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Abstract. Failures are inevitable in wireless sensor network, and it is important
to detect and recover faulty nodes. In this paper, we present an algorithm to
recover faulty nodes called Fault detection and Recovery Algorithm (FDRA). The
performance evaluation is tested through simulation to evaluate some factors such
as: Packet delivery ratio, control overhead, memory overhead and fault recovery
delay. We compared our results with referenced algorithm: Fault Detection in
Wireless Sensor Networks (FDWSN), and found that our FDRA performance
outperforms that of FDWSN.
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1 Introduction

A wireless sensor network (WSN) consists of a possibly large number of wireless
devices able to take environmental measurements. Typical examples include tempera‐
ture, light, sound, and humidity. These measurements are transmitted over a wireless
channel to a base station (BS) that makes decisions based on these data. WSNs have
infiltrated our daily life, such as medical monitoring [1], military surveillance [2, 3],
vehicle monitoring [4], home automation monitoring [5], weather monitoring [6],
building structures monitoring, and industrial plant monitoring [7–9]. Some of these
WSN’s applications were deployed in remote and hostile surroundings, and none can
attend nodes in such environment. In addition, some nodes are failure due to energy
depletion, hardware failure, communication link errors, intrusion by attackers and so
on. These unattended nodes cannot be replaced or repaired. They may generate a faulty
data and even cannot respond to any request. These problems may lead to network
partition which decreases the cover ratio, reduces the availability of the WSN and even
produces network partition. Therefore, WSN should possess a mechanism of fault toler‐
ance. It can be defined as the ability of a system to deliver a desired level of functionality
in the presence of faults [10]. Since the nodes are prone to failure, fault tolerance should
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be seriously considered in many sensor network applications. Actually, extensive work
has been done on fault tolerance and it has been one of the most important topics in
WSNs [11, 12].

In this paper, we extend our preliminary work proposed in [13]. We improve the
proposal algorithm which called: Fault Detection Scheme (FDS), and we present a novel
one called Fault Detection and Recovery Algorithm (FDRA). The first one ensures only
a detection of faulty nodes without any recovery. However, in the present scheme FDRA,
we improve the previous work by ensuring this task.

The rest of the paper is organized as follows: Sect. 2 presents some related work. In
Sect. 3, we describe our recovery algorithm and illustrate it through example. We provide
in Sect. 4 performance results and in Sect. 5 we conclude the paper.

2 Related Works

Several works are proposed to detect and recover the faulty nodes in wireless sensor
networks [14]. In [15], the authors proposed a detection technique to eliminate all erro‐
neous sensed data generated by faulty nodes. Wang et al. [16] have proposed an approach
based on cascaded movement to replace a faulty node by a nearby node, which in turn
gets replaced with another and so on until reaching a redundant node. The authors in
[17], proposed a few simple algorithms for achieving the baseline graph theoretic metric
of tolerance to node failures, namely, biconnectivity. They formulated an optimization
problem for the creation of a movement plan while minimizing the total distance moved
by the robots. However in DARA [18], the main idea was to detect the failure of an actor
and replace the failed actor in a cascaded manner. The previous work was enhanced in
[19]. They use the connected dominating set (CDS) of the whole network in order to
detect the cut-vertex node. After detecting these nodes, every node picks the appropriate
neighbor to handle its failure in the case of failure in future. The objective is to choose
a neighbor that may not partition the network again. In [20], the replacement of the failed
node is done only by its direct neighbors. Akkaya et al. [21] presented the new distributed
partition detection and recovery algorithm (PADRA, PADRA+) to handle the connec‐
tivity problem through detection of possible partitions after the failure of the cut-vertex
node is observed in the network and restores the network connectivity through controlled
relocation of the movable nodes. Younis et al. [22] proposed a localized distributed
algorithm called recovery through inward motion (RIM) for the network partition
recovery. The main idea is to move the entire neighbor node(s) towards inward direction
of the failed node so that nodes can discover each other and recovery can take place. In
[23], the authors presented an algorithm called Connectivity Restoration with Assured
Fault Tolerance (CRAFT) to solve the problem of simultaneous sensor failures. This
algorithm forms a backbone polygon around failure region. Then, CRAFT tries to fix
partition problem by connection the disjoint paths to each other. A distributed fault
detection algorithm for WSNs named FDWSN has been proposed in [24]. Every node
discerns its own status in view of local comparisons of its sensed data with the data of
neighboring nodes for q times to detect transient fault. The authors used a redundancy
matrix to save all results of comparison. After, the status of the node is declared as good
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if the sensed data are similar. Finally, each sensor node with a defined status will broad‐
cast its status to its neighbors to facilitate them for determining their own status. This
scheme can detect and isolate faulty nodes with high detection accuracy. Transient faults
are also tolerated by using time redundancy.

