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Preface

This volume collects lecture notes that stem from courses taught at CIME Summer
School in Applied Mathematics “Centralized and Distributed Multi-agent Optimiza-
tion: Models and Algorithms,” held at the Hotel San Michele, Cetraro, Italy, from
June 23 to June 28, 2014.

Multi-agent optimization is at the forefront of modern optimization theory and
has recently undergone a dramatic development, stimulated by new applications
in a host of diverse disciplines. Multi-agent optimization, including new modeling
paradigms and both centralized and distributed solution algorithms, lies at the
intersection of classical optimization, game theory, and variational inequality theory.
As the area has undergone such an explosive growth in recent years, it seemed
timely and appropriate to provide an overview that described ongoing research
and important trends in detail, with an emphasis on mathematical problems arising
in telecommunications, a field that provides many challenging and stimulating
problems.

The lectures were delivered by world-leading experts, and they all were real
models of clarity, capable of getting students to the heart of current research and
of generating genuine interest. There were 61 students, with the majority coming
from European countries, but with a substantial number of students arriving from
non-European countries as diverse as Japan, India, Indonesia, Pakistan, Congo,
Brazil, Iran, Lebanon, and Turkey. Since the school covered both theoretical and
applicative topics, it attracted both mathematicians and (mathematically oriented)
engineers, thus creating a vibrant and stimulating environment. It is interesting to
remark that the school saw the participation not only of PhD students and young
researchers, but also of a few more senior and well-established researchers. The
lectures were well organized and integrated, so that participants in the school could
gather a clear, multifaceted view of cutting-edge topics in multi-agent optimization.
Particular attention was devoted to illustrate both theoretical issues and practical
applications. There was time for extra discussions, and students took advantage of
this opportunity and spent time with both the lecturers and other fellow students,
establishing contacts that led to fruitful collaborations.

v



vi Preface

The plan of the lectures was as follows:

• Differential Variational Inequalities: Jong-Shi Pang, Department of Industrial
and Systems Engineering, University of Southern California, Los Angeles,
California, USA.

• Distributed Optimization over Networks: Angelia Nedić, School of Electrical,
Computer, and Energy Engineering, Arizona State University, Tempe, Arizona,
USA.

• Advanced Decomposition Algorithms for Multi-agent Systems: Gesualdo
Scutari, School of Industrial Engineering, Purdue University, West Lafayette,
Indiana, USA.

• Optimization Methods for Resource Management: Complexity, Duality
and Approximation: Zhi-Quan Luo, School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, China.

This volume contains chapters relative to the first three series of lectures listed
above, and hopefully, it will help bring the themes discussed at the school, along
with the lecturers’ authoritative viewpoint on the subject, to the attention of a
wider audience. These lecture notes are precious since they provide a systematic
introduction to exciting research topics that, for the most part, have not yet found
their way into books or surveys. Therefore, they provide the reader with a unique
opportunity to get a concise and clear overview of new research areas. Indeed, some
of the lectures really amount to small treatises that, we are sure, will be widely used
for teaching and self-study for many years to come.

Such a successful school would not have been possible without the help of
many people. We would like to express here our warmest gratitude and sincere
appreciation to the CIME Foundation, and in particular to the Director, Professor
Pietro Zecca; to the Scientific Secretary, Professor Elvira Mascolo; to the Board
Secretary, Professor Paolo Salani; to Professor Fabio Schoen (roles at the time of the
school); and to all the CIME staff for their invaluable help, support, and patience.
We are also delighted to acknowledge the prestigious sponsorship of the European
Mathematical Society that gave financial support for the participation of selected
students. Finally, our greatest thanks go to the four lecturers, who found time in
their busy schedules to come and teach such effective courses at the school, and
to all students, whose enthusiasm and lively participation made the school really
memorable.

Rome, Italy Francisco Facchinei
Los Angeles, CA, USA Jong-Shi Pang
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Chapter 1
Distributed Optimization Over Networks

Angelia Nedić

Abstract The advances in wired and wireless technology necessitated the develop-
ment of theory, models and tools to cope with new challenges posed by large-scale
optimization problems over networks. The classical optimization methodology
works under the premise that all problem data is available to some central entity
(computing agent/node). This premise does not apply to large networked systems
where typically each agent (node) in the network has access only to its private
local information and has a local view of the network structure. This chapter
will cover the development of such distributed computational models for time-
varying networks, both deterministic and stochastic, which arise due to the use
of different synchronous and asynchronous communication protocols in ad-hoc
wireless networks. For each of these network dynamics, distributed algorithms for
convex constrained minimization will be considered. In order to emphasize the role
of the network structure in these approaches, our main focus will be on direct primal
(sub)-gradient methods. The development of these methods combines optimization
techniques with graph theory and the non-negative matrix theory, which model
the network aspect. The lectures will provide some basic background theory on
graphs, graph Laplacians and their properties, and the convergence results for related
stochastic matrix sequences. Using the graph models and optimization techniques,
the convergence and convergence rate analysis of the methods will be presented.
The convergence rate results will demonstrate the dependence of the methods’
performance on the problem and the network properties, such as the network
capability to diffuse the information.

1.1 Introduction

Recent advances in wired and wireless technology have lead to the emergence of
large-scale networks such as Internet, mobile ad-hoc networks, and wireless sensor
networks. Their emergence gave rise to new network application domains ranging

A. Nedić (�)
Arizona State University, Tempe, AZ, USA
e-mail: Angelia.Nedich@asu.edu

© Springer Nature Switzerland AG 2018
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2 A. Nedić

from data-base networks, social and economic networks to decentralized in-network
operations including resource allocation, coordination, learning, and estimation.

As a result, there is a necessity to develop new models and tools for the design
and performance analysis of such large complex networked systems. The problems
arising in such networks stem mainly from two aspects, namely, a lack of central
authority or a coordinator (a master node), and an inherent dynamic of the network
connectivity structure. The lack of central authority in a network system naturally
requires decentralized architecture for operations over the network (such as in
the case of Internet). In some applications, the decentralized architecture is often
preferred over a centralized architecture due to several reasons: (1) the size of
the network (the number of agents) and the resources needed to coordinate (i.e.,
communicate) with a large number of agents; (2) a centralized network architecture
is not desirable since it is not robust to the failure of the central entity; and (3) the
privacy of agent information often cannot be preserved in a centralized systems.
Furthermore, additional challenges in decentralized operations over such networks
are encountered from the network connectivity structure that can vary over time due
to unreliable communication links or mobility of the network agents.

The challenge is to control, coordinate, and analyze the performance of such
networks. As a particular goal, one would like to develop distributed optimization
algorithms that can be deployed in such networks that do not have a central
coordinator, but exploit the network connectivity to achieve a global network
performance objective. Thus, it is desirable that such algorithms are:

• Locally distributed in the sense that they rely on local information and obser-
vations only, i.e., the agents can exchange some limited information with their
one-hop neighbors only;

• Robust against changes in the network topology (since the topology is not
necessarily static as the communication links may not function perfectly);

• Easily implementable in the sense that the local computations performed by the
agents are not expensive.

We next provide some examples of large scale networks and applications that
arise within such networks.

