
Towards Model-Driven Business Apps
for Wearables

Christoph Rieger(B) and Herbert Kuchen

ERCIS, University of Münster, Münster, Germany
{christoph.rieger,kuchen}@uni-muenster.de

Abstract. With the rise of wearable devices expected to continue in
the near future, traditional approaches of manually developing apps from
scratch for each platform reach their limits. On the other hand, current
cross-platform approaches are usually limited to platforms for smart-
phones and tablets. The model-driven paradigm seems well suited for
developing apps for novel and heterogeneous devices. However, one of the
main challenges for establishing a model-driven framework for wearables
consists of bridging the variety of user interfaces and considering different
capabilities of device input and output. This paper seeks to investigate
the challenges of app development for wearable devices regarding user
interfaces and discusses a possible mapping of typical application build-
ing blocks in the domain of business apps. Ultimately, apps modelled on
a task-oriented level of abstraction using platform-independent notations
such as MAML or CTT can then be transformed into code that adopts
device class specific representations.

Keywords: Cross-platform · Model-driven software development
Multi-platform · Wearables · Mobile app · Business app

1 Introduction

Wearables have seen a drastic increase in popularity in the last years, with
most major vendors providing software platforms and hardware products such as
smartwatches and fitness devices for the mainstream consumer market. Accord-
ing to Gartner, the wearable device market is expected to grow significantly in
the forthcoming years to more than 500 million devices sold in 2021 [23]. Many
of these devices will be app-enabled and accessible to third-party developers.

For now, many available wearable applications – so-called apps – are of rather
exploratory nature, providing only a limited set of companion functionality com-
pared to a main app running on a smartphone. However, traditional approaches
to app development are limited with regard to the plethora of input and output
capabilities by current and announced wearable devices such as smartwatches
and smart glasses. In addition, not all cross-platform approaches can be used for
developing apps for wearables due to technical limitations. Many devices do not
provide web views or support JavaScript execution, excluding hybrid frameworks
such as the popular Apache Cordova.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Younas et al. (Eds.): MobiWIS 2018, LNCS 10995, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-97163-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97163-6_1&domain=pdf


4 C. Rieger and H. Kuchen

Therefore, new methods are needed in order to extend app development
to these different device classes. Model-driven software development (MDSD)
seems particularly suitable for targeting a large range of devices and ease the
development as opposed to the repetitive manual implementation. When extend-
ing existing model-driven mobile development approaches to wearables, adapting
business logic is probably not the most pressing issue and transpiling approaches
such as ICPMD [6] may be applied. One of the main challenges consists of bridg-
ing the heterogeneity of user interfaces (UI) regarding input capabilities and
information visualisation according to the platform’s user experience (UX).

In addition, wearable devices are not used in isolation but often considered as
connected devices – although they might technically run standalone apps such as
with Google’s Wear OS (formerly Android Wear 2.0). Most likely, wearable apps
in the near future will co-exist with other device counterparts or interact with
their environment such as with smart personal agents or cyber-physical sensor
networks. With regard to these scenarios, MDSD can play out its strengths
even more when apps are jointly modelled for multiple devices using a single,
abstract representation, and individually transforming the models to device-
specific interfaces.

This paper seeks to investigate the challenges of app development for wear-
able devices, in particular related to the diversity issue of device interfaces.
As a building block on the path towards extending model-driven development
approaches to wearable devices, it contributes a conceptual mapping of UI rep-
resentations across multiple device classes for typical operations in the domain
of business apps. The eventual aim is to spark discussion on the long-standing
issues of cross-platform UI modelling. The structure of this paper follows these
contributions: after discussing related work in Sect. 2, we highlight the current
challenges and our proposed mapping of user interfaces and suitable modelling
approaches in Sect. 3. Section 4 discusses the applicability of model-driven devel-
opment for wearable devices before we conclude in Sect. 5.

2 Related Work

In this work, we focus on the domain of business apps, i.e. form-based, data-
driven applications interacting with back-end systems [13]. Using this definition,
business apps not only refer to smartphone applications but also apply to a
broader scope of app-enabled devices. These can be described as being extensi-
ble with software that comes in small, interchangeable pieces that are usually
provided by third parties unrelated to the hardware vendor or platform man-
ufacturer and increase the versatility of the device after its introduction [19].
Although related to the term mobile computing, app-enablement also considers
stationary devices such as smart TVs, smart personal assistants, or smart home
devices.



