
Chapter 1
Distributed Optimization Over Networks

Angelia Nedić

Abstract The advances in wired and wireless technology necessitated the develop-
ment of theory, models and tools to cope with new challenges posed by large-scale
optimization problems over networks. The classical optimization methodology
works under the premise that all problem data is available to some central entity
(computing agent/node). This premise does not apply to large networked systems
where typically each agent (node) in the network has access only to its private
local information and has a local view of the network structure. This chapter
will cover the development of such distributed computational models for time-
varying networks, both deterministic and stochastic, which arise due to the use
of different synchronous and asynchronous communication protocols in ad-hoc
wireless networks. For each of these network dynamics, distributed algorithms for
convex constrained minimization will be considered. In order to emphasize the role
of the network structure in these approaches, our main focus will be on direct primal
(sub)-gradient methods. The development of these methods combines optimization
techniques with graph theory and the non-negative matrix theory, which model
the network aspect. The lectures will provide some basic background theory on
graphs, graph Laplacians and their properties, and the convergence results for related
stochastic matrix sequences. Using the graph models and optimization techniques,
the convergence and convergence rate analysis of the methods will be presented.
The convergence rate results will demonstrate the dependence of the methods’
performance on the problem and the network properties, such as the network
capability to diffuse the information.

1.1 Introduction

Recent advances in wired and wireless technology have lead to the emergence of
large-scale networks such as Internet, mobile ad-hoc networks, and wireless sensor
networks. Their emergence gave rise to new network application domains ranging
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from data-base networks, social and economic networks to decentralized in-network
operations including resource allocation, coordination, learning, and estimation.

As a result, there is a necessity to develop new models and tools for the design
and performance analysis of such large complex networked systems. The problems
arising in such networks stem mainly from two aspects, namely, a lack of central
authority or a coordinator (a master node), and an inherent dynamic of the network
connectivity structure. The lack of central authority in a network system naturally
requires decentralized architecture for operations over the network (such as in
the case of Internet). In some applications, the decentralized architecture is often
preferred over a centralized architecture due to several reasons: (1) the size of
the network (the number of agents) and the resources needed to coordinate (i.e.,
communicate) with a large number of agents; (2) a centralized network architecture
is not desirable since it is not robust to the failure of the central entity; and (3) the
privacy of agent information often cannot be preserved in a centralized systems.
Furthermore, additional challenges in decentralized operations over such networks
are encountered from the network connectivity structure that can vary over time due
to unreliable communication links or mobility of the network agents.

The challenge is to control, coordinate, and analyze the performance of such
networks. As a particular goal, one would like to develop distributed optimization
algorithms that can be deployed in such networks that do not have a central
coordinator, but exploit the network connectivity to achieve a global network
performance objective. Thus, it is desirable that such algorithms are:

• Locally distributed in the sense that they rely on local information and obser-
vations only, i.e., the agents can exchange some limited information with their
one-hop neighbors only;

• Robust against changes in the network topology (since the topology is not
necessarily static as the communication links may not function perfectly);

• Easily implementable in the sense that the local computations performed by the
agents are not expensive.

We next provide some examples of large scale networks and applications that
arise within such networks.

Example 1 (Sensor Networks) A new computing concept based on a system of
small sensors also referred to as motes or smart dust sensors, see Fig. 1.1. The
sensors are of small size and have some computational, sensing and communication
capabilities. They can be used in many different ways, such as for example, they
may be mixed into concrete in order to monitor the structural health of buildings
and bridges (smart structures), or be placed on power grids to monitor the power
load (smart grids).

A specific problem of interest that supports a number of applications in sensor
networks, such as building a piece-wise approximation of the coverage area, multi-
sensor target localization and tracking problems, is the determination of Voronoi
cells. A Voronoi cell of a sensor in a network is the locus of points in a sensor field
that are the closest to a given sensor among all other sensors [6]. Upon determining
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Fig. 1.1 A mote and its functionalities

Fig. 1.2 A peer-to-peer network

such a partition in a distributed fashion, each sensor acts as a representative for the
points in its cell. �
Example 2 (Computing Aggregates in Peer-to-Peer (P2P) Networks) In a P2P
network consisting of m nodes, each node i has its local data/files stored with
average size θi , which is known to node i only. The nodes are connected over
a static undirected network (see Fig. 1.2), and they want to jointly compute the
average file size 1

m

∑m
i=1 θi without a central coordinator. In control theory and

game theory literature, the problem is known as the agreement or consensus problem
[15, 34, 60, 67, 171].

The problem has an optimization formulation, as follows:

min
x∈R

m∑

i=1

(x − θi)
2.

It is a convex unconstrained problem with a strongly convex objective. Its unique
solution θ∗ is the average of the values θi , i.e., θ∗ = 1

m

∑m
i=1 θi . The solution cannot

easily be computed when the agents have to calculate it in a distributed fashion by
communicating only locally. In this case, the agents need to agree on the average of
the values they hold.

In a more general variant of the consensus problem, the agents want to agree on
some common value, which need not be the average of the values they initially
have. For example, in a problem of leaderless heading alignment, autonomous
agents move in a two-dimensional plane region with the same speed but different
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headings (they are refracted from the boundary to prevent them from leaving the
area) [60, 174]. The objective is to design a local protocol that will ensure the
alignment of the agent headings, while the agents communications are constrained
by a given maximal distance. �

Another motivating example for distributed optimization over networks is a
special machine learning problem, known as Support Vector Machine or maximum
margin classifier. We discuss this problem in a centralized setting and then, we will
see how it naturally fits in a distributed setting in the situations when the privacy of
the data is of concern or when the data is too large to be shared.

Example 3 (Support Vector Machine (SVM)) We are given a data set {zj , yj }dj=1
consisting of d points, where zj ∈ R

n is a measurement vector and yj ∈ {+1,−1}
is its label. Assuming that the data can be perfectly separated, the problem consists
of determining a hyperplane that separates data the best, i.e., solving the following
convex problem:

min
x∈Rn

F (x), where F(x) = ρ

2
‖x‖2 +

d∑

j=1

max
{
0, 1 − yj 〈x, zj 〉

}
,

where ρ > 0 is a regularizing parameter that indicates the importance of having a
small-norm solution. Given that the objective function is strongly convex, a solution
exists and it is unique (see Fig. 1.3 for an illustration). The problem can be solved
by using a subgradient method. If the data is distributed across several data centers,
say m centers, then the joint problem can be written as:

min
x∈Rn

m∑

i=1

⎛

⎝ ρ

2m
‖x‖2 +

∑

j∈Di

max{0, 1 − yj 〈x, zj 〉}
⎞

⎠ ,

Fig. 1.3 A maximum margin separating hyperplane for a single data center
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where Di is the collection of data points at the center i. Letting

fi(x) = ρ

2m
‖x‖2 +

∑

j∈Di

max{0, 1 − yj 〈x, zj 〉},

we see that the distributed variant of the problem assumes the following form:

min
x∈Rn

F (x) =
m∑

i=1

fi(x),

where the function fi is known to center i. In this setting, sharing the function fi

with any other center amounts to sharing the entire data collection Di available at
center i. When the data is private or the data sets are too large, sharing the data is
not an option and the problem has to be solved in a distributed manner. �

Many more examples of distributed problems and the use of consensus can
be found in the domains of bio-inspired systems, self-organized systems, social
networks, opinion dynamics, and autonomous (robotic) systems. For such examples,
a reader may refer to some recent books and monographs on robotic networks
[18, 94, 96], and social and economic networks [42, 49, 59]. These examples can also
be found in related thesis works including [12, 52, 120, 155] dealing with averaging
dynamics and [47, 69, 73, 130, 144, 183] dealing with distributed optimization
aspects.

In the sequel, we will often refer to networks as graphs, and we will use “agent”
and “node” interchangeably. The rest of the chapter is organized as follows: in
Sect. 1.2, we formally describe a multi-agent problem in a network and discuss
some related aspects of the consensus protocol. Section 1.3 presents a distributed
synchronous algorithm for solving the multi-agent problem in time-varying undi-
rected graphs, while Sect. 1.4 deals with asynchronous implementations over a static
undirected graph. Section 1.5 concludes this chapter by providing an overview of
related literature including the most recent research directions.

1.2 Distributed Multi-Agent Problem

This section provides a formal multi-agent system problem description, introduces
our basic notation and gives the underlying assumptions on the multi-agent prob-
lem. The agents are embedded in a communication graph which accommodates
distributed computations through the use of consensus protocols. A basic consensus
protocol for undirected time-varying graphs is presented, and its convergence result
is provided for later use.
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1.2.1 Problem and Assumptions

Throughout this chapter, we will be focused on solving distributed problems of the
generic form

min
x∈X

f (x) with f (x) =
m∑

i=1

fi(x), (1.1)

in a network of m agents, where each function fi is known to agent i only while the
constraint set X ⊆ R

n is known to all agents. We will assume that the problem (1.1)
is convex.

Assumption 1 The set X ⊆ R
n is closed and convex, and each function fi : Rn →

R is convex.

We will explicitly state when we assume that problem (1.1) has a solution. In
such cases, we will let f ∗ denote the optimal value of the problem and X∗ denote
the set of its solutions,

f ∗ = min
x∈X

f (x), X∗ = {x∗ ∈ X | f (x∗) = f ∗}.

Throughout the chapter, we will work with the Euclidean norm, denoted by ‖ · ‖,
unless otherwise explicitly stated. We use 〈·, ·〉 to denote the inner product. We will
view all vectors as column vectors, unless stated otherwise. We will use the prime
to denote the transpose of a matrix and a vector.

We assume that the agents are embedded in a communication network, which
allows the agents to exchange some limited information with their immediate (one-
hop) neighbors. Multi-hop communications are not allowed in this setting. The
agents’ common goal is to solve the problem (1.1) collaboratively.

The communication network structure over time is captured with a sequence
of time-varying undirected graphs. More specifically, we assume that the agents
exchange their information (and perform some updates) at given discrete time
instances, which are indexed by k = 0, 1, 2, . . . . The communication network
structure at time k is represented by an undirected graph Gk = ([m], Ek), where
[m] is the agent (node) set, i.e., [m] = {1, . . . ,m}, while Ek is the set of edges. The
edge i ↔ j ∈ Ek indicates that agents i and j can communicate (send and receive
messages) at time k.

Given a graph Gk at a time k, we let Ni(k) denote the set of neighbors of agent
i, at time k:

Ni(k) = {j ∈ [m] | i ↔ j ∈ Ek} ∪ {i}.
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Note that the neighbor set Ni(k) includes agent i itself, which reflects the fact that
agent i has access to some information from its one-hop neighbors and its own
information.

The agents’ desire to solve the problem (1.1) jointly through local communica-
tions translates to the following problem that agents are facing at time k:

min f(x1, . . . , xm) with f(x1, . . . , xm) =
m∑

i=1

fi(xi)

subject to xi = xj for all j ∈ Ni(k) and all i ∈ [m],
xi ∈ X for all i ∈ [m]. (1.2)

Thus, the agents are facing a sequence of optimization problems with time-
varying constraints, which are capturing the time-varying structure of the underlying
communication network. Since this is a nonstandard optimization problem, we need
to specify what it means to solve the problem. To do so, we will impose some
additional assumptions on the graphs Gk .

Throughout, we will assume that the graphs Gk are connected.

Assumption 2 Each graph Gk is connected.

This assumption can be relaxed to the requirement that the union of B consecutive
graphs Gk, . . . ,Gk+B−1 is connected for all k ≥ 0 and for some positive integer B.
However, to keep the exposition simple, we will adopt Assumption 2.

Let Ck be the constraint set of problem (1.2) at time k, i.e.,

Ck = {(x1, . . . , xm) ∈ Xm | xi = xj for all j ∈ Ni(k) and all i ∈ [m]}.

Under Assumption 2, the constraint sets Ck are all the same. Their description is
given to the agents through a different set of equations at different time instances,
as seen from the following lemma.

Lemma 1 Let Assumption 2 hold. Then, for each k, we have

Ck = {(x1, . . . , xm) | xi = x for some x ∈ X and all i ∈ [m]}.

The proof of Lemma 1 is straightforward and it is omitted. In fact, it can be seen
that Lemma 1 also holds when the graphs Gk are directed and each of the graphs
contains a directed rooted spanning tree,1 where the neighbor set Ni(k) is replaced
with the in-neighbor set2 N in

i (k) of agent i at time k.

1There exists a node i such that the graph contains a directed path from node i to any other node
in the network.
2The set N in

i (k) of in-neighbors of agent i in a directed graph Gk is the set of all agents j such that
the directed edge (j, i) exists in the graph.
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In view of Lemma 1, it is now obvious that we can associate a limit problem with
the sequence of problems (1.2), where the limit problem is given by:

min f(x1, . . . , xm) with f(x1, . . . , xm) =
m∑

i=1

fi(xi)

subject to (x1, . . . , xm) ∈ ∩∞
k=1Ck. (1.3)

As we noted, all sets Ck are the same under Assumption 2. However, we will keep
the notation Ck to capture the fact that the agents have a different set of equations
that describe the constraint set at different times. Furthermore, the preceding
formulation of the limit problem is also suitable for the situations where the graphs
Gk are not necessarily connected.

1.2.2 Consensus Problem and Algorithm

The consensus problem is a special case of the limit problem (1.3), where each
fi ≡ 0 and X = R

n, i.e., the consensus problem is given by

min 0
subject to (x1, . . . , xm) ∈ ∩∞

k=1Ck, (1.4)

with

Ck = {(x1, . . . , xm) | xi = x for some x ∈ R
n and all i ∈ [m]} for all k ≥ 1.

As one may observe, the consensus problem is a feasibility problem where the
agents need to collectively determine an x = (x1, . . . , xm) satisfying the constraint
in (1.4), while obeying the communication structure imposed by graph Gk at each
time k.

A possible way to solve the consensus problem is that each agent considers its
own problem, at time k, of the following form:

min
x∈Rn

∑

j∈Ni(k)

pij (k)‖x − xj‖2,

where pij (k) > 0 for all j ∈ Ni(k) and for all i ∈ [m]. The values xj are assumed to
be communicated to agent i by its neighbors j ∈ Ni(k). This problem can be viewed
as a penalty problem associated with the constraints in the set Ck that involve agent
i decision variable. The objective function is strongly convex and it has a unique
solution, denoted by x̂i , i.e.,

x̂i(k) = argmin
x∈Rn

∑

j∈Ni(k)

pij (k)‖x − xj‖2.
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In the following lemma, we provide the closed form of the solution x̂i(k).

Lemma 2 Let X = R
n, and consider the feasible set

Cik = {(xj )j∈Ni(k) | xj = x for all j ∈ Ni(k) and x ∈ R
n} (1.5)

corresponding to the constraints in Ck that involve agent i at time k. Then, the
solution x̂i(k) of the penalty problem minx∈Rn

∑
j∈Ni(k) pij (k)‖x −xj‖2 associated

with the feasible set Cik is given by

x̂i(k) =
∑

j∈Ni(k) pij (k)xj
∑

j∈Ni(k) pij (k)
.

Proof We note that

∑

j∈Ni(k)

pij (k)‖x − xj‖2

=
∑

j∈Ni(k)

pij (k)‖x‖2 − 2

〈

x,
∑

j∈Ni(k)

pij (k)xj

〉

+
∑

j∈Ni(k)

pij (k)‖xj‖2

=
∑

j∈Ni(k)

pij (k)

[

‖x‖2 − 2

〈

x,

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

〉

+
∑

j∈Ni(k) pij (k)‖xj‖2

∑
j∈Ni(k) pij (k)

]

=
∑

j∈Ni(k)

pij (k)

⎡

⎣‖x‖2 − 2

〈

x,

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

〉

+
∥
∥
∥
∥
∥

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

+
∑

j∈Ni(k) pij (k)‖xj‖2

∑
j∈Ni(k) pij (k)

⎤

⎦ .

Therefore,

∑

j∈Ni(k)

pij (k)‖x − xj‖2 =
∑

j∈Ni(k)

pij (k)

⎡

⎣

∥
∥
∥
∥
∥
x −

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

+
∑

j∈Ni(k) pij (k)‖xj‖2

∑
j∈Ni(k) pij (k)

⎤

⎦ .
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Since the last two terms in the preceding sum do not depend on x, we see that

x̂i(k) = argmin
x∈Rn

⎧
⎨

⎩

∑

j∈Ni(k)

pij (k)‖x − xj‖2

⎫
⎬

⎭

= argmin
x∈Rn

⎧
⎨

⎩

⎛

⎝
∑

j∈Ni(k)

pij (k)

⎞

⎠

∥
∥
∥
∥
∥
x −

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
.