Example 1 (Sensor Networks) A new computing concept based on a system of
small sensors also referred to as motes or smart dust sensors, see Fig. 1.1. The
sensors are of small size and have some computational, sensing and communication
capabilities. They can be used in many different ways, such as for example, they
may be mixed into concrete in order to monitor the structural health of buildings
and bridges (smart structures), or be placed on power grids to monitor the power
load (smart grids).

A specific problem of interest that supports a number of applications in sensor
networks, such as building a piece-wise approximation of the coverage area, multi-
sensor target localization and tracking problems, is the determination of Voronoi
cells. A Voronoi cell of a sensor in a network is the locus of points in a sensor field
that are the closest to a given sensor among all other sensors [6]. Upon determining



1 Distributed Optimization Over Networks 3

jtag

LEDs

USB-serial
reset support

TI MSP430 F1611
ST M25P80 flash

serial ID

CC2420
IEEE 802.15.4 radio

(bottom)

user button
reset button

TSR photodiode
PAR photodiode

SHT11 humidity / temp
6 pin expansion

10 pin expansion

PIFA Antenna

Fig. 1.1 A mote and its functionalities

Fig. 1.2 A peer-to-peer network

such a partition in a distributed fashion, each sensor acts as a representative for the
points in its cell. �
Example 2 (Computing Aggregates in Peer-to-Peer (P2P) Networks) In a P2P
network consisting of m nodes, each node i has its local data/files stored with
average size θi , which is known to node i only. The nodes are connected over
a static undirected network (see Fig. 1.2), and they want to jointly compute the
average file size 1

m

∑m
i=1 θi without a central coordinator. In control theory and

game theory literature, the problem is known as the agreement or consensus problem
[15, 34, 60, 67, 171].

The problem has an optimization formulation, as follows:

min
x∈R

m∑

i=1

(x − θi)2.

It is a convex unconstrained problem with a strongly convex objective. Its unique
solution θ∗ is the average of the values θi , i.e., θ∗ = 1

m

∑m
i=1 θi . The solution cannot

easily be computed when the agents have to calculate it in a distributed fashion by
communicating only locally. In this case, the agents need to agree on the average of
the values they hold.

In a more general variant of the consensus problem, the agents want to agree on
some common value, which need not be the average of the values they initially
have. For example, in a problem of leaderless heading alignment, autonomous
agents move in a two-dimensional plane region with the same speed but different
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headings (they are refracted from the boundary to prevent them from leaving the
area) [60, 174]. The objective is to design a local protocol that will ensure the
alignment of the agent headings, while the agents communications are constrained
by a given maximal distance. �

Another motivating example for distributed optimization over networks is a
special machine learning problem, known as Support Vector Machine or maximum
margin classifier. We discuss this problem in a centralized setting and then, we will
see how it naturally fits in a distributed setting in the situations when the privacy of
the data is of concern or when the data is too large to be shared.

Example 3 (Support Vector Machine (SVM)) We are given a data set {zj , yj }dj=1
consisting of d points, where zj ∈ R

n is a measurement vector and yj ∈ {+1,−1}
is its label. Assuming that the data can be perfectly separated, the problem consists
of determining a hyperplane that separates data the best, i.e., solving the following
convex problem:

min
x∈RnF (x), where F(x) = ρ

2
‖x‖2 +

d∑

j=1

max
{
0, 1 − yj 〈x, zj 〉

}
,

where ρ > 0 is a regularizing parameter that indicates the importance of having a
small-norm solution. Given that the objective function is strongly convex, a solution
exists and it is unique (see Fig. 1.3 for an illustration). The problem can be solved
by using a subgradient method. If the data is distributed across several data centers,
say m centers, then the joint problem can be written as:

min
x∈Rn

m∑

i=1

⎛

⎝ ρ

2m
‖x‖2 +

∑

j∈Di
max{0, 1 − yj 〈x, zj 〉}

⎞

⎠ ,

Fig. 1.3 A maximum margin separating hyperplane for a single data center
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whereDi is the collection of data points at the center i. Letting

fi(x) = ρ

2m
‖x‖2 +

∑

j∈Di
max{0, 1 − yj 〈x, zj 〉},

we see that the distributed variant of the problem assumes the following form:

min
x∈Rn F (x) =

m∑

i=1

fi(x),

where the function fi is known to center i. In this setting, sharing the function fi
with any other center amounts to sharing the entire data collection Di available at
center i. When the data is private or the data sets are too large, sharing the data is
not an option and the problem has to be solved in a distributed manner. �

Many more examples of distributed problems and the use of consensus can
be found in the domains of bio-inspired systems, self-organized systems, social
networks, opinion dynamics, and autonomous (robotic) systems. For such examples,
a reader may refer to some recent books and monographs on robotic networks
[18, 94, 96], and social and economic networks [42, 49, 59]. These examples can also
be found in related thesis works including [12, 52, 120, 155] dealing with averaging
dynamics and [47, 69, 73, 130, 144, 183] dealing with distributed optimization
aspects.

In the sequel, we will often refer to networks as graphs, and we will use “agent”
and “node” interchangeably. The rest of the chapter is organized as follows: in
Sect. 1.2, we formally describe a multi-agent problem in a network and discuss
some related aspects of the consensus protocol. Section 1.3 presents a distributed
synchronous algorithm for solving the multi-agent problem in time-varying undi-
rected graphs, while Sect. 1.4 deals with asynchronous implementations over a static
undirected graph. Section 1.5 concludes this chapter by providing an overview of
related literature including the most recent research directions.

1.2 Distributed Multi-Agent Problem

This section provides a formal multi-agent system problem description, introduces
our basic notation and gives the underlying assumptions on the multi-agent prob-
lem. The agents are embedded in a communication graph which accommodates
distributed computations through the use of consensus protocols. A basic consensus
protocol for undirected time-varying graphs is presented, and its convergence result
is provided for later use.
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1.2.1 Problem and Assumptions

Throughout this chapter, we will be focused on solving distributed problems of the
generic form

min
x∈X f (x) with f (x) =

m∑

i=1

fi(x), (1.1)

in a network ofm agents, where each function fi is known to agent i only while the
constraint setX ⊆ R

n is known to all agents. We will assume that the problem (1.1)
is convex.

Assumption 1 The setX ⊆ R
n is closed and convex, and each function fi : Rn →

R is convex.

We will explicitly state when we assume that problem (1.1) has a solution. In
such cases, we will let f ∗ denote the optimal value of the problem and X∗ denote
the set of its solutions,

f ∗ = min
x∈X f (x), X∗ = {x∗ ∈ X | f (x∗) = f ∗}.

Throughout the chapter, we will work with the Euclidean norm, denoted by ‖ · ‖,
unless otherwise explicitly stated. We use 〈·, ·〉 to denote the inner product. We will
view all vectors as column vectors, unless stated otherwise. We will use the prime
to denote the transpose of a matrix and a vector.

We assume that the agents are embedded in a communication network, which
allows the agents to exchange some limited information with their immediate (one-
hop) neighbors. Multi-hop communications are not allowed in this setting. The
agents’ common goal is to solve the problem (1.1) collaboratively.