Towards Model-Driven Business Apps for Wearables 5

Cross-platform overview papers such as [11] typically focus on a single cate-
gory of devices and apply a very narrow notion of mobile devices. [19] provides
the only classification that includes novel device classes. Furthermore, few papers
provide a technical perspective on apps spanning multiple device classes. Singh
and Buford [21] describe a cross-device team communication use case for desk-
top, smartphones, and wearables, and Esakia et al. [8] performed research on
Pebble smartwatch and smartphone interaction in computer science courses. In
the context of Web-of-Things devices, Koren and Klamma [12] propose a mid-
dleware approach to integrate data and heterogeneous UI, and Alulema et al. [1]
propose a DSL for bridging the presentation layer of heterogeneous devices in
combination with web services for incorporating business logic.

With regard to commercial cross-platform products, Xamarin1 and CocoonJS2

provide Android Wear support to some extent. Whereas several other frameworks
claim to support wearables, this usually only refers to accessing its data by the
main smartphone application or displaying notifications on coupled devices.

Together with the increase in devices, new software platforms have appeared,
some of which are either related to established operating systems for other device
classes or are newly designed to run on multiple heterogeneous devices. Exam-
ples include Wear OS, watchOS, and Tizen. Although these platforms ease the
development of apps (e.g., reusing code and libraries), subtle differences exist in
the available functionality and general cross-platform challenges remain.

3 Creating Business App UIs for Wearable Devices

To pave the way towards model-driven software development for wearable
devices, we provide a possible mapping of typical tasks in this domain to different
app-enabled devices and present a model-driven app development approach.

3.1 Challenges of Wearable UIs

From development and usage perspectives, two main categories of UI/UX chal-
lenges related to app development across different device classes can be identified.

Diversity of Input and Output Capabilities. Traditionally, mobile apps are
designed for rectangular screen sizes between 4” and 10” to cover smartphones
and tablets with similar visual characteristics. However, wearables vary greatly
in terms of screen size or provide completely different means of output such as
audio or projection. In addition, current interface design considerations such as
device orientation and pixel density are aggravated due to the introduction of
different aspect ratios (e.g. ribbon-like fitness devices worn around the wrist),
positions (e.g. objects at different angles and depths within the field of view for
smart glasses) or form factors (e.g. round smartwatches) [19].

1 https://www.xamarin.com.
2 https://docs.cocoon.io/article/canvas-engine/.

https://www.xamarin.com
https://docs.cocoon.io/article/canvas-engine/


6 C. Rieger and H. Kuchen

Correspondingly, novel app-enabled devices provide different possibilities for
user interaction which span from hardware buttons to handling graphical UI
elements on touch screens, using auxiliary devices (e.g., stylus pens), and voice
inputs [19]. Moreover, multiple input alternatives may be available on one device
and used depending on user preferences or usage context.

Multi-device Usage Patterns. Until now, cross-platform approaches were
mainly designed to provide equivalent functionality for similar devices with dif-
ferent operating systems. However, novel app-enabled devices usually do not
replace smartphone usage but represent complementary devices which are used
contextually (e.g. location- or time-based) or depending on user preferences. This
might occur sequentially when a user switches to a different device, e.g., using
an app with smart glasses while walking and switching to the in-vehicle app
when boarding a car. Alternatively, a concurrent usage of multiple devices for
the same task is possible, for instance in second screening scenarios in which one
device provides additional information or input/output capabilities for station-
ary devices in the room [14]. Also, automated device-to-device communication
(e.g. with sensor networks) might become more common in future mobile sce-
narios. Cross-platform development frameworks need to consider this additional
complexity through device management as well as fast and reliable synchronisa-
tion which automatically updates other devices based on the current application
state.

3.2 Conceptual UI Mapping

From the current use cases of business apps on smartphones and tablets, some
types of user tasks are prevalent. These are mainly related to Create/Read/
Update/Delete(CRUD) operations as well as mobile functionalities such as call-
ing a person, receiving notifications, or accessing sensor information (e.g., GPS
location). Based on the concepts of abstract interaction objects [24] and pre-
sentation units [5], a mapping is desirable to transform these typical operation
components to concrete widget representations of novel smart devices.

In the following, we describe such a conceptual mapping for business app
tasks. It is derived from an analysis of the publicly available design guidelines and
best practices by several vendors (see Table 1) which provide app-enabled devices
for ubiquitous usage (in contrast to specialised devices such as for cycling).
Besides identifying suitable patterns complying to these guidelines, we also keep
a generalisable appearance in mind (for inclusion in cross-platform frameworks).

