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Abstract Complex engineering and economic systems are often dynamic in nature
and its time-varying variables are subject to algebraic restrictions that are cast
in the form of equalities and inequalities; furthermore, these variables may be
related to each other via some logical conditions. For such constrained dynamical
systems, the classical approach based on ordinary differential equations (ODEs)
alone is inadequate to fully capture the intricate details of the system evolution.
Combining an ODE with a variational condition on an auxiliary algebraic variable
that represents either a constrained optimization problem in finite dimensions or its
generalization of a variational inequality, the mathematical paradigm of differential
variational inequalities (DVIs) was born. On one hand, a DVI addresses the need
to extend the century-old ODE paradigm to incorporate such elements as algebraic
inequalities, mode changes, and logical relations, and on the other hand, introduces
a temporal element into a static optimization or equilibrium problems. The resulting
DVI paradigm transforms the basic science of dynamical systems by leveraging
the modeling power and computational advances of constrained optimization and
its extension of a variational inequality, bringing the former (dynamical systems)
to new heights that necessitate renewed analysis and novel solution methods and
endowing the latter (optimization) with a novel perspective that is much needed for
its sustained development. Introducing the subject of the DVI and giving a survey
of its recent developments, this report is an expanded version of five lectures that
the author gave at the CIME Summer School on Centralized and Distributed Multi-
agent OptimizationModels and Algorithms held in Cetraro, Italy, June 23–27, 2014.
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2.1 Introduction

Complex engineering and economic systems are often dynamic in nature and its
time-varying variables are subject to algebraic restrictions that are cast in the form of
equalities and inequalities; furthermore, these variables may be related to each other
via some logical conditions. For such constrained dynamical systems, the classical
approach based on ordinary differential equations (ODEs) alone is inadequate to
fully capture the intricate details of the system evolution. Combining an ODE
with a variational condition on an auxiliary algebraic variable that represents
either a constrained optimization problem in finite dimensions or its generalization
of a variational inequality, the mathematical paradigm of differential variational
inequalities (DVIs) was born. On one hand, a DVI addresses the need to extend the
century-old ODE paradigm to incorporate such elements as algebraic inequalities,
mode changes, and logical relations, and on the other hand, introduces a temporal
element into a static optimization or equilibrium problems. The resulting DVI
paradigm transforms the basic science of dynamical systems by leveraging the
modeling power and computational advances of constrained optimization and its
extension of a variational inequality, bringing the former (dynamical systems) to
new heights that necessitate renewed analysis and novel solution methods and
endowing the latter (optimization) with a novel perspective that is much needed
for its sustained development. Thus, the DVI serves as a bridge between the worlds
of optimization and dynamical systems.

Inspired by applications in stochastic queuing networks [60], the unpublished
reference [91] is arguably the earliest publication where a dynamical system with
explicit complementarity conditions, albeit in integral form, was formulated. In
the optimization literature, a special instance of the DVI, called the nonlinear
differential complementarity problems, was first studied in the Ph.D. thesis [68] as
an extension of the (static) finite-dimensional nonlinear complementarity problem
[45]. Independently of these two earlier works [68, 91], two doctoral theses [25, 62]
from the Netherlands School have studied the linear complementarity systems
(LCSs) and piecewise affine systems from the perspective of hybrid dynamical
systems and control theory [108, 109]. With the goal of introducing a unified
mathematical framework for these non-traditional dynamical systems, the author
and his collaborator, David Stewart at the University of Iowa, formally defined
the DVI in a 2008 paper [102]. From the beginning, it was recognized that
the DVI, while providing a very broad setting for many applications, is a very
challenging mathematical problem whose rigorous treatment requires the fusion
of a variety of analytical tools and numerical techniques from both ODE and
mathematical programming. Since the publication of these early works, there has
been a steady growth in the study of the DVI and the closely related differential
complementarity systems (DCSs); see the references [30–33, 55–57, 59, 65, 100,
114–117, 126, 127, 134, 135]. Increasingly, the importance of the DVIs and (DCSs)
in applications is being recognized as documented in the surveys [21, 63, 111]
and several recent publications [4, 85, 87, 88, 104, 127, 129], as well as the
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Habilitation thesis [2] that contains many references discussing applications in
mechanical, electrical, and biological systems [3, 5, 9, 13, 14, 23, 35, 39, 43, 47, 52–
54, 64, 66, 67, 78, 80, 81, 93, 94, 124, 125, 128, 131, 138, 140]. In spite of these
efforts to date, a comprehensive investigation of the DVI is very much in its infancy
stage, with lots of open questions to be resolved, solution methods to be developed,
and applications to be explored.

One of the most challenging aspects of the DVI and the complementarity system
is the mode switches caused by the activation and inactivation of the constraints.
The unknown timing of these switches and their frequencies are two major sources
of difficulty for the long-time analysis (such as stability) and the development
of provably fast convergent numerical methods. Such switches could give rise
to the so-called Zeno phenomenon (i.e., infinite switches in finite time) whose
existence would create all sorts of technical complications that need to be addressed.
Besides the understanding of this phenomenon and the identification of Zeno-free
systems, many system-theoretic properties remain to be investigated in full detail.
The design of efficient provably convergent numerical methods for approximating
a solution trajectory of these variational/complementarity constrained dynamical
systems is another major topic that requires further investigation. To achieve
practical efficiency of such methods it is important to leverage the advances of
computational mathematical programming for solving the time-discretized sub-
systems. All in all, a systematic investigation of the DVI requires a long-term
focused effort in order to fully develop this highly promising new discipline to
fruition and for the subject to realize its impact on the applied domains. It is with
these dual objectives that this chapter is written, hoping to introduce this class of
novel dynamical systems to a broad audience spanning both the optimization and
engineering communities.

This paper is organized according to the five lectures that the author delivered at
the CIME Summer School on Centralized and DistributedMulti-agent Optimization
Models and Algorithms held in Cetraro, Italy, June 23–27, 2014. These lectures are:

Lecture I: Introduction to differential variational systems
Lecture II: A study of non-Zenoness
Lecture III: Time-stepping methods and their convergence analysis
Lecture IV: Linear-quadratic optimal control with mixed state-control constraints
Lecture V: Open-loop differential Nash games with mixed state-control constraints.

These topics are drawn from the author’s joint work with his collaborators as
contained in the cited references. Consistent with the main theme of the Summer
School, the lectures aim at presenting the DVI/DCS as a powerful framework for
multi-agent optimization-based decision making in continuous time. A compre-
hensive survey of the topic of DVI addressed to the broad applied mathematics
community is presently being prepared that contains many other topics including a
host of engineering applications and details on system-theoretic issues.
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2.2 Lecture I: Differential Variational Systems

On one hand, ODEs with smooth right-hand sides have a long history in mathemat-
ics:

ẋ � dx(t)

dt
= f (t; x(t)) modeling systems in evolution

0 = Ψ (x(0); x(T )) prescribed initial and terminal conditions,

where f : R
1+n → R

n and Ψ : R
2n → R

n are differentiable vector functions
and T > 0 is the time horizon of the system. On the other hand, mathematical
programming is a post-world war II subject, typically posed as a constrained
optimization problem in finite dimensions:

minimize
x∈X

θ(x), (2.1)

where X is a closed subset of Rn, which in many applications is convex and θ :
Ω → R is a continuous scalar-valued function defined on an open superset of X.
While there are several extensions of ODEs, most notably, differential algebraic
equations [11, 77], equations with discontinuous right-hand sides [49, 121], multi-
valued differential equations [42], differential inclusions [15, 118], studies in the
differential world have been minimally connected to the contemporary subject of
optimization.

Extending the first-order optimality condition of the optimization problem (2.1)
when the objective function θ is differentiable and the feasible set X is closed and
convex, the finite-dimensional variational inequality [45], denoted VI (X,Φ), where
Φ : Ω → R

n is a given continuous vector function, is to find a vector x ∈ X such
that

( x ′ − x )T Φ(x) ≥ 0, ∀ x ′ ∈ X.

The solution set of this VI is denoted by SOL(X,Φ). The special case of X being a
cone C leads to the complementarity problem that has the form:

C � x ⊥ Φ(x) ∈ C ∗,

where C ∗ � {v ∈ R
n | vT x ≥ 0 for all x ∈ C } is the dual cone of C as in

convex analysis. While there are also many extensions and special cases of the
VI/CP, such as the quasi-VI (where the constant set X is replaced by the varying
set X(x)), the generalized VI (where Φ is multi-valued), and the Karush-Kuhn-
Tucker (KKT) conditions (when the set X is finitely representable satisfying certain
constraint qualifications),the study of these variational problems remains in a static
(at best discrete-time) setting where the temporal element is never a part of the
problems. In spite of this deficiency, the strengths of the mathematical programming
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field are the fruitful treatment of algebraic inequalities and the emphasis on
computational efficiency. As a consequence, piecewise properties, non-smoothness,
multi-valuedness, disjunctions, and logical relations are nowadays all amenable to
effective treatment in practical applications.

Formally, defined by the tuple (K; F ; H ; Ψ ;T ), where K is a closed convex
set in R

m, F and H are continuous mappings from R
1+n+m into R

n, and Ψ and
T are the same as above, the differential variational inequality with initial and
boundary conditions is to find continuous-time trajectories x : [0,T ] → R

n and
u : [0,T ] → R

m such that

ẋ(t) = F(t, x(t), u(t)) system dynamics

u(t) ∈ SOL (K,H(t, x(t), •)) variational condition

0 = Ψ (x(0), x(T )) two-point boundary condition.

(2.2)

When Ψ (x, y) = x − b for some constant vector b, the system becomes one of the
initial-value kind. A differential complementarity system is the special case where
the set K is a cone. Among the special cases of the DCS is the time-invariant affine
complementarity system (LCS) with affine two-point boundary conditions that is
defined by the matrices A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n, D ∈ R
m×m and two

matrices M and N that are both n × n, as well as vectors r ∈ R
n, s ∈ R

m, and
b ∈ R

n:

ẋ = r + Ax + Bu

0 ≤ u ⊥ s + Cx + Du ≥ 0

b = Mx + Nu.

(2.3)

For ease of reference, we let SOL(q, R) denote the solution set of the linear
complementarity problem, which we denote by LCP (q, R): 0 ≤ u ⊥ q + Ru ≥ 0
for a given vector q and matrix R of the same order as the dimension of q .
Exemplified by the LCS, DVIs form a non-traditional mathematical paradigm
offering a broad, unifying framework for modeling many applied (dis)equilibrium
problems containing:

• dynamics (pathway to equilibrium)
• inequalities (unilateral constraints), and
• disjunctions (paradigm switch).

As a consequence of these features, these dynamical systems exhibit the follow-
ing characteristics:

• state-triggered mode transition that are distinct from arbitrary switchings
• non-smoothness of solution trajectories, extending smooth dynamical systems
• the presence of an endogenous auxiliary variable, satisfying a variational condi-

tion such as complementarity.
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The result is a powerful framework that on one hand can exploit the advances in
mathematical programming to benefit classical unconstrained dynamical systems,
on the other hand extends many optimization and equilibrium problems to a (often
more realistic) continuous-time setting.

An early source of applications of differential variational systems arises from
three-dimensional frictional contact problems in engineering mechanics. Unlike
the traditional setting of continuum mechanics that employs partial differential
equations to describe the fine physics of body deformations under stresses and
strains (see e.g. the work of Klarbring [74, 75] who advocated mathematical pro-
gramming methods for solving these problems), discrete or discretized mechanical
systems [76] are useful for the modeling of multi-rigid-body systems where body
deformations are ignored. The complementarity approach for the treatment of such
systems was initiated by the pioneering work of Lötstedt [82, 83] and has today
developed into a very effective framework for the numerical simulation of rather
complexmechanical systems under frictional contact. There are several monographs
[20, 105, 127], reviews [22, 76, 123], and a vast literature including [1, 3, 6–
8, 10, 36, 37, 51, 101, 122, 130, 136, 137] to name a sample of references. As an
alternative to a rigid-body model, a local compliance model was introduced in the
Ph.D. thesis [119] to circumvent many of the deficiencies of the former model; see
also [97, 120]. In this resulting DVI, the algebraic variable u ∈ R

m is partitioned in
2 components: y ∈ R

�1 and v ∈ R
�2 with y being subject to a complementarity

condition (modeling a non-penetration condition in the normal direction) and v

satisfying a variational condition that is parameterized by (x, y) (modeling a friction
principle in two tangential directions),

ẋ = A(x, y) + B(x, y)v

0 ≤ y ⊥ G(x, y) ≥ 0

v ∈ SOL(K(x, y),H(x, y, •)),

(2.4)

where we have omitted the initial/boundary conditions. Incidentally, the particular
form of the right-hand side in the ODE—linearity in the primary variable v of the
VI—is essential to derive existence results and algorithmic convergence for the DVI;
see the discussion following Proposition 1.

2.3 Lecture I: DVI in a Multi-Agent Paradigm

In order to discuss the role of the DVI in the context of optimization-based
multi-agent decision making, it would be useful to first introduce the static non-
cooperative game without the temporal aspect. In this multi-agent game, there are
N selfish players each optimizing an objective function subject to constraints on
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his/her strategies while anticipating the rivals’ strategies. For i = 1, · · · , N , let
Xi ⊆ R

ni be a closed convex set of player i’s admissible strategies and θi : Ω → R

be his/her objective function defined on the open set Ω containing X �
N∏

i=1

Xi .

Anticipating x−i �
(
xj
)
j �=i

, player i solves the following parametric optimization
problem to determine a best response:

minimize
xi∈Xi

θ(xi, x−i ). (2.5)

A Nash equilibrium (NE) is a tuple x∗ �
(
x∗,j

)N
j=1 such that

x∗,i ∈ minimize
xi∈Xi

θi(x
i, x∗,−i ).

When each θi(•, x−i ) is convex and differentiable for every fixed x−i ∈ X −i �∏

j �=i

X j , it follows that x∗ is a NE if and only if x∗ ∈ SOL(X,Φ), where Φ(x) �

(∇xi θi(x)
)N
i=1. For a recent summary of the Nash equilibrium problem, see [46]

where the reader can find many references on distributed algorithms for solving this
problem.

