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You’re enjoying a lovely day at the park with your 3-year-old nephew. A paddling of ducks 
waddles by and you start a conversation, “Hey Charlie, look at the ducks! How many are 
there?”

A pretty straightforward question. Your nephew jumps at the opportunity to demonstrate his 
skills. Faithfully pointing to each duck, one-by-one, he responds, “one…, two…, three…, 
four…, five!”

Ah, he’s brilliant. You knew as much. Let’s keep this conversation going. “That’s right!” 
you say. “So, how many ducks are there?”

He immediately responds, “Eight!”

Right! Wait…what?

This narrative, having played out in countless situations, is likely familiar to any 
caretaker or educator. Indeed, the phenomenon is well documented: while most 
children appear to have learned to count by the time they are 2 or 2 ½ years old 
(Fuson, 1988), most often, they are simply demonstrating their ability to reproduce 
a counting routine. Consequently, their behavior is often difficult to interpret – it is 
not, as we would be inclined to presume, a reliable indicator of their number knowl-
edge. This is similar (and not unrelated) to that other pre-scholastic phenomenon of 
reciting the alphabet without yet having developed an understanding of orthography 
or phonics.

In fact, even after a successful counting routine is achieved, children continue to 
face several underlying challenges on their way to acquiring early number concepts 
and basic counting skills. One of the core challenges follows from the fact that there 
is an important dissociation between conceptual and procedural knowledge of 
counting. In early phases of number acquisition, conceptual knowledge lags far 
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behind that of procedural knowledge. Our nephew in the anecdote above has clearly 
learned some basic counting procedures (and recognizes that the question “how 
many” prompts these procedures) well before he will ultimately understand how 
this activity reveals the correct answer to this question. In fact, only over the next 
couple years will his incremental advances in both procedural and conceptual 
knowledge culminate in the ability to form and maintain precise representations of 
natural number (e.g., Carey, 2010).

�Number Sense

While ubiquitous in discussions of early education and mathematics, the term num-
ber sense is often used to refer to a variety of abilities and behaviors. Early child-
hood curricula and assessments often use the term to broadly describe children’s 
“fluidity and flexibility with numbers, the sense of what numbers mean and an abil-
ity to perform mental mathematics… and make comparison” (e.g., Gersten & 
Chard, 1999). The following review, however, will adopt the term’s primary defini-
tion, referring specifically to the evolutionarily primitive ability to represent non-
symbolic quantity (Dantzig, 1967; Dehaene, 2011). This definition includes the 
ability to subitize (i.e., the ability to recognize the exact number of items in a small 
set without counting1; Kaufman, Lord, Reese, & Volkmann, 1949), which manifests 
from our ability to represent and track individual items (e.g., Feigenson & Carey, 
2003). This definition of number sense also includes the ability to represent rough 
estimates of magnitude and number (e.g., Xu, 2003).

�Small Number Representations

It’s time for a snack. You offer your nephew two cookies but he immediately recognizes that 
you have given yourself three. He raises the alarm. “How did he know?” you think to yourself, 
“didn’t we just establish that he doesn’t know how to count yet?”

We can chalk this one up to the ability to represent and visually discriminate 
arrays of one, two, or three items, an ability available to even very young infants 
(Xu, 2003). Consider the following experiment: 10- to 12-month-old infants were 
presented with two adjacent buckets, one containing just 1 cracker and the other 
containing 2 crackers. When given the opportunity, the infants in this study consis-
tently chose (crawled to) the bucket with 2 crackers over the bucket with 1 (wouldn’t 
you?) (Feigenson, Dehaene, & Spelke, 2004). Similarly, the infants chose the bucket 
with 3 crackers when the other had just 2 or 1. However, with choices of 4 vs 6, 3 vs 4, 
2 vs 4, and even 1 vs 4 crackers, infants chose at random. Taken together, these 

1 The term “subitize” also enjoys many definitions across early childhood curricula and assessment. 
The present chapter, however, will adopt and adhere to the definition provided above.
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results show that infants’ preference for the greater number does not depend on the 
relative quantity, or the ratio of the two sets (infants consistently chose the bucket 
with 3 crackers to a bucket with 2 but seemed perfectly happy to go to either bucket 
when presented with a choice between 4 vs 6 crackers). Instead, their ability to 
make a meaningful choice is contingent upon absolute quantity (in this case the 
number of crackers), and their ability to represent these exact quantities is capped at 
three items. This limited (though impressive) ability has been demonstrated across 
a variety of experimental paradigms, each yielding similar results (e.g., Clearfield & 
Mix, 1999; Feigenson & Carey, 2003; Starkey & Cooper, 1980).

While greater number is generally correlated with greater continuous quantity 
(such as summed spatial extent or volume) in the natural world, these studies exten-
sively control for continuous properties showing that these discriminations are 
based on number alone. Moreover, these representations are not limited to the 
visuospatial modality. Infants also assess exact quantities (up to 3) when presented 
with a series of temporal events and auditory sequences (e.g., puppet jumps and 
sounds; Wynn, 1996).

