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�Introduction

In the past 30 years, researchers have increasingly paid attention to not only math-
ematical learning in the classroom and formal contexts but also to how informal 
learning outside of the classroom impacts children’s mathematical development, 
especially in developing conceptually rich mathematical knowledge and skills 
(e.g., Resnick, 1987). Differences in young students’ mathematical learning and 
learning difficulties cannot be explained only by the experiences students have dur-
ing the deliberately organized teaching and training situations. However, it is only 
fairly recently that mathematics education and developmental psychology research 
have also begun to examine the role of children’s spontaneous, self-initiated math-
ematical activities in this development (Hannula & Lehtinen, 2005; McMullen, 
Hannula-Sormunen, & Lehtinen, 2011). In this chapter, we summarize classical 
studies on major milestones of numeracy development and furthermore discuss the 
impact of children’s and students’ own activities in informal everyday situations on 
learning trajectories leading to an advanced number sense, which optimally supports 
their future mathematical learning.

�Early Development of Numeracy

Preschool mathematical development forms the necessary basis for later mathe-
matical skills learnt in school (Clements & Sarama, 2014; Fuson, 1988; Gelman 
& Gallistel, 1978; Mix, Huttenlocher, & Levine, 2002; Nunes & Bryant, 1996). 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97148-3_3&domain=pdf
mailto:minna.hannula-sormunen@utu.fi
mailto:jake.mcmullen@utu.fi
mailto:erno.lehtinen@utu.fi
https://doi.org/10.1007/978-3-319-97148-3_3#DOI


26

Children’s mathematical skills and concepts develop highly individually, both in 
the rate at which children attain essential mathematical skills and in substance 
within mathematical concepts and skills, as well as in relations among different 
aspects of numbers (Fuson, 1988; Sophian, 2007).

�Early Approximate and Exact Number Recognition

Two separate representational systems allow dealing with small numerosities in 
infants and toddlers: a fast but relatively imprecise discrimination of numerical 
magnitudes, which is affected by set size ratio limit, and an exact object tracking 
system functioning in the small number range (Feigenson & Carey, 2003). These 
early systems for representing objects and approximate quantities can also be 
found in other animal species, like in primates and birds (for reviews, see, e.g., 
Dehaene, 1997).

In addition to these mechanisms forming the basis for magnitude representa-
tions, the concept of a “set of individuals” is central for natural number concept 
including counting and simple arithmetical operations (Spelke, 2003). The toddler 
learns to connect pre-attentional basic-level perceptual information about the exact 
values of small numerosities with the socioculturally supported nonverbal and ver-
bal expressions of small cardinal values. First, exact nonverbal number representa-
tions allow the child to represent, identify, categorize, and compare sets of objects 
within a very small range of numbers. These first pre-numeric skills are gradually 
integrated into cultural enumeration practices with verbal number words (Hannula, 
Räsänen & Lehtinen, 2007; Mattinen, 2006; Mix et al., 2002; Wynn, 1990). Children 
know that number words refer to specific, unique numerosities before they know 
exactly to which numerosity each number word refers (Sarnecka & Gelman, 2004; 
Wynn, 1992b). Children seem to develop piecemeal in acquiring cardinal meanings 
of “one, two, and three.” After this, understanding of cardinality of set results in the 
cardinality meanings for all number words within the child’s number sequence.

�Subitizing and Counting

Two processes are used for recognition of exact numbers of items (Sathian et al., 
1999), and they can be distinguished from approximate number recognition (Lemer, 
Dehaene, Spelke, & Cohen, 2003). These are a highly accurate, very fast, parallel 
apprehending of items up to around three or four, often called as subitizing, and 
verbal counting, which is much slower, requires coordination of several attentional 
sub-processes, and works also for the enumeration of larger numbers (e.g., Jevons, 
1871; Trick, Enns, & Brodeur, 1996). Children’s subitizing-based enumeration 
skills develop during childhood (Starkey & Cooper, 1995). Subitizing-based enu-
meration of children is slower than that of adults, and the subitizing range is smaller 
(Chi & Klahr, 1975; Trick et al., 1996).
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Counting involves reciting the list of number words one by one, synchronizing 
number words with individuating acts including planning the moves of attention, 
keeping track of counted targets and inhibition of previously counted targets, and 
finally activating the cardinal value of the last recited number word as the result 
of the counting (e.g., Fuson, 1988; Trick & Pylyshyn, 1994). Five how-to-count 
principles need to be respected when items are counted (Gelman & Gallistel, 
1978). These are (a) one-to-one correspondence (all the objects in the target set 
must be counted and each of them only once), (b) constant order (number words 
need to be listed in the same order), (c) order irrelevance and (d) abstraction (dur-
ing counting it does not matter in which order the items are counted or what kind 
of things are counted), and (e) the cardinality principle (referring to the last num-
ber tag used as the cardinal value of the whole set) (Gelman & Gallistel, 1978).