Therefore, possible representations are juxtaposed for traditional mobile
devices (smartphones, tablets) and novel app-enabled devices (smartwatches,
smart glasses, and smart personal agents). However, to allow for concrete visu-
alisations, we chose representative devices of each class, in particular an iPhone
smartphone, an Android-based tablet and smartwatch, and head-mounted
Google glass.



Towards Model-Driven Business Apps for Wearables 7

Table 1. Analysed design guidelines per device class

Device class OS guidelines Representative device

Smartphones/Tablets Android
iOS

Samsung Galaxy S8
iPhone X

Smartwatches Android Wear/Wear OS
watchOS
Fitbit
Tizen

LG Watch Sport
Apple Watch
Fitbit Ionic
Samsung Gear

Smart glasses Glass OS
HoloLens

Google Glass
Microsoft HoloLens

Smart personal assistants Amazon Alexa
Actions on Google

Amazon Echo
Google Home

Fig. 1. Possible interface representations for Create and Update task types

Create and Update. Create and update interfaces usually share a similar
design and are therefore considered together in Fig. 1. On smartphones, create or
update steps are usually represented as a list of input fields with corresponding
captions and potentially provide contextual help such as placeholder texts or
pop-up hints. To better make use of the available space, tablet apps support
a multi-column layout, especially when the input fields can be grouped into
multiple categories. Due to screen space limitations, smartwatch input can be
either represented using a one-column scrolling layout or by a sequence of views
per input field. Smart glasses can display the respective fields one by one and
are updated using voice controls similar to voice-based smart personal assistants.
To allow for a more flexible order of user inputs, advanced techniques might use
the concept of frame-based dialogue managers known from chatbot applications



8 C. Rieger and H. Kuchen

[9]. Using so-called slots for each attribute to be set, the user can provide the
required information in any order and the system can focus on asking for missing
information to complete the given task.

Select and Read. The read operation needs to be distinguished from another
related task type: often the user first needs to select an item from a collection of
objects, before seeing the object’s detailed content as depicted in Fig. 2. There-
fore, smartphones often provide a scrollable list of items that can be filtered
using search keywords and navigated using jump marks. Smartwatches also pro-
vide scrollable lists, for example using curved layouts to exploit the round layout
of Android-based watches. After selecting an element, individual objects might
further be split into different views (e.g., using logical groups of fields) to avoid
scrolling behaviour. The same principles apply to smart glasses which also have
a limited virtual screen size. Voice-based interfaces may read the list of potential
answers or allow users to provide keywords in order to limit the set of results.
However, tablets can combine select and read tasks in a single view using the
so-called master-detail pattern: The left column of the view presents the list of
objects and upon selection updates the right side displaying its content.

Fig. 2. Possible interface representations for Select and Read task types



Towards Model-Driven Business Apps for Wearables 9

Delete and Modal Pop-Ups. When a delete operation is triggered, apps usu-
ally require a confirmation to avoid accidental information loss. This confirma-
tion is represented as a modal pop-up view that provides the options to confirm
or cancel the current action (in case of deletion) or acknowledge the information
prominently displayed on screen. The user must interact with this message in
order to continue with his workflow. Therefore, modal views look similar on most
screen-based devices and cover the majority of the screen. Voice-based interfaces
can instead read out the message and wait for the user to react to it.

Mobile-Specific Tasks. Many mobile-specific tasks have similar represen-
tations across screen-based devices. Firstly, notifications are present on most
devices as unobtrusive information about events when interacting with other
apps, either as textual hint at the top or bottom of the screen. In contrast to
pop-up messages, notifications disappear automatically or can be closed without
blocking the user from performing his actions or waiting for a decision between
different options. Voice-based devices can instead read out the message.

Secondly, phone calls can be performed not only on smartphones but also
on tablets, smartwatches, smart glasses, and smart personal assistants as long
as they are equipped with microphone, audio output capabilities, and cellular
network connection (potentially indirectly through a connected smartphone).
The communication target can usually be chosen by manually dialling a number
or selecting someone from a list of contacts (cf. select task type) via touch or
voice commands.

Finally, sensor data may be accessed by specific representations. For example,
the GPS location can be visualised by a map on screen-oriented devices. However,
this data is commonly contained in attributes of other data objects and therefore
already considered in the read and update task types.