Furthermore, since
∑

j∈Ni(k) pij (k) > 0, we finally have

x̂i(k) = argmin
x∈Rn

⎧
⎨

⎩

∥
∥
∥
∥
∥
x −

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
=

∑
j∈Ni(k) pij (k)xj

∑
j∈Ni(k) pij (k)

.

�
In view of Lemma 2, the penalty problem associated with agent i feasible set Cik

at time k can be equivalently be given by

min
x∈Rn

∑

j∈Ni(k)

wij (k)‖x − xj‖2,

where the weights wij (k), j ∈ Ni(k), correspond to convex combinations, i.e.,

wij (k) > 0 for all j ∈ Ni(k),
∑

j∈Ni(k)

wij (k) = 1. (1.6)

Obviously, for the equivalence of the two penalty problems, we need wij (k) =
pij (k)/

∑
j∈Ni(k) pij (k). In this case, the corresponding solution x̂i(k) is given by

x̂i(k) =
∑

j∈Ni(k)

wij (k)xj .

The preceding discussion motivates the following algorithm, known as a con-
sensus algorithm (with projections), for solving the constrained consensus prob-
lem (1.4): each agent has a variable xi(k) at time k. At time k + 1, every agent
i sends xi(k) to its neighboring agents j ∈ Ni(k) and receives xj (k) from them.
Then, every agent i updates its variable as follows:

xi(k + 1) =
∑

j∈Ni(k)

wij (k)xj (k),
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where wij (k) > 0 for all j ∈ Ni(k) and all i ∈ [m], and
∑

j∈Ni(k) wij (k) = 1 for all
i ∈ [m]. For a more compact representation, we define wij (k) = 0 for all j �∈ Ni(k)

and all i ∈ [m], so we have

xi(k + 1) =
m∑

j=1

wij (k)xj (k) for all i ∈ [m] and all k ≥ 0. (1.7)

The initial points xi(0) ∈ R
n, i ∈ [m], are assumed to be arbitrary.

We note here that if a (convex) constraint set X ⊆ R
n is known to all agents,

then the constrained consensus problem (1.4) can also be solved by the consensus
algorithm in (1.7) with an adjustment of the initial selections xi(0) to satisfy xi(0) ∈
X for all i. This can be seen by noting that xi(k + 1) is a convex combination of
xj (k) for j ∈ Ni(k) (see (1.6)), and it will lie in the set X as long as this set is
convex and xj (k) ∈ X for all j ∈ Ni(k).

The consensus algorithm in (1.7) has regained interest since the recent work [60],
which attracted a significant attention to the consensus problem in various settings
(for an overview of the consensus related literature see Sect. 1.5).

For the convergence of the consensus algorithm, some additional assumptions
are typically needed for the weights wij (k) aside from the “convex combination”
requirement captured by relation (1.6). To state one such assumption, we will
introduce some additional terminology and notation. We let W(k) be the matrix
with ij th entry equal to wij (k). We will say that a matrix W is (row) stochastic if
its entries are non-negative and the sum of its entries in each row is equal to 1. We
will say that W is doubly stochastic if both W and its transpose W ′ are stochastic
matrices.

Next, we state an assumption on the matrices W(k) that we will use later on.

Assumption 3 For every k ≥ 0, the matrix W(k) has the following properties:

(a) W(k) is doubly stochastic.
(b) W(k) is compatible with the structure of the graph Gk , i.e.,

wij (k) = 0 iff i ↔ j �∈ Ek.

(c) W(k) has positive diagonal entries, i.e., wii(k) > 0 for all i ∈ [m].
(d) There is an η > 0 such that

wij (k) ≥ η iff i ↔ j ∈ Ek.

First, let us note that Assumption 3 is much stronger than what is typically
assumed to guarantee the convergence of the consensus algorithm. In general, the
graph Gk can be directed and the positive weights wij (k) are assumed for the
directed links (j, i) ∈ Ek , while the matrix W(k) is assumed to be just (row)
stochastic. We work with a stronger assumption since we want to address the
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optimization problem (1.3) which has a more general objective function than that
of the consensus problem (1.4).

To provide insights into what motivates Assumption 3, consider the consensus
algorithm in the case of an unconstrained scalar problem, i.e., X = R. Then, for the
consensus algorithm in (1.7), by stacking all the variables xi(k) into a single vector
x(k) at time k, we have

x(k + 1) = W(k)x(k) = · · · = W(k)W(k − 1) · · ·W(0)x(0).

Furthermore, in the case of static graphs Gk , i.e., Gk = G for some graph G, we
can use W(k) = W for all k, thus implying that

x(k) = Wkx(0).

When W is a stochastic matrix which is compatible with a connected graph G, then
W is irreducible and, by Perron-Frobenius Theorem (see Theorem 4.2.1, page 101
of [46]), the spectral radius ρ(W) (which is equal to 1 in this case) is a simple
positive eigenvalue and the vector 1 with all entries equal to 1 is the unique right-
eigenvector associated with eigenvalue 1, i.e.,

W1 = 1.

When, in addition, W has positive diagonal entries, then W is also primitive, so we
have

lim
k→∞ Wk = 1v′,

where v is the normalized (unique positive) left-eigenvector of W associated with
eigenvalue 1, i.e., a unique vector satisfying

v′W = v′ where vi > 0 for all i and 〈v, 1〉 = 1

(see Theorem 4.3.1, page 106, and Theorem 4.4.4, page 119, both in [46]). Thus,
when W is stochastic, compatible with a connected graph G, and has a positive
diagonal, we obtain

lim
k→∞ x(k) =

(

lim
k→∞ Wk

)

x(0) = 1v′x(0) = 〈v, x(0)〉 1.

Hence, in this case, the consensus is reached, i.e., the iterates of the consensus
algorithm converge to the value 〈v, x(0)〉, which is a convex combination of the
initial agents’ values xi(0). Observe that the behavior of the iterates in the limit, as
k increases, is completely determined by the limit behavior of Wk as k → ∞.
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In the light of the preceding discussion, Assumption 3 guarantees that a similar
behavior is exhibited in the case when the matrices are time-varying and the graphs
Gk are connected. Specifically, in this case, we would like to have

lim
k→∞[W(k)W(k − 1) · · ·W(0)] = 1v′

for some vector v with all entries vi positive and 〈v, 1〉 = 1. This relation is
guaranteed by Assumptions 2 and 3. In fact, under these assumptions we have a
stronger result for the matrix sequence {W(k)}, as follows:

lim
k→∞[W(k)W(k − 1) · · ·W(s)] = 1

m
11′ for all s ≥ 0.

This result is formalized in the following lemma, which also provides the rate of
convergence for the matrix products W(k)W(k − 1) · · ·W(s) for all k ≥ s ≥ 0.

Lemma 3 (Lemma 5 in [110]) Let the graph sequence {Gk} satisfy Assumption 2,
and let the matrix sequence {W(k)} satisfy Assumption 3. Then, we have for all
s ≥ 0 and k ≥ s,

sup
x∈Rn,‖x‖=1

∥
∥
∥
∥

(

W(k)W(k − 1) · · ·W(s + 1)W(s) − 1

m
11′

)

x

∥
∥
∥
∥

2

≤
(

1 − η

2m2

)k−s

.

In particular, for all s ≥ 0 and k ≥ s, and for all i, j ∈ [m],
(

[W(k)W(k − 1) · · ·W(s + 1)W(s)]ij − 1

m

)2

≤
(

1 − η

2m2

)k−s

.

The first relation in Lemma 3 is a consequence of Lemma 5 in [110]. The second
relation follows by letting x be any of the unit-vectors of the standard basis in R

n.
Lemma 3 provides a key insight into the behavior of the products of the matrices

W(k), which implies that the consensus method in (1.7) converges geometrically
to 1

m

∑m
i=1 xi(0). We will use this lemma to show that consensus-based methods

for solving a more general optimization problem (1.1) converge to a solution, as
discussed in the next section.

1.3 Distributed Synchronous Algorithms for Time-Varying
Undirected Graphs

We now consider a distributed algorithm for solving problem (1.3). We assume that
the set X is closed and convex, and it has a simple structure so that the projection
of a point on the set X is not computationally expensive. The idea is to construct
an algorithm to be executed locally by each agent i that at every instant k involves
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two steps: one step aimed at satisfying agent i feasibility constraint Cik in (1.5),
and the other step aimed at minimizing its objective cost fi over the set X. Thus,
the first step is akin to consensus update in (1.7), while the second step is a simple
projection-based (sub)gradient update using fi .

To illustrate the idea, consider agent i and its surrogate objective function at
time k:

Fik(x) = fi(x) + δX(x) + 1

2

∑

j∈Ni(k)

wij (k)‖x − xj‖2,

where δX(x) is the indicator function of the set X, i.e.,

δX(x) =
{

0 if x ∈ X,

+∞ otherwise.

The weights wij (k), j ∈ Ni(k), are convex combinations (i.e., they are positive and
they sum to 1; see (1.6)).

Having the vectors xj , j ∈ Ni(k), agent i may take the first step aimed at
minimizing 1

2

∑
j∈Ni(k) wij (k)‖x − xj‖2, which would result in setting

x̂i(k) =
∑

j∈Ni(k)

wij (k)xj .

In the second step, assuming for the moment that fi is differentiable, agent i

considers solving the problem

min
x∈Rn

{

〈∇fi(x̂i(k)), x〉 + δX(x) + 1

2αk

‖x − x̂i(k)‖2
}

,

which is equivalent to

min
x∈X

{

〈∇fi(x̂i(k)), x〉 + 1

2αk

‖x − x̂i(k)‖2
}

,

where αk > 0 is a stepsize. The preceding problem has a closed form solution given
by

x∗
i (k) = ΠX[x̂i(k) − αk∇f (x̂i(k))],

where ΠX[z] is the projection of a point z on the set X, i.e.,

ΠX[z] = argmin
x∈X

‖x − z‖2 for all z ∈ R
n.
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When the function fi is not differentiable, we would replace the gradient ∇f (x̂i(k))

with a subgradient gi(x̂i(k)). Recall that a subgradient of a convex function h :
R

n → R at a given point x is a vector g(x) ∈ R
n such that

h(x) + 〈g(x), y − x〉 ≤ h(y) for all y ∈ R
n.

In what follows, we will use gi(k) to abbreviate the notation for a subgradient
gi(x̂i(k)) of the function fi(z) evaluated at z = x̂i(k).

Now, based on the preceding discussion, we have the following algorithm: at
every time k, each agent i ∈ [m] maintains two vectors yi(k) and xi(k). The agent
sends xi(k) to its neighbors j ∈ Ni(k) and receives xj (k) from its neighbors j ∈
Ni(k). Then, it updates as follows:

yi(k + 1) =
∑

j∈Ni(k)

wij (k)xj (k),

xi(k + 1) = ΠX[yi(k + 1) − αk+1gi(k + 1)], (1.8)

where αk+1 > 0 is a stepsize and gi(k + 1) is a subgradient of fi(z) at point z =
yi(k + 1). The process is initialized with arbitrary points xi(0) ∈ X for all i ∈ [m].

Note that the agents use the same stepsize value αk+1. Note further that, due to
the projection on the set X, we have xi(k) ∈ X for all i and k. Moreover, since
yi(k + 1) is a convex combination of points in X and since X is convex, we have
yi(k + 1) ∈ X for all i and k.

By introducing 0-weights for non-existing links in the graph Gk , i.e., by defining

wij (k) = 0 when j �∈ Ni(k),

we can re-write (1.8) as follows: for all k ≥ 0 and all i ∈ [m],

yi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = ΠX[yi(k + 1) − αk+1gi(k + 1)]. (1.9)

To illustrate the iterations of the algorithm in (1.9), consider a system of three
agents in a connected graph, as illustrated in Fig. 1.4. Figure 1.4 shows a typical
iteration of the algorithm. Since the graph is fully connected, all weights wij (k)

are positive, so the resulting points yi(k + 1) lie inside the triangle formed by
the points xi(k), i = 1, 2, 3. The new points xi(k + 1), i = 1, 2, 3, obtained
after the subgradient steps do not necessarily lie inside the triangle formed by the
points xi(k), i = 1, 2, 3. Under some suitable assumptions on the stepsize and the
subgradients, these triangles formed by xi(k), i = 1, 2, 3, as k → ∞, can shrink
into a single point, which is solution of the problem. Loosely speaking, while the
consensus steps force the agents to agree on some point, the subgradient steps are
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Fig. 1.4 At iteration k, agents hold values xi(k). The plot to the left illustrates the resulting points
yi(k + 1) of the iteration (1.9) which lie inside the triangle formed by the points xi(k), i = 1, 2, 3,

(as all weights wij (k) are positive in this case). The plot to the right depicts the iterates xi(k +
1), i = 1, 2, 3, obtained through the subgradient steps of algorithm (1.9). These iterates do not
necessarily lie inside the triangle formed by the prior iterates xi (k), i = 1, 2, 3

forcing the agreement point to be a solution of a given problem. Thus, one can think
of the algorithm in (1.9) as a process that steers the consensus toward a particular
region, in this case the region being the solution set of the agent optimization
problem (1.3). To see this, note that from the definition of xi(k + 1) we have

xi(k + 1) = yi(k + 1) − αk+1gi(k + 1) + ek,

ek = (ΠX[yi(k + 1) − αk+1gi(k + 1)] − (yi(k + 1) − αk+1gi(k + 1)).

Assuming that the projection error ek is small, and assuming that the functions are
differentiable, we can approximate xi(k + 1) as follows:

xi(k + 1) ≈ yi(k + 1) − αk+1∇fi(yi(k + 1))

=
⎛

⎝
m∑

j=1

wij (k)xj (k)

⎞

⎠ − αk+1∇fi

⎛

⎝
m∑

j=1

wij (k)xj (k)

⎞

⎠ . (1.10)

Thus, the algorithm is similar to the consensus process
∑m

j=1 wij (k)xj (k) with an
additional force coming from the gradient field, which steers the agreement point
toward a solution of the problem minx∈X

∑m
i=1 fi(x). The preceding discussion

sketches the approach that we will follow to establish the convergence properties
of the method, which is the focus of the next section.

1.3.1 Convergence Analysis of Distributed Subgradient Method

In this section, we provide a main convergence result in Theorem 1 showing that
the iterates xi(k), for all agents i ∈ [m], converge to a solution of the problem (1.1),
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as k → ∞. The proof of Theorem 1 relies on a basic relation satisfied by the
algorithm in terms of all agents’ iterates, as given in Proposition 1. The proof of
this proposition is constructed through several auxiliary results that are provided in
Lemmas 4–6. Specifically, Lemma 4 provides an elementary relation for the iterates
xi(k) for a single agent, without the use of the network aspect. By viewing the
algorithm (1.9) as a perturbation of the consensus algorithm, Lemma 5 establishes
a relation for the distances between the iterates xi(k) and their averages taken
across the agents (i.e., 1

m

∑m
j=1 xj (k)) in terms of the perturbation. The result of

Lemma 5 is refined in Lemma 6 by taking into account that the perturbation to the
consensus algorithm comes from a subgradient influence controlled by a stepsize
choice.

Based on relation (1.10), we see that if yi(k + 1) is close to the average of the
points xj (k + 1), j ∈ [m], then for the iterate xi(k + 1) we have

xi(k + 1) ≈ xav(k + 1) − αk+1∇fi(xav(k + 1)) + εk+1,

where xav(k + 1) = 1
m

∑m
j=1 xj (k + 1) and εk+1 is an error due to using the

gradient difference ∇fi(xav(k+1))−∇fi(yi(k+1)). When fi is not differentiable,
the iterates xi(k + 1) would similarly correspond to an approximate subgradient
update, where a subgradient gi(k + 1) of fi(z) at z = yi(k + 1) is used
instead of a subgradient of fi(z) evaluated at z = xav(k + 1) (which would
have been used if the average xav(k + 1) were available to all agents). Thus, the
method (1.9) can be interpreted as an approximation of a centralized algorithm,
where each agent would have access to the average vector xav(k + 1) and could
update by computing gradients of its own objective function fi at the average
xav(k + 1).

1.3.1.1 Relation for a Single Agent Iterates

To start the analysis, for a single arbitrary agent, we will explore a basic relation for
the distances between xi(k + 1) and a point x ∈ X. In doing so, we will use the
well-known property of the projection operator, namely

‖ΠX[z] − x‖2 ≤ ‖z − x‖2 − ‖ΠX[z] − z‖2 for all x ∈ X and all z ∈ R
n.