This representational system then allows us to easily identify small, exact quanti-
ties immediately, accurately, and without counting (cf., Cordes, Gelman, Gallistel, 
& Whalen, 2001). The signature limits of this system, however, remain relatively 
constant over the course of development (though older children and adults are often 
able to represent up to 5 or possibly 7 items in a set; Mandler & Shebo, 1982; Trick 
& Pylyshyn, 1993) such that subitizing does not present a viable pathway to the 
representation of large, exact numbers like 27 or 308.

�Approximate Number Representations

So we’ve righted our mistake. Both of us now have three cookies. Phew. Wait… your astute 
(and somewhat righteous) nephew notices that yours has more chocolate chips! It seems 
there are a gazillion chocolate chips in each cookie, so we are well beyond subitizing. 
And, he’s not counting… Enter the Approximate Number System.

The ability to represent large approximate quantities and detect differences 
between two large sets is supported by the approximate number system (ANS), a 
cognitive resource that is also available in early infancy (e.g., Lipton & Spelke, 
2003). Early access to this system is often demonstrated through the use of a habitu-
ation paradigm. For example, infants (as young as 6 months) are presented with a 
series of pictures, each with an array of 8 dots. Then, when presented with a picture 
with 16 dots, infants look longer at the novel array, showing that they discern the 
difference between sets of 8 and 16. While infants also respond to changes in overall 
spatial extent (e.g., summed area and/or contour length; Clearfield & Mix, 1999), 
several studies that have controlled for alternative dimensions of quantity have 
shown that infants are able to make judgements on numerosity alone.

Judgments supported by the ANS, however, are imprecise, and the threshold for 
a just noticeable difference follows Weber’s law, such that numerical discrimination 
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is a function of the ratio between the two magnitudes under comparison, and not 
their absolute difference (e.g., Halberda & Feigenson, 2008). Importantly, and 
unlike the small number representation system discussed above, ANS precision 
improves over the course of development (Halberda & Feigenson, 2008; Odic, 
Libertus, Feigenson, & Halberda, 2013). On average, 6-month-olds can reliably 
discriminate 1:2 ratios (such as was presented in the example above; Lipton & 
Spelke, 2003), 9-month-olds can discriminate 2:3 ratios (Xu & Spelke, 2000), 
3-year-olds discriminate 3:4 ratios, 4-year-olds discriminate 4:5 ratios, and 5-year-olds 
discriminate 5:6 ratios (Odic et al., 2013); and adults can discriminate 10:11 ratios 
(Halberda & Feigenson, 2008).

Notably, individual differences in ANS acuity within these age groups are associ-
ated with math achievement. In fact, several studies have shown that individuals 
with more precise ANS acuity perform better on tests of formal mathematics 
(Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, 2012; Lyons 
& Beilock, 2011). In one study, performance on the Test of Early Math Ability 
(TEMA-3; Ginsburg & Baroody, 2003) could be predicted from ANS acuity mea-
sured at 6 months (Libertus et al., 2011). In another, numerical acuity measured in 
14-year-olds correlated with their performance on standardized math tests as far 
back as kindergarten (Halberda, Mazzocco, & Feigenson, 2008). Furthermore, there 
is evidence to suggest that ANS acuity is malleable and may be influenced by envi-
ronmental factors (Tosto et al., 2014) and formal instruction (Halberda, Ly, Wilmer, 
Naiman, & Germine, 2012; Piazza, Pica, Izard, Spelke, & Dehaene, 2013).

�Summary

Together, these two systems are considered core cognitive resources that serve as a 
foundation for the construction of natural-number concepts (Carey, 2010). Each is 
clearly necessary for the development of counting and basic number skills; how-
ever, neither is sufficient. The following sections will review how children’s devel-
oping understanding of the verbal count list (e.g., individual number words such as 
one, two, and three) ultimately allows for the construction of natural-number con-
cepts (i.e., the ability to represent exactly 27 or 308).

�Number Language

As discussed above, the ability to represent small, exact numbers and large, approx-
imate numerosity is available in early infancy, but mapping these representations to 
symbolic representations of number (e.g., number words) is no small feat. Whereas 
children as young as 2 years old have little difficulty mapping approximate quanti-
fiers (such as more and a lot) to representations of quantity (Dale & Fenson, 1996), 
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children can spend upward of 2 years sequentially assigning meaning to individual 
number words and figuring out how the verbal count list works.

While a long and protracted process, the acquisition of number language is a 
crucial milestone in children’s quantitative development (Fuson, 1988; Gelman & 
Gallistel, 1978; Wynn, 1990, 1992). As the following section will discuss, the lan-
guage system itself is largely responsible for the ability to represent large exact 
number. In fact, children who experience significant language barriers, such as 
those born deaf to hearing parents, show delays not only in their acquisition of indi-
vidual number words but also in later math achievement (Kritzer, 2009). Moreover, 
individuals who grow into adulthood without learning to count proficiently demon-
strate poorer performance on tasks assessing representations of exact number and 
cardinality (Frank, Everett, Fedorenko, & Gibson, 2008; Spaepen, Coppola, Spelke, 
Carey, & Goldin-Meadow, 2011).