3.3 Modelling Apps Across Device Classes

The model-driven paradigm can provide strong benefits to app development
both in terms of development effort regarding the plethora of novel devices as
well as the integration and interaction with other applications. Arguably, many
concepts from the more established domain of cross-platform development for
smartphones can be reused and adapted. To achieve this, the challenges men-
tioned in Subsect. 3.1 need to be tackled systematically.

Regarding the diversity of input and output characteristics, a high level of
abstraction beyond screen-oriented UIs is mandated, for example using declara-
tive notations for representing use tasks. Consequently, arbitrary platforms can
be supported by developing respective generators which implement a suitable
mapping from descriptive models to platform-specific implementations.

Ideally, a “one model fits all platforms” approach can therefore be achieved
by applying two types of transformations that do not modify the content but
adapt the task appearance to different supported devices:



10 C. Rieger and H. Kuchen

1. On the one hand, information can be layouted according to the available
screen sizes, for example by choosing an appropriate appearance – one could
think of tabular vs. graphical representations – or, if necessary, leave out
complementary details. In the inventory management example, the round
design of a smartwatch can be exploited by the curved list layout such that
content readability is improved and screen usage is maximised.

2. On the other hand, the content structure can be re-formatted by an adaptive
UI according to usual platform interaction patterns, e.g., let the user scroll
through large amounts of information, present it in multiple subsequent steps,
or as a hierarchical structure providing more details on request [4,5].

A high degree of abstraction can be achieved for user interactions by mod-
elling user inputs in terms of intended actions for completing a particular task.
An intermediate mapping layer can then transform actual inputs to the respec-
tive actions. For instance, a “back” action can be linked to a hardware button,
displayed in a navigation bar on screen, bound to the right-swipe gesture (as rec-
ommended by the Wear OS guidelines [10]), or recognized by a spoken keyword
in smart personal assistants. Another example is the usage of default actions to
navigate through the app. Whereas in iOS, one possible action can be displayed
in the top-right corner of the navigation bar, Wear OS uses so-called Action-
Drawers3 which propose one or more possible actions from the bottom edge of
the screen.

Business apps are usually designed to support specific goal-oriented workflows
which can be decomposed into individual tasks. This perspective of a user task
model aligns with the desired high level of abstraction [22]. Subsequently, two
task-oriented notations are presented that embody the task-oriented approach.
The ConcurTaskTree (CTT) notation consists of three main elements [16]:

– the abstract task descriptions which together form the use case’s functionality,
– temporal operators defining the allowed sequences of executed tasks, repre-

senting an abstract notion of navigation actions within a use case, and
– the user roles (per task) that are allowed to interact with the system

CTTs have been refined to suit user interface development through decom-
position over multiple levels [17]. An exemplary model suited for interface gener-
ation is presented in Fig. 3. The example shows an excerpt of a simple inventory
management task in which the user (either a warehouse clerk or product man-
ager) first selects an item from a list (with the possibility to filter the list content
by title) and gets presented the item details (with data on title, description,
pictures, price, product category, and quantity on stock; collapsed in Fig. 3).
Depending on the user’s role, different modes of editing the inventory are pos-
sible before concluding or aborting the process. Warehouse clerks can enter the
quantity and position of newly arrived item replenishments. Product managers
may instead update the item master data.

3 https://designguidelines.withgoogle.com/wearos/components/action-drawer.html.

https://designguidelines.withgoogle.com/wearos/components/action-drawer.html


Towards Model-Driven Business Apps for Wearables 11

Fig. 3. Sample CTT model for an inventory management use case

As can be seen, the detailed decomposition at operational level creates a tree
with user tasks on multiple levels of abstraction which diminishes the overview
about the high-level tasks and particular user interactions. In addition, still many
aspects such as navigation, item groups, informative labels, or object structures
are not explicitly contained in the notation and need to be provided in sepa-
rate models (e.g., using UML class diagrams for data models) to enable a fully
automated generation of user interfaces.

Previously, we have proposed the graphical Müunster App Modeling Language
(MAML) for specifying business apps based on five main design goals [18]:

– Automatic cross-platform app creation by transforming a graphical model to
fully functional source code for multiple platforms.

– Domain expert focus to allow non-technical stakeholders to create, alter, or
communicate about an app using the actual models.