The continuous-time extension of the above static game replaces each player’s
finite-dimensional optimization problem (2.5) by an optimal control problem, which
we formulate as follows [59]. Given a time horizon T > 0 and an initial state
ξ ∈ R

n, find an absolutely continuous state trajectory x : [0,T ] → R
n and an

integrable control u : [0,T ] → R
m:

minimize
x,u

V (x, u) � ϕ(x(T )) +
∫ T

0
φ(t, x(t), u(t)) dt

subject to x(0) = ξ and for almost all t ∈ [ 0,T ] :
ẋ(t) = r + Ax(t) + Bu(t)︸ ︷︷ ︸

linear dynamics

and f + Cx(t) + Du(t) ≥ 0︸ ︷︷ ︸
mixed state-control constraints

,

where (A,B,C,D) are constant matrices, (r, f ) are constant vectors, and ϕ and φ

are given functions. To simplify the discussion, we consider only linear dynamics
but allow the algebraic constraints to contain both the state and control variables
jointly. To formulate the optimality conditions of the above control problem as a
DVI, let λ(t) be the adjoint variable associated with the ODE. We then have the
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following system:

λ̇(t) = −∇xφ(t, x(t), u(t)) − AT λ(t), λ(T ) = ∇ϕ(x(T ))

ẋ(t) = r + Ax(t) + Bu(t), x(0) = ξ,

and u(t) ∈ argmin
u

⎡

⎣φ(t, x(t), u) + λ(t)T ( r + Ax(t) + Bu )︸ ︷︷ ︸
Hamiltonian

⎤

⎦

subject to f + Cx(t) + Du ≥ 0,

which has an initial condition x(0) = ξ and a terminal condition λ(T ) =
∇ϕ(x(T )) on the (primal) state variable x and the (dual) adjoint variable λ,
respectively. Extending the single optimal control problem to a multi-agent context
yields the differential Nash game, which is formally defined as follows. While
anticipating rivals’ pairs (x−i , u−i ) �

(
xj , uj

)
j �=i

of strategy trajectories, player

i seeks a pair of state-control trajectories (xi, ui) to

minimize
xi ,ui

V (xi, x−i , ui, u−i )

subject to xi(0) = ξ i and for almost all t ∈ [ 0,T ] :
ẋi(t) = ri + Aixi(t) + Biui(t)

and f i + Cixi(t) + Diui(t) ≥ 0.

A differential Nash equilibrium is a tuple (x∗, u∗) �
(
x∗,i , u∗,i

)N
i=1 of players’

strategies such that for all i = 1, · · · , N ,

( x∗,i, u∗,i ) ∈ argmin
xi ,ui

V (xi, x∗,−i , ui, u∗,−i )

subject to (xi, ui) satisfies player i’s constraints.

Concatenating the optimality conditions of the players’ problems, we obtain an
aggregated DVI whose solutions will be shown to be Nash equilibria. Unlike
the static problem where the players’ strategies are finite-dimensional vectors,
the differential Nash problem considerably more complicated to analyze; for one
thing, we have not even prescribed the regularity property of a solution trajectory
to the differential variational problems introduced thus far. Unlike the treatment
in the monograph [18] where computation is not emphasized, the optimization-
based DVI framework allows us to develop effective algorithms for solving this
continuous-time game as defined above. Such algorithms are in turn based on time
discretizations of the interval [0,T ] that result in finite-dimensional optimization
subproblems which can be solved by well established algorithms.
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2.4 Lecture I: Modeling Breadth

By way of a simple LCS, we illustrate the complexity of such a differential system
coupled with complementarity constraints. It is well known that the (trivial) initial-
value ODE: ẋ = Ax with x(0) = x0 has an explicit solution x(t; x0) = eAtx0 that
is a linear function of x0 for every fixed t; moreover, many other obvious properties
can be said about this solution. For instance, x(•; x0) is an analytic function for
fixed x0. Now, consider a simple variant with A �= B

ẋ =

⎧
⎪⎪⎨

⎪⎪⎩

Ax if cT x < 0

? if cT x = 0

Bx if cT x > 0,

(2.6)

which identifies one mode of the system on the “positive” side of the hyperplane
cT x = 0 and a possibly different mode on the other side of the same hyperplane;
thus (2.6) is potentially a bimodal system. There are two cases depending on how the
system evolves on the hyperplane. One case is that the trajectory crosses smoothly,
which happens when Ax = Bx on cT x = 0 that corresponds to the situation where
the right-hand side of the ODE is continuous; the other case is when the crossing
is discontinuous, i.e., Ax �= Bx when cT x = 0. In the former case, we must have
B = A + bcT for some vector b. Hence, the ODE (2.6) becomes

ẋ = Ax + bmax(0, cT x), (2.7)

with the right-hand side being a simple piecewise linear function. Despite its
simplicity, there is no explicit form for a solution to this piecewise linear ODE with
initial condition x0, although such a solution x(t; x0) still has the desirable property
that x(•; x0) is a C1, albeit no longer analytic, function for fixed x0. Moreover,
to show that the continuous dependence of the solution on the initial condition
x0 is no longer as trivial as the previous case of a linear ODE. It turns out one
can establish that x(t; •) is semismooth [100], a property that is fundamental in
nonsmooth analysis; see [45, Definition 7.4.2].

The system (2.7) is a special piecewise ODE. Specifically, we recall [45,
Definition 4.2.1] that a continuous function Φ : R

n → R
n is piecewise affine

(linear) if there exists a polyhedral (conic) subdivision Ξ of Rn and a finite family
of affine (linear) functions {Gi} such that Φ coincides with one of the functions Gi

on each polyhedron in Ξ . In turn, a polyhedral (conic) subdivision Ξ of Rn is a
finite family of polyhedral sets (cones) that has the following three properties:

• the union of all polyhedra in the family is equal to Rn;
• each polyhedron in the family is of dimension n, and
• the intersection of any two polyhedra in the family is either empty or a common

proper face of both polyhedra.
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A conwise linear system (CLS) is a piecewise system: ẋ = Φ(x) where Φ is a
(continuous) piecewise linear function. Since the latter function must be (globally)
Lipschitz continuous, the existence and uniqueness of a C1 trajectory to a CLS for
every initial condition is immediate.

Returning to the discontinuous case of (2.6), Filippov [49] proposed convex-
ification of the right-hand side, expressing this bimodal system as a differential
inclusion:

ẋ ∈ F(x) �

⎧
⎪⎪⎨

⎪⎪⎩

{ Ax } if cT x > 0

{ λAx + (1 − λ)Bx | λ ∈ [0, 1]} if cT x = 0

{ Bx } if cT x < 0.

(2.8)

In turn, one can convert the set-valued right-hand side into a single-valued using the
complementarity condition. To do this, write cT x = η+ − η− as the difference
of its nonnegative and nonpositive part, η±, respectively so that the set-valued
ODE (2.8) becomes a complementarity system with a bilinear ODE and a linear
complementarity condition defined by a positive semidefinite, albeit asymmetric
matrix:

ẋ = λAx + (1 − λ)Bx

0 ≤
(

λ

η+
)

⊥
(−cT x

1

)
+

[
0 1

−1 0

]

︸ ︷︷ ︸
asymmetric positive
semidefinite

(
λ

η+
)

≥ 0.

The multivalued signum function can be expressed by a complementarity condition

as follows: for a scalar a, this function defined as sgn(a)

⎧
⎨

⎩

� 1 if a > 0
∈ [−1, 1] if a = 0
� −1 if a < 0

is characterized as a scalar â satisfying, for some λ, the two complementarity
conditions: 0 ≤ 1 + â ⊥ −a + λ ≥ 0 and 0 ≤ λ ⊥ 1 − â ≥ 0. Scalar piecewise
functions can also be expressed by the complementarity condition. For instance,
consider the following univariate function f , which we assume, for notational
convenience, is defined on the real line:

f (x) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) if −∞ < x ≤ a1

f2(x) if a1 ≤ x ≤ a2

...
...

fk(x) if ak−1 ≤ x ≤ ak

fk+1(x) if ak ≤ x < ∞,
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with each fi being a smooth function and the overall function f being continuous.
It is not difficult to verify the following complementarity representation of this
piecewise function:

f (x) = f1(x1) +
k+1∑

i=2

[fi(ai−1 + xi) − fi(ai−1) ] with x =
k+1∑

i=1

xi,

where each xi denotes the portion of x in the interval [ai−1, ai ], and satisfies

0 ≤ x2 ⊥ a1 − x1 ≥ 0

and for i = 3, · · · , k + 1,

0 ≤ xi ⊥ ( ai−1 − ai−2 ) − xi−1 ≥ 0.

As a result of the breadth of the variational and complementarity conditions in
modeling mathematical properties and physical phenomena, the DVI and DCS pro-
vide a promising framework for the constructive treatment of nonsmooth dynamics,
enabling the fruitful application of the advances in the fundamental theory and
computational methods for solving the finite-dimensional VI/CP to the dynamic
contexts.

We have so far described several contexts where the DVI and DCS have an
important role to play; these include: optimal control problems with joint state and
control constraints that are the basis for extension to differential non-cooperative
multi-agent games, and the reformulation of ODEs with discontinuous and multi-
valued right-hand sides. We have briefly mentioned the application to frictional
contact problems; there are several other areas where the these non-traditional
differential systems arise, in continuous-time dynamic user equilibrium in traffic
planning [58, 85–89, 104], and in biological synthesis modeling [4, 41, 90].

2.5 Lecture I: Solution Concepts and Existence

The DVI (2.2) can be converted to an ODE with the same initial-boundary
conditions under a strong monotonicity assumption of mapping H(t, x, •) in the
variational condition. Specifically, if there exists a constant γ > 0 such that for all
u and u ′ in K ,

(
u − u ′ )T [

H(t, x, u) − H(t, x, u ′)
] ≥ γ ‖u − u ′‖2, ∀ ( t, x ) ∈ [ 0,T ] × R

n,

then for every (t, x) ∈ [0,T ] × R
n, the VI (K,H(t, x, •)) has a unique solution

which we denote u(t, x); moreover, this solution is Lipschitz continuous in (t, x) if
H(•, •, u) is Lipschitz continuous with a modulus that is independent of u ∈ K .
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Thus under these assumptions, the DVI (2.2) become the (classic) ODE with a
Lipschitz continuous right-hand side, provided that F is Lipschitz continuous in
its arguments:

ẋ(t) = F(t, x(t)) � F(t, x(t), u(t, x(t)))

with the same initial-boundary conditions. Using Robinson’s theory of strong reg-
ularity [107] that since its initial publication has many extensions and refinements,
one can obtain a similar conversion, albeit only locally near a tuple (0, x0, u0),
where u0 is a strongly regular solution of the VI (K,H(0, x0, •)). We omit the
details which can be found in [102]. For the LCS (2.3), a similar conversion holds
provided that the matrix D is of the class P, i.e., all its principal minors are positive
[38].

When the Lipschitz conversion fails, the next best thing would be to obtain a
weak solution in the sense of Carathéodory; such is a pair of trajectory (x, u), with
x being absolutely continuous and u being (Lebesque) integrable on [0,T ] so that
the ODE holds in the integral sense; i.e.,

x(t) = x(0) +
∫ t

0
F(s, x(s), u(s)) ds, ∀ t ∈ [ 0,T ],

and the membership u(t) ∈ SOL(K,H(t, x(t), •) holds for almost all t ∈ [0,T ],
or equivalently, u(t) ∈ K for almost all t ∈ [0,T ] and for all continuous function
v : [0,T ] → K ,

∫ T

0
( u(s) − v(s) )T H(s, x(s), u(s)) ds ≥ 0.

Conditions for the existence of a weak solution of the DVI can be found in [102].
In what follows, we present an existence result via the formulation of (2.2) as a
differential inclusion (DI):

ẋ(t) ∈ F(t, x(t)) � F(t, x(t),SOL(K,H(t, x(t), •)), x(0) = x0. (2.9)

Specifically, the result [15, 118] provides two conditions on the abstract set-valued
mapping F under which a weak solution in the sense of Carathéodory exists; such
is an absolutely continuous (thus differentiable almost everywhere) function x(t)

satisfying the initial condition and the inclusion ẋ(t) ∈ F(t, x(t)) for almost all
t ∈ [0,T ]. One condition is the upper semicontinuity of F(t, x) on its domain.
In general, a set-valued map Φ : R

n → R
n is upper semi-continuous at a point

x̂ ∈ dom(Φ) if for every open set V containing Φ(̂x), an open neighborhoodN of
Φ(̂x) exists such that, for each x ∈ N , V contains Φ(x).
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Proposition 1 Suppose that F : [0, T ] × R
n → R

n is an upper semi-continuous
set-valued map with nonempty closed convex values and satisfies

• the linear growth condition, i.e., ∃ ρ > 0 such that

sup { ‖ y ‖ | y ∈ F(t, x) } ≤ ρ ( 1 + ‖ x ‖ ), ∀ (t, x) ∈ [0,T ] × R
n.

Then for all x0,

(a) the DI (2.9) has a weak solution in the sense of Carathéodory on [0,T ];
(b) a measurable function z : [0,T ] → R

m exists such that for almost all t ∈
[0, T ], z(t) ∈ SOL(K,H(t, x(t), •)) and ẋ(t) = F(t, x(t), z(t)), where x(t) is
the solution in (a). �

Specialized to the VI (K,H(t, x, •)), the two conditions (a) and (b) beg the
following questions:

• When is the map: F : (t, x) → F(t, x,SOL(K,H(t, x, •))) upper semi-
continuous with nonempty closed convex values?

• When does the linear growth condition hold for the composite VI map?