�Knower Levels

“The kid’s really put one over on me,” you think. When it comes to cookies, he clearly 
knows what he’s talking about (three cookies is more than two, and don’t even think about 
saving the cookie with more chocolate chips for yourself!). But you’re not entirely satisfied 
so you decide to put it to the test…

You give him the whole bag of cookies, but ask him if you can have just one. He happily 
obliges. One cookie, no problem. “Can you give me two cookies?” you ask. Sure, he hands 
you two. One last time for good measure – this time you ask for three cookies. “Sure!” he 
says as he hands over as many as he can grab. Not three, not two, but an entire handful!

While seemingly inconsistent and unpredictable, it turns out that our nephew’s 
response is not unusual for a 3-year-old. In fact, it often takes 2 or more years to 
learn even a subset of number words, during which time children work out the car-
dinal meanings of each number word one at a time and in order (Le Corre, Van de 
Walle, Brannon, & Carey, 2006; Sarnecka & Lee, 2009; Wynn, 1990, 1992). 
Interestingly, as they go through this process, children appear to traverse a predict-
able series of knowledge states, or “knower” levels (see Sarnecka, Goldman, & 
Slusser, 2014 for review).

This incremental progression shows up on assessments such as the Give-N (or 
Give-a-Number) task in which children are asked to create sets in response to spe-
cific prompts (e.g., “Can you give three bananas to the puppet?”) (Wynn, 1992; see 
Fig. 31.1). In such tasks 2- to 4-year-olds, who can generally recite the count list up 
to 10 or so without error, are often unable to give the correct number of items when 
asked for those same numbers in the Give-N task. In response to a Give-N trial 
asking for six bananas, for example, these children may simply grab a handful of 
items without counting, even when prompted to count or check their response (e.g., 
“Can you count and make sure you gave the puppet six bananas?” or “Can you fix it 
so that the puppet gets six bananas?”) (e.g., Le Corre et al., 2006).
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Fig. 31.1  The Give-a-Number task can be used to assess children’s number-knower levels (e.g., 
Wynn, 1992). For this task, children are typically asked to create set sizes of 1 to 6 items. Children 
are given the opportunity to check and fix their responses after each trial

At the earliest knower level (often referred to as the “preknower” level; e.g., 
Slusser, Ditta, & Sarnecka, 2013), children’s responses to any given prompt are 
generally unrelated to the number of items requested. These children may give just 
one item, or even a handful of items, regardless of the specific prompt. At the next 
level, children reliably give 1 item when asked for one but give 2 or more items 
when asked for any other number. Note that their responses seem to be simple 
guesses, not counting or estimation errors (Sarnecka & Lee, 2009), and these chil-
dren appear to understand that number words that they do know are not used to refer 
to sets of any other size (i.e., they will not offer 1 item when asked for any number 
other than one; Wynn, 1990, 1992). The one-knower level is followed by the “two-
knower” level, then the “three-knower” level, and sometimes the “four-knower” 
level. At each N-knower level, children demonstrate predictable and accurate 
performance up to but not beyond N. Eventually, around the time they reach the 
three- or four-knower level (often 2 years after they first entered the one-knower 
level), children realize that the final number word in their count sequence refers to 
the cardinal value of the set they are enumerating. At this point they may be said to 
have induced the “cardinality principle” (Gelman & Gallistel, 1978) and can hence-
forth employ counting procedures felicitously to create any set size within their 
count list (Sarnecka & Carey, 2008; Wynn, 1990; cf. Davidson, Eng, & Barner, 
2012). It has been argued that, as children progress through these individual knower 
levels, they are incrementally assigning each of the first three or four number words 
to their representations of small, exact sets (Carey, 2010). Numbers exceeding the set 
size limit of 3 or 4 items must then be represented through counting. For this reason, 
we don’t typically see children who would be characterized as “five-,” “six-,” or 
“seven-knowers” (cf. Wagner & Johnson, 2011).

The one- through four-knower levels are found not only for speakers of English 
but also for speakers of Japanese (Sarnecka, Kamenskaya, Yamana, Ogura, & 
Yudovina, 2007), Mandarin Chinese (Li, Le Corre, Shui, Jia, & Carey, 2003), 
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and Russian (Sarnecka et  al., 2007). Furthermore, bilingual children who have 
memorized the counting lists in both of their languages before learning the exact 
meanings of these words in either language show the same or similar knower-levels 
in both languages (Goldman, Negen, & Sarnecka, 2014).

There is, however, a notable variability across children with different learning 
backgrounds and experiences. For example, while children from relatively high 
socioeconomic backgrounds typically reach an understanding of cardinality some-
time between 3 and 4 years old (see Sarnecka & Lee, 2009), children from less 
privileged backgrounds often do not reach this level of understanding until well 
after their fourth birthday (e.g., Dowker, 2008; Jordan & Levine, 2009).