The communication network structure over time is captured with a sequence
of time-varying undirected graphs. More specifically, we assume that the agents
exchange their information (and perform some updates) at given discrete time
instances, which are indexed by k = 0, 1, 2, . . . . The communication network
structure at time k is represented by an undirected graph Gk = ([m], Ek), where
[m] is the agent (node) set, i.e., [m] = {1, . . . ,m}, while Ek is the set of edges. The
edge i ↔ j ∈ Ek indicates that agents i and j can communicate (send and receive
messages) at time k.

Given a graph Gk at a time k, we let Ni(k) denote the set of neighbors of agent
i, at time k:

Ni(k) = {j ∈ [m] | i ↔ j ∈ Ek} ∪ {i}.
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Note that the neighbor set Ni(k) includes agent i itself, which reflects the fact that
agent i has access to some information from its one-hop neighbors and its own
information.

The agents’ desire to solve the problem (1.1) jointly through local communica-
tions translates to the following problem that agents are facing at time k:

min f(x1, . . . , xm) with f(x1, . . . , xm) =
m∑

i=1

fi(xi)

subject to xi = xj for all j ∈ Ni(k) and all i ∈ [m],
xi ∈ X for all i ∈ [m]. (1.2)

Thus, the agents are facing a sequence of optimization problems with time-
varying constraints, which are capturing the time-varying structure of the underlying
communication network. Since this is a nonstandard optimization problem, we need
to specify what it means to solve the problem. To do so, we will impose some
additional assumptions on the graphsGk .

Throughout, we will assume that the graphsGk are connected.

Assumption 2 Each graphGk is connected.

This assumption can be relaxed to the requirement that the union of B consecutive
graphsGk, . . . ,Gk+B−1 is connected for all k ≥ 0 and for some positive integer B.
However, to keep the exposition simple, we will adopt Assumption 2.

Let Ck be the constraint set of problem (1.2) at time k, i.e.,

Ck = {(x1, . . . , xm) ∈ Xm | xi = xj for all j ∈ Ni(k) and all i ∈ [m]}.

Under Assumption 2, the constraint sets Ck are all the same. Their description is
given to the agents through a different set of equations at different time instances,
as seen from the following lemma.

Lemma 1 Let Assumption 2 hold. Then, for each k, we have

Ck = {(x1, . . . , xm) | xi = x for some x ∈ X and all i ∈ [m]}.

The proof of Lemma 1 is straightforward and it is omitted. In fact, it can be seen
that Lemma 1 also holds when the graphs Gk are directed and each of the graphs
contains a directed rooted spanning tree,1 where the neighbor set Ni(k) is replaced
with the in-neighbor set2 N in

i (k) of agent i at time k.

1There exists a node i such that the graph contains a directed path from node i to any other node
in the network.
2The set N in

i (k) of in-neighbors of agent i in a directed graph Gk is the set of all agents j such that
the directed edge (j, i) exists in the graph.
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In view of Lemma 1, it is now obvious that we can associate a limit problem with
the sequence of problems (1.2), where the limit problem is given by:

min f(x1, . . . , xm) with f(x1, . . . , xm) =
m∑

i=1

fi(xi)

subject to (x1, . . . , xm) ∈ ∩∞
k=1Ck. (1.3)

As we noted, all sets Ck are the same under Assumption 2. However, we will keep
the notation Ck to capture the fact that the agents have a different set of equations
that describe the constraint set at different times. Furthermore, the preceding
formulation of the limit problem is also suitable for the situations where the graphs
Gk are not necessarily connected.

1.2.2 Consensus Problem and Algorithm

The consensus problem is a special case of the limit problem (1.3), where each
fi ≡ 0 and X = R

n, i.e., the consensus problem is given by

min 0
subject to (x1, . . . , xm) ∈ ∩∞

k=1Ck, (1.4)

with

Ck = {(x1, . . . , xm) | xi = x for some x ∈ R
n and all i ∈ [m]} for all k ≥ 1.

As one may observe, the consensus problem is a feasibility problem where the
agents need to collectively determine an x = (x1, . . . , xm) satisfying the constraint
in (1.4), while obeying the communication structure imposed by graph Gk at each
time k.

A possible way to solve the consensus problem is that each agent considers its
own problem, at time k, of the following form:

min
x∈Rn

∑

j∈Ni(k)
pij (k)‖x − xj‖2,

where pij (k) > 0 for all j ∈ Ni(k) and for all i ∈ [m]. The values xj are assumed to
be communicated to agent i by its neighbors j ∈ Ni(k). This problem can be viewed
as a penalty problem associated with the constraints in the set Ck that involve agent
i decision variable. The objective function is strongly convex and it has a unique
solution, denoted by x̂i , i.e.,

x̂i(k) = argmin
x∈Rn

∑

j∈Ni(k)
pij (k)‖x − xj‖2.
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In the following lemma, we provide the closed form of the solution x̂i(k).

Lemma 2 Let X = R
n, and consider the feasible set

Cik = {(xj )j∈Ni(k) | xj = x for all j ∈ Ni(k) and x ∈ R
n} (1.5)

corresponding to the constraints in Ck that involve agent i at time k. Then, the
solution x̂i(k) of the penalty problem minx∈Rn

∑
j∈Ni(k) pij (k)‖x−xj‖2 associated

with the feasible set Cik is given by

x̂i(k) =
∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

.

Proof We note that

∑

j∈Ni(k)
pij (k)‖x − xj‖2

=
∑

j∈Ni(k)
pij (k)‖x‖2 − 2

〈

x,
∑

j∈Ni(k)
pij (k)xj

〉

+
∑

j∈Ni(k)
pij (k)‖xj‖2

=
∑

j∈Ni(k)
pij (k)

[

‖x‖2 − 2

〈

x,

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

〉

+
∑
j∈Ni(k) pij (k)‖xj‖2

∑
j∈Ni(k) pij (k)

]

=
∑

j∈Ni(k)
pij (k)

⎡

⎣‖x‖2 − 2

〈

x,

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

〉

+
∥
∥
∥
∥
∥

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

+
∑
j∈Ni(k) pij (k)‖xj‖2

∑
j∈Ni(k) pij (k)

⎤

⎦ .

Therefore,

∑

j∈Ni(k)
pij (k)‖x − xj‖2 =

∑

j∈Ni(k)
pij (k)

⎡

⎣

∥
∥
∥
∥
∥
x −

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2

+
∑
j∈Ni(k) pij (k)‖xj‖2

∑
j∈Ni(k) pij (k)

⎤

⎦ .
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Since the last two terms in the preceding sum do not depend on x, we see that

x̂i(k) = argmin
x∈Rn

⎧
⎨

⎩

∑

j∈Ni(k)
pij (k)‖x − xj‖2

⎫
⎬

⎭

= argmin
x∈Rn

⎧
⎨

⎩

⎛

⎝
∑

j∈Ni(k)
pij (k)

⎞

⎠

∥
∥
∥
∥
∥
x −

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
.

Furthermore, since
∑
j∈Ni(k) pij (k) > 0, we finally have

x̂i(k) = argmin
x∈Rn

⎧
⎨

⎩

∥
∥
∥
∥
∥
x −

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
=

∑
j∈Ni(k) pij (k)xj∑
j∈Ni(k) pij (k)

.

