B) Q0|12 11770, (A) 20|12

N

Thus 77, (B)2, X 7, (A)R2, —> p(B*A) is a densely defined, bounded, sesquilin-
ear functional, over ), X ), and there exists a unique bounded operator 7', on £,
such that

(T0(B)Qu, T (A)Q0) = p(B*A).
As p is not a multiple of @ operator T is not a multiple of the identity. Moreover,

0 < p(A*A)

<
= (T (A) R0y, T7,(A)2)
S w(A%A) = (7,(A) Q0. 16 (A)Q0)

and hence 0<7 <1. But

(10(B)Q, T (C)7 (A)20) = p(B*CA)
= p((C*B)*A) = (70(B)Qu, 7w (C) T 76 (A) Q)

and therefore T € /. Thus condition (1) is false. (2) = (1) Assume that (1)
is false. If T € =, then T* € n, and T + T*, (T — T*)/i are also elements
of the commutant. Thus there exists a self-adjoint element S of 7/, which is not a
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multiple of the identity. Therefore there exists a spectral projector P of S such that
0 < P < 1l and P € n),. Consider the functional

p(A) = (PQy, T, (A)20).
This is certainly positive since
P(A*A) = (P, (A)Q0p, Pry(A)Q2,)=0.
Moreover,

w(A™A) = p(A*A) = (16(A)Q0, (I — P)1y(A)Q0)
> 0.

Thus w majorizes p. It is verified that p is not a multiple of w and hence (2) is false.
This proves the equivalence of the first two conditions stated in the theorem and
simultaneously establishes the correspondence described by the last statement.

The equivalence of conditions (2) and (3) is performed as follows. Suppose that
w is an extremal point of Eg and w # 0. Then, we must have ||w|| = 1. Thus w
is a state and we must deduce that it is pure. Suppose the contrary; then there is
a state w] # w and a A with 0 < A < 1 such that o> w;. Define wy by wy =
(0 — Aw1)/(1 = A); then [|@a|| = ([lo|| — Allw1|)/(1 —2) = 1 and w; is also a
state. But w = Aw; + (1 — A)w, and w is not extremal, which is a contradiction. []

In the following, some notions on von Neumann algebra are provided. To specify
the Hilbert space upon which a von Neumann algebra 2( acts, one often uses the
notation {2, $} to denote the von Neumann algebra 2.

Definition 2.15 von Neumann algebra

Let $ be a Hilbert space. For each subset 2l of £($)), let 2" denote the set of
all bounded operators on $ commuting with every operator in 2[. Clearly, 2’ is a
Banach algebra of operators containing the identity operator /g on §).

(1) A von Neumann algebra is a *-subalgebra 2l of £($)) such that 2 = "

(ii) 2 denotes the commutant of 2, the set of all elements in £(§)) which commute
with every element of 2.

(iii) A von Neumann algebra always contains the identity operator I on $). It is
called a factor if ANA = Clg.

(iv) If a subset S of L£($)) is invariant under the *-operation, then S”, the double
commutant of S, is the smallest von Neumann algebra containing S, and it is
called the von Neumann algebra generated by S.

We also have the following definition:

Definition 2.16 A von Neumann algebra 2l C L£(5)) is a C*-algebra acting on the
Hilbert space §) that is closed under the weak-operator topology: A, "R A
(E1ALm) n2he (§1An), V&, n € $, or equivalently under the o-weak topology:
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Ay "ZEX A ff for all sequences (&), (¢x) in § such that Z ||“g‘k||2 < +o00 and
k=1
+00 oo +00
Z||ck||2 < 400 we have Y (&4 tx) "> Z EAL).
k=1 k=1 k=1
Case of L(9)

(1) L($) is a von Neumann algebra and even a factor since £($) = Cll (Il =
Ig).

(i) The Hilbert space adjoint operation defines an involution on £($)) and with
respect to these operations and this norm, £($)) is a C*-algebra. In particular,

the C*-norm property follows from ||A||2<||A*||||A]| = ||A]|>.
(iii) Any uniformly closed subalgebra 9t of £($)) which is self-adjoint is also a
C*—algebra.

Next, it comes the following definition:

Definition 2.17 Closure-Orthogonal projection

If 901 is a subset of £($)) and R is a subset of £, [ K] denotes the closure
of the linear span of elements of the form A&, where A € Mt and & € R. [MNR]
also denotes the orthogonal projection onto [9)T£].

(iv) A *-subalgebra 91 C L($) is said to be nondegenerate if [D1H] = .
(v) If M < L($H) contains the identity operator, then, it is automatically
nondegenerate.

A nondegenerate *-algebra contains the identity operator; If a subalgebra
of £($)) is invariant under the *-operation, then it is called a *-subalgebra of
L($) or a *-algebra of operators on ).

We have the following proposition (see [25, pp. 72-73]):

Proposition 2.18 ([25], p. 72)
The subset M of L($H) is a von Neumann algebra on ).

Proof (See [25], p. 72)
Let {91;, $;}ie; be a family of von Neumann algebras. Let $) denote the
S5

direct sum Zﬁi of Hilbert spaces {$);}ics. Each vector & = {&;}ic; in H is

iel

denoted by Z &;. For each bounded sequence {x;};c; in 1_[ 9;, one defines
iel iel
an operator x on §) by

o @
X ZEi = sz'éi 2.27)

iel iel
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®
Then, x is a bounded operator on $) denoted by Z x;. Let 201 be the set of all
iel
such x.
Particularly, taking 90t as a subset of £($)), the proof is completed. (]

Definition 2.19 Cyclic and separating vector
The modular theory of von Neumann algebras is such that to every von Neumann
algebra 91 C L($), and to every vector £ € ) that is cyclic

Mg) =9 (2.28)

i.e., the set {¥ by &} (9 denoting a set of bounded operators on §)) is dense in $);
and separating i.e. for A € 9,

AE=0= A=0. (2.29)

Moreover, a vector ¥ € $) is said separating for a von Neumann algebra 2 if
Ay = By, A, B €2, if and only if A = B.
We have the following definitions:

Definition 2.20 Separating subset.
Let 2 be a von Neumann algebra on a Hilbert space 3. A subset & C §) is
separating for 2( if for any A € 2, A§ = 0forall £ € K implies A = 0.

Definition 2.21 Cyclic and separating subset of a von Neumann algebra.

Let {2, $} be a von Neumann algebra. A subset 9 of ) is called separating
(resp.cyclic) for A if a& = 0, a € A, for every £ € M implies a = 0 (resp. the
smallest invariant subspace [(9)1] under 2( containing 97 in the whole space §).

Recall that a subset R C $) is cyclic for 0T if [DK] = $H. There is a dual relation
between the properties of cyclic for the algebra and separating for the commutant.
We have the following propositions:

Proposition 2.22 ([8], p. 85)
Let 2 be a von Neumann algebra on $) and K < $ a subset. The following
conditions are equivalent:

(1) Ris cyclic for A;
(2) Ris separating for U’ .

Proof (See [8], p. 85)
(1) = (2) Assume that £ is cyclic for 2 and choose A’ € 2’ such that A’& = {0}.
Then, for any B € 2l and § € K, A’BE = BA’§ = 0, hence A’/[R] = 0 and
A =0.

(2) = (1) Suppose that 8 is separating for 2’ and set P’ = [R(R]. P’ is then a
projection in 2" and (1 — P’)& = {0}. Hence I — P’ = 0 and [/AK] = H. O
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Definition 2.23 The weak and o-weak topologies

If&,n € $H, then A — |(&, An)| is a seminorm on L(5)). The locally convex
topology on L($)) defined by these seminorms is called the weak ropology. The
seminorms defined by the vector states A — |(&, A&)| suffice to define this topology
because §) is complex and one has the polarization identity

3
A, An) =) i E +i"n, AE +i")). (2.30)
n=0

Let {&,}, {n,} be two sequences from §) such that

D lEl* <o, > Inall* < oo (2.31)

Then for A € L($)

D Enn An) | <Y 1ENIAI 74l
" " 12 1/2
< Al (Znsnuz) (Znnmz)
< oo. ! ! (2.32)

Hence A —

Z(En, Ann)‘ is a seminorm on £(5)). The locally convex topology

n
on L($) induced by these seminorms is called the o -weak topology.

Notations: In the sequel,

* 2 denotes the positive part of the von Neumann algebra 2( or the set of positive
elements of the von Neumann algebra 2(;

o 2, denotes the predual of a von Neumann algebra. 1t is the space of all o-weakly
continuous linear functionals on £;

¢ £($)1 denotes the unit ball of £(5). £($) is norm dense in the unit ball of the
norm closure of £(£)), and it is taken as a C*-algebra (see [8, p. 74]).

Definition 2.24 Let ¢ : 2 — C be a bounded linear functional on 2, which is
denoted by (¢; A), A € 2.
¢ is called a state on this algebra if it also satisfies the two conditions:

(a) {p; A*A)>0, VAe
() (p;Ig) =1.

The state ¢ is called a vector state if there exists a vector ¢ € $) such that
(p: A) = (9lAd), VA e (2.33)

Such a state is also normal.



74 I. Aremua et al.

Definition 2.25 A state w on a von Neumann algebra 2 is faithful if w(A) > O for
all nonzero A € 2.

Remark 2.26 (See [8], Example 2.5.5 p. 85)
Let 2 = L($) with $ separable. Every normal state w over 2l is of the form

w(A) =Tr(pA), (2.34)

where p is a density matrix. If w is faithful, then w(E) > 0 for each rank one
projector, i.e., ||p!/?¥|| > 0 for each ¥ € $ \ {0}. Thus p is invertible (in the
densely defined self-adjoint operators on §)). Conversely, if w is not faithful, then
w(A*A) = 0 for some nonzero A and hence ||p'/?A*y|| = 0 forall ¥ € §, i.e., p
is not invertible. This establishes that w is faithful if, and only if, p is invertible.

Lemma 2.27 ([8], p. 76) Let {Ay} be an increasing set in L($)+ with an upper
bound in L(9) 4. Then { Ay} has a least upper bound (l.u.b.) A, and the net converges
o-strongly to A.

Proof (See [8], p. 76) Let £, be the weak closure of the set of Ag with 8 > a.
Since £($)1 is weakly compact, there exists an element A in (), Ry. For all A,
the set of B € L($)+ such that B> A, is o-weakly closed and contains £, hence
AZ>A,. Thus, A majorizes {A,} and lies in the weak closure of {Ay}. If B is another
operator majorizing {A,}, then it majorizes its weak closure; thus, B> A and A is
the least upper bound of {A,}. Finally, if £ € §), then

1A — Agll [I(A — Ag) "% ]2

<
< ANIE, (A — Ag))
— 0. (2.35)

o

I1(A — Ag)E|?

Since the strong and o -strong topology coincide on £(£)1, this ends the proof. [

Proposition 2.28 ([8], p. 68) Let Tr be the usual trace on L($)), and let T () be
the Banach space of trace-class operators on $) equipped with the trace norm T +—

Tr(|T|) = ||T || Then it follows that L($) is the dual T ()™ of T ($) by the duality
AXT e L(®) xTE®) — Tr(AT). (2.36)

The weak™ topology on L($)) arising from this duality is just the o -weak topology.

Proof (See [8], pp. 68—69) Due to the inequality |Tr(AT)|<||A|| |T ||, £($) is
the subspace of 7 ($)* by the duality described in the proposition. Conversely,
assume w € 7 ($)* and consider a rank one operator E,,  defined for ¢, ¢ € $ by

Eoyx =oW, x)- (2.37)



On Hilbert-Schmidt Operator Formulation of Noncommutative Quantum Mechanics 75
One has E; ,, = Ey g and Eq y Ey o = |1¥|1>E,.,. Hence

HEgylle = IWITH(Eg o) = 11¥11gll. (2.38)
It follows that
lw(Eg )<l ol V1. (2.39)

Hence there exists, by the Riesz representation theorem, an A € L($)) with
[|A]|<[|w|| such that

0 (Egy) = (Y, Ap). (2.40)
Consider wy € T ($)* defined by
wo(T) = Tr(AT) (2.41)
then
wo(Epy) = Tr(AE, y)
= (¥, Ag)

= w(Egy). (2.42)

Now for any T € T (£)) there exist bounded sequences {1, } and {¢, } and a sequence
{oe;} of complex numbers such that

3 o] < o0 (2.43)
n

and

T = Zan Ey, y- (2.44)
n
The latter series converges with respect to the trace norm and hence

o(T) =Y anw(Ey,y,)

=Y anwo(Ey,.y,) = oo(T) = Tr(AT). (2.45)

n

Thus L£($) is just the dual of 7 (£)). The weak* topology on L(£)) arising from this
duality is given by the seminorms

A € L($) — |Tr(AT)). (2.46)
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Now, for T as in (2.44), one has
Te(AT) = ) oy Tr(Ey, y,A)

=Y an(Yn, Agy). (2.47)

Thus the seminorms are equivalent to the seminorms defining the o -weak topology.
O

It follows the theorem below:

Theorem 2.29 (/8, p. 76])
Let o be a state on a von Neumann algebra 2 acting on a Hilbert space $). The
following conditions are equivalent:

(1) w is normal;

(2) w is o-weakly continuous,

(3) there exists a density matrix p, i.e., a positive trace-class operator p on $) with
Tr(p) = 1, such that

w(A) = Tr(pA). (2.48)

Proof (See [8, pp. 76 to 78])
(3) = (2) follows from Proposition 2.28 and (2) = (1) from Lemma 2.27. Next
show (2) = (3). If w is o-weakly continuous there exist sequences {&,}, {n,} of

vectors such that » " |[&|* < 0o, Y |[nall* < oo, and @(A) = Y (&, Ana).
n n n

o0
Define § = @ £, and introduce a representation 7 of 2{ on 9 by n(A)(@ Yp) =

n=1 n

@(Al/f,,). Let & = @g,,, n = @nn and then w(A) = (&, 7(A)n). Since w(A)

n n n
isreal for A € 4 (with 24 denoting the positive part of the von Neumann algebra
2A or the set of positive elements of the von Neumann algebra 2(), we have

4o (A) = 2(&, 1 (A)n) +2(&, T (A")n)
=2, 7(A)n) + 2(n, w(A)§)
=E+n7A)E+n) —E—nmx(A)E—n)
< @E+n, 7 (A)E + ). (2.49)

Hence, by Theorem 2.14 there exists a positive T € ()" with 0T <1 /2 such
that

&, m(A)n) =T E+n),n(ATE +1n)
= (¥, 7 (A)Y). (2.50)
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Now ¢ € $ has the form Y= @ Yy, and therefore
n

©(A) =) (Y, AY). @251)

The right side of this relation can be used to extend w to a o-weakly continuous
positive linear functional @ on L£($). Since @(ll) = 1, it is a state. Thus, by
Proposition 2.28 there exists a trace-class operator p with Tr(p) = 1 such that

@(A) = Tr(pA). (2.52)
Let P be the rank one projector with range &; then
(&, p8) =Tr(PpP) =Tr(pP) = w(P)=0. (2.53)

Thus p is positive. Turn now to the proof of (1) = 2. Assume that w is a normal
state on 2. Let { By} be an increasing net of elements in 2{ such that || By||<1 for
all o and such that A — w(AB,) is o-strongly continuous for all . One can use
Lemma 2.27 to define B by

B =1lub. By = o-stronglim By,. (2.54)
o o

Then O<B<1l and B € 2. But for all A € 2 we have

< w(A(B — By)A")w(B — By)
< AP (B = Ba). (2.55)

Hence
l|w(-B) — w(-By)||<(@(B — By))'/2. (2.56)

But w is normal. Therefore w(B — B,) — 0 and w(-By) tends to w(-B) in norm.

As 2, is a Banach space, w(-B) € 2. Now, applying Zorn’s lemma, we can find a

maximal element P € 20 N2 such that A — w(AP) is o-strongly continuous. If

P = 1, the theorem is proved. Assume ad absurdumthat P # 1. Put P’ =1 — P

and choose & € $) such that w(P’) < (&, P’§). If {B} is an increasing net in 2[4
o

such that By <P’, w(By)>(&, By&), and B = L.ub. By = o-strong lim, B, then
o

B € 2, B<P/, and w(B) = supw(By)=>sup (§, Bo§) = (&, BE). Hence, by
Zorn’s lemma, there exists a maximal B € 2( such that B<P’ and w(B)>(&, BE).
Take Q = P’ — B. Then, Q € 2,,Q # 0, since w(P’) < (&, P’§), and if
AeA,, AKQ, A #0, then w(A) < (&, A§) by the maximality of B.
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For any A € 2 one has
QA*AQ<|IAIFQ*<IIAIR Q11 Q. (2.57)

Hence (QA*AQ)/I|A|*||Q]I<Q and w(QA*AQ) < (§, QA*AQE). Combining
this with the Cauchy-Schwartz inequality one finds

lo(AQ))* < (1w (QA*AQ)
< (&, QA*AQE) = ||AQE| . (2.58)

Thus both A — w(AQ) and A — w(A(P + Q)) are o-strongly continuous. Since
P + O<1, this contradicts the maximality of P. O

Proposition 2.30 ([8], p. 86)
Let A be a von Neumann algebra on a Hilbert space §). Then the following four
conditions are equivalent:

(1) U is o-finite;

(2) there exists a countable subset of $) which is separating for 2;

(3) there exists a faithful normal state on 2A;

(4) U is isomorphic with a von Neumann algebra mw (1) which admits a separating
and cyclic vector.

Proof (See [8, p. 86])

(1) = (2) Let {&,} be a maximal family of vectors in $) such that [2('&,] and [1&,/]
are orthogonal whenever @ # «’. Since [21'&,] is a projection in 2 (in fact the
smallest projection in 2( containing &), {£,} is countable. But by the maximality,

D e =1. (2.59)

o

Thus {&,} is cyclic for 2. Hence {&,} is separating for 2( by Proposition 2.22. (2)
= (3) Choose a sequence &, such that the set {£,} is separating for 2 and such that

Z||sn||2 = 1. Define w by
n

o(A) =) (&, A&y). (2.60)

w is o-weakly continuous, hence normal, by using Theorem 2.29. If w(A*A) = 0,
then 0 = (&,, A*AE,) = ||A&,||? for all n, hence A = 0. (3) = (4) Let w be
a faithful normal state on 2l and (£, 7, 2) the corresponding cyclic representation.
Since 7 (2() is a von Neumann algebra, if 7(A)Q2 = Oforan A € 2, then w (A*A) =
[l7(A)Q||* = 0, hence A*A = 0 and A = 0. This proves that 7 is faithful and Q
separating for 77 (). (4) = (1) Let Q be the separating (and cyclic) vector for 7 (2[),
and let { Ey } be a family of mutually orthogonal projections in 2. Set £ = Z E,.

o
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Then

I (E)QII* = (m(E)Q, 7(E)Q)
=Y (1(Ex)Q, 7(Ea)R)

o,

=Y lln(E)QII? 2.61)

by Lemma 2.27. Since Z ||7r(E0,)§2||2 < +o00, only a countable number of the

o
7 (Ey)S is nonzero, and thus the same is true for the E. [l

2.2 Hilbert Space of Hilbert-Schmidt Operators

Here we recall some definitions provided in [1, 2, 21] (and references therein).

Definition 2.31 The trace of a linear operator.
A linear operator A defined on the separable Hilbert space $) is said to be of trace

class if the series Z(ek |Aex) converges and has the same value in any orthonormal

k
basis {ex} of . The sum

TrA = Z(ek|Aek) (2.62)
k

is called the trace of A.

Definition 2.32 Trace norm
Consider the class of Hilbert-Schmidt operators. For every such operator A, the
trace norm is given by

TrVA*Al = Tr[ Y _ lex)halexl] = Y Ak < +o0. (2.63)
k k

Remark 2.33 If A is any operator of trace class, then A* is also of trace class:

TrA* =) (ex|A*er) = Y (ex|Aex)* = (TrA)*. (2.64)
k k

Definition 2.34 Hilbert-Schmidt operator.

Given a bounded operator, having the decomposition A = Z | k) Ak (dk|, where

k
{¢r} is an orthonormal basis of §), and A, A, ... positive numbers, A is called a

Hilbert-Schmidt operator if

Tr[AA*] = Z(¢k|A*A¢k) = Zxﬁ < +00. (2.65)
k

k
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Remark 2.35 If the series (2.63) is infinite, its convergence implies that Ay —
0 when k& — +o0. Consequently, k,%)kk for sufficiently large value of k.

Hence, ZA% converges when Z Ak converges. This shows that any completely

k k
continuous operator A satisfying (2.63) is a Hilbert-Schmidt operator.

Definition 2.36 Hilbert-Schmidt norm.
For any Hilbert-Schmidt operator A, the quantity

1A]l2 = VTi[A*A] (2.66)

exists, and is called Hilbert-Schmidt norm of A.

Definition 2.37 Let 5,(9), B2($) C L($) the set of all bounded operators on $),
be the Hilbert space of Hilbert-Schmidt operators on § = L*(R), with the scalar
product

(X|Y), =Tr[X*Y] = Z(Cbk|X*Y<Dk), (2.67)
k

where {®y}72, is an orthonormal basis of ).

Br(H) ~ H ® $H (where §H denotes the dual of §) and basis vectors of B, (§)) are
given by

D 1= | D) (D], n,1=0,1,2,...,00. (2.68)

Remark 2.38 In the notation B;($)) ~ H ® 5,_[) ® § is taken here as the
completion of the algebraic tensor product of §) by § which is a pre-Hilbert space
n

containing finite sums of the type Z Ajklg)) ® |k}, where a basis of § ® $
Jj. k=0

is {l¢pj) ® |M}?°k:0. Then, B>($)), being the Hilbert space of Hilbert-Schmidt

operators on ) is isomorphic to $ ® 5, since the separable Hilbert spaces are taken

two by two isomorphic each other. Setting [¢;) ® |¢pr) = |¢;){Pk|, B2($) admits
for orthonormal basis {¢jk}??k:0 such that ¢ := ;) (Pl

Definition 2.39 Let A and B be two operators on ). The operator A Vv B is such
that

AV B(X)=AXB*, X € B,(9). (2.69)

For bounded linear operators A and B, A v B defines a linear operator on B>(5)).
Indeed, YA, B € L($), (the space of bounded linear operators on £)), since
By(H) C L(H), we get VX € Br(H), X € L(H). Then, AXB* € L(£), i.e.
(A V B) € L($). Thus, A v B defines a bounded linear operator on B> ($)).
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From the scalar product in 5(5)),
(X|Y)2 = Tr[X*Y], X,Y € Ba(%), (2.70)
it comes
Tr[X*(AYB*)]=Tr[(A*XB)"'Y] = (AV B)* = A* v B*. (2.71)
Since for any X € B,(9),
(A1 V B1)(A2V B)(X) = A1[(A2 v B2)(X)]BY = A1A2X By BY, (2.72)
we have

(A1 Vv B1)(Ay Vv By) = (A1A2) Vv (B1By). (2.73)

2.3 Modular Theory and Hilbert-Schmidt Operators
2.3.1 Modular Theory

This paragraph is devoted to Tomita-Takesaki modular theory [24-26] of von
Neumann algebras [19, 27]. Recall that the origins of Tomita-Takesaki modular
theory lie in two unpublished papers of M. Tomita in 1967 [26] and a slim volume
by M. Takesaki. As one of the most important contributions in the operator algebras,
this theory finds many applications in mathematical physics.

We provide some key ingredients from [1, 2, 7, 8, 25] as needed for this section.
First, let us deal with some notions from [8]:

1. Let 2 be a von Neumann algebra on a Hilbert space $) and 21’ its commutant. Let
® € §H be a unit vector which is cyclic and separating for 2. This is the case, if
2l is a o -finite von Neumann algebra, and by applying Proposition 2.22.

2. The mapping A € 2 = AQ € § then establishes a one-to-one linear
correspondence between 2l and a dense subspace A2 of §). Let So and Fy be
two antilinear operators on 2(€2 and 2'Q2, respectively. By Proposition 2.22, € is
cyclic and separating for 2 and 2. Therefore the two antilinear operators Sy and
Fp, given by

SoAQ = A*Q, for AeX
FoA'Q = A*Q for A e (2.74)

are both well defined on the dense domains on D(Sy) = A2 and D(Fp) = A'Q2.
Then follows the definition:

Definition 2.40 Define S and F as the closures of Sy and Fp, respectively, i.e.,

S=S, F=F (2.75)
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where the bar denotes the closure. Let A be the unique, positive, self-adjoint
operator and J the unique antiunitary operator occurring in the polar decompo-
sition
S=JA? (2.76)

of S. A is called the modular operator associated with the pair {2, 2} and J the
modular conjugation.
The following proposition provides connections between S, F, A, and J:
Proposition 2.41 ([8, p. 89]) The following relations are valid:

A=FS, A'=SF

S=JAY2, F=JA"'?

J=J, J? =14
ATV2 = gAl2g. (2.77)

Proof (See [8, pp. 89-90]) A = §*S = FS, and S = J A'/? by Definition 2.40.
Using the fact that for any y € D(Sp) there exists a closed operator Q on §),with
S(’)k = Fy, Fék = Sp, such that

o0Q=1v, 0*Q=Sw (2.78)

where A'D(Q) € D(Q), 00’ 2 Q'Q forall Q' € A, with Sy = So_l, it
follows by closure that S = S~!, and hence

JAYVZ =g = § 1 = A2 %, (2.79)

so that J2AY/2 = JA~1/2 j* Since JA~'/2J* is a positive operator, and by the
uniqueness of the polar decomposition one deduces that

J? =1 (2.80)
and then
J*=1J, ATV2=JAl?), (2.81)
But this implies that
F=S8"=(A"12n*=ya"12 (2.82)
and
SF=A"1277A712 = AL, (2.83)
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3. The principal result of the Tomita-Takesaki theory [8, 25] is that the following
relations

JAJ =AU, ATAATIE =91 (2.84)

hold for all t € R.
4. Definition 2.42 Modular automorphism group.

Let 2 be a von Neumann algebra, w a faithful, normal state on %,
o, Tw, QL,) the corresponding cyclic representation, and A the modular
operator associated with the pair (w(2l), 2,). The Tomita-Takesaki theorem
establishes the existence of a o-weakly continuous one-parameter group ¢ +— o;”
of *-automorphisms of 2 through the definition

oP(A) = (A, (A) AT, (2.85)

The group ¢ — o, is called the modular automorphism group associated with
the pair (2, w).
5. Definition 2.43 C*-dynamical system.

A C*-dynamical system (&, «) is a C*-algebra & equipped with a group
homomorphism « : G — Aut(®) that is strongly continuous, i.e., g > [|og (x)]]
is a continuous map for all x € &. A von Neumann dynamical system
(2, ) is a von Neumann algebra acting on the Hilbert space $) equipped with
a group homomorphism o : G — Aut(2l) that is weakly continuous, i.e.,
g > (Elog(x)n) is continuous for all x € A and all §, n € 5.

Definition 2.44 A state w on a one-parameter C*-dynamical system (&, o) is a
(e, B)-KMS state, for B € R, if for all pairs of elements x, y in a norm dense «-
invariant *-subalgebra of «-analytic elements of &, then w(xo;5(y)) = w(yx).