While the cardinality induction is often recognized as a major conceptual 
achievement, we will put this aside for now (but revisit it in the “Counting Principles” 
section below). The following sections will instead explore what subset-knowers 
(a term used to describe children at the one-, two-, three-, and four-knower levels; 
Le Corre et al., 2006) know and have yet to learn about number.

�Discrete Quantification

One piece of knowledge that is integral to understanding natural-number concepts 
is the idea that number is a property of sets and that sets are comprised of discrete 
individuals. Indeed, a conceptual dissociation between continuous substances (such 
as water and sand) and discrete objects (such as blocks and coins) is available in 
infancy (Hespos, Ferry, & Rips, 2009), and as children acquire language, they 
reflect this distinction through their appropriate use of linguistic morphology (i.e., 
the English singular/plural marking) to denote the difference between mass and 
count nouns (e.g., Barner, Thalwitz, Wood, & Carey, 2007).

To determine whether children with an incomplete understanding of number 
words (i.e., subset-knowers) understand that number words, in general, are used to 
refer only to sets of discrete individuals, we invited a group of subset-knowers 
(2–4 years old) to complete the Blocks and Water task (Slusser, Ditta, & Sarnecka, 
2013; see Fig. 31.2). For this task, children watched as an experimenter placed five 
objects (e.g., blocks) in one cup and five scoops of a continuous substance (e.g., 
water) in another cup. Four trials asked children about a number word outside the 
range of numbers known by any subset-knower (e.g., “Which cup has five?”), and 
another four trials asked about a quantifier (e.g., “Which cup has more?”).2 For half 
of the trials, the cup with discrete objects was full; for the other half, the cup with 
the continuous substance was full. Results showed that, while children correctly 
chose the full cup when asked which cup has “more,” they had to have reached the 
three-knower level before reliably choosing the cup with discrete objects as an 
example of “five.” A series of follow-up experiments seem to indicate that one- and 
two-knowers have an emergent but tenuous understanding of this constraint but are, 

2 Note that approximate quantifiers such as “more” and “a lot” can take a wide range of referents, 
with few constraints, while number words refer only to collections of discrete individuals.
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Fig. 31.2  The Blocks and Water task was used to determine whether and when children under-
stand that number words reference discrete sets (Slusser, Ditta, & Sarnecka, 2013) and whether 
linguistic context (in the form of a count noun + plural marking in English or the general noun 
classifier, 個 [ge], in Mandarin) facilitates this understanding (Slusser, 2010) (Figure adapted from 
Slusser, Ditta, & Sarnecka, 2013). (* Prompt differed according to the experiment and trial type. 
Note: The cup with continuous substance is full for half of the trials. Red circles indicate the cor-
rect response)

in general, as likely to extend the word “five” to continuous substances as to sets of 
discrete objects.

Thus, it seems that children come to understand that number words are used for 
discrete quantification only after learning the precise meanings of at least a subset 
of number words. It is possible then that children use their understanding of the 
number words “one” and “two” to draw inferential connection between number 
words and discrete objects. Alternatively, children may use the linguistic context 
that generally occurs in natural speech to form this connection (Bloom & Wynn, 
1997). This argument arises from the observation that number words reference 
nouns morphologically coded according to their conceptual category (i.e., count vs 
mass) – that is to say, count nouns take the plural marking, “-s,” whereas mass nouns 
do not. After first confirming that number words are in fact most often accompanied 
by an adjacent count noun and plural marking (e.g., “Look, five ducks!”) in both 
child and child-directed speech (Slusser, 2010), we tested whether children use this 
information to establish that number words reference count nouns, and consequently 
collections of discrete objects.

The 2- to 4-year-old children in this study completed the Blocks and Water task 
above, but in this iteration each test question was presented within a syntactically 
“rich” linguistic context (Slusser, 2010; see Fig.  31.2). For example, children 
were asked, “Which cup has five things?” rather than “Which cup has five?” 
Results show that English-speaking children connect number words to discrete 
quantification before learning the specific meaning of any number words so long 
as the number word is paired with an adjacent count noun and plural marking. 
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Similarly, Mandarin-speaking children demonstrate similar learning trajectories 
when presented with a number word in isolation and when accompanied by the 
noun classifier 個 (pronounced “ge”).

Overall, this series of experiments shows that children use their emerging under-
standing of number words as well as linguistic cues that occur in natural speech to 
connect number words to discrete quantification. Moreover, these data constrain 
future hypotheses on how children learn number words: the fact that this process 
may involve generalization from certain exemplars and surrounding language pro-
vides evidence that number word knowledge is not entirely built upon a priori 
principles.