(1.11)

The preceding projection relation follows from a more general relation which can
be found in [44], in Volume II, 12.1.13 Lemma, on page 1120.

Lemma 4 Let the problem be convex (Assumption 1 holds) and let αk+1 > 0. Then,
for the iterate xi(k + 1) of the method (1.9), we have for all x ∈ X and all i ∈ [m],

‖xi(k + 1) − x‖2 ≤ ‖yi(k + 1) − x‖2 − 2αk+1 (fi(yi(k + 1)) − fi(x))

+α2
k+1‖gi(k + 1)‖2.
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Proof From the projection relation in (1.11) and the definition of xi(k+1) we obtain
for any x ∈ X,

‖xi(k + 1) − x‖2 ≤‖yi(k + 1) − αk+1gi(k + 1) − x‖2

− ‖xi(k + 1) − yi(k + 1) + αk+1gi(k + 1)‖2.

By expanding the squared-norm terms, we further have

‖xi(k + 1) − x‖2 ≤‖yi(k + 1) − x‖2 − 2αk+1〈yi(k + 1) − x, gi(k + 1)〉
+ α2

k+1‖gi(k + 1)‖2 − ‖xi(k + 1) − yi(k + 1)‖2

− 2αk+1〈xi(k + 1) − yi(k + 1), gi(k + 1)〉
− α2

k+1‖gi(k + 1)‖2

=‖yi(k + 1) − x‖2 − 2αk+1〈yi(k + 1) − x, gi(k + 1)〉
− ‖xi(k + 1) − yi(k + 1)‖2

− 2αk+1〈xi(k + 1) − yi(k + 1), gi(k + 1)〉.
Since gi(k + 1) is a subgradient of fi at yi(k + 1), by convexity of fi , we have

〈yi(k + 1) − x, gi(k + 1)〉 ≥ fi(yi(k + 1)) − fi(x),

implying that

‖xi(k + 1) − x‖2 ≤‖yi(k + 1) − x‖2 − 2αk+1 (fi(yi(k + 1)) − fi(x))

− ‖xi(k + 1) − yi(k + 1)‖2

− 2αk+1〈xi(k + 1) − yi(k + 1), gi(k + 1)〉.
The last term in the preceding relation can be estimated by using Cauchy-Schwarz
inequality, to obtain

− 2αk+1〈xi(k + 1) − yi(k + 1), gi(k + 1)〉
≤ 2‖xi(k + 1) − yi(k + 1)‖ · αk+1‖gi(k + 1)‖
≤ ‖xi(k + 1) − yi(k + 1)‖2 + α2

k+1‖gi(k + 1)‖2.

By combining the preceding two relations, we find that for any x ∈ X,

‖xi(k + 1) − x‖2 ≤ ‖yi(k + 1) − x‖2 − 2αk+1 (fi(yi(k + 1)) − fi(x))

+ α2
k+1‖gi(k + 1)‖2.

�
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1.3.1.2 Relation for Agents’ Iterates and Their Averages Through
Perturbed Consensus

We would like to estimate the difference between xi(k + 1) and the average of these
vectors, which can be then used in Lemma 4 to get some insights into the behavior
of ‖xi(k) − x∗‖ for an optimal solution x∗. To do so, we will re-write the iterations
of the method (1.9), as follows:

yi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = yi(k + 1) + (ΠX[yi(k + 1) − αk+1gi(k + 1)] − yi(k + 1))
︸ ︷︷ ︸

εi (k+1)

.

Thus, we have for all i and k ≥ 0,

xi(k + 1) =
m∑

j=1

wij (k)xj (k) + εi(k + 1),

εi (k + 1) = ΠX[yi(k + 1) − αk+1gi(k + 1)] − yi(k + 1), (1.12)

yi(k + 1) =
m∑

j=1

wij (k)xj (k).

In this representation, the iterates xi(k + 1) can be viewed as obtained through a
perturbed consensus algorithm, where εi(k + 1) is a perturbation at agent i.

Under suitable conditions (cf. Assumption 3), by Lemma 3, we know that the
matrix products W(k)W(k −1) · · ·W(t) are converging as k → ∞, for any t , to the
matrix with all entries equal to 1/m. We will use that result to establish a relation
for the behavior of the iterates xi(k + 1).

Lemma 5 Let the graphs Gk satisfy Assumption 2 and the matrices W(k) satisfy
Assumption 3. Then, for the iterate process (1.12), we have for all k ≥ 0,

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2

≤ mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m

⎛

⎝
k∑

t=1

pk−t

√
√
√
√

m∑

i=1

‖εi(t)‖2

⎞

⎠

+√
m − 1

√
√
√
√

m∑

i=1

‖εi(k + 1)‖2,
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where xav(k + 1) = 1
m

∑m
j=1 xj (k + 1), p = 1 − η

4m2 and η > 0 is a uniform lower
bound on the entries of the matrices W(k) (see Assumption 3(d)).

Proof We write the evolution of the iterates xi(k + 1) in (1.12) in a matrix
representation. Letting 	 ∈ [n] be any coordinate index, we can write for the 	th
coordinate (denoted by a superscript)

x	
i (k + 1) =

m∑

j=1

wij (k)x	
j (k) + ε	

i (k + 1) for all 	 ∈ [n].

Stacking all the 	th coordinates in a column vector, denoted by x	(k + 1), we have

x	(k + 1) = W(k)x	
j (k) + ε	(k + 1) for all 	 ∈ [n].

Next, we take the column vectors x	(k + 1), 	 ∈ [n], in a matrix X(k + 1), for
all k, and similarly, we construct the matrix E(k + 1) from the perturbation vectors
ε	(k + 1), 	 ∈ [n]. Thus, we have the following compact form representation for
the evolution of the iterates xi(k + 1):

X(k + 1) = W(k)X(k) + E(k + 1) for all k ≥ 0. (1.13)

Using the recursion, from (1.13) we see that for all k ≥ 0,

X(k + 1) = W(k)X(k) + E(k + 1)

= W(k)W(k − 1)X(k − 1) + W(k)E(k) + E(k + 1)

= · · ·
= W(k : 0)X(0) +

(
k∑

t=1

W(k : t)E(t)

)

+ E(k + 1), (1.14)

where

W(k : t) = W(k)W(k − 1) · · · W(t + 1)W(t) for all k ≥ t ≥ 0.

By multiplying both sides of (1.14) with the matrix 1
m
11′, we have

1

m
11′X(k + 1)

= 1

m
11′W(k : 0)X(0) +

(
k∑

t=1

1

m
11′W(k : t)E(t)

)

+ 1

m
11′E(k + 1)

= 1

m
11′X(0) +

(
k∑

t=1

1

m
11′E(t)

)

+ 1

m
11′E(k + 1),
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where the last equality follows from the fact that the matrices W(k : t) are
column-stochastic, as inherited from the matrices W(k) being column-stochastic.
By subtracting the preceding relation from (1.14), we obtain

X(k + 1) − 1

m
11′X(k + 1)

=
(

W(k : 0) − 1

m
11′

)

X(0) +
k∑

t=1

(

W(k : t) − 1

m
11′

)

E(t)

+
(

I − 1

m
11′

)

E(k + 1), (1.15)

where I is the identity matrix. Let ‖A‖F denote the Frobenius norm of an m × n

matrix A, i.e.,

‖A‖F =
√
√
√
√

m∑

i=1

n∑

j=1

a2
ij .

By taking the Frobenius norm of both sides in (1.15), we further obtain
∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

F

≤
∥
∥
∥
∥

(

W(k : 0) − 1

m
11′

)

X(0)

∥
∥
∥
∥

F

+
(

k∑

t=1

∥
∥
∥
∥

(

W(k : t) − 1

m
11′

)

E(t)

∥
∥
∥
∥

F

)

+
∥
∥
∥
∥

(

I − 1

m
11′

)

E(k + 1)

∥
∥
∥
∥

F

.

Since the Frobenius norm is sub-multiplicative, i.e., ‖AB‖F ≤ ‖A‖F ‖B‖F , it
follows that
∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

F

≤
∥
∥
∥
∥W(k : 0) − 1

m
11′

∥
∥
∥
∥

F

‖X(0)‖F

+
(

k∑

t=1

∥
∥
∥
∥W(k : t) − 1

m
11′

∥
∥
∥
∥

F

‖E(t)‖F

)

+
∥
∥
∥
∥I − 1

m
11′

∥
∥
∥
∥

F

‖E(k + 1)‖F . (1.16)

By Lemma 3 we have

(

[W(k : t)]ij − 1

m

)2

≤ qk−t for all k ≥ t ≥ 0, with q = 1 − η

2m2 .

Hence,

∥
∥
∥
∥W(k : t) − 1

m
11′

∥
∥
∥
∥

F

=
√
√
√
√

m∑

i=1

m∑

j=1

(

[W(k : t)]ij − 1

m

)2

≤ m

√

qk−t .
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Since q = 1 − η

2m2 , by using the fact
√

1 − μ ≤ 1 − μ/2 for any μ ∈ (0, 1), we see
that for all k ≥ t ≥ 0,

∥
∥
∥
∥W(k : t) − 1

m
11′

∥
∥
∥
∥

F

≤ mpk−t with p = 1 − η

4m2 . (1.17)

For the norm
∥
∥
∥I − 1

m
11′

∥
∥
∥

F
we have

∥
∥
∥
∥I − 1

m
11′

∥
∥
∥
∥

F

=
√

m

(

1 − 1

m

)2

+ (m − 1)m
1

m2
= √

m − 1. (1.18)

Using relations (1.17) and (1.18) in inequality (1.16), we obtain

∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

F

≤ mpk‖X(0)‖F + m

(
k∑

t=1

pk−t‖E(t)‖F

)

+√
m − 1‖E(k + 1)‖F . (1.19)

We next interpret relation (1.19) in terms of the iterates xi(k + 1) and the vectors
εi(k + 1), as given in (1.12). Recalling that the 	th column of X(k) consists of the
vector x	(k), with the entries x	

i (k), i ∈ [m], for all 	 ∈ [n], we can see that

1′X(k) =
(

m∑

i=1

x1
i (k), . . . ,

m∑

i=1

xm
i (k)

)

.

Thus,

1

m
1′X(k) = x ′

av(k) where xav(k) = 1

m

m∑

j=1

xj (k),

and

1

m
11′X(k) = 1x ′

av(k) for all k.

Hence, 1
m
11′X(k) is the matrix with all rows consisting of the vector x ′

av(k).
Observing that the matrix X(k) has rows consisting of x ′

1(k), . . . , x ′
m(k), and using

the definition of the Frobenius norm, we can see that

∥
∥
∥
∥X(k) − 1

m
11′X(k)

∥
∥
∥
∥

F

=
√
√
√
√

m∑

i=1

‖xi(k) − xav(k)‖2.
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Similarly, recalling that E(k) has rows consisting of ε′
i (k), i ∈ [m], we also have

‖E(k)‖F =
√
√
√
√

m∑

i=1

‖εi(k)‖2.

Therefore, relation (1.19) is equivalent to
√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2

≤ mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m

⎛

⎝
k∑

t=1

pk−t

√
√
√
√

m∑

i=1

‖εi(t)‖2

⎞

⎠

+√
m − 1

√
√
√
√

m∑

i=1

‖εi(k + 1)‖2.

�

1.3.1.3 Basic Relation for Agents’ Iterates

Recall that each εi(k + 1) represents the difference between the projection point
ΠX[yi(k + 1)−αk+1gi(k + 1)] and the point yi(k + 1) (see (1.12)). Thus, there is a
structure in εi(k+1) that can be further exploited. In particular, we can further refine
the result of Lemma 5, under the assumption of bounded subgradients gi(k + 1), as
given in the following lemma.

Lemma 6 Let the problem be convex (i.e., Assumption 1 holds). Also, assume that
the subgradients of fi are bounded over the set X for all i, i.e., there exists a constant
C such that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X.

Furthermore, let Assumptions 2 and 3 hold for the graphs Gk and the matrices
W(k), respectively. Then, for the iterates xi(k) of the method (1.9) and their
averages xav(k) = 1

m

∑m
j=1 xj (k), we have for all i ∈ [m] and k ≥ 0,

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 ≤ mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m
√

mC

k∑

t=1

pk−t αt + mCαk+1,
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where p = 1 − η

4m2 .

Proof By Lemma 5 we have for all k ≥ 0,

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2

≤ mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m

⎛

⎝
k∑

t=1

pk−t

√
√
√
√

m∑

i=1

‖εi(t)‖2

⎞

⎠

+√
m − 1

√
√
√
√

m∑

i=1

‖εi(k + 1)‖2. (1.20)

Since yi(k + 1) is a convex combination of points xj (k + 1) ∈ X, j ∈ [m], by the
convexity of the set X it follows that yi(k + 1) ∈ X for all i, implying that for all
k ≥ 0,

‖ΠX[yi(k + 1) − αk+1gi(k + 1)] − yi(k + 1)‖ ≤ αk+1‖gi(k + 1)‖ ≤ αk+1C.

Therefore, for all i and k ≥ 0,

‖εi(k + 1)‖2 ≤ α2
k+1C

2,

implying that

m∑

i=1

‖εi(k + 1)‖2 ≤ mα2
k+1C

2 for all k ≥ 0.

By substituting the preceding estimate in (1.19), we obtain

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 ≤ mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m

(
k∑

t=1

pk−t

√

mα2
t C

2

)

+√
m − 1

√
mα2

k+1C
2

= mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m
√

mC

(
k∑

t=1

pk−t αt

)

+√
m − 1

√
mCαk+1.

The desired relation follows by using m − 1 ≤ m. �
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We will now put together Lemmas 4 and 6 to provide a key result for establishing
the convergence of the method. We assume some conditions on the stepsize, some
of which are often used when analyzing the behavior of a subgradient algorithm.

Proposition 1 Let Assumptions 1–3 hold. Assume that the subgradients of fi are
uniformly bounded over the set X for all i, i.e., there exists a constant C such that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X.

Also, let the stepsize satisfy the following conditions

αk+1 ≤ αk for all k ≥ 1,

∞∑

k=1

α2
k < ∞.

Then, for the iterates xi(k) of the method (1.9), we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

j=1

‖xj (k) − x‖2 − 2αk+1 (f (xav(k)) − f (x)) + sk,

where xav(k) = 1
m

∑m
j=1 xj (k), while sk is given by

sk = 2αk+1C
√

m

√
√
√
√

m∑

j=1

‖xj (k) − xav(k)‖2 + mα2
k+1C

2,

and it satisfies

∞∑

k=0

sk < ∞.

Proof By Lemma 4, we have for all i, all k ≥ 0 and all x ∈ X,

‖xi(k + 1) − x‖2 ≤ ‖yi(k + 1) − x‖2 − 2αk+1 (fi(yi(k + 1)) − fi(x))

+α2
k+1‖gi(k + 1)‖2.

Since yi(k + 1) is a convex combination of the points xj (k), j ∈ [m], by the
convexity of the norm squared, it follows that

‖xi(k + 1) − x‖2 ≤
m∑

j=1

wij (k)‖xj (k) − x‖2 − 2αk+1 (fi(yi(k + 1)) − fi(x))

+α2
k+1‖gi(k + 1)‖2.
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By summing these relations over i and by using the subgradient-boundedness
property, we obtain

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

i=1

m∑

j=1

wij (k)‖xj (k) − x‖2

−2αk+1

m∑

i=1

(fi(yi(k + 1)) − fi(x))

+mα2
k+1C

2.

By exchanging the order of summation in the double-sum term, we see that

m∑

i=1

m∑

j=1

wij (k)‖xj (k) − x‖2 =
m∑

j=1

‖xj (k) − x‖2
m∑

i=1

wij (k) =
m∑

j=1

‖xj (k) − x‖2,

where the last equality follows from 1′W(k) = 1′. Therefore,

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

j=1

‖xj (k) − x‖2 − 2αk+1

m∑

i=1

(fi(yi(k + 1)) − fi(x)) + mα2
k+1C

2.