Remark 2.45 In the case of a von Neumann dynamical system (2, «), a («, B)-
KMS state must be normal (i.e., for every increasing bounded net of positive
elements x; — x, we have w(x)) — w(x)). Besides, given o : R — Aut(A),
an element x € & is a-analytic if there exists a holomorphic extension of the
map ¢ — «;(x) to an open horizontal strip {z € C||[Imz| < r}, withr > 0, in
the complex plane. The set of a-analytic elements is always a-invariant (i.e., for
all x is analytic, a(x) is analytic)*-subalgebra of & that is norm dense in the C*
case and weakly dense in the von Neumann case.

6. The modular automorphism group associated with w is only the one parameter
automorphism group that satisfies the Kubo-Martin-Schwinger (KMS)-condition
with respect to the state w, at inverse temperature g, i.e.,

w0’ (x) =wx), VYVxe (2.86)
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and for all x, y € A, there exists a function Fy , : R x [0, 8] — C such that:
Fy,y is holomorphicon Rx]0, g[,
Fy y 1is bounded continuouson R x [0, B],
Fey(t) =w(0f(y)x), teR,
Fey (@B +1) =wxo(y), teR. (2.87)

2.3.2 Vector State and von Neumann Algebras

Leto;, i = 1,2,..., N be a sequence of nonzero, positive numbers, satisfying :

N
Zai = 1. Let
i=1

Ny N
O=Y oPi=) o} Xy €B(H) with Xi=l|)|  (2.88)
i=1 i=1

{¢i}:2, being an orthonormal basis of ), and the vectors {X;; = [5;)(¢;l.i,j =
1,2, ..., N} forming an orthonormal basis of B,($)),

(Xij| Xki)2 = 8ikdyj- (2.89)
In particular, the vectors
Pi = Xii = 14} (Gl (2.90)

are one-dimensional projection operators on §). Then, we have the following
properties:

(i) Proposition 2.46 O defines a vector state ¢ on the von Neumann algebra 2;
corresponding to the operators given with A in the left of the identity operator
Igon$,ie, A ={A=AVIIAecL(H)}.

Proof Indeed, for any A v I € 2, since Bo($H) C L(H) and A C L(H),
from the Remark 2.26 and the equality (2.34) together, the state ¢ on 2[; may
be defined by

(p; AV I) = (Q|(AV )(D))2 = Tr[®*AD] = Tr[p, Al

N
with p, =Y aiP;. (2.91)
i=1
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(ii) Proposition 2.47 The state ¢ is faithful and normal.

(iii)

Proof The state ¢ is normal by Theorem 2.29, using the fact that p,, is a density
matrix and since we have

(p; AV I) =Tr[pyAl. (2.92)

Its faithfulness comes from Proposition 2.30 by use of the equivalence (2) <
(3), since 2; C L($) using Eq. (2.34) in the Remark 2.26, we have, with P =
12i) (il

(0; (AV D*(AV D)) = ({(A\/I)*(A\/I)})
[ppA*A]l  [by (2.34)]

5@

I
M=

(SklppA™Alge)  [by (2.67)]

~
Il
—

I
Mz

N
1 {Zanm(m} A*AlG)  [by (291)]

i=1

x~
Il

1

N
Z (G| A% Alge) (gl )

Mzu M=

ai||AG|E @ >0, A€ L($) (2.93)
1

where the {g“,-}lN: | form an orthonormal basis set of §). ® is separating for 2I;,
by use of Theorem 2.29, and the relation

N
(p: (AV D*(AV D) =0 Y ol|Ag|* =0, Vi=12,...,N
i=1
e AVI=0< A=0. (2.94)

Thereby, (¢; (AV I)*(AVv I)) =0ifand onlyif AV I =0. [l
Proposition 2.48 The vector ® is cyclic and separating for 2;.
Proof If X € 3,(%)) is orthogonal to all (A v I)®, A € L(5)), then

N
Tr[X*A®] = Zai% (G| XTALG) =0, VA € L(H). (2.95)
i=1
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Taking A = Xy, it follows from the above equality, (| X*¢x) = 0 and since

Ny Ny
this holds for all k. /, we get X = 0. Indeed, let ® = Y "o/’ P; = Y "o} X;; =

i=1 i=1

N 1
Z a?[¢i)(gi|, then by definition, see Eq. (2.67),
i=1

(X|(AV D®)y =Tr[X*(AV D]
=Tr[X*ADI*]  [by (2.69)]
=Tr[X*AD]

M=

(GkIX*A®lg)  [by (2.67)]

~
Il
-

Il
™M=

~
Il

1 i=1

1
o (G| X AL (Gl

I
M=
M=

o~
Il
_

-
_

ol (G| X Ag)

Il
.MZ

I
-

such that the orthogonality implies

N 1
(XI(AV D) =0= ) o} (&:|X*Agi) =0.
i=1

Now taking A = Xj; = |&x) (1], it follows that

1
o (G X (1o (@Y 12:)

M-

N
> ol (GIX*AG) =

i=1

1
ol (G| X"t

I
w1 M) =

= o (1 X* ).
From (2.97) and (2.98) together, it follows

N

1 1
D o (GIX*AG) = 0= o (G| X*5) =0, Vay > 0.

i=1

N o
(Ck|1 XA {Zaﬁ |§i)(§i|} [Sk) [by (2.88)]

(2.96)

(2.97)

(2.98)

(2.99)



On Hilbert-Schmidt Operator Formulation of Noncommutative Quantum Mechanics 87

Thereby,
(G| X*t) =0, Vk,l= X=0. (2.100)
Therefore, we have
(XIAVDP)=0=—= X=0 (2.101)

implying that the set {(A v I)®, A € 2} is dense in 35(5)), proving from the
Definition 2.19 that ® is cyclic for 2. (]

The fact that & is separating for 2, is obtained through the relation
AvDO=BVIHNO< AVvI=BVvI, YA, Be?. (2.102)

Proof Let A, B € ;, suchthat (AV I[)® = (BV I)®, andtake X #0, X €
B> (). We have
(XI{(AVI)—=(BVI)}®)

=Tr[X*{(AVI)—(BV D}®P]
=Tr[X*(A - B)®I"] [by (2.69)]

(ZkIX*(A B) {Za 1Zi) (Czl} 1ck)  [by (2.88)]

i=1

N
Z (XA — BYG) ()

I
'Mzn M=M=

?<§i|X*(A — B)¢)

—_

.% (&GIX*(A — B)¢;). [by (2.96) and (2.98)] (2.103)

Il
.MZ

I
—

Taking (AVI)® = (BVI)®, the equality (X|{(AVI)— (BV D} ®) = 0

leads to
N

XAV = (BVD} )2 =0 = 3 aZ (61X (A — B)G) =0, a; >0
i=1
— AvI=BVI (2.104)

which completes the proof. (]
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In the same way, & is also cyclic for A, = {A, =1V A|A € L($)}, which
corresponds to the operators given with A in the right of the identity operator
I on 9, hence separating for 2, i.e. [VA)® = (IVB)® < IVA =1IVB.

Then, starting to the above setup, to the pair {2, ¢} is associated:

* aone parameter unitary group t A;?ﬁ € L(H)
* and a conjugate-linear isometry J, : $ — $) that:

alan, P =9 1 eR, (2.105)
T2, =, (2.106)
Jpody=1g. Jyoni =n,"01, (2.107)

Denote the automorphisms by a,(f), and deal with operators A € 2 with % C
L($). Then, taking into account the Definition 2.25 and the Remark 2.26, from the
expression (2.85), the automorphisms, in this case, satisfy the following relation:

o, (D[A] = A;ﬁAA;”f’, VA e Q. (2.108)

The KMS condition with respect to the automorphism group a,(2),t € R, is
obtained for any two A, B € 2, such that the function

Fa,p(t) = (¢; Ay (1)[B]) (2.109)

has an extension to the strip {z = x +iy|t € R,y € [0, 8]} C C such that F4_p(z)
is analytic in the strip (0, 8) and continuous on its boundaries. In addition, it also
satisfies the boundary condition, at an inverse temperature 3

(91 Ay (r +ip)[B]) = (¢; ap(D[B]A), 1 eR. (2.110)

_i
Setting the generator of the one-parameter group by Hy, the operators A, P verify
the relation

A, P = ™Mo and A, = e PH. 2.111)
2.3.3 von Neumann Algebras Generated by Unitary Operators

Before introducing the von Neumann algebra generated by the unitary operators, let
us consider the following:
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Definition 2.49 Consider the unitary operator U (x, y) on £ = L>(R) given by

U NP)E) = EPoE —y), (2.112)
x,y,& € R, with U(x, y) = e @C+¥P) where Q, P are the usual position and
momentum operators given on §) = L%(R), with [Q, P] = ilg, and the Wigner
transform, given by

W By($) — L*(R?, dxdy)

1 k
WX)(x,y) = WTr[(U(x,y)) X1, (2.113)

where X € By($), x, y € R. W is unitary.
Indeed, given X1, X2 € B2(9),

/Rz WX (x, )OVX1(x, y)dxdy = (X2]X1)2 = (X2|X1)B,(sy)- (2.114)

On $ = L%(R?, dxdy), ¥(x, y) € R?, consider the operators

Ui(x,y) = WU (x,y) vV IgIW !,
Uz(x,y) = W[ls Vv U(x, y)* W (2.115)

and let2(;,i = 1, 2, be the von Neumann algebra generated by the unitary operators
[251 {Ui(x,y)/(x,y) € Rz}. Then, it follows that:

Proposition 2.50 ([1])

(i) The algebra 2| is the commutant of the algebra 2; (i.e., each element of 2
commutes with every element of %A;) and vice versa with a factor, i.e,

QllrWng:(CI;). (2.116)

Considering the antiunitary operator Jg (i.e. (JQ|J ) = (¥|p), Vo, ¥ € H =
L2(R)) such that:

JpWni = Wip, J/f%:lﬁ’ Jp®p = g,
it comes
Jg1Jg =2, 2.117)

The relation (2.117) and the property (i) provide the modular structure of the
triplet {2y, 23, Jg}.
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(ii) The map [1]
Sg:H— 9. Sp[Uix, y)@p] = Ur(x, y)* g,

is closable and has the polar decomposition

1
S,g:],gAé, (2.118)
where Jg is the antiunitary operator, with

JgWu =V, J5 =1y, Jgdp = dp, (2.119)

T Jg = 2. (2.120)

Indeed, Jg is by definition an antiunitary operator. Then, it is self-adjoint, symmet-

1
ric, and consequently closable. Aé also being self-adjoint by definition, is closable
too. From (2.118), the map Sg given as the product of two closable operators is then
closable.

Proof of (2.118) The proof is achieved as follows: The vectors W, j, k =
0,1,2,---,00, form an orthonormal basis of 5;) = LZ(RZ,dxdy). We have

1
Dy = Z A7 ;. Applying U (x, y) to both sides leads to
i=0

o1
Ur(x, y)p =Y A2UI(x, y) Wi
i=0

o0
Since Y W) (Wjk| = Ig, we get
Jik=0

© o 1
Ui(x, ) Pg = Y 220G, )W = A (WlUi(x, ) Wir) g Wik
i=0 i,j,k=0

From the relations
Gnt = |Gn){#| and Wy =Wy, n,1=0,1,2,---, 00
we get

Woji = W@} (k) = Yjk, Vj, k.
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Using the fact that ¢;, i =0, 1,2, ---, 0o, form a basis of $ = LZ(R), we have

(Wil Ur (e, Wi g = Tr [1dn) (10 (x, i) g (il]

> (Biler) (91U (x. y)Ii) 58

=0

= Sik{g;1U (. i),
= Sk (dilU(x, Mg g

~

= Q)28 N i DX, ¥).

Thus (W |Uy (x, y)\I/,-,')}:j = (271)%8,'/(\1!]-1-()5, y). From (2.121), it comes

o
1 i
Ur(x, y)®p = 2m)7 Y 2250, ) Wi (2.121)
i,j,k=0
ie.,
1 o° |
U, )®p = (21)2 Y 27 W5, )Wji. (2.122)
i,j=0

Let us calculate Uy (x, y)*®g. We have

1 © 1
Ui, ) ®p =D 22U, ) W5 = 0 AT (Wi |Ui(x, »)* W) 5 Wi,
j=0 i,j,k=0

(2.123)

where

(Wik Uy (x, y)*Wjj)g = Tr [|¢k>(¢i|U(xv)’)*|¢j>§,(¢j|]

Mg

(B11di) (iU (x, )*|9)) 56

-
Il
=}

= (j10) iU G, )10,
=8k ((¢;1Ux, i) 5)"

= )28, (W(161) ;D) (x. y)
= Q)28 (x. )

= Q)28 Wi (x. ). (2.124)
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Putting (2.124) in (2.123) leads to

o0 o0
1 1 1 1
Ur(x, )" @p = 2m)2 Y A3W5i(x, Wikdyy = (21)2 Y 27 W(x, y)Wi.
i,j,k=0 i,j=0
(2.125)

From (2.121), we have

1 > |
Ui(x, y)@p = 2m)7 Y 27 W5i(x, )W
i,j=0
Applying Sg to both sides of the equality gives
1 0 r
SpUL(x, ) Pp = (2m)7 Y A7 SpWi(x, Y)SpWji.

i,j=0

Since Sg [U] (x, y)q)lg] = Ui (x, y)*®g, then SpWji(x,y) = ¥j;(x,y). Thus,

o0
1 1
SgU(x, y)Pg = (27)2 Z AP Vi SpWi,
i,j=0

which rewrites
e )
SpUI(x, )b = Ui (x, )" Dp = (2m)2 Y A7 Wji(x, y)SpWji. (2.126)
i,j=0
From the relations (2.125) and (2.126) together, it follows that

1
1 1 A2
MSpWii =27y de SpWy = [A—J} W, (2.127)
1
forall W;; € 9, i,j=0,1,2,--- , cc. 0
Proof of (2.119) Consider the operator Jg with JgW;; = W;;. We have
JWii = JpWi; = Wi, Vi, j Qe Jj=Ig.
Besides,

1 O 1 1
Dp =Y AW de. JpPp=) AZ(JpWi) =) AW =g
i=0 i=0 i=0
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Thus Jg®g = ®g. Therefore, Jg is such that

T =Wy, J5=1Ig, Jpdp =Dy
From (2.118) and
A
Ap =3 P (Wl = e PH, H = Hy — H,
Al
n,l=0

we get

1 Sl

Sp=JpA; and Ap= ) /\—l|\ynl><\yn,|.
n,l=0

Using this above relations yields

1) 1

93

1 M1 A\ 2
Vi, j, (JpARIVi) = Jp Aé|\l’ji):|zjﬁ Z(—n) (W) (Wi |V i)

A
n,l=0 !

From (2.127),
N\ 1/2 1
SplVji) = (—f> Wij) = (JpARIi), Vi, j

ie.,

1
Sg=Jg Aé.
Proposition 2.51 ([1])
o
If {An},2 is a sequence of non-zero positive numbers such that Z An
n=0

the vector

O 1
O = Z,\,%xp,m
n=0

00 1 1
A\ 2 A\ 2
=Jg| Y. (k_’;) |Wn1)8njdit | = Jp |:<)\—f) I‘Pji)]

(2.128)

(2.129)

O

= 1, then

(2.130)
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is cyclic (that is the set of vectors {AD/A € 1} is dense in $) and separating (i.e.,
if AD =0, forall A € A then A =0) for ;.

Proof Let X € Bz(.%) and consider the operator W[U (x, y) V 15:3]1/\/_l e Ay.
Taking U (x, y) V Iz, we have, since WV is unitary,

(XIWIU (x, y) V IgIV™'®) 5 = (XU (x, y) V I5)®) 5, 5,
= Tr[X*(U(x, y) vV 15;))d>]
= Tr[(X*U (x, y)®]

= Q) TOVX®)(x.y) [by (2.113)]
(2.131)

and the complex conjugate of (2.131) given by

(X[(U(x,y) Vv Ig)P) = TH(X*U(x, )@ = 2m): WX D)(x, ).

B (%)
(2.132)
Then, integrating over R? the modulus squared
(XIWU@, ¥V I5)®) g 5 XIUK, 1) VI P o
2
= [(XI(Ux,y) vV I5)P)g 5,
(2.133)

with respect to x, y, we get

/1&2 (WXD)(x, y) (WX P)(x, y))dxdy

= /]RZ Z Z ‘I’kk|)~,~2)»/§W¢jk(x7 y)W¢1,(x,y)dxdy|\-Il,,)3;j
i,j=01,k=0

o]

DRI (Wl { / We ik (x, YW (x, y>dxdy} Wii)g,

i,j=01,k=0

F =

MS

1

A7 A Z Wikl {/ W9, (bl (x. I)WIdr) (il (x, y)dxdy} IWii) g

TTM8
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1

00 o0 11
= Y)Wkl i) 580w

Since WV is unitary, we may write

/RZ (OWXP)(x, y)(WXD)(x, y))dxdy =0
2
— ‘(X|W[U(x, YV IJ;J]W71¢)5:3‘ =0

2
— ’(XI(U(x,y) v 155)@52(53)‘ =0

95

(2.134)

(2.135)

This implies that the set {W[U (x, y) v Ié]w—lcb, WIU (x, y) v 15:9])/\/—1 €}

is dense in §), proving from the Definition 2.19 that ® is cyclic for 2.

The fact that @ is separating for 2; is obtained through the relation

WU (x,y) VIgW '@ = WU (x, y) vV I )W
= WU, y) VIgW ! = WU (x,y) v IgW .

O

(2.136)

Proof Let U(x, y), U'(x, y) such that W(U (x, y) vV I):j)W_ICD = WU (x,y) v

N

~ 1
Ig)W~'®. Take X # 0, X € By(H) and set ® = >~ 171¢;)(&|. We have

i=1

XIW{U G, )V Ig) = U () VIHDIWT D) g
= (XU, ) VIg) = U0 VI Phg, i
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=Tr[X* {(Ux,y) v Ig) = (U'(x, y) v 15)} D]

N N |
ERMXWWLw—UhJﬂ{XNﬂmmqum

i=1

~
I
-

Il
M=

D oaH @l X {Ux, y) = UG )} e (@ilen)

~
Il
Il

Il
M=
M =

A XU e, y) = U' (e, )} €0)8in

=~
I
— |
—_

AAGIX U, y) = U, 0 6. (2.137)

Il
.MZ

I
—

Then, we have
(XIW{WU (x, y) Vv Ig) = (U'(x, y) VI W D) ¢
=<kuwv1%wvuwv%n>&®=o

= Zx GIX UG, y) = U, 6) =0, A >0, Vi
= U(x,y)VIfj U'(x,y) v I (2.138)

which completes the proof. (|

2.4 Modular Theory-Thermal State

Here, we give two examples of thermal states as known from the literature. For more
details, see [1, 2, 7, 8, 11, 24-26].

1. Letoa;, i = 1,2,..., N be a sequence of non-zero, positive numbers, satisfying
N

Z o; = 1. Then, the thermal state is defined as:
i=1

N
e
i=1

where P; = X;; = [{)(4] is defined as in (2.88)—(2.90), with {X;; =
[£i)(¢l,i, j =1,2,..., N} forming an orthonormal basis of B,(£)).

N
= Zaﬁx,-,- € By(H), (2.139)
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2. The thermal equilibrium state @ at inverse temperature 8, corresponding to the
harmonic oscillator Hamiltonian

1 . 1
Hosc = zuﬂ2 + 0%, with Hoscon = o(n + Db =012,

(2.140)
where the density matrix is
e—PHosc ” i
- — (] — @B —nwp
o8 = T T o] = ¢ ) 2" ldn) (@,
n=0
g_%
—BHoscy — _~ =
Trle 1= [ Fo (2.141)
is
o
@ =[1-e"F] Z “2% ) (pul. (2.142)
3. Let the two von Neumann algebras be given by
={AiI=AVIIAe LN}, A ={A, =1V AAcL®)}
(2.143)

where 2l; corresponds to the operators given with A in the left, and 2,
corresponds to the operators given with A in the right of the identity operator
I on 9, respectively. @ defines a vector state ¢, called KMS state, on the von
Neumann algebra 2;. For any A v I € 2(;, one has the state ¢ on 2(; given by

(p; AV I) = (Q|(AV )(P))2 = Tr[®*AP] = Tr[p,Al,

N
with p, = Zanm (2.144)

n=1

with Py = |@n)(dn|, where

e~ BHosc 00
= — = —of —nwp
po= g = (1= Y 7P 1) (¢l (2.145)
Trle ] prd
and
1 o0
Hy=—% Y (ne)P,, oy =(1—e e, (2.146)

n=0
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2.5 Coherent States Built from the Harmonic Oscillator
Thermal State

Before dealing with the CS construction, we shall first extract few facts and
notations about the modular structures emerging for von Neumann algebras in the
study of an electron in a magnetic field as needed for the development of this
paragraph. For details see [1] and references therein.

2.5.1 Electron in a Magnetic Field

Considering the quantum Hilbert space §) = L%(R) of the Hamiltonian Hogsc
in (2.140), take B> ($) >~ $H ® 9 the space of Hilbert-Schmidt operators on ) with
an orthonormal basis given by

Oni = |Pn){1|, n,1=0,1,2,...,00. (2.147)

Taking the classical Hamiltonian describing an electron placed in the xy plane and
subjected to a constant magnetic field [1],

I » —, 1 y\2 1 x\2
Hie=5F + D7 =2 (n+3) +5(n-3)
let the following quantum Hamiltonians
1 .
Hi= (PP + 0D, (01, Pil=ilg (2.149)

with the magnetic field aligned along the negative z axis, 74) = %(y, —x, 0), where
the quantized observables given on $ = L[R2, dxd y) by

Y ) y .0 X
px+§_>Q1=_la+§; py———>P1=—l—y—§ (2.150)

and

1
Hz=5(P§+Q%), [Q2, P2l =il (2.151)

with the magnetic field aligned along the positive z axis, A= %(— v, x,0), with

the quantized observables given on $ = L%(R?, dxdy) by

X .0 X y .9 Y
g =i+ = _Z P=—i— — =, 2.152
p>+2—>Q2 l3y+2 pr—5 > P s =3 ( )



On Hilbert-Schmidt Operator Formulation of Noncommutative Quantum Mechanics 99

Since [Hi, H>] = 0, the eigenvectors W,,; of H; can be so chosen that they are also
the eigenvectors of H, as follows:

1 1
HiV, = o (n + 5) Uy, HVy =o (z + 5) W,y (2.153)

so that Hj lifts the degeneracy of H; and vice versa. Next, from the Definition 2.49,
it is established that [1]

Wéeni = W(I¢a)(P1]) = Wi (2.154)

where the ¢,; are the basis vectors given in (2.147) and the W,; the normalized
eigenvectors in (2.153). Then, from (2.154), the vectors W,;, n,l = 0,1,2,...,00
form a basis of .S:j = Lz(Rz, dxdy).

Note that, in the sequel, the CS will be constructed from the thermal state ®g,
identified with the vector ® given in (2.142), denoted as a ket state |®g), the
normalized eigenvectors (2.154) W,; also denoted |W,;) as proceeded in [1].

2.5.2 Coherent States built from the Thermal State

Take the cyclic vector @ of the von Neumann algebra 2(; generated by the unitary
operator (2.115)

Ui(x,y) = WU(x,y) vV Ig] W1, (2.155)

where W and U(x,y) = e {@CHP) are defined by (2.112) and (2.113), and
consider Proposition 2.51 with the thermal state ®g, instead of @, such that

1 °° wp
Pp =[1—e ] Ze—"T\pnn, ie., An=(1—e Py (2.156)
n=0

The CS, denoted |z, Z, B)**, built from the thermal state in ket notation |®g) (see
[1]), are given by

.
|2, Z, BY™ = Uy (2)|@p) := *417541 | D) (2.157)

where the annihilation and creation operators, A and AI with [1]

L
V2

1
Al =—(Q1+iP), ATZTZ(QI—iPI) (2.158)
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act on |V, ;), eigenstates of the oscillator Hamiltonian in one dimension (2.149)

with eigenvalues E, = w(n + %), as follows:

AT, ) =V F W), ALlW) = VAW, 1))

where the states |W,,;) are here denoted |¥,, ;) by commodity.

(2.159)

Proposition 2.52 ([1]) The CS |z, z, B) satisfy the resolution of the identity

condition

1 " .
—f 2,2, BY™ (2 7, Bldxdy = 1z, $ = L*(R%,dxdy). (2.160)
2 C 9

Proof Consider the unitary operator U (x, y) = e *®2+t¥P) v(x, y) € R Let

U@)p :=¢(x,y) =e WPy vp c 6.

Show that, for any normalized state ¢ € $ = L?(R):

1
2—[ 16 ) (6 (x. y)ldxdy = I,
T JR2
_1 —i(2—q) _q=0?
Vg € R, set ¢(x,y)(q) = () de 271”2
such that V¢, £ € ), we have

_x)2

ElpCx, )y = (1) He T F /R E@ee "5 dg

(¢'—x)?

GG s = (1)t F /R e o Ty (gdg.

Then,

1
. / (Elp(x, W)@ (x, »IY)dxdy
T JR2

_6—9?_ (¢ —0?
2

1 — /
= — dxd dada’ ly(q—q)[
zﬂﬁ/szy[quqE(q)e e

Lﬁ(q/)

(2.161)

(2.162)

1 N S [%ﬂuz_@]
=—|d dqgdq’ 2| Giva-ahy ~
ﬁ/R X/RZ 1 qg(Q)l:Zn/Re y]e v(q)

(2.163)
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. 1 ivig—a'
Since 5= [ €17 dy = 8(q — ¢'), we get

1
7 / (&l (x, )@ (x, Y)Y)dxdy
T JR2

=t (@ —»?
2 2

_ 1 e N 4 |: :| /
= ﬁfRdx /H;qudq £(q)5(q —q')e Vi)
/_ )2

- % fRdx /ﬂé dg e E ) [/H; U(q)s(g — e T dCI'}

1 r— 1 2 _
=7 fR i e D E(Q Y (q)dxdg = fR dq (ﬁ /R e du)é(qwf(q)
= (E]¥).