�Numerosity

Connecting number words to discrete quantification is only one step in acquiring an 
understanding of natural numbers. Children must also understand that number 
words denote numerosity (and not, for example, some other characteristic of set, 
such as total volume or spatial extent). Setting out to address this question, Sarnecka 
and Gelman (2004) invited 2- to 5-year-old subset- and CP-knowers to complete the 
Transform-Sets task. For this task, the experimenter placed a certain number of 
objects in a box while saying (e.g.), “I’m putting six buttons in this box.” The exper-
imenter then performed some action with the box (either shaking it, turning it 
around, adding one object, or removing one object). The children were then asked 
(e.g.), “Now how many buttons are in the box? Five or six?” Results show that 
subset-knowers (and CP-knowers) do indeed understand that the number word 
should change when an item has been added or removed from the box (and that the 
number word does not change when a non-numerical transformation takes place, 
such as when the experimenter simply shakes the box). It seems that, while they 
still do not understand the precise meanings of the number words five and six (as 
illustrated through their performance on the Give-N task), subset-knowers do 
understand something about these number words – that they denote some aspect of 
quantity.

Note the use of the term quantity, not numerosity. Upon careful inspection, we 
see that the Transform-Sets task does not disambiguate number or numerosity from 
the broader dimension of quantity. Remember, children’s intuitive number sense 
supports representations of both numerosity and continuous spatial extent (see sec-
tion on “Approximate Number Representations” above). In the Transform-Sets task 
described above, the number of items in the box changed, but so did other dimensions 
of quantity (i.e., area, volume, weight). While subset-knowers clearly associate 
number words with quantity, it is not entirely clear whether they understand that 
number words refer specifically to numerosity.

To address this specific confound, we developed a Match-to-Sample task with 
careful controls and manipulations of continuous spatial extent (either summed area 
or contour length, depending on the trial) so as to pit dimensions of quantity directly 
against numerosity (Slusser & Sarnecka, 2011; see Fig. 31.3). For this task, children 
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Fig. 31.3  A Match-to-Sample task was used to determine whether children understand that num-
ber words denote numerosity, rather than some other dimensions of quantity (e.g., summed spatial 
extent) (Slusser & Sarnecka, 2011) (Figure adapted from Slusser & Sarnecka, 2011). (Note: On 
this particular trial, there is no possible match on the characteristics of the individuals comprising 
the set (e.g., the color or mood of the turtles))

were presented with a sample picture as the experimenter said (e.g.), “This picture 
has four turtles.” The experimenter then presented two additional pictures and said 
(e.g.), “Find another picture with four turtles.” One picture had the same number of 
items as the sample but different overall spatial extent (e.g., 4 small turtles). The 
other had a different number of items, but the same overall spatial extent (e.g., 8 
small turtles). Results showed that while CP-knowers understand that two sets of 
the same numerosity should be labeled with the same number word, subset-knowers 
are as likely to extend that number word (e.g., four) to other dimensions of continu-
ous quantity (by, in this case, selecting a picture of 8 small turtles).

�Summary

Taken together, these findings reveal that subset-knowers’ understanding of num-
bers matures as they acquire the meanings of individual number words. In addition 
to enriching our understanding of how children’s understanding develops over time, 
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these studies highlight a series of additional conceptual and linguistic challenges 
that are often overlooked in the development of early childhood curricula and 
assessments.

�Counting Principles

The previous section discusses how children learn each of the number words in their 
count list one-by-one and in order. The process appears to take upward of 2 years, 
and as they do this, they learn some of the fundamental properties of number (i.e., 
number words refer only to discrete sets and are used to denote numerosity, not 
continuous quantity). Whereas the counting routine, in and of itself, does not appear 
to be integral to this process, children are certainly gaining experience and learning 
about counting procedures over this period of time.

As Gelman and Gallistel (1978) pointed out in their seminal work on Young 
Children’s Understanding of Numbers, in order to count productively, children 
(and adults) must at the very least (1) recite the count list in the same sequence 
every time (e.g., one, two, three, four and not one, four, three, two), (2) count each 
object in a set without skipping or double-counting, (3) understand that they can 
count the objects in any order (e.g., counting from left to right yields the same 
answer as when counting from right to left), and (4) understand that the last num-
ber word recited in the counting routine indicates the total number of items in the 
set. While the first three rules seem to unfold with experience and practice, the 
following sections will focus on the final counting principle in this list – the car-
dinality principle.

�Cardinality Principle

After your little experiment with the cookies, you think back to your conversation about the 
ducks in the park. Your nephew did recite the count list in order; he did count each duck in 
one-to-one correspondence, and he didn’t seem too concerned with the order or arrange-
ment of the ducks. But wait… there’s just one thing missing. He did not seem to understand 
that the last word in his count list should indicate the total number of ducks. Well, jeez, that 
seems simple enough…