In essence, the latter two questions can both be answered by invoking results
form variational inequality theory [45]. Nevertheless, the convexity of the set
F(t, x,SOL(K,H(t, x, •))) restricts the function F(t, x, •) to be affine in the last
argument so that F(t, x, u) = A(t, x) + B(t, x)u for some vector-valued function
A : [0,T ] × R

n → R
n and matrix-valued function B : [0,T ] × R

n →
R

n×m. Details can be found in [102] which also contains results for the two-point
boundary-value problem. Uniqueness of solution for the (initial-value) DCS has
been analyzed extensively in [126]. For the initial-value LCS (2.3) with N = 0
and M = I , a sufficient condition for the existence of a unique C1 x-trajectory
with no guarantee on uniqueness on the u-trajectory is when the set BSOL(Cx,D)

is a singleton for all x ∈ R
n; we call this a x-uniqueness property. An LCS

with the latter singleton property is an instance of a conewise linear system.
Parallel to the study of hybrid systems [29], the well-posedness (i.e., existence
and uniqueness of solutions) of conewise linear systems have been studied in
[27, 65, 134, 135]. It should be cautioned that all these well-posedness results
are of the initial-value kind and are not directly applicable to either the mixed
state-control constrained optimal control problem or its multi-agent generalization
of a non-cooperative game, which, for one thing, are special problems with two-
point boundary conditions. Details of the latter two problems will be presented
subsequently. Finally, we refer to [100] where results on the dependence on initial
conditions of the solution trajectory can be found, under a uniqueness hypothesis of
the solution.
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2.6 Lecture I: Summary

In this lecture, we have

• motivated and formally defined several differential variational/complementarity
systems;

• presented several applications of such systems, including the differential
Nash game involving multiple competitive, optimizing decision makers in a
continuous-time setting;

• briefly described a number of technical issues, discussed the Lipschitz case,
introduced the concept of a weak solution and provided a general existence result
based on the formulation as a differential inclusion.

2.7 Lecture II: The Zeno Phenomenon

There are many paradoxes due to the Greek philosopher Zeno of Elea (ca. 490–430
BC); a famous one is the time-motion paradox having to do with a race between
Tortoise and Archilles. The paradox is as follows.

The Tortoise challenged Achilles to a race, claiming that he would win as long as Achilles
gave him a small head start. Achilles laughed at this, for of course he was a mighty warrior
and swift of foot, whereas the Tortoise was heavy and slow. “How big a head start do you
need?” he asked the Tortoise with a smile. “Ten meters,” the latter replied. Achilles laughed
louder than ever. “You will surely lose, my friend, in that case,” he told the Tortoise, “but
let us race, if you wish it.” “On the contrary,” said the Tortoise, “I will win, and I can prove
it to you by a simple argument.” “Go on then,”; Achilles replied, with less confidence than
he felt before. He knew he was the superior athlete, but he also knew the Tortoise had the
sharper wits, and he had lost many a bewildering argument with him before this.
[http://platonicrealms.com/encyclopedia/Zenos-Paradox-of-the-Tortoise-and-Achilles]

Mathematically, the Zeno phenomenon is probably the most fundamental prop-
erty of a dynamical system subject to mode changes. The phenomenon refers to the
possibility that there exist infinitely many such changes in a finite time interval. If a
particular state of a solution trajectory is of the Zeno type, i.e., if this phenomenon
occurs in a time interval surrounding this state, it will lead to great difficulty
in faithfully analyzing and simulating such a trajectory in practice; the reason is
simple: it is not possible to capture and predict the infinitely many mode transitions.
The Zenoness of a state is a local property that arises at a finite time instance;
there is also the asymptotic Zenoness that one needs to be concerned with if one
is interested in investigating the long-time behavior (such as stability) of a solution
trajectory; for such a solution trajectory, there is not a single mode in which the
trajectory will remain in no matter how long time passes. For both theoretical and
practical considerations, it is important to gain a clear understanding of the Zeno
property, both long and short-time, of a constrained dynamical systems, particularly
to identify systems where Zenoness is absent in their solutions.

http://platonicrealms.com/encyclopedia/Zenos-Paradox-of-the-Tortoise-and-Achilles
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In the case of the DCS where algebraic inequalities and logical disjunctions
are present, mode switches are the result of activation and de-activation of these
inequalities and the realization of the disjunctions. Historically, mode changes
in (smooth) ODEs with piecewise analytic right-hand sides have been studied in
[24, 133]. There are subsequent studies of “one-side non-Zenoness” for certain
complementarity systems [26] and hybrid systems in control theory [71, 141].
A systematic study of (two-sided) non-Zenoness for complementarity systems was
initiated in [114] that has led to several extensions [30, 55, 99, 113, 115–117]. We
summarize the results in these references in the next several sections.

Before doing so, we return to the Zeno’s paradox of the Tortoise and Archilles.
What’s the Tortoise’s argument? Who wins the race? Define an event as a moment
when Achilles catches up to the Tortoise’s previous position. How many events
are there during the race? Can all such events be tracked? How is this paradox
related to the DVI? How do we formalize events mathematically and analyze the
Zeno phenomenon for the DVI? Let’s translate these questions to the bimodal ODE
given by

ẋ = Ax + b max( 0, cT x ), x(0) = x0,

whose unique solution we denote x(t; x0). The following are the above questions
rephrased for this trajectory. How often does the trajectory x(t; x0) switch between
the two halfspaces? In finite time? In infinite time? What does “switch” mean
formally? Is touching the hyperplane considered a switch? Does the system exhibit
the Zeno behavior, i.e., are there infinitely many mode switches in finite time?
Are there bimodal systems with (in)finite many switches in long time? Can we
characterize bimodal systems with finite numbers of switches, including zero, in
infinite time? These are questions that the study of (non)-Zenoness aims to address.

2.8 Lecture II: Non-Zenoness of Complementarity Systems

Consider the time-invariant nonlinear complementarity system (NCS):

ẋ = F(x, y)

0 ≤ u ⊥ G(x, u) ≥ 0.
(2.10)

Let (x(t), u(t)) denote a given solution trajectory. Associated with this solution,
define three fundamental index sets at time t:

α(t) � { i | ui(t) > 0 = Gi(x(t), u(t)) } , inactive u-indices

β(t) � { i | ui(t) = 0 = Gi(x(t), u(t)) } , degenerate u-indices

γ (t) � { i | ui(t) = 0 < Gi(x(t), u(t)) } , strongly active u-indices.
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The switchings of the index sets amount to the transitions among the differential
algebraic equations (DAEs):

ẋ = F(x, u)

0 = uI

0 = GJ (x, u),

each called a mode of the NCS, for various pairs of index sets I and J that
partition {1, · · · ,m}. There are 2m such pairs of index sets. Phrasing the discussion
in the last section in this specific context, we re-iterate that mode switchings are a
major concern in

• the design and analysis of the convergence rates of numerical schemes, particu-
larly for methods with high-order methods (for T < ∞), and

• establishing any kind of asymptotic system-theoretic properties, such as Lya-
punov stability, observability, reachability (for T = ∞).

Practically, it is impossible to simulate all mode switchings near a Zeno state.
Analytically, all classical results in systems theory are invalidated due to the mode
switches. Throughout the absence of Zeno states is key. The two main challenges in
an analysis of Zenoness are:

• nonsmoothness: solution trajectory is at best once continuously differentiable,
• unknown switchings: dependent on initial conditions, implicit and at unknown

times.

2.8.1 Solution Expansion

In what follows, we summarize the steps in the analysis that lead to the demon-
stration of non-Zenoness of the LCS that has F(x, u) = Ax + Bu and G(x, u) =
Cx + Du; cf. (2.3). First is the assumption that D is a P-matrix [38], which yields
the existence and uniqueness of a solution to the LCP (q,D) for all vectors q ∈ R

m.
This then implies the existence and uniqueness of a solution pair (x(t), u(t)) of the
initial-value LCS:

ẋ = Ax + Bu, x(0) = x0

0 ≤ u ⊥ Cx + Du ≥ 0.
(2.11)

The P-property of D further implies for that every x, the LCP (Cx,D) has a
unique solution which we denote u(x); moreover this solution function is piecewise
linear. Thus it is directionally differentiable everywhere with directional derivative,
denoted u ′(x; d) at x at a direction d ∈ R

n being the unique vector v satisfying the
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mixed linear complementarity conditions:

vα = 0 ≤ ( Cx + Du )α

0 ≤ vβ ⊥ ( Cx + Du )β ≤ 0

vγ ≥ 0 = ( Cx + Du )α,

Fix a time t∗ > 0 (the following analysis applies also to the initial time t = 0 except
that there is no backward time to speak about in this case). Suppose that the state
x∗ � x(t∗) is unobservable for the linear system; that is, suppose that CAjx∗ = 0
for all j = 0, 1, · · · . In this case the trivial solution x(t) = eA(t−t∗)x∗ derived from
u(t) = 0 is the unique solution trajectory; thus the three index sets α(t), β(t), and
γ (t) remain constant throughout the time duration.

Theorem 1 Let D be a P-matrix and (x(t), u(t)) be the unique pair of solutions
to the initial-value LCS (2.11). For every t∗ > 0, there exist ε > 0 and index sets
(α±

t∗ , β±
t∗ , γ ±

t∗ ) so that

( α(t), β(t), γ (t) ) = (
α−

t∗ , β−
t∗ , γ −

t∗
)
, ∀ t ∈ [ t∗ − ε, t∗ )

( α(t), β(t), γ (t) ) = (
α+

t∗ , β+
t∗ , γ +

t∗
)
, ∀ t ∈ ( t∗, t∗ + ε ].

Hence for every T > 0, both x(t) and u(t) are continuous, piecewise analytic in
[0,T ]; more precisely, there exists a finite partition of this time interval:

0 = t0 < t1 < t2 < · · · < tN−1 < tN � T (2.12)

such that both x(t) and u(t) are analytic functions in each open subinterval (ti−1, ti )

for i = 1, · · · , N . �
The proof of the above result is based on an expansion of the solution trajectory

x(t) near time t∗: Let x∗ = x(t∗) be the state of the solution trajectory (x(t), u(t))

at this time. Without loss of generality, we may assume that a nonnegative integer k

exists such that CAjx∗ = 0 for all j = 0, · · · k − 1. For all t > t∗,

x(t) =
k+2∑

j=0

(t − t∗)j

j ! Ajx∗ + (t − t∗)k+1

(k + 1)! Bu(CAkx∗)

+ (t − t∗)k+2

(k + 2)! Bu ′(CAkx∗; CA(k+1)x∗ + CBu(CAkx∗)) + o((t − t∗)k+2)

u(t) = (t − t∗)k

k!︸ ︷︷ ︸
dominant term

u(CAkx∗)

+ (t − t∗)k+1

(k + 1)! u ′(CAkx∗; CA(k+1)x∗ + CBu(CAkx∗)) + o((t − t∗)k+1).
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Here u(CAkx∗) is the unique solution of the LCP (CAkx∗,D). The latter expansion
establishes that locally near t∗, the sign of ui(t) is dictated by the sign of ui(CAkx∗),
where k is the first nonnegative index for which CAkx∗ �= 0; similarly for w(t) �
Cx(t) + Du(t). The proof is completed by an inductive argument via a dimension
reduction of the LCS. A similar expansion and argument can be derived for t < t∗.
The existence of the partition (2.12) and the analyticity of (x(t), u(t)) on each of the
(open) subintervals follow from the piecewise constancy of the triple of index sets
(α(t), β(t), γ (t)) which implies that each of the subintervals, the pair of trajectories
coincide with the solution of the linear DAE:

ẋ = Ax + Bu

0 = Cα•x + Dααuα

0 = uβ, and uγ = 0

with the principal submatrix Dαα being nonsingular.
Calling a state x∗ = x(t∗) for which the triple of index set (α(t), β(t), γ (t))

remains constant for all times t sufficiently close to the nominal time t∗ in the sense
of Theorem 1 non-Zeno, we deduce from this theorem that the unique solution
trajectory of an LCS defined by the tuple (A,B,C,D) with D being a P-matrix
has no Zeno states. A similar result holds for the NCS (2.10) for analytic functions
F and G under the assumption that the state u∗ is a strongly regular solution of
the NCP

0 ≤ u ⊥ G(x∗, u) ≥ 0. (2.13)

Strong regularity can be characterized in a number of ways. In particular, a matrix-
theoretic characterization of the condition is as follows. Writing (α∗, β∗, γ∗) �
(α(t∗), β(t∗), γ (t∗)), we may partition the Jacobian matrix JuG(x∗, u∗) as

⎡
⎢⎢⎣

Jα∗Gα∗(x
∗, u∗) Jβ∗Gα∗(x

∗, u∗) Jγ∗Gα∗(x
∗, u∗)

Jα∗Gβ∗(x
∗, u∗) Jβ∗Gβ∗(x

∗, u∗) Jγ∗Gβ∗(x
∗, u∗)

Jα∗Gγ∗(x
∗, u∗) Jβ∗Gγ∗(x

∗, u∗) Jγ∗Gγ∗(x
∗, u∗)

⎤
⎥⎥⎦ .