Counting skills develop slowly, which could be explained by several issues: 
differences in nonverbal and verbal number recognition systems, the demanding 
integration of different representations and procedures, and the need for lots of 
practice in acquiring accuracy in counting procedures (e.g., Fuson, 1988; Wynn, 
1990). Counting practice with number words provides a child with the basis for 
constructing the hows and whys of counting, as well as the essential features of 
correct counting (Briars & Siegler, 1984; Cowan, Dowker, Christakis, & Bailey, 
1996). Once the basic skills of counting items in lines are achieved, children 
move on to learning the marking strategies necessary in counting random arrange-
ments of objects (Fuson, 1988). According to the reciprocal developmental views 
of Saxe, Guberman, and Gearhart (1987) and Sophian (1998, 2007), children’s 
goal-based numerical activities are related to their conceptual knowledge about 
numbers and social goals of enumeration change along with the development of 
skills, and they direct children’s attention to different aspects and uses of num-
bers and counting.

The number sequence production indicates the child’s participation in socio-
cultural numerical activities. Learning the first number words has been described 
as a serial recall task, in which the cardinal and ordinal aspects, numerical rela-
tions as well as the base-ten structure of number words, are only later integrated 
in the number sequence (Fuson, Richards, & Briars, 1982). Eventually, after dif-
ferent developmental phases, the number sequence becomes a mental construc-
tion of the number line, including exact cardinal meanings and ordinal relations 
between numbers. Later on number words become countable objects themselves 
(Fuson et al., 1982).

�Basic Arithmetic Skills

The basic arithmetic skills that enable verbal adding and subtracting develop 
together with enumeration, number sequence skills, and separate schemes of quan-
titative increasing and decreasing. Similar to the early basis for exact number recog-
nition, procedures for numerical operations are also constructed in infancy on object 
files individuating small exact numbers of items and an analogical magnitude-based 
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estimation for representing numerosities (e.g. McCrink & Wynn, 2004; Wynn, 
1992a) and in toddlerhood, on experiences with combining and separating sets of 
objects. These nonverbal skills form the basis for the development of conventional 
verbal arithmetic methods (Levine, Jordan, & Huttenlocher, 1992). The physical 
and social world of young children provides plenty of opportunities for them to 
develop concepts about amounts of material, their comparisons, and the different 
effects of actions on these amounts. Resnick and Greeno (1990) propose that chil-
dren can perceive and reason about aggregations of amounts and objects before they 
represent them systematically. Their knowledge of arithmetic number facts and 
their methods of counting to find answers to addition and subtraction tasks are grad-
ually integrated into a unified set of numerical relations, which form the natural 
number system. Thus the number facts are based on counting methods for arithmeti-
cal operations, and the numbers represent members of sets with true cardinal values 
(see also Fuson, 1988; Sophian, 2007).

The development of natural and later rational number concept and arithmetic 
skills is a gradual and long-lasting process, which is supported and constrained by 
different experiences during childhood and adolescence. In the second part of this 
chapter we deal with some of the experiences and present a novel approach for 
understanding the role of children’s own activity in this development.

�Children’s Mathematical Activities in School and Home

Individual differences in young children’s early mathematical skills have been 
explained by the amount of deliberate mathematically related activities in homes 
(e.g., Skwarchuk, Sowinski, & LeFevre, 2014). However, Lefevre, Clarke, and 
Stringer, (2002) focused on parents’ direct teaching of early number skills and 
showed that the frequency of this kind of home teaching was positively related to 
children’s school-based mathematical achievement. However in many other studies 
parent’s self-reported engaging in numeracy activities was not related to children’s 
number skills development (e.g., Blevins-Knabe, Austin, Musun, Eddy, & Jones, 
2000; Missall, Hojnoski, Caskie, & Repasky, 2015).