Contrary to the ideas proposed in the above reviewed works in which movement of
sensor nodes or exchanging Hello message are required, our proposal mainly based on
stationary sensor nodes that do not need any mobility.

3 Fault Detection and Recovery Algorithm

In this section, we present our proposed technique, named Fault Detection and Recovery
Algorithm (FDRA). We begin first by defining some assumptions. We then provide
details on the mechanism used for recovering faulty nodes. Our algorithm operates in
two phases: (a) First, a tree-forming and selection of sleeping nodes are executed. (b)
Second, selection of recovering nodes to recover the faulty nodes and updating connec‐
tivity table.

3.1 System Assumptions

A WSN is typically consisting of a large number of nodes scattered over a region of
interest to monitor a particular physical phenomenon. Some assumptions, complying
with practical aspect, have to be considered in our algorithm. The first assumption is
that all sensed data are forwarded from sources to a central node called Base Station
(BS), where data processing occurs. The second is that, all nodes are stationary and its
batteries cannot be recharged. We recognize that local processing may occur to reduce
overall communication costs. The next assumption we make is that all nodes are homo‐
geneous in terms of energy, communication and processing capabilities, and they are
assigned a unique identifier (ID). Finally, we also assume that we do not have malicious
attacks on the network.

3.2 Algorithm Design

Our algorithm consists of two phases. In the following sub-sections, we describe each
phase in details.

Preliminary Phase

Tree-Forming and Creation of Connectivity Table Step
Tree-forming is an efficient and effective technique for recovery process. In this paper,
we are interesting to BS-based trees where it uses the BS as the core of the network.
This is optimum in WSN, since the BS does not suffer from battery depletion. In Fig. 1,
the initial connectivity of the network is presented, while Fig. 2, describes a BS-based
tree applied on the initial topology (Fig. 1). The process of creation of BS-based tree is
analytically demonstrated in [25, 26]. It is clear that this transformation leads to a crea‐
tion of connectivity table which presented in Table 1. Consider the scenario shown in
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Fig. 2, the table of connectivity will be presented as in Table 1. The columns describe
the levels of the tree and the rows represent the ID of sensor nodes belong to each level.
We consider the same example, the level 1 (L = 1) contains the following IDs: 1, 2 and
3. These nodes belong to the level 1.

Fig. 1. Initial connectivity of the network.

Fig. 2. Connectivity of the network after applying BS-based tree algorithm.

Selection of Sleeping Nodes Step
The BS chooses which nodes should be in sleep mode. The BS can take into account
the energy remaining of nodes, the geographic position of nodes, total number of nodes
presents in levels or the degree of connectivity of a node. In this paper, we are based on
the degree of connectivity of nodes, i.e., the BS selects the node that has fewer neighbors.
To start the selection of sleeping nodes, the BS broadcasts a Req_nn message to know
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the number of neighbors of each node. When a node receives a Req_nn message, it will
respond with Resp_nn message to inform the BS the number of neighbors in its trans‐
mission range. When the BS receives all Resp_nn messages, the selection of sleeping
nodes is launched by selecting only nodes with number of neighbors is less than 𝛼
threshold (𝛼 can be equal to the average number of each level). The BS sends a
Select_Sleep_msg message to all selected nodes. A response Resp_Sleep_msg message,
it will be sent by the selected nodes to indicate to the BS that they will switch to sleep
mode. E.g., consider Fig. 1. The BS selects in the 1st level the node 3. The nodes with
ID 4, 6 and 7 in the second level. The nodes 9, 11 and 14 in the third level. The nodes
15, 18 in the fourth level and nodes with ID 23 and 27 in last level. The IDs of selected
nodes are presented in bold in the Table 1. Figure 4 represents a message exchanging
required to select sleeping nodes in level 2.

Update Connectivity Table Step
This step allows updating the connectivity table. After a phase of detection of faulty
nodes (see more details in [13]) the cluster-head transmitted to the BS a black list (BL)
contains all the faulty nodes detected. The BS updates the connectivity table, so it will
proceed to an elimination of all faulty nodes’ID from the table. E.g., consider the
Table 1. We suppose that nodes 5, 12 and 16 are in BL. So they should be removed from
the Table 1 (we just highlighted in Table 1). The next subsections describe the steps
required for the recovery phase.