It is known [45, Corollary 5.3.20] that u∗ is a strongly regular solution of the NCP
(2.13) if and only if: a) the principal submatrix Jα∗Gα∗(x

∗, u∗) is nonsingular, and
b) the Schur complement

Jβ∗Gβ∗(x
∗, u∗) − Jα∗Gβ∗(x

∗, u∗)
[
Jα∗Gα∗(x

∗, u∗)
]−1

Jβ∗Gα∗(x
∗, u∗)

is a P-matrix. Under this assumption, it follows that there exist open neighborhoods
V and U of x∗ and u∗, respectively, and a Lipschitz continuous function u : V →
U such that for every x ∈ V , u(x) is the unique vector u in U that satisfies the
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NCP: 0 ≤ u ⊥ G(x, u) ≥ 0. Employing this NCP solution function, it follows
that near the time t∗, there is a unique solution trajectory (x(t), u(t)) of the NCS
(2.10) passing through the pair (x(t∗), u(t∗)) at time t∗ and staying near this base
pair. Moreover, we can derive a similar expansion of this solution trajectory similar
to that of the LCS. To describe this expansion, let Lk

f C(x) denote the Lie derivative
[73, 95] of a smooth vector-valued function C(x) with respect to the vector field
f (x), that is, L0

f C(x) � C(x), and inductively,

Lk
f C(x) =

[
JLk−1

f C(x)
]
f (x), for k ≥ 1,

where JLk−1
f C(x) denote the Jacobian matrix of the vector functionLk−1

f C(x). See
the cited references for the fundamental role the Lie derivatives play in nonlinear
systems theory. In deriving the solution expansion of the solution pair (x(t), u(t))

near time t∗, we take u∗ = G(x∗, u∗) = 0 without loss of generality because
otherwise, i.e., if either u∗ �= 0 orG(x∗, u∗) �= 0, we may then reduce the dimension
of the algebraic variable u by at least one and obtain a system locally equivalent to
the original NCS for which the induction hypothesis is applicable to establish the
constancy of the index sets (α(t), β(t), γ (t)) near t∗. With u∗ = G(x∗, u∗) = 0, let
f (x) � F(x, 0) and C(x) � G(x, 0). The strong regularity of u∗ implies that the
Jacobian matrix D∗ � JG(x∗, 0) is a P-matrix. Suppose that Li

f C(x∗) = 0 for all
i = 1, · · · , k − 1, then for all t > t∗ sufficiently near t∗,

x∗(t) = x∗ +
k∑

j=0

(t − t∗)(j+1)

(j + 1)! L
j
f f (x∗)

+ (t − t∗)(k+1)

(k + 1)! JuF (x∗, u∗)vk∗ + o((t − t∗)k+1)

u∗(t) = (t − t∗)k

k! vk∗,

where vk∗ is the unique solution to the LCP (Lk
f C(x∗),D). Based on this assump-

tion and dividing the argument into two cases: Lk
f C(x∗) = 0 for all nonnegative

integer k or otherwise, we can complete the proof of the desired invariance of the
index triple (α(t), β(t), γ (t)) near t∗.

The above non-Zeno results have been extended to the Karush-Kuhn-Tucker
(KKT) system derived from the DVI (2.4) by assuming that K(x, y) is a polyhedron
given by {v | D(x, y) + Ev ≥ 0} and H(x, y, v) � C(x, y) + N(x)v:

ẋ = A(x, y) + B(x, y)v,

0 ≤ y ⊥ G(x, y) ≥ 0,

0 = C(x, y) + N(x)v − ET λ,

0 ≤ λ ⊥ D(x, y) + Ev ≥ 0,

(2.14)
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where E is a constant matrix, and λ represents the Lagrange multiplier of the
constraint D(x, y) + Ev ≥ 0, which is non-unique in general. The condition
0 = C(x, y) + N(x)v − ET λ implies that the vector C(x, y) + N(x)v belongs to
the conical hull of the columns of ET , which we denote pos(ET ). In addition to the
fundamental index sets α(t), β(t), and γ (t) associated with the complementarity
condition: 0 ≤ y ⊥ G(x, y) ≥ 0, we also have the following index sets for the
second complementarity condition:

I (t) � { i | [D(x(t), y(t)) + Ev(t)]i = 0 },
J (t) � { i | [D(x(t), y(t)) + Ev(t)]i > 0 }.

Furthermore, for a given state (x∗, y∗, v∗) of a solution trajectory (x(t), y(t), v(t))

at time t∗, we assume that (i) the functions A, B, G, C, D, and N are analytic in a
neighborhood of (x∗, y∗); (ii) v∗ is a strongly regular solution of the NCP: 0 ≤ y ⊥
G(x∗, y) ≥ 0; (iii) the matrix N(x∗) is positive definite; and (iv) K(x, y) �= ∅ for
any (x, y) with y ≥ 0 in a neighborhood of (x∗, y∗). Under these assumptions, the
following two properties can be proved:

• For all (x, y) near (x∗, y∗) with y ≥ 0, SOL(K(x, y); H(x, y, •)) is a singleton
whose unique element we denote v(x, y);

• The solution function v(x, y) for y ≥ 0 is Lipschitz continuous and piecewise
analytic near (x∗, y∗).

In terms of the above implicit functions y(x) and v(x, y), the DVI is equivalent to
ẋ = Υ (x) � A(x, y(x)) + B(x, y(x))v(x, y(x)), with Υ being Lipschitz near x∗.

Like the LCS, we first treat the case where the unique solution, denoted x̂ f , to
the ODE: ẋ = f (x) � A(x, 0) with x(0) = x∗ derived from u = 0 and y = 0 is
the (unique) solution of (2.14). Let

g(x) � G(x, 0); h(x) � D(x, 0), and c(x) � C(x; 0).

If (a) L
j
f g(x∗) = 0 and L

j
f h(x∗) = 0 for all j , and (b) c(̂x f (t)) ∈ pos(ET ) for

all t ≥ 0, then (̂x f , 0, 0) is the unique solution to (2.14). The remaining analysis
treats the case where the conditions (a) and (b) do not hold; a solution expansion is
derived that enables an inductive argument to complete the proof of the following
theorem. For details, see [55].

Theorem 2 Under the above assumptions (i)–(iv), there exist a scalar ε∗ > 0 and
two tuples of index sets (α±, β±, γ±,I±,J±) such that

(
α(t), β(t), γ (t),I (t),J (t)

) = (
α+, β+, γ+,I+,J+

)
, ∀ t ∈ (t∗, t∗ + ε∗],

(
α(t), β(t), γ (t),I (t),J (t)

) = (
α−, β−, γ−,I−,J−

)
, ∀ t ∈ [t∗ − ε∗, t∗).
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In the application of the system (2.4) to contact problems with Coulomb friction
[120], the set K(x, y) is the Lorentz cone. Presently, the extension of Theorem 2 to
this non-polyhedral case remains unsolved.

2.8.2 Non-Zenoness of CLSs

Consider the CLS defined by:

ẋ = Aix, if x ∈ C i (2.15)

where the family of polyhedral cones {C i}Ii=1 is a polyhedral conic subdivision
of Rn. This system is said to satisfy the (forward and backward) non-Zeno property
if for any initial condition x0 ∈ R

n and any t∗ ≥ 0, there exist a scalar ε+ > 0
and indices i± ∈ {1, · · · , I } such that x(t; x0) ∈ C i+ for all t ∈ [t∗, t∗ + ε∗], and
for any t∗ > 0, x(t; x0) ∈ C i− for all t ∈ [t∗ − ε∗, t∗] (backward-time non-Zeno).
A time t∗ ∈ [0,T ] is non-switching in the weak sense if there exist ε∗ > 0 and an
index i∗ ∈ {1, · · · , I } such that x(t) ∈ C i∗ for all t ∈ [t∗ − ε∗, t∗ + ε∗].
Proposition 2 The CLS (2.15) has the non-Zeno property. Moreover, every solution
trajectory of the CLS has at most a finite number of switching times in [0,T ]. �

Not surprisingly, we can also establish the constancy of index sets for the CLS
similar to that for the P-matrix case of the LCS. We refer the readers to [30]
where a proof to Proposition 2 and many other related results for the CLS can be
found.

2.9 Lecture II: Summary

In this lecture, relying heavily on the theories of the LCP and strong regularity, we
have

• explained the Zeno phenomenon and present its formal definition;
• sketched how the non-Zenoness of certain LCS/DVI can be analyzed;
• presented a solution expansion of the trajectory near a nominal state; and
• briefly touched on the property of switching of cone-wise linear complementarity

systems.
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2.10 Lecture III: Numerical Time-Stepping

We next discuss numerical methods for approximating a solution trajectory to the
initial-value, time-invariant DVI:

ẋ = F(x, y, v), x(0) = x0

0 ≤ y ⊥ G(x, y) ≥ 0

v ∈ SOL(K(x, y),H(x, y, •)).

(2.16)

Let h > 0 be a time step so that Nh � T /h is an integer. Let th,0 � 0 and
inductively th,i+1 � th,i + h, for i = 0, 1, · · · , Nh − 1. We approximate the time
derivative by the forward divided difference:

ẋ(t) ≈ x(t + h) − x(t)

h

and let xh,i ≈ x(th,i), yh,i ≈ x(th,i), and vh,i ≈ v(th,i ) be discrete-time iterates
approximating the continuous-time solution trajectory at the discrete time sequence:

0 = th,0 < th,1 < · · · < th,Nh−1 < th,Nh = T .

For a given step size h > 0, we generate the discrete-time iterates

{ xh,i; yh,i; vh,i }Nh

i=0 (2.17)

by solving a finite-dimensional subproblem. Using the above iterates, we then
construct discrete-time trajectories by interpolation as follows:

• The state trajectory xh(t) is obtained by piecewise linear interpolation joining
consecutive iterates; specifically, for i = 0, 1, · · · , Nh − 1,

xh(t) � xh,i + xh,i+1 − xh,i

h
, for t ∈ [ th,i , th,i+1 ].

• The algebraic trajectories yh(t) and vh(t) are obtained as piecewise constant
functions; specifically, for i = 0, 1, · · · , Nh − 1,

yh(t) � yh,i+1

vh(t) � vh,i+1

}
for t ∈ [ th,i , th,i+1 ].

It is desirable that these numerical trajectories converge in a sense to be specified,
at least subsequentially, to some limiting trajectories that constitute a weak
solution of the DVI.
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To facilitate the implementation and analysis of the iterations, the discrete-time
subproblems need to be defined carefully. For this purpose, we focus on the case
where the function F(x, y, v) is given by F(x, y, v) = A(x) + B(x)y + C(x)v; cf.
(2.4) for some vector-valued function A and matrix-valued functions B and C. Note
the linearity in the pair u � (y, v) for fixed x. Let xh,0 = x0. At time step i ≥ 0, we
generate the next iterate (xh,i+1, yh,i+1, vh,i+1) by a backward Euler semi-implicit
scheme:

xh,i+1 = xh,i + h

⎡
⎢⎣A(xh,i+1) + B(xh,i)yh,i+1 + C(xh,i)vh,i+1
︸ ︷︷ ︸

note the presence of the unknown iterates

⎤
⎥⎦

0 ≤ yh,i+1 ⊥ G(xh,i+1, yh,i+1) ≥ 0

vh,i+1 ∈ SOL(K(xh,i+1, yh,i+1),H(xh,i+1, yh,i+1, •)).

From the first equation, we may solve for xh,i+1 in terms of (xh,i, yh,i+1, uh,i+1)

for all h > 0 sufficiently small, provided that ‖A(x)‖ is bounded uniformly for all
x. Specifically, we have

xh,i+1 = [ I − hA(•) ]−1
{

xh,i + h
(
B(xh,i)yh,i+1 + C(xh,i)vh,i+1

) }
.

(2.18)
This solution function may then be substituted into the complementarity and
variational conditions, yielding: a quasi-variational inequality (QVI):

uh,i+1 �

⎛

⎝
yh,i+1

vh,i+1

⎞

⎠ ∈ SOL

⎛

⎝L̂ h,i

⎛

⎝ uh,i+1
︸ ︷︷ ︸

quasi nature

⎞

⎠ , Φ̂ h,i

⎞

⎠ ,

where L̂h,i (uh,i+1) � R
�1 × K(xh,i+1, yh,i+1) and

Φ̂ h,i (uh,i+1) �
(

Ĝ h,i(uh,i+1)

Ĥ h,i(uh,i+1)

)
�

(
G(xh,i+1, yh,i+1)

H(xh,i+1, yh,i+1, vh,i+1)

)

with xh,i+1 substituted by the right-hand side in (2.18). Needless to say, the
solvability of the latter QVI is key to the well-definedness of the iterations; more
importantly, we need to demonstrate that the above QVI has a solution for all h > 0
sufficiently small. Such a demonstration is based on [45, Corollary 2.8.4] specialized
to the QVI on hand; namely, with m = �1 + �2 where �1 and �2 are the dimensions
of the vectors y and v, respectively, and with “cl” and “bd” denoting, respectively,
the closure and boundary of a set, there exists h̄ > 0 such that for all h ∈ (0, h̄],
• L̂h,i : Rm → R

m is closed-valued and convex-valued;
• there exist a bounded open set Ω ⊂ R

m and a vector uh,i;ref ∈ Ω such that
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(a) for every ū ∈ cl Ω , L̂h,i(ū) �= ∅ and the set limit holds: lim
u→ū

L̂h,i(u) = L̂h,i (ū);

(b) zh;ref ∈ L̂h,i (u) for every u ∈ cl Ω ; and
(c) the set

{
u ∈ L̂h,i (u) | (u − uh,i;ref)T Ψ̂ h,i(u) < 0

} ∩ bd Ω = ∅.
The above conditions can be shown to hold under the following postulates on the
DVI (2.4):

• A : Rn → R
n is continuous and sup

x∈Rn

‖A(x) ‖ < ∞;

• K : Rn × R
�1+ → R

�2 is a nonempty-valued, closed-valued, convex-valued, and
continuous set-valued map;

• there exists vref ∈ K(x, y) for all (x, y) ∈ R
n × R

�1+ ;

• the map (y, v) �→
(

G(x, y)

H(x, y, v)

)
is strongly monotone on R

�1+ × R
�2 with a

modulus that is independent of x ∈ R
n.

These postulates are very loose and can be sharpened; they are meant to illustrate
the solvability of the subproblems under a set of reasonable assumptions. We will
return to discuss more about this issue for the LCS subsequently.

Having constructed the numerical trajectories
{
(xh(t), yh(t), vh(t)) | h > 0

}
, by

piecewise interpolation, we next address the convergence of these trajectories. The
result below summarizes the criteria for convergence; for a proof, see [102].

Proposition 3 Suppose that there exist positive constants h̄, cx , and cu such that
for all h ∈ (0, h̄], and all integers i = 0, 1, · · · , Nh − 1,

‖uh,i+1 ‖ ≤ cu

(
1 + ‖ xh,i ‖

)
and ‖ xh,i+1−xh,i ‖ ≤ h cx

(
1 + ‖ xh,i ‖

)
.