We next estimate fi(yi(k + 1)) − fi(x) by using the average vector xav(k), as
follows:

fi(yi(k + 1)) − fi(x) = fi(yi(k + 1)) − fi(xav(k)) + fi(xav(k)) − fi(x)

≥ −C‖yi(k + 1) − xav(k)‖ + fi(xav(k)) − fi(x),

where the inequality follows by the Lipschitz continuity of fi (due to the uniform
subgradient-boundedness property on the set X and the fact that yi(k + 1) ∈ X and
xav(k) ∈ X). By combining the preceding two relations and using f = ∑m

i=1 fi ,
we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

j=1

‖xj (k) − x‖2 − 2αk+1 (f (xav(k)) − f (x))

+ 2αk+1C

m∑

i=1

‖yi(k + 1) − xav(k)‖ + mα2
k+1C

2. (1.21)
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Consider now the vectors yi(k + 1) and note that by the definition of yi(k + 1),
we have for any y ∈ R

n,

m∑

i=1

‖yi(k + 1) − y‖ =
m∑

i=1

∥
∥
∥
∥
∥
∥

m∑

j=1

wij (k)(xj (k) − y)

∥
∥
∥
∥
∥
∥

,

where we use W(k)1 = 1. By the convexity of the norm, it follows that

m∑

i=1

‖yi(k + 1) − y‖ ≤
m∑

i=1

m∑

j=1

wij (k)‖xj (k) − y‖ =
m∑

j=1

‖xj (k) − y‖,

where the last equality is obtained by exchanging the order of summation and using
1′W(k) = 1′. Hence, for y = xav(k), we obtain

m∑

i=1

‖yi(k + 1) − xav(k)‖≤
m∑

j=1

‖xj (k) − xav(k)‖≤√
m

√
√
√
√

m∑

j=1

‖xj (k) − xav(k)‖2,

where the last inequality follows by Hölder’s inequality. By substituting the
preceding estimate in relation (1.21), we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

j=1

‖xj (k) − x‖2 − 2αk+1 (f (xav(k)) − f (x))

+ 2αk+1C
√

m

√
√
√
√

m∑

j=1

‖xj (k) − xav(k)‖2 + mα2
k+1C

2.

To simplify the notation, we let for all k ≥ 0,

sk = 2αk+1C
√

m

√
√
√
√

m∑

j=1

‖xj (k) − xav(k)‖2 + mα2
k+1C

2, (1.22)

so that we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

j=1

‖xj (k) − x‖2 − 2αk+1 (f (xav(k)) − f (x)) + sk.
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We next show that the terms αk+1

√∑m
j=1 ‖xj (k) − xav(k)‖2 involved in the

definition of sk are summable over k. According to Lemma 6 we have for all k ≥ 1,

√
√
√
√

m∑

i=1

‖xi(k) − xav(k)‖2 ≤ mpk−1

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m
√

mC

k−1∑

t=1

pk−t−1αt + mCαk.

Letting

rk = αk+1

√
√
√
√

m∑

j=1

‖xj (k) − xav(k)‖2, (1.23)

and using the assumption that the stepsize αk is non-increasing, we see that

rk ≤ mpk−1α1

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m
√

mC

k−1∑

t=1

pk−t−1α2
t + mCα2

k .

By summing rk over k = 2, 3, . . . ,K, for some K ≥ 2, we have

K∑

k=2

rk ≤ m

(
K∑

k=1

pk−1

)

α1

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m
√

mC

K∑

k=2

k−1∑

t=1

pk−t−1α2
t + mC

K∑

k=2

α2
k

<
m

1 − p
α1

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m
√

mC

K−1∑

s=1

s∑

t=1

ps−tα2
t + mC

K∑

k=2

α2
k ,

where we use the fact that p ∈ (0, 1) and we shift the indices in the double-sum
term. Furthermore, by exchanging the order of summation, we see that

K−1∑

s=1

s∑

t=1

ps−t α2
t =

K−1∑

t=1

α2
t

K−1∑

s=t

ps−t <

K−1∑

t=1

α2
t

1

1 − p
.
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Therefore,

K∑

k=2

rk <
m

1 − p
α1

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m
√

mC

1 − p

K−1∑

t=1

α2
t + mC

K∑

k=2

α2
k .

In view of the assumption that
∑∞

k=1 α2
k < ∞, it follows that

∑∞
k=2 rk < ∞. Since

sk = 2C
√

mrk + mα2
k+1C

2

(see (1.22) and (1.23)), it follows that

∞∑

k=0

sk < ∞.

�

1.3.1.4 Convergence Result for Agents’ Iterates

Using Proposition 1, we establish a convergence result for the iterates xi(k), as given
in the following theorem.

Theorem 1 Let Assumptions 1–3 hold. Assume that there is a constant C such that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X.

Let the stepsize satisfy the following conditions

αk+1 ≤ αk for all k ≥ 1,

∞∑

k=1

αk = ∞,

∞∑

k=1

α2
k < ∞,

and assume that problem (1.1) has a solution. Then, the iterate sequences {xi(k)},
i ∈ [m], generated by the method (1.9), converge to an optimal solution of
problem (1.1), i.e.,

lim
k→∞ ‖xi(k) − x∗‖ = 0 for all i ∈ [m] and some x∗ ∈ X∗.

Proof By letting x = x∗ in Proposition 1, for an arbitrary x∗ ∈ X∗, we obtain for
all i ∈ [m] and k ≥ 0,

m∑

i=1

‖xi(k + 1) − x∗‖2 ≤
m∑

j=1

‖xj (k) − x∗‖2 − 2αk+1
(
f (xav(k)) − f (x∗)

) + sk,



30 A. Nedić

with sk > 0 satisfying
∑∞

k=0 sk < ∞. By summing these relations over k = K,K+
1, . . . , T for any T ≥ K ≥ 0, after re-arranging the terms, we further obtain for all
x∗ ∈ X∗ and all T ≥ K ≥ 0,

m∑

i=1

‖xi(T + 1) − x∗‖2 + 2
T∑

k=K

αk+1
(
f (xav(k)) − f (x∗)

)

≤
m∑

j=1

‖xj (K) − x∗‖2 +
T∑

k=K

sk. (1.24)

Note that f (xav(k))−f (x∗) > 0 since xav(k) ∈ X. Thus, the preceding relation
implies that the sequences {xi(k)}, i ∈ [m], are bounded and, also, that

∞∑

k=0

αk+1
(
f (xav(k)) − f ∗) < ∞

since
∑∞

k=0 sk < ∞, where f ∗ = f (x∗) for any x∗ ∈ X∗. Thus, it follows that

lim inf
k→∞

(
f (xav(k)) − f ∗) = 0.

Let {k	} be a sequence of indices that attains the above limit inferior, i.e.,

lim
	→∞ f (xav(k	)) = f ∗. (1.25)

Since the sequences {xi(k)}, i ∈ [m], are bounded, so is the average
sequence {xav(k)}. Hence, {xav(k	)} contains a converging subsequence. Without
loss of generality, we may assume that {xav(k	)} converges to some point x̂,
i.e.,

lim
	→∞ xav(k	) = x̂.

Note that x̂ ∈ X since {xav(k)} ⊂ X and the set X is assumed to be closed.
Note further that f is continuous on R

n since it is convex on R
n. Hence, we

have

lim
	→∞ f (xav(k	)) = f (x̂) with x̂ ∈ X,

which together with relation (1.25) yields f (x̂) = f ∗. Therefore, x̂ is an optimal
point.
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Next, we show that {xi(k	)} converges to x̂ for all i. By Lemma 6 we have for
all k ≥ 0 and all i ∈ [m],

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 ≤ mpk

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m
√

mC

k∑

t=1

pk−t αt + mCαk+1.

Letting k = k	 − 1 for any k	 ≥ 1, we see that for all i ∈ [m],
√
√
√
√

m∑

i=1

‖xi(k	) − xav(k	)‖2 ≤ mpk	−1

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m
√

mC

k	−1∑

t=1

pk	−1−t αt + mCαk	 .

Since p ∈ (0, 1) and αk → 0 (due to
∑∞

k=1 α2
k < ∞), it follows that

lim sup
	→∞

√
√
√
√

m∑

i=1

‖xi(k	) − xav(k	)‖2 ≤ m
√

mC lim sup
	→∞

k	−1∑

t=1

pk	−1−tαt .

We note that

lim sup
	→∞

k	−1∑

t=1

pk	−1−tαt = lim
k→∞

k−1∑

t=1

pk−1−t αt

= lim
k→∞

((
k−1∑

τ=1

pk−1−τ

)
1

∑k−1
τ=1 pk−1−τ

k−1∑

t=1

pk−1−tαt

)

= lim
k→∞

(
k−1∑

τ=1

pk−1−τ

) (

lim
k→∞

1
∑k−1

τ=1 pk−1−τ

k−1∑

t=1

pk−1−t αt

)

= 1

1 − p
lim

t→∞ αt , (1.26)

where in the last equality we use that fact that any convex combination of a
convergent sequence {αk} converges to the same limit as the sequence itself. Hence,
we have

lim sup
	→∞

k	−1∑

t=1

pk	−1−t αt = 0,
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implying that

lim sup
	→∞

√
√
√
√

m∑

i=1

‖xi(k	) − xav(k	)‖2 = 0.

Therefore, since lim	→∞ xav(k	) = x̂, it follows that

lim
	→∞ xi(k	) = x̂ for all i ∈ [m], with x̂ ∈ X∗. (1.27)

Now, since x̂ ∈ X∗, we let x∗ = x̂ in (1.24). Then, we let K = k	 in (1.24) and by
omitting the term involving the function values, from (1.24) we obtain for all 	 ≥ 1,

lim sup
T →∞

m∑

i=1

‖xi(T + 1) − x̂‖2 ≤
m∑

j=1

‖xj (k	) − x̂‖2 +
∞∑

k=k	

sk.

Letting 	 → ∞, and using relation (1.27), we see that

lim sup
T →∞

m∑

i=1

‖xi(T + 1) − x̂‖2 ≤ lim
	→∞

∞∑

k=k	

sk = 0,

where lim	→∞
∑∞

k=k	
sk = 0 holds since

∑∞
k=0 sk < ∞. Thus, it follows that for

x̂ ∈ X∗,

lim
k→∞ ‖xi(k) − x̂‖ = 0 for all i ∈ [m].

�

1.3.2 Numerical Examples

Here, we show some numerical results obtained for a variant of the algorithm
in (1.9) as applied to a data classification problem from Example 3. We will
consider an extension of that problem to the case when the data set is not
perfectly separable. In this case, there is an additional slack variable u that enters
the model, and the distributed version of the problem assumes the following
form:

min
(x,u)∈Rn×R

f (x, u) f (x, u) =
m∑

i=1

fi(x, u),
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Fig. 1.5 An undirected
network with four nodes

where each fi : Rn × R → R is given by:

fi(x, u) = ρ

2m
‖x‖2 +

∑

j∈Di

max{0, 1 − yj 〈x, zj 〉 + u},

where Di is the collection of the data points at the center i (agent i).
Letting x = (x, u) ∈ R

n × R, we consider the following distributed algorithm3

for this problem over a static graph G = ([m], E):

yi (k + 1) = xi (k) − ηk+1

m∑

j=1

rij xj (k) (rij = 0 when i ↔ j /∈ E),

xi (k + 1) = yi (k + 1) − αk+1gi(k + 1), (1.28)

where gi(k + 1) is a subgradient of fi at yi (k + 1). We note that the weights
used in the update of yi (k + 1) are different from the weights used in (1.9). The
weights here are based on a Laplacian formulation of the consensus problem, which
include another parameter ηk+1 > 0. This parameter can be viewed as an additional
stepsize that is associated with the feasibility step for the consensus constraints.
Under some (boundedness) conditions on ηk+1 and standard conditions on the
stepsize (akin to those in Theorem 1), the method converges to a solution of the
problem [144].

We illustrate the behavior of the method in (1.28) for the case of a network with
four nodes organized in a ring, as depicted in Fig. 1.5. The simulations are generated
for the regularization parameter ρ = 6. The stepsize values used in the experiment
are: ηk = 0.8 and αk = 1

k
, for all k ≥ 1. The behavior of the method is depicted in

Fig. 1.6 where the resulting hyperplanes produced by agents are shown after 20 and
after 500 iterations. The plots also show the true separating hyperplane that solves
the centralized problem.

The algorithm (1.28) assumes perfect communication links, which is not typi-
cally the case in wireless networks. To capture the effect of communication noise,

3See [144, 146] for more details.
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Fig. 1.6 The top plot shows the agents’ iterates xi (k) after 20 iterations and the true solution (the
hyperplane in red color), while the bottom plot shows the agents’ iterates after 500 iterations
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consider the following variant of the method:

yi (k + 1) = xi (k) − ηk+1

m∑

j=1

rij (xj (k) + ξij (k)) (rij = 0 when i ↔ j /∈ E),

xi (k + 1) = yi (k + 1) − αk+1gi(k + 1), (1.29)

where ξij (k) is a link dependent noise associated with messages received by agent i

from a neighbor j . The parameter ηk+1 > 0 can be viewed as a noise-damping
stepsize. In this case, for the method to converge to a solution of the problem,
the noise-damping stepsize ηk has to be coordinated with the subgradient-related
stepsize αk . In particular, the following conditions are imposed:

∞∑

k=1

αk = ∞,

∞∑

k=1

α2
k < ∞,

∞∑

k=1

ηk = ∞,

∞∑

k=1

η2
k < ∞,

∞∑

k=1

αkηk < ∞,

∞∑

k=1

α2
k

ηk

< ∞.

The simulations are performed for a different set of data and the ring graph shown
in Fig. 1.5, where the links were assumed to be noisy. The noise is modeled by the
i.i.d. zero mean Gaussian process with the variance equal to 1. The regularization
parameter is ρ = 6, while the noise-damping parameter and the stepsize are ηk =

1
k0.55 and αk = 1

k
for all k ≥ 1. The results for one of the typical simulation run

are shown in Fig. 1.7. These simulation results are taken from [144], where more
simulation results can be found.

1.4 Distributed Asynchronous Algorithms for Static
Undirected Graphs

There are several drawbacks of synchronous updates that limit their applications,
including

• All agents have to update at the same time. Imagine that each agent has its own
clock and it updates at each tick of its clock. Then, the requirement that the
agents update synchronously, as in method (1.9), means that the agents must
have their local clocks perfectly synchronized throughout the computation task.
This is hard to ensure in practice for some networks, such as wireless networks
where communication interference is an issue.

• The communication links in the connectivity graphs Gk have to be perfectly
activated to transmit and receive information. Some communication protocols
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Fig. 1.7 The top plot shows the agents’ iterates xi (k) after the first iteration and the true solution
(the hyperplane in red color), while the bottom plot shows the agents’ iterates after 500 iterations
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Fig. 1.8 The agent
communication graph is
static, undirected and
connected. However, not all
the links will necessarily be
active at each time instance.
A function fi is a local
objective of agent i

require receiving message acknowledgements (“acks"), which can lead to dead-
locks when the links are not perfect.

• Communications can be costly (consume power) and it may not be efficient for
agents to be activated too frequently to communicate, due to their limited power
supply for example.

In order to alleviate these drawbacks of simultaneous updates, one possibility
is to randomize the activation of communication links in the network or the
activation of the agents. We will discuss two such random activations: gossip and
broadcast protocols. Gossip could be viewed as a random link activation process,
while broadcast is a random-agent activation process. We will here treat both as a
random-agent activation, by assuming that the agents are equipped with local clocks
that tick according to the same rate (the same inter-click time), but do not click
synchronously.

Throughout this section, we assume that the underlying communication graph
is static and undirected, denoted by G = ([m], E), see Fig. 1.8 for an illustration
of the graph. The randomization we will use to develop asynchronous algorithms
will have some stepsizes that can be easily analyzed for a static graph. While their
extensions to time-varying graphs may be possible, we will not consider them here.

To develop asynchronous algorithms for solving problem (1.1), we will use
the asynchronous methods for consensus. Thus, we will at first discuss random
asynchronous consensus methods in Sect. 1.4.1 and, then, we give the corresponding
asynchronous optimization methods in Sect. 1.4.2.

1.4.1 Random Gossip and Random Broadcast for Consensus

Both random gossip and random broadcast algorithms can be used to achieve a
consensus. These two approaches share in common the mechanism that triggers the
update events, but they differ in the update rule specifications.

More concretely, these two approaches use the same random process to wake up
an agent that will initiate a communication event that includes an iterate update.
However, in the random gossip algorithm the agent that wakes up contacts one
of its neighbors at random, thus, randomly activating a single undirected link for
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communication, and both the agent and the selected neighbor perform updates.
Unlike this, in the random broadcast approach, the agent that wakes up broadcasts its
information to all of its neighbors, thus resulting in using directed communication
links (even-though the links are undirected). Moreover, upon the broadcast, the
agent that triggered the communication event goes to an inactive mode and only
its neighbors perform updates.