The nature of mathematical learning environments at home has been analyzed in 
many studies, but still little is known about the specific types of home numeracy 
activities in which children are engaged with their parents (Cahoon, Cassidy, & 
Simms, 2017). Ginsburg and his colleagues (Ginsburg, Duch, Ertle, & Noble, 2012) 
concluded that still parents do relatively little to encourage their children’s numer-
acy learning and instead focus on teaching literacy (Ginsburg et al., 2012). Skwarchuk 
et al. (2014) made a distinction between formal and informal mathematical activities 
in parent-child interaction. LeFevre et al. (2009) found that children’s mathematical 
skills were related to the indirect numeracy activities in which learning was incidental 
and embedded in regular family life.

These results suggest that there are potentially more subtle connections between 
numerical activities at home and success in mathematics. While examinations of 
the mathematical home environment provide some hints as the potential causes of 
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individual differences in mathematical development, it is also possible that less 
explicit mathematical behaviors and activities play a role in mathematical 
success.

�Role of Children’s Own Practice in Numeracy Development

Our previous studies have focused on the development of exact number recognition 
skills and children’s early mathematical development (e.g., Hannula & Lehtinen, 
2005; a review Hannula-Sormunen, 2014). This work suggests that young children’s 
early development and especially their developmental individual differences in 
exact number recognition and utilization cannot be adequately described in terms of 
earlier theories and methods capturing only the processes and skills which are used 
after a child has already focused attention on the numerical aspect of the task. This 
work shows that young 3–7-year-old children have substantial individual differ-
ences in their self-initiated, spontaneous focusing on numerosity (SFON) in tasks in 
which their possible failure to regard exact numerosity is not entirely explained by 
their inability to deal with the cognitive requirements of the tasks. It seems that 
individual differences in this self-initiated numerosity focusing explain some of the 
individual differences in children’s numerical development, i.e., why some children 
develop better than others in numeracy during their childhood years. Exact number 
recognition and utilization are not totally automatic processes; instead, they need to 
be triggered in natural surroundings. When a child’s tendency to spontaneously 
focus his or her attention on the aspect of number is very strong, this produces lots 
of practice in number recognition and utilization and thus enhances the child’s 
understanding of numerical aspects as affordances of sets (Hannula & Lehtinen, 
2005). By using the term “spontaneous,” we do not refer to the innate origins of the 
tendency, but the self-initiated nature of focusing in a particular situation. Focusing 
on the aspect of exact numerosity requires determination of the set being perceived 
on some basis (e.g., shall I count the blue, red, big, small, or all flowers?), and this 
is needed in exact cardinality determination based on both subitizing and counting 
in a natural environment. Not all possible subitizable or countable numbers of items 
in a natural setting can be brought to the conceptual, conscious levels of processing. 
Mechanisms of object individuation are mid-level processes (Trick & Pylyshyn, 
1994). They produce only pre-numeric individuation information on the objects. 
Thus, Hannula and Lehtinen (2005) proposed that an attentional process of focusing 
attention on the aspect of exact number in the set of items or incidents is needed for 
recognition of number on a conceptual level. It triggers exact number recognition 
processes and utilization of the recognized exact number in action.

Focusing on numerical changes while sets of objects are manipulated could be a 
crucial part of understanding the meaning for numerical operations, which could 
explain significant predictive relations between SFON and arithmetical skills 
(Hannula, Lepola, & Lehtinen, 2010; Nanu, McMullen, Munck, Pipari Study 
Group, & Hannula-Sormunen, 2018).
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�How to Measure SFON?