The following two statements hold:

• boundedness: there exist positive constants c0x , c1x , c0u, and c1u such that for all
h ∈ (0, h̄],

max
0≤i≤Nh

‖ xh,i ‖ ≤ c0x+c1x ‖ xh,0 ‖ and max
1≤i≤Nh

‖ xh,i ‖ ≤ c0u+c1u ‖ xh,0 ‖;

• convergence: there exists a subsequence {hν} ↓ 0 such that the following two
limits exists: xhν → x̂ ∞ uniformly in [0,T ] and uhν → û∞ = (ŷ ∞, v̂∞)

weakly in L2(0,T ) as ν → ∞. �
The steps in the proof of the above theorem are as follows. Apply the Arzelá-

Ascoli Theorem [79, page 57–59] to deduce the uniform convergence of a subse-
quence {̂x hν }ν∈κ to a limit x̂ ∞ in the supremum, i.e., L∞-norm:

lim
ν(∈κ)→∞ sup

t∈[0,T ]
‖ x̂hν (t) − x̂ ∞(t) ‖ = 0.
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Next, apply Alaoglu’s Theorem [79, page 71–72] to deduce the weak convergence
of a further subsequence {̂uhν }ν∈κ ′ , where κ ′ ⊆ κ to a limit û∞, which implies: for
any function ϕ ∈ L2(0,T )

lim
ν(∈κ ′)→∞

∫ T

0
ϕ(s)T û hν ′ (s) ds =

∫ T

0
ϕ(s)T û∞(s) ds.

ByMazur’s Theorem [79, page 88], we deduce the strong convergence of a sequence
of convex combinations of {̂uhν }ν∈κ ′ . A subsequence of such convex combinations
converges pointwise to û∞ for almost all times in [0,T ]; hence by convexity of the
graph Gr(K) of the set-valued map K , it follows that (̂x ∞(t), û∞(t)) ∈ Gr(K) for
almost all t ∈ [0,T ].

Ideally, one would want to establish that every limit tuple (̂x∞, ŷ ∞, v̂∞) is a
weak solution of the DVI (2.4). Nevertheless, the generality of the setting makes this
not easy; the case where G(x, y) and H(x, y, v) are separable in their arguments
and the set-valued map K is a constant has been analyzed in detail in [102]; the
paper [103] analyzed the convergence of a time-stepping method for solving the
DVI arising from a frictional contact problem with local compliance. In the next
section, we present detailed results for the initial-value LCS (2.3).

2.11 Lecture III: The LCS

Consider the time-invariant, initial-value LCS (2.3):

ẋ = Ax + Bu, x(0) = x0

0 ≤ u ⊥ Cx + Du ≥ 0.
(2.19)

For this system, the semi-implicit scheme becomes a (fully) implicit scheme:

xh,i+1 = xh,i + h
(
Axh,i+1 + Buh,i+1

)
, i = 0, 1, · · · , Nh − 1

0 ≤ uh,i+1 ⊥ Cxh,i+1 + Duh,i+1 ≥ 0

Solving for xh,i+1 in the first equation and substituting into the complementarity
condition yields the LCP:

0 ≤ uh,i+1 ⊥ qh,i+1 + D huh,i+1 ≥ 0, (2.20)

where properties of the matrix D h � D − C [ I − hA ]−1 B are central to the well-
definedness and convergence of the scheme. The first thing to point out regarding the
convergence of the numerical trajectories (̂x h, û h) is that the matrix D is required
to be positive semidefinite, albeit not necessarily definite.
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We make several remarks regarding the above iterative algorithm. In general,
the iteration matrix Dh is not necessarily positive semidefinite in spite of the same
property of D. If the LCP (2.20) has multiple solutions, to ensure the boundedness
of at least one such solution, use the least-norm solution obtained from:

minimize
u

‖u ‖2 subject to (2.20);

boundedness means ‖uh,i‖ ≤ ρ (1 + ‖xh,i‖) for some constant ρ > 0. In
general, the above LCP-constrained least-norm problem is a quadratic program
with linear complementarity constraints [16, 17]. When Dh is positive semidefinite
as in the case of a “passive” LCS (see definition below), such a least-norm
solution can be obtained by an iterative procedure that solves a sequence of linear
complementarity subproblems. The same matrix Dh appears in each time step
i = 0, 1, · · · , Nh − 1; thus some kind of warm-start algorithm can be exploited in
practical implementation, if possible, for an initial-value problem. Nevertheless, as
with all time-stepping algorithms, the stepwise procedure is not applicable for two-
point boundary problems such as (instead of x(0) = x0) Mx(0) + Nx(T ) = b,

which couples all the iterates
{
x(0) � xh,0, xh,1, · · · , xh,Nh � x(T )

}
.

In order to present a general convergence result, we need to summarize some
key LCP concepts that are drawn from [38]. Given a real square matrix M , the
LCP-Range of M , denoted LCP-Range(M), is the set of all vectors q for which
the LCP(q,M) is solvable, i.e., SOL(q,M) �= ∅; the LCP-Kernel of M , which we
denote LCP-Kernel(M), is the solution set SOL(0,M) of the homogeneous LCP:
0 ≤ v ⊥ Mv ≥ 0. An R0-matrix is a matrix M for which LCP-Kernel(M) = {0}.
For a given pair of matrices A ∈ R

n×n and C ∈ R
m×n, let O(C,A) denote the

unobservability space of the pair of matrices (C,A); i.e., v ∈ O(C,A) if and only
if CAiv = 0 for all i = 0, 1, · · · , n − 1. The result below employs these concepts;
a proof can be found in [57].

Theorem 3 Suppose the following assumptions hold:

(A) D is positive semidefinite,
(B) Range(C) ⊆ LCP-Range(Dh) for all h > 0 sufficiently small, and
(C) the implication below holds:

LCP-Kernel(D) � u∞ ⊥ s∞ + CBu∞ ∈ [ LCP-Kernel(D)]∗

for some s∞ ∈ LCP-Range(D)

}

⇒ Bu∞ ∈ O(Cβ•, A), where β ≡ {i : (Du∞)i = 0}.
(2.21)

Then there exist an h̄ > 0 such that, for every x0 satisfying Cx0 ∈ LCP-Range(D),
the two trajectories x̂h(t) and ûh(t) generated by the least-norm time-stepping
scheme are well defined for all h ∈ (0, h̄] and there is a sequence {hν} ↓ 0 such that
the following two limits exist: x̂hν (·) → x̂(·) uniformly on [0,T ] and ûhν (·) → û(·)
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weakly in L2(0, T ). Moreover, all such limits (̂x(·), û(·)) are weak solutions of the
initial-value LCS (2.19). �

A large class of LCSs that satisfy the assumptions of the above theorem is of
passive type [28, 34]. A linear system Σ(A,B,C,D) given by

ẋ(t) = Ax(t) + Bz(t)

w(t) = Cx(t) + Dz(t)
(2.22)

is passive if there exits a nonnegative-valued function V : Rn → R+ such that for
all t0 ≤ t1 and all trajectories (z, x,w) satisfying the system (2.22), the following
inequality holds:

V (x(t0)) +
∫ t1

t0

zT (t)w(t)dt ≥ V (x(t1)).

Passivity is a fundamental property in linear systems theory; see the two cited
references. Moreover, it is well known that the system Σ(A,B,C,D) is passive
if and only if there exists a symmetric positive semidefinite matrix K such that the
following symmetric matrix:

[
AT K + KA KB − CT

BT K − C −(D + DT )

]
(2.23)

is negative semidefinite. Checking passivity can be accomplished by solving a linear
matrix inequality using methods of semidefinite programming [19].

Corollary 1 If Σ(A,B,C,D) is passive, then the conclusion of Theorem 3
holds. �

2.12 Lecture III: Boundary-Value Problems

A classic family of methods for solving boundary-valueODEs [11, 12, 72] (see also
[132, Section 7.3]) is that of shooting methods. The basic idea behind these methods
is to cast the boundary-value problem as a system of algebraic equations whose
unknown is the initial condition that defines an initial-value ODE. An iterative
method, such as a bisection or Newton method, for solving the algebraic equations
is then applied; each evaluation of the function defining the algebraic equations
requires solving an initial-value ODE. Multiple-shooting methods refine this basic
idea by first partitioning the time interval of the problem into smaller sub-intervals
on each of which a boundary-value problem is solved sequentially. Convergence of
the overall method requires differentiability of the algebraic equations if a Newton-
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type method is employed to facilitate speed-up. In what follows, we apply the basic
idea of a shooting method to the time-invariant, boundary-value DVI:

ẋ = F(x, u)

u ∈ SOL (K,H(x, •))

0 = Ψ (x(0), x(T )).

(2.24)

For simplicity, suppose that the mapping H(x, •) is strongly monotone with a
modulus independent of x. This implies for every x0, the ODE ẋ = F(x, u(x))

with x(0) = x0, where u(x) is the unique solution of the VI (K,H(x, •)), has a
unique solution which we denote x(t; x0). This solution determines the terminal
condition x(T ) uniquely as x(T ; x0). Thus the two-point boundary-value problem
becomes the algebraic equation:

Φ(x0) � Ψ (x0, x(T ; x0)) = 0. (2.25)

As a function of its argument, Φ is typically not differentiable; thus a fast
method such as the classical Newton method is not applicable. Nevertheless, a
“semismooth Newton method” [45, Chapter 7] can be applied provided that Φ is
a semismooth function. In turn, this will be so if for instance the boundary function
Ψ is differentiable and the solution x(T ; •) depends semismoothly on the initial
condition x0. In what follows, we present the semismoothness concept [106] and
the resulting Newton method for finding a root of Φ, which constitutes the basic
shooting method for solving the boundary-value DVI (2.24). We warn the reader
that this approach has not been tested in practice and refinements are surely needed
for the method to be effective.

There are several equivalent definitions of semismoothness. The following
one based on the directional derivative is probably the most elementary without
requiring advanced concepts in nonsmooth analysis.

Definition 1 Let G : Ω ⊆ �n → �m, with Ω open, be a locally Lipschitz
continuous function on Ω . We say that G is semismooth at a point x̄ ∈ Ω if G

is directionally differentiable (thus B(ouligand)-differentiable) near x̄ and such that

lim
x̄ �=x→x̄

‖G ′(x; x − x̄) − G ′(x̄; x − x̄) ‖
‖ x − x̄ ‖ = 0. (2.26)

If the above requirement is strengthened to

lim sup
x̄ �=x→x̄

‖G ′(x; x − x̄) − G ′(x̄; x − x̄) ‖
‖ x − x̄ ‖2 < ∞, (2.27)

we say that G is strongly semismooth at x̄. If G is (strongly) semismooth at each
point of Ω , then we say that G is (strongly) semismooth on Ω . �
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Let ΞT � {x(t, ξ0) | t ∈ [0,T ]}, where x(t, ξ) is a solution of the ODE
with initial condition: ẋ = f (x) and x(0) = ξ0. Suppose that f is Lipschitz
continuous and directionally differentiable, thus B(ouligand)-differentiable, in an
open neighborhoodNT containing ΞT . The following two statements hold:

• x(t, •) is B-differentiable at ξ0 for all t ∈ [0,T ] with the directional derivative
x(t, •)′(ξ0; η) being the unique solution y(t) of the directional ODE:

ẏ(t) = f ′(x(t, ξ0); y); y(0) = η; (2.28)

• if f is semismooth at all points in NT , then x(t, •) is semismooth at ξ0 for all
t ∈ [0,T ].
Before introducing the semismooth-based shooting method, we need to address

the question of when the solution u(x) of the VI (K,H(x, •)) is a semismooth
function of x. A broad class of parametric VIs that possess this property is when
K is a polyhedron, or more generally, a finitely representable convex set satisfying
the constant rank constraint qualification (CRCQ) [45, Chapter 4]. For simplicity,
we present the results for the case where K is a polyhedron. Suppose that u∗ is a
strongly regular solution of the VI (K,H(x∗, •)). Similar to the NCP, there exist
open neighborhoods V and U of x∗ and u∗, respectively, and a B-differentiable
function u : V → U such that for every x ∈ V , u(x) is the unique solution in
U that is a solution of the VI (K,H(x, •)); moreover, the directional derivative
u ′(x∗; dx) at x∗ along a direction dx is given as the unique solution du of the CP:

du ∈ T (K; x∗) ∩ H(x∗, u∗)⊥︸ ︷︷ ︸
critical cone C (x∗)

JxH(x∗, u∗)dx + JuH(x∗, u∗)du ∈ [
T (K; x∗) ∩ H(x∗, u∗)⊥

]∗

du ⊥ JxH(x∗, u∗)dx + JuH(x∗, u∗)du,

(2.29)
where T (K; x∗) is the tangent cone of K at x∗ and H(x∗, u∗)⊥ denotes the
orthogonal complement of the vector H(x∗, u∗).

Returning to the DVI (2.24), we may deduce that, assuming the differentia-
bility of F and H , the strong regularity of the solution u(x(t, ξ0)) of the VI
(K,H(x(t, ξ0), •)), and by combining (2.28) with (2.29), x(t, •) ′(ξ0; η) is the
unique solution y(t) of:

ẏ(t) = JxF (x(t, ξ0), u(x(t, ξ0)))y + JuF (x(t, ξ0), u(x(t, ξ0)))v,

y(0) = ηv ∈ C (x(t, ξ0))

JxH(x(t, ξ0), u(x(t, ξ0)))y + JuH(x(t, ξ0), u(x(t, ξ0)))v ∈ [
C (x(t, ξ0))

]∗

v ⊥ JxH(x(t, ξ0), u(x(t, ξ0)))y + JuH(x(t, ξ0), u(x(t, ξ0)))v,
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or equivalently,

ẋ = F(x, u), x(0) = ξ0

ẏ = JxF (x, u)y + JuF (x, u)v, y(0) = η

u ∈ SOL(K,H(x, •))

C (x) � v ⊥ JxH(x, u)y + JuH(x, u)v ∈ [C (x(t)) ]∗ .

Let

z �
(

x

y

)
, w �

(
u

v

)
, z0 �

(
ξ 0

η

)
, F̂ (z,w) �

(
F(x, u)

JxF (x, u)y + JuF (x, u)v

)

K̂(z) � K × C (x), and Ĥ (z,w) �
(

Ψ (x, u)

JxH(x, u)y + JuH(x, u)v

)
;

we deduce that the triple (x(t, ξ0), u(x(t, ξ0)), x(t, •) ′(ξ0; η)) is the unique triplet
(x, u, y), which together with an auxiliary variable z, satisfies the DVI:

ż = F̂ (z,w); z(0) = (ξ0, η)

w ∈ SOL(K̂(z), Ĥ ).