Table 1. Connectivity table.

L = 1 L = 2 L = 3 L = 4 L = 5
1 4 9 15 23
2 5 13 16 24
3 6 10 18 25

8 17 19 27
12 11 20
7 14

Recovery Phase

Principle
FDRA recognizes two transition states for the nodes, active and sleeping. Initially all
nodes in the network are in active state. This means that all radio’s nodes are on until
receiving a message like “Select_Sleep_msg”. This message comes from BS to order
preselected nodes to switch their radio off and move to sleep mode. Returns back to the
active state happen when the BS selects a sleeping node to recover a faulty node. To do
that, BS will send a wakeup message to these nodes. Therefore, the transition between
the two states is ordered by the BS and is performed by sending messages.

Selection of Recovery Nodes Step
The process of selection of recovery nodes implies the reactivation of some sleeping
nodes. The BS sends a Wake_up_msg message to all sleeping nodes of the same level
of the faulty nodes. However, the sleeping nodes which are in level that does not contain
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any faulty nodes, they will not receive this message. E.g., consider the previous example,
in Table 1, the sleeping nodes which receive the Wake_up_msg are: The nodes 4, 6 and
7 of the 2nd level and the nodes 18 and 15 of the 4th level (i.e., The message concern two
levels (2 and 4), because we supposed in previous subsection that there are only three
faulty nodes in BL (5, 12 and 16) which they are located in 2nd and 4th level respectively).

At receiving the Wake_up_msg message, the sleeping nodes turn their radio on and
send back a wakeup acknowledgement message (Wake_up_ack) to the BS to indicate
its new state (Active state). The BS sends now a request (Req_hop_reqr) to know the
number of hops required to reach the faulty nodes from the sleeping nodes of the same
level. The sleeping nodes update their routing table and respond to the BS using a simple
packet (Resp_hop_reqr). The structure of this packet is described in Fig. 3.

When all Resp_hop_reqr are received, the BS creates a Hop Required Table which
helps it to choose the appropriate recovery node RN. E.g., the Table 2(a) and (b)
summarize the number of hops required for the nodes 4, 6 and 7 to reach the faulty nodes
5 and 12.

srcid desid FN(1)_id hops_nd FN(2)_id hops_nd … FN(n)_id hops_nd

Fig. 3. Packet format.

Fig. 4. Message exchanging between BS and selected sleeping node (level 2).
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Fig. 5. Message exchanging required for selecting RN (level 2).

The BS chooses the one which requires fewer hops to reach the faulty nodes FN.
E.g., consider the Table 2, the node with ID 6 need 2 hops to reach node 5 and 12. So,
the BS selects it as RN. A Select_Sleep_msg message is sent to the not selected nodes
(e.g., 4 and 7) to go back in sleep mode. A response Resp_Sleep_msg message, it will
be sent by the selected nodes to the BS. Figure 5 shows the previous exchange messages.

Table 2. (a):Hop required table (FN = 5) (b)Hop required table (FN = 12).

(a) (b)
Sleeping node ID Hop required Sleeping node ID Hop required
4 1 4 3
6 1 6 2
7 3 7 1

Update Connectivity Table Step
The BS should update the connectivity table after each recovery phase. All sleeping
nodes that are selected for covering the erroneous nodes must be mentioned in the
connectivity table. E.g., consider the example in previous section, the node with ID 6
will be considered as an active node.
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4 Performance Evaluation

We have conducted several series of simulations using the TOSSIM simulator [27] in
order to evaluate the performance of our proposed algorithm. For comparison purposes,
our proposal FDRA and FDWSN protocol are evaluated under the following metrics:
(1) the packet delivery ratio (PDR); (2) the control overhead (CO); (3) the memory
overhead (MO); and (3) the fault recovery delay (FRD). The key simulation parameters
are summarized in Table 3.

4.1 Analysis of Packet Delivery Ratio (PDR)

Packet delivery ratio is calculated as the number of packets received by the receiver
divided by the number of packets sent by the sender. This metric characterizes the
percentage of successful source data packet delivery; ideally, this should be 100%.
Figure 6 shows the total number of data packets received by the BS over the number of
nodes (with node transmission power (TP) set to 2 mW). From this figure, we see that
the amount of data collected by the BS from each source is much more important with
our FDRA algorithm then the FDWSN protocol. This can be explained by the fact that
FDWSN uses transient phase for fault detection and it does not consider the other causes
of node’s failures. The Fig. 7 shows the improvement in packet delivery ratio when node
transmission power is equal to 4 mW. We explain this improvement by the fact that the
number of neighbors of recovery node increases when we increase the transmission
power. However, for FDWSN, we noticed that there is a less in packet delivery ratio
because FDWSN requires a set of iterations that consume battery power which increases
faulty nodes (battery depletion).