– Data-driven process modelling specifies the application domain but also sets
a high level of abstraction by interpreting data manipulation as a process.

– Modularisation of activities in distinct use cases helps for maintenance, espe-
cially for domain experts.

– Declarative description of the complete app, including necessary specifications
of data model, business logic, user interactions, and UI views.

Compared to CTTs, the same exemplary scenario is depicted in Fig. 4 as
MAML model. In MAML, this task is modelled in a use case as depicted in
Fig. 4. The model contains a sequence of activities, from a start event (labelled
with (1) in Fig. 4) towards one or several end events (2). In the beginning, a
data source (3) specifies the data type of the manipulated objects and whether



12 C. Rieger and H. Kuchen

Fig. 4. Sample MAML model for an inventory management use case



Towards Model-Driven Business Apps for Wearables 13

they are only saved locally on the device or managed by the remote backend
system. Data can then be modified through a pre-defined set of (arrow-shaped)
interaction process elements (4), for instance to select/create/update/display/
delete entities, show pop-up messages, or access device functionalities such as the
camera and starting a phone call. This describes the desired user actions on a
high level and can be mapped to device-specific UI representations as described in
Subsect. 3.2. Automated process elements (5) represent invisible processing steps
without user interaction, for example including other models for process reuse,
or navigating through the object graph (transform). The navigation between
connected process steps happens along the process connectors (6) which can be
supplied with captions. To account for non-linear workflows, process flows can
be branched out using XOR elements (7).

In contrast to CTTs, MAML models additionally contain the data objects
which are displayed within a respective process step. Attributes (8) consist of a
cardinality indicator, a name, and the respective data type. Besides pre-defined
data types, custom types can be defined and further described through nested
attributes. Labels (9) provide explanatory text, and computed attributes (10)
are used to calculate derived values at runtime based on other attributes. In
MAML, only those attributes are modelled which will be used in a particular
process step, for instance for including it in the graphical user interface.

Two types of connectors exist for attaching data to process steps: Dotted
arrows represent a reading relationship (11) whereas solid arrows signify a modi-
fying relationship (12) with regard to the target element. Every connector which
is connected to an interaction process element also specifies an order of appear-
ance and a field description. For convenience, multiple connectors may point to
the same UI element from different sources (given their data types match). Alter-
natively, to avoid confusing connections across larger models, UI elements may
instead be duplicated to different positions in the model and will automatically
be matched at runtime.

Finally, MAML supports a multi-role concept to define (13) and annotate
(14) arbitrary role names to the respective interaction process elements because
many business processes such as approval workflows involve different people or
departments.

It can be observed that the domain-specific MAML notation allows for a
more concise and clearly arranged representation of the app content, for exam-
ple by offering different task types which encapsulate the respective semantics
as opposed to the more general CTT models. At the same time, MAML models
contain precise technical details on the resulting app, such that fully functional
apps can be generated from the notation. Using the presented mapping app-
roach, apps can be flexibly generated from the same MAML models both for
smartphones (Android and iOS) as well as Wear OS smartwatches.

4 Discussion

To put the presented approach in a broader context, we discuss two scenarios
that underline the aforementioned issues and potential solution.



14 C. Rieger and H. Kuchen

The first scenario in the logistics domain with an inventory management app
was already depicted in Figs. 3 and 4. It represents a typical business process
that can be performed by a single user when interacting with a centralised back-
end system. However, it proves the potential for MDSD in generating apps for
very different devices simultaneously from a common model: Firstly, a ware-
house clerk might want to use smart glasses in order to have hands-free inter-
action with the inventory system when replenishing items. A product manager
might instead use a smartphone to update erroneous information while inspect-
ing shelves. Achieving business app development using model-driven techniques
therefore seems particularly beneficial with regard to the flexibility it provides
towards the future end user. This freedom to choose an appropriate device given
the current usage context or personal preferences can not only propel technol-
ogy acceptance but also allows for more experimentation with different modes
of work.

As a second scenario, consider a health app which is integrated with a patient
information system. Before making an appointment, patients can be asked to give
more details about the health issue they are experiencing, for example through
standardised questionnaires. This information is passed to the doctor to sup-
port his diagnosis. In order to follow-up on the medical treatment, sensors can
regularly monitor vital parameters over a specified time interval and report the
results back to the medical office such that doctor’s assistants can take action
when observing abnormal values.