This is a further instance of a DVI where the defining set of the variational condition
varies with the state variable; cf. (2.4).

Returning to the algebraic equation reformulation (2.25) of the boundary-value
DVI (2.4), we sketch the semismooth Newton method for finding a zero x0 of
the composite function Φ(x0) = Ψ (x0, x(T , x0)). This is an iterative method
wherein at each iteration ν, given a candidate zero ξν , we compute a generalized
Jacobian matrix A(ξν) of Φ at ξ ν and then let the next iterate xν+1 be the (unique)
solution of the (algebraic) linear equation: Φ(ξ ν) + A(ξ ν)(ξ − ξ0) = 0. This is
the version of the method where a constant unit step size is employed. Under a
suitable nonsingularity assumption at an isolated zero of Φ whose semismoothness
is assumed, local superlinear convergence of the generated sequence of (vector)
iterates can be proved; see [45, Chapter 7]. To complete the description of the
method, the matrix A(ξ ν) needs to be specified. As a composite function of Ψ and
the solution function x(T , •), A(ξ ν) can be obtained by the chain rule provided
that a generalized Jacobian matrix of the latter function at the current iterate ξν is
available. Details of this can be found in [100] which also contains a statement of
convergence of the overall method.
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2.13 Lecture III: Summary

In this lecture, we have

• introduced a basic numerical time-stepping method for solving the DVI (2.4),
• provided sufficient conditions for the weak, subsequential convergence of the

method,
• specialized the method to the LCS and presented sharpened convergence results,

including the case of a passive system, and
• outlined a semismooth Newton method for solving an algebraic equation refor-

mulation of a boundary-value problem, whose practical implementation requires
further study.

2.14 Lecture IV: Linear-Quadratic Optimal Control
Problems

An optimal control problem is the building block of a multi-agent optimization
problem in continuous time. In this lecture, we discuss the linear-quadratic (LQ)
case of the (single-agent) optimal control problem in preparation for the exposition
of the multi-agent problem in the next lecture. The LQ optimal control problem
with mixed state-control constraints is to find continuous-time trajectories (x, u) :
[0,T ] → R

n+m to

minimize
x,u

V (x, u) � cT x(T ) + 1
2 x(T )T Sx(T )

+
∫ T

0

⎡

⎣
(

x(t)

u(t)

)T (
p(t)

q(t)

)
+ 1

2

(
x(t)

u(t)

)T [
P Q

QT R

](
x(t)

u(t)

)⎤

⎦ dt

subject to x(0) = ξ, and for almost all t ∈ [ 0,T ]
dx(t)

dt
� ẋ(t) = Ax(t) + Bu(t) + r(t)

and Cx(t) + Du(t) + f ≥ 0︸ ︷︷ ︸
mixed state-control constraints

,

(2.30)

where the matrices Ξ �
[

P Q

QT R

]
and S are symmetric positive semidefinite.

Unlike these time-invariant matrices and the constant vector f , (p; q; r) is a triple
of properly dimensioned Lipschitz continuous vector functions. The semi-coercivity
assumption on the objective function, as opposed to coercivity, is a major departure
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of this setting from the voluminous literature on this problem. For one thing, the
existence of an optimal solution is no longer a trivial matter. Ideally, we should aim
at deriving an analog of Proposition 4 below for a convex quadratic program in finite
dimensions, which we denote QP(Z(b), e,M):

minimize
z∈Z(b)

eT z + 1
2 zT Mz,

where M is an m × m symmetric positive semidefinite matrix, Z(b) � {z ∈ R
m |

Ez + b ≥ 0}, where E is a given matrix and e and b are given vectors, all of
appropriate orders. It is well known that the polyhedronZ(b) has the same recession
coneZ∞ � {v ∈ R

m | Ev ≥ 0} for all b for which Z(b) �= ∅. Let SOL(Z(b), e,M)

denote the optimal solution set of the above QP.

Proposition 4 Let M be symmetric positive semidefinite and let E be given. The
following three statements hold.

(a) For any vector b for which Z(b) �= ∅, a necessary and sufficient condition for
the QP(Z(b), e,M) to have an optimal solution is that eT d ≥ 0 for all d in
Z∞ ∩ ker(M).

(b) If Z∞ ∩ ker(M) = {0}, then SOL(Z(b), e,M) �= ∅ for all (e, b) for which
Z(b) �= ∅.

(c) If SOL(Z(b), e,M) �= ∅, then SOL(Z(b), e,M) = {z ∈ Z(b) | Mz =
Mẑ, eT ẑ = eT ẑ} for any optimal solution ẑ; thus MSOL(Z(b), e,M) is a
singleton whenever it is nonempty.

Extending the KKT conditions for the QP(Z(b), e,M):

0 = e + Mz − ET μ

0 ≤ μ ⊥ Ez + b ≥ 0,

we can derive a 2-point BV-LCS formulation of (2.30) as follows. We start by
defining the Hamiltonian function:

H(x, u, λ) � xT p + uT q + 1
2 xT Px + xT Qu + 1

2 uT Ru + λT ( Ax + Bu + r ) ,

where λ is the costate (also called adjoint) variable of the ODE ẋ(t) = Ax(t) +
Bu(t) + r , and the Lagrangian function:

L(x, u, λ,μ) � H(x, u, λ) − μT ( Cx + Du + f ) ,

where μ is the Lagrange multiplier of the algebraic constraint: Cx + Du + f ≥ 0.
Inspired by the Pontryagin Principle [139, Section 6.2] and [61, 112], we introduce
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the following DAVI:

(
λ̇(t)

ẋ(t)

)
=

(−p(t)

r(t)

)
+
[−AT −P

0 A

](
λ(t)

x(t)

)
+
[−Q

B

]
u(t) +

[
C T

0

]
μ(t)

0 = q(t) + QT x(t) + Ru(t) + BT λ(t) − DT μ(t)

0 ≤ μ(t) ⊥ Cx(t) + Du(t) + f ≥ 0

}

[
⇒ u(t) ∈ argmin

u∈U(x(t))

H (x(t), u, λ(t))

]

x(0) = ξ and λ(T ) = c + Sx(T ),

(2.31)

where U(x) � {u ∈ R
m | Cx + Du + f ≥ 0}. Note that the above is a DAVI with a

boundary condition:λ(T ) = c+Sx(T ); this is one challenge of this system. Another
challenge is due to the mixed state-control constraint: Cx(t) + Du(t) + f ≥ 0.
While the membership u(t) ∈ argmin

u∈U(x(t))

H (x(t), u, λ(t)) implies the existence of a

multiplier μ̂(t) such that

0 = q(t) + QT x(t) + Ru(t) + BT λ(t) − DT μ̂(t)

0 ≤ μ̂(t) ⊥ Cx(t) + Du(t) + f ≥ 0,

we seek in (2.31) a particular multiplier μ(t) that also satisfies the ODE. So far, we
have only formally written down the formulation (2.31) without connecting it to the
optimal control problem (2.30). As a DAVI with (x, λ) as the pair of differential
variables and (u, μ) as the pair of algebraic variables, the tuple (x, u, λ,μ) is a
weak solution of (2.31) if (i) (x, λ) is absolutely continuous and (u, μ) is integrable
on [0,T ], (ii) the differential equation and the two algebraic conditions hold for
almost all t ∈ (0,T ), and (iii) the initial and boundary conditions are satisfied.
In addition to the positive semidefiniteness assumption of the matrices Ξ and S,
we need three more blanket conditions assumed to hold throughout the following
discussion:

• (a feasibility assumption) a continuously differentiable function x̂fs with x̂fs(0) =
ξ and a continuous function ûfs exist such that for all t ∈ [0, T ]: dx̂fs(t)/dt =
Ax̂fs(t) + Bûfs(t) + r(t) and ûfs(t) ∈ U(̂xfs(t));

• (a primal condition) [Ru = 0, Du ≥ 0] implies u = 0;
• (a dual condition) [DT μ = 0, μ ≥ 0] implies (CAiB)T μ = 0 for all integers

i = 0, · · · , n − 1, or equivalently, for all nonnegative integers i.
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It is easy to see that the primal Slater condition: [∃ û such that Dû > 0] implies
the dual condition, but not conversely. For more discussion of the above conditions,
particularly the last one, see [59].

Here is a roadmap of the main Theorem 4 below. It starts with the above
postulates, under which part (I) asserts the existence of a weak solution of the
DAVI (2.31) in the sense of Carathéodory. The proof of part (I) is based on
a constructive numerical method. Part (II) of Theorem 4 asserts that any weak
solution of the DAVI yields an optimal solution of (2.30); this establishes the
sufficiency of the Pontryagin optimality principle. The proof of this part is based
on a direct verification of the assertion, from which we can immediately obtain
several properties characterizing an optimal solution of (2.30). These properties are
summarized in part (III) of the theorem. From these properties, part (IV) shows
that any optimal solution of (2.30) must be a weak solution of the DAVI (2.31),
thereby establishing the necessity of the Pontryagin optimality principle. Finally,
part (V) asserts the uniqueness of the solution obtained from part (I) under the
positive definiteness of the matrix R.

Theorem 4 Under the above setting and assumptions, the following five statements
(I–V) hold.
(I: Solvability of the DAVI) The DAVI (2.31) has a weak solution (x∗, λ∗, u∗, μ∗).
(II: Sufficiency of Pontryagin) If (x∗, λ∗, u∗, μ∗) is any weak solution of (2.31), then
the pair (x∗, u∗) is an optimal solution of the problem (2.30).
(III: Gradient characterization of optimal solutions) If (̂x, û) and (̃x, ũ) are any two
optimal solutions of (2.30), then the following three properties hold:

(a) for almost all t ∈ [0, T ],
[

P Q

QT R

](
x̂(t) − x̃(t)

û(t) − ũ(t)

)
= 0,

(b) Sx̂(T ) = Sx̃(T ), and

(c) cT (̂x(T ) − x̃(T )) +
∫ T

0

(
p(t)

q(t)

)T (
x̂(t) − x̃(t)

û(t) − ũ(t)

)
dt = 0.

Thus given any optimal solution (̂x, û) of (2.30), a feasible tuple (̃x, ũ) of (2.30) is
optimal if and only if conditions (a), (b), and (c) hold.
(IV: Necessity of Pontryagin) Let (x∗, λ∗, u∗, μ∗) be the tuple obtained from part
(I). A feasible tuple (̃x, ũ) of (2.30) is optimal if and only if (̃x, λ∗, ũ, μ∗) is a weak
solution of (2.31).
(V: Uniqueness under positive definiteness) If R is positive definite, then for any two
optimal solutions (̂x, û) and (̃x, ũ) of (2.30), x̂ = x̃ everywhere on [0, T ] and û = ũ

almost everywhere on [0, T ]. In this case (2.30) has a unique optimal solution
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( x̂, û ) such that x̂ is continuously differentiable and û is continuous on [0, T ], and
for any optimal λ̂, û(t) ∈ argmin

u∈U(̂x(t))

H (̂x(t), u, λ̂(t)) for all t ∈ [0, T ]. �

It should be noted that in part (V) of the above, the uniqueness requires the
positive definiteness of the principal block R of Ξ , and not of this entire matrix
Ξ , which nonetheless is assumed to be positive semidefinite. The reason is twofold:
one: via the ODE, the state variable x can be solved uniquely in terms of the control
variable u; two: part (I) implies that the difference û − ũ is equal to R−1Qx̂ − x̃ for
any two solution pairs (̃x, ũ) and (̃x, ũ). Combining these two consequences yields
the uniqueness in part (V) under the positive definiteness assumption of R. This is
the common case treated in the optimal control literature.

2.14.1 The Time-Discretized Subproblems

A general time-stepping method for solving the LQ problem (2.30) proceeds
similarly to (2.16), albeith with suitable modifications as described below. Let h > 0

be an arbitrary step size such that Nh � T

h
is a positive integer. We partition the

interval [0,T ] into Nh subintervals each of equal length h:

0 � th,0 < th,1 < th,2 < · · · < th,Nh−1 < th,Nh � T .

Thus th,i+1 = th,i + h for all i = 0, 1, · · · , Nh − 1. We step forward in time

and calculate the state iterates xh �
{
xh,i

}Nh

i=0 and control iterates uh �
{
uh,i

}Nh

i=1
by solving Nh finite-dimensional convex quadratic subprograms, provided that the
latter are feasible. From these discrete-time iterates, continuous-time numerical
trajectories are constructed by piecewise linear and piecewise constant interpolation,
respectively. Specifically, define the functions x̂ h and û h on the interval [0, T ]: for
all i = 0, · · · , Nh − 1:

x̂ h(t) � xh,i + t − th,i

h
( xh,i+1 − xh,i ), ∀ t ∈ [ th,i , th,i+1 ]

û h(t) � uh,i+1, ∀ t ∈ ( th,i , th,i+1 ].
(2.32)

The convergence of these trajectories as the step size h ↓ 0 to an optimal solution
of the LQ control problem (2.30) is a main concern in the subsequent analysis.
Neverthless, since the DAVI (2.31) is essentially a boundary-value problem, care is
needed to define the discretized subproblems so that the iterates (xh,uh) are well
defined. Furthermore, since the original problem (2.30) is an infinite-dimensional
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quadratic program, one would like the subproblems to be finite-dimensional QPs.
The multipliers of the constraints in the latter QPs will then define the adjoint
trajectory λ̂ h(t) and the algebraic trajectory μ̂ h(t); see below.

In an attempt to provide a common framework for the analysis of the backward
Euler discretization and the model predictive control scheme [48, 50, 92] that has
a long tradition in optimal control problems, a unified discretization method was
proposed in [59] that employed several families of matrices {B(h)}, {A(h)}, {E(h)}
and {Ê(h)} parametrized by the step h > 0; these matrices satisfy the following
limit properties:

lim
h↓0

A(h) − I

h
= A; lim

h↓0
B(h)

h
= B; and lim

h↓0
E(h)

h
= lim

h↓0
Ê(h)

h
= I.