�
In view of Lemma 2, the penalty problem associated with agent i feasible set Cik

at time k can be equivalently be given by

min
x∈Rn

∑

j∈Ni(k)
wij (k)‖x − xj‖2,

where the weights wij (k), j ∈ Ni(k), correspond to convex combinations, i.e.,

wij (k) > 0 for all j ∈ Ni(k),
∑

j∈Ni(k)
wij (k) = 1. (1.6)

Obviously, for the equivalence of the two penalty problems, we need wij (k) =
pij (k)/

∑
j∈Ni(k) pij (k). In this case, the corresponding solution x̂i(k) is given by

x̂i(k) =
∑

j∈Ni(k)
wij (k)xj .

The preceding discussion motivates the following algorithm, known as a con-
sensus algorithm (with projections), for solving the constrained consensus prob-
lem (1.4): each agent has a variable xi(k) at time k. At time k + 1, every agent
i sends xi(k) to its neighboring agents j ∈ Ni(k) and receives xj (k) from them.
Then, every agent i updates its variable as follows:

xi(k + 1) =
∑

j∈Ni(k)
wij (k)xj (k),
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wherewij (k) > 0 for all j ∈ Ni(k) and all i ∈ [m], and
∑
j∈Ni(k) wij (k) = 1 for all

i ∈ [m]. For a more compact representation, we definewij (k) = 0 for all j �∈ Ni(k)
and all i ∈ [m], so we have

xi(k + 1) =
m∑

j=1

wij (k)xj (k) for all i ∈ [m] and all k ≥ 0. (1.7)

The initial points xi(0) ∈ R
n, i ∈ [m], are assumed to be arbitrary.

We note here that if a (convex) constraint set X ⊆ R
n is known to all agents,

then the constrained consensus problem (1.4) can also be solved by the consensus
algorithm in (1.7) with an adjustment of the initial selections xi(0) to satisfy xi(0) ∈
X for all i. This can be seen by noting that xi(k + 1) is a convex combination of
xj (k) for j ∈ Ni(k) (see (1.6)), and it will lie in the set X as long as this set is
convex and xj (k) ∈ X for all j ∈ Ni(k).

The consensus algorithm in (1.7) has regained interest since the recent work [60],
which attracted a significant attention to the consensus problem in various settings
(for an overview of the consensus related literature see Sect. 1.5).

For the convergence of the consensus algorithm, some additional assumptions
are typically needed for the weights wij (k) aside from the “convex combination”
requirement captured by relation (1.6). To state one such assumption, we will
introduce some additional terminology and notation. We let W(k) be the matrix
with ij th entry equal to wij (k). We will say that a matrix W is (row) stochastic if
its entries are non-negative and the sum of its entries in each row is equal to 1. We
will say that W is doubly stochastic if both W and its transpose W ′ are stochastic
matrices.

Next, we state an assumption on the matricesW(k) that we will use later on.

Assumption 3 For every k ≥ 0, the matrixW(k) has the following properties:

(a) W(k) is doubly stochastic.
(b) W(k) is compatible with the structure of the graphGk , i.e.,

wij (k) = 0 iff i ↔ j �∈ Ek.

(c) W(k) has positive diagonal entries, i.e., wii(k) > 0 for all i ∈ [m].
(d) There is an η > 0 such that

wij (k) ≥ η iff i ↔ j ∈ Ek.

First, let us note that Assumption 3 is much stronger than what is typically
assumed to guarantee the convergence of the consensus algorithm. In general, the
graph Gk can be directed and the positive weights wij (k) are assumed for the
directed links (j, i) ∈ Ek , while the matrix W(k) is assumed to be just (row)
stochastic. We work with a stronger assumption since we want to address the
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optimization problem (1.3) which has a more general objective function than that
of the consensus problem (1.4).

To provide insights into what motivates Assumption 3, consider the consensus
algorithm in the case of an unconstrained scalar problem, i.e., X = R. Then, for the
consensus algorithm in (1.7), by stacking all the variables xi(k) into a single vector
x(k) at time k, we have

x(k + 1) = W(k)x(k) = · · · = W(k)W(k − 1) · · ·W(0)x(0).

Furthermore, in the case of static graphs Gk , i.e., Gk = G for some graph G, we
can useW(k) = W for all k, thus implying that

x(k) = Wkx(0).

WhenW is a stochastic matrix which is compatible with a connected graphG, then
W is irreducible and, by Perron-Frobenius Theorem (see Theorem 4.2.1, page 101
of [46]), the spectral radius ρ(W) (which is equal to 1 in this case) is a simple
positive eigenvalue and the vector 1 with all entries equal to 1 is the unique right-
eigenvector associated with eigenvalue 1, i.e.,

W1 = 1.

When, in addition,W has positive diagonal entries, thenW is also primitive, so we
have

lim
k→∞W

k = 1v′,

where v is the normalized (unique positive) left-eigenvector of W associated with
eigenvalue 1, i.e., a unique vector satisfying

v′W = v′ where vi > 0 for all i and 〈v, 1〉 = 1

(see Theorem 4.3.1, page 106, and Theorem 4.4.4, page 119, both in [46]). Thus,
when W is stochastic, compatible with a connected graph G, and has a positive
diagonal, we obtain

lim
k→∞ x(k) =

(

lim
k→∞W

k

)

x(0) = 1v′x(0) = 〈v, x(0)〉 1.

Hence, in this case, the consensus is reached, i.e., the iterates of the consensus
algorithm converge to the value 〈v, x(0)〉, which is a convex combination of the
initial agents’ values xi(0). Observe that the behavior of the iterates in the limit, as
k increases, is completely determined by the limit behavior ofWk as k→ ∞.
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In the light of the preceding discussion, Assumption 3 guarantees that a similar
behavior is exhibited in the case when the matrices are time-varying and the graphs
Gk are connected. Specifically, in this case, we would like to have

lim
k→∞[W(k)W(k − 1) · · ·W(0)] = 1v′

for some vector v with all entries vi positive and 〈v, 1〉 = 1. This relation is
guaranteed by Assumptions 2 and 3. In fact, under these assumptions we have a
stronger result for the matrix sequence {W(k)}, as follows:

lim
k→∞[W(k)W(k − 1) · · ·W(s)] = 1

m
11′ for all s ≥ 0.

This result is formalized in the following lemma, which also provides the rate of
convergence for the matrix productsW(k)W(k − 1) · · ·W(s) for all k ≥ s ≥ 0.

Lemma 3 (Lemma 5 in [110]) Let the graph sequence {Gk} satisfy Assumption 2,
and let the matrix sequence {W(k)} satisfy Assumption 3. Then, we have for all
s ≥ 0 and k ≥ s,

sup
x∈Rn,‖x‖=1

∥
∥
∥
∥

(

W(k)W(k − 1) · · ·W(s + 1)W(s)− 1

m
11′

)

x

∥
∥
∥
∥

2

≤
(

1 − η

2m2

)k−s
.

In particular, for all s ≥ 0 and k ≥ s, and for all i, j ∈ [m],
(

[W(k)W(k − 1) · · ·W(s + 1)W(s)]ij − 1

m

)2

≤
(

1 − η

2m2

)k−s
.