This complex workflow involves multiple actors who need to share infor-
mation over a longer period of time. In addition, different devices are com-
bined according to their capabilities (e.g., wearable devices for sensing heart
rate). However, tasks related to data manipulation might be limited on some
devices, e.g., entering lots of data on a smartwatch is tedious. Using automated
transformations of user interfaces can alleviate the problem only to a certain
degree. Most probably, a co-existence of apps for multiple devices in parallel
will be more useful than forcing all tasks to be performed on the same device.
Again, the model-driven paradigm can provide significant benefits when offering
a broad range of devices without linear increase of development efforts. However,
to achieve the sketched multi-device usage, the potentially concurrent interac-
tion between multiple devices requires a reliable and fast synchronisation of data
among the respective devices. Different techniques such as Operational Transfor-
mation (OT) and Conflict-Free Replicated Data Types (CRDT) have been pro-
posed for mobile data synchronisation but further research is necessary to apply
them to the context of business apps [7,20]. In both scenarios, the diversity of
user interfaces is best tackled by transforming a high-level and platform-agnostic
model that relies on abstract presentation units which are later mapped to con-
crete interaction objects, i.e. suitable widget representations for platform-specific
look-and-feel [5,24].

When putting the presented mapping into practice, the CTT representa-
tion as a general purpose notation for user tasks is not sufficient. Additional
notations are required to specify the data model and possible interaction and



Towards Model-Driven Business Apps for Wearables 15

navigation flows within an app. Other cross-platform approaches targeted to
smartphones such as BiznessApps [2] and Bubble [3] provide graphical configu-
rators for simplified app modelling, however, their screen-oriented approach falls
short of covering wearable UIs. Similarly, user interaction standards such as the
Interaction Flow Modeling Language (IFML) are implicitly tied to screen-based
output [15]. In contrast, domain-specific languages such as MAML can provide
components on a high level of abstraction while at the same time integrating
UI and interaction aspects. Apart from being useful for holistically modelling
apps, the MAML framework also includes code generators that output fully
functioning smartphone apps. To demonstrate the feasibility of deriving a suit-
able representation from the same input models, the framework was extended
by implementing a generator for Android Wear 2.0 smartwatches (Figs. 1 and 2
contain actual app screenshots).

The proposed high-level modelling approach for wearable app specifications
also caters for the limitations of this paper regarding the future evolution of the
field. Whereas differences in smartphone UIs have assimilated over time to a large
degree (at least with regard the main input and output components), the chosen
representations in Subsect. 3.2 can only represent a small subset of the various
UIs and interaction patterns which already exist or maybe emerge in the future
for wearable devices. The novelty of this highly dynamic field of wearables will
certainly entail several changes to typical platform characteristics regarding both
hardware and software. Vendors continuously explore interfaces and interaction
possibilities, heavily modifying their best practice guidelines when presenting
new versions of their platform. At the same time, this paper only scratches
the surface of cross-platform development complexities across multiple device
classes. In-depth research needs to address each device class individually which
still exhibits a high variability of devices capabilities – future consolidation across
vendors is possible but not foreseeable anytime soon.

5 Conclusion and Outlook

In this paper, we have investigated the challenges and potential solutions for
applying model-driven techniques to the development of business apps for novel
app-enabled devices. In particular, user interface related challenges currently
limit the extension of established cross-platform techniques to these new classes
of heterogeneous devices. We exemplify how the typical building blocks of busi-
ness apps might be generically mapped to smartphones, tablets, smartwatches,
and smart glasses.

In order to incorporate these in a model-driven approach, task-oriented mod-
elling – without actually specifying the concrete user interface – allows for a suit-
ably high level of abstraction. We deem this approach promising to bridge the
heterogeneity of devices and enable fast development of apps that are flexibly
targeted to a broader range of devices through adaptive layouts as well as device
class specific reformatting of contents. Although both the MAML notation and
CTT utilise a task-oriented approach, we argue that domain-specific languages



16 C. Rieger and H. Kuchen

such as MAML might be more suitable to modelling user interfaces than general
purpose modelling notations due to the alignment with the target domain, thus
condensing domain concepts more clearly to a high level of abstraction.

However, the current situation leaves room for further research in different
directions such as observing emerging commonalities in user interfaces of the
individual device classes that are subsumed by the umbrella term “wearables”,
and technical hurdles to synchronise content and application state in the dynamic
interplay of mobile devices. Furthermore, the implementation of the presented
concepts in an actual model-driven framework constitutes ongoing work of the
authors by extending the MAML cross-platform framework with support for
further novel device classes using the presented mapping approach.