Thus
1
o /R 16.Ce, ) (@, ) ldxdy = I
e, 4 / U @)U @)pldxdy = I. (2.164)
2w C

Using the isometry property of W, the states |z, z, B)*S satisfy the following
resolution of the identity

1
Z/cIz,Z,B)"MS"MS(z,Z,ﬁIdxdy= 1. (2.165)

Proof By definition of the states |z, z, 8)*" and using (2.122), we have:

o0
_ 1 T
2.2, B) = U1(9)p = (2)2 Y 27 W50x, )| W),
i,j=0
o0

. 1 3
(2,2, Bl = Ur(2)* g = 2m)7 Y (Wilhf Wik(x,y).  (2.166)
1k=0

Thereby

[ )
= KMSKMS = _ % %— ..
1z, Z, B) (z,z, Bl =2m E E A AW i (x, Wk (x, )W ji ) (Wi |-
i j=01,k=0

(2.167)

Integrating the two members of Eq. (2.167) over R?, and using the Wigner map W,
we get
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1

Z |Z1 Zv .8>KMSKMS<Z1 Z? ﬂ'dXdy

/ Z Z A1) V57 G, MW (x, y)dxdy
k=0

i,j=01,

-

o0
> AZAL W) (Wi f Weji(x, y)Wei (x, y)dxdy
1,k=0

o0
>

11
FA N (k|87 ki

i,j=01,k=0
o
= > Wi
i,j=0
= I- (2.168)
O
+ 22 (zAi)k
From (A])|Wo,) = v/n![W,y,) and Uj (z) \110,,>=e—TZ | Won), it comes
k=0 ’
that:
| N 1 3z \"
U@ == (A1 =213) V1@ = = (=523 15 ) V@1,

(2.169)

Proof of the First Equality of (2.169) The operators P and Q verify the following
relations:

[0, P"] =nP" ' [Q, P1=1hnP""', [Q", P]=nQ""'[Q, Pl =1hnQ""".
(2.170)

We establish that

e_lPuQelPMZQ—u, e_lQuPelQMZP—i-u, Yu € R.
(2.171)

Multiplying the first and second equalities of (2.171), by 5 and —= f’ respectively,
provides:

e—tPug 1Pu u e—tQu <_lP>elQu — —1P _ l

— _Q -
\/Ee N ﬁ 2’ ﬁ «/E \/i
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Setting # = —x and u = -y, in the first and second relations of (2.172),
respectively, gives with replacing P by P1, and Q by Q1, respectively:

01 _,p 01 x ( lPl) oy Py
e Px X pmthix _ X0 -, QY [ 2 ) 1y — 4+ .
V2 V2 V2 V2 V2 V2
(2.173)
From Ai = %, setz = Lj%” Summing both equalities of (2.173) gives:
P _ .
ezPlx%e—tPlx +e!Q1y (_lT;) e 101y — Ai - le:j (2.174)

Since Uj(z) = ¢#A1-41 | with ZA] = ZA1 = ((Pix + Q1y), it follows: Uj(z) =
¢! (P1x+Q1y) This latter equality with (2.174) together leads to:

T _ P Q1 P P01y a0y (P o~y Pixr0ry)
(A —2Ig)U () =€ —=e™ e +e —1— e e
V2 V2

P01 F g% Q1 @b g Y Y <_,ﬂ>
V2

V2

ZAT—ZA, 0 P
— AT (7%_17%) = Uj(9)Al. (2.175)

From (2.175), we have
U1()|®1,) = (A] - 2l U1 (2)[Won) (2.176)

such that, by recursion, we get

1 B _ n
Ui@¥m) = —— (A7 -215) Vi@, 2.177)
O
Proof of the Second Equality of (2.169) Considering Ai = %(Ql —1Py), where
— Ly :
7= ﬁ(y 1x), with
a —1 0 10 d 1 0 1 o
_— - =4 2.178
ax 20z 207 dy 20z 20z ( :
provides
0 z J  z
T . : (IS S O
A= ~%2 + 5Iﬁ, e, Ay—Zlg= % 2I (2.179)

which completes the proof. (I
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Since
i B
2.2, B = V1) ®p) = (1 = )2 Y e T U1 (2)| W), (2.180)
n=0
setting |z; n) = U1(2)|Wo,) and from (2.169), it comes

= KMS __ wf 1 C- 1 —n 9 z " .
lz,z, B)"" = (1 —e™)2 —fe A §I~ |z;n). (2.181)
n=0 '

Set |z; 1) = Ua(2)|Wno) With (A5)"|W,0) = V/n!|W,,,) and

LR (AN
Us(2)|Wno) = ¢~ 2 kZ kf |W,0). (2.182)
=0

Taking |z; 0) = Ua(z)|Woop) leads to

(AD"|z: 0) = Vallzsn) with Ua(2) [ (AD)"1Wo0) | = ValU2(2)] Wio).

(2.183)
Then, |z;n) = \/—er‘(A;)"IZ; 0). In (2.181), we get
= KMS __ _7wﬁloolfn% _i_én . 2.184
2B = (=) ) e (= = ) (4120 (2.184)
n=0 "

Using the relation Uj(x, y)* = Uj(—x, —y), the CS | — z, —z, B) are obtained
as follows:

| —z, =2, BY™ = Sglz, z, B)™". (2.185)
Indeed, by definition |z, z, B)"* = U1(2)|Pg) := Ui(x, y)|®g) such that
Sp [U1(x, »I®p)] = Ui (x, )*|@p) = Ur(=x, —y)|Pp),

Le., Ul(—2)|®p) = e AT |Dg)  (2.186)

where e~¢A1+iA1 |dg) = | — z, =2/, B)™, leading to (2.185). The CS (2.185)
satisfy a resolution of the identity analogue to (2.165), i.e.,

1
Z/ | —z, =z, B)" (—z, —Z, Bldxdy = I¢. (2.187)
C
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Proof Similar to the proof of (2.165). O

3 Noncommutative Quantum Harmonic Oscillator
Hilbert Space

Without loss of generality, we restrict our developments to the noncommutative
quantum mechanics formalism [6, 11, 15, 22] for the physical system of harmonic
oscillator. We focus on the application of Hilbert-Schmidt operators, bounded
operators on the noncommutative classical configuration space denoted by

1 o
H. = span{|n) = —(aT)”|0>} ) (3.1)
‘ P { Vn! n=0
This space is isomorphic to the boson Fock space F = {|n)};, where the

annihilation and creation operators a, a’ obey the Fock algebra [a,a’] = 1. The
physical states of the system represented on 1, known as the set of Hilbert-Schmidt
operators is equivalent to the Hilbert space of square integrable function, with

Hy =W £ w G o) € BOL, re(pr (i 52" (1, 32) < 00} (32)

where B(H.) is the set of bounded operators on H.. H, is defined as the set of
bounded operators, with the form |-)(:|, acting on the classical configuration space
H., with a general element of the quantum Hilbert space, in “bra-ket” notation
given by

W)= Y camln,m), (33)

n,m=0

with {|n, m) := |n) (m|};':’m=0 a basis of H, endowed with the inner product
@i, ln, m) = trc[(i) D |n) (ml] = 85w m- (3.4)

Considering the unitary Wigner map W : By($)) — L*(R?, dxdy) let us discuss a
correspondence between L2(R2, dxd y) and B> ().

Proposition 3.1 Given the Hilbert space $) = L*(R), the inverse of the map W is
defined on the dense set of vectors f € L>(R?, dxdy) as follows:

Wl L2(R?, dxdy) —> HQH

W_lf:/R/RU(XJ)W(W)(I//I)(Ly)dxdy, (3.5)
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where the integral is defined weakly, |¢) (V| is an element of B2($) ~ $ ® $ and
f=WAe) Y.

Proof Let us derive the inverse of the map W on L*(R?, dxdy) where the group
G and the Duflo-Moore operator C with domain D(C~!) given in [3] are identified
here to R?, [ &, the identity operator on §) = Lz(R), respectively, with D(C’l) =9
and D(C~1)T = §. Consider an element in B>($)) ~ $H ® $ of the type |¢) (¥ |, with
¢, ¥ € $Hand let f = W(|¢)(¥]). For ¢', ¥’ € H, we have from the definition of
Win (2.113)

/R/RWIU(L WY IV (WD (x, y)dxdy

= /%/1;{(¢/|U(x’y)w/>Tr(U(xvy)*|¢)(1ﬂ|)dxdy

= A@ A{ (@IU (e, YY) (@' 1U (x, y)¢')dxdy. (3.6)
By the orthogonality relation, we get
[ [@weswmaowe ndrdy = @iorwiv). 6D
The relation |(¢/1) (v %) <116 ll119 Il 1|81l || implies
‘/}R/R(WW(LY)¢/>W(|¢>><1/f|)(x,y)dXdy <IN MBI (8)
Then, (3.7) holds for all ¢, ¥’ € $. Then, we obtain

|¢>(¢I=/RfRU(x,y)W(|¢><¢I)(x,y)dxdy 3.9)

which completes the proof. O

4 Application

Consider the motion of an electron in the xy-plane, subjected to a constant magnetic
field pointing along the positive z-direction, i.e., in the symmetric gauge AT =
(—% y, %x) , in the presence of a harmonic potential, described by the following
Hamiltonian [5]

1 eB \? 1 eB \? Ma)% 5 2
Hy =S \Pe— 520 ) + 547 Pyt 5% +T(x +y9) @D
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2
where w, = % is the cyclotron frequency, Q2 = a)g + %, with the commutation
relations:

x', x/1=i0€e, [x', p/1=ins", [p', p/1=0,
i,j=12 €?=-'=1 4.2)

Next, introduce the dimensionless complex variables, related to the chiral decom-
position of the physical model, given by

1 1
= E(xi —ix}), z_= ﬁ(xl‘ +ix2) 4.3)
such that they satisfy, with
1 _ 1 .
9, = E[(‘)xl+ —i—zaxi], 9, = ﬁ[axl_ —id.2], 4.4)

the relations

[0:, z4] = 1 =[9z,, z+], (024, 23] = 0= [0z, z+],

[24+,2-1=0=1[0;,,0; ] (4.5)
Set
Z+ 1 F 4+ 1
AL =0— 4+ — L A= — —ps
+ §2 +§_hpz+ +=¢ B é_hpu
Z— 1 " Z— 1 (MQ/)'i)2
A—=§_+_P27a Afzg___pzfv ;-: 4
2 h 2 h Mo, M )2
2 ¢ 11— 556 + (%5°6)
(4.6)

satisfying the commutation relations
[A_, Al1=0=[a;. A"] [As,Al1=1 @.7)

Then, taking Q4 = € + %, where [15]

N M MQ 2 2
G 1 A2, (M2, o= 1= 2L+ m0), 48
2 4 4 We
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the Hamiltonian Hy is obtained as follows:
~ 1 ~ 1 ¥
Hy = hQ4 | Ny + > +hQ_ | N_ + 7)) Ny =A A4, 4.9)
N4 being the number operators such that Hy writes

- 1
Hy=Hy®ly, +ly, ®H-, Hi=hQ <Ni + E) . (4.10)

[e¢]

The Hilbert spaces H,,, + are givenby H, + = span{|n+)(m+ |}ni’mi:0,

with HH,[ +
their corresponding identity operators. The system {A4, Al} forms an irreducible
set of operators on the chiral boson Fock space F = {|ni)},‘ﬁ:0, and has the
following realization on the states

neonosmy,m_) = |ng)my @ ln_)m_|, ne,me =0,1,2,..., (4.11)

of the Hilbert space Hy 1+ ® Hy, —:

Ajlng,nosmy,m_) = J/nglny — l,n_;my,m_)
Al ngnsmy,moy = ny + Uny + Ln_;my,m_), 4.12)

A_lng,n_smy,m_) :=~/n—|ny,n_ —1l;my,m_)
AT_ln+, noymy,m_) :=+/n_+1lng,n_+1;me,m_). (4.13)

The operators A+ act on the right by AL by conjugation of (4.12) and (4.13). We
have

n4n30,0) = AL (a) 000,00 @i

1

with |0, 0)(0, 0| standing for the vacuum state of H, + ® H, .
Then, the eigenvalues of the Hamiltonian Hy are derived from the relation

Hp (Ing)(my| @ [n_)(m_|) = En, n_ (Ing)(m4| @ In_Y(m_|)  (4.15)

as follows:

~ - 1
Enin. =hQy <n+ + —) + hQ_ (n + —) . (4.16)
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Given a state |m)(n| on H,; >~ $ ® 9, the left az and right bg annihilation operators
act as follows:

apm)(n| = (a ® Ig)Im)(n| = alm)(n|lg

= /mm — 1)(n
brim)(n| = (I @ b)Im)(n| = I5|m)(n|b
=+/n+ 1jm){n + 1|, “4.17)
where
ar =a®lg f[(Q+zP)®I],aL—a @1-—7[(Q—zP)® 8]
(4.18)
1 1
br:=Ig ®b:E[lﬁ®(iQ—P)], bje = Iﬁ®bT=E[[ﬁ®(_iQ_P)]-
(4.19)

Q, P are the usual position and momentum operators given on $) = L*(R), with
[0, P] = il,.

4.1 Coherent States Construction
Using the operators {A4, Al}, the eigenstates |z4.) satisfy

Aslze) = zalze),  (zxlAl = (zalzx (4.20)

with the complex eigenvalues z4,

lz 2 t
lz4) = e~ 3 elAL) 0y, 4.21)

given in terms of the chiral Fock basis. Provided the Baker-Campbell-Hausdorff
identity

_EP raal) —feds)
=e¢ Zeziie Zii, (422)

e{ZiAl—ZiAi}
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the CS of the Hamiltonian (4.10) in the noncommutative plane, denoted by
|24, z—), are defined by

00 00 —my n_-m_

(2 2 et
24, 2y =e (e T 1) @ | (- |
ny,my=0n_,m_=0 N4 M4 n—m—
(4.23)
where we have used [6]:
_ =l ? Al T Ay
lz4){z+] = DrDpr (10)(0]) = e e~*7+10)(0le (4.24)
t
with Dp = eRZJ"L‘JrJrZJrA+ and Dj, = LZ+A++Z+A+ The lower indices R, L of the

exponential operators refer to the right and left actions, respectively.
These CS satisfy the resolution of the identity [15]

1
2 /(C2 |24, 2-) (24, 2-|d*z4d?z- = Iy, cor, =1 ®1 (4.25)

where I, stands for the identity on H, given by Ben Geloun and Scholtz [22]:
1 N =
I, = — | dzdz|z)e™ = (z]. (4.26)
T Jc

and the identity operator on H, 1 ® Hg4, — is:
o0 o
T, oty = D . Inpon_imy m )ng n_imy m_|. (4.27)
n+,m+=0n_,m_=0

Proof In order to provide an equivalence between (4.25) and (4.26), let us consider
the following relations

1
Ily) = =l dzdzdwdeZle(ZWflw)

1
— dzdzdudu|z)(z + u|(z|¥ |z + u)
T 2

1 1 _ P i
== / dzd7i— / dPue™ P |2) (2] P (2] ) (4.28)
T JC T JC
where w = z 4+ u with d>w = d*u, and ¢"% f(z) = f(z + u). Then, set

1 2 _e= = 1 2 P Wl
- / d?ue " |z) (z]e" =T 7]y |z) = — / d?ue "7 |z) (z]e"% e % (z]yr2)
T Jc T Jc

(4.29)
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and
9 ud.
I = |z)(zle" = e" = (z|¥|2). (4.30)
We have
[ =m’ n' - S = m
_ Z Z 10 1o 5, & Z
I= |n')(m'|e” % etz (m|¥|n)e S
00 0 n  zn =m’ - m
"z —7z io: ud, [ —7z <
= 'y |y | (5 iy ~<e )
_n%=:0n’§:=0 n'l \/m m'! Vm!
4.31)
Let
-2z Zm/ 12(3T u? -2z "
K(z)=|e ot e e <€ ﬁ) (4.32)
We obtain

K(z) =

i i% (ﬁkaf[f'",e‘zzl) 1_1' (u o [ " ‘“]) (4.33)

k:O =0

ﬂ\

which supplies, by performing a radial parametrization,

1
— / dzue_l"lzK(z)
C

T
e EE ! [ o
m' ! i e [
B 1 © 1 00 2 k+l 2 b
= m/!TZ()ZO;/ rdre” T A e do

Xaéc [Zm/e—ZZ]aé [Zzne—ZZ]

1 > 1 2k+1 —r kr=m' —zz k| _m —zz
- mnm;[k_ et [t st e

: |:

'/m!

SOk ek [ —“H . (4.34)
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Besides,
="\ 57 = " g
e_zz—>eazal <e_zz >= Z[ af[_ _Zz]ak[ _ZZ]:|
( m' m! m'\ m! = k!
(4.35)

implying

1 2 o Py = 7"

| Pue Pk = (e % 929 [~z =), 4.36

n/@ ue (2) e — e e — ( )
Then,

L[ sue—tr? b+,
ue |z){zle (zlyrlz)
7 Je

(S5 g ] ) (5

| n,m=0n",m'=0

ot Zm n' 57 ot T gm
= ') (m' e | i m|yln)e” — ——
n/,mz’:o nmzzo \/’? m!
I
= [2)e% % zly) (4.37)

allowing to obtain (4.28) under the form:

_1 PRI PSP
Iyl) = dzdz d“ue |z)(z]e (z|¥|z)
T JC T Jc
1 _ P
== / dzdz|2)e% % (z|y) (4.38)
T Jc
which completes the proof. O

4.2 Density Matrix and Diagonal Elements

Considering that the quantum system obeys the canonical distribution [5, 9, 12],
let us take the partition function Z as that of a composite system made of two
independent systems such that it is the product of the partition functions of the
components, i.e. Z2 = Z,Z_. The diagonal elements of the density operator
p = %e‘ﬂHG, where Hp is given in (4.9) with eigenvalues E,, ,_in (4.16), are
then derived, in the CS |z, z—) (4.23) representation, as
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(24, 2-1Plz+, 2-)
e—BHp

o0 o0
=(z+,z_|{ > > = |n+,n_;m+,m_)(n+,n—:m+,m—|}|z+,z_)

ny my=0n_,m_=0

_ { L TR |:ee‘ﬂm+|z+2i|} [Zle—'”?e—zz [ee77% -] } (4.39)

¢

where Z = Z, Z_.

Since
By -1 pis_ -1
1 e 2 1 e 2
— = _ and — = = (4.40)
Z; 1 — e—BhS Z_ | — e—BhS
then,
_ gy -1 )
n e 2 _ By 2 —BhrQ 2
(z+,2-10l24,2-) = W e —2+e lz+1 [ee 24 ]
— e +
B -1 ; )
e ;hﬁ e_ﬁhéz_ e_‘17|2 [ee’ﬂm—lzflz] .
1 — e=Pn%-
“4.41)
Thereby,

(24, 2-1plz4, 22)

= [1 - e_ﬁhfbr] e~ (=Pl P o [1 - e_ﬂhéf] e~ (=)l 2

R S T S S
n+1 n*+1
= 0(z+HQ(z- ). (4.42)
- -1 ~ -1
n = [eﬂm+ - 1] and n* = [eﬁm— - 1] are the corresponding thermal

expectation values of the number operator (i. e. the Bose-Einstein distribution
functions for oscillators with angular frequencies 2 and $_, respectively), also
called the thermal mean occupancy for harmonic oscillators with the angular
frequencies €2 and Q_, respectively.
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. . 5. 712
Performing the variable changes ry = [1 —e‘ﬂh9+] |z4| and r— =

L oa12
[1 _ e‘ﬂhgz*] 2| with 2 = rdrd2, r € [0, 00), ¢ € (0, 2], we obtain

1 .
Trp = — d*zd*z (24, 2-1Plzs. 2-)
s 2

Y [1 _ e—ﬂhm} o (1P 2 [1 _ e—ﬂhflf] o (1me PPz 2

712 C2

1 oo ) 2 00 ) 2w
= —zf rydry [e_r+:|/ doy ></ r_dr_ [e_’*]/ do_
7= Jo 0 0 0
1

=1, (4.43)
with here n4+ = 0, where we have used the following integral
SR S 2
f —2ry " drye " =1, (4.44)
0o ni!

ensuring that the normalization condition of the density matrix is accomplished.
The right-hand side of (4.42) corresponds to the product of two harmonic oscillators
Husimi distributions [16].

4.3 Lowest Landau Levels and Reproducing Kernel

Let us make a relationship between the quantum numbers n+ € N which label the
energy levels per sector and the quantum numbers n, m where n labels the levels and
m describes the degeneracy [4]. Fixing n_ = 0 (resp. n = (), one obtains a state
corresponding to the quantum number m in the lowest Landau level (LLL) given by

1 m
( s ) eI/ (4.45)

Gn=0,m (24, 24) = ———= | —=~
J2iZmy \V 2o

where [y = \/g = 1 (with sz = 1, e = 1) is the scale of lengths associated with the
Landau problem.

Equivalently, fixing n = 0 (resp. m = 0), one gets a state centered at the origin
(m = 0) in the Landau level n given by

1 Z_ n 7| ‘2/412
e~ P /A (4.46)

Gnm=0(2—,2-) = ——— | —(=—
J2rizn \V2lo
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Consider the projector onto the LLL given by

o
Po = 10,m)©,m]. (4.47)
m=0
In the LLL |0, m), the state |0, Z;), where z; = x} —ix2,is such that
= ,M Zr_ﬁ ~ 4
0,2410,m) = e~ 2 , I = ——. (4.48)
* vm! * l()\/z
and also
O - N 5’1
0,240 = (0, m|0 = . 44
0,2410,m) = (0,m[0,24) = e N (4.49)
The matrix elements of the projector Py are obtained as
(0,21 |Po[0, 7, ) = e 2lIEHHEP =220 240 (4.50)
Let |) € H,, a state given on the LLL by
o0
¥) =Y aml0.m), an € C. 451)

m=0

We obtain that |¢/) is analytic up to the Landau gaussian factor e~ 2 as follows:

~m

_ i 2
0. Zy) = e 2 fGp), f<z+>-ZamJ_

€ thl((c dv(z, 7))

(4.52)
with dv(z, 2) = 55— i d“‘iz . Next, let us define the projection operator
Ppor : L*(C, dv(z, 2)) —> L} ,(C, dv(z, 2)) (4.53)
which is an integral operator with the reproducing kernel
Ky, 7)) = eI PHEP 0 Z . P[0, 7= A (4.54)

for L7 (C,dv(z,7)) [3]. L3 ,(C,dv(z,7)) is the subspace of the Hilbert
space L?(C,dv(z,Z)) of dv-square integrable holomorphic functions on C
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in the variable z. Then, given an operator @ on L*(C,dv(z,7)) and f €
L3 /(C,dv(z, 7)), we have

_ _ =/ >/
l/ €Z+Z'+(Of)(zl+)e—|2’+\2d22/+ — / eZJrz,*(Of)(Z;)e_‘Z,HZ dZ+/'\dZ+
T Jc C 3 2im
= PraO NG, (4.55)

4.4 Statistical Properties

Let us consider the operators given on H, ® H, by

. —in : sk :
Py = —lagr —a,, . Py = —]Jagr +a,, . 4.56
X @[ R—ag, ] Y @[ R+ ag, . (4.56)

. 0 . 0
X = \/;[aR ta,] Y= i\g[a; — agl. (4.57)

From (4.17), we obtain in a state |72) (/| ® |m)(n| € Hy ® Hq

lag—a, |ii)(i| @ lm)(nll=~/n+ 1|ii) (| @ lm)(n + 1| —/nlii) (7| @ |m)(nl.

(4.58)
We get the following expressions:
A ] N 0
(AX) ==, (AV) =~ (4.59)
2 2
R h2 R hZ
APo? =2 (AP = (4.60)
leading to the following uncertainties:
agar? =2 2 Lk e
T4 T4 ’
A A 2 hz 1 A A 2
[AXAPx]” = 7>Z|([X’ PxD)I%,
s M1 s
[AYAPy]” = —>Z|([Y, PyDI%,
[APxAPy)? = L >1|([1r3 Py =0 (4.61)
X Y - 492 /4 X, 'y == V. .
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5 Concluding Remarks

We have first dealt with some preliminaries about definitions, and remarkable
properties on Hilbert-Schmidt operators and the Tomita-Takesaki modular theory.
Then, the construction of CS built from the thermal state has been achieved and
discussed, with the resolution of the identity. Besides, some detailed proofs have
been provided in the study of the modular theory and Hilbert-Schmidt operators.
The relation between the noncommutative quantum mechanics formalism and the
modular theory, both using Hilbert-Schmidt operators, has been evidenced by the
use of the Wigner map as an interplay between them. The formalism has been
illustrated with the physical model of a charged particle on the flat plane xy in the
presence of a constant magnetic field along the z-axis with a harmonic potential.
CS have been constructed. Then, the density matrix, the projection onto the lowest
Landau level (LLL), and main statistical properties have been discussed on the CS
basis.
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Symplectic Affine Action and Momentum  ®)
with Cocycle e

Augustin Batubenge and Wallace Haziyu

Abstract Let G be a Lie group, g its Lie algebra, and g* the dual of g. Let ® be the
symplectic action of G on a symplectic manifold (M, ). If the momentum mapping
u: M — g*is not Ad*-equivariant, it is a fact that one can modify the coadjoint
action of G on g* in order to make the momentum mapping equivariant with respect
to the new G-structure in g*, and the orbit of the coadjoint action is a symplectic
manifold. With the help of a two cocycle ) : gx g — R, (&,n) > DY (&,n) =
dé&y,(e)-& associated with one cocycle o : G — g*; 0 (g) = u(d, (m))—Ad;,u(m),
we show that a symplectic structure can be defined on the orbit of the affine action
V(g, B) = Ad;ﬂ + o (g) of G on g*, the orbit of which is a symplectic manifold
with the symplectic structure wg (£g+ (v), ng+«(v)) = —B[&, nD) + > (1, &).
Furthermore, we introduce a deformed Poisson bracket on (M, w) with which
some classical results of conservative mechanics still hold true in a new setting.

Keywords Symplectic action - Momentum mapping - Equivariance - Poisson
bracket

1 Introduction

The study of coadjoint orbits was introduced by Kirillov in the 1960s (see [1]).
Coadjoint orbits arise through the action of a Lie group G by means of a coadjoint
representation Ad™ on the dual g* of the Lie algebra g of G. The orbits so obtained
by this action are called coadjoint orbits (see [2, 3]). Kostant and Souriau showed
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that there is (up to covering) an isomorphism between a symplectic manifold
(M, w), homogeneous under the action of a Lie group G and a coadjoint orbit [3].
We shall now show that if we substitute the coadjoint action of G on g* by another
action defined through a one-cocycle o, the orbits of the affine action of G on g*
so obtained are symplectic manifolds. Notice that the cocycle map of a momentum
mapping measures its lack of equivariance [2, p. 279], and as stated by Iglesias-
Zemmour P., one co-cycles arise in different ways, see [4, p. 323].

The work is organized as follows.

In Sect. 2 we gather the basics on symplectic actions on a symplectic manifold.
In Sect. 3 we recall the definition of Hamiltonian action, inducing the key concept
of momentum mapping with one cocycle, which induces another action, making
the momentum mapping be equivariant. To end the section we will construct a
symplectic structure on coadjoint orbits of an affine action. In Sect. 4 we will provide
a way forward on a deformation of the standard Poisson bracket on the algebra of
smooth functions on a symplectic manifold for further investigations on this topic,
which opens possible applications to theoretical physics.

Note that in this work, the mere topological assumptions are assumed. The
contents are well detailed in our main reference literature (see [2]), as are most
notations.

2 Lie Group Action

2.1 Preliminaries

Definition 2.1 A Lie group is a group G that is also a smooth manifold such that
the group operations of multiplication G x G — G, defined by (x,y) — xy,
and inversion G — G defined by x +— x~!, are compatible with the smooth
structure.

The vector space g = T,G is called the Lie algebra of the corresponding Lie
group G, where e € G is the identity element. We denote the dual of LieG

by g*.
Definition 2.2 If G is a group and X a set, the map ® : G x X — X is called an
action of G on X if the following two conditions are satisfied:

(1) If e is the identity element of G, then ® (e, x) = x forall x € X.
(i) If g, h € G then ®(g, ®(h, x)) = P(gh, x) forall x € X.

Note that for each g € G, ®; : X — X defined by ®,(x) = P(g,x) is a
diffeomorphism. For more on Lie group actions, we refer the reader to [5].
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Definition 2.3 Let M be a smooth manifold. A symplectic structure on M is a 2-
form on M (w € Q*(M)) which satisfies the following two conditions:

(i) wisclosed. Thatis dw = 0.

(i) w isnondegenerate. Thatis, w(X,Y) =0forall Y € X(M) implies that X = 0.
In other words, on each tangent space T,,M, m € M, if w,,,( X, Yi,) = 0O for
allY,, € T,,M, then X,, = 0.