The first relation in Lemma 3 is a consequence of Lemma 5 in [110]. The second
relation follows by letting x be any of the unit-vectors of the standard basis in R

n.
Lemma 3 provides a key insight into the behavior of the products of the matrices

W(k), which implies that the consensus method in (1.7) converges geometrically
to 1

m

∑m
i=1 xi(0). We will use this lemma to show that consensus-based methods

for solving a more general optimization problem (1.1) converge to a solution, as
discussed in the next section.

1.3 Distributed Synchronous Algorithms for Time-Varying
Undirected Graphs

We now consider a distributed algorithm for solving problem (1.3). We assume that
the set X is closed and convex, and it has a simple structure so that the projection
of a point on the set X is not computationally expensive. The idea is to construct
an algorithm to be executed locally by each agent i that at every instant k involves
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two steps: one step aimed at satisfying agent i feasibility constraint Cik in (1.5),
and the other step aimed at minimizing its objective cost fi over the set X. Thus,
the first step is akin to consensus update in (1.7), while the second step is a simple
projection-based (sub)gradient update using fi .

To illustrate the idea, consider agent i and its surrogate objective function at
time k:

Fik(x) = fi(x)+ δX(x)+ 1

2

∑

j∈Ni(k)
wij (k)‖x − xj‖2,

where δX(x) is the indicator function of the set X, i.e.,

δX(x) =
{

0 if x ∈ X,
+∞ otherwise.

The weights wij (k), j ∈ Ni(k), are convex combinations (i.e., they are positive and
they sum to 1; see (1.6)).

Having the vectors xj , j ∈ Ni(k), agent i may take the first step aimed at
minimizing 1

2

∑
j∈Ni(k) wij (k)‖x − xj‖2, which would result in setting

x̂i(k) =
∑

j∈Ni(k)
wij (k)xj .

In the second step, assuming for the moment that fi is differentiable, agent i
considers solving the problem

min
x∈Rn

{

〈∇fi(x̂i(k)), x〉 + δX(x)+ 1

2αk
‖x − x̂i(k)‖2

}

,

which is equivalent to

min
x∈X

{

〈∇fi(x̂i(k)), x〉 + 1

2αk
‖x − x̂i(k)‖2

}

,

where αk > 0 is a stepsize. The preceding problem has a closed form solution given
by

x∗i (k) = ΠX[x̂i(k)− αk∇f (x̂i(k))],

whereΠX[z] is the projection of a point z on the set X, i.e.,

ΠX[z] = argmin
x∈X

‖x − z‖2 for all z ∈ R
n.
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When the function fi is not differentiable, we would replace the gradient ∇f (x̂i(k))
with a subgradient gi(x̂i(k)). Recall that a subgradient of a convex function h :
R
n → R at a given point x is a vector g(x) ∈ R

n such that

h(x)+ 〈g(x), y − x〉 ≤ h(y) for all y ∈ R
n.

In what follows, we will use gi(k) to abbreviate the notation for a subgradient
gi(x̂i(k)) of the function fi(z) evaluated at z = x̂i(k).

Now, based on the preceding discussion, we have the following algorithm: at
every time k, each agent i ∈ [m] maintains two vectors yi(k) and xi(k). The agent
sends xi(k) to its neighbors j ∈ Ni(k) and receives xj (k) from its neighbors j ∈
Ni(k). Then, it updates as follows:

yi(k + 1) =
∑

j∈Ni(k)
wij (k)xj (k),

xi(k + 1) = ΠX[yi(k + 1)− αk+1gi(k + 1)], (1.8)

where αk+1 > 0 is a stepsize and gi(k + 1) is a subgradient of fi(z) at point z =
yi(k + 1). The process is initialized with arbitrary points xi(0) ∈ X for all i ∈ [m].

Note that the agents use the same stepsize value αk+1. Note further that, due to
the projection on the set X, we have xi(k) ∈ X for all i and k. Moreover, since
yi(k + 1) is a convex combination of points in X and since X is convex, we have
yi(k + 1) ∈ X for all i and k.

By introducing 0-weights for non-existing links in the graphGk , i.e., by defining

wij (k) = 0 when j �∈ Ni(k),

we can re-write (1.8) as follows: for all k ≥ 0 and all i ∈ [m],

yi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = ΠX[yi(k + 1)− αk+1gi(k + 1)]. (1.9)

To illustrate the iterations of the algorithm in (1.9), consider a system of three
agents in a connected graph, as illustrated in Fig. 1.4. Figure 1.4 shows a typical
iteration of the algorithm. Since the graph is fully connected, all weights wij (k)
are positive, so the resulting points yi(k + 1) lie inside the triangle formed by
the points xi(k), i = 1, 2, 3. The new points xi(k + 1), i = 1, 2, 3, obtained
after the subgradient steps do not necessarily lie inside the triangle formed by the
points xi(k), i = 1, 2, 3. Under some suitable assumptions on the stepsize and the
subgradients, these triangles formed by xi(k), i = 1, 2, 3, as k → ∞, can shrink
into a single point, which is solution of the problem. Loosely speaking, while the
consensus steps force the agents to agree on some point, the subgradient steps are
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Fig. 1.4 At iteration k, agents hold values xi(k). The plot to the left illustrates the resulting points
yi(k+ 1) of the iteration (1.9) which lie inside the triangle formed by the points xi(k), i = 1, 2, 3,
(as all weights wij (k) are positive in this case). The plot to the right depicts the iterates xi(k +
1), i = 1, 2, 3, obtained through the subgradient steps of algorithm (1.9). These iterates do not
necessarily lie inside the triangle formed by the prior iterates xi (k), i = 1, 2, 3

forcing the agreement point to be a solution of a given problem. Thus, one can think
of the algorithm in (1.9) as a process that steers the consensus toward a particular
region, in this case the region being the solution set of the agent optimization
problem (1.3). To see this, note that from the definition of xi(k + 1) we have

xi(k + 1) = yi(k + 1)− αk+1gi(k + 1)+ ek,

ek = (ΠX[yi(k + 1)− αk+1gi(k + 1)] − (yi(k + 1)− αk+1gi(k + 1)).

Assuming that the projection error ek is small, and assuming that the functions are
differentiable, we can approximate xi(k + 1) as follows:

xi(k + 1) ≈ yi(k + 1)− αk+1∇fi(yi(k + 1))

=
⎛

⎝
m∑

j=1

wij (k)xj (k)

⎞

⎠− αk+1∇fi
⎛

⎝
m∑

j=1

wij (k)xj (k)

⎞

⎠ . (1.10)

Thus, the algorithm is similar to the consensus process
∑m
j=1 wij (k)xj (k) with an

additional force coming from the gradient field, which steers the agreement point
toward a solution of the problem minx∈X

∑m
i=1 fi(x). The preceding discussion

sketches the approach that we will follow to establish the convergence properties
of the method, which is the focus of the next section.