Let us now describe the random process that triggers the communication events
for both gossip and broadcast models. Each agent has its own local Poisson clock
that ticks with a rate equal to 1 (the rate can take any other positive value as
long as all agents have the same rate). Each agent’s clock ticks independently of
the other agents’ clocks. At a tick of its clock, an agent wakes up and initiates a
communication event. The ticks of the local agents’ clocks can be modeled as single
virtual Poisson clock that ticks with a rate m. Letting {Zk} be the Poisson process
of the virtual clock tick-times, we discretize the time according to {Zk} since these
are the only times when a change will occur in some of the agent values xi(k). The
inter-tick times {Zk+1 − Zk} are i.i.d. exponentially distributed with the rate m.

1.4.1.1 Gossip-Based Consensus Algorithm

In the gossip-model, the randomly activated agent wakes up and selects randomly
one of its neighbors, as depicted in Fig. 1.9. The activated agent and its selected
neighbor exchange their information and perform an iterate update. Upon the
update, both agents go to sleep.

To formalize the process, we let Ik be the index of the agent that is activated at
time Zk , i.e., the agent whose clock ticks at time Zk . The variables {Ik} are i.i.d.
with a uniform distribution over {1, . . . ,m}, i.e.,

Prob{Ik = i} = 1

m
for all i ∈ [m].

For agent i, let pij > 0 be the probability of contacting its neighbor j ∈ Ni ,
j �= i. Let Jk be the index of a neighbor of agent Ik that is selected randomly for
communication at time Zk . Let P = [pij ] be the matrix of contact probabilities,
where pij = 0 if j �∈ Ni , and note that P is row-stochastic.

Fig. 1.9 Random gossip
communication protocol: an
agent that wakes up
establishes a connection with
a randomly selected neighbor.
Thus, a random link is
activated (shown in green
color)
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At time k, the active agents Ik and Jk exchange their current values xIk (k) and
xJk(k), and then both update as follows:

xIk (k + 1) = 1

2

(
xIk (k) + xJk (k)

)
, xJk (k + 1) = 1

2

(
xJk(k) + xIk (k)

)
,

(1.30)

while the other agents do nothing (they sleep),

xi(k + 1) = xi(k) for all i /∈ {Ik, Jk}.

A value other than 1/2 can be used in the updates in (1.30); however, we will work
with 1/2.

Assuming that the agent values xi(k) are scalars, the gossip iteration update can
be compactly written, as follows:

x(k + 1) = Wg(k)x(k) for all k ≥ 0, (1.31)

where x(k) is a vector with components xi(k), i ∈ [m], and the matrix Wg(k) is
symmetric with the entries given by

[Wg(k)]Ik,Jk = [Wg(k)]Jk,Ik = 1

2
, [Wg(k)]Ik,Ik = 1

2
, [Wg(k)]Jk,Jk = 1

2
,

[Wg(k)]ii = 1 for all i ∈ [m] \ {Ik, Jk}, and else [Wg(k)]ij = 0.

Equivalently, the random matrix Wg(k) is given by

Wg(k) = W(IkJk), with W(ij) = I − 1

2
(ei − ej )(ei − ej )

′ for all i, j ∈ [m],

where ei is the unit vector with its ith entry equal to 1 and the other entries equal to 0.
Thus, the random matrix Wg(k) takes values Wg(k) = W(ij) with the probability
(pij + pji)/m.

Every realization of Wg(k) is a symmetric and stochastic matrix, hence, Wg(k) is
doubly stochastic. Furthermore, it can be seen that every realization W(ij) of Wg(k)

is a projection matrix4 on the sub-space

Sij = {x ∈ R
m | xi = xj }.

Therefore, we have

W ′
g(k)Wg(k) = W 2

g (k) = Wg(k) for all k ≥ 0.

4A matrix A is a projection matrix if A2 = A.
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The convergence of the gossip algorithm has been shown in [16]. In the following
theorem, we provide a statement based on the result in [16] that is relevant to our
subsequent discussion on distributed asynchronous methods.

Theorem 2 ([16]) Assume that the graph G is connected. Then, the iterate
sequences {xi(k)}, i ∈ [m], produced by the gossip algorithm (1.31) satisfy the
following relation

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
x(k) − 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦ ≤ λk

g

∥
∥
∥
∥
∥
∥
x(0) − 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2

for all k ≥ 0,

where 0 < λg < 1 is the second largest eigenvalue of W̄g = E
[
Wg(k)

]
.

Proof Defining

z(k) = x(k) − 1

m

m∑

j=1

xj (0) 1,

and using the gossip updates in (1.31), the following relation has been shown in [16]:

E

[
‖z(k + 1)‖2 | z(k)

]
= 〈z(k),E

[
W ′

g(k)Wg(k)
]
z(k)〉

(see equation (14) in [16]). Since W ′
g(k)Wg(k) = Wg(k) and since {Wg(k)} is an

i.i.d. matrix sequence, by letting E
[
Wg(k)

] = W̄g , we obtain

E

[
‖z(k + 1)‖2 | z(k)

]
= 〈z(k), W̄gz(k)〉.

The matrix W̄g is symmetric and doubly stochastic, since each realization W(ij) of
any Wg(k) is symmetric and doubly stochastic. Furthermore, since each realization
W(ij) is a projection matrix, each W(ij) is positive semi-definite. Hence, W̄g is also
positive semi-definite and, consequently, all eigenvalues of W̄g are non-negative.
Moreover, we have

[W̄g]ii > 0 for all i ∈ [m],

and for all i �= j,

[W̄g]ij > 0 ⇐⇒ i ↔ j ∈ E.

Since the graph G is connected, W̄g is irreducible and by Theorem 4.3.1, page 106
in [46], the matrix W̄g has 1 as the largest eigenvalue of multiplicity 1, with the
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associated eigenvector 1. Since z(k) ⊥ 1, it follows that

〈z(k), W̄gz(k)〉 ≤ λg‖z(k)‖2,

where 0 < λg < 1 is the second largest eigenvalue of W̄g .
Therefore, we have

E

[
‖z(k + 1)‖2 | z(k)

]
≤ λg‖z(k)‖2 for all k ≥ 0,

implying that

E

[
‖z(k + 1)‖2

]
≤ λgE

[
‖z(k)‖2

]
≤ · · · ≤ λk+1

g ‖z(0)‖2 for all k ≥ 0.

�
From Theorem 2 it follows that

∞∑

k=0

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
x(k) − 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦ < ∞,

which (by Fatou’s Lemma) implies that with probability 1,

lim
k→∞

∥
∥
∥
∥
∥
∥
x(k) −

⎛

⎝
1

m

m∑

j=1

xj (0)

⎞

⎠ 1

∥
∥
∥
∥
∥
∥

2

= 0,

showing that the iterates converge to the average of their initial values with
probability 1. We note that the same result is true if the agents variables xj (0) were
vectors due to the linearity of the update rule (1.31).

1.4.1.2 Broadcast-Based Consensus Algorithm

In the broadcast model, at time Zk , the randomly activated agent Ik broadcasts its
value xIk (k) to all of its neighbors j ∈ N̆Ik in the graph G = ([m], E). Here, the
neighbor set N̆i of an agent i does not include the agent i itself,

N̆i = {j ∈ [m] | i ↔ j ∈ E}.

Thus, even though the graph G is undirected, the actual links that are used at any
instance of time are virtually directed, as shown in Fig. 1.10.
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Fig. 1.10 Broadcast communication protocol: an agent that wakes up broadcasts its value to its
neighbors, resulting in a random set of agents that are activated for performing an update. In a
wireless network, the neighbors of an agent are typically defined as those agents that are within a
certain radius of a given agent

Upon receiving the broadcasted value, the agents j ∈ N̆Ik perform an update of
their values, while the other agents do nothing (they sleep), including the agent Ik

that broadcasted its information. Formally, the updates are given by

xj (k + 1) = (1 − β)xj (k) + βxIk (k) for all j ∈ N̆Ik ,

xj (k + 1) = xj (k) for all j �∈ N̆Ik ,

where β ∈ (0, 1).
We define the matrix Wb(k), as follows:

[Wb(k)]ii = 1 − β for all i ∈ N̆Ik , [Wb(k)]iIk = β for all i ∈ N̆Ik ,

[Wb(k)]ii = 1 for all i �∈ NIk and else [Wb(k)]ij = 0.

Using this matrix, the broadcast method can be written as:

x(k + 1) = Wb(k)x(k) for all k ≥ 0. (1.32)

Note that the random matrix Wb(k) is stochastic, but not necessarily doubly
stochastic. Also, note that it is not symmetric. The expected matrix W̄b = E [Wb(k)]
is in fact doubly stochastic. Specifically, as shown in [2, 3], W̄b is given by

W̄b = I − β

m
LG,

where LG is the Laplacian of the graph G, i.e., LG = D − A where A is the 0-1
adjacency matrix for the graph G and D is the diagonal matrix with entries dii =
|N̆i |, i ∈ [m]. Since G is undirected, its Laplacian LG is symmetric. Furthermore,
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since LG1 = 0, it follows that W̄b1 = 1, which due to the symmetry of W̄b also
implies that 1′W̄b = 1′.

In addition, it has been shown in [2, 3] that, when the graph G is connected, the
spectral norm of the matrix

W̄b − 1

m
11′

is less than 1 (see Lemma 2 in [3]). This spectral property of the matrix W̄b − 1
m
11′

is sufficient to guarantee the convergence of the random broadcast algorithm to a
consensus in expectation only. Its convergence with probability 1 requires some
additional analysis of the properties of the random matrices Wb(k). In particular,

the spectral norm of the matrix E

[
W ′

b(k)(I − 1
m
11′)Wb(k)

]
plays a crucial role in

establishing such a convergence result. Let Q denote this matrix, i.e.,

Q = E

[

W ′
b(k)

(

I − 1

m
11′

)

Wb(k)

]

, (1.33)

where I denotes the identity matrix of the appropriate dimension.
It has been shown in Proposition 2 of [3] that, when the graph G is connected,

then the matrix Q has a spectral radius less than 1 for any β ∈ (0, 1) (see the
role of β in the definition of matrix Wb(k)). This property is a key in proving the
convergence of the method with probability 1, as given in Theorem 1 in [3]. In
the next theorem, we summarize some key relations which have been established
in [3].

Theorem 3 (Lemma 3 and Proposition 2 of [3]) Assume that the graph G is
connected. Then, for any β ∈ (0, 1), we have

(a) The spectral radius of the matrix Q in (1.33) is less than 1.
(b) The iterate sequences {xi(k)}, i ∈ [m], produced by the random broadcast

algorithm (1.32) satisfy the following relation

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
x(k) − 1

m

m∑

j=1

xj (k) 1

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦ ≤ λk

b

∥
∥
∥
∥
∥
∥
x(0) − 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2

for all k ≥ 0,

where 0 < λb < 1 is the spectral norm of the matrix Q given in (1.33).

An extension of Theorem 3 to the case when the links are unreliable can be found
in [101]. We note that the random broadcast algorithm does not lead to the consensus
on the average of the initial agents’ values with probability 1. It guarantees, with
probability 1, that the agents will reach a consensus on a random point whose
expected value is the average of the initial agents’ values. Concretely, as shown
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in Theorem 1 of [3], there holds

Prob

{

lim
k→∞ x(k) = c1

}

= 1,

where c is a random scalar satisfying

E [c] = 1

m

m∑

i=1

xi(0).

1.4.2 Distributed Asynchronous Algorithm

In this section, we consider a general distributed asynchronous algorithm for
optimization problem (1.1) based on random matrices. The random matrices are
employed for the alignment of the agents iterates. As special cases of this algorithm,
one can obtain the algorithms that use the random gossip and the random broadcast
communications.

In particular, we will consider an algorithm with random asynchronous updates,
as follows. We assume that there is some random i.i.d. process that triggers the
update times Zk (as for the cases of gossip and broadcast). Without going into details
of such a process, we can simply keep a virtual index to count the update times
(corresponding to the times when at least one agent is active). We also assume that
the agents communicate over a network with connectivity structure captured by an
undirected graph G.

At the time of the k + 1st update, a random stochastic matrix W(k) is available
that captures the communication pattern among the agents, i.e., wij (k) > 0 if and
only if agent i receives xj (k) from its neighbor j ∈ Ni . We let Ak be the set of
agents that are active (perform an update) at time k + 1. Then, the agents iterates at
time k + 1 are described through the following two steps:

vi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = ΠX[vi(k + 1) − αi,k+1gi(k + 1)]χ{i∈Ak}
+ vi(k + 1)χ{i /∈Ak}, (1.34)

where αi,k+1 > 0 is a stepsize of agent i, gi(k+1) is a subgradient of fi at vi(k+1)

and χE is the characteristic function of an event E. We will assume that the initial
points {xi(0), i ∈ [m]} ⊂ X are deterministic.

Note that each agent uses its own stepsize αi,k+1. It is important to note that,
since W(k) is stochastic, the event {i ∈ Ak} is equivalent to {wii(k) �= 1}. Thus,
when i �∈ Ak , which is equivalent to {wii(k) = 1}, we have vi(k + 1) = xi(k)
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and xi(k + 1) = xi(k). Hence, the relation i �∈ Ak corresponds to agent i not
updating at all, so the iterate updates in (1.34) are equivalent to the following update
scheme:

vi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = ΠX[vi(k + 1) − αi,k+1gi(k + 1)] for all i ∈ Ak,

and otherwise

xi(k + 1) = xi(k).

Moreover, when the matrices W(k) are stochastic, we have

xi(k + 1) ∈ X for all k ≥ 0 and all i ∈ [m].

There is an alternative view for the updates of xi(k + 1) in (1.34) that will be
useful in our analysis. Specifically, noting that χ{i /∈Ak} = 1 − χ{i∈Ak}, from the
definition of xi(k + 1) in (1.34) it follows that

xi(k + 1) = χ{i∈Ak}ΠX[vi(k + 1) − αi,k+1gi(k + 1)] + (
1 − χ{i∈Ak}

)
vi(k + 1).

(1.35)

Thus, we can view xi(k + 1) as a convex combination of two points, namely, a
convex combination of ΠX[vi(k + 1) − αi,k+1gi(k + 1)] ∈ X and vi(k + 1). When
W(k) is a stochastic matrix, the point vi(k + 1) is in the set X.

If the random gossip protocol is used for communications, then W(k) = Wg(k).
Similarly, if the agents communicate using the random broadcast protocol, then
W(k) = Wb(k). Thus, the random gossip and random broadcast algorithms can
be viewed as a special case of a more general random communication model,
where the weight matrices W(k) are random, drawn independently in time from
the same distribution, and have the properties as specified in the following assump-
tion.

Assumption 4 Let {W(k)} be a sequence of m×m random i.i.d. matrices such that
the following conditions are satisfied:

(a) Each realization of W(k) is a stochastic matrix compatible with the graph G =
([m], E), i.e., wij (k) > 0 only if j ∈ Ni .

(b) The spectral norm of the matrix Q = E

[
W ′(k)

(
I − 1

m
11′

)
W(k)

]
is less than

1.
(c) The expected matrix E [W(k)] = W̄ is doubly stochastic.
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In view of Assumption 4(a), the entry W̄ij of the expected matrix may be positive
only if j ∈ Ni . We do not assume explicitly that the graph G is connected, however,
this property of the graph is subsumed within Assumption 4(b).

Note that the random matrices corresponding to the gossip and the broadcast
model satisfy Assumption 4 when the graph G is connected. In fact, the random
matrices corresponding to the gossip model in (1.31) satisfy a stronger condition
than that of Assumption 4(a), since each realization of Wg(k) is a doubly stochastic
matrix.