A manifold M is called a symplectic manifold if there is defined on M a closed
2-form w which is nondegenerate.

Let®:Gx M — M, (g,m) = ®y(m) = g - m be an action of a Lie group G
on a symplectic manifold (M, w). Then the action @ is called symplectic if for each
g € G, the diffeomorphism &, : M — M, m +— P, (m) is such that <I>Z,a) = w.
Details on these preliminaries can be found in [1-3].

Let G be a Lie group and let ® be an action of G on a manifold M. Let g
be the Lie algebra of G. We define the infinitesimal generator of the action &
corresponding to X € g to be

d
Xy@m) = EQexth(m) =0,

where exp : ¢ — G is the exponential map.

3 Momentum Mapping

Definition 3.1 Let ® : G x M — M, be a symplectic action of a Lie group G on a
symplectic manifold (M, w), and let X s be the infinitesimal generator of the action
corresponding to X € g. Then the map

w:M— g*
is called the momentum mapping for the action if for every X € g there is a
function fix : M — R such that the relation jix(m) = u(m) - X holds, and where
d [L X = i Xy w.

Definition 3.2 The space (M, w, ®, w) is called a Hamiltonian G-space.

3.1 Coadjoint Cocycle

Definition 3.3 Let G be a Lie group, g its Lie algebra, and g* the dual of its Lie
algebra. The function o : G — g* defined by
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0(g) = n(dg(m)) — Ad;y,(m) for all m € M is called a coadjoint cocycle on
G or simply one-cocycle, where we define < Ad;ﬂ, § >=< B, Ad,—1§ >. See [0].

The map o satisfies the cocycle identity
o(gh) =o0(g) + Ad;a(h) (3.1

forall g, h € G.
To see this, from o (g) = u(Pg(m)) — Ad;fu(m) we have

0 (gh) = (Pgn(m)) — Ady), ju(m)
= 1((Pg 0 Pp)(m)) — (Adg o Ady)(1(m))
= n(Pg(Pp(m))) — Adgy (Adj (1(m)))
= w(Pg(Pp(m))) — Ady (u(Py(m)))
+Ad; ((®p(m))) — Ady (Adj; (m))
= 0(8) + Adg (u(Pp(m)) — Adjuu(m))
= 0(g) + Adgo(h)

as required.

Proposition 3.4 Let ® be a symplectic action of a Lie group G on a symplectic
manifold (M, w) which admits a momentum mapping . Let o be a one-cocycle.
Define a map

V:Gxg—g*
by
(g, a) = Adga +0o(g).

Then the map WV is an action and the momentum mapping is equivariant with respect
to this action.

Proof First we need to check that the conditions of an action are satisfied. From the
definition

0(8) = u(Pg(m)) — Adyp(m),
we have

o(e) = u(Pe(m)) — Adgu(m)
= p(m) —p(m) =0
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since Ad] is the identity map. Thus
U(e,a) = Adja+o(e) =a,
i.e.
Ve, a) =a.
Using the cocycle identity (3.1) above we have

W(gh, ) = Ady,a + o (gh)
= Ad;(Ad;:a) +o(g) + Ad;,‘a(h)
= Adg(Adja + o (h)) +0(g)
= 0(8) + Ady (¥ (h, @)
= W(g, V(h,o)).

Hence W is an action. To see that the momentum mapping is equivariant with
respect to this action, we have

p(Pg(m)) — W(g, u(m)) = n(Pg(m)) — (Adgu(m) + o (g))
= (u(Pg(m)) — Adgpu(m)) — o (g)
=o(g) —o(g) =0.

Thus,

w(Pg(m)) = W(g, u@m))

This concludes the proof of the proposition. (]

Note that the action
v:Gxgt— g

is an affine action. That it is equivariant is illustrated by the following example.

Example 3.5 Consider the Lie group G = R?* with coordinates (91, 72, 13, n4)
under addition. Let M = R* be the symplectic manifold with coordinates
(x1, x2, x3, x4) with symplectic structure w = dx; A dx3 + dxo A dxq. Let @ :
G x M — M be the action of G on M defined by

Dy a3y (X1, X2, X3, X4) = (X1 + 11, X2 + 02, X3 + 13, X4 + 14)

We shall first obtain the momentum mapping for this action. Let & =
&1, &, &3, &4) € T, G, then the infinitesimal generator of the action is given by:
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Ere (X1, X2, X3, X4) = %q)(expté‘l,exptsz,expt§3,expz§4) (x1, X2, X3, X4) |i=0
= % (x1 +exptéy, x2 +exptér, x3 +expté3, x4

+expté4) li=o

(61,862,863, 84).

From the relation X fe = Em, we get

Xpe = 518871 + ézaixz +E3% +§4aix4.
Since w = dx; A dx3z + dxy A dxgq, we have
igR4w = ié1%+éz%+és%+$4%(dxl Adx3 +dxo A dxyg)
= &1dx3 — &3dx) + Eadxg — Eadxs.
Thus
dfig(x1, x2, X3, x4) = E1dx3 — &3d x| + &xdxg — E4dxr.
Hence,
fue (x1, X2, X3, x4) = E1x3 — E3x1 + E2x4 — E4X2.
Therefore, the momentum mapping is
wlxr, x2, x3, x4) - (&1, 62, 63, 64) = §1x3 — §3x1 + E2x4 — 642
To obtain its one cocycle we use the definition

0(8) = n(Pg(m)) — Adg p(m).

But since G = R* under addition is commutative, we have Ad(;,k =idforall g € G.
It follows that

6z (1) = w(P7(X) - € — u(X) - €
=&m3 — &m + &g — &ama.

Whereé =(¢),i=1,2,3,4,1=(;),i=1,2,3,4.Defineamap ¥ : Gxg* —
g* — (R4)* — R4 by

Y @1, @2, a3, ag) = (o + 103, @2 + N4, a3 — N1, 04 — 102).
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Note that W is an action since
(1) ¥0,0,0,00(a1, 002, a3, ats) = (a1, 02, @3, 04).
(i)
Y14y m+va.ms+ya.natya) (@1, 002, 003, ot4)
=(1+mm+y3), a2+ 4+ ya), a3 — (1 +y1), a4 — (N2 + 2))
= [(a1 + y3) + 03, (@2 + y4) + 04, (@3 — Y1) — N1, (04 — y2) — 2]
= Vi @1+ V3, 00 + va, 03 — y1, @4 — ¥2)

= W,m,m3.m4) (qj(yl,l/zy)@,m) (a1, a2, @3, a4)) :

showing W is also a homomorphism.

We shall now show that the momentum mapping is equivariant with respect to the
action W of G on g* and the action ® of G on M. Thatis, uo ® = W o u.

Let pu(x1, X2, x3,x4) = (a1, 00,03,04) € g° = RY*, & = (§1,&,85, &) €
g = R?, and take the standard inner product on R*.

Then

(PR, monzne) (X1, X2, X3, X4)) - (61, &2, &3, &4)

= u(x1 + 1, x2 + m2, X3 + 03, x4 + n4) - (&1, &2, 83, 84)

= &1(x3 +m3) — &3(x1 +m) + E2(x4 + n4) — Ea(x2 + 12)

= &1x3 — &3x1 + Exa —Eaxa +E1m3 — &3m1 +&ama — Eam

= p(xr, x2, x3, x4) - (&1, 62, 63, 64) + §1m3 — §3m1 + Eama — Samp

= (a1, a2, a3, a4) - (&1, 82,83, 64) +&1m3 — &3m1 + 2ma — Eamn

= &1 +&00 + &3 + Eaaa + 513 — &3 + Eama — Eam

= &1(a1 +n3) + &2(2 + na) + E3(a3 — m1) + Saloa — m2)

= (a1 +m3, 02+ na, 03 —m1, 04 — n2) - (81, 62, 63, &4)

= W maane (@1, @2, a3, aq) - (51, 82, &3, 84)

= Wi manzn) (X1, X2, X3, Xa) - (61, 62, &3, £4).
Since g = (11, n2, 13, n4) and x = (x1, x2, X3, x4) were arbitrary, we conclude that
w(Pg(x)) = Yeu(x) forallg € G,x € M.

Theorem 3.6 Let ® : G x M — M be a symplectic action of G on (M, ) which
admits a momentum mapping ;1 : M — g* and let 0 : G — g* be the cocycle of .
Let the function 6, : G — R be defined by 6,,(g) = o (g) - 1.

Define also a function ¥ : g x g — R by X(&,n) = doy(e) - & forallé,n € g.
Then X is skew symmetric bilinear form on g and satisfies the Jacobi’s identity

0=%EED+XM 55D+ XE, 60D
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Proof We first obtain an expression for X (&, n). From the expression
on(8) = u(Pg(x)) - n — Adgu(x) - n
= ﬁ«n(cbg(x)) - ,E'«Adg,m(x)'

Differentiating with respect to g at g = e in the direction of £ € g we get

déy(e) - § = d(Py(Pg(x)) - § = ftag_n(x) - §)

= Ly (Pexpirz (1)) 1120 — 5 A Aderp(—reyn(*) li=0

= (iny ) Pexpre (¥) l1=0 — 5 (Adexp(—15)7. 11 (X)) li=0
= (iny @) En () — (S Adexp(—1)n l1=0, 11(x))

= (izyiny @) () — ([0, £], u(x))

= —{ite, iy} (x) — fpy.51(x)

—{fte, fn}(x) + fgg,m(x)

Thus,

2, n) = —{ite, g} + g,y (3.2)

But both the Poisson bracket {/i¢, [, } and the Lie bracket [&, ] are skew symmetric
bilinear. This implies that the right side of (3.1) is skew symmetric and bilinear.
Therefore, (&, n) is skew symmetric and bilinear form on g. The right side also
satisfies Jacobi’s identity which implies that ¥ (&, ) also satisfies the Jacobi’s
identity. (|

Example 3.7 We shall use the previous example to obtain an expression for

(&, ). Let &, n € g where § = (§1, 2, 83, §4) and n = (11, 12, 13, 114). We have
already seen, for example, that

d

0 0
(X2, X3,X4) = Ej— +E— +E— .
Era (X1, X2, X3, X4) = &1 o1 & 5y &3 o3 &4 ora

From the commutation relation

e, i} = Qg — ZE, ).
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Now, evaluating the left side

{lléa llr/} = _iSMiflMa)

a (dxy ANdx3z +dxy Adx
Sl d,\l +$2 c)x2 +& dx3 +$4 dX4 771 dxl +m dxz +m3 dX3 iz axg ( ! 3 2 4)

= AN A
Sl axy +E2 xy +€3 3‘(3 &4 33 (lr’l x| 2 axz RE 6)(3 4 38 (dXI d)C3 + dxz d.X4))

“hg 0 g 0 ye 0y 0 (dX3 — n3dxy + nadxs — nadx)
Xl Xz (X3

dx

—(&3m — &1n3 + Eamz — Eama).

For the right side, note that since G = R* is commutative under addition [E,n] =0.
Therefore, we have

—(&n1 —&nz +E&amp — Eang) = —X(&, ).

Thus

Y&, n) =&n — &z +E&amx — Eang.

3.2 The Orbits of an Affine Action

Proposition 3.8 Let G be a Lie group, g its Lie algebra, and g* the dual of its Lie
algebra. Let ¥ : G x g* — g* defined by V(g, ) = Adga + 0(g) be the affine
action of G on g*. Then the orbit G - B = {V(g,B) : g € G} is a symplectic
manifold with the 2-form given by

wp (Eg+(v), ng=(v)) = —BLE, ]+ (1, §).

Proof We shall first show that the orbit Og = {¥(g, B) : g € G} is a manifold.
Thereafter we shall define a symplectic structure on it.

Let Og = {¥(g, B) : g € G} C g* be the orbit. The isotropy group of B is given
by

Gp=1{geG: V(g p) =4}

This is a closed subgroup of G since if g, is a sequence in Gg which converges to
g € G then we have
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B = lim W(g,.p)
n—o0
= W¥(lim gy, B)
n— o0
= V(g B).
The second equality holds because W is an action and so it is smooth. This shows
that g € Gg.
Now we show that Og = G/Gg. To this end, let us define a map
9:08— G/Gg
by
o) =gGg

for n € Og, where n = W (g, B) for some g € G.
The map ¢ is well-defined since if ¢ () = hGg also, then we have

V(g, B) =V(h, p)
so that
Wk W(g. p) = B.
Hence, W(h~'g, B) = B, which implies that 1~ g € G and consequently
8Gp = hGg.
This map ¢ is injective. To see this let n = W(g, B), & = W(h, B) and gGg = hGg
for h,g € G and n,& € Opg. Then h='g € Gg so that W(h~!g, B) = B. This
implies that Wl (g, B)) = B. It follows that ¥ (g, ) = W(h, B) so thatn =
- Furthermore, the map is surjective since if
8Gp € G/Gg,
then
n=W(g,B) € Og

gives

p(n) = gGg
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by construction.
Thus, the map ¢ is an isomorphism. (]

Proposition 3.9 Suppose that n € Og so that n = W (h, B) for some h € G, then
the isotropy groups G g and G, are conjugates.

Proof We shall change the notation a bit and write W¢(8) for W(g, 8). We have
already seen that W is an action and so, it is a homomorphism

W(gh, p) =W (g, V(h,p)).

Next, we defineamap y : G/Gg — G/G, by

[glg > [hgh™'1,.

Then y is a well-defined isomorphism. To see this, let x € Gg so that W, (8) = B.
Since n = W, (8), we have

Wy 0 Wy 0 W1 (1) = Wy 0 Wy 0 Wy (W(h, B))
=W, o W, (W(hh™!, B))
=W, 0¥, (B)
= W(h, ¥(x, B))
=V, p)
— .

Since x € G g was arbitrary, it follows that W, GgW,-1 is a subgroup of G,,. Taking
B = W(h~!, n) gives the reverse inclusion. Thus Gy =V,GgV¥,-1.

Hence y is an isomorphism.

We now write the orbit of W through g as

G-B=G/Gg = 0p.

From the discussion above, it is clear that the orbit G - 8 does not depend on the
choice of the element g in its orbit. We already have that Gg is a closed subgroup
of G. Thus G - B = G/Gg is a manifold.
‘We shall now define a symplectic structure on the orbit of the action W through 8.
Let £ € g. We define the vector field on g*, called the infinitesimal generator of
the action to be:
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Eg+(B) = L Ww(exptt, B) li=o

LIAdS B+ 0 (exp18)] li=o

%Ad:xptéﬁ li=0 +%G(expfé) lr=0
= $AdZ B li=o +do(e) - £

= $AdS B li=0 +d6z (e)

If now n € g, then we have

(Eg- (BN = (A3, BN li=0 +d5z(e) -
= B4 Adexp—10)1) li=0 + > (0. &)

= (=&, 1) +2-(n, §).

To compute the tangent space to the orbit G - B at 8, for £ € g let x(r) = exp & be
a curve in G which is tangent to £ at r = 0, then B(f) = W (x(¢), B) is the curve in
G - B such that 8(0) = B since o (e) = 0.

If n € g, then

(B@),n) = (¥x@),B),n)
= (Ad} ;B + o (x()), n)

= (Ad, B, 1) + (o (exp 1), n)

where (-, -) is the natural pairing of g and its dual g*.
Differentiating with respect to ¢ at ¢t = 0 gives

(B'(0),m) = (adi B, n) + 2-(n. &).
This implies that

B'(0) = adfp+ Y ().

Therefore, the tangent space to G - 8 at 8 is given by

T4G-p={adiB+) (&) :£eg)

Consider now the function wg : g x g — R defined by

wpE,m) = B(—[E. 1) + Y (. 6).
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Clearly wg is skew symmetric and bilinear on g since both the Lie bracket and
>"(:, -) are skew symmetric bilinear.
kerwg ={§ € g: wp(§,n) =0,V € g}
={6eg: (=[5, ]+ X8 =0,V € g}
= LieGg

Now, for £ € g let £ denote the vector field on g* generated by £. That is,

g = E(B)
= L y(exptg, B) li=o -

Then for 8 € g*, define the function
Qg :TgG - B xTgG - B — Rby

Qp(E, 1) = wp(&,n)

forall¢, n € g.

Theorem 3.10 Qg defined above is a well-defined 2-form on G - B, the orbit of the
affine action V : G x g* — g* through B.

Proof First note that if ¢ € LieGpg, then Q4(¢, &) = wpg(¢, &) = 0 forall £ € g.
Now let&é,n € g. If ¢ € LieGg, then

QE+¢,71) =wpE+¢m)

wg(§,n) + wp (¢, n) since wg is bilinear.

wg(&,n) since wg(¢,n) =0
= Qp(E, 7).

Thus Q4 does not depend on the choice of &, € g. Hence Qg is well-defined.
Since locally wg is skew symmetric, bilinear on the tangent space 7, G, it follows
that Q2 is skew symmetric bilinear on the tangent space TgG - 8. It remains to show
that Q4 is non-degenerate and closed on G - B.

To prove non-degeneracy let £ € g be such that £ ¢ LieGg, we must show that
there exists € g such that Qg (,7) #0

Butnowifn € gand & ¢ LieGg then

QpE, 1) = wpE,m) #0
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if and only if
& dkerwg = LieGg.

This shows that if & ¢ LieGpg, there exists n € g such that Q,g(é, n) # 0. Hence
Qg is non-degenerate. To show that 24 is closed we use the formula

do(X,Y,Z) = (Lxw)(Y, Z) — (Lyo)(X, Z) + (Lzw)(X, Y)
toX, [V, Z) -0, [X, Z]) + o(Z,[X,Y])

whose proof can be found in [3] on page 53.
Let&,n, ¢ € g, then

dQp(E, 71, ¢) = dwg(€,n, ¢)
= (Lewp)(n, &) — (Lywp)(§, ) + (Lewp)(§, n) + wp(&, [, ¢])
—wg(n, £, ¢]) + wp(g, [&, n)).

Repeated application of Jacobi identity then shows that d2g = 0 which means that
Qg is closed.
We have therefore shown that if the affine action ¥ : G x g* — g* defined by

V(g a) = Adga +0o(g)

is used in place of the coadjoint action, then the orbit G - « is a symplectic manifold
with the 2-form given by

wo(Egr (V) ng= (V) = —al&. 0]+ Y (1. 6).

4 Towards a Generalization

In Theorem 3.6 above and other related results on conservation laws which are not
explicitly mentioned in this text, the function ¥ or other identities make use of
the canonical Poisson bracket. It would be worth extending them using a deformed
Poisson bracket that looks more general and is defined as follows.

Let M be a C* manifold, and let

_ |3f9s dfds
{f’g}p_p{aqap apaq}’
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where f and g lie in C°°(M), ¢, p are canonical coordinates of points of M, r is
a nonnegative integer. It is easily seen that the case p = 1 yields the usual Poisson

bracket.

Proposition 4.1 Let M be a C* manifold. Then M endowed with {.,.}, on

C°° (M) is a Poisson manifold.

Proof Forall f, g, h, f1, f2, 81,8 € C®(M),foralla; € C, i = 1,2,

0
@ {.,.}p: C®(M) x C*®(M) — C*(M) is a bilinear mapping. For, 3 being

a linear operator, it is easily seen that

{arfi + o2 /2, 8}p = ar{f1. g}p +o2{f2. 8}p

and

{(fia181 +axge}py = ar{f, g1}p +a2{f g2}p

(i) {.,.}p is skew-symmetric as it can be seen that { f, f}, = 0.

(iii) {., .}, satisfies the Jacobi identity, i.e.

{fAg. Mplp +Hg. {h, flplp + {0 {f glplp =0

as by the straightforward calculation below:

We have
_ r-3f3{gvh}p af d{g.h}p
{filg. hlplp=p 3¢ “ap  —ap oq
— pr|dfa (,r(380n _ dgoh
=P _3q3p<p (Bq p — 3p g
_3 3 (,r(380h _ 380k
apag \P \9q0p ~ 3p g
— o [ (=1 (2800 _ B8 0h r(Pg oh 02 9%h
=p | dq 'p (611319 p 9q +p 3p3q3p+3qap2
_(32_g8_+8_g82_h ))
ap? 9q p dpdq
_ A (pr (g0 B8 *h _ (0% oh | 38 0%k
ap (p dg? op + dq 9qop dq0p dq + ap dq?
— yp2r—1 (f (dg0h _ dg 0k 2 (Of 9’ 9h . Of dg 9%
=p <3q (Bqap ap dq +r 3q3p3q3p+ q 9q dp?
_Of g on _ f g 9°h _ Of g oh
dq 9p*> 9q  9q dp dpdq p dq% 9p
_ 3fdg 9*h  Of 9% oh w_gﬁ>
p 9q dqdp +3[’ dqdp dq + p dp dg ()
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Similarly,
2r—1 ((3g ((9h df haf>) 2r<8g 9%h df | dg oh 3°f
=7r = |55 — 57— 35— i oo = 5
{g.{h, fip}p p (aq (Gq op " pag)) T g 9pdq op T 3g q 9p?
_ 38 0% 3f _ dg dh *f
dq dp2 dq dq dp dpaq
dg %h 3f _ g oh 9°f dg 9%h of agaha2f)
— 2o as _ 280h 28 0 2 28 ORCZ [ Kok
ap 92 dp 3paqaq9p+p3q3p q+ppq2 (%)
and
— pp2r—1(2h ﬂa__ﬂﬁ_g» 2r(%_32 38 | 0h f 9%
. Af.8lptp =1p <3q (dqap ap dq +r q dpdq p+ q 99 ap
_0nd’fdg _ dhdf 9g
dq 9p2 dq  dq Ip dpdq
_0nd’fdg _ 9hof 0%g . oh 9°f dg @ﬂaz_g)
p g% p p04343p+ p dqop q+ p dp dq (%)

Adding the three expressions (¥), (¥*), and (***) taking note of the equality of
mixed partials, the terms with coefficient p2’ cancel out. We remain with

{filg, hiplp +{g. {h, fiplp + 1A S 8hphp

_ ,n2r—1|9f (08 dh _ 08 dh dg (dndf _ dhdf
=rp [ (G = 5 e) + 5 (B 5 - B 50)
+ %(ﬂi’_g _ ﬁa_g)]
Expanding and adding gives the desired results.
Thus, the Jacobi identity holds.

(iii) Finally, {., .} is a derivation in each variable. That is,

{fe.hyp ={f hpg + flg. h}p

which ends the proof. (]

Proposition 4.2 Let M be a Poisson manifold and H € C*°(M). There is a unique
vector field X g on M, so-called Hamiltonian vector field with Hamiltonian function
H such that

XH[g]p = {g, H}p7

forall g € C*®°(M). Thus,

{f,8lp = Xl f1p = —Xrlglp.

Momentum mapping was introduced by Souriau for the purposes of reduction of
mechanical systems with symmetries. Therefore, such a deformed Poisson bracket
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introduces a new formalism for Hamiltonian mechanics, a setting that goes beyond
the scope of this paper.
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G. Bangerezako and J. P. Nuwacu

Dedicated to Prof. Hounkonnou M N, for his 60th birthday.

Abstract We establish difference versions of the classical integral inequalities
of Holder, Cauchy-Schwartz, Minkowski and integral inequalities of Gronwall,
Bernoulli and Lyapunov based on the Lagrange method of linear difference equation
of first order.

Keywords Holder - Cauchy-Schwartz - Minkowski - Grénwall - Bernoulli and
Lyapunov inequalities - Lagrange method

1 Introduction
Considering the most general divided difference derivative [5, 6],

fs+iy—fas—1)
D = 2 2 1
Sf((s)) Y S PT D (1)

admitting the property that if f(¢) = P,(t(s)) is a polynomial of degree n in ¢ (s),
then Df(t(s)) = 15,,,1 (t(s)) is a polynomial in #(s) of degree n — 1, one is led
to the following most important canonical forms for #(s) in order of increasing
complexity:

1(s) =1(0); 2
1(s) =s; 3)

G. Bangerezako (0<) - J. P. Nuwacu
University of Burundi, Faculty of Sciences, Department of Mathematics, Bujumbura, Burundi
e-mail: gaspard.bangerezako @ub.edu.bi; jean-paul.nuwacu@ub.edu.bi

© Springer Nature Switzerland AG 2018 137
T. Diagana, B. Toni (eds.), Mathematical Structures and Applications,

STEAM-H: Science, Technology, Engineering, Agriculture,

Mathematics & Health, https://doi.org/10.1007/978-3-319-97175-9_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97175-9_5&domain=pdf
mailto:gaspard.bangerezako@ub.edu.bi
mailto:jean-paul.nuwacu@ub.edu.bi
https://doi.org/10.1007/978-3-319-97175-9_5

138 G. Bangerezako and J. P. Nuwacu

t(s) =q°; 4)

—S

_ 49 *4

> ,qeC,s eZ. (®))

When the function 7(s) is given by (2)—(4), the divided difference derivative (1)
leads to the ordinary differential derivative Df () = j—t f(t), finite difference
derivative

Af() = fs+1) = f(5) = (B — 1) f(s) (6)

and g-difference derivative (or Jakson derivative [4])

flan— £ _gf -1

D t) =
af () qt —t qt —t

@) (M

respectively. When x(s) is given by (5), the corresponding derivative is usually
referred to as the Askey-Wilson first order divided difference operator [1] that one
can write:

1 1
(x(q2 7)) — -2
Df(x(z) = flx(g f)) f()ffql 2)) , (8)
x(g2z)—x(qg 22)
where x(z) = ”{1 , having in mind that z = ¢°.

The calculus related to the differential derivative, the continuous or differential
calculus, is clearly the classical one. The one related to the derivatives (6)—(8)
(difference, g-difference and g-nonuniform difference respectively) is referred to
as the discrete calculus. Its interest is two folds: On the one hand it generalizes the
continuous calculus, and on the other hand it uses discrete variable.

This work is concerned in the difference calculus. We particularly aim to
establish difference versions of the well-known in differential calculus, integral
inequalities of Holder, Cauchy-Schwartz, Minkowski, Gronwall, Bernoulli, and
Lyapunov. We will note that the raised inequalities were proved in [3] for a more
general difference operator than (6), but one will remark that except classical
recipes used for the inequalities of classical analysis (Holder, Cauchy-Schwartz
and Minkowski), our approach here is essentially different. It is essentially based
on the Lagrange method and it is so that it can be extended to the more general
derivative (7) or even (8) (see [2]), the latter being, at our best knowledge, the
largest one having the mentioned property of sending a polynomial of degree n
in a polynomial of degree n — 1.

In the following lines, we first introduce basic concepts of difference calculus
and linear first order difference equations necessary for the sequel, and then study
the mentionned integral inequalities.
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2 Preliminaries

2.1 Difference Derivative and Integral

Consider again the difference derivative that is the derivative related to the grid
in (2):

AF(s)=F(s+1)—F(s) = f(s) (D)

Basing on this derivative, one defines the integration that is the inverse of the
differentiation operation as follows:

S £y =1L 3520 (D). ©)

The defined integral admits the following properties:

Fundamental Principle of Analysis One easily verifies that

) A ([ F)das) = A (X5 FD) = £6), 3)

ii) [S (AF(s) das = Y5t AF() = F(s) — F(5o). @)
Integration by Parts Integrating the two members of the equality
F©AL(s) = A(f(5)g(5) — gls + DAS(s) 5)
and applying (4), one gets
2 F©)Ag(s)das =[£I, = [2 (s + DAF(5)das, (©)

which is the integration by parts formula.

Positivity of the Integral We finally remark that when f(s) is positive, the integral
in (2) is clearly positive, which gives the following property and its corollary useful
for the sequel.