When considered a part of Gelman and Gallistel’s (1978) list of counting prin-
ciples, the cardinality principle (or “last word rule”) simply stipulates that the last 
number word in a count sequence represents the cardinal value of that set. In reality, 
however, it seems children’s understanding of this specific procedure is contingent 
upon a crucial conceptual induction – often referred to as the cardinality principle 
induction (Carey, 2010). As mentioned previously (section “Knower Levels”), prior 
to this induction, children progress through a series of intermediate knowledge 
states (knower levels), during which time they do not seem to understand how 
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counting is used to generate or identify specific set sizes (e.g., Le Corre et al., 2006). 
Importantly, children who understand the cardinality principle (i.e., CP-knowers) 
perform differently from subset-knowers on a variety of tasks assessing early num-
ber knowledge. Some of these tasks explicitly involve counting. For example, on the 
Give-N task, CP-knowers use counting to generate specific set sizes and can fix 
their answers when they make mistakes. While subset-knowers often engage in 
counting behaviors (extensively abiding by the counting principles outlined above), 
they fail to use counting to generate specific set sizes. Some tasks, however, do not 
explicitly involve counting. Examples of these include the Blocks and Water and 
Match-to-Sample tasks discussed above, which reveal that subset-knowers do not 
yet understand the fundamental properties of number words (i.e., that they are used 
for discrete quantification and denote exact numerosities).

Another notable difference between subset- and CP-knowers is that only 
CP-knowers understand that any set with N items can be put into one-to-one corre-
spondence with any other set labeled with the same number word (N) – an idea 
referred to as “equinumerosity” (Muldoon, Lewis, & Freeman, 2009; Sarnecka & 
Wright, 2013). Like many of the skills outlined above, children’s understanding of 
equinumerosity seems to align closely with their induction of the cardinality prin-
ciple. For example, if one child were to have a handful of grapes for a snack and the 
other were offered the same (both snacks are recognized to be “just the same” 
through one-to-one correspondence), then each snack should also be labeled with 
the same number word. Results on a task that evaluated children’s understanding of 
this concept show that only CP-knowers know that sets that are “just the same” are 
labeled with the same number word (and if the sets are not the same, then a different 
number word should be used) (Sarnecka & Wright, 2013).

Furthermore, there is emerging evidence to suggest that children tap into ANS 
representations as they learn how counting represents number (Carey, Shusterman, 
Haward, & Distefano, 2017; Chu, van Marle, & Geary, 2015; Shusterman, Slusser, 
Halberda, & Odic, 2016; van Marle, Chu, Li, & Geary, 2014). One such study 
tracked 2- to 4-year-old’s understanding of individual number words and counting 
procedures (through the Give-N task) as well as their ANS acuity over a 6-month 
period (Shusterman et  al., 2016). Results show that children’s acquisition of the 
cardinality principle is tightly linked to marked improvement in ANS acuity and 
that there is little evidence to suggest that ANS representations underlie advance-
ments across subset-knower levels (e.g., moving from the one-knower to two-
knower level) (see Fig. 31.4). These findings provide further evidence for the notion 
that the cardinality principle is not just a counting rule – it is essential to the creation 
and representation of natural-number concepts.

Importantly, children did not have an opportunity to count when completing any 
of the tasks introduced above (including the Block and Water and Match-to-Sample 
tasks  discussed above), showing that children who understand the cardinality 
principle know more than the route counting procedures  – they have developed 
deeper insight about numbers and number words. Thus the promotion from subset- 
to CP-knower seems to be far more profound than it initially appears.
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Fig. 31.4  A 6-month longitudinal study evaluating children’s developing number knowledge, 
counting skills, and ANS acuity shows that the acquisition of the cardinality principle is tightly 
linked to notable increases in ANS acuity (Shusterman et al., 2016). Note that ANS acuity is not 
clearly linked to advances across number-knower levels. (Figure adapted from Shusterman 
et al., 2016)

�Successor Function

With the cardinality principle comes an understanding of the successor function, 
which reflects another fundamental property of number – with each additional item 
in a set, we advance one step (i.e., word) along the verbal count list. In conjunction 
with the cardinality principle, an understanding of the successor function allows 
children to represent the cardinal meanings of every word in their count list 
(Sarnecka et al., 2014).

To explore children’s understanding of the successor function, Sarnecka and 
Carey (2008) showed a group of 2- to 4-year-old children a box with 5 items inside. 
Similar to the Transform-Sets task described above, experimenters explained (e.g.), 
“There are five apples in this box,” and then added an item to the box. In this task, 
however, the experimenter asked (e.g.), “Now how many are in the box? Six or 
seven?” As with the tasks reviewed above, only the CP-knowers seemed to under-
stand that adding 1 item to a set moves the total count one step (word) forward along 
the count list (and adding 2 items moves the count two steps forward).
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Together, children’s understanding of the cardinality principle and successor 
function is often considered to be “the final piece of the puzzle” (Sarnecka et al., 
2014) – the last thing that children must figure out in order to use counting to construct 
natural-number concepts.

�Summary

While your 3-year-old nephew at the beginning of this chapter has clearly memo-
rized several words in the verbal count list and has acquired at least some of Gelman 
and Gallistel’s (1978) counting principles, it seems that this routine serves no mean-
ingful purpose other than offering the expected response to the question “how 
many?”. Gradually, however, over the next several months or years, he will come to 
realize that counting is used to determine the exact number of items in a set and that 
cardinality changes with each additional item.