1.3.1 Convergence Analysis of Distributed Subgradient Method

In this section, we provide a main convergence result in Theorem 1 showing that
the iterates xi(k), for all agents i ∈ [m], converge to a solution of the problem (1.1),



1 Distributed Optimization Over Networks 17

as k → ∞. The proof of Theorem 1 relies on a basic relation satisfied by the
algorithm in terms of all agents’ iterates, as given in Proposition 1. The proof of
this proposition is constructed through several auxiliary results that are provided in
Lemmas 4–6. Specifically, Lemma 4 provides an elementary relation for the iterates
xi(k) for a single agent, without the use of the network aspect. By viewing the
algorithm (1.9) as a perturbation of the consensus algorithm, Lemma 5 establishes
a relation for the distances between the iterates xi(k) and their averages taken
across the agents (i.e., 1

m

∑m
j=1 xj (k)) in terms of the perturbation. The result of

Lemma 5 is refined in Lemma 6 by taking into account that the perturbation to the
consensus algorithm comes from a subgradient influence controlled by a stepsize
choice.

Based on relation (1.10), we see that if yi(k + 1) is close to the average of the
points xj (k + 1), j ∈ [m], then for the iterate xi(k + 1) we have

xi(k + 1) ≈ xav(k + 1)− αk+1∇fi(xav(k + 1))+ εk+1,

where xav(k + 1) = 1
m

∑m
j=1 xj (k + 1) and εk+1 is an error due to using the

gradient difference∇fi(xav(k+1))−∇fi(yi(k+1)). When fi is not differentiable,
the iterates xi(k + 1) would similarly correspond to an approximate subgradient
update, where a subgradient gi(k + 1) of fi(z) at z = yi(k + 1) is used
instead of a subgradient of fi(z) evaluated at z = xav(k + 1) (which would
have been used if the average xav(k + 1) were available to all agents). Thus, the
method (1.9) can be interpreted as an approximation of a centralized algorithm,
where each agent would have access to the average vector xav(k + 1) and could
update by computing gradients of its own objective function fi at the average
xav(k + 1).

1.3.1.1 Relation for a Single Agent Iterates

To start the analysis, for a single arbitrary agent, we will explore a basic relation for
the distances between xi(k + 1) and a point x ∈ X. In doing so, we will use the
well-known property of the projection operator, namely

‖ΠX[z] − x‖2 ≤ ‖z − x‖2 − ‖ΠX[z] − z‖2 for all x ∈ X and all z ∈ R
n.

(1.11)

The preceding projection relation follows from a more general relation which can
be found in [44], in Volume II, 12.1.13 Lemma, on page 1120.

Lemma 4 Let the problem be convex (Assumption 1 holds) and let αk+1 > 0. Then,
for the iterate xi(k + 1) of the method (1.9), we have for all x ∈ X and all i ∈ [m],

‖xi(k + 1)− x‖2 ≤ ‖yi(k + 1)− x‖2 − 2αk+1 (fi(yi(k + 1))− fi(x))
+α2

k+1‖gi(k + 1)‖2.
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Proof From the projection relation in (1.11) and the definition of xi(k+1)we obtain
for any x ∈ X,

‖xi(k + 1)− x‖2 ≤‖yi(k + 1)− αk+1gi(k + 1)− x‖2

− ‖xi(k + 1)− yi(k + 1)+ αk+1gi(k + 1)‖2.

By expanding the squared-norm terms, we further have

‖xi(k + 1)− x‖2 ≤‖yi(k + 1)− x‖2 − 2αk+1〈yi(k + 1)− x, gi(k + 1)〉
+ α2

k+1‖gi(k + 1)‖2 − ‖xi(k + 1)− yi(k + 1)‖2

− 2αk+1〈xi(k + 1)− yi(k + 1), gi(k + 1)〉
− α2

k+1‖gi(k + 1)‖2

=‖yi(k + 1)− x‖2 − 2αk+1〈yi(k + 1)− x, gi(k + 1)〉
− ‖xi(k + 1)− yi(k + 1)‖2

− 2αk+1〈xi(k + 1)− yi(k + 1), gi(k + 1)〉.
Since gi(k + 1) is a subgradient of fi at yi(k + 1), by convexity of fi , we have

〈yi(k + 1)− x, gi(k + 1)〉 ≥ fi(yi(k + 1))− fi(x),

implying that

‖xi(k + 1)− x‖2 ≤‖yi(k + 1)− x‖2 − 2αk+1 (fi(yi(k + 1))− fi(x))
− ‖xi(k + 1)− yi(k + 1)‖2

− 2αk+1〈xi(k + 1)− yi(k + 1), gi(k + 1)〉.
The last term in the preceding relation can be estimated by using Cauchy-Schwarz
inequality, to obtain

− 2αk+1〈xi(k + 1)− yi(k + 1), gi(k + 1)〉
≤ 2‖xi(k + 1)− yi(k + 1)‖ · αk+1‖gi(k + 1)‖
≤ ‖xi(k + 1)− yi(k + 1)‖2 + α2

k+1‖gi(k + 1)‖2.

By combining the preceding two relations, we find that for any x ∈ X,

‖xi(k + 1)− x‖2 ≤ ‖yi(k + 1)− x‖2 − 2αk+1 (fi(yi(k + 1))− fi(x))
+ α2

k+1‖gi(k + 1)‖2.

�
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1.3.1.2 Relation for Agents’ Iterates and Their Averages Through
Perturbed Consensus

We would like to estimate the difference between xi(k+ 1) and the average of these
vectors, which can be then used in Lemma 4 to get some insights into the behavior
of ‖xi(k)− x∗‖ for an optimal solution x∗. To do so, we will re-write the iterations
of the method (1.9), as follows:

yi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = yi(k + 1)+ (ΠX[yi(k + 1)− αk+1gi(k + 1)] − yi(k + 1))
︸ ︷︷ ︸

εi (k+1)

.

Thus, we have for all i and k ≥ 0,

xi(k + 1) =
m∑

j=1

wij (k)xj (k)+ εi(k + 1),

εi (k + 1) = ΠX[yi(k + 1)− αk+1gi(k + 1)] − yi(k + 1), (1.12)

yi(k + 1) =
m∑

j=1

wij (k)xj (k).

In this representation, the iterates xi(k + 1) can be viewed as obtained through a
perturbed consensus algorithm, where εi(k + 1) is a perturbation at agent i.

Under suitable conditions (cf. Assumption 3), by Lemma 3, we know that the
matrix productsW(k)W(k−1) · · ·W(t) are converging as k→ ∞, for any t , to the
matrix with all entries equal to 1/m. We will use that result to establish a relation
for the behavior of the iterates xi(k + 1).

Lemma 5 Let the graphs Gk satisfy Assumption 2 and the matrices W(k) satisfy
Assumption 3. Then, for the iterate process (1.12), we have for all k ≥ 0,

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2

≤ mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2 +m
⎛

⎝
k∑

t=1

pk−t
√
√
√
√

m∑

i=1

‖εi(t)‖2

⎞

⎠

+√
m− 1

√
√
√
√

m∑

i=1

‖εi(k + 1)‖2,
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where xav(k+ 1) = 1
m

∑m
j=1 xj (k+ 1), p = 1− η

4m2 and η > 0 is a uniform lower
bound on the entries of the matricesW(k) (see Assumption 3(d)).

Proof We write the evolution of the iterates xi(k + 1) in (1.12) in a matrix
representation. Letting 	 ∈ [n] be any coordinate index, we can write for the 	th
coordinate (denoted by a superscript)

x	i (k + 1) =
m∑

j=1

wij (k)x
	
j (k)+ ε	i (k + 1) for all 	 ∈ [n].