In their early studies, Hannula and Lehtinen (2005) found that there were inter-
individual differences in young children’s tendency to focus spontaneously on the 
number of objects or events. They organized play-like situations where it was pos-
sible to observe if, without explicit guidance to do so, children focused on the 
number of objects or events and used this number in their actions. The tasks and 
activities were created in a way that would remind children of the games and other 
daily activities they do at home, in preschool, and day care. In the tasks there were 
many features on which it was possible to focus attention and children were not 
told that the activities in the tasks were related to numbers. For example, in the 
feeding games (e.g., imitation task), there was a plate of glass berries and a toy 
parrot with a big mouth into which it was possible to put berries. The researcher 
started the game by explaining that the idea is to feed the parrot. They then intro-
duced the materials and said: “Watch carefully what I do, and then you do just like 
I did.” After that the researcher put two berries, one at a time, into the parrot’s 
mouth, and they disappeared with a bumping sound into the parrot’s stomach. The 
child was then told: “Now you do exactly like I did.” These activities were repeated 
with different numbers of berries. A parallel game-like task was, for example, put-
ting envelopes into a postbox. For older children, both imitation tasks were used 
with two sets of different colored items. Overall, there now exist more than 20 dif-
ferent SFON task versions suitable for children and adults (for a review, see 
Hannula-Sormunen, 2014). These measures are based on activities which are close 
to children’s familiar play situations but which, at the same time, make it possible 
to measure the strength of children’s tendencies to spontaneously focus on numer-
osity by using well-defined standard procedures. Even in using these procedures, 
measuring spontaneous focusing tendencies is challenging.

Studies using the original SFON measures have shown that it is possible to mea-
sure the strength of children’s SFON tendency in a rather reliable way (Hannula & 
Lehtinen, 2005; Hannula-Sormunen, Lehtinen, & Räsänen, 2015; Nanu et  al., 
2018). Recently, several other measures have been developed by various research-
ers, which highlight different aspects of spontaneous focusing (see Rathé, Torbeyns, 
Hannula-Sormunen, De Smedt, & Verschaffel, 2016 for an extensive review). The 
design principles for SFON assessments include the following aspects: (1) mathe-
matically unspecified settings, (2) multiple (mathematical and non-mathematical) 
interpretations possible, (3) fully engaging for all, and (4) within competence range 
(Hannula, 2005). Nothing in the task situation gives any hints to the participants that 
the SFON tasks would be in any way numerical in nature. The experimenter gives 
no feedback. The child’s attention and interest are carefully captured in the begin-
ning of the task by the experimenter. It is important to carefully make sure that tasks 
involve only numbers so small that every child is capable of enumerating them. 
Similarly, all other cognitive requirements of the SFON tasks need to be at manage-
able level for all participants, so that participants’ insufficient motor skills, inhibi-
tion, verbal production, and working memory do not explain individual differences 
in the SFON tasks (Hannula, 2005; Nanu et al., 2018).
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Guided focusing on numerosity (GFON) task versions have demonstrated that 
the children who had zero SFON responses were able to deal with the cognitive task 
requirements after their focus was explicitly guided toward the numerical aspects of 
the SFON task (Hannula et al., 2010; Hannula & Lehtinen, 2005). Children’s per-
formance on the guided tasks supports the hypotheses that SFON is a dissociable 
part of utilizing exact number recognition in action in (mathematically) non-guided 
settings. The analyses of video-recorded performance in the SFON tasks allow all 
quantification acts or indications of child’s understanding of the quantitative goal of 
the task to be acknowledged as SFON. It is notable that by using a number range 
beyond participating children’s capabilities, children’s failure in producing equal 
sets could be caused by their inability to enumerate the sets, their lack of focus on 
numerosity, or even both of these reasons.

The use of the above described methods made it possible for Hannula and 
Lehtinen (2005) to separate attentional process SFON which is defined as a pro-
cess of spontaneously focusing attention on the exact number of a set of items or 
incidents. This attentional process triggers exact number recognition and using the 
recognized exact number in action, particularly in natural situations where the 
numerical magnitudes are not artificially made evident, which is typical for most 
educational materials. It appears that even though there are task-individual interac-
tion effects that may cause differences in SFON tendency across, for example, 
action and verbally based tasks, a confirmatory factor analysis revealed a second-
order latent variable referring to underlying general SFON tendency (Hannula-
Sormunen et al., in preparation).