Property 2.1 If f(s)>0 and s1 < s2, then
52
f f(s)das>o. (M
S

Corollary 2.1 If f(s)>g(s) and s1 < s3, then

St F(©)das> [ g(s)das. ®)
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2.2 Linear Difference Equations of First Order

A linear difference equation of first order can be written as
Ay(s) = a(s)y(s + 1) + b(s) €))
or
Ay(s) = a(s)y(s) + b(s). (10)

Consider first the homogenous equation corresponding to (9):

Ay(s) = a(s)y(s + 1). (1
Equation (11) gives
Y+ 1) = (=) ), (12)
which by recursion leads to
y(s) = Eq(no, n)y(no), (13)
where
| R SR
Eq(no, n) =/ 3 " li=so T=a@* = 70 (14)
1, s<80

is a difference version of the exponential function (since Eq. (11) is a difference ver-
sion of the differential equation, y’(x) = a(x)y(x)). Consider now the homogenous
equation corresponding to (10):
Ay(s) = a(s)y(s). (15)
Equation (15) gives
Y+ 1) =0+als)yls), (16)

which by recursion leads to

y(s) = eq(no, n)y(no), (17)
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where

_def :Hf_jo(l +a(i)), s > 5

eq(ng, n) =
a( 0 ) 1, $<50
is another difference version of the exponential function. Clearly, we have
Theorem 2.1
ea(no, n).E_q(no, n) = e_q(no,n).Eqa(no,n) = 1.

More generally, we have

Theorem 2.2 If

Ay(s) = a(s)y(s + 1),
Az(s) = —a(s)z(s),

with
y(s0)z(s0) =1,
then

y(s)z(s) = 1.

141

(18)

19)

(20)

ey

(22)

Prof. A (y(s)z(s)) = y(s + DAz(s) + z(s)Ay(s) = y(s + D(—a(s))z(s) +
z(s)a(s)y(s+1) = 0. This implies that y(s)z(s) = const., which by (21) gives (22),

and the theorem is proved. [J

Nonhomogenous Cases Consider first the equation

Ay(s) =a(s)y(s + 1) + b(s).

(23)

Solving (23) by the method of variation of constants or method of Lagrange, we

suppose that
Ayo(s) = a(s)yo(s + 1)
and search the solution of (23) as
y(s) = c(s)yo(s)
where c(s) is to be determined. Placing (25) in (23) and using (24), we get

yo(s)Ac(s) = b(s),

(24)

(25)

(26)
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or
c(s) = ¢+ 212y ¥o L DbG). @7
Placing this in (25), we get
¥(s) = yo($)e + yols) 32y vy ()b(), (28)

with ¢ = yo_l(so)yo(so) (we suppose that ZjZ:u h(i) = 0,1if 51 > s2), or
equivalently

¥(5) = 9 (s, 50) [ y(s0) + LI, 950, Db ] 29)

where ¢ (a, b) = yo(@)yy ' (b).
Consider now the nonhomogenous equation

Ay(s) = a(s)y(s) + b(s). (30)
Here also, solving the equation by the method of Lagrange, we get
() = yo(s)e + yo(s) 3=y ¥ ' (i + Db (), 31
where
Ayo(s) = a(s)yo(s) (32)

and ¢ =y, ! (s0)y(s0), or equivalently,

¥(5) = 5. 50) [ y(50) + LI} dGso.1 + Db (33)

3 Difference Integral Inequalities

In this section, we deal with the main content of the work, that is we establish the
mentioned integral inequalities. In the first two subsections, where we prove the
Holder, Cauchy-Schwartz, and Minkowski inequalities, we refer to classical recipes
currently used in differential situations. In the last three sections, where we prove
the Gronwall, Bernoulli, and Lyapunov inequalities, we mainly rely on the method
of variation of constants of Lagrange.
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3.1 Holder and Cauchy-Schwartz Inequalities

Theorem 3.1 (Holder Inequality) Let a,b € Z. For all functions f, g : [a,b] N
7. —> R, we have

b b & /b B
/If(S)g(S)IdAS<</ |f(5)|adAs> </ Ig(S)I’gdAS) ) 1)
with & + 5 = 1.

Proof For A, B € [0, oo, by the concavity of the logarithm function, we have

1
Au L BT log(A") log(BF) _

l > log(AB). 2
o8| 5 P 5 0g(AB) 2
which leads to
1.1 A B
ATBP<E 4 2. 3)
a B
Now let
o B
_ O g ko)l @
L1 f()|%das [ 18(s)|Pdns
with

b b
( / |f(s)|“dAs> ( / |g(s>|/f‘dAs> #0, 5)

since [ | f(5)|%das = 0 or [”|g(s)|Pdas = 0 implies that f(s) = 0 or g(s) =0
and (1) becomes an identity.

Next, substituting A and B in (3) and integrating from a to b, considering
Corollary 2.1, one gets

/” |£(s) lg(s)]
1 1
C (I reedss)” (7 186)1Pdas)”

das

b o B
</ {1 BFLC T O] }dAs
o Lo fP1r@ledas B [P 1g(s)Pdas
1 1
=—+_-=1 (6)

which gives directly the Holder inequality and the theorem is proved.
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If we set « = B = 2 in the Holder inequality (1), we get the Cauchy-Schwartz
inequality.

Corollary 3.1 (Cauchy-Schwartz Inequality) Let a,b € Z. For all functions
frg:la,blNZ — R, we have

b b b
/If(S)g(S)IdAS<\/</ If(S)IszS) (/ Ig(S)IszS>. (7

Next, we can use the Holder inequality to prove the Minkowski one.

3.2 Minkowski Inequality

Theorem 3.2 (Minkowski Inequality) Soient a,b € Z. For all functions f, g :
[a,b]NZ — R, we have

b i b i b &
(/ |f(s)+g(s)|dAs> <</ |f(S)|adAS) +(/ |g(S)|adAS> . (8)

Proof We apply the Holder inequality to obtain

b b
/ £ (5) + g(s)[“das = / 1£(5) + g1 £ (5) + g(5)ldas

b b
< / 1£(s) + g1 £ ()ldas + / 1£(s) + ()| g(s)ldas

b 3 b 5 b &
<(f |f<s>+g<s)|<°‘—”ﬂdAs) (/ |f<s>|“dAs> +(/ |g<s>|“dAs)
1

Dividing the two members of the inequality by (fab | f(s) + g(s)|(a—l)ﬁdAs)E,
with (@ — 1)8 = «, we get
1-1

b % b a b &
</ |f(s)+g(s)|°‘dAs) < (/ |f(S)|adAS) +</ |8(S)|adAS> ,

which is the Minkowski inequality since 1 — }13 = é g
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3.3 Gronwall Inequality

Let’s prove first the following:

Lemma 3.1 Given y, f, a real valued functions defined on 7, with a(s)>0. Sup-
pose that yo(s) is the solution of Ayo(s) = a(s)yo(s), such that yy(so) = 1.
In that case, if

Ay(s)<a(s)y(s) + f(s) )
forall s € Z, then
Y($)<yo(s)y(so) + yo(S)/ yo_l(s + 1) f(s)das. (10)
50

Proof Let yo(s) be the solution of the homogenous equation

Ayo(s) = a(s)yo(s). (1)

Searching the solution y(s) of (9) verifying (10), by the method of variation of
constants

y(s) = c(s)yo(s), (12)
where c(s) is unknown, we place (12) in (9), considering (11) and get

yo(s + DAc()<f(s). 13)

Given the fact that a(s) >0, we have that yp(s) > 0 and the relation (13) simplifies
in

Ac()<yy (s + D F(s). (14)

Integrating the two members of the inequality from s to s, we get

c(s) — c(s9)< / Yo L5 + 1) f(5)das. (15)
S0

Since yo(so) = 1, (12) gives c(s9) = y(so), and (15) simplifies in

N

()< (s0) + / Yo [ (s + 1) f(s)das. (16)

S0
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Hence

c(8)yo(s)<yo(s) [y(SO)+/ yo_l(S+ l)f(S)dAS}, (17)

0

which gives the expected result:

y(s)<yo(s)y(so) + yo(s) / yo_l(s + D f(s)das.
S0

O
Considering the Theorem 2.1, we obtain the following

Corollary 3.2 Ifthe functions y, f, a verify the conditions of Lemma 3.1, then
N
y(8)<y(so)ea(so, ) +ea(SO,S)/ E_a(s0,s + 1) f(s)das.
50

Lemma 3.2 Given y, f, a real valued functions defined on Z, with a(s)<0.
Suppose that yo(s) is the solution of Ayo(s) = a(s)yo(s + 1), such that yo(sg) =
1.
In that case, if

Ay(s)<a(s)y(s +1) + f(s) (18)
forall s € Z, then
y()<yo(s)y(so) + yo(S)/ yal (8) f(s)das (19)
50

Proof Let yo(s) be the solution of the homogenous equation
Ayo(s) = a(s)yo(s + 1). (20)

Searching the solution y(s) of (18) verifying (19), by the method of variation of
constants

y(s) = c(s)yo(s), (21)
where c(s) is unknown, we place (21) in (18), considering (20) and get
Yo(s)Ac(s)< f(s). (22)

Given the fact that a(s)<0, we have that yo(s) > 0 and the relation (22) simplifies
in
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Ac()<yy () F(s). (23)

Integrating the two members of the inequality from s to s, we get
P
c(s) —c(s0)< / Yo () f(s)das. (24)
50
Since yg(sp) = 1, (21) gives c(sg) = y(so), and (24) simplifies in
Yo
c(s)<y(s0) + f Yo (8)f(s)das. (25
50
Hence

c(s)yo(s)<yo(s) [y(SO) + / YQI(S)f(S)dAS:| ; (26)

0

which gives the expected result:
t o
y($)<yo(s)y(s0) + yo(s) / Yo (8)f(s)das.
)

O
For the same reasons as the Corollary 3.2, we obtain the following:

Corollary 3.3 If the functions y, f, a verify the conditions of Lemma 3.2, then
N
y($)<y(s0) Ea(s0, s) + Eq(s0, 5) / e—a(50,8) f(s)dns.
50

We can now prove the following:

Theorem 3.3 (Gronwall Inequality) Let y, f, a be real valued functions defined
on Z, with a(s)>0.
Suppose that yo(s) is the solution of Ayy(s) = a(s)yo(s), such that yo(sg) = 1.
In that case if
S
YOF6)+ [ s, @)

50

then

YK f(s) + eq(so, s)/ a(s) f(s)E_q(so, s + 1)das. (28)
S0
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Proof Defining

v = | ¥(5)a(s)das, 29)
(27) gives
Y f(s) 4+ v(s), (30)
and
Av(s) = y(s)a(s)< f(s)als) +al(s)v(s). (31

By the Corollary 3.2 of Lemma 3.1, the inequality (31) leads to
N
v(s)<v(s0)eaq(so, 5) + eq(so, S)/ a(s) f(s)E—a(s0, s + D)das (32)
S0
Since v(sg) = 0, (30) and (32) imply that
N
< f(s) +ea(So,S)_/ a(s) f(s)E—a(s0, s + Ddas, (33)
S0

which is the expected Gronwall inequality. [
As direct consequences, we obtain the following results:
Corollary 3.4 Let y, f, a be real valued functions defined on 7, with a(s)>0. If

)< / Cy()als)das, (34)

0

forall s € Z, then
y(s)<0. (35)

Proof This follows from the Theorem 3.3 with f(s) = 0.J
Corollary 3.5 Leta(s)>0and o« € R. If

y(s)<a + / y()als)das, (36)

S0

forall s € Z, then

y(s)<aeq(s0, §). 37
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Proof From the Gronwall inequality with f(s) = «, one gets
s
y($)=a + eq(so, S)/ aa(s)E_q(so, s + Ddas
50

=« (1 — e,4(s0, s)/ AE_,(sp, s)dAs)
S0

=a (1 —eq(s0,5) [E—a(s0,5) — E_4(50, 50)])
= o —ae,(s0, S)E_,(s0, 5) + aeq (50, 5)
= aeq(50, 5),

(38)

which gives the expected inequality. [J

3.4 Bernoulli Inequality

Theorem 3.4 (Bernoulli Inequality) Ler o € R. Then for all s, sy € Z, with s >
50, we have

ea(s0, $)=1+ a(s — s0). (39
Proof Let y(s) = a(s — s9),s > so. Then Ay(s) = « and ay(s) + a = (s —

s0) + a>a = Ay(s), which implies that Ay(s)<ay(s) + «.
By the Corollary 3.2 of Lemma 3.1, we obtain

s
y(s)<y(so)ex(so, s) + eq (50, s)/ oE_y(sg, 5 4+ 1)das,
0

—eq (50, s)/ AE_y(s0, s)das, (y(xo) = 0)
50

= —eu (50, )[E—a(s0,5) — 1]
—1 + eq(s0, 5).

(40)

Hence e, (s, s)>1 4+ a(s — sg), with s > sq, as expected. [
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3.5 Lyapunov Inequality

Let f : Z —> [0, oo[. Consider the Sturm-Liouville difference equation
A%u(s) + f(Hu(s +1)=0,s € Z. (41)
Define the function F' by
F(y) = fab [(Ay()* = f()y*(s + D] das. (42)

We prove first the following lemmas:

Lemma 3.3 Let u(s) be a nontrivial solution of the Sturm-Liowville difference
equation (41). In that case, for all y belonging to the domain of definition of F,
the following equality is verified,
F(y) = F(u) = F(y —u) = 2(y — u)(b) Au(b) — 2(y — u)(a) Au(a). (43)
Proof We have
F(y)— F(u) — F(y —u)
- / LAY = £y + 1) = (Au(s))?
+(@uP(s + 1) = (Aly —u)($)* + f()(y —w)*(s + D]das
=2 / L= (AU 4 FO + 1) + Ay)Au(s)
—fa(s>y<s + Du(s + Dldas
=2 / b[Ay(s)Au(s) +y(s + DA%u(s) — (Au(s))?

—A%u(s)u(s + 1))das

b
—2 / [ADY(5)Au(s)] — Alu(s) Aus)lldas

b
= 2/ AL(y(s) —u(s)) Au(s)ldas
=2(y(b) —u)) Aud) —2(y(a) — u(a)) Au(a), (44)

which proves the lemma. []
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Lemma 3.4 Let y be in the domain of definition of F. For all c,d € [a,b] N Z,
a,b e Z and a<c<d<b, we have

d ) —v 2
JEAY () dps > L@, s

Proof Let u(s) = y(d;:g(c)s + dy(c;:‘;y(d) . Then Au(s) = % and AZu(s) =
0. This proves that u(s) is a solution of (41) with f(s) = Oforalls € Z and F(y) =
fab (Ay(s))2 dps, for all y from the domain of definition of F. By Lemma 3.3, we
get F(s)— F(u)— F(y—u) = 0, and consequently F(y) = F(u)+F(y—u)>F (u).
This leads to the following result:

[4 Ay dasz [¢ (Au(s))? das
- (Y

(D)2
_ (3’(d21:>C(c)) ’ (46)

which proves the lemma. [J

Theorem 3.5 (Lyapunov Inequality) Given f : Z — [0, oo[ and u a nontrivial
solution of Eq. (41) withu(a) = u(b) = 0,a,b € Z and a < b, then

b 4
/ f($)das> 5 47)

Proof By the Lemma 3.3 with y = 0 and u(a) = u(b) = 0, one gets F(0) — F (u) —
F(—u) = —2u(b)Au(b) + 2u(a)Au(a).This gives F(u) = 0 since F(0) = 0 and
F () = F(—u). Thus

b
Flu) = / [(Au(s))2 — Fo)ul(s + 1)] dps = 0. (48)

Let M = max [uz(s); s € [a,b]N Z] and ¢ € [a, b|NZ such that u%(c) = M. Then
M = u®(c)>u?(s+1) and using (48), Lemma 3.4 and the fact that u(a) = u(b) = 0,
we get

b b
M/ f(s)dAs>/ F($)u*(s + Ddas
b
=/ (Aus))* das

c b
= / (Aus))? das + / (A(us))* das
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S () = u(a))? L w® - u(c))?
c—a b—c

[ 1 1 } 4
=M + =M
C

(49)

which proves the Lyapunov inequality. [J
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Theoretical and Numerical Comparisons m)
of the Parameter Estimator of the Creck fo
Fractional Brownian Motion

Jean-Marc Bardet

This paper is dedicated to Norbert Hounkonnou who is not
really a specialist of probability and statistics (... ) but who
often taught these topics and has mainly allowed them to
significantly develop in Benin by his unwavering support to
Masters and PhD of Statistics.

Abstract The fractional Brownian motion which has been defined by Kolmogorov
(CR (Doklady) Acad Sci URSS (N.S.) 26:115-118) and numerous papers was
devoted to its study since its study in Mandelbrot and Van Ness (STAM Rev 10:422—
437, 1968) [19] present it as a paradigm of self-similar processes. The self-similarity
parameter, also called the Hurst parameter, commands the dynamic of this process
and the accuracy of its estimation is often crucial. We present here the main and
used methods of estimation, with the limit theorems satisfied by the estimators.
A numerical comparison is also provided allowing to distinguish between the
estimators.

Keywords Fractional Brownian motion - Long memory process - Parametric

estimation

1 Introduction

The fractional Brownian motion (fBm for short) has been studied a lot since the
seminal papers of Kolmogorov [16] and Mandelbrot and Van Ness [19]. A simple
way to present this extension of the classical Wiener Brownian motion is to define it
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from its both first moments. Hence, an fBm with parameter (H, 02) € (0,1] x
(0, 00) is a centered Gaussian process X = {X(r), t € R} having stationary
increments and such as

1
cov(X(s), X(1)) = 02 Ry (s, 1) = 5 o (IsP” + 1t e —s*)  (s.1) e R%

As a consequence, Var(X (1)) = o2 |t|*" for any ¢ € R, which induces that X is the
only H-self-similar centered Gaussian process having stationary increments. More
detail on this process can be found in the monograph of Samorodnitsky and Taqqu
[21].

We consider the following statistical problem. We suppose that a trajectory
(X(1),---, X(N)) of X is observed and we would like to estimate the parameters
H and o2 which are unknown.

Remark 1.1 Itis also possible to consider an observed path (X (1/N), X(2/N), - - -,
X (1)) of X. Using the self-similarity property of X, the distributions of
(X(),---,X(N)) and NH(X(I/N), X(2/N),---,X(1)) are the same.

This statistical model is parametric and it is natural to estimate 0 = (H, 0'2) using a
parametric method. Hence, on the one hand, in the forthcoming Sect. 2, two possible
parametric estimators are presented. On the other hand, several other used and
famous semi-parametric estimators are studied in Sect. 3. For each estimator, its
asymptotic behavior is stated and the main references recalled. Finally, Sect.4 is
devoted to a numerical study from Monte-Carlo experiments, allowing to obtain
some definitive conclusions with respect to the estimators.

2 Two Classical Parametric Estimators

Since X is a Gaussian process for which the distribution is integrally defined when
0 is known, a parametric method such as Maximum Likelihood Estimator (MLE)
is a natural choice of estimation and it provides efficient estimators. As X is a
process having stationary increments, it is appropriate to define Y the process of
its increments, i.e. the fractional Gaussian noise,

Y={Y(t),teR} = {X(t)— X(t—1), t € R},

with covariogram ry (k) = COV(Y ), Y+ k)) satisfying

1
ry (k) = 502 (Ik+ 127 + 1k =112 —21k?")  keR
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The spectral density fy of Y is defined for A € [—m, ] by (see Sinai [22] or Fox
and Taqqu [11]):

1 ;
fu@) == v e

keZ

=20°T(2H + 1)sin(rH) (1 — cos 1) Z A+ 2kz| 7172 2.1
keZ

Hence, since (X (1),---, X(N)) is observed, (Y(1),---,Y(N)) is observed (we
assume X (0) = 0).

2.1 Maximum Likelihood Estimation

The likelihood L(y(l),...,y(N))(yl, ey, yN) of (Y(l), ey Y(N)) is the Gaussian
probability density of (Y (1), ---, Y(N)), which can be written

(ZJT)N/Z

L st = ——— X
(1), Y (N) V1 YN) det (Zx (H, o2)

exp (—% O ER H, DG ) ),
where the definite positive covariance matrix Xy (H, o2) is such as
EN(H 0% = (r(i = jD) 1< jen-
Then the MLE fy = (Hy.02) of 0 is defined as:

(Hy,0%) = Arg max Ly yavy (Y (1), -, Y(N)).
(H,oz)e(O,l)x(O,oo)

As it is generally done, it can be more convenient to minimize the contrast defined
by —210g (Lr(1y,,yavn (Y (1), -+, Y (N))).

The asymptotic behavior of this estimator has been first obtained in Dahlhaus
[9]. The main results are the following:

Theorem 2.1 The estimator (ﬁ N, 0]%,) is asymptotically efficient and satisfies

(Ty = (B

oN
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and

\/N((%V)—(Hz)) 2y 450, T3\ (H. o). 23)

OyN o N—oo

where Fal(H,o2) is the limit of %Iﬁl(H,az) and In(H, c?) is the Fisher

information matrix of (Y(1), ---, Y(N)). Moreover,
N T 9
ot o?) = o [ (5108 5o (55 102 7o) . @4)

and fy(A) = 0 g (1) where
g1 () =2 sin(r )M @H + 1)1 —cos 1) Y [+ 27 277",
JEZ

The asymptotic covariance I'o(H, o) cannot be really simplified, we just can
obtain:

1 L —o2b
—1 2 H
(H, 0% = ——(_ 3 ) 2.5)
0 sam — b} o’by otay

where ay = % . (3H loggH(A)) d) and by = 4177 Jin aH log g7 (1) dA.

2.2  Whittle Estimation

The MLE is an asymptotically efficient estimator but it has two main drawbacks:
first, it is a parametric estimator which can only be used, stricto sensu, to fBm and
its use is numerically limited since the computation of the likelihood requires to
inverse the matrix Xy (H, 02) and this is extremely time consuming when N >5000
and impossible when N >10000 (with a 2014-software). In Whittle [28], a general
approximation of the likelihood for Gaussian stationary processes Y has been first
proposed. This consists in writing for ¥ depending on a parameter vector 6:

1 1
N log Ly(1y,,yavy (Y (1), -+, Y(N)) — Elog(Zn)

g o1 i)
ZOn® = = [ (e + 25

_ 2
where Iy (L) = ﬁ Z,ivzl Y(k)e_’k)“ is the periodogram of Y.
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Then Oy = (Hy, oy) = Argming g Uy (0) is called the Whittle estimator of 6. In
case of the fractional Gaussian noise, Dahlhaus [9] achieved the results of Fox and
Taqqu [11] and proved the following limit theorem:

Theorem 2.2 The estimator (ﬁw, 01%,) is asymptotically efficient and satisfies

~

() 2 (1)

and

()= () 2 o mitu o). 09

with To(H, %) defined in (2.4).

Hence, the Whittle estimator (ﬁ N, ol%,) has the same asymptotic behavior than the
MLE while its numerical accuracy is clearly better: in case of fractional Gaussian
noise, and therefore in case of the fBm, the Whittle estimator has to be preferred to
the MLE.

3 Other Classical Semi-parametric Estimators

As we said previously, we present now some classical semi-parameteric methods
frequently used for estimating the parameter H of an fBm, but also applied to other
long-range dependent or self-similar processes.

3.1 R/S and Modified R/S Statistics

The first estimator which has been applied to an fBm, and more precisely to a
fractional Gaussian noise has been the R/S estimator. This estimator defined by the
hydrologist Hurst [14] was devoted to estimate the long-range dependent parameter
(also called the Hurst parameter) of a long memory process. Lo [18] introduced the
modified R/S statistic for a times series X which is defined as

k k
~ 1 — —
On(q) = = (| max 0K =X = min, 3K - Xv) GO

SN.g \ISKSN <k<

where Xy = %(X(l) + .-+ 4+ X(N)) is the sample mean and ?zle,q is an estimator
of 62 =Y,z cov(X(0), X (j)) defined by
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~ 1 & - d R
g = 2 XD = XN’ +2) wilg) P () (32)
i=1 i=1

with Ia»(q) —1—i/g+1) 53

) = & Y XG) = XWX G +i) — Xw)

The classical R/S statistic corresponds to ¢ = 0. In such case, we have the following
asymptotic behavior when X is an fGn:

Proposition 3.1 If X is an fGn with parameter H > 1/2, then (see Li et al. [17])

~i ElOv O] — E[Orgtaél Bu(t) — min By (n)]. (34)

with By the fractional bridge with parameter H, i.e., By(t) = Xy () —tXpg(1)
fort € [0, 1] where Xy is a standardized fBm of parameter 1.

Using this asymptotic behavior of the expectation, an estimator of H has been
defined. First the trajectory (X (1),---, X(N)) is divided in K blocks of length

N/K and é"i (0) is averaged for several values of n; such as n; N—> 00. Then, a
—00

log-log regression of (@n ;(0)) onto (n;) provides a slope H, rs Which is an estimator
of H since log E[@n, (O)] ~ H log(n;) + C (see, for instance, Taqqu et al. [25]).
Note that even in the “simple” case of the fGn, there still does not really exist a
convincing asymptotic study of such an estimator.

Lo [18] and numerical experiments in Taqqu et al. [25] have shown that this
estimator is not really accurate and Lo [18] proposed an extension of this R/S
statistic: this is the modified R/S statistic. We have the following asymptotic
behavior (see Giraitis et al. [12] and Li et al. [17]):

Proposition 3.2 [fqg — ocoandq/N —> 0, and X is a fGn, then:
N—oo N—o0

< -12 A 2

«if H<1/2.  N72Qn(g) = Unys (35)
. - _HA 7

«if H>1/2,  ¢""ENTTOnGg) = Zrss (3.6)

where Ug/s = maxogi<1 Biy2(t) — mingg, <1 B12(t) and Zgys = maxogi<i
By (t) — mingg,<1 Bu (t), with By the fractional bridge with parameter H.

Then, using several values of ¢, (g1, - - , gm), a log-log regression of @N (gi) onto
g; provides an estimator H rsm of H (the slope of the regression line is H — %). But
there does not exist more precise result about the convergence rate of such estimator
of H in the literature. Moreover, in Teverovsky et al. [26], the difficulty of selecting
a right range of values for g; is highlighting.
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As a conclusion, we can say that R/S or modified R/S statistics provides estimation
of H but these estimators are not really accurate.

3.2 Second-Order Quadratic Variations

Contrary to the R/S method, the second-order quadratic variations can be directly
applied to self-similar processes, and hence in particular to fBm.

For presenting this method, introduced by Guyon and Leon [13] and Istas and
Lang [15], first, for a € N*, define the second-order quadratic variations of X =

(X(@))iez by
V@ = (X (t +2a)) — 2X(t + a) + X (1))? fort e N*. (3.7)

The key-point of this method is the following property:

Property 3.3 If X is a second moment order H -self-similar process having station-
ary increments, with EX2(1) =02 then for all a € N* and t € N*

E(V\”) = o?(4 - 22H) o1, (3.8)

Therefore log E(Vt(a)) = C + 2H loga for any (a, t). This provides an idea of
estimating H: if E(Vt(ai)) can be estimated for several different scales a;, then the
slope of the log-log-regression of (E( Vt(ai ))) onto (a;) is 2Hy, which is an estimator
of H.