Under Assumption 4(a), the event {i ∈ Ak} that agent i updates (is awaken) at
time k + 1 has a stationary probability, denoted by pi , i.e.,

pi = Prob{i ∈ Ak}.
We now specify the stepsize rule for the algorithm. We consider the case when

every agent i choses its stepsize value αi,k+1 based on its own local count of the
update times. Letting Γi(k + 1) be the number of times the agent was awaken up to
(including) time k, i.e.,

Γi(k + 1) =
k∑

t=0

χ{i∈At },

we define the stepsize αi,k+1, as follows

αi,k+1 = 1

Γi(k + 1)
for all i ∈ [m] and k ≥ 0. (1.36)

We note that

Γi(k + 1) ≥ Γi(k) for all k ≥ 0 and i ∈ [m],

implying that

αi,k+1 ≤ αi,k for all k ≥ 0 and i ∈ [m]. (1.37)

In what follows, we will work with the conditional expectations with respect
to the past iterates of the algorithm. For this, we let Fk denote the history of the
algorithm (1.34), i.e.,

Fk = {W(0), . . . ,W(k − 1)} for all k ≥ 1,

and F0 = ∅.
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1.4.3 Convergence Analysis of Asynchronous Algorithm

We investigate the convergence properties of the algorithm assuming that the
stepsize αi,k+1 is selected by agent i based on its local information. Prior to
specifying the stepsize, we provide a result that is valid for any stepsize choice.
It is also valid for any matrix sequence {W(k)}.
Lemma 7 Assume that the problem is convex (i.e., Assumption 1 holds). Then, for
the iterates of the algorithm (1.34) with any stepsize αi,k+1 > 0 we have for all
x ∈ X, for all i ∈ [m] and all k ≥ 0,

m∑

i=1

‖xi(k + 1) − x‖2 ≤
m∑

i=1

‖vi(k + 1) − x‖2

− 2
m∑

i=1

αi,k+1χ{i∈Ak} (fi(vi(k + 1)) − fi(x))

+
m∑

i=1

α2
i,k+1χ{i∈Ak}‖gi(k + 1)‖2.

Proof From the relation in (1.35) by the convexity of the squared norm, it follows
that for any x ∈ X, all k ≥ 0 and all i ∈ [m],

‖xi(k + 1) − x‖2 ≤χ{i∈Ak}‖ΠX[vi(k + 1) − αi,k+1gi(k + 1)] − x‖2

+ (
1 − χ{i∈Ak}

) ‖vi(k + 1) − x‖2.

By Lemma 4, for the point ΠX[vi(k + 1) − αi,k+1gi(k + 1)] and any x ∈ X, we
have

‖ΠX[vi(k + 1) − αi,k+1gi(k + 1)] − x‖2 ≤ ‖vi(k + 1) − x‖2

− 2αi,k+1 (fi(vi(k + 1)) − fi(x)) + α2
i,k+1‖gi(k + 1)‖2.

By combining the preceding two relations, we obtain

‖xi(k + 1) − x‖2 ≤‖vi(k + 1) − x‖2 − 2αi,k+1χ{i∈Ak} (fi(vi(k + 1)) − fi(x))

+ α2
i,k+1χ{i∈Ak}‖gi(k + 1)‖2.

The desired relation follows by summing the preceding inequalities over i ∈ [m].
�



48 A. Nedić

We have the following refinement of Lemma 7 for the random stepsizes αi,k+1
given by (1.36), which are measurable with respect to Fk for all i ∈ [m]. The result
is developed under the assumption that the set X is compact, which is used to bound
the error induced by the asynchronous updates and, in particular, the error due to a
different frequency of agents’ updates. The result assumes that the matrix sequence
{W(k)} is just an i.i.d. sequence.

Proposition 2 Let the problem be convex (Assumption 1) and, also, assume that
the set X is bounded. Let the random matrix sequence {W(k)} be i.i.d. Con-
sider the iterates produced by method (1.34) with the random stepsizes αi,k+1
as given in (1.36). Then, with probability 1, we have for all k ≥ 0 and all
x ∈ X,

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi (k + 1) − x‖2 | Fk

]

− 2

k + 1
(f (xav(k)) − f (x)) + rk,

where

rk =2CD

m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi(k + 1) − xav(k)‖2 | Fk

]

+ 2
√

mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

+ C2 α2
i,k,

with pi denoting the probability of the event χ{i∈Ak}, C being the uniform upper
bound on the subgradient norms of fi over the set X, and D = maxx,y∈X

‖x − y‖.

Proof In view of the compactness of the set X, it follows that the subgradients of
fi are uniformly bounded over the set X for all i, i.e., there exists a constant C such
that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X. (1.38)
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Therefore, each function fi is Lipschitz continuous on X, so that for all x ∈ X, all
k ≥ 0, and all i ∈ [m],

fi(vi(k + 1)) − fi(x) = fi(vi(k + 1)) − fi(xav(k)) + fi(xav(k)) − fi(x)

≥ −C‖vi(k + 1) − xav(k)‖ + fi(xav(k)) − fi(x),

where xav(k) = 1
m

∑m
j=1 xj (k).

By using the preceding estimate in Lemma 7 and the fact that the subgradients
are bounded, we obtain

m∑

i=1

‖xi(k + 1) − x‖2

≤
m∑

i=1

‖vi(k + 1) − x‖2 − 2
m∑

i=1

αi,k+1χ{i∈Ak} (fi(xav(k)) − fi(x))

2C

m∑

i=1

αi,k+1χ{i∈Ak}‖vi(k + 1) − xav(k)‖ + C2
m∑

i=1

α2
i,k+1χ{i∈Ak}.

We take the conditional expectation with respect to Fk in both sides of the preceding
relation and further obtain, with probability 1, for all x ∈ X and all k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]

− 2
m∑

i=1

E
[
αi,k+1χ{i∈Ak} | Fk

]
(fi(xav(k)) − fi(x))

+ 2C

m∑

i=1

E
[
αi,k+1χ{i∈Ak}‖vi(k + 1) − xav(k)‖ | Fk

]

+ C2
m∑

i=1

E

[
α2

i,k+1χ{i∈Ak} | Fk

]
. (1.39)

Since αi,k+1χ{i∈Ak} ≤ αi,k+1 and the stepsize is non-increasing (see (1.37)), it
follows that

αi,k+1χ{i∈Ak} ≤ αi,k for all i ∈ [m] and all k ≥ 0.

Hence, with probability 1,

E

[
α2

i,k+1χ{i∈Ak} | Fk

]
≤ E

[
α2

i,k | Fk

]
= α2

i,k, (1.40)
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where in the last equality we use the fact that αi,k is completely determined given
the past Fk. By substituting relation (1.40) in inequality (1.39), we obtain

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]

− 2
m∑

i=1

E
[
αi,k+1χ{i∈Ak} | Fk

]
(fi(xav(k)) − fi(x))

+ 2C

m∑

i=1

E
[
αi,k+1χ{i∈Ak}‖vi(k + 1) − xav(k)‖ | Fk

] + C2 α2
i,k . (1.41)

By adding and subtracting 2
∑m

i=1
E
[
χ{i∈Ak }|Fk

]

(k+1)pi
(fi(xav(k)) − fi(x)) to the second

term on the right hand side of (1.41), and by doing similarly with a corresponding
expression for the third term, we have

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]

− 2
m∑

i=1

E
[
χ{i∈Ak} | Fk

]

(k + 1)pi
(fi(xav(k)) − fi(x))

+ 2
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]

(fi(xav(k)) − fi(x))

∣
∣
∣
∣

+ 2C

k + 1

m∑

i=1

1

pi

E
[
χ{i∈Ak}‖vi(k + 1) − xav(k)‖ | Fk

]

︸ ︷︷ ︸
T1

+ 2C

∣
∣
∣
∣
∣

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak}‖vi(k + 1) − xav(k)‖ | Fk

]∣∣
∣
∣
∣

︸ ︷︷ ︸
T2

+ C2α2
i,k, (1.42)

where pi is the probability of the event that agent i is updating.
To estimate the term T1, we use Hölder’s inequality

r∑

i=1

E [|aibi |] ≤
√
√
√
√

r∑

i=1

E
[
a2
i

]
√
√
√
√

r∑

i=1

E
[
b2
i

]
,



1 Distributed Optimization Over Networks 51

and obtain

T1 ≤
√
√
√
√

m∑

i=1

E

[
1

p2
i

χ{i∈Ak}

]√
√
√
√

m∑

i=1

E
[‖vi(k + 1) − xav(k)‖2 | Fk

]

≤
√
√
√
√

m∑

i=1

1

pi

√
√
√
√

m∑

i=1

E
[‖vi(k + 1) − xav(k)‖2 | Fk

]
, (1.43)

where in the first inequality we also use the fact that the event {i ∈ Ak} is
independent from the past, while in the last inequality we use the fact that the
probability that the event {i ∈ Ak} occurs is pi .

For the term T2 in (1.42), by Hölder’s inequality, we have

T2 ≤
√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

×
√
√
√
√

m∑

i=1

E
[‖vi (k + 1) − xav(k)‖2 | Fk

]
. (1.44)

We now substitute the estimates (1.43) and (1.44) in the inequality (1.42) and
obtain that, with probability 1, there holds for all x ∈ X and k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]

− 2
m∑

i=1

E
[
χ{i∈Ak} | Fk

]

(k + 1)pi
(fi(xav(k)) − fi(x))

+ 2
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]

(fi(xav(k)) − fi(x))

∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi(k + 1) − xav(k)‖2 | Fk

]

+ 2C

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

×
√
√
√
√

m∑

i=1

E
[‖vi (k + 1) − xav(k)‖2 | Fk

] + C2 α2
i,k .
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In view of compactness of X, and xav(k) ∈ X and vi(k + 1) ∈ X for all i and k, it
follows that for all x ∈ X,

|fi(xav(k)) − fi(x)| ≤ C‖xav(k) − x‖ ≤ CD, ‖vi(k + 1) − xav(k)‖ ≤ D,

where D = maxy,z∈X ‖y − z‖. We also note that

E
[
χ{i∈Ak} | Fk

]

(k + 1)pi

= 1

k + 1
.

By using the preceding relations, we have that, with probability 1, there holds for
all x ∈ X and k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]

≤
m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]
− 2

k + 1
(f (xav(k)) − f (x))

+ 2CD

m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi (k + 1) − xav(k)‖2 | Fk

]

+ 2
√

mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

+ C2 α2
i,k .

The desired relation follows by introducing the notation for the sum of the last four
terms on the right hand side of the preceding relation. �

To establish the convergence of the method, one of the goals is to show that the
error terms rk in Proposition 2 are well behaved in the sense that

∑∞
k=0 rk < ∞

with probability 1. We note that the error rk has two types of terms, one type related
to the stepsize and the other related to the distances of iterates vi(k + 1) and the
average vector xav(k), which also involves the stepsize implicitly. So we start by
investigating some properties of the stepsize.

1.4.3.1 Stepsize Analysis

We consider the random agent based stepsize defined in (1.36), which is the inverse
of the number Γi(k + 1) of agent i updates from time t = 0 up to time t = k,
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inclusively. We establish some relations for the stepsize that involve expectations
and a set of results for the stepsize sums.

We start with the relations involving the expectations of the stepsize in the term
rk of Proposition 2.

Lemma 8 Let the matrix sequence {W(k)} be an i.i.d. random sequence. Then, for
the stepsize αi,k in (1.36), with probability 1, we have for all k ≥ 0 and i ∈ [m],

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]∣
∣
∣
∣ ≤pi

∣
∣
∣
∣αi,k − 1

kpi

∣
∣
∣
∣ + (1 − pi)

αi,k

k
,

√
√
√
√
E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

≤√
2pi

∣
∣
∣
∣αi,k − 1

kpi

∣
∣
∣
∣

+ (1 − pi)

√
2

pi

αi,k

k
.

Proof Recall that the event χ{i∈Ak} that agent i updates has probability pi . Thus,
using the independence of the event χ{i∈Ak} given the past Fk , we have with
probability 1 for all k ≥ 0 and i ∈ [m],

E
[
αi,k+1χ{i∈Ak} | Fk

] = pi

Γi(k) + 1
.

Using the preceding relation and E
[
χ{i∈Ak} | Fk

] = pi , we obtain

M1 :=
∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]∣
∣
∣
∣

=
∣
∣
∣
∣pi

(
1

Γi(k) + 1
− 1

(k + 1)pi

)∣
∣
∣
∣

= pi

|kpi − Γi(k) + p − 1|
(k + 1)pi(Γi(k) + 1)

,

where the last equality is obtained by re-grouping the terms in the numerator. Thus,
it follows that

M1 ≤ pi

|kpi − Γi(k)| + (1 − pi)

(k + 1)pi(Γi(k) + 1)
≤ pi

|kpi − Γi(k)| + (1 − pi)

kpiΓi(k)
.

By separating the terms, we have

M1 ≤ pi

|kpi − Γi(k)|
kpiΓi(k)

+ (1 − pi)

kΓi(k)
= pi

∣
∣
∣
∣

1

Γi(k)
− 1

kpi

∣
∣
∣
∣ + (1 − pi)

kΓi(k)
.
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Recognizing that αi,k = 1
Γi (k)

, we obtain

M1 ≤ pi

∣
∣
∣
∣αi,k − 1

kpi

∣
∣
∣
∣ + (1 − pi)

αi,k

k
,

thus showing the first relation stated in the lemma.
For the second relation we have

M2 :=E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

= pi

(
1

Γi(k) + 1
− 1

(k + 1)pi

)2

=pi

(
(k + 1)pi − Γi(k) − 1

(k + 1)pi(Γi(k) + 1)

)2

= pi
(kpi − Γi(k) + p − 1)2

(k + 1)2p2
i (Γi(k) + 1)2

.

Now using the relation (a + b)2 ≤ 2(a2 + b2), which is valid for any scalars a and
b, we obtain

M2 ≤ 2pi
(kpi − Γi(k))2 + (1 − pi)

2

(k + 1)2p2
i (Γi(k) + 1)2

≤ 2pi
(kpi − Γi(k))2 + (1 − pi)

2

k2p2
i Γ

2
i (k)

.

By separating the terms we further have

M2 ≤ 2pi
(kpi − Γi(k))2

k2p2
i Γ

2
i (k)

+ 2(1 − pi)
2

k2piΓ
2
i (k)

= 2pi

(
1

Γi(k)
− 1

kpi

)2

+ 2(1 − pi)
2

k2piΓ
2
i (k)

.

By substituting αi,k = 1
Γi(k)

, it follows that

M2 ≤ 2pi

(

αi,k − 1

kpi

)2

+ 2(1 − pi)
2α2

i,k

k2pi

.

Using
√

a + b ≤ √
a + √

b, which is valid for any a, b ≥ 0, we have

√
M2 ≤

√

2pi

(

αi,k − 1

kpi

)2

+
√

2(1 − pi)2α2
i,k

k2pi

= √
2pi

∣
∣
∣
∣αi,k − 1

kpi

∣
∣
∣
∣ + (1 − pi)

√
2

pi

αi,k

k
,

which establishes the second relation of the lemma. �
We next investigate some properties of the stepsize sums under the assumption

that the random matrix sequence {W(k)} is i.i.d. In this case, for each i ∈ [m], the
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events {i ∈ Ak} are i.i.d., so that we have

E [Γi(k)] = (k + 1)pi.

By the law of iterated logarithms [41] (pages 476–479), we have that for any q > 0,

Prob

{

lim
k→∞

|Γi(k) − (k + 1)pi |
(k + 1)

1
2 +q

= 0

}

= 1 for all i ∈ [m]. (1.45)

We use this relation to establish some results for the sums involving the stepsize, as
given is the following lemma.

Lemma 9 Let the random matrix sequence {W(k)} be i.i.d., and consider the
stepsize αi,k as given in (1.36). Then, we have

Prob

{ ∞∑

k=1

α2
i,k < ∞, for all i ∈ [m]

}

= 1,

Prob

{ ∞∑

k=1

∣
∣
∣
∣αi,k − 1

kpi

∣
∣
∣
∣ < ∞, for all i ∈ [m]

}

= 1,

Prob

{ ∞∑

k=1

αi,k

k
< ∞, for all i ∈ [m]

}

= 1.

Proof The proof is based on considering sample paths, where a sample path
corresponds to a sequence of realizations of the matrices, which is denoted by ω. We
fix a sample path ω for which the limit in (1.45) is zero. Then, using relation (1.45),
we can show that for every q ∈ (0, 1

2 ) there exists an index5 k̃(ω) such that for all
k ≥ k̃(ω) and for all i ∈ [m], we have6

αi,k(ω) ≤ 2

kpi

,

∣
∣
∣
∣αi,k(ω) − 1

kpi

∣
∣
∣
∣ ≤ 1

k
3
2 −qp2

i

. (1.46)

Thus, there holds for all i ∈ [m],
∑

k≥k̃(ω)

α2
i,k(ω) < ∞,

∑

k≥k̃(ω)

∣
∣
∣
∣αi,k(ω) − 1

kpi

∣
∣
∣
∣ < ∞,

5The index k̃(ω) also depends on q, but this dependence is suppressed in the notation.
6The derivation of the relations in (1.46) can be found in the proof of Lemma 3 in [100], where the
analysis is to be performed on a sample path.
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where the last relation holds due to q ∈ (0, 1
2 ). Furthermore, we have for all k ≥

k̃(ω) and for all i ∈ [m],
αi,k(ω)

k
≤ 2

k2pi

,

implying that

∑

k≥k̃(ω)

αi,k(ω)

k
< ∞ for all i ∈ [m].