�Findings of SFON Studies

Since the initial study of Hannula and Lehtinen (2005), cross-sectional and longitu-
dinal studies on SFON have been conducted by many research groups in several 
countries (Hannula-Sormunen, 2014; Rathé et al., 2016). SFON tendency is posi-
tively related to the development of cardinality recognition, subitizing-based enu-
meration, object counting, and number sequence skills before school age (Batchelor, 
Inglis, & Gilmore, 2015; Bojorque, Torbeyns, Hannula-Sormunen, Van Nijlen, & 
Verschaffel, 2016; Edens & Potter, 2013; Hannula, 2005; Hannula & Lehtinen, 
2001, 2005; Hannula, Räsänen, & Lehtinen, 2007; Potter, 2009). SFON tendency 
can be enhanced through guided focusing activities in preschool at the age of 3 years 
(Hannula, Mattinen, & Lehtinen, 2005; Mattinen, 2006). Path models of the devel-
opment of SFON and counting skills from 3 to 6 years of age indicate a reciprocal 
relationship between SFON and counting skills before school age (Hannula & 
Lehtinen, 2005). SFON tendency in kindergarten is a significant, domain-specific 
predictor of arithmetical, but not reading, skills assessed at the end of second grade 
(Hannula et al., 2010). At primary school age, dyscalculic students have a lower 
SFON tendency than their normally developing peers (Kucian et  al., 2012). 
Spontaneous focusing on mathematically meaningful aspects seems to be one of the 
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specific forms of mathematical behavior in children whose mathematical skills 
develop optimally during childhood years, and the lack of which is associated with 
mathematical learning difficulties. Individual differences in children’s SFON are 
not explained by children’s lack of enumeration skills or other cognitive skills 
needed for SFON tasks (Hannula & Lehtinen, 2005), and focusing on other aspects, 
such as spatial locations, is a separate process which does not explain away the cor-
relation between SFON and counting skills (Hannula et al., 2010).

The theoretical explanation for the strong predictive role of SFON tendency is 
based on the hypothesis that SFON is an indicator of the amount of self-initiated 
practice in using exact enumeration that a child gets in her or his natural surround-
ings (Hannula & Lehtinen, 2005). High SFON tendency would result in much 
higher amounts of practice with enumeration than what those children get who only 
deal with numbers when they are guided by adults (Hannula et al., 2010; Lehtinen, 
Hannula-Sormunen, McMullen, & Gruber, 2017). So far this theoretical hypothesis 
has been supported by a few studies. First, as part of a SFON enhancement study of 
3-year-olds (Hannula, Mattinen, & Lehtinen (2005)), the analyses showed a positive 
correlation (r  =  0.55) between children’s scores in SFON tasks and their SFON 
tendency, observed by the personnel in all day care settings. Similar results were 
presented by Batchelor (2014) who found a positive association between children’s 
task-based SFON measures and their spontaneous focusing on numbers in play-
based behavior as observed during parent-child play interactions.

There have been a few intervention studies in which SFON has been trained. In 
the first intervention study by Hannula et al. (2005), SFON training was conducted 
by using only small exact numbers up to three. Early educators guided children’s 
attention to small exact numbers both in everyday situations and also in structured 
numerical games. Guided focusing on numerosities was done by talking about, 
showing, and manipulating small numbers of, e.g., toys, snacks, socks, or other 
things during everyday interaction. Structural games involved variations with the 
numbers of objects of a set (Marton & Booth, 1997). The number of the fishes was 
first changed and observed together with the children in a cartoon aquarium, and 
then after adults kept secretly changing the numbers of fishes, which made the 
aquarium an exciting numerical focusing target. The aim of guiding children to 
focus on numerosities within daily routines and games was to enhance children’s 
spontaneous focusing on numerosities. Children who participated in the SFON 
enhancement program outperformed the control group in SFON tendency on a 
delayed posttest, which was conducted half a year after the pretest (Hannula et al., 
2005; Mattinen, 2006).

�Beyond Mere Numerosity: The Development of Relational 
Reasoning as the Foundation for Rational Number Knowledge

Exact numerical and whole number reasoning is only part of numerical develop-
ment that is relevant for mathematics. Already young infants have been shown to 
recognize the halfway point in objects (McCrink & Wynn, 2007). The system of 

M. M. Hannula-Sormunen et al.



33

approximate number found in infants and even nonhuman animals has features of 
relational reasoning (e.g., Dehaene, Izard, Spelke, & Pica, 2008). Beyond these 
innate capacities, young children can also solve tasks using mathematical relations 
(e.g., Boyer, Levine, & Huttenlocher, 2008). Early primary school-age children 
are able to match proportional quantities, especially those represented by continu-
ous quantities (Boyer et al., 2008; Spinillo & Bryant, 1999). Four-year-olds have 
also been found to be able to reason with proportional quantities (Sophian, Harley, 
& Martin, 1995). Mix, Levine, and Huttenlocher (1999) found that 4- and 5-year-
olds were able to calculate simple fraction arithmetic problems with pieces of 
foam. Finally, Frydman and Bryant (1988) found that 5-year-old children could 
reason about fair sharing even with different sizes of candy.