The common choice for scales are ¢; = i and the estimator of E(V,(')) is the

empirical mean of Vt(i),

N-=2i

1 .
% v (3.9)

k=1

Sy() =

Then a central limit theorem can be established fori € N*:
N 204 A2H\:2H\ 2 .
\/ﬁ(SN(l) o (4 2 )l )mW(O, y(l))

1
with y (i) = 5041'211“

o
3 (|z F2PR2H e — 2P H — 210+ 1P — 210 — 1127 4 6je + 2|2”)

{=—00

2
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Then we can define

A
AAT

o~

HN =

(log(Sy (i)))kisp’

N =

where A := (logi — % le 10gj)1gi<p € R? is a row vector, AT its transposed
vector (vector-column).

As a consequence, it can be shown (see Bardet [2] or [8]) that, with (ag, a1, a2) =
(17 _27 1)’

~ 9
«/N(HN —H) frns (0, (H)), where
—00
;
S(H): - % and (3.10)
FH) = (2 Tl dg0 9k 1k — ko kP 72 3.11
(H):= (,-ijzH Zkez[ Y2 0@l oDk ] )1<i,j<p( AD)

This method has a lot of advantages: low time-consuming, convergence rate close
to MLE convergence rate, etc.

However it is easy to slightly improve this estimator. First, the asymptotic covari-
ance I'(H) of (Sy(i)) is a function of H; hence, using the estimator ﬁN, this
asymptotic covariance can be estimated. Hence, a pseudo-generalized estimator of
H can be defined. More precisely, define

Ty =T (Hy). (3.12)
Then the pseudo-generalized estimator Hy of H is defined by:

_ ByL)TT (log(Sv )],

N = — (3.13)
2(BNL)TI N (BNL)

1,1]T
with 7, = (1, 1,---, DT, L = (logi)1<i<p and By = [ — 2L
TN I,
Then, from Bardet [2],
.0 . . 1,1;T
Proposition 3.4 If X is an fBm of parameter H, then with B = [ — =11
p p

VN(Hy — H) Nﬁ (05 £'(H)), with T'(H)= (3.14)
—00

41(BLYG—Y(BL)"

From Gauss-Markov Theorem, the asymptotic variance X'(H) is smaller or equal
to X (H) and thus the estimator Hy is more accurate than Hy .
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Another improvement of this estimator consists in considering a number p of
scales” increasing with N: this is what we will use in simulations (theoretical
results are not yet established, if they could be once).

1113

3.3 Detrended Fluctuation Analysis (DFA)

The DFA method was introduced in Peng et al. [20] in a biological frame. The aim
of this method is to highlight the self-similarity of a time series with a trend. Let
(Y(1),...,Y(N)) be a sample of a time series (Y (7)), eN-

1. The first step of the DFA method is a division of {1, ..., N} in [N /n] windows of
length nn (for x € R, [x] is the integer part of x). In each window, the least squares
regression line is computed, which represents the linear trend of the process in the
window. Then, we denote by ?,, (k) fork = 1,..., N the process formed by this
piecewise linear interpolation. Then the DFA function is the standard deviation
of the residuals obtained from the difference between Y (k) and ?,, (k), therefore,

R 1 n-[N/n] N 2
F(n) = TN/n] ; (Y(k)—Yn(k))

2. The second step consists in a repetition of the first step with different values
(ny, ..., ny) of the window’s length. Then the graph of the log f(ni) by log n;
is drawn. The slope of the least squares regression line of this graph provides an
estimation of the self-similarity parameter of the process (¥ (k))kenN.

From the construction of the DFA method, it is interesting to define the restriction
of the DFA function in a window. Thus, for n € {1, ..., N}, one defines the partial
DFA function computed in the j-th window, i.e.

nj
F}(n):l Z (X(i) — X, ()% for je{l,...,[N/nl}. (3.15)
n
i=n(j—1)+1

Then, it is obvious that

[N/n]

1
F2(n) = 7l > Fi). (3.16)
j=1

Let {X* (1), 1>0} be an FBM, built as a cumulated sum of stationary and centered
fGn {Y (1), t>0}. In Bardet and Kammoun [4], the following detailed asymptotic
behavior of the DFA method is established. First some asymptotic properties of
F 12 (n) can be established:
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Proposition 3.5 Ler {X* (1), 1>0} be an fBm with parameters 0 < H < 1 and
02 > 0. Then, for n and j large enough,

1. E(F2(n) = o> f(yn (14 0(%)),
O — (1—H)
with T = GH Y DH+ DH T2
2 var(Rw)  =o*sunnt(140()),

with g depending only on H,

3. cov(FRn), F2m) = o *h(H) ™ 21731+ 0(%) + 0(%)),
H2(H — H)(2H — 1)?

with h(H) = 48(H + H(2H + H(2H +3)°

In order to obtain a central limit theorem for the logarithm of the DFA function, we
consider normalized DFA functions

F? . 2
i and S(n) = F(n)

V= ey w2/ (H)

(3.17)
forne{l,...,N}and j € {1,...,[N/n]}.

Under conditions on the asymptotic length n of the windows, one proves a central
limit theorem satisfied by the logarithm of the empirical mean S(n) of the random
variables (S;(n))1<j<[N/n]-

Proposition 3.6 Under the previous assumptions and notations, letn € {1, ..., N}
be such that N/n — oo and N /n® — 0 when N — oco. Then

N - 7
/[;] -log(S(n)) N%;O N0, y*(H))),

where y2(H) > 0 depends only on H.

This result can be obtained for different lengths of windows satisfying the conditions
N/n — oo and N/n3 — 0. Let (n1, ..., ny) be such different window lengths.
Then, one can write for N and n; large enough

log(S(n;)) ~ &

1
VIN/nil

log(F (ni)) ~ H -log(n;) + 7 loglo ™ f (H)) + N
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with &; ~ A0, y2(H)). As a consequence, a linear regression of log(F (n;)) on
log(n;) provides an estimation Hpr4 of H. More precisely,

Proposition 3.7 Under the previous assumptions and notations, let n €
{1,...,N}, m € N*\ {1}, r; € {1,...,[N/n]} for each i withry < -+ < ry
and n; = rin be such that N/n — 0o and N/n3 — O when N — oc. Let ﬁDFA
be the estimator of H, defined as the slope of the linear regression of 1og(F (r; - n))
on log(r; - n), i.e.

Hpra = S (og(F (r; - n)) — log(F))(log(r; - n) — log(n))
Yot (log(r; - n) —log(n))?
Then Hpr 4 is a consistent estimator of H such that, with C(H, m,ry, ..., ry) > 0,
H 1
E[(Hpra — H)*ISCH, m,r1, ... 1rm) —. 3.18
[(HpFra YI<C(H,m, r ) T (3.18)

Hence, this result shows that the convergence rate of Hprs is ~/N/n that is a
convergence rate o(N'/3) from the condition N/n3 — 0. This is clearly less
accurate than parametric estimators or even quadratic variations estimators. This
estimator is devoted to trended long-range time series but even in such frame this
estimator does not give satisfying results (see Bardet and Kammoun [4]).

3.4 Increment Ratio Statistic

The Increment Ratio (IR) statistic was first proposed in Surgailis et al. [24] in
the frame of long-range dependent time series and extended to continuous time
processes in Bardet and Surgailis [5]. For a time series X = (X (k))xez define the
second-order variation as in (3.7) Dt(”) =X({t+2a)—2X({t+a)+ X(t)fort € Z
and @ € N*. Assume that a trajectory (X (0), X (1), ---, X(N)) is observed. Define
for a € N*,

N-3 (a) (a)
R@ ._ | L
N

k+1
= > (3.19)

= 1D+ 1D

with the convention 8 := 1. Note the ratio on the right-hand side of (3.19) is either

1 or less than 1 depending on whether the consecutive increments D,Ea) and D,E‘i)l

have same signs or different signs; moreover, in the latter case, this ratio generally
is small whenever the increments are similar in magnitude (“cancel each other”).
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If X is an fBm with parameter H € (0, 1), then it is established in Bardet and
Surgailis [5] that for any H € (0, 1),

R\ 5 Aa(H) (3.20)
VN(RY - AZ(H))N%O (0, Ta(H)). (3.21)

The expressions of A>(H) and X, (H) are, respectively, given by:

A2(H) = AM(p2(H)), (3.22)
1 1 [1+7r 2
A(r) := — arccos(—r) + — log| — ), (3.23)
T a¥V1—r 1+r
2H(t) | A2H(1)+2
— () iy _ =370 +2 —7
p(H) = (:orr(D0 ,» D} ) = 8 2HMT (3.24)
(1) (1) (D (D
D.’ +D D."+D:
and  Sy(H) := Y  cov | K 1(1J , | - ]<+1: (3.25)
jez Dy’ +|Dy| | Dj |+|Dj+1

and their graphs in Figs. 1 and 2.
The central limit (3.21) provides a way for estimating H: indeed, since H €
(0, 1) — A>(H) is an increasing %" function, define

L(H)
07

0.68 |

0.66

0.64

0.62 |

06 [

0.58 |

0.56

0.54 |

052 1 1 1 1
0 02 04 06 08 1

TVY

Fig. 1 The graph of A>(H)
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042 r

038 |

036 |

034 |

Fig. 2 The graphs of \/X,(H), p = 1 (with a pole at 3/4) and p = 2 (with a pole at 7/4) (from
Stoncelis and Vaiciulis [23]

Hy = A;Y(RY).

From the Delta-method, we obtain the following central limit theorem for H N:

Proposition 3.8 Forall H € (0, 1),
ES 9
VN(Hy — H) — (0, y*(H))
N—o0

with y2(H) = So(H)[(A5") (A2 () T

In Bardet and Surgailis [6], in a quite similar frame, an improvement of ﬁN has
been proposed. It consists first in obtaining a central limit theorem for the vector
(Rg\}), Rﬁ), cee, RI(\;")) with m € N* and not only for RI(\?) with a = 1. Hence, we
obtain the following multidimensional central limit theorem:

N(R1icn = WD icm) = A (0, ()
where I'y, (H) = (vij(H))1<i, j<m and
AS(H) = Mpy (H))
with  p{(H) = Cor(D{’, D\")

—12i + 1P — 20 — 1P 4l + 1P 410 — 1120 —6
= 8_22H+1
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and vij(H) = Zcov
keZ

(b ool ool
|

5’|+ [0 [ + D)

Then we define:
. N
HY = [A9](RY),

and using again the Delta-Method we obtain another multidimensional central limit
theorem

N(AD sicm = Hn) = A (0, An(H)

(T2 Ay =1 A o [ A =1 A D
and - An(H) = ([ @ AP ]y [ P ay]) ciico
Finally a pseudo-generalized least squares estimator of H can be constructed (like
for Hgy). Indeed A, (H) can be estimated by A, = Ay, (Hls,l)). Then we define
Hig = (I3 Ry In) " 1T A" (HY)

I<i<m (3.26)

and we obtain this proposition:

Proposition 3.9 Forall H € (0, 1) and m € N¥,
«/N(I:I\[R — H) —9> A, 52)1
N—o0

with s> = (LT (A (H)) ™" 1)~
Then the convergence rate of H 1R 18 +/ N, confidence intervals can also be easily
computed.

3.5 Wavelet Based Estimator

This approach was introduced for fBm by Flandrin [10], and popularized by many
authors to other self-similar or long-range dependent processes (see, for instance,
Veitch and Abry [27], Abry et al. [1], or Bardet et al. [7]). Here we are going
to follow Bardet [3], which is especially devoted to fBm as an extension of
Flandrin [10].

First we define a (mother) wavelet function i such as ¢ : R — R is a piecewise
continuous and piecewise left (or right)-differentiable in [0, 1], such that |/ (¢)] is
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Riemann integrable in [0, 1] with v; the left-derivative of v, with support included
in [0, 1] and Q first vanishing moments, i.e.

/t”lﬂ(t)dt =0forp=0,1,---,0—1 (3.27)

and / 12y (1)dt # 0. (3.28)

For ease of writing, we have chosen a i supported in [0, 1]. But all the following
results are still true, mutatis mutandis, if we work with any compactly supported
wavelets. For instance, ¥ can be any of the Daubechies wavelets.

Now we define the wavelet coefficients d(a, i) of X where a € N* is called
“scale” and i € {1,2,---,[N/a] — 1} is called “shift” by:

N B hviPL _ bt .
d(a,z)—ﬁfolg(a—z)X(t)dt—ﬁfow(a)X(t+al)dt. (3.29)

For each (a, i), d(a, i) is a zero-mean Gaussian variable and its variance is a self-
similar deterministic function in a, independent of the shift i, since for any a €
{1721"' 1[N/2]} andi € {112» 7[N/a]_ 1}7

2
B (@.i) = 1y () where Cy (i) = =% [ [ w@wioi =1 PP anar'

We assume now Cy (H) > 0 for all H €]0, 1[. Now we consider an empirical
variance Iy (a) of d(a, i) by

[N/a]—-1

1
Iy(a) = =1 Z d*(a, k). (3.30)

Using properties of ¥ and particularly condition [Py(1)dt = 0 for p =

0,1,---, 0 — 1, we can show that y hm |cov(d~(a, i),da, j)| =0 and limit
i—jl—>
theorems for I (a). More precisely,
Proposition 3.10 Under the previous assumptions, for 1<a; < --- < a, € N¥
then
N 2
—(log I y(a;) — (2H+1)loga;—log Cy (H)) — M, (0; F), (3.31)
di 1<i<m N=oo

with F=(fij)1<i,j<m the matrix with D;j=GC D(aq;, a;),
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fii= U4Dij
W 2C1//(H) 2HH12 ]2H+1/2
2H 2
Z (//1//(1‘)1//(/) kDjj + ait —a;t'| dtdt/) )
k=—00
When a trajectory (X (1), ---, X(INV)) is observed, dx cannot be computed and an

approximation has to be considered. Indeed, the wavelet coefficients d(a, i), com-
puted from a continuous process cannot be directly obtained and only approximated
coefficients can be computed from a time series. It requires to choose large enough
scales to fit well. Here, we will work with approximated coefficients e(a, i) defined
by:

'—look'Xk—la ka j 3.32
e(a’l)_ﬁk;ww(g_l) <>—ﬁl§)w(5) (k+ai). (332

Denote also

| [N/a]—1 )
JN(a):W k; e*(a, k). (3.33)

"1:he limit theorem of Proposition 3.10 can be rewritten with e(a, i) instead of
d(a,i). The main difference is the use of scales a;(N),--- ,a,(N) satisfying
Nlim a; (N) = oo. More precisely, the limit theorem is the following:

— 00

Proposition 3.11 Letny < --- < ny, be integer numbers and let a;(N) = n;b(N)

N
fori =1,---,mwith b(N) a sequence of integer numbers satisfying: [b(N)] >2,
N
lim b(N) = oo and hm = 0. Then, under previous assumptions,
N—>o00 0 b3(N) (N)

vy (08 T @ (V) —@QH 1) log i (N)—log Cy (HD)i<ison = H0: G).

with G =(gij)1<i,j<m the matrix with D;j =GCD(n;, nj),

O’4Dij

gii =
ij 2C¢(H) L2HH12 3H+1/2

2
Z <f/lﬂ(t)lﬂ(t/)|kDij +n,-t—njt/|2Hdtdt/> .

k=—
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From conditions on b(N), the best convergence rate of this limit theorem is less than
N'/3 instead of v/N without the discretization problem. It is an important difference
for the following estimation of H.

Indeed, Proposition 3.11 provides a method to estimate H from a linear regression.
In fact, the central limit theorem of this proposition can be written :

N 7%
‘/m Yn—QH+1)L—-KI,) Nj;o«/%((), G),

with

* K=logCy(H), I,=(1,..,1),and L=(logn;)1<i<m:
* Yn=(og Jn(ai(N)) —logb(N)) i<, and M = (L, I,).

Under assumptions, there exists 6 = "(2H + 1, K), such that Yy = M6 + By,
where Sy is a remainder which is asymptotically Gaussian. By the linearity of this
model, one obtains an estimation 6; (N) of 6 by the regression of Yy on M and
ordinary least squares (O.L.S.).

But we can also identify the asymptotic covariance matrix of By. Indeed, the
matrix G is a function Gy (ny, -+ - , ny, H) and 6(N) =Gy, -, ny, I/-I\l(N))
converges in probability to G. So, it is possible to determine an estimation G>(N) of
0 by generalized least squares (G.L.S.) of H by minimizing

| Yy = MO I3y, = (Yx — M OGN Yy — MO).
Thus, from the classical linear regression theory and the Gauss-Markov’s Theorem:

Proposition 3.12 Under previous assumptions,

~ ~ 1
1. The O.L.S. estimator of H is Hors suchas Hors = <§, 0) M M)y"'Mm’

1 N -~ % 2 . 2
Yy — Eand IW(HOLS—H)N:;JV(O, o), with o]

1 / —1 / / -1
= ;M M)TIMG M (M M)

~ ~ 1 ~ -1
2. The G.L.S. estimator of H is Hw gye such as Hy gpe= (E’ 0> (M’ G(N)_lM)

~ 1 | N ~ 2 .
M'G(N) vy — 3 and W(HWW — H) Nj;oﬂ(o, 03), with

1 o~ -1
o3 =1 (M’G(N)—IM) <ol
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Hence, as for other semi-parametric estimator of H (see the DFA estimator of

H), the convergence rates of ﬁwave is N

1/3=¢ which is less accurate than the

convergence rates of Whittle or generalized quadratic variations estimators.

4 Numerical Applications and Results of Simulations

4.1 Concrete Procedures of Estimation of H

In the previous section, we theoretically defined several estimators of H from
a trajectory (X(1),---, X(N)) of an fBm. Hereafter, we specify the concrete
procedure of computation of these estimators:

The Whittle estimator ﬁw does not require to select auxiliary parameters or
bandwidths. However we can notice that the integrals are replaced by Riemann
sums computed for A = 7k/n,k=1,--- , N.

The classical R/S estimator Hg s has been computed by averaging on uniformly
distributed windows (see Taqqu et al. [25]).

The modified R/S estimator Hgsy has been computed using several uniformly
distributed values of ¢ around the optimal bandwidth ¢ = [N'/3] as it is given
by Lo [18]. More precisely we selected g = {[NO'3], cee, [NO'S]}.

The second order quadratic variations estimator ﬁQV requires the choice of
the number of scales. After convincing auxiliary simulations, we selected p =
[3 log(N)]. R

The DFA estimator HpF 4 requires the choice of windows. From the theoretical
and numerical study in Bardet and Kammoun [4], we have chosen n =
{IN®], - [N*]).

The Increment Ratio estimator H, 1R is computed with M = 5.

The wavelet based estimator ﬁwave is computed with b(N) = [N 03]and m =
[2x1log(N)].

4.2 Results of Simulations

We generated 1000 independent replications of trajectories (X (1), --- , X(N)) for

N

= 500 and N = 5000, with X an fBm of parameters H = 0.1,0.2,---,0.9.

We applied the estimators of H to these trajectories and compared the Mean Square
Error (MSE) for each of them (Table 1).
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5

Conclusion

We studied here several parametric and semi-parametric estimators of the Hurst
parameter. In the part, we only consider the fBm. In such frame, we obtained:

1.

Theoretically Only 3 estimators have a +/N convergence rate: ﬁw, ﬁQV,
and ﬁIR. The first one is specific for fBm, both the other ones can also
applied to other processes. The worst estimators are certainly R/S and modified
R/S estimators. Wavelet based and DFA estimators can finally be written as
generalized quadratic variations but the works with semi-parametric convergence
rate o(N1/2), and second-order quadratic variation estimator is clearly more
accurate.

. Numerically The ranking between the estimators is clear and follows the

theoretical study: the Whittle estimator H, w provides the best results, followed by
the second-order quadratic variation estimator ﬁQv and the IR estimator H, IR
which provides accurate estimations, followed by ﬁwuue which is still efficient.
The DFA and R/S estimators are not really interesting.
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Minimal Lethal Disturbance for Finite )
Dimensional Linear Systems et

Abdes Samed Bernoussi, Mina Amharref, and Mustapha Ouardouz

Abstract In this work we consider the problem of robust viability and viability
radius for finite dimensional disturbed linear systems. The problem consists in the
determination of the smallest disturbance f (in some disturbance set F), for which
a given viable state zo does not remains viable. We also consider the problem of
the determination of the smallest disturbance f for which the viability set Viab‘,fC
becomes empty; the smallest disturbance that makes all the /C-viable states non
viable, which we call the Minimal Lethal Disturbance (MLD). We give some
characterizations of the viability radius and an illustration through some examples
and connection with toxicity in biology.

Keywords Viability - Viability radius - Minimal lethal disturbance - Robustness

1 Introduction

The viability notion has been introduced by Aubin in [1-3] and has been developed
by many authors. The principle consists in saying that a given state zg is K viable
during a time interval I = [0, T'], where K is a given subset of the state space, if the
state z(f, zp) remains in K for all # € ]0, T'[. Since the introduction of the viability
notion, it was used to study many applications related to environment, economic,
political development phenomena, etc. [1].

Combining the concepts of control and viability, a more general definition was
given by Aubin [1]: it is the viability kernel. A state z( = 0) is in the KC viability
kernel, for a controlled system during a time interval I = [0, T], if there exists
at least one control u such that the controlled state z, (¢, zg) remains in C for all
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t € ]0, T[. Some characterizations of the viability kernel, known as the viability
theorems, are given in [2, 3] using the contingent concepts introduced by Bouligand
in the years 30 to extend the tangent concept to the multivogue applications.
The approximation of the viability kernel, by a numerical algorithms, has been
considered by many authors and a wide literature is devoted to this problem.

In this work we consider the viability problem for a disturbed finite dimensional
linear systems. Indeed consider, for a dynamical system and an initial state zg
which is IC-viable for the autonomous system, the following problems: Can the
initial state zp remain KC-viable in the presence of the disturbance f? If yes, for
each disturbance? For that we introduce the so-called “viability radius” which is
the smallest disturbance f for which the given viable state zo does not remain
viable for the disturbed system. The problem is connected to the robust control
problems but with some particularities due to the viability notion. In [4], I. Alvarez
and S. Martin have considered the problem of the viability robustness from a
geometric point of view. In this work we consider the problem in relation with the
dynamic of the system, the disturbance, and control operators. Also we consider for
a given subset /C of the state space the problem of the determination of the smallest
disturbance f for which the set Viab,j; becomes empty; the smallest disturbance
(in some disturbance set F) that makes all the C-viable states nonviable. This
work is motivated by some problems in biology and particularly in toxicology
where the determination of the so-called “Minimal Lethal Dose (MLD)” is very
important: It consists to determinate the “smallest lethal dose” of a given poison.
The problem has many applications as for example the vulnerability and risk
management of groundwater pollution problem. For such problem the risk is linked
to three parameters which are probability, vulnerability, and gravity. The gravity
depends on the characteristics of the pollutant and particularity on the Minimal
Lethal Dose (MLD) of the pollutant which characterize its proper gravity [5, 6, 9].
The problem will be detailed in the section application. In this paper, we recall in the
second section the definition of the viability and we introduce the “viability radius.”
In the third section we consider the problem of the determination of a control
which maximizes the viability radius. Some examples are presented to illustrate
our approaches.

2 Viability Radius and Minimal Lethal Disturbance

2.1 Viability Concept: Definition and Characterization

In this section we recall the viability definition as it was introduced by Aubin in [1].
Consider the linear system given by the following state equation:

{Z(t) =Az(t); t €10, T W

z(0) = z0

where A € M, (R), z(.) € C([0, T], R") and z9 € R".
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Let IC be a non empty subset of R". We recall the following definition [1].

Definition 2.1 We say that a state zo € Z = R" is K-viable or viable in K on
I1=10,T]if:

(i) z0 € K;
(i) z(t, z9) € K forallt € [0, T].

where z(t, zg) is the solution of (1) with z(0) = z¢.
The set of all C-viable states is called /C-viability set and denoted by:
Viabx = {z0 € Z : zo is K — viable}
In [1] some characterizations and examples of viability sets are given and we have
the definition [1]:
Definition 2.2 We say that

* asubset K is viable if: K = Viabg
o Kisarepellerif Viabx = 0.

Let X be anon empty bounded and connected subset of R with a smooth regular
boundary dx and consider the signed distance ¢ defined by:

—d[z(t,z0), 0] if z(t,z0) € K
oxc(z(t, z20) = )
+ d[z(t, z0), k] else.

where d[z(¢, z0), 0] = inf |z(¢, z0) — YlR~.
{veix)

@i is the signed distance as defined and used by J. Sethian in [7] to characterize
some level sets.
We define

pic(z0) = sup ¢k (z(t, z0))
tel

Then we have the characterization:

Proposition 2.3 Let K be a nonempty bounded and connected subset of R with
a smooth regular boundary dic. Then if pic(zo) < O (respectively pxc(zg) > 0), then
the initial state z is KC-viable (respectively is not K-viable) (Fig. 1).

Remark 2.4 In the case where px(z0) = 0, if K is closed then zq is K-viable but
in the general cases we can’t decide.

For more details about viability definitions and characterizations, we refer to
[1-3] and the references therein.
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prclz)>0

s

Pelz1)<0 - .H:L": 29)=0

Fig. 1 Viable state and nonviable one

2.2 Viability Radius
2.2.1 Definitions and Examples
Consider now the disturbed system given by the following state equation:
2y =Az®)+Gf(t) O0<t<T
3)
z(0) = zo
where G € M,, ,(R) and f € F. F is the disturbance space which is in this paper

a subspace of C(0, T'; R”).
The solution of (3) is given by:

t
24t 20) = 25 (1) = S0 + /0 S(t — $)Gf (s)ds

where S(7) = .
Denote

t
H,f:/ St —s)Gf(s)ds
0

then z ¢ (1) = S(t)z0 + H; f-
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For a KC-viable state zo (f = O for the autonomous system) when the system
is disturbed by a given disturbance f € F, the state zp can remain viable, i.e.
Z2r(t,z0) € K forallt e I orno. In this case we define the set of all K-viable
states which remain viable for the disturbed system as follows:

Definition 2.5 For a given disturbance f we define the set of all K-viable states
which remain IC-viable for the disturbed system by f as:

Viab‘,’é = {z0 € Viabg : zy(t,20) € K,
Vi el0,T] }

Remark 2.6 1. In the case where f = 0, we have Viab,% = Viaby and for each
f, Viab]- C Viabg

2. We can define another set of all initial states which are viable under f which
can contain some states which are not viable for the autonomous system. Such
subset will be defined like the viability kernel for the controlled system but as here

the system is disturbed (not controlled) we consider the set Vi abljé as defined in
Definition 2.5.

Definition 2.7 We say that
e asubset K is f-viable if: K = Viab,]é
e Kisa f-repellerif Viab,]; =0

Remark 2.8 If a subset K is f-viable, then it is viable. The converse is not true as
it will be shown in the next sections.

Consequently if IC is a repeller then it is f-repeller for each f € F. The
converse is not true.

Now for a given K-viable state, can we determinate the smallest disturbance, which
makes the state nonviable? For that we introduce the so-called viability radius. We
have the following definition.

Definition 2.9 Let zg be an initial K-viable state. We define the K-viability radius
of zo as:

Rﬁub(z())zsup{r>0\7’f € Fifllflloo <rthenzys(t,zo) €K, VYVt € I}

where || flloo = sup,; [|f (DR

Remark 2.10 The viability radius is the “smallest disturbance” that can make 7
nonviable: Forall f € C(0,T; RP)if || fI < RlI,Ciab(Zo), then zy remains viable in
presence of f and

Ve >0,3f € CO, T;RP)

: Rl’)ciab(z()) < Ifll < Rll)ciab(z()) + € such that z is not viable under f
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To illustrate the definitions and the remark, let us consider the following example in
one-dimensional case for clarity.