Since the preceding relations are true for almost all but zero measure sample paths
ω that satisfy relation (1.45), the stated results follow. �

1.4.3.2 Relation for Agents’ Iterates and Their Averages

We now turn our attention to the disagreements ‖xi(k) − xav(k)‖. We establish a
relation for these disagreements which will be combined with Proposition 2 to assert
the convergence behavior of the distances ‖xi(k) − x∗‖ for an optimal solution x∗.

We start by re-writing the iterations of the method (1.34), as follows:

vi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi (k + 1) = vi(k + 1) + (
ΠX[vi(k + 1) − αi,k+1gi(k + 1)] − vi(k + 1)

)
χ{i ∈ Ak}

︸ ︷︷ ︸
φi(k+1)

.

Hence, for all i ∈ [m] and k ≥ 0,

xi(k + 1) =
m∑

j=1

wij (k)xj (k) + φi(k + 1),

φi(k + 1) = (
ΠX[vi(k + 1) −αi,k + 1gi(k + 1)] − vi(k + 1)

)
χ{i ∈Ak}, (1.47)

vi(k + 1) =
m∑

j=1

wij (k)xj (k).

Thus, we perceive the iterates xi(k + 1) as obtained through a perturbed random
consensus algorithm with random perturbations φi(k + 1).

Under Assumption 4(a) and (c), in the following lemma, we establish a relation
for the iterates xi(k + 1).
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Lemma 10 Let the matrices W(k) satisfy Assumptions 4(a) and (b). Then, for the
iterate process in (1.47), we have for all k ≥ 0 with probability 1,

√
√
√
√E

[
m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 | Fk

]

≤
√
√
√
√

m∑

i=1

ρ‖xi(k) − xav(k)‖2

+
√
√
√
√

m∑

i=1

‖φi(k + 1)‖2,

where xav(k) = 1
m

∑m
j=1 xj (k) and ρ ∈ (0, 1) is the spectral norm of the matrix

Q = E

[
W ′(k)(I − 1

m
11′)W(k)

]
(see Assumption 4(b)).

Proof We first write the iterates xi(k + 1) in (1.47) in a matrix form. We construct
a matrix X(k) by placing the vectors x ′

i (k) in its rows, and similarly, we construct
the matrix Φ(k) by placing the vectors φ′

i (k) in its rows. By doing so, we have the
following representation for the evolution of the iterates xi(k + 1):

X(k + 1) = W(k)X(k) + Φ(k + 1) for all k ≥ 0. (1.48)

By multiplying both sides of (1.48) with the matrix 1
m
11′, we have

1

m
11′X(k + 1) = 1

m
11′W(k)X(k) + 1

m
11′Φ(k + 1).

By subtracting the preceding relation from (1.48), we obtain for all k ≥ 0,

X(k+1)− 1

m
11′X(k+1) =

(

W(k) − 1

m
11′W(k)

)

X(k)+Φ(k+1)− 1

m
11′Φ(k+1).

Since W(k) is stochastic, we have W(k)1 = 1, implying that
(
W(k) − 1

m
11′W(k)

)

1 = 0, so that we have

(

W(k) − 1

m
11′W(k)

)

X(k) =
(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)

.

Therefore, for all k ≥ 0,

X(k + 1) − 1

m
11′X(k + 1) =

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)

+ Φ(k + 1) − 1

m
11′Φ(k + 1). (1.49)
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By taking the squared Frobenius norms of both sides in (1.49), and using the fact
that ‖AB‖F ≤ ‖A‖F ‖B‖F for any two (compatible) matrices, we obtain for all
k ≥ 0,

∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

≤
∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

+
∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

+ 2

∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

F

×
∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

F

.

Next, we take conditional expectation with respect to Fk and obtain for all k ≥ 0
with probability 1,

E

[∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

≤ E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]

+ E

[∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

+ 2E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

F

×
∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

F

| Fk

]

.

By using Hölder’s inequality for expectations (see [8], page 242), we can see that

E

[∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

≤ E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]



1 Distributed Optimization Over Networks 59

+ E

[∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

+ 2

√
√
√
√
E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]

×
√
√
√
√
E

[∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

.

Hence, for all k ≥ 0 with probability 1 we have

E

[∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

≤
⎛

⎝

√
√
√
√
E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]

+
√
√
√
√
E

[∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk

]⎞

⎠

2

. (1.50)

Next, using the column vectors x	(k) of the matrix X(k) and the definition of the
Frobenius norm, we can write

∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

=
m∑

	=1

∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

x	(k) − 1

m
11′x	(k)

)∥
∥
∥
∥

2

=
m∑

	=1

〈

x	(k) − 1

m
11′x	(k),Q(k)

(

x	(k) − 1

m
11′x	(k)

)〉

,

where

Q(k) =
(

W(k) − 1

m
11′W(k)

)′ (
W(k) − 1

m
11′W(k)

)

.
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After some elementary algebra, it can be seen that for Q(k) we have

Q(k) = W(k)′W(k) − 1

m
W ′(k)11′W(k) = W ′(k)

(

I − 1

m
11′

)

W(k).

Given the history Fk , the column vectors x	(k) are deterministic, so that by
using Q = E [Q(k)] (see Assumption 4(b)), we have with probability 1 for all
k ≥ 0,

E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]

=
m∑

	=1

〈

x	(k) − 1

m
11′x	(k),E [Q(k)]

(

x	(k) − 1

m
11′x	(k)

)〉

≤
m∑

	=1

‖Q‖
∥
∥
∥
∥x

	(k) − 1

m
11′x	(k)

∥
∥
∥
∥

2

≤ ρ

m∑

	=1

∥
∥
∥
∥x

	(k) − 1

m
11′x	(k)

∥
∥
∥
∥

2

= ρ

∥
∥
∥
∥X(k) − 1

m
11′X(k)

∥
∥
∥
∥

2

F

,

where ρ ∈ (0, 1) is the spectral norm of the matrix Q (note that ρ is smaller than 1
by Assumption 4(b)). Hence, we have

E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]

≤ ρ

∥
∥
∥
∥X(k) − 1

m
11′X(k)

∥
∥
∥
∥

2

F

.

Finally by noticing that the matrix 1
m
11′X(k) has identical rows, where each its

row is given by the vector 1
m
1′X(k) = x ′

av(k) with xav(k) = 1
m

∑m
j=1 xj (k), we see

that

E

[∥
∥
∥
∥

(

W(k) − 1

m
11′W(k)

)(

X(k) − 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk

]

≤ ρ
∥
∥X(k) − 1x ′

av(k)
∥
∥2

F

= ρ

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

. (1.51)
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Similarly, using the definition of the Frobenius norm and the matrices Φ(k), we can
see that

E

[∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

= E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1) − φav(k + 1)

∥
∥2 | Fk

⎤

⎦,

where φav(k) = ∑m
	=1 φ	(k). Since the distance

∑m
j=1 ‖φi(k + 1) − y‖2 is

minimized over all y ∈ R
n at y∗ = φav(k + 1), we obtain (using y = 0)

E

[∥
∥
∥
∥Φ(k + 1) − 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

≤ E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦.

(1.52)

Using relations (1.51) and (1.52) in inequality (1.50), we have for all k ≥ 0 with
probability 1,

E

[∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

≤
⎛

⎜
⎝

√
√
√
√ρ

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 +

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦

⎞

⎟
⎠

2

.

Hence, by taking square roots on both sides, we see that

√
√
√
√
E

[∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk

]

≤
√
√
√
√ρ

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 +

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦. (1.53)

The desired relation follows from (1.53) by using the fact that

∥
∥
∥
∥X(k + 1) − 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

=
m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2.

�
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Based on Lemma 10, we can prove that the agents’ disagreements are well
behaved. The proof makes use of an (almost) supermartingale convergence result.
The result is due to Robbins and Siegmund [136], and it can also be found in [129]
(Chapter 2.2, Lemma 11).

Lemma 11 ([136]) Let Vk , uk , βk and γk be non-negative random variables
adapted to some σ -algebra σk . If with probability 1 we have

∑∞
k=0 uk < ∞,∑∞

k=0 βk < ∞, and

E [Vk+1 | σk] ≤ (1 + uk)Vk − γk + βk for all k ≥ 0,

then Vk converges to some non-negative scalar and
∑∞

k=0 γk < ∞ with probabil-
ity 1.

We have the following result for the disagreement sum
∑m

j=1

∥
∥xj (k) − xav(k)

∥
∥2.

Lemma 12 Let the problem be convex (Assumption 1 holds) and let the set X

be bounded. Let the matrices W(k) satisfy Assumption 4(a) and (b). Then, with
probability 1,

∞∑

k=0

1

k + 1

√
√
√
√

m∑

i=1

‖xi(k) − xav(k)‖2 < ∞,

lim inf
k→∞

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 = 0.

Proof By Lemma 10 and by using the relation E [a] ≤
√
E
[
a2

]
, we have with

probability 1 for all k ≥ 0,

E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 | Fk

⎤

⎦ ≤
√
√
√
√ρ

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

+

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦,

(1.54)
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with ρ ∈ (0, 1). From the definition of φj (k+1) in (1.47) and the non-expansiveness
property of the projection operator, we can se that

‖φi(k + 1)‖2 ≤ α2
i,k+1‖gi(k + 1)‖2χ{i ∈ Ak} ≤ α2

i,k+1C
2χ{i ∈ Ak},

where the last inequality follows from the compactness of X, which implies that the
subgradients of each fi are uniformly bounded over the set X. Therefore, we have
with probability 1,

E

[
‖φi(k + 1)‖2 | Fk

]
≤ C2

E

[
α2

i,k+1χ{i ∈ Ak}
]

= C2pi

(Γi(k) + 1)2 ≤ C2pi

Γ 2
i (k)

= C2piα
2
i,k,

implying that

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦ ≤ C

√
√
√
√

m∑

i=1

piα
2
i,k ≤ C

m∑

i=1

√
piαi,k,

where the last inequality follows from relation
∑r

i=1 a2
i ≤ (

∑r
i=1 ai)

2 which holds
for any nonnegative scalars ai . By using the preceding estimate in relation (1.54),
we obtain with probability 1 for all k ≥ 0,

E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 | Fk

⎤

⎦

≤
√
√
√
√ρ

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 + C

m∑

i=1

√
piαi,k . (1.55)

We divide both sides of (1.55) by 1
k+1 and obtain with probability 1 for all k ≥ 0,

1

k + 1
E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 | Fk

⎤

⎦

≤
√

ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 + C

m∑

i=1

√
piαi,k

k + 1
.
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We add and subtract 1
k

√∑m
j=1

∥
∥xj (k) − xav(k)

∥
∥2 to the right hand side of the

preceding relation, so we can write

1

k + 1
E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 | Fk

⎤

⎦

≤ 1

k

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 −

(
1

k
−

√
ρ

k + 1

)
√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

+ C

m∑

i=1

√
piαi,k

k + 1
.

We note that

1

k
−

√
ρ

k + 1
= k + 1 − √

ρk

k(k + 1)
= k(1 − √

ρ) + 1

k(k + 1)
≥ (1 − √

ρ)

(k + 1)
,

where we use the fact that ρ ∈ (0, 1). Therefore, we have with probability 1 for all
k ≥ 0,

1

k + 1
E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1) − xav(k + 1)‖2 | Fk

⎤

⎦ ≤ 1

k

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

− 1 − √
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 + C

m∑

i=1

√
piαi,k

k + 1
. (1.56)

We now apply Lemma 11 with the following identification

Vk = 1

k

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

, uk = 0, βk = C

m∑

i=1

√
piαi,k

k + 1
,

γk = 1 − √
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

.

Note that by Lemma 9 we have

∞∑

k=1

m∑

i=1

√
piαi,k

k + 1
< ∞ with probability 1,
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so that the condition
∑∞

k=0 βk < ∞ with probability 1 is also satisfied. Thus, by
the Robinson-Siegmund (almost) supermartingale convergence result in Lemma 11,
from (1.56) we have that

∞∑

k=0

1 − √
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

< ∞ with probability 1.

Since 1 − √
ρ > 0, the preceding relation implies that with probability 1,

∞∑

k=0

1

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2

< ∞, (1.57)

lim inf
k→∞

m∑

j=1

∥
∥xj (k) − xav(k)

∥
∥2 = 0,

where the last relation can be shown by arguing per sample path ω for which
relation (1.57) is valid. �

1.4.3.3 Convergence Result for Asynchronous Algorithm

We are now in position to assert the convergence of the iterates of the algo-
rithm (1.34) with probability 1, as stated in the following theorem. The proof is
based on Proposition 2 and the almost supermartingale convergence result as given
in Lemma 11. To verify that the conditions of Lemma 11 are satisfied, we rely on
Lemmas 8, 9 and 12.

Theorem 4 Let the problem be convex (Assumption 1) and, also, assume that the
set X is bounded. Let the random matrix sequence {W(k)} satisfy Assumption 4.
Consider the iterates produced by method (1.34) with the random stepsizes αi,k+1
as given in (1.36). Then, with probability 1, the sequences {xi(k)}, i ∈ [m], converge
to a common (random) optimal solution of the problem.

Proof The proof has two main parts: (i) proving that xi(k) − xav(k) converges to
0, as k tends to infinity, with probability 1 for all i, and (ii) proving that the iterate
sequences {xi(k)}, i ∈ [m], converge to the same (random) optimal solution7 with
probability 1. We start by deriving a relation that will be used in both parts (i) and
(ii) of the proof.

7Different sample paths may converge to different solutions.
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By Proposition 2 we have with probability 1 for all k ≥ 0 and all x ∈ X,

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]

− 2

k + 1
(f (xav(k)) − f (x)) + rk, (1.58)

with

rk =2CD

m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi(k + 1) − xav(k)‖2 | Fk

]

+ 2
√

mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

+ C2 α2
i,k, (1.59)

where pi is the probability of the event χ{i∈Ak}, C is a uniform upper bound on
the subgradient norms of fi over the set X, and D = maxx,y∈X ‖x − y‖. By the
definition, vi(k + 1) is a convex combination of xj (k), j ∈ [m], so that by the
convexity of the norm and the assumption that W(k) is a stochastic matrix (see
Assumption 4(a)), we have for any x ∈ R

n,

‖vi(k + 1) − x‖2 ≤
m∑

j=1

wij (k)‖xj (k) − x‖2,

implying that

E

[
‖vi(k + 1) − x‖2 | Fk

]
≤

m∑

j=1

E

[
wij (k)‖xj (k) − x‖2 | Fk

]

=
m∑

j=1

E
[
wij (k)

]‖xj (k) − x‖2

=
m∑

j=1

W̄ij‖xj (k) − x‖2.
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By summing the preceding inequalities over i ∈ [m] and by using the assumption
that W̄ doubly stochastic (cf. Assumption 4(c)), we obtain for any x ∈ R

n,

m∑

i=1

E

[
‖vi(k + 1) − x‖2 | Fk

]
≤

m∑

j=1

‖xj (k) − x‖2. (1.60)

By substituting (1.60) in relation (1.58), we obtain with probability 1 for all k ≥ 0
and all x ∈ X,

m∑

i=1

E

[
‖xi(k + 1) − x‖2 | Fk

]

≤
m∑

j=1

‖xj (k) − x‖2 − 2

k + 1
(f (xav(k)) − f (x)) + rk. (1.61)

We will use relation (1.61) with x = xav(k) and x = x∗ for an arbitrary x∗ ∈
X∗. In either case, we will use the almost supermartingale convergence result of
Lemma 11. To use Lemma 11, we need to verify that

∑∞
k=0 rk < ∞ with probability

1. For this, we break down rk in its terms, as follows:

rk =2CD

m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk

]∣
∣
∣
∣

︸ ︷︷ ︸
r1,k

+ 2
√

mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk

]

︸ ︷︷ ︸
r2,k

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi (k + 1) − xav(k)‖2 | Fk

]

︸ ︷︷ ︸
r3,k

+C2 α2
i,k . (1.62)

By Lemmas 8 and 9 we can see that

∞∑

k=0

r1,k < ∞ and
∞∑

k=0

r2,k < ∞ with probability 1.
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By Lemma 12 it follows that

∞∑

k=0

r3,k < ∞ with probability 1,

while by Lemma 9 we have

∞∑

k=0

α2
i,k < ∞ with probability 1.