4.2 Analysis of Control Overhead (CO)

Since, the detection and recovery of faulty node is an additional task in WSN. It requires
extra control packets. This metric computes the additional control packets needed to
perform the recovery process. In Fig. 8, we noticed that for both FDRA and FDWSN
increase with the increase of the number of nodes.

Table 3. Simulation parameters.

Parameter Value
Area size 1000 × 1000 ms
Number of nodes 20, 40, 60, 80, 100, 200
Transmission power 2mW, 4mW
Transmission channel Wireless channel
Propagation model log Normal path loss model
Data packet size 32 bytes
Bandwidth 200 Kilobytes/second
Radio layer CC2420 radio layer
Queue size 50 packets
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Fig. 6. PDR vs. number of nodes, TP = 2mW.

Fig. 7. PDR vs. number of nodes, TP = 4mW

More nodes require more control packets to achieve the recovery process. However,
the FDWSN protocol uses more control packet comparing with our FDRA since the
later does not need any iteration for the detection process. The FDWSN’s detection
faulty nodes process is very complicated and it is based on collecting neighbors infor‐
mation to detect the faulty nodes. When we increase the node transmission power to 4
mW (see Fig. 9), FDWSN needs more packet of control. However, our algorithm
performs better with high transmission power because the recovery node can reach more
nodes of the same level.
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4.3 Analysis of Memory Overhead (MO)

This metric represents the average number of bytes needed to be stored in the memory
of all nodes that are implied in recovery process. We compute for FDRA and FDWSN,
the additional memory space needed to ensure the all process. We plot the result in
Fig. 10. During the simulation, we notice a change in the quantity of bytes required for
both algorithms. This instability in memory overhead is due to the mechanism deployed
on nodes. We observe that the memory overhead in FDRA is less than in FDWSN
because the later requires more memory to store transient fault matrix and other param‐
eters. In Fig. 11 (node transmission power = 4 mW), we observe better results comparing
with previous curves (transmission power = 2 mW) of two algorithms with FDRA less
memory overhead.

Fig. 8. CO vs. number of nodes, TP = 2mW.

Fig. 9. CO vs. number of nodes, TP = 4mW.

FDRA: Fault Detection and Recovery Algorithm for WSN 81



Fig. 10. MO vs. simulation time (TP = 2mW, number of nodes = 100).

Fig. 11. MO vs. simulation time (TP = 4mW, number of nodes = 100).

4.4 Analysis of Fault Recovery Delay (FRD)

The fault recovery delay is a very important metric in the conception of a fault tolerance
protocols. It is defined as the average time taken to recover from the effect of faulty
node. From the Fig. 12, it is clear that our FDRA outperforms FDWSN. This is due
mainly to the fact that FDWSN requires more time to create and compare transient fault
matrices for each faulty node. However, the FDRA can recover a multiple faulty nodes
if the position of recovery node selected is close from the faulty nodes (i.e., one sleeping
node can recover multiple faulty nodes). When we increase the number of nodes in
network to 200 (Fig. 13), we observe a small increase for FDRA compared with
FDWSN. The later requires more time to recover from faulty nodes because it needs to
compare transient fault matrices.
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Fig. 12. FRD vs. number of faulty node (number of nodes = 100).

Fig. 13. FRD vs. number of faulty node (number of nodes = 200).

5 Conclusion

This paper focused on recovery faulty nodes within WSN. The main goal was to use
sleeping nodes to recover faulty nodes after detection phase. In this paper we have
improved our previous work to ensure a recovery process. The proposal algorithm is
divided into two phases, a preliminary phase and a recovery phase. These phases are
ordered by the BS and they are launched just after the detection’s process of faulty nodes.
The extensive simulations have demonstrated that the proposed solution permit an effi‐
cient recovery. The obtained results have confirmed also that the proposed algorithm
outperforms compared to the results of the comparative algorithm FDWSN.
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As a future work, we plan to formally prove the correction of the proposed algorithm.
More specifically, prove that (1) it recovers all faulty nodes, and (2) it eliminates network
partition.
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