Example 2.11 Consider the linear system given by the following state equation:

26) =22(0) +4f@) 0 <t<T =3
4
z2(0) =20

and f € C([0,T]; R).
The solution of Eq. (4) is given by:

t
27 (1) = z0e* + / 4219 £ (s)ds
0

which gives:

t
2p(t) = z0e? + 4e* / e f(s)ds
0

Case 1. Consider the subset K = 10, 40[.
We have for f = O, the nondisturbed system:

Viabxe = {z0 €]0,40[ such that zoe* €]0,40[
forall t € [0, 3]}
which gives
Viabi =10, 40e°[
Consider now the disturbed system (f # 0). We consider, for example, the initial
state 7p = 20e°.

z0 is IC-viable in the autonomous case and in the disturbed case it remains viable
if and only if:

t
20e 0% + 4¢* / e > f(s)ds €10, 40[; V¢t € [0,3]
0

which is equivalent to

t
— 5% < / e f(s)ds < 10e™ —5¢7%; Vi e [0,3] (5)
0
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Consider the case where F = R, i.e. f(t) = f € R, then Eq.(5) gives:
-6 1 1 =2t —2t —6
— Se <(§—§e )f < 10e™ —5e¢7"; Yt € [0,3]

which is equivalent, for0 <t < 3to

—10e~ 20e~2" — 10e~6
and fort = 0, we obtain : —5¢7% < 0f <10 — 5¢7°.
We remark also that:
g 107 _ gl 20e7 = 10e70
oo T —e2 —oo an a0+ 1 —e 2 = oo

So, zg remains KC-viable for all f such that:

—10e~° 106
< <
1 —e© 1 —e©
and finally we obtain:
10e~6
Ryian(@0) = 7=

Case 2. Consider the subset K = [0, 40].
We have for f = O, the nondisturbed system:

Viabx = {zo € [0,40] such that zpe*' € [0, 40]
forallt € [0, 3]}
which gives
Viabxe =10, 40e~%]
Consider the state zog = 0 which is IC-viable and we have
R, (20=0)=0

Because foralle > Oand f = — ¢,

t
2f(t,z0=0) = —¢ / 4¢9ds ¢ K =[0,40]
0
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(6)

)

®)

€))

(10)
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This example proof that we can have, for a given K-viable state, RI’}Ci a5 20) = 0.
We remark that for f = ¢ > 0, the state zo remains viable while Rﬁah(z()) =0

(Remark 2.10).
Case 3. Let us consider now another case where

Fi={ae' ; a € Randt €[0,3]} and K =]0, 40[

Then we obtain: the K-viable state zo = 20e~° remains K-viable for the disturbed
system if and only if:

t
zp(t) = z0e* +4ae2’/ e etds €10, 40
0

which gives

—20e %2 40 — 20e %% v
—4(6‘2t — < a < —4(62’ — < t €]0,3[
which gives
—5¢76 | . 40e7" —20e~ ¢!
e < ft)=ae' < ——— (11
el —1 4(e' = 1)
and consequently:
5¢~6
K
Rviab(ZO) = 1 —e3

We remark that the C-viability radius depends on the choice of the disturbances set
and we will show in the section applications in biology that this property is very
important.

2.2.2 Characterization

We have the following characterization:

Theorem 2.12 Assume that K is a nonempty bounded connected and closed set of
R™ with a smooth regular boundary 9xc and ImHy =R", then for a given K-viable
state 7, the viability radius satisfies:

K inf 19K CEE 20)]
Riiap(z0) > inf == (12)
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Proof of the Theorem 2.12. Consider the solution of the disturbed system

zr(t,z0) = S(t)zo + /: St —s)Gf(s)ds
So the state zo remains /C-viable if and only if
zf(t,z0) € K, YVt e 1
We have fort € 1,
—d|zr(t, z0), 0] if 27 (¢, z0) € K,

oK (zr(t, 20)) =
+d[zy(t, z0), 9] else.

Denote

Pic, £(zo) = sur; ok (25 (1, 20))
t e

183

13)

So if px, r(z0) < O, then the initial state zo remains K-viable and if px, r(z0) > 0,

then the initial state zg does not remain K-viable.

‘We have:
dlzy(t,20), 9]l = inf |lzy(z,z0) — Yl
{yeorx)
If
. ok (z(2, z0))|
f L
I flloo < inf A
we obtain
|pk (z(2, 20))|
lflloo < —————; Vt € I
> 1 H, |
As
WH; fFI<IHANN S oo
then

IH: Il < |px (z(t, zoNll s Vi el

(14)
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then forall y € dc and t € I,
1S(t)zo + Hi f — Il #0
because if there exists t € I and y € 9, such that || S(t)zo + H; f — y|| = 0, then:
Hif =—-S(z0+y

which is in contradiction with the fact that || H; f| < |¢px(z(t,20))| YVt € I.
Then

ok (zf(t,20)) <0 ; Vte [0,T]

and then px, r(z0)<0 and consequently zo remains K-viable because K is closed.
So we conclude that

Ry 0 (20) 21125 A (15)

Remark 2.13 We can have equality in some situations as in the following example:

Example 2.14 Consider the example given by Eq.(4) and let us consider the two
cases:
Case 1. K = [0,40], z0 =20e % and f(t) = f € Rforallt € [0,T].

In this case we have:
i (22, 20)| = 20 %'
and
I1H || = 2@ = 1)
So we obtain the same result as in (9) and we have:

10670 gk (2t 20))]
——— =inf ———

K
Ry (z0) = =
viap (20) 1—e 0 el | H; ||

Case2. K = [0,40]and zo = 0.
In this case we remark that Rfiub(zg = 0) =0 (the same result as in (10))
because ¢px (z(t,z0 =0)) =0

2.3 Minimal Lethal Disturbance (MLD)

In this subsection we consider the problem of the determination of the smallest

disturbance f, for which the set Vi ab,]; is empty (for which the subset K becomes
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f-repeller); the smallest disturbance that makes all the /C-viable states nonviable
which we call the Minimal Lethal Disturbance (MLD). For that we have the
following definition:

Definition 2.15
o We define the K-viability radius as :

R, =suplr >0 : ¥ f € F, [|flloc <r, Viaby # %)

viab —

e Ifthere exists a disturbance f € F such that R’ I f lloo and Viabé =0,

viab —

we say that f is the KC-Minimal Lethal Disturbance (MLD).

Remark 2.16 We remark that for each disturbance f such that || f|leo < Rl’)?ab,

then there exists at least one viable state zoy which remains f-viable. But if
floo > R:,Cl-ab we do not have necessary ViabI]; = @, but there exists another
disturbance h such that || f |leo = ||h||co and for which Viab", = @.

The KC-viability radius is the smallest disturbance f for which K becomes f-
repeller. We have used the terminology Minimal Lethal Disturbance because in
biology an equivalent term is used: Minimal Lethal Dose.
In some applications, the determination of the Minimal Lethal Disturbance is
a very difficult problem as it will be shown in the section application where we
consider an application in biology and particularly in toxicology and irradiation.
From Definition 2.15 we have the result:

Proposition 2.17 We have
REab = sup{Rf)Ciab(z) :z € Viabg}
Proof Let 7 be a C-viable state, then

Y f e Fsuchthat || f| > RN

viab
there exists a disturbance % such that ||| = || f]| for which z is not viable for the
system excited by #.
Then

K K
Rviab(z) < Rviah
So we have

Rzl)ciab>sup{R5ab(Z) :z € Viabg}

and consequently the result.
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Example 2.18 Consider the linear system given by the following state equation:

z(t) =2z(t) +4f(@) 0<t<T =3
(16)
z2(0) =zo

andVt € 1, f(t) = f € R
The solution of Eq. (16) is given by:
'
2p (1) = zo€™ + 4e* / e ¥ f(s)ds
0

Consider the subset K = [0, 40].
We have for f = 0O, the nondisturbed system:

Viabxe =10, 40e~%]
For each state zo € Viabx =10, 40e~°[, the K-viability radius is given by:

RS (z) = int |PKGEE 20D

€03 N Hl
For each 7o €10, 40e~°[, we have :
|px (2(2, 20))| = inf{|zoe™], |40e® — zoe™ |}
which gives:
z0e* ifzo € [0, 2079

lpk (z(t, z0)| =
40 — zpe* ifzo €120e7%, 40e79]

We have ||Hy|| = 2(e* — 1) and so we obtain:

. 2[ . —
infrc10,3] —2(2%,8_1) ifzo €10, 20e°[

Ryap(20)
. —_ 2’ . — —
infr¢)0,3 % ifzo € ]20e 6 40e 6[
and finally we obtain

K 10e~6
viab — 1_676

We remark that R{f-ab = Rﬁab(z() = 20e7%) and it is normal because zg is in the

center of Viaby and consequently it is the farthest viable state from dg.
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3 Controlled System

3.1 Viability Kernel and Viability Radius

Consider a controlled system given by:

z2(t) = Azt) + Bu(t) 0<t<T
(D
z(0) =z
where u(.) e U = C([0, T], RP).

Definition 3.1 1. The viability kernel of K, noted Viaba, p)(K), is the subset of
initial states zo € KC such that there exists at least one solution of (1) starting from
z0 and K-viable during the time interval I = [0,T]. i. e. z,(x,t) € K for all
t € [0, T, where z,(x, t) is the solution of (1).

We say that K is a repeller if Viaba, gy (K) = 0.

Consider now the disturbed controlled system given by the following equation:
72(t) = Az(t) + Bu(t) + Gf O0<t<T

2
z2(0) = 2o

where [ € F.

We define the viability radius for each state in the viability kernel as follows:
Definition 3.2 Let K be a nonempty subset of Z.
(i) We define for each zo € Viaba, p,c)(K), the K-viability radius, of zo, as:

RV!’ab(A,B‘G) (K) (ZO)

=sup{r >0V fe F :|[fllo<r:3ueld ::z5,(t,20) €K ; Vtel}
(ii) We define the K-viability radius of the system as:

RViab(A,B‘G)(K:)

= sup{|| flloo < V2o € Viab, p,cy(K)AuelU ::z5,(t, z0)eKV tel)

r>0

Remark 3.3

» For each f such that ||fllcc > Rviappic)(20) there exists a function h (not
necessary equal to f) such that ||h||co = || flleo and zo does not remain viable
for the system excited by h.
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* We have a similar remark about Ryiqp,.(K). For each f such that || f||lec >
Rviaby (k) (z0) there exists, for each viable state zo, a function h (not necessarily
equal to f) such that ||h]|sc = || flco and

Yu € U : thereexistst € I: z5,(t,20) ¢ K

Example 3.4 Consider the disturbed and controlled system given by the state
equation:

2(t) =2z(t) +3ut) +4f(t) O0<t<T =3
3)
z2(0) = zo

Let us consider the same set IC = [0, 40].
In the autonomous case (nondisturbed noncontrolled), the KC-viability set is given
by:
Viabi =10, 40e°].

In the controlled and nondisturbed case, the viability kernel of K under F is given
by:

Viabr(K) = K =10, 40]
In the disturbed noncontrolled case, the viability radius is given by:

c 10676
viab = 7 _ o6

R

and in the disturbed and controlled case, the KC-viability radius under F of the
system is given by:

Rviaric)y =K

3.2  Robust Viability and Viability Radius for Linear Finite
Dimensional System

3.2.1 Problem Statement
Consider the linear system given by the following state equation:

{z(t) = Az(t) + Bu(t) + Gf(t); 0<t<T

z(0) = z0 @)
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where A € M,(R), z(.) € C([o, T], R"), B € M, ,(R) and G € M, ,(R).
The solution of the disturbed and controlled system is given by:

Zup(t,20) = €'zo+ Hu + Hi f (5)
where
~ t
Hu = / A Bu(s)ds
0
and
t
Hu = / eACIGF(s)ds
0
In this subsection we consider the following problem:
For a given state zg € Viabp(K)
(P) § Determinate a control u

which maximize the viability radius of zg

If the initial state zq is K-viable, then zg € Viabp(K), so we consider the problem
for each state zo in the viability kernel.

Remark 3.5 We have forallt € I,

—d[z,,0(t, 20), 9] if zu,0(t, 20) € K,
¢ic(zu,0(t, 20)) = (6)
+d[zu.0(t, z0), k] else.

Denote

i (z0) = sup g (zu0(t, 20))
tel

then for all u such that z,,0(t,z0) € KV t € I we have:
—d(z0, )<}’ (20)<0

So |pi:" (z0)1<d (20, 3).

Let zo be an initial state in the viability kernel Viabp(K) so there exists at least
one control u such that:

wo0(t,z0) € K; Viel
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Consider the subset C, of K defined by:
Ca={x e ; ¢x(x)<a} (M
where —d(zp, dxc) < o< 0, then
dp (Ca, K) = || < d(zo, )
where for two subset A and B, dy (A, B) is the Hausdorf distance defined by:
du(A, B) = max(p(A, B), p(B, A))

where p(A, B) = sup, ., d(x, B).
Then C,, is the largest subset of /C such that

d(Ca, 0c) = |et]
So we consider a relaxed problem:
For a given state zg € Viabp(K)
(P1) { Determinate a control u

which maximize d(C, dg)

where C is the farthest subset of IC from 9 where the state z is K-viable.

Remark 3.6 The effect of such control is to make the state z7(., zo) in K but as far
as possible from 0k .

3.2.2 Problem Approach
To solve the problem (P1) we consider an approach based on the Dichotomy

algorithm.
Algorithm 1: Consider the largest subset Cy of K such that

d(Co, 9x) = d(zo0, k)

then:

(1) if zgisin Viabr(Cp) (the viability kernel of Cp), stop because in this case

d(Co, ) = d(z0, Ix)
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(2) else define C; the largest subset of /C such that

d(z0, 9)

d(C, 9x) = >

and
(2*%) if zg is in Viabp(Cy) (the viability kernel of C;), we define C, the largest
subset of I such that

d(zo, 9xc)

d(Ca, ) = 1

and we go to (2%)
else
we define C; the largest subset of K such that

d(zo0, 9xc) n d(zo, 9xc)

d(Ca, 3) = > 1

and we go to (2%).

We obtain the following algorithm:
If zo € Viabp(C;), we define C; 4 as the largest subset of K such that

d(Ci, )

d(Cit1,0x) = 5

Else, (z0 ¢ Viabr(C;)), we define C; 4 as the largest subset of /C such that

d(Ci, )

d(Cit1, ) = d(C;, ) + 2

Denoting r,, = d(Cy,, dc), we have the result:

Theorem 3.7 We assume that K is a bounded nonempty and closed subset of Z =
R™ with a smooth regular boundary dxc , then:

(i) the sequence (ry,) converges to a real r*;
(ii) there exists a control u™ solution of problem (P 1) and the subset C* given by (7)
with a = r* is the farthest subset of KC from dx where z is viable.

Proof (i) The sequence (r,,) converges to a real r* due to the dichotomy principle.
Indeed, we have

d(Ci, )

|d(C[+1, 8]C) - d(Ci, aK)' = 2
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and

du(Ci,Ci—1) "

du(Cit1,C) = > ori>1

For (ii) denote by
C={C; CK : z9 € Viabp(Cj); j=0}

We have two cases:

1. If C = @, then r* = 0 and in this case C* = K.
As zo € Viabp(K), then there exists a control u such that z, (¢, zo € K for
all t € I and for such control u we have

pi(z0) = 0

and consequently u is a solution of problem (P1).
2. C # ¥, we consider the subsequence (r;) of (r,,) defined for j such that C; € C.

The subsequence (r;) is convergent to r* and zg € Viabp(C*). Indeed, if zo ¢
Viabg(C*), then for all control u, there exists a time ¢ € I, such that z, (¢, zo) ¢ C*.
So as C* is closed subset of /C, then for all u, we have

Pl (z0) > 0
which is in contradiction with the fact that
'lim dH(Cj, C*) =0
Jj—00
So there exists a control u™* such that z,« (¢, zg) € C* forall t € I and
pl(zo) ="
and as
r* =d(C*, dc)
we obtain the result.
So the determination of the robust control which maximizes the viability radius
consists to solve a sequence of viability kernel problems (steep (2*)) and for that
there exist many methods based on the viability theorems [1-4]. Also for the

numerical approaches (which is not the aim of this paper) many algorithms are
developed and can be used.
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3.2.3 Example
Example 3.8 7o illustrate our approach we consider in this subsection an example

of disturbed controlled system in R?.
Consider the system given by the following state equation:

z2(t) = Az(t) + Bu(t) + Gf(t) O0<t<T

(®)
z2(0) =20
where
20 3 2
A = N B = d e
(a7) 2= () mae= ()
whereb,g € Rand T = 3.
The solution of the system (8) is given by:
t t
zu, £(1) = €'z9 —I—/ A7) Bu(s)ds —}—/ eAIGF(s)ds 9)
0 0

Let K = [0, 40] x [0, 10] C R

We consider three cases: Autonomous system, disturbed noncontrolled system,
and disturbed controlled system.

Case 1. Autonomous system. In this case we determinate the K-viability set,
Viabg.

We have

Viabe = [0,40e7°] x [0, 3] (10)
Indeed, zo = (201, 20.2) is K-viable if and only if e'zg € K which is equivalent to
0<z01€¥ <405 V1 € [0,3[]
0<z00e'<10; V1 € [0, 3]
So we obtain the result (10).
Case 2. Disturbed and noncontrolled system In this case we determinate the K-

viability radius for a given K-viable state and the Minimal Lethal Disturbance of
the set IC.

» K-viability radius. To simplify we consider the case where f(t) = f € R.
Let zp = (206’6, %e%) an initial K-viable state. We have

1
2(t, z0) = (20e%*, Ee—3e’) ;Y e [0,3]
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So we have
1
Sz + Hif = (070 +2f(e = 1), e ¢ + f2(e' = 1))

So zo remains viable if

—20e 062 <f< 40720e—ﬁe2'
~

2(e?! — 1) = 2(e2'—1)
—%e’ge' <10— e3¢ v 0.3
2(6’ 1)\f\ 2(1‘1) L) te[’]
So
10e~ e 3
K .
Rviab(ZO) - lnf(l _8_69 4(1 —6_3))
and finally
-3
K _ e
Ryiap(z0) = e

e Minimal Lethal Disturbance. To assess the viability radius of I we use
Proposition 2.17. We obtain

o3

K
thab = Rviah(ZO) = m

And it is natural because z is in the “center” of the viability set.

Case 3. Disturbed and controlled system. In this case we consider the state 7
considered in the case 1 and we will determinate a control solution of problem (P1).
For this we consider two cases: the case where the system is controllable and the
case which the system is not controllable.

e The system is controllable.
The system is controllable if and only if b # 0. As an example we take b = 1.
So we have

! ) 1 ro_
2u.0(t, 20) = (20e™ %% + 36’/ e Su(s)ds, 56738 + el/ e Su(s)ds)
0 0

forall t € [0,3].
1
For zo = (20e~°, 56_3) we have for
1

1 1
Co = [20e7°, 40 — Ee*3] x [5673’ 10 — Ee*]
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we have d(Cy, 0g) = d(zo, 0g) and zg is Co-viable. So the control u = 0 is a
solution of problem (P1).

Consider now the case where z is not KC-viable but in the viability kernel. As
an example we consider zo = (20, 5) which is not K-viable because

20.0(t, 20) = (20e*', 5¢")

and for t = 2, for example, zo0(t,z0) ¢ K, but zo is in the viability kernel,
because

t
2u,0(t. 20) = (20e* + 3¢’ / e > u(s)ds,
0

t
56t+etf e *u(s)ds)
0

and there exists a control u such that:
zu0(t,z0) € K, Yt € [0,3]

e The system is not controllable. This is the case where b = 0. So the solution is
given by

zu,0(t, z0 = (201, 202)

t
= (zmezt+36’/ e S u(s)ds, zoae')
0

; Vi €]0,3]

In this case the state zo = (20, 5) is not in the viability kernel.

Let us consider another state 71 = (30, (9.7)e™3) which is in the viability kernel.
To determinate the robust control we have to find the smallest subset C for which
71 is in the viability kernel using the Algorithm 1. As 71 = (30, (9.7)e™3) is in the
viability kernel so RK 5»(20)20. Consider

via
Co =19.7)e™ 3,40 — (9.7)e 3 [x]1(9.7)e 3,10 — (9.7)e [
By explicit calculus we proof that z1 is not in the viability kernel of Cy. So

0<r* < (9.7)e™3



196 A. S. Bernoussi et al.

we consider

C =
1207740 — 2 O e [x]2 O, 10— + O e
—(9. ,40 — = (9. x]=(9. ,10 — =(9.
e e e e
In this case z is in the viability kernel of C1, so we have
1 -3 * -3
5(9.7)6 <rt < (9.7e

and we consider

C =

1+ 0167 40— (& + 516 x
2 4 ’ 247

1G0me + 2 10— &+ Heme
2 Ty 2 T e
and in this case 71 is in the viability kernel of Ca, so we have
Lome<et <G+ oD
-(9. < < (=+-)0.
PR TV E
which gives
0.2240 < r* £ 0.3360

And we continue the algorithm.

Remark 3.9 We have presented in this paper, as examples, the one-dimensional
case just for clarity, however for the case where the dimension is greater or equal
to 2,the approch is the same but we have to do numerical computations for all the
considered parameters.

4 Connection with Minimal Lethal Dose in Toxicity

The viability radius depends on the disturbance set; . This property has been
exploited in biology, and particularly in toxicology, to assess the toxicity of each
poison. For that the concept of Minimal Lethal Dose was introduced. We recall the
following definition [10, 11]:

Definition 4.1 The Minimal Lethal Dose (MLD) is the lowest dose of a substance
that can kill an animal by administering a slow intravenous drug. Death is assessed
by cardiac arrest.
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We remark that in this definition one can take into account the manner of
administering the substance: this is the equivalent operator H; in our case. We recall
that the dose is the ratio between the weight of the absorbed substance and the
weight of the body absorbs. It was cited in Paracelsus all substances are toxic, it is
only a question of quantity, a question of dose [9].

In practice, the determination of the Minimal Lethal Dose (MLD) for each
poison is a very difficult problem and for that the biologists estimate the MLD
in the laboratories. As in each measure in laboratories there are some errors, J.W.
Trevan has introduced in 1927, the so-called Lethal Dose 50 (LD50). We recall the
definition:

Definition 4.2 The LD50 value is a statistical estimate of a dose that can kill 50%
of the population of animals from the same species. It is expressed in mg of substance
per kg of body weight.

The median lethal dose is a quantitative indicator of the toxicity of a given substance.
Why 50%? This is for statistical representation reasons. In general we uses the value
50%, rather than 0, 5, 95, or 100%. In fact, Gaussian curve is “flat” to 50%, making
a sample is more representative when a threshold is exceeded by 50% [8, 11].

The LD50 concept was introduced by J. W Trevan in 1927 and it permits the
classification of all products by their dangerousness.

5 Conclusion

In this work we have considered, for finite dimensional linear systems, the viability
radius and the robust viability control problems. Some characterizations are given.
We have presented some examples to illustrate the definitions and approaches. We
notice that this work was motivated by the concept of minimal lethal dose introduced
for toxicity problems. It will be interesting to extend the results to Distributed
Parameters Systems and consider the relationships between vulnerability and
protector control concepts introduced by Bernoussi for such systems, and the robust
viability control. Also as for Distributed Parameters Systems the measures function
and sensors play an important role, it will be interesting to consider the problems
through measures functions. Such problems are under investigation.
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1 Introduction

The pseudo-Riemannian geometry is the study of the Levi—Civita connection, which
is the unique torsion-free connection compatible with the metric structure. The
theory of affine connections is a classical topic in differential geometry, it was
initially developed to solve pure geometrical problems. It provides an extremely
important tool to study geometrical structures on manifolds and, as such, has been
applied with great sources in many different setting. For affine connections, a survey
of the development of the theory can be found in [19] and references therein. In
[13], Garcia-Rio et al. introduced the notion of the affine Osserman connections.
Affine Osserman connections are well-understood in dimension two. For instance,
in [6] and [13], the authors proved in a different way that an affine connection is
Osserman if and only if its Ricci tensor is skew-symmetric. The situation is however
more involved in higher dimensions where the skew-symmetry of the Ricci tensor is
a necessary (but not a sufficient) condition for an affine connection to be Osserman.
The concept of an affine Osserman connection has become a very active research
subject (See [7-9] for more details.)

In this paper, we associate a pseudo-Riemannian structure of neutral signature to
certain affine connections and use this correspondence to study both geometries. We
examine affine Osserman connections, Riemann extensions, and Walker structures.
Our paper is organized as follows. Section 1 introduces this topic. Section 2 contains
some definitions and basic results we shall need. In Sect. 3, we study the Osserman
condition on a family of affine connection (cf. Proposition 3.3). Finally in Sect. 4, we
construct an example of pseudo-Riemannian Walker Osserman metric of signature
(3, 3), using the Riemann extensions. The Riemann extension provides a link
between affine and pseudo-Riemannian geometries. It plays an important role in
various questions involving the spectral geometry of the curvature operator. (See,
for example, [1-3, 7, 13] for more details.)

2 Preliminaries

2.1 Affine Manifolds

Let M be an m-dimensional smooth manifold and V be an affine connection on
M. Let us consider a system of coordinates (uy, - - - , U, ) in a neighborhood U of a
point p in M. In U, the connection is given by

Vi 0j = [0k, (2.1)
where {9, = ai_} 1<i<m 18 a basis of the tangent space T, M and the functions
f,’j @i, j,k=1,---,m) are called the coefficients of the affine connection. The pair

(M, V) shall be called affine manifold.
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We define a few tensor fields associated to a given affine connection V. The
torsion tensor field TV, which is of type (1, 2), is defined by

TV(X,Y) = VxY — Vy X — [X, Y],

for any vector fields X, and ¥ on M. The components of the torsion tensor 7V in
local coordinates are

k _ ¢k k
Ly = 1ij = Jji-

If the torsion tensor of a given affine connection V vanishes, we say that V is torsion-
free.
The curvature tensor field RY, which is of type (1, 3), is defined by

RY(X,Y)Z := VxVyZ — VyVxZ — Vix.v1Z,

for any vector fields X, Y and Z on M. The components in local coordinates are

RY (3, 8)0; = ZRj.k,ai.
i

We shall assume that V is torsion-free. If RY = 0 on M, we say that V is flat affine
connection. It is known that V is flat if and only if around a point there exists a local
coordinates system such that fl’; = O0foralli, j, and k.

We define the Ricci tensor Ric" , of type (0, 2) by
RicV(Y, Z) = trace{X — RV (X, Y)Z).

The components in local coordinates are given by
Ric¥(d;.0) = ) _ R
i

It is known in Riemannian geometry that the Levi—Civita connection of a Rieman-
nian metric has symmetric Ricci tensor, that is, Ric(Y, Z) = Ric(Z,Y). But this
property is not true for an arbitrary affine connection which is torsion-free. In fact,
the property is closely related to the concept of parallel volume element (cf. [19]
for more details).