�Facilitating the Acquisition of Exact Number Concepts

The sections above outline several challenges that children inevitably face as they 
develop counting and basic numerical skills while presenting the argument that chil-
dren must confront and conquer these challenges in order to construct and represent 
exact number concepts. Moreover, recent research has identified these achievements 
as central to children’s eventual success in school (Aunio & Niemivirta, 2010; 
Bartelet, Vaessen, Blomert, & Ansari, 2014; Duncan et al., 2007; Göbel, Watson, 
Lervåg, & Hulme, 2014), with the unfortunate caveat that children who start 
school without these fundamental number concepts are at a serious disadvantage, 
both in the short and long term (Dowker, 2008; Jordan, Kaplan, Ramineni, & 
Locuniak, 2009):

Even though you realize that your simple “judgement calls” on who has more chocolate 
chips will have to be supported with clear empirical evidence from here on out, you never-
theless decide to help your nephew out (that’s what family’s for, right?). Lucky for you, 
researchers’ evaluations of both small- and broad-scale interventions have culminated in a 
collection of best practices that can be easily implemented even in informal settings.

�Facilitating the Acquisition of Individual Number Words

In addition to the four counting principles outlined in the  section “Counting 
Principles” above, Gelman and Gallistel (1978) noted that children must also under-
stand abstraction – the idea that number is an inherent property of any set of discrete 
items and that a set of 10 apples, for example, shares something in common with a 
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set of 10 oranges (who said that we can’t compare apples and oranges?). 
Unfortunately (though interestingly), many researchers who have attempted to 
teach children the meaning of a new number word (e.g., teach a two-knower the 
exact meaning of the word three) find limited success. Whereas these children may 
come to recognize that the new number word can be used to label a set of, e.g., three 
marbles, they often do not understand that the word three can be applied or general-
ized to other sets of 3 (e.g., 3 blocks, 3 buttons, 3 meals) (Carey et al., 2017; Huang, 
Spelke, & Snedeker, 2010; Mix, Huttenlocher, & Levine, 2002).

To explore this phenomenon further, we introduced a group of two-knowers to 
the word three (Slusser, Stoop, Lo, & Shusterman, 2017) through one of three train-
ing conditions (Fig. 31.5). Children randomly assigned to the Number Word Only 
condition were presented with several pictures of 3 animals and were told, “This 
picture has three.” Children in the Count Noun condition were presented with this 
same series of pictures but were told, (e.g.) “This picture has three dogs.” And chil-
dren in the Superordinate Category condition were told, “This picture has three 
animals.” Following training trials with corrective feedback, two-knowers in the 
Count Noun and Superordinate Category conditions failed to extend the new num-
ber word (three) to sets of new animals (e.g., lions) or objects (e.g., shoes), while 
children in the Number Word Only condition succeeded. These findings suggest that 
the specificity of the linguistic context in which a number word is introduced influ-
ences children’s ability to generalize newly acquired number words. Thus, while a 
rich linguistic context seems to facilitate children’s understanding of number word 
semantics (see “Discrete Quantification”), when introducing a specific number 
word, it seems adults and educators should provide varied input and avoid coupling 
a number word with a specific noun or category label unnecessarily.

Fig. 31.5  Examples of training and test trials: To evaluate the role of linguistic context in chil-
dren’s acquisition of individual number words, we designed 3 training conditions. Children who 
were trained with the Number Word Only were more likely to generalize the newly acquired num-
ber word to new sets than children assigned to the Count Noun or Superordinate Category 
conditions
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�Facilitating the Acquisition of the Cardinality Principle

Efforts to teach children the cardinality principle over a short period of time have 
also been met with mixed success (e.g., Mix, Sandhofer, Moore, & Russell, 2012). 
Nevertheless, it seems there is growing evidence that adults can effectively scaffold 
children’s understanding of the cardinality principle by presenting the counting rou-
tine in close temporal contiguity with an appropriate label of cardinality. Most 
recently, Paliwal and Baroody (2017) found that modeling a counting procedure 
that emphasizes the total number of items in a set facilitates children’s understand-
ing of the cardinality principle. For this study, 3- to 5-year-olds were randomly 
assigned to one of the three training groups. Children practiced counting 1–6 items 
with an experimenter several times over a 6-week period. Upon posttest (which 
included a measure similar to the Give-N task described above), children who 
practiced counting using a procedure that emphasized the total number of items in 
a set (e.g., “One, two, three. Three. There are three elephants!”) outperformed 
children who simply counted the items (e.g., one, two, three) without repeating or 
emphasizing the cardinal value of the set.

Notably, however, adults often do not approach counting activities in this way 
(Mix et al., 2012). While they may count or provide a cardinal label, they do not 
often do both. This coupled with the observation that number talk, in general, is 
relatively rare in everyday interactions (Levine, Suriyakham, Rowe, Huttenlocher, 
& Gunderson, 2010) suggests that many children are not, on a daily basis, exposed 
to input that facilitates this understanding.