Hence, from the preceding relations and relation (1.62) we have

∞∑

k=0

rk < ∞ with probability 1. (1.63)

(i) We now use relation (1.61) with x = xav(k) and, thus, obtain with probability 1
for all k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1) − xav(k)‖2 | Fk

]
≤

m∑

j=1

‖xj (k) − xav(k)‖2 + rk. (1.64)

By noting that
∑m

i=1 ‖xi(k + 1) − xav(k + 1)‖2 ≤ ∑m
i=1 ‖xi(k + 1) − y‖2 for any

y ∈ R
n, we have

∑m
i=1 ‖xi(k + 1) − xav(k + 1)‖2 ≤ ∑m

i=1 ‖xi(k + 1) − xav(k)‖2.
Thus relation (1.64) implies that with probability 1 for all k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1) − xav(k + 1)‖2 | Fk

]

≤
m∑

j=1

‖xj (k) − xav(k)‖2 + rk. (1.65)

By the almost supermartingale convergence of Lemma 11, we conclude that

⎧
⎨

⎩

m∑

j=1

‖xj (k) − xav(k)‖2

⎫
⎬

⎭
is convergent with probability 1.

Since by Lemma 12 lim infk→∞
∑m

j=1

∥
∥xj (k) − xav(k)

∥
∥2 = 0, we must have that

lim
k→∞

m∑

j=1

‖xj (k) − xav(k)‖2 = 0 with probability 1. (1.66)
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(ii) Since the set X is compact, the optimal set X∗ must be nonempty. Thus, by
letting x = x∗ in relation (1.61) for any x∗ ∈ X∗, we have with probability 1 for all
k ≥ 0 and all x∗ ∈ X∗,

m∑

i=1

E

[
‖xi(k + 1) − x∗‖2 | Fk

]

≤
m∑

j=1

‖xj (k) − x∗‖2 − 2

k + 1

(
f (xav(k)) − f ∗) + rk.

By the almost supermartingale convergence of Lemma 11, it follows that

⎧
⎨

⎩

m∑

j=1

‖xj (k) − x∗‖2

⎫
⎬

⎭
is convergent with probability 1 for all x∗ ∈ X∗,

(1.67)

∞∑

k=0

2

k + 1

(
f (xav(k)) − f ∗) < ∞ with probability 1.

Thus, with probability 1 we must have

lim inf
k→∞

(
f (xav(k)) − f ∗) = 0.

Since X is bounded so is the sequence {xav(k)}, and we can choose a subsequence
{xav(k	)} such that, with probability 1, lim	→∞ f (xav(k	)) = f ∗, xav(k	) → x̃

where x̃ ∈ X. By continuity of f , it follows that f (x̃) = f ∗, i.e., x̃ ∈ X∗ with
probability 1.

Since we have shown that
∑m

j=1 ‖xj (k) − xav(k)‖2 → 0 with probability 1 (see
relation (1.66)), it follows that

lim
	→∞

m∑

j=1

‖xj (k	) − x̃‖2 = 0 with probability 1.

By using relation (1.67) with x∗ = x̃, we find that limk→∞
∑m

j=1 ‖xj (k)− x̃‖2 = 0
with probability 1. �

Theorem 4 shows that the random updates driven by an i.i.d. matrix sequence
{W(k)}, where agents are updating using their own stepsizes (based on their
frequency of updates) leads to a convergence to some consensual (random) solution
of the problem. Theorem 4 includes as special cases the random gossip and
random broadcast methods, by setting W(k) = Wg(k) and W(k) = Wb(k). It can
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accommodate other asynchronous approaches whose corresponding matrices W(k)

satisfy Assumption 4.
Prior work on convex multi-agent problems that explored the use of random

gossip method, with frequency-based stepsize, can be found in [131], while the
random broadcast method with such a stepsize has been proposed and studied
in [100]. Error rate results for these methods with a constant stepsize can be found
in [132] (see also [130]). Another related work on distributed convex optimization
that considers random matrices is reference [86].

1.5 Literature Overview and New Research Directions

1.5.1 Literature on Consensus Algorithms

The consensus algorithms have drawn a renewed interest in more recent years,
which was inspired by the work [60]. There has been a large body of work
on the stability property and the convergence behavior of consensus dynamic in
continuous-time [98, 118, 119, 134, 135], including the variants with switching
network topology and time delays. Also, there are many papers investigating
convergence of consensus algorithm in discrete-time, such as [21–24, 97, 99, 135,
180–182], where different aspects are also considered including time-switching
network topology and asynchrony. The convergence rate properties have been
studied in [122, 124] (for a more detailed overview see [102]).

Consensus has been used in rendezvous problems [78, 79], flocking [11], opinion
dynamics [90, 91], and parameter estimation [65]. There are several Ph.D. theses
that provide a comprehensive study of the averaging dynamics and its properties
for deterministic and random matrices, including [12, 52, 120, 144, 155, 156].
Moreover, various communication effects have been investigated such as the effects
of the delay [9, 10, 107], quantization effects [20, 25, 26, 43, 66, 71, 110], and
the effects of link failures and noise [56, 63, 64, 125, 127, 128, 158]. A question
of (non)existence of quadratic Lyapunov function for consensus dynamic has been
investigated in [123, 163], while in [53, 54, 166] some cut-related properties have
been explored.

Consensus algorithms implemented in a network using a gossip-based or a
broadcast-based communications have been studied in [2, 3, 16, 82], while a
different consensus algorithm (the so called push-sum method) has been considered
in [7, 67]. Paper [93] explores a connection between consensus problems and
potential games. An averaging dynamic for opinion spread has been proposed
in [51] (leading to a formation of agents’ groups with each group reaching its own
consensus value).

The robustness of consensus including robustness to adversarial agents, faulty
nodes, resilience and privacy preserving are studied in [29, 72, 149–151, 185]. Fast
convergence of consensus algorithms in networks with quantized communications
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has been recently investigated in [4, 30]. There are also recent works on complex
consensus [84], consensus stability [83, 85], and the use of semi-norms [32, 81] to
study the stability. The best known convergence rate (in terms of its dependence
on the number of agents) has been accomplished in a recent paper [121], which
provides a consensus algorithm inspired by the fast Nesterov method [117].

There is a stream of work focused on the consensus problem over random
graphs and weighted (random) averaging dynamics [5, 13, 27, 45, 50, 55–58, 126,
152, 153, 156, 157, 159–162, 164–166]. One may refer to survey paper [38] for a
detailed account of gossip algorithms and their applications to signal processing
in sensor networks. An application of an asynchronous gossip algorithm to the
problem of spectral ranking has been explored in [14], while a nonlinear gossip is
investigated in [95]. A monograph [138] discusses applications of consensus-based
approaches to parameter estimation, learning and adaptation in networks, while
monograph [102] discusses weighted-averaging algorithms for solving constrained
and unconstrained consensus problems over time-varying (deterministic) graphs.

1.5.2 Literature on Distributed Methods for Optimization in
Networks

1.5.2.1 Weighted Averaging-Based Approaches

The approaches that use consensus models with stochastic matrices are often
referred to as weighted-averaging methods. Thus, both algorithms (1.9) and (1.34)
are based on weighted-averaging methods, where the former uses deterministic
weights while the latter employs random weights.

There are various extensions and modifications to the algorithm (1.9) which were
developed over the past few years. The early work on consensus-based optimization
can be found in [171], where the agents share a common objective function. The
first work on distributed optimization in a network with agent based local objective
functions can be found in [88, 106, 108]. In [106, 108] a slightly different algorithm
has been considered (with a fixed stepsize), namely

xi(k + 1) =
m∑

j=1

wij (k)xj (k) − αkdi(k), (1.68)

where di(k) is a subgradient of fi(x) at x = xi(k). The convergence rate of this
algorithm has been investigated in [105]. An extension of this algorithm to the case
of quantized messages has been investigated in [109], while its implementation over
random networks has been studied in [86]. In [89, 172] both of these alternative
approaches, namely, algorithm (1.9) and (1.68) have been studied for distributed
estimation.
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A variant of the distributed optimization problem, where agents want to solve the
problem of minimizing

∑m
i=1 fi(x) over X = ∩m

i=1Xi , with each agent i handling
its own function fi and its constraint set Xi , has been considered in [111]. To solve
the problem, a modification of the algorithm (1.9) has been proposed, where each
agent i updates using the projection on its constraint set Xi , instead of the common
set X. Thus, agent i updates assume the following form:

xi(k + 1) = ΠXi

⎡

⎣
m∑

j=1

wij (k)xj (k) − αkgi(k)

⎤

⎦ ,

where gi(k) is a subgradient of fi(x) at x = ∑m
j=1 wij (k)xj (k). This algorithm

has been studied in [73–75] for synchronous updates over time-varying graphs
and for gossip-based asynchronous updates over a static graph. A different variant
of this algorithm (using the Laplacian formulation of the consensus problem) for
distributed optimization with distributed constraints in noisy networks has been
studied in [144–146]. Distributed algorithms for special quadratic convex problems
arising in parameter estimation in sensor networks have been developed and studied
in [28, 33, 88, 89, 172, 173].

The consensus-based algorithms for other types of network objective functions
have been considered in [133]. A Bregman-distance based distributed algorithm has
been developed in [147], as well as consensus-based algorithms for solving certain
min-max problems. Distributed algorithms, both synchronous and asynchronous,
for solving special type of games (aggregative games) have been studied in [68].

A distributed dual Nesterov algorithm has been proposed in [40], while a
distributed algorithm using the gradient differences has been recently proposed
in [142]. A distributed algorithm that is based on the idea of preserving an optimality
condition at every stage of the algorithm has been proposed in [92]. Distributed
convex optimization algorithms for weight-balanced directed graphs have been
investigated in continuous-time [48].

A different type of a distributed algorithm for convex optimization has been
proposed in [77], where each agent keeps an estimate for all agents’ decisions. This
algorithm solves a problem where the agents have to minimize a global cost function
f (x1, . . . , xm) while each agent i can control only its variable xi . The algorithm
of [77] has been recently extended to the online optimization setting in [76, 113].

Distributed algorithms using augmented Lagrangian approach with gossip-type
communications have been studied in [61], while accelerated versions of distributed
gradient methods have been proposed and studied in [62].

A consensus-based algorithm for solving problems with a separable constraint
structure and the use of primal-dual distributed methods has been studied in [147,
189, 190], while a distributed primal-dual approach with perturbations has been
explored in [31]. Work [176] provides algorithms for centralized and distributed
convex optimization from control perspective, while [175] considers an event-
triggered distributed optimization for sensor networks. In [19], a distributed simplex
algorithm has been developed for linear programming problems, while a Newton-
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Raphson consensus-based method has been proposed in [186] for distributed convex
problems.

All of the prior work relies on the use of state-independent weights, i.e., the
weights that do not depend on agents’ iterates. A consensus-based algorithm
employing state-dependent weights have been proposed and analyzed in [87].

The application of distributed methods to hypothesis testing problems in graphs
has recently attracted attention, resulting in a stream of papers [70, 112, 139, 140].
While these works deal mainly with finitely many hypothesis, a recent paper [114]
extends the framework to the case of infinitely many hypotheses. Paper [116]
considers several algorithms that use different types of consensus models, namely,
weighted-averaging as well as push-sum models, which are discussed in the next
paragraph with some more details.

1.5.2.2 Push-Sum Based Approaches

Another class of distributed algorithms has recently been developed that employs
a different type of consensus strategy known as push-sum model. It has also been
referred to as doubly-linear iteration or ratio consensus algorithm, due to its form
which involves ratio of two variables that evolve according to the same linear
dynamics, but differ in the choice of the initial point. This algorithm was originally
proposed in [67] for consensus problem over a static network (in a random gossip-
based form), and has been recently investigated in [39] in a deterministic setting. It
has been extended to time-varying networks in [7].

The first work that has employed the push-sum consensus model to develop
distributed optimization methods is [169], which has been further investigated
in [167, 168, 170]. This work has been focused on static graphs and it has been
proposed as an alternative to the algorithm based on weighted averages in order
to eliminate deadlocks and synchronization issues among others. The prior work
also offers a push-sum algorithm that can deal with constraints by using Nesterov
dual-averaging approach. Recently, this push-sum consensus-based algorithm has
been extended to a subgradient-push algorithm in [103, 104] that can deal with
convex optimization problems over time-varying directed graphs. More recently,
the paper [148] has extended the push-sum algorithm to a larger class of distributed
algorithms that are applicable to nonconvex objective functions, convex constraint
sets, and time-varying graphs (see the subsequent paragraph on new directions for
more details).

1.5.2.3 ADMM Based Approaches

Another approach for solving problem (1.1) in a distributed fashion over a static
network can be constructed by using the Alternate Direction Multiplier Method
(ADMM). This method is based on an equivalent formulation of consensus con-
straints. Unlike consensus-based (sub)-gradient method (1.9) which operates in
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the space of the primal-variables, the ADMM solves a corresponding Lagrangian
dual problem (obtained by relaxing the equality constraints that are associated
with consensus requirement). Just as any dual method, the ADMM is applicable
to problems where the structure of the objective functions fi is simple enough so
that the ADMM updates can be executed efficiently. The algorithm has potential
of solving the problem with geometric convergence rate, which requires global
knowledge of some parameters including eigenvalues of a weight matrix associated
with the graph. A recent survey on the ADMM and its various applications is given
in [17].

The first works to address the development of distributed ADMM over a network
are [80, 177, 178], while a linear convergence rate of the ADMM has been shown
in [141]. In [1] the ADMM with linearization has been proposed for special
composite optimization problems over graphs.

1.5.2.4 New Directions

Within the area of distributed (multi-agent) optimization over networks, loosely
speaking, two main directions of research can be noted, namely toward efficiency
improvements (to develop “fast” distributed algorithms whose performance can
meet the best known performance guarantees in a centralized setting) and toward
addressing non-convex problems over networks.

In the domain of efficiency improvements, there are new approaches that
are rooted in the idea of distributing the optimality conditions for multi-agent
problems and the approaches that investigate gradient-consensus models. The
consensus-based primal algorithms with a constant step-size are not likely to reach
geometric convergence rate even when the overall objective function is strongly
convex. Papers [142, 143] develop the algorithm EXTRA and its proximal-gradient
variant by employing a carefully selected gradient-difference scheme to cancel
out the steady-state error that occurs in some distributed methods with a constant
stepsize [106, 108]. The EXTRA algorithm converges at an o(1/k) rate when
the objective network function is convex, and it has a geometric rate when the
objective function is strongly convex. These developments have considered a static
and undirected graph.

References [179, 187] combine EXTRA with the push-sum protocol of [67] to
produce DEXTRA (Directed Extra-Push) algorithm for optimization over a directed
graph. It has been shown that DEXTRA converges at a geometric (R-linear) rate for
a strongly convex objective function, but it requires a careful stepsize selection. It
has been noted in [179] that the feasible region of stepsizes which guarantees this
convergence rate can be empty in some cases.

The work [183, 184] utilizes an adapt-then-combine (ATC) strategy [137, 138]
of dynamic weighted-average consensus approach [188] to develop a distributed
algorithm, termed Aug-DGM algorithm. This algorithm can be used over static
directed or undirected graphs (but requires doubly stochastic matrices). The most
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interesting aspect of the Aug-DGM algorithm is that it can produce convergent
iterates even when different agents use different (constant) stepsizes.

Simultaneously and independently, the idea of tracking the gradient averages
through the use of consensus has been proposed in [184] for convex unconstrained
problems and in [35] for non-convex problems with convex constraints. The
work in [35–37] develops a large class of distributed algorithms, referred to as
NEXT, which utilizes various “function-surrogate modules” thus providing a great
flexibility in its use and rendering a new class of algorithms that subsumes many
of the existing distributed algorithms. The ideas in [36, 37] and in [183] have also
been proposed independently, with the former preceding the latter. The algorithm
framework of [35–37] is applicable to nonconvex problems with convex constraint
sets over time-varying graphs, but requires the use of doubly stochastic matrices.
This assumption was recently removed in [148] by using column-stochastic matri-
ces, which are more general than the degree-based column-stochastic matrices of
the push-sum method. Simultaneously and independently, the papers [37] and [154]
have appeared to treat nonconvex problems over graphs. The work in [154] proposes
and analyzes a distributed gradient method based on the push-sum consensus in
deterministic and stochastic setting for unconstrained problems.

The idea of using a consensus process to track gradients has also been recently
used in [115] to develop a distributed algorithm, referred to as DIGing, with a
geometric convergence rate over time-varying graphs. This is the first paper to
establish such a rate for a consensus-based algorithms for convex optimization
over time-varying graphs. We note that the algorithm uses a fixed stepsize, and the
rate result is applicable to the problems with a strongly convex smooth objective
function.
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