In a 2-dimensional manifold, the curvature tensor RY and the Ricci tensor Ric¥
are related by

RY(X,Y)Z = Ric¥ (Y, Z)X — RicV (X, Z)Y. (2.2)

For X € I'(T, M), we define the affine Jacobi operator Jrv with respect to X
by Jrv(X) : TyM — T, M such that
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Jrv(X)Y := RV (Y, X)X. 2.3)

for any vector field Y. The affine Jacobi operator satisfies Jrv(X)X = 0 and
Jpv(@X) = ozZJRv(X)Y, fora € R— {0} and X € T,M. Let (M, V) be a
three-dimensional affine manifold and let X = Z?:l «;0; be a non-null vector on
M, where {0;} denotes the coordinate basis and «; € R*. Then the affine Jacobi
operator is given by

Jrv(X) = iR (-, 03 + a100RY (-, 31)82 + a1 RY (-, 81)d3
+a100RY (-, 32)81 + a3 RY (-, 32)d + @203 RY (-, 32)83
+a1a3RY (-, 93)01 + a3 RY (-, 83)d2 + a3 RY (-, 93) 3.

2.2 Affine Osserman Manifolds

Let (M, V) be an m-dimensional affine manifold, i.e., V is a torsion free connection
on the tangent bundle of a smooth manifold M of dimension m. Let RV (X, Y)
be the curvature operator and Jpv(X) the Jacobi operator with respect to a vector
X € T, M associated.

Definition 2.1 ([14]) One says that an affine manifold (M, V) is affine Osserman
at p € M if the characteristic polynomial of Jpv(X) is independent of X € T, M.
Also (M, V) is called affine Osserman if (M, V) is affine Osserman at each p € M.

Theorem 2.2 ([14]) Let (M,V) be an m-dimensional affine manifold. Then
(M, V) is called affine Osserman at p € M if and only if the characteristic
polynomial of Jpv (X) is

P Jrv(X)] = A

forevery X e T,M.

Corollary 2.3 We say that (M, V) is affine Osserman if Spect{Jrv (X)} = {0} for
any vector X

Corollary 2.4 If (M, V) is affine Osserman at p € M, then the Ricci tensor is
skew-symmetric at p € M.

The affine Osserman connections are of interest not only in the affine geometry, but
also in the study of the pseudo-Riemannian Osserman metrics since they provide
some nice examples of Osserman manifolds whose Jacobi operators have non-trivial
Jordan normal form and which are not nilpotent. It has long been a task in this field
to build examples of Osserman manifolds were not nilpotent and which exhibited
non-trivial Jordan normal form. We will refer [1, 3] for more information.
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2.3 The Riemann Extension Construction

Let N := T*M be the cotangent bundle of an m-dimensional manifold and let
mw . T*M — M be the natural projection. A point & of the cotangent bundle is
represented by an ordered pair (w, p), where p = m(&) is a point on M and w

is an 1-form on T, M. If u = (uy, --- , u,) are local coordinates on M, let u =
(uy, -+, uy) be the associated dual coordinates on the fiber where we expand an
I-form w as @ = uydu; (i = 1,---,m;i’ = i + m); we shall adopt the Einstein

convention and sum over repeated indices henceforth.
For each vector field X = X'd; on M, the evaluation map (X (p, ®) = w (X))
defines on function on N which in local coordinates is given by

(X (uj,up) = ui/Xi.

Vector fields on N are characterized by their action on function ¢ X ; the complete lift
X€ of a vector field X on M to N is characterized by the identity

XC1z) =X, Z), forall ZeC®(TM).
Moreover, since a (0, s)-tensor field on M is characterized by its evaluation on
complete lifts of vector fields on M, for each tensor field T of type (1, 1) on M,
we define a 1-form (7 on N which is characterized by the identity
(T(XC) = (TX).

Definition 2.5 Let (M, V) be an affine manifold of dimension m. The Riemann
extension g of (M, V) is the pseudo-Riemannian metric of neutral signature (m, m)
on the cotangent bundle T* M, which is characterized by the identity

2(XC, Y% = —(VxY + VyX).

In the system of induced coordinates (u;, u;;) on T M, the Riemann extension takes

the form:
_ { —2upTk 1d,
g = / ;
1d,, 0
with respect to {9y, ..., 0y, 8,/], e, 3u;,,}§ here, the indices i and j range from
1,...,m,i’ =i+ m,and Ffj are the Christoffel symbols of the connection V with

respect to the coordinates (#;) on M. More explicitly:

800 ) = —2ux T, 800 00) = 8], 80, 0,)=0.
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Let (M, g) be a pseudo-Riemannian manifold. The Riemann extension of the
Levi—Civita connection inherits many of the properties of the base manifold. For
instance, (M, g) has constant sectional curvature if and only if (T M, g) is locally
conformally flat. However, the main applications of the Riemann extensions appear
when considering affine connections are not the Levi—Civita connection of any
metric. We have the following result:

Theorem 2.6 ([13]) Let (T*M, g) be the cotangent bundle of an affine manifold
(M, V) equipped with the Riemann extension of the torsion free connection V.
Then (T*M, g) is a pseudo-Riemannian globally Osserman manifold if and only
if (M, V) is an affine Osserman manifold.

3 Example of Affine Osserman Connections

In the following M denotes a three-dimensional manifold and V a smooth torsion-
free affine connection. Choose a system (u 1, u2, u3) of local coordinates in a domain
U C M such that the affine connection V is uniquely determined by six functions
f1. ..., fe given by the formulas

Vy, 01 = fi(uy, uz, u3)oy;
Vo, 02 = fa(uy, uz, uz)o;
V3,03 = f3(u1, uz, u3)os;
Vo, 02 = fa(uy, uz, u3)oy;
Va3 = f5(u1, uz, u3)dy;
Vo, 03 = fo(uy, uz, u3)os.

3.1)

One can easily show that the non-zero components of the Ricci tensor are given by

Ric(d1,01) = fi — 01 fa+ fifa— f3

Ric(01,02) = 2 fo — 01 /4

Ric(31,03) =0 fz —01fs+ fafa— fof5 (3.2)
Ric(03,01) = fs — B fa+ f3fa— fofs

Ric(03,02) = 02 f5 — 03 f4

Ric(d3,03) = 0o fs — 03.f5 + fafs — f2.

The skew-symmetry of Ricci tensor means that, in any local coordinates, we have:

Ric(9d1,01) = Ric(02, 02) = Ric(03,03) =0
Ric(91, 02) + Ric(d, 91) =0
Ric(01, d3) + Ric(03, 01) =0
Ric(92,03) 4+ Ric(93, 02) =0.

(3.3)
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According (3.1) and (3.3), we have the following
Proposition 3.1 The affine connection V defined in (3.1) is skew-symmetric if the
functions fi,i =1, ..., 6 satisfy the following partial differential equations:
Dfr—01fa=0; 0hfs—03fs=0
Nfi—0fat+ fifs—f5=0
Nfo—fs+ fafs— f3 =0
20 fs—dfs—03f2+2f3fa—2f2f5s =0. (3.4)

Proof 1Tt follows from (3.1) and (3.3).

Corollary 3.2 ([8]) Let V be as (3.1). Assume that f, = f3 = f5 = 0, then
the affine connection (3.1) is skew-symmetric if and only if the coefficients of the
connection (3.1) satisfy

Satur, uz,u3) = fi(uz), dfi+ fifa=0, and 0 fs+ fafe =0. (3.5)

We have the following result:

Proposition 3.3 Let (M, V) be a 3-dimensional affine manifold with torsion free
connection given by (3.1). Then (M, V) is affine Osserman if and only if the Ricci
tensor is skew-symmetric.

Proof Since the Ricci tensor of any affine Osserman connection is skew-symmetric,
it follows from previous expression that we have the following necessary conditions
for the affine connections (3.1) to be Osserman

hfpr—01fa=0; 0fs—03fs=0
hfi—hfr+ fifaimfr=0
hfo—Bfs+ fafe— f2=0

and

200f3—=01fs =032 +2f3fa—2ffs =0.

Then, the associated affine Jacobi operator can be expressed, with respect to the
coordinate basis, as

000
(Jpv(X)=|a0c ],
000
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with
a= 0!1013(31]”3 —BhA+ L2fs - f1f4)
+oaz03 (231f5 —hfi—BL+ f2fs - f3f4)
+a§<31f6 -3+ fafo— f3f5>;
¢ =-ad(fs-0fi+ fofs = fi)5)
—o10a (0 fs = 02f3 = 203 f2 + f3fs = fof5)
—a103(01fs = 033+ fofs — f.55).
The characteristic polynomial of the affine Jacobi operator is now seen to be:
PilJgv(X)] = =23

which has zero eigenvalues. O

Example 3.4 Following Corollary 3.2, one can construct examples of affine Osser-
man connections. The following connection on R whose non-zero coefficients of
the cofficients are given by

V01 = uiu3zdy and Vy,03 = (uz +u3)o2 (3.6)

is nonflat affine Osserman.

The concept of an affine Osserman connection has become a very active research
subject. In [10], the authors give examples of affine Osserman connections which are
locally symmetric but not flat on 3-dimensional manifolds. In [11], affine Osserman
connections which are Ricci flat but not flat on 3-dimensional manifolds are given.
In [12], examples of affine Osserman connections which are Ricci flat and which
are not Ricci flat on 3-dimensional manifolds are exhibited.

4 Example of Walker Osserman Metric

Let M be a pseudo-Riemannian manifold of signature (p, ¢). We suppose given a
splitting of the tangent bundle in the form TM = V| @ V, where V| and V; are
smooth subbundles which are called distribution. This defines two complementary
projection 1 and 71> of TM onto V; and V,. We say that V| is a parallel distribution
if Vmy = 0. Equivalently this means that if X; is any smooth vector field taking
values in Vi, then VX again takes values in V;. If M is Riemannian, we can take
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Vo = VIJ- to be the orthogonal complement of V; and in that case V, is again
parallel. In the pseudo-Riemannian setting, of course, V1NV, need not be trivial. We
say that V| is a null parallel distribution if V| is parallel and if the metric restricted to
V1 vanishes identically. Manifolds which admit null parallel distribution are called
Walker manifolds. More precisely, a Walker manifold is a triple (M, g, D) where
M is an m-dimensional manifold, g an indefinite metric, and D an r-dimensional
parallel null distribution. Of special interest are those manifolds admitting a field of
null planes of maximum dimension » = 7. In this particular case, it is convenient
to use special coordinate systems associated with any Walker metric.

Let (u1, up, u3) be the local coordinates on a 3-dimensional affine manifold
(M, V). We expand Vj,0; = Zk fl’; o for i, j, k = 1, 2, 3 to define the Christoffel
symbols of V. Let = uqduy + usduy + ueduz € T*M : (ug4, us, ug) be the dual
fiber coordinates. The Riemann extension is the pseudo-Riemannian metric g on the
cotangent bundle 7*M of neutral signature (3, 3) defined by setting

(01, 04) = Z(32, 85) = §(33, 3) = 1,

201, 01) = —2ua f —2us [l — 2u f7),
831, 82) = —2ua fl5 — 2us fiy — 2u6 fis,
201, 83) = —2ua fly — 2us 5 — 2uc fis,
2(02, 32) = —2u4 f3 — 2us f35 — 2u 3,
g(32,33) = —2us f2y — 2us f35 — 2ug f3y.
8(03, 03) = —2uy fiy — 2us f33 — 2ue f35.

Let us consider the affine Osserman connection given in (3.6). The Riemann
extension g on IR of the connection (3.6) has the form

—2usuiusz 0 0 100

0 0 0 010

_ 0 0 —2us(u; +u3)001
&= 10 0 000
0 1 0 000

0 0 1 000

The nonvanishing covariant derivatives of g are given by

Vi, 1 = uiuzdy — ususos + uusde, Vi 93 = —u1usds — usde,
Vo, 05 = —u1u30s, Vyy03 = (uy + u3)0y + usds — usde,
Vi, 05 = —(u1 + u3)0.
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The nonvanishing components of the curvature tensor of (R°, g) are given by

R(91, 93)01
R(01, 05)01 = —u106; R(01, 05)03
R(03, 05)03 = —04.

—u102;  R(91,03)d3 = 0d2; R(91, 03)05 = 1104 — O6;
uid4;  R(03, 05)0) = Og;

Now, if X = Z?:l @;9; is a vector field on R®, then the matrix associated with the
Jacobi operator Jr (X) = R(-, X)X is given by

cmw»=<2&)

where A is the 3 x 3 matrix given by

0 0 O
A=|1—-u;0u;—11;
0 0 O
and B is the 3 x 3 matrix given by
2u; 0 —uy
B = 0 00
—1—1410 1

Then we have the following
Proposition 4.1 (R®, g) is a Walker Osserman metric of signature (3, 3).

Walker geometry is intimately related to many questions in mathematical
physics. Note that the Riemann extension is necessarily a Walker metric. It is a
remarkable fact that Walker metrics satisfying some natural curvature conditions are
locally Riemann extensions, thus leading the corresponding classification problem
to a task in affine geometry as shown in [2].

Chaichi et al. [4] have studied conditions for a Walker metric to be Einstein,
Osserman, or locally conformally flat and obtained thereby exact solutions to the
Einstein equations for a restricted Walker manifold.

Appendix 1: Components of the Curvature Tensor

The non-zero components of the curvature tensor of the affine connection (3.1) are
given by

R(31,82)01 = (31 fo — 0 fi + 7 — fifD)d
R(91, 02)02 = (01 fa — 02 f2)02
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R(01,02)03 = (1 fs — 0 f3+ fofs — f3/4)02
R(91,03)01 = (01 /3 — /1 + f2fs — f1/5)02
R(91,03)02 = (91 f5 — 93/2)02

R(01,03)03 = (01 f6 — 033+ fofo — f3/5)02
R(02,03)01 = (2 f3 — B fa+ f3fa— f2f5)0
R(02,03)02 = (92f5 — 93 f2)02

R(2, 03)d3 = (32 f6 — 03 f5 + fafs — [3)dn.

Appendix 2: Osserman Geometry

Let R be the curvature operator of a Riemannian manifold (M, g) of dimension m.
The Jacobi operator J (x) : y — R(y, x)x is the self-adjoint endomorphism of the
tangent bundle. Following the seminal work of Osserman [20], one says that (M, g)
is Osserman if the eigenvalues of 7 are constant on the unit sphere bundle

S(M,g):={XeTM:gX,X)=1}.

Work of Chi [5], of Gilkey et al. [15], and of Nikolayevsky [16, 17] show that any
complete and simply connected Osserman manifold of dimension m # 16 is a rank-
one symmetric space; the 16-dimensional setting is exceptional and the situation
is still not clear in that setting although there are some partial result due, again, to
Nikolayevsky [18].

Suppose (M, g) is a pseudo-Riemannian manifold of signature (p, g) for p > 0
and g > 0. The pseudo-sphere bundles are defined by setting

STEM,g):={XeTM:g(X,X)==+l1)}.

One says that (M, g) is spacelike (resp. timelike) Osserman if the eigenvalues of J
are constant on ST (M, g) (resp. S™(M, g)). The situation is rather different here
as the Jacobi operator is no longer diagonalizable and can have nontrivial Jordan
normal form as shown by Garca-Ré et al. [13]. We refer to [14] for more information
on Osserman manifolds.
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1 Introduction

It is well-known that in (3 + 1)-dimensional spacetime (Minkowski space), denoted
M®  Maxwell’s equations respect not only Poincaré symmetry, but also conformal
symmetry. But the physical meaning of this conformal symmetry is still not entirely
clear. A historical review is provided by Kastrup [6].

In our ongoing work, we have been investigating the characterization of general,
nonlinear conformal-invariant Maxwell theories [2]. Our strategy is to make use
of the identification of the conformal compactification M* of Minkowski space
with the projective light cone in (4 4 2)-dimensional spacetime ¥ ©® [1]. Poincaré
transformations, dilations, and special conformal transformations act by rotations
and boosts in Y ©. Nikolov and Petrov [9] consider a linear Maxwell theory in
Y©® and carry out a ray reduction and dimensional reduction procedure to obtain
conformal-invariant theories in M. The result is a description of some additional
fields that might survive in M @, To handle nonlinear Maxwell theories, we allow
the constitutive equations to depend explicitly on conformal-invariant functionals
of the field strength tensors (with the goal of carrying out a similar dimensional
reduction). This parallels, in a certain way, the approach taken by two of us in earlier
articles describing general (Lagrangian and non-Lagrangian) nonlinear Maxwell
and Yang—Mills theories with Lorentz symmetry in M® [3, 4].

This contribution surveys some of the key ideas underlying our investigation. A
major tool is to focus on the behavior of the fields and the coordinates under confor-
mal inversion. We introduce here the resulting “inverse Minkowski space” obtained
via conformal inversion, and consider the possibility of defining Maxwellian fields
independently on the inverse space. We also write two independent conformal-
invariant functionals of the Maxwell field strength tensors in ¥©—one bilinear,
the other trilinear in the field strengths. These are the functionals which are to
enter general nonlinear constitutive equations in the (4 + 2)-dimensional theory. We
also make some remarks regarding the dimensional reduction procedure from six to
four dimensions, as we consider its generalization from linear to general nonlinear
theories.

2 Conformal Transformations and Compactification

2.1 Conformal Transformations in Minkowski Space

The full conformal group for (3 4 1)-dimensional Minkowski spacetime M@, as
usually defined, includes the following transformations. For x = (x*) € M @,
w=20,1,2,3, we have:

translations:

XP = (Tyx)* =xt —bH; 2.1)
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spatial rotations and Lorentz boosts, for example:

v

0=y =BxY, XM=y =8, -1<p= - <1, y= (1_132)—%;
2.2)
or more generally,
x'* = (Ax)* = A x" (Einstein summation convention); (2.3)
and dilations:
P =Dy x)* =P, A>0; (2.4)

all of which are causal in M™® . Let us consider conformal inversion R, which acts
singularly on M® | and breaks causality:

x'* = Rx)* =x"/x,x", where (2.5)
xoxV =guxux’,  gu =diag[l, -1, -1, —1]. (2.6)

Evidently R? = I. That is, neglecting singular points, conformal inversion is
like a reflection operator: inverting twice yields the identity operation. Conformal
inversion preserves the set of light-like submanifolds (the “light rays”), but not the
causal structure. Locally, we have:

1
guvdx'Mdx"V = o) guvdxtdx"”. 2.7
o

Combining inversion with translations, and inverting again, gives us the special
conformal transformations Cjp,, which act as follows:

X*=(Cpx)* =RTy Rx)* = (x* —b*x,x") /(1 = 2byx" + b,b x5x7).
(2.8)
The operators Cj, belong to the conformal group, and can be continuously connected
to the identity.

2.2 Conformal Compactification

We can describe Minkowski space M® using light cone coordinates. Choose a
particular (spatial) direction in R3. Such a direction is specified by a unit vector 7,
labeled (for example) by an appropriate choice of angles in spherical coordinates. A
vector x € R3 is then labeled by angles and by the coordinate u, with —0o < u <
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00, and X - X = u2. With respect to this direction, we introduce the usual light cone
coordinates,

ut = %(xo +u). (2.9)

Then for x = xo, X), we have x, x* = 2u™u 5 SO under conformal inversion
"
(Wlth obvious notation),

wt=—, u~ = —. (2.10)

To obtain the conformal compactification M # of the (3 + 1)-dimensional
Minkowski space M®, we formally adjoin to it the set 7 of necessary “points
at infinity.” These are the images under inversion of the light cone L® < M®
(defined by either u™ = 0 or u~ = 0), together with the formal limit points of L®
itself at infinity (which form an invariant submanifold of 7). Here J is the well-
known “extended light cone at infinity.” The resulting space M* = M® U J has
the topology of §3 x §'/Z,.

In the above, we understand the operators T, Al', D;, R, and Cp as trans-
formations of M*. Including these operators but leaving out R, we have what is
often referred to as the “conformal group,” all of whose elements are continuously
connected to the identity. There are many different ways to coordinatize M* and to
visualize its structure, which we shall not discuss here.

3 Inverse Minkowski Space

3.1 Motivation and Definition

In the preceding construction, which is quite standard, there is a small problem
with the units. We glossed over (as do nearly all authors) the fact that x # has the
dimension of length, while the expression for (R x)* has the dimension of inverse
length. Thus we cannot actually consider R as a transformation on Minkowski space
(or on compactified Minkowski space) without arbitrarily fixing a unit of length!

Furthermore, regarding the formula for (Cj x)*, it is clear that b must have the
dimension of inverse length; but in the expression for (73 x) #, it has the dimension
of length.

Kastrup [5] suggested introducing a Lorentz-invariant “standard of length” «
at every point, having the dimension of inverse length, and working with the
dimensionless coordinates n* = xx* together with «. This leads into a discussion
of geometrical gauge properties of Minkowski space.

Let us consider instead the idea of introducing a separate “inverse Minkowski
space” [M™®]~! whose points z have dimension of inverse length. Then we can
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let * = (R x)* = x*/x,x" belong to [M®]~1. As before, in order to deﬁne

R on the light cone, we shall need to compactify: first, to compactify [M @7-1

50 as to include the image points of R acting on the light cone in M™®, and then

to compactify [M @1, obtaining [M*]~! and M# The two spaces are, of course,

topologlcally and geometrically the same, with R:M* > M ’h’t]_1 and its inverse
M > M, glven by the same formula: x* = z*/z,z"

Just as we have T,, ALY, D;, and C) acting in Mm* (allowmg a to have the
dimension of length, and b to have the dimension of inverse length), we now define
corresponding transformations, Tp, A%, D,, and C, acting in [M*]~!, using the
same formulas as before, but with z replacing x. Thus, (T;J )H =z* —bH* and so
forth. Now,

Cb— f]é, D)LZI,é_lbl/)LI%, A=R_ll~\1,é, T, Zé_lébé.
(3.1)

3.2 Conformal Lie Algebra

The well-known Lie algebra of the conformal group has 15 generators, as follows:
[Pu, P)1=0, [Ku, Ky1=0, [Py, dl=P,, [Kydl=-K,,
[Pus Japl = 8uaPp — 8up Py [Kus Jaupl = 81aKp — 8upKa, (3.2)
[Juvs Jagl = (usual Lorentz algebra), [Py, K,]=2(gud— Jy),

where the P, generate translations, the K, generate special conformal transforma-
tions, the Jop generate Lorentz rotations and boosts, and d generates dilations.

Evidently the exchange P, — K, K, — P,,d — —d leaves the Lie algebra
invariant. This fact is now easily understood, if we think of it as conjugating the
operators in M with the operator R to obtain the generators of transformations in
[M#]~1:

P,=RK,R'", K,=RP,R7!, d=R(-dR™', J=RJIR' (33

3.3 Some Comments

To relate the original conformal inversion R to R, we may introduce an arbitrary
constant A > 0, having the dimension of area. Let A (M®]1 > M@ be the
operator x* = Az*. Then define x'#* = (Rax)* = (AAléx)“ = Ax"/x,x?", for
A > 0. Note that Ri = I, independent of the value of A.
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Now (letting b have units of length), we have (RoTpRax)"* = (Cp/ax)*, and
we can work consistently in the original Minkowski space and its compactification.
The introduction of the constant A parallels Kastrup’s introduction of the length
parameter k.

However, it is also interesting not to follow this path, but to consider the doubled,
compactified Minkowski space M* U [M*]7!; i.e., the disjoint union of M* and its
inverse space. It is possible to define Maxwell fields on the doubled space, making
use of the conformal inversion.

Finally we remark that a similar construction of an “inverse spacetime” can be
carried out for the Schrodinger group introduced by Niederer [8]. The Schrodinger
group consists of the Galilei group, dilation of space and time given by D, (¢, x) =
(kzt, AX), and additional transformations that can be considered as analogues of
special conformal transformations. The latter transformations can be obtained as
the result of an inversion, followed by time translation, and then inversion again.
Here the inversion is defined by R : (r,x) — (—1/¢t,x/t), with R%: (1,X) —
(t, —x). Note that for the Schrodinger group, there is only a one-parameter family
of transformations obtained this way, in contrast to the four-parameter family of
special conformal transformations; the Schrodinger group is only 12-dimensional,
while the conformal group is 15-dimensional.

Under inversion, the dimensions again change. Here, they change from time
and space to inverse time and velocity, respectively. Again one compactifies, and
again we have the option to introduce a “doubled spacetime,” where now it is a
compactified Galilean spacetime which has been doubled.

4 Nonlinear Electrodynamics: General Approach

4.1 Motivation and Framework for Nonlinear Maxwell Fields

Let us write Maxwell’s equations as usual (in SI units), in terms of the four fields
E,B,D, and H:

VxE:—E, V-B=0, VxH=@+j, V:-D=p. 4.1)
at at
The constitutive equations, relating the pair (E, B) to the pair (D, H), may be linear
or nonlinear. Our strategy is to introduce general constitutive equations respecting
the desired symmetry at the “last possible moment.”
Now the general nonlinear theory with Lorentz symmetry has constitutive
equations of the form

1
D=MB+—NE, H=NB-ME, 4.2)
C
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where M and N may depend on the field strengths via the two Lorentz invariants
2 1o
L =B"-—SE", L=B-E. (4.3)
c

In the linear case, M and N are constants.

Our initial motivation for studying nonlinear Maxwell theories with symmetry
was to explore the existence of a Galilean limit [3]. It is well known that taking a
Galilean limit ¢ — oo in the linear case requires losing one of the time-derivative
terms in Maxwell’s equations, as described carefully by Le Bellac and Lévy—
Leblond [7]. But in the general nonlinear case (allowing non-Lagrangian as well
as Lagrangian theories), we showed that all four Maxwell equations can survive
intact. Here /1 and I survive, and can yield nontrivial theories in the ¢ — oo limit.

We remark here that introducing conformal symmetry in this context further
restricts the invariants, leaving only the ratio I/ as an invariant.

In covariant form, Maxwell’s equations are written (in familiar notation):

WF*P =0, 0,6 =jP, 4.4)
where

~ 1

FP = Ee“ﬁ‘”F,w and  Fjy = d,A, — dvA, . (4.5)
Here the constitutive equations relate G to F and F. With Lorentz symmetry, they
take the general form

al al
1 M 2

G" = NF*™ + cMF™ = M, + M, ,
dF,, dF,

(4.6)
where M and N (or, equivalently, M and M>) are functions of the Lorentz invariants
I and I7:

1 i
h=3FuF" . b= —EFWF‘”. 4.7)

4.2 Transformations Under Conformal Inversion

Under conformal inversion, we have the following symmetry transformations of the
electromagnetic potential, and of spacetime derivatives:

A;l(x/) = xZAM(x) — 2x,(x%Ag) (4.8)

/. 0 2
0 = 5 =x20 = 2x,(x - 9) (4.9)
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where we here abbreviate x2 = xyuxt and (x - 9) = x%9y. Then with Fy, =
Ay — 0,A,, we have:

Fl,(x) = (x3)? Fuy(x) — 2x2x% (xy Fay + X0 Fpuar) (4.10)
and
O = (x*)?0 — 4x*(x - 9), (4.11)
where the d’Alembertian [ = 9,,0". Additionally, the 4-current j,, transforms by
J ) = @) =203, (0 ja () - (4.12)
These transformations define a symmetry of the (linear) Maxwell equations,
OA, —3,(3%Ay) = jy . (4.13)

That is, if A(x) and j(x) satisfy (4.13), then A’(x") and j'(x’) satisfy the same
equation with (0’ and 8’ in place of (] and 9, respectively. Combining this symmetry
wit