Furthermore, in order to ensure that each discretized subproblem is solvable, a two-
step procedurewas introduced: the first step computes the least residual of feasibility
of such a subproblem by solving the linear program:

ρh(ξ) � minimum
ρ; {xh,i ,uh,i}Nh

i=1

ρ

subject to xh,0 = ξ, ρ ≥ 0

and for i = 0, 1, · · · , Nh :

(2.33)

⎧
⎨

⎩

xh,i+1 = [
θ E(h) rh,i + (1 − θ) Ê(h) rh,i+1

] + A(h)xh,i + B(h)uh,i+1

Cxh,i+1 + Duh,i+1 + f + ρ 1 ≥ 0

⎫
⎬

⎭ ,

where rh,i � r(th,i ) for all i = 0, 1, · · · , Nh, and 1 is the vector of all ones.
The above linear program must have a finite optimal solution and the optimal
objective value ρh(ξ) satisfies lim

h↓0 ρh(ξ) = 0; this limit ensures that the pair

of limit trajectories x̂ h(t) and û h(t) constructed from the discrete-time iterates
will be feasible to (2.30) for almost all times t ∈ [0,T ]. The scalar θ ∈ [0, 1]
adds flexibility to the above formulation and leads to different specific schemes
with proper choices. For instance, when θ = 0, by letting Ê(h) � hA(h),
A(h) � (I − hA)−1, and B(h) � hA(h)B, we obtain a standard backward
Euler discretization of the ODE constraint in (2.30). When θ = 1, by letting

E(h) �
∫ h

0
eAsds, A(h) � eAh, and B(h) �

∫ h

0
eAsdsB, we obtain the MPC

approximation of this ODE.
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Employing the minimum residual ρh(ξ), the relaxed, unified time-stepping
method solves the following (feasible) convex quadratic program at time th,i+1:

(Q̂P
h
) : minimize

{xh,i ,uh,i}Nh+1
i=1

Vh(xh,uh) � ( xh,Nh+1 )T
(

c + 1

2
Sxh,Nh+1

)

+h

2

Nh∑

i=0

⎧
⎨

⎩2

(
θxh,i + (1 − θ)xh,i+1

uh,i+1

)T (
ph,i+1

qh,i+1

)

+
(

θxh,i + (1 − θ)xh,i+1

uh,i+1

)T [
P Q

QT R

](
θxh,i + (1 − θ)xh,i+1

uh,i+1

)⎫⎬

⎭

subject to xh,0 = ξ, and for i = 0, 1, · · · , Nh :
⎧
⎪⎨

⎪⎩

xh,i+1 = [
θ E(h) rh,i + (1 − θ) Ê(h) rh,i+1

] + A(h)xh,i + B(h)uh,i+1

f + Cxh,i+1 + Duh,i+1 + ρh(ξ) 1︸ ︷︷ ︸
relaxed feasibility

≥ 0

⎫
⎪⎬

⎪⎭
.

The primal condition on the pair (R,D) and the use of the least residual ρh(ξ) are
sufficient to ensure that an optimal solution to the above QP exists. Notice that
unlike the case in Lecture III of an initial-value DVI (2.16) or the LCS (2.19),
the Q̂P

h
is coupled in the discrete-time iterates and does not decompose into

individual subproblems according to the time steps. Thus this quadratic subprogram
is potentially of very large size and its practical solution requires care.

Letting {λh,i}Nh

i=0 be the multipliers of the discrete-time state constraints and

{μh,i+1}Nh

i=0 be the multipliers of the algebraic state-control inequalities, we define
the λ-trajectory similarly to the x-trajectory; namely, for i = 0, · · · , Nh,

λ̂ h(t) � λh,i + t − th,i

h
( λh,i+1 − λh,i ), ∀ t ∈ [ th,i , th,i+1 ],

with λh,Nh+1 � c + Sxh,Nh+1, and the μ-trajectory similarly to the u-trajectory;
namely, for i = 0, · · · , Nh,

μ̂ h(t) � μh,i+1

h
, ∀ t ∈ ( th,i , th,i+1 ].

The convergence of the numerical trajectories is formally stated in the theorem
below.

Theorem 5 Assume the setting state above. Let x̂h(t) and ûh(t) be as defined by
(2.32) and λ̂ h(t) and μ̂ h(t) as above. The following four statements hold.
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(a) There exists a sequence of step sizes {hν} ↓ 0 such that the two limits exist:(
x̂ hν , λ̂ hν

) → (
x̂, λ̂

)
uniformly on [0, T ] and ( û hν , μ̂ hν

) → (̂u, μ̂) weakly
in L2(0, T ); moreover, x̂ and λ̂ are Lipschitz continuous.

(b) The sequences

{[
P Q

QT R

](
x̂ h

û h

)}
and

{
DT μ̂h

}
converge to

[
P Q

QT R

](
x̂

û

)

and DT μ̂ uniformly on [0, T ], respectively.
(c) Any limit tuple (̂x, û, λ̂, μ̂) from (a) is a weak solution of (2.31); thus (̂x, û) is

an optimal solution of (2.30).
(d) Part (I) of Theorem 4 holds. �

The proof of the above theorem hinges on establishing the bounds in Proposi-
tion 3 for the differential iterates (xh,i, λh,i ) and the algebraic iterates (uh,i, μh,i ).
This is highly technical, partly due the relaxed assumptions we have made—
e.g., the positive semidefiniteness, instead of positive definiteness of the matrix

Ξ �
[

P Q

QT R

]
—and partly due to the boundary-value nature of the DAVI. Details

can be found in [59].
When R is positive definite, we can establish the uniform convergence of the

u-variable by redefining the discrete-time trajectory û h using piecewise linear
interpolation instead of the piecewise constant interpolation in the semidefinite case.

First notice that uh,0 is not included in the (Q̂P
h
). By letting uh,0 be the unique

solution of the QP at the initial time t = 0,

minimize
u∈U(ξ)

[
qh,0 + h−1B(h)T λh,0 + QT ξ

]T

u + 1
2 uT Ru,

we redefine

ûh(t) � uh,i + t − th,i

h
( uh,i+1 − uh,i ) ∀ t ∈ [ th,i , th,i+1 ]. (2.34)

It can be shown that the sequences of state and control trajectories {̂x h} and {̂uh}
converge, respectively, to the unique optimal solution (̂x, û) of the problem (2.30)
with x̂ being continuously differentiable and û Lipschitz continuous on [0, T ]. We
omit the details.

2.15 Lecture IV: Summary

In this lecture, we have

• introduced the linear-quadratic optimal control problem with mixed state-control
constraints

• described a time-stepping method for solving the problem that unifies time
stepping and model predictive control, and

• presented a convergence result under a set of assumptions.
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This development is the basis for extension to a multi-agent non-cooperative game
where each player solves such an LQ optimal control problem parameterized by the
rivals’ time-dependent strategies.

2.16 Lecture V: Open-Loop Differential Nash Games

Non-cooperative game theory provides a mathematical framework for conflict res-
olution among multiple selfish players each seeking to optimize his/her individual
objective function that is impacted by the rivals’ decisions and subject to constraints
that may be private, coupled, or shared. A solution concept of such a game was
introduced by John Nash and has been known as a Nash equilibrium. There have
been several recent surveys on the static Nash equilibrium problem defined in terms
of multiple finite-dimensional optimization problems, one for each player; see e.g.
[44, 46] where the reader can also find an extensive literature including historical
account, theory, algorithms, and selected applications. This lecture pertains to the
Nash equilibrium problem (NEP) defined in continuous time wherein each player’s
optimization problem is the single-agent LQ optimal control problem discussed in
the last lecture and extended herein to the case of multiple agents. The discussion
below is drawn from the recently published paper [110].

Specifically, we consider a linear-quadratic (LQ) N-player noncooperative game
on the time interval [0,T ], where T < ∞ is the finite horizon and N is the
number of players of the game. Each player i ∈ {1, · · · , N} chooses an absolutely
continuous state function xi : [0,T ] → R

ni and a bounded measurable (thus
integrable) control function ui : [0,T ] → R

mi for some positive integers ni andmi

via the solution of a LQ optimal control problem. These state and control variables
are constrained by a player-specific ODE and a linear inequality system.

Notation x−i �
(
xj

)N
i �=j=1; u−i �

(
uj

)N
i �=j=1 denote the rivals’ pairs of state and

control variables, respectively.
Anticipating the pair (x−i , u−i ) of rivals’ trajectory and treating only private

constraints, player i solves

minimize
xi ,ui

θi(xi, x−i , ui , u−i ) � xi(T )T

(
ci +

N∑

i ′=1

Wii ′ xi ′(T )

)
+

∫ T

0

(
xi(t)

ui(t)

)T ((
pi(t)

qi(t)

)
+

N∑

i ′=1

[
Pii ′ Qii ′

Rii ′ Sii ′

] (
xi ′(t)

ui ′(t)

))
dt

subject to xi(0) = ξi and for almost all t ∈ [ 0,T ] :
ẋi(t) = ri(t) + Aixi(t) + Biui(t)

and fi + Cixi(t) + Diui(t) ≥ 0,

(2.35)
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where each Wii and

[
Pii Qii

Rii Sii

]
are symmetric positive semidefinite, resulting in

(2.35) being a convex LQ optimal control problem in player i’s variables. The other
notations are extensions of (2.30) that is the case of a single player. Moreover, the
assumptions previously introduced for (2.30) extend to each player’s problem in the
game.

An aggregated pair of trajectories (x∗,u∗), where x∗ �
(
x∗
i

)N
i=1 and u∗ �

(
u∗

i

)N
i=1, is a Nash equilibrium (NE) of the above game if for each i = 1, · · · , N ,

(x∗
i , u∗

i ) ∈ argmin
(xi ,ui)

θi(xi, x
∗−i , ui, u

∗−i )

subject to (xi, ui) feasible to (2.35).

Toward the analysis of this game, we distinguish two cases:

• Ξii ′ �
[

Pii ′ Qii ′

Rii ′ Sii ′

]
=

[
Pi ′i Qi ′i

Ri ′i Si ′i

]T

� ΞT
i ′i and Wii ′ = WT

i ′i for all i �= i ′,

reflecting the symmetric impact of the strategy of player i ′ on player i’s objective
function and vice versa.

• (Wii ′,Ξii ′) �= (
WT

i ′i , Ξ
T
i ′i
)
for some i �= i ′, reflecting the asymmetric impact of

the strategy of player i ′ on player i’s objective function and vice versa.

The treatment of these two cases is different. In the symmetric case, we show that a
NE of the game can be obtained as a stationary solution of a single optimal control
problem with an objective function that is the sum of the players’ objectives and
whose constraints are the Cartesian product of the individual players’ constraints.
In the asymmetric case, we provide a best-response algorithm to constructively
establish the existence of a NE to the game; such an algorithm iteratively solves
single-player LQ optimal control problems by fixing the rivals’ variables at their
current iterates.

2.16.1 The Symmetric Case

Writing the symmetric assumption more succinctly, we assume that the matricesW
and Ξ are symmetric positive semidefinite, where

W �
[
[Wii ′ ]N

i,i ′=1 + diag(Wii )
N
i = 1

]

Ξ �

⎡

⎣
P Q

R S

⎤

⎦ �

⎡

⎣
[Pii ′ ]N

i,i ′=1 + diag(Pii )
N
i = 1 [Qii ′ ]N

i,i ′=1 + diag(Qii)
N
i = 1

[Rii ′ ]Ni,i ′=1 + diag(Rii)
N
i = 1 [Sii ′ ]Ni,i ′=1 + diag(Sii )

N
i = 1

⎤

⎦
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The aggregated LQ optimal control problem in the variables (x,u) is then

minimize
x,u

x(T )T
[
c + 1

2 Wx(T )
]
+

∫ T

0

(
x(t)

u(t)

)T ((
p(t)

q(t)

)
+ 1

2

[
P Q

R S

](
x(t)

u(t)

))
dt

subject to xi(0) = ξi for all i ∈ {1, · · · , N} and almost all t ∈ [0,T ] :
ẋi(t) = ri (t) + Aixi(t) + Biui(t),

and fi + Cixi(t) + Diui(t) ≥ 0.

(2.36)

Theorem 6 Under the above symmetry assumption and the conditions on each of
the players’ problems set forth in Lecture IV, the following statements hold between
the N-person differential Nash game and the aggregated optimal control problem
(2.36):

• Equivalence: A pair (x∗,u∗) is a NE if and only if (x∗,u∗) is an optimal solution
of the aggregate optimal control problem.

• Existence: A NE exists such that x∗ is absolutely continuous and u∗ is square-
integrable on [ 0,T ].

• Uniqueness: If in addition S is positive definite, then (x∗,u∗) is the unique NE
such that x∗ is continuously differentiable and u∗ is Lipschitz continuous on
[ 0,T ].

• Computation: A NE can be obtained as the limit of a sequence of numerical
trajectories obtained by discretizing the optimal control problem (2.36) as
described in Lecture IV. �
It should be noted that while the symmetry assumption of the matrices W

and Ξ are essential for the equivalence between the game and the single optimal
control formulation, the positive semidefiniteness of these matrices makes the
problem (2.36) a convex problem, albeit in continuous time, to which the time-
discretization method is applicable for its numerical solution. Without the positive
semidefiniteness condition, we should settle for a solution to the DAVI formulation
of (2.36) that is only a stationary solution but not necessarily a globally optimal
solution. In this case, the solution method of the last Lecture needs to be examined
for applicability and its convergence requires an extended proof.

2.16.2 The Asymmetric Case

In addition to the assumptions for the individual players’ problems, the asymmetric
case requires a few more conditions that are motivated by the convergence analysis
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of the best-response scheme for the static NEP. These additional conditions are
stated below:

(̂A) For all i = 1, · · · , N , the matrices Ξii are positive definite with minimum
eigenvalues σΞ

i > 0; the matrices Wii remain (symmetric) positive semidefinite.