Resnick (1992) described the development of mathematical reasoning by 
focusing on the nature of the objectified mathematical reasoning. Figure  3.1 
applies this model to the development of relational reasoning in mathematics in 
the development of rational number knowledge. At the most basic level in 
Resnick’s model is the mathematics of protoquantities, which have no explicit 
quantitative value. The nonverbal notion of half may be used in reasoning at this 
level, as has been found in infant habituation studies (e.g., McCrink & Wynn, 
2007), although the explicit identification of these mathematical features by chil-
dren is not possible (cf. Spinillo & Bryant, 1999). The next level of reasoning in 
Resnick’s model is the mathematics of quantities, which involves reasoning about 
physical material with explicit quantities. In the case of relational development, 
this level may describe young children’s reasoning about proportional relations 
(e.g., Boyer & Levine, 2012).

The level of the mathematics of numbers is where numbers begin to act as 
“nouns” or “conceptual entities that can be manipulated and acted upon” (Resnick, 
1992, p. 414). This level would include the first skills and processes with symbolic 

Fig. 3.1  The development of quantitative relations and rational number knowledge. (Based on 
model from Resnick (1992): From protoquantities to operators: Building mathematical compe-
tence on a foundation of everyday knowledge (McMullen, 2014))
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fractions and decimals, where fractions and decimals are symbolic entities that can 
be acted upon and reasoned about independent of physical material. At this level, ½ 
is not the relationship of 1 part to 2, but may merely represent the magnitude of one-
half of 1 (halfway between 0 and 1 on the number line), a notion supported by the 
continuity in the development of magnitude estimation skills from natural to ratio-
nal numbers (e.g., Siegler, 2016). While many features of natural numbers can be 
attached to fractions and decimals, often in a supportive manner (Nunes & Bryant, 
2008), it is also at this level that the natural number bias would cause problems with 
reasoning about fractions and decimals (Ni & Zhou, 2005).

It is only in moving into the mathematics of operations level that mathematically 
correct concepts of rational numbers appear. At this level, it is possible to reason 
about rational numbers as a concept, independent of specific numbers (Resnick, 
1992, p. 414) representing the mathematical relations inherent in fractions (the rela-
tion between numerator and denominator) and decimals (the relation between place 
value and terms). Thus, at this level, rational numbers become mathematical objects 
that have specific features that are partially distinct from natural numbers (e.g., 
Vamvakoussi & Vosniadou, 2004). However, reaching this level is not a simple pro-
gression as described by Resnick, but instead may require radical change in the 
conception of the nature of number (Merenluoto & Lehtinen, 2004; Vamvakoussi & 
Vosniadou, 2004).