References

1. Alulema, D., Iribarne, L., Criado, J.: A DSL for the development of heterogeneous
applications. In: FiCloudW, pp. 251–257 (2017)

2. Bizness Apps: Mobile app maker – bizness apps (2018). http://biznessapps.com/
3. Bubble Group: Bubble - visual programming (2018). https://bubble.is/
4. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to

the development of Uls for mobile computers. In: IUI (2001)
5. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to

the development of UIs for mobile computers. In: Proceedings of the 6th Interna-
tional Conference on Intelligent User Interfaces, pp. 69–76. ACM (2001)

6. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.: ICPMD: integrated
cross-platform mobile development solution. In: ICCES (2014)

7. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: SIGMOD,
pp. 399–407. ACM (1989)

8. Esakia, A., Niu, S., McCrickard, D.S.: Augmenting undergraduate computer sci-
ence education with programmable smartwatches. In: Decker, A., Eiselt, K.,
Alphonce, C., Tims, J. (eds.) SIGCSE, pp. 66–71. ACM (2015)

9. Goddeau, D., Meng, H., Polifroni, J., Seneff, S., Busayapongchai, S.: A form-based
dialogue manager for spoken language applications. In: ICSLP, pp. 701–704 (1996)

10. Google LLC: Google developers. https://developers.google.com/
11. Jesdabodi, C., Maalej, W.: Understanding usage states on mobile devices. In: Inter-

national Joint Conference on Pervasive and Ubiquitous Computing, pp. 1221–1225.
ACM (2015)

12. Koren, I., Klamma, R.: The direwolf inside you: end user development for hetero-
geneous web of things appliances. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C.
(eds.) ICWE 2016. LNCS, vol. 9671, pp. 484–491. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38791-8 35

13. Majchrzak, T.A., Ernsting, J., Kuchen, H.: Achieving business practicability of
model-driven cross-platform apps. OJIS 2(2), 3–14 (2015)

14. Neate, T., Jones, M., Evans, M.: Cross-device media: a review of second screening
and multi-device television. Pers. Ubiquit. Comput. 21(2), 391–405 (2017)

15. Object Management Group: Interaction flow modeling language (2015). http://
www.omg.org/spec/IFML/1.0

16. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications.
Springer, London (2000). https://doi.org/10.1007/978-1-4471-0445-2

http://biznessapps.com/
https://bubble.is/
https://developers.google.com/
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-319-38791-8_35
http://www.omg.org/spec/IFML/1.0
http://www.omg.org/spec/IFML/1.0
https://doi.org/10.1007/978-1-4471-0445-2


Towards Model-Driven Business Apps for Wearables 17

17. Pribeanu, C.: An approach to task modeling for user interface design. In: Proceed-
ings of the 3rd World Enformatika Conference, vol. 5, pp. 5–8 (2005)

18. Rieger, C., Kuchen, H.: A process-oriented modeling approach for graphical devel-
opment of mobile business apps. Comput. Lang. Syst. Struct. 53, 43–58 (2018)

19. Rieger, C., Majchrzak, T.A.: Conquering the mobile device jungle: towards a tax-
onomy for app-enabled devices. In: WEBIST, pp. 332–339 (2017)

20. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29

21. Singh, K., Buford, J.: Developing WebRTC-based team apps with a cross-platform
mobile framework. In: Consumer Communications and Networking Conference
(2016)

22. Sinnig, D., Chalin, P., Khendek, F.: Common semantics for use cases and task
models. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 579–598.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5 30

23. van der Meulen, R., Forni, A.: Gartner says worldwide wearable device sales to
grow 17 percent in 2017 (2017). https://www.gartner.com/newsroom/id/3790965

24. Vanderdonckt, J.M., Bodart, F.: Encapsulating knowledge for intelligent automatic
interaction objects selection. In: Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems, pp. 424–429. ACM (1993)

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-540-73210-5_30
https://www.gartner.com/newsroom/id/3790965

	Towards Model-Driven Business Apps for Wearables
	1 Introduction
	2 Related Work
	3 Creating Business App UIs for Wearable Devices
	3.1 Challenges of Wearable UIs
	3.2 Conceptual UI Mapping
	3.3 Modelling Apps Across Device Classes

	4 Discussion
	5 Conclusion and Outlook
	References