Stacking all the 	th coordinates in a column vector, denoted by x	(k + 1), we have

x	(k + 1) = W(k)x	j (k)+ ε	(k + 1) for all 	 ∈ [n].

Next, we take the column vectors x	(k + 1), 	 ∈ [n], in a matrix X(k + 1), for
all k, and similarly, we construct the matrix E(k + 1) from the perturbation vectors
ε	(k + 1), 	 ∈ [n]. Thus, we have the following compact form representation for
the evolution of the iterates xi(k + 1):

X(k + 1) = W(k)X(k)+ E(k + 1) for all k ≥ 0. (1.13)

Using the recursion, from (1.13) we see that for all k ≥ 0,

X(k + 1) = W(k)X(k)+ E(k + 1)
= W(k)W(k − 1)X(k − 1)+W(k)E(k) + E(k + 1)
= · · ·
= W(k : 0)X(0)+

(
k∑

t=1

W(k : t)E(t)
)

+ E(k + 1), (1.14)

where

W(k : t) = W(k)W(k − 1) · · ·W(t + 1)W(t) for all k ≥ t ≥ 0.

By multiplying both sides of (1.14) with the matrix 1
m

11′, we have

1

m
11′X(k + 1)

= 1

m
11′W(k : 0)X(0)+

(
k∑

t=1

1

m
11′W(k : t)E(t)

)

+ 1

m
11′E(k + 1)

= 1

m
11′X(0)+

(
k∑

t=1

1

m
11′E(t)

)

+ 1

m
11′E(k + 1),
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where the last equality follows from the fact that the matrices W(k : t) are
column-stochastic, as inherited from the matrices W(k) being column-stochastic.
By subtracting the preceding relation from (1.14), we obtain

X(k + 1)− 1

m
11′X(k + 1)

=
(

W(k : 0)− 1

m
11′

)

X(0)+
k∑

t=1

(

W(k : t)− 1

m
11′

)

E(t)

+
(

I − 1

m
11′

)

E(k + 1), (1.15)

where I is the identity matrix. Let ‖A‖F denote the Frobenius norm of an m × n
matrix A, i.e.,

‖A‖F =
√
√
√
√

m∑

i=1

n∑

j=1

a2
ij .

By taking the Frobenius norm of both sides in (1.15), we further obtain
∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥
F

≤
∥
∥
∥
∥

(

W(k : 0)− 1

m
11′

)

X(0)

∥
∥
∥
∥
F

+
(

k∑

t=1

∥
∥
∥
∥

(

W(k : t)− 1

m
11′

)

E(t)

∥
∥
∥
∥
F

)

+
∥
∥
∥
∥

(

I − 1

m
11′

)

E(k + 1)

∥
∥
∥
∥
F

.

Since the Frobenius norm is sub-multiplicative, i.e., ‖AB‖F ≤ ‖A‖F ‖B‖F , it
follows that
∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥
F

≤
∥
∥
∥
∥W(k : 0)− 1

m
11′

∥
∥
∥
∥
F

‖X(0)‖F

+
(

k∑

t=1

∥
∥
∥
∥W(k : t)−

1

m
11′

∥
∥
∥
∥
F

‖E(t)‖F
)

+
∥
∥
∥
∥I −

1

m
11′

∥
∥
∥
∥
F

‖E(k + 1)‖F . (1.16)

By Lemma 3 we have

(

[W(k : t)]ij − 1

m

)2

≤ qk−t for all k ≥ t ≥ 0, with q = 1 − η

2m2 .

Hence,

∥
∥
∥
∥W(k : t)−

1

m
11′

∥
∥
∥
∥
F

=
√
√
√
√

m∑

i=1

m∑

j=1

(

[W(k : t)]ij − 1

m

)2

≤ m
√

qk−t .
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Since q = 1− η

2m2 , by using the fact
√

1 − μ ≤ 1−μ/2 for any μ ∈ (0, 1), we see
that for all k ≥ t ≥ 0,

∥
∥
∥
∥W(k : t)−

1

m
11′

∥
∥
∥
∥
F

≤ mpk−t with p = 1 − η

4m2 . (1.17)

For the norm
∥
∥
∥I − 1

m
11′

∥
∥
∥
F

we have

∥
∥
∥
∥I −

1

m
11′

∥
∥
∥
∥
F

=
√

m

(

1 − 1

m

)2

+ (m− 1)m
1

m2
= √

m− 1. (1.18)

Using relations (1.17) and (1.18) in inequality (1.16), we obtain

∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥
F

≤ mpk‖X(0)‖F +m
(

k∑

t=1

pk−t‖E(t)‖F
)

+√
m− 1‖E(k + 1)‖F . (1.19)

We next interpret relation (1.19) in terms of the iterates xi(k+ 1) and the vectors
εi(k + 1), as given in (1.12). Recalling that the 	th column of X(k) consists of the
vector x	(k), with the entries x	i (k), i ∈ [m], for all 	 ∈ [n], we can see that

1′X(k) =
(
m∑

i=1

x1
i (k), . . . ,

m∑

i=1

xmi (k)

)

.

Thus,

1

m
1′X(k) = x ′av(k) where xav(k) = 1

m

m∑

j=1

xj (k),

and

1

m
11′X(k) = 1x ′av(k) for all k.

Hence, 1
m

11′X(k) is the matrix with all rows consisting of the vector x ′av(k).
Observing that the matrix X(k) has rows consisting of x ′1(k), . . . , x ′m(k), and using
the definition of the Frobenius norm, we can see that

∥
∥
∥
∥X(k)− 1

m
11′X(k)

∥
∥
∥
∥
F

=
√
√
√
√

m∑

i=1

‖xi(k)− xav(k)‖2.
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Similarly, recalling that E(k) has rows consisting of ε′i (k), i ∈ [m], we also have

‖E(k)‖F =
√
√
√
√

m∑

i=1

‖εi(k)‖2.

Therefore, relation (1.19) is equivalent to
√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2

≤ mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2 +m
⎛

⎝
k∑

t=1

pk−t
√
√
√
√

m∑

i=1

‖εi(t)‖2

⎞

⎠

+√
m− 1

√
√
√
√

m∑

i=1

‖εi(k + 1)‖2.

�

1.3.1.3 Basic Relation for Agents’ Iterates

Recall that each εi(k + 1) represents the difference between the projection point
ΠX[yi(k+ 1)−αk+1gi(k+ 1)] and the point yi(k+ 1) (see (1.12)). Thus, there is a
structure in εi(k+1) that can be further exploited. In particular, we can further refine
the result of Lemma 5, under the assumption of bounded subgradients gi(k + 1), as
given in the following lemma.

Lemma 6 Let the problem be convex (i.e., Assumption 1 holds). Also, assume that
the subgradients of fi are bounded over the setX for all i, i.e., there exists a constant
C such that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X.
Furthermore, let Assumptions 2 and 3 hold for the graphs Gk and the matrices
W(k), respectively. Then, for the iterates xi(k) of the method (1.9) and their
averages xav(k) = 1

m

∑m
j=1 xj (k), we have for all i ∈ [m] and k ≥ 0,

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 ≤ mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2

+m√mC
k∑

t=1

pk−t αt +mCαk+1,
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where p = 1 − η

4m2 .