�Spontaneous Focusing on Quantitative Relations

The quantitative relations that children experience in everyday situations are often 
approximate and dynamically changing. For example: “… a 7-year-old child trav-
eling with her mother to visit their grandparents in the countryside. During the 
boring car drive the child starts spontaneously to think about the trip in terms of 
quantitative relations, asking ‘Are we halfway there yet?’” (McMullen, Hannula-
Sormunen, Laakkonen, & Lehtinen, 2016). In these situations the distances are 
often approximated, and, as well, the car can be approaching halfway, and after 
that it can be considered approaching halfway of the remaining distance to be trav-
eled (i.e., 3/4) (McMullen et al., 2016). If children are involved in thinking about 
these kinds of “messy” quantitative relations of everyday contexts, it could have 
important effects on the way they think about the nature of numbers and how they 
can reason in novel situations with complex mathematical concepts. Based on a 
series of studies, McMullen and colleagues (McMullen, 2014; McMullen, 
Hannula-Sormunen, & Lehtinen, 2013, 2014) proposed that there is a tendency 
similar to SFON which indicates that children and school pupils can also focus 
spontaneously on the relation between two or more quantities in non-explicitly 
mathematical settings. Crucially, analogous to SFON tendency, individual differ-
ences in the tendency of spontaneous focusing on quantitative relations (SFOR) 
have been found to predict mathematical development in late primary school and 
lower secondary school (e.g., McMullen et al., 2016).
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Studies with younger children conducted in Finland and the USA show that chil-
dren begin to focus spontaneously on quantitative relations at the age from 6 to 7, 
but there are substantial inter-individual differences in the strength of the tendency 
still during the early school years (McMullen et al., 2013, 2014). Likewise, even 
after controlling for the ability to solve the tasks when explicitly guided to do so, 
there remain substantial inter-individual differences, even within grade levels, in 
SFOR tendency in studies of late primary school in Finland (McMullen et al., 2016) 
and Belgium (Van Hoof et  al., 2016) and lower secondary school in the USA 
(McMullen, Hannula-Sormunen, Lehtinen, & Siegler, submitted).

A 4-year follow-up from the age of 7 to fourth grade reveals that individual dif-
ferences in SFOR tendency may be related to later fraction knowledge (McMullen 
et al., 2014). As well, SFOR tendency was found to be a unique predictor of rational 
number conceptual development in late primary school students in Finland 
(McMullen et al., 2016) and Belgium (Van Hoof et al., 2016). In these studies the 
SFOR tendency was particularly related to the development of conceptual under-
standing of rational numbers, which has been difficult to support by traditional 
mathematics teaching and practice. A later study (McMullen, Hannula-Sormunen, 
& Lehtinen, 2017) showed that SFOR tendency is in a reciprocal relationship with 
rational number knowledge, similar to that which has been found between SFON 
and natural number knowledge (see Hannula & Lehtinen, 2005). The most recent 
findings indicate that besides rational number conceptual knowledge, SFOR ten-
dency also predicts lower secondary school students’ algebra knowledge (McMullen, 
et al., in press) and their flexible and adaptive use of rational number knowledge in 
novel tasks (McMullen et al., submitted).

There has yet to be established a causal relation between SFOR tendency and 
mathematical development; however, this relation has not been completely explained 
by a myriad of potential mediators, including nonverbal intelligence, arithmetic flu-
ency, grade level, or prior knowledge (McMullen et al., 2016, submitted; Van Hoof 
et al., 2016) nor mathematical achievement (McMullen et al., submitted; Van Hoof 
et al., 2016), spatial reasoning, or mathematical motivation (McMullen et al., sub-
mitted). While SFOR tendency was relatively consistent, in terms of rank-order sta-
bility, over a 1-year period in late primary school, this does not suggest that it is 
impossible to enhance students’ SFOR tendency. In fact, preliminary evidence sug-
gests that by using innovative out-of-classroom activities, it is possible to increase 
students’ tendency to focus on quantitative relations in SFOR tasks (McMullen 
et al., 2017). Thus, SFOR tendency is more likely a product of environmental factors 
rather than a static personal trait and may be malleable to explicit intervention.

�Self-Initiated Practice and Number Sense

Not only is it expected that children would gain more practice with their numerical 
or mathematical skills and knowledge, but given the nature of the mathematical 
aspects embedded in everyday life, it may be that they also gain qualitatively 
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better practice with mathematics than their peers that mostly encounter mathe-
matics only in formal classroom situations. When children focus on number or 
quantitative relations in their natural environment, they are confronted with a 
higher variation of cognitive challenges than in dealing with deliberately planned 
school tasks. From a mathematical point of view, natural situations are “messy” 
in many ways. For example, the objects to be enumerated are seldom clear-cut 
objects clearly delineated from a monochromatic background, and it is often not 
completely clear what to include in the set that is to be enumerated. The number 
of objects and the observed quantitative relations are often changing dynamically 
in regular or irregular ways. Dealing with these situations requires flexible think-
ing about numbers and relations (Baroody, 2003). Dealing with numbers and rela-
tions in informal contexts makes it more difficult to rely on written procedures or 
algorithms but instead mental and oral processes (Schliemann & Nunes, 1990) 
that are often approximate and constrained by external factors (Lave, 1988). Self-
initiated practice is often based on the inherent need to use the developing skills 
in novel situation (Piaget, 1955), which may result in strong personal involve-
ment. In an everyday context, the feedback and practical consequences of enu-
meration or mathematical operations require a different control of correctness 
than in formal educational contexts. For example, Carraher, Schliemann, and 
Brizuela (2001) presented that in a formal school contexts, students “would 
sometimes claim that the amount of change to be returned to a customer after a 
purchase would be greater than the amount of money originally handed to the 
seller.” In fact, even formal instruction often does not lead to coherent conclu-
sions in formal mathematical settings, as a similar finding has been shown with 
students’ estimations of positive fraction addition problems often being less than 
both addends (Braithwaite, Tian, & Siegler, 2017).