�Broad-Scale Intervention

Following participation in “broad-scale” mathematics intervention programs 
(meaning that they include a multitude of both classroom- and home-based activi-
ties), children from low and middle socioeconomic backgrounds have consistently 
demonstrated improved performance on composite mathematical assessments 
(e.g., Arnold, Fisher, Doctoroff, & Dobbs, 2002; Starkey, Klein, & Wakeley, 2004). 
Not only do children’s math scores improve, but other numerically related skills, 
such as measurement and problem-solving, also improve.

One notable demonstration of these benefits follows Greenes, Ginsburg, and 
Balfanz’s (2004) evaluation of their Big Math for Little Kids program. This curricu-
lum, designed to increase mathematical competency among 4- to 5-year-old chil-
dren, includes a series of engaging number-based games that encourage and 
facilitate critical thinking related to number. The studies presented in the following 
two sections, however, suggest that meaningful experience and intervention need 
not take the form of established curriculum. Instead, it seems that parents and 
educators can facilitate children’s counting and basic numerical skills by simply 
offering or creating numerically based games and toys and by incorporating “number 
talk” into daily conversations.
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�Numerically Based Toys

Over the last several years, researchers have begun to study the direct cognitive 
benefits associated with children’s play with numerically based toys. One study 
linked cognitive benefits of play with numbered board games in preschoolers from 
low-income backgrounds (Siegler & Ramani, 2008). Children (ages 4–5) completed 
4 sessions of play using a board game with squares labeled 1–10. Even though they 
initially struggled with math-related tasks as compared to their more affluent peers 
at pretest, these children consistently demonstrated improvements at posttest, sug-
gesting that numerically based play can have profound effects on mathematical 
cognition.

More recently, in a study funded by the toy manufacturing giant Mattel©, 3- and 
4-year-old children were randomly assigned to one of the four conditions, each with 
a specific toy predicted to support development within a particular cognitive domain 
(Slusser et al., 2013). Children in the Number Condition were given a set of ten 
small race cars (think Hot Wheels™) and a parking garage. Each car was labeled 
with a numeral from 1 to 10, and the parking garage included a series of parking 
spaces, each with an array of 1–10 dots. After a 1-month period (during which time 
children were encouraged to play with the toy but received no other specific instruc-
tion from the researchers), children’s counting and basic numerical skills increased 
dramatically, significantly more than children assigned to any other condition3 
(see Fig.  31.6). Thus, simply playing with numbered toys appears to promote 
improvement in numerical understanding.

3 Children in the other conditions received either a set of ethnically diverse dolls, dress-up clothes, 
or wooden blocks.

Fig. 31.6  Children’s independent play with numerically based toys (left) over a 1-month period 
promotes their numerical understanding (right) (Slusser, Chase, et al., 2013)
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�Number Language

Even without the use of games or toys, recent research has shown that exposure 
to number language facilitates children’s acquisition of number word meanings. 
In fact, children’s knower levels can be predicted by the quality and quantity of 
number-specific language at home (Gunderson & Levine, 2011; Levine et al., 2010), 
and interventions that help parents engage in meaningful number talk can facilitate 
children’s progress toward understanding cardinality (Berkowitz et al., 2015).

This important link between number knowledge and early language exposure is 
further demonstrated through a recent study that evaluates and models the influence 
of parent education, general vocabulary, ANS acuity, and number word knowledge 
on children’s early math achievement (Ribner, Shusterman, & Slusser, 2015). For 
this study, we first evaluated the receptive vocabulary, number-knower level, and 
ANS acuity of a diverse group of 3- to 5-year-old preschoolers. We then administered 
the TEMA-3 approximately 1 year later, as they entered kindergarten. We found that 
children’s early language (general vocabulary and number word knowledge) fully 
mediates the relationship between parent education and math ability. Additionally, 
number word knowledge mediates the noted relationship between ANS acuity and 
early math (see Fig. 31.7).

Fig. 31.7  A diagram that illustrates the relationship of parent education and early math. Results 
from a 1-year longitudinal study following preschoolers through kindergarten show that early lan-
guage skills are linked to number word knowledge and these factors fully mediate the relationship 
between parent education and math ability (Ribner et al., 2015)
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Even with a clear need for additional research, these findings carry implications 
for early education and intervention. For example, while proposals for early inter-
vention to support children’s developing number sense (ANS acuity; e.g., Wang, 
Odic, Halberda, & Feigenson, 2016) remain justified, these findings suggest that an 
increased focus on number language and general vocabulary may help to minimize 
disparities in math ability as children enter kindergarten.

�Summary

In sum, a sampling of research across various disciplines (including early educa-
tion and instruction, child development, psychology, and cognitive science) shows 
that children’s intuitive number sense, their understanding of individual number 
words, and their procedural and conceptual counting knowledge serve as key 
building blocks for future math ability. While idiosyncrasies in each result in pre-
dictable developmental outcomes, researchers have identified a series of effective, 
low-cost, and practical interventions that can be easily adopted by parents and 
practitioners alike.
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