(W) For all i = 1, · · · , N , the matrices Wii ′ = 0 for all i ′ �= i; (to somewhat
simplify the notation). [Otherwise, the matrix Γ needs to be modified.]

(̂D) For all i = 1, · · · , N , the following implication holds: Diui ≥ 0 ⇒ ui = 0,
implying the boundedness of the feasible controls

ui ∈ Ui(xi) �
{
u ∈ R

mi | fi + Cixi + Diui ≥ 0
}
, for all x.

Define the matrix Γ � [Γii ′ ]N
i,i′=1, where

Γii ′ �

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = i ′

1√
σΞ

i σΞ
i ′

‖ Ξii ′ ‖ if i �= i ′,

A Key Postulate The spectral radius ρ(Γ ) < 1.
Dating back to the convergence analysis of fixed-point iterations for solving

systems of linear equations [96] and extending to splitting methods for the linear
complementarity problems [38], the spectral radius condition generalizes the well-
known property of (strictly) diagonally dominance and has been key to the
convergence of best-response algorithms for static games; see e.g. [84, 98]. The
interesting fact is that this spectral radius condition remains key in the continuous-
time game.

The following is a Jacobi-type iterative algorithm for solving the continuous-
time non-cooperative game. A particular feature of the algorithm is that it is
of the distributed type, meaning that each player can update his/her response
simultaneously and independently of the other players; after such an update a
synchronization occurs leading to a new iteration. A sequential Gauss-Seidel type
algorithm can be stated; we omit the details.

A Continuous-Time Best-Response Algorithm Given a pair of state-control
trajectories (xν,uν) at the beginning of iteration ν + 1, where xν is continuously
differentiable and uν is Lipschitz continuous, we compute the next pair of such
trajectory (xν+1,uν+1) by solvingN LQ optimal control problems (2.35), where for
i = 1, · · · , N , the i-th such LQ problem solves for the pair (xν+1

i , uν+1
i ) from (2.35)

by fixing (xj , uj ) at (xν
j , uν

j ) for all j �= i. �
The above is a continuous-time distributed algorithm that requires solving

LQ subproblems in parallel; in turn each such subproblem is solved by time
discretization that leads to the solution of finite-dimensional quadratic programs.
This is in contrast to first discretization that results in solving finite-dimensional



2 Five Lectures on Differential Variational Inequalities 127

subgames, which can in turn be solved by a distributed algorithm (in discrete time).
The relative efficiency of these two approaches: first best-response (in continuous
time) followed by discretization versus first discretization followed by best-response
(in discrete tim) on applied problem has yet to be understood.

The convergence of the above algorithm is summarized in the following result
whose proof can be found in [110].

Theorem 7 In the above setting, the following two statements hold for the sequence
{(xν

i , uν
i )} generated by the Jacobi iterative algorithm.

• (Well-definedness) The sequence is well-defined with xν
i being continuously

differentiable and uν
i Lipschitz continuous on [ 0,T ] for all ν.

• (Contraction and strong convergence) The sequence contracts and converges
strongly to a square-integrable, thus integrable, limit (x∞

i (t), u∞
i (t))Ni=1 in the

space L2[ 0,T ] that is the unique NE of the differential LQ game. Indeed, it
holds that

eν ≤ Γ eν−1, ∀ ν = 1, 2, · · · ,

where eν �
(
eν
i

)N
i=1, with eν

i �
√

σΞ
i

√√√√
∫ T

0

∥∥∥∥∥

(
xν
i (t) − xν+1

i (t)

uν
i (t) − uν+1

i (t)

)∥∥∥∥∥

2

dt;

moreover, strong convergence means that

lim
ν→∞

∫ T

0

∥∥∥∥∥

(
xν
i (t) − x∞

i (t)

uν
i (t) − u∞

i (t)

)∥∥∥∥∥ dt = 0.

2.16.3 Two Illustrative Examples

Illustrating the abstract framing of the symmetric and asymmetric problems in the
previous two sections, we present two concrete examples of how such problemsmay
arise in applied game theory. The first example model is an adaptation of the well-
known Nash-Cournot equilibrium problemwhile the second is a conjectured supply
function equilibrium problem. Although these types of problems are typically
studied in a static setting, the differential formulations presented herein represent
natural problem extensions for which solution existence can be established from the
previous results. In the Nash-Cournot version of this problem, each player believes
that their output affects the commodity price which is represented as a function of
total output. For a two-player, two-node problem with a linear pricing function and
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quadratic cost functions, let player 1’s optimal control problem be

minimize
g1, s1, r1

∫ T

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11(t)

g12(t)

s11(t)

s12(t)

r11(t)

r12(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 − w(t)

a12

−P 0
1 + w(t)

−P 0
2

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11

b12

P 0
1

Q0
1

P 0
2

Q0
2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11(t)

g12(t)

s11(t)

s12(t)

r11(t)

r12(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

P 0
1

Q0
1

P 0
2

Q0
2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g21(t)

g22(t)

s21(t)

s22(t)

r21(t)

r22(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dt

=
∫ T

0

⎧
⎨

⎩

2∑

j=1

(
a1j g1j (t) + b1j g1j (t)

2 −
[
P 0

j − P 0
j

Q0
j

(s1j (t) + s2j (t))

]
s1j (t)

)

+ (s11(t) − g11(t))w(t)} dt

subject to g11(0) = g011, g12(0) = g012, and for almost all t ∈ [ 0,T ] :
ġ11(t) = r11(t)

ġ12(t) = r12(t)

−r1j + r1j (t) ≥ 0 for j = 1, 2

r1j − r1j (t) ≥ 0 for j = 1, 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒ r11 ≤ ġ11(t) ≤ r11

r12 ≤ ġ12(t) ≤ r12

and − g11(t) − g12(t) + s11(t) + s12(t) ≥ 0,
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where the state variables are {gij (t)}2i,j = 1, representing player i’s production at

node j at time t , and the control variables are {sij (t), rij (t)}2i,j = 1, representing
player i’s sales and ramp rate (instantaneous change in production) at node j at
time t , respectively. The term aij gij (t) + bij gij (t)

2 is the quadratic production cost

function, P 0
j − P 0

j

Q0
j

(
2∑

i=1

sij (t)

)
is the linear nodal pricing equation at time t with

intercept P 0
j and slope

P 0
j

Q0
j

where P 0
j and Q0

j are positive, and (sij (t) − gij (t))w(t)

is the transportation cost with w(t) being the marginal directional shipment cost at
time t . The first group of constraints describes generation ramp rates, namely that
the rate of generation change for player i at node j is bounded by rij and rij . The
last two constraints equate total generation with total sales.

Player 2’s objective function is easily shown to be identical to that given above
except with 1 and 2 interchanged in player index i. Therefore, it is apparent that

Ξ �
[

Ξ11 Ξ12

Ξ21 Ξ22

]
is the symmetric matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2b11

2b12

2
P 0
1

Q0
1

P 0
1

Q0
1

2
P 0
2

Q0
2

P 0
2

Q0
2

0

0

2b21

2b22

P 0
1

Q0
1

2
P 0
1

Q0
1

P 0
2

Q0
2

2
P 0
2

Q0
2
0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is not difficult to verify that the matrix Ξ is positive semidefinite.



130 J.-S. Pang

We next turn our attention to a conjectured supply function (CSF) problem [40,
69, 70] to demonstrate the existence of games that take an asymmetric form. In
the Nash-Cournot problem, symmetry arises from the assumptions that each player
uses the same commodity pricing function and that no player anticipates competitor
production/sales changes with respect to price. In a conjectured supply function
equilibrium problem, players instead use a function to predict how total competitor
production will change based on price. For this example, we will simplify the model
to include only one node so that generation and sales quantities are equivalent and
transmission is not needed.

For player i, let the function σi(G−i (t), pi(t), t) represent the relationship
between price and total competitor production in time t . For our linear-quadratic
problem, we will define

σi(G−i (t), pi(t), t) � G−i (t) + βi(G−i (t), p
∗
i (t), t)(pi (t) − p∗

i (t)),

where G−i (t) is the total amount of competitor generation expected at the specified
equilibrium price p∗

i (t) at time t . Notice that players may expect different equi-
librium price trajectories here; this setting generalizes the case in which players
use the same equilibrium price trajectory where p∗

i (t) = p∗(t) for i = 1, 2. It
follows that, depending on the specification of βi(G−i (t), p

∗
i (t), t), the conjectured

total production from other players will rise or fall if the realized price pi(t) does
not equal the equilibrium price p∗

i (t). Upon substitution into the production-pricing
relationship

gi(t) + σi(G−i (t), pi(t), t) = Q0 − Q0

P 0 pi(t),

invertibility of
Q0

P 0 +βi(G−i (t), p
∗
i (t), t) provides an explicit equation for player i’s

conjectured price pi(t). This invertibility will hold in realistic market settings since
βi(G−i (t), p

∗
i (t), t) should be nonnegative so total competitor production levels are

believed to change in the same direction as price differences (i.e., higher prices than
expected at equilibrium should not decrease conjectured production). In the special
case assumed here where βi(G−i (t), p

∗
i (t), t) � B−i for some positive constant

B−i , we obtain

pi(t) = Q0 − Gi(t) + B−ip
∗
i (t)

Q0

P 0 + B−i

.

Using this conjectured price, we can formulate player 1’s optimal control problem
as a cost minimization problem in which the conjectured supply function price is
used for determining revenue and costs include a quadratic production cost and a
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quadratic ramp rate cost:

minimize
g1, r1

∫ T

0

(
g1(t)

r1(t)

)T

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

a11 − Q0 + B−1p
∗
1(t)

Q0

P 0 + B−1

0

⎞
⎟⎟⎟⎠

+

⎡
⎢⎢⎢⎣

b11 + 1

Q0

P 0 + B−1

0

0 a12

⎤
⎥⎥⎥⎦

(
g1(t)

r1(t)

)
+

⎡
⎢⎢⎢⎣

1

Q0

P 0 + B−1

0

0 0

⎤
⎥⎥⎥⎦

(
g2(t)

r2(t)

)
⎞
⎟⎟⎟⎠ dt

subject to g1(0) = g01 and for almost all t ∈ [ 0,T ] :
ġ1(t) = r1(t)

−r1 + r1(t) ≥ 0

r1 − r1(t) ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
⇒ r1 ≤ ġ1(t) ≤ r1

Similarly, player 2’s optimal control problem just interchanges 1 and 2 for the player
index. If the player supply conjectures are not identical (i.e., B−1 �= B−2),

Ξ12 =

⎡

⎢⎢⎣

1

Q0

P 0
+ B−1

0

0 0

⎤

⎥⎥⎦ �=

⎡

⎢⎢⎣

1

Q0

P 0
+ B−2

0

0 0

⎤

⎥⎥⎦ = ΞT
21.

It follows that a conjectured supply function game in which players have different
conjectures is not a symmetric game.

To prove ρ(Γ ) < 1, we can use the fact that ρ(Γ ) ≤ ‖Γ k‖ 1
k for all natural

numbers k. With k = 1 and employing the Euclidean norm, ‖Γ ‖ is the largest

eigenvalue of (Γ T Γ )
1
2 , which is equal to

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0
1√

σΞ
2 σΞ

1

‖Ξ21‖

1√
σΞ
1 σΞ

2

‖Ξ12‖ 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0
1√

σΞ
1 σΞ

2

‖Ξ12‖

1√
σΞ
2 σΞ

1

‖Ξ21‖ 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

1
2

= 1√
σΞ
1 σΞ

2

⎡

⎢⎣
‖Ξ12‖ 0

0 ‖Ξ21‖

⎤

⎥⎦
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where σΞ
i is the minimum eigenvalue of Ξii . For this problem,

σΞ
1 � min

⎛

⎜⎜⎝b11 + 1
Q0

P0
+ B−1

, a12

⎞

⎟⎟⎠ and σΞ
2 � min

⎛

⎜⎜⎝b21 + 1
Q0

P0
+ B−2

, a22

⎞

⎟⎟⎠ .

Hence, if

‖ Ξ12 ‖
‖

1

Q0

P 0
+ B−1

<

√√√√√√√min

⎛

⎜⎜⎝ b11 + 1
Q0

P0
+ B−1

, a12

⎞

⎟⎟⎠ min

⎛

⎜⎜⎝ b21 + 1
Q0

P0
+ B−2

, a22

⎞

⎟⎟⎠

‖
√

σΞ
1 σΞ

2

‖

1

Q0

P 0
+ B−2

<

√√√√√√√min

⎛

⎜⎜⎝ b11 + 1
Q0

P0
+ B−1

, a12

⎞

⎟⎟⎠ min

⎛

⎜⎜⎝ b21 + 1
Q0

P0
+ B−2

, a22

⎞

⎟⎟⎠

‖
‖ Ξ21 ‖ ,

then ρ(Γ ) < 1. The above condition can clearly be satisfied for a wide variety of
parameter values. We have thus proven that Theorem 7 holds for the above CSF
problem specification and the presented Jacobi iterative algorithm will converge to
the unique differential Nash equilibrium.

2.17 Lecture V: Summary

In this lecture, we have

• presented an open-loop differential LQ Nash game,
• shown the equivalence in the symmetric case of the game with a single

concatenated linear-quadratic optimal control problem,
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• discussed, in the asymmetric case, a Jacobi-type iterative solution scheme and
presented a converge result under certain conditions to a unique differential Nash
equilibrium, and

• illustrated the results using two simple instances of a Nash production game.

2.18 Closing Remarks

We close these lectures with the following remarks:

• Based on a differential variational framework, these lectures lay down the
foundation for distributed, competitive multi-agent optimal decision making
problems in continuous time.

• The first four lectures prepare the background for the fifth lecture which extends
the other four lectures of this summer school to a continuous-time setting.

• In general, many real-life systems are dynamic in nature and subject to unilateral
constraints and variational principles.

• The dynamics has to be recognized in the modeling and solution of the systems.
• The DVI provides a very powerful framework for this purpose, in particular, for

the study of non-cooperative games in continuous times.
• Some extensive results are available, but there remain many questions and issues

of the DVI to be studied.
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