�Discussion

Studies on spontaneous mathematical focusing tendencies (SFON and SFOR) 
suggest that theories of early development and later extensions of the number 
concept should also take into account the role of attentional processes and chil-
dren’s self-initiated practice. These studies highlight the role that mathematical 
practice in informal everyday contexts may play in mathematical development. 
Research on spontaneous mathematical focusing tendencies makes an important 
contribution by providing a novel explanation for the learning trajectories leading 
to differences in students’ mathematical development, including their number 
sense. Mathematics curricula in many countries highlight the need to develop a 
more advanced number sense that can support the flexible and adaptive use of 
mathematical strategies (Mullis, Martin, Goh, & Cotter, 2016).

Studies on everyday mathematics are often presented as evidence for the need 
for a fundamentally different alternative approach (situated cognition) which differs 
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from the traditional mathematics learning in schools (decontextualized cognition) 
(e.g., Lave, 1988). The interpretation of spontaneous focusing tendencies and self-
initiated practice in informal activity contexts is different from the situated cogni-
tion approach. As studies show, spontaneous focusing tendencies are in reciprocal 
development with the formal mathematics learning in formal context. Focusing on 
mathematically relevant aspects of informal context and learning mathematics in 
formal education are fundamentally different experiences. However, students’ 
own mathematical activities in informal situations do not lead to different mathe-
matical knowledge, but instead provide opportunities to strengthen and enrich 
their mathematical development (see the criticism of Lave by Greiffenhagen & 
Sharrock, 2008).

In this way, it is important that formal mathematics education in school takes 
into account children’s mathematically relevant activities in out-of-school situa-
tions and tries to better connect learning at school and learning in informal situa-
tions (Carraher et  al., 2001; Resnick, 1987; Wager, 2012). In traditional 
mathematics teaching in all levels from early education to high school, mathemat-
ical content is often learned in an isolated, piecemeal way, and teaching rarely 
aims to deliberately trigger students to use mathematical knowledge as a way to 
see the world. In contrast, we have developed specific pedagogical tools aimed at 
improving students’ and young children’s awareness of opportunities to pay 
attention to mathematical aspects of their daily lives. For example, encouraging 
young preschool-age children to search for instances of particular numerosities in 
their everyday lives, in concert with practicing enumeration skills in a tablet-
based game (Fingu; Holgersson et al., 2016), was able to improve students arith-
metic skills in comparison with a control group (Hannula-Sormunen, Alanen, 
McMullen, & Lehtinen, 2016). As well, providing students with a framework and 
opportunities to explore their everyday surroundings for examples of quantitative 
relations, which are then analyzed for their mathematical features, has been 
shown to be effective in getting students to spontaneously focus on quantitative 
relations in task contexts (McMullen et al., 2017). In general, providing students 
with more opportunities to practice everyday problem solving in which mathe-
matics are embedded may be valuable for promoting their deeper understanding 
of mathematical content (Pongsakdi, Laine, Veermans, Hannula-Sormunen, & 
Lehtinen, 2016). In the end, all of these approaches share the same aim – to break 
out of conventional preschool and school mathematics instruction and provide 
children and students with opportunities to explore mathematical phenomena in 
connection with everyday experiences.

Within this framework, also mathematical learning difficulties could be partly 
explained in novel ways. In some cases, these difficulties can be consequences of 
lacking self-initiated practice, whereas in other cases the mathematical difficulties 
appearing in school can mean that the child does not apply the mathematical think-
ing developed in out-of-school situations in formal tasks in classroom.
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