Proof By Lemma 5 we have for all k ≥ 0,

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2

≤ mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2 +m
⎛

⎝
k∑

t=1

pk−t
√
√
√
√

m∑

i=1

‖εi(t)‖2

⎞

⎠

+√
m− 1

√
√
√
√

m∑

i=1

‖εi(k + 1)‖2. (1.20)

Since yi(k + 1) is a convex combination of points xj (k + 1) ∈ X, j ∈ [m], by the
convexity of the set X it follows that yi(k + 1) ∈ X for all i, implying that for all
k ≥ 0,

‖ΠX[yi(k + 1)− αk+1gi(k + 1)] − yi(k + 1)‖ ≤ αk+1‖gi(k + 1)‖ ≤ αk+1C.

Therefore, for all i and k ≥ 0,

‖εi(k + 1)‖2 ≤ α2
k+1C

2,

implying that

m∑

i=1

‖εi(k + 1)‖2 ≤ mα2
k+1C

2 for all k ≥ 0.

By substituting the preceding estimate in (1.19), we obtain

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 ≤ mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2 +m
(

k∑

t=1

pk−t
√

mα2
t C

2

)

+√
m− 1

√
mα2

k+1C
2

= mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2 +m√mC
(

k∑

t=1

pk−t αt

)

+√
m− 1

√
mCαk+1.

The desired relation follows by using m− 1 ≤ m. �
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We will now put together Lemmas 4 and 6 to provide a key result for establishing
the convergence of the method. We assume some conditions on the stepsize, some
of which are often used when analyzing the behavior of a subgradient algorithm.

Proposition 1 Let Assumptions 1–3 hold. Assume that the subgradients of fi are
uniformly bounded over the set X for all i, i.e., there exists a constant C such that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X.

Also, let the stepsize satisfy the following conditions

αk+1 ≤ αk for all k ≥ 1,
∞∑

k=1

α2
k <∞.

Then, for the iterates xi(k) of the method (1.9), we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

j=1

‖xj (k)− x‖2 − 2αk+1 (f (xav(k))− f (x))+ sk,

where xav(k) = 1
m

∑m
j=1 xj (k), while sk is given by

sk = 2αk+1C
√
m

√
√
√
√

m∑

j=1

‖xj (k)− xav(k)‖2 +mα2
k+1C

2,

and it satisfies

∞∑

k=0

sk <∞.

Proof By Lemma 4, we have for all i, all k ≥ 0 and all x ∈ X,

‖xi(k + 1)− x‖2 ≤ ‖yi(k + 1)− x‖2 − 2αk+1 (fi(yi(k + 1))− fi(x))
+α2

k+1‖gi(k + 1)‖2.

Since yi(k + 1) is a convex combination of the points xj (k), j ∈ [m], by the
convexity of the norm squared, it follows that

‖xi(k + 1)− x‖2 ≤
m∑

j=1

wij (k)‖xj (k)− x‖2 − 2αk+1 (fi(yi(k + 1))− fi(x))

+α2
k+1‖gi(k + 1)‖2.
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By summing these relations over i and by using the subgradient-boundedness
property, we obtain

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

i=1

m∑

j=1

wij (k)‖xj (k)− x‖2

−2αk+1

m∑

i=1

(fi(yi(k + 1))− fi(x))

+mα2
k+1C

2.

By exchanging the order of summation in the double-sum term, we see that

m∑

i=1

m∑

j=1

wij (k)‖xj (k)− x‖2 =
m∑

j=1

‖xj (k)− x‖2
m∑

i=1

wij (k) =
m∑

j=1

‖xj (k)− x‖2,

where the last equality follows from 1′W(k) = 1′. Therefore,

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

j=1

‖xj (k)− x‖2 − 2αk+1

m∑

i=1

(fi(yi(k + 1))− fi(x))+mα2
k+1C

2.

We next estimate fi(yi(k + 1)) − fi(x) by using the average vector xav(k), as
follows:

fi(yi(k + 1))− fi(x) = fi(yi(k + 1))− fi(xav(k))+ fi(xav(k))− fi(x)
≥ −C‖yi(k + 1)− xav(k)‖ + fi(xav(k))− fi(x),

where the inequality follows by the Lipschitz continuity of fi (due to the uniform
subgradient-boundedness property on the set X and the fact that yi(k + 1) ∈ X and
xav(k) ∈ X). By combining the preceding two relations and using f = ∑m

i=1 fi ,
we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

j=1

‖xj (k)− x‖2 − 2αk+1 (f (xav(k))− f (x))

+ 2αk+1C

m∑

i=1

‖yi(k + 1)− xav(k)‖ +mα2
k+1C

2. (1.21)
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Consider now the vectors yi(k + 1) and note that by the definition of yi(k + 1),
we have for any y ∈ R

n,

m∑

i=1

‖yi(k + 1)− y‖ =
m∑

i=1

∥
∥
∥
∥
∥
∥

m∑

j=1

wij (k)(xj (k)− y)
∥
∥
∥
∥
∥
∥
,

where we useW(k)1 = 1. By the convexity of the norm, it follows that

m∑

i=1

‖yi(k + 1)− y‖ ≤
m∑

i=1

m∑

j=1

wij (k)‖xj (k)− y‖ =
m∑

j=1

‖xj (k)− y‖,

where the last equality is obtained by exchanging the order of summation and using
1′W(k) = 1′. Hence, for y = xav(k), we obtain

m∑

i=1

‖yi(k + 1)− xav(k)‖≤
m∑

j=1

‖xj (k)− xav(k)‖≤
√
m

√
√
√
√

m∑

j=1

‖xj (k)− xav(k)‖2,

where the last inequality follows by Hölder’s inequality. By substituting the
preceding estimate in relation (1.21), we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

j=1

‖xj (k)− x‖2 − 2αk+1 (f (xav(k))− f (x))

+ 2αk+1C
√
m

√
√
√
√

m∑

j=1

‖xj (k)− xav(k)‖2 +mα2
k+1C

2.

To simplify the notation, we let for all k ≥ 0,

sk = 2αk+1C
√
m

√
√
√
√

m∑

j=1

‖xj (k)− xav(k)‖2 +mα2
k+1C

2, (1.22)

so that we have for all k ≥ 0 and all x ∈ X,

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

j=1

‖xj (k)− x‖2 − 2αk+1 (f (xav(k))− f (x))+ sk.



28 A. Nedić

We next show that the terms αk+1

√∑m
j=1 ‖xj (k)− xav(k)‖2 involved in the

definition of sk are summable over k. According to Lemma 6 we have for all k ≥ 1,

√
√
√
√

m∑

i=1

‖xi(k)− xav(k)‖2 ≤ mpk−1

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m√mC
k−1∑

t=1

pk−t−1αt +mCαk.

Letting

rk = αk+1

√
√
√
√

m∑

j=1

‖xj (k)− xav(k)‖2, (1.23)

and using the assumption that the stepsize αk is non-increasing, we see that

rk ≤ mpk−1α1

√
√
√
√

m∑

i=1

‖xi(0)‖2 +m√mC
k−1∑

t=1

pk−t−1α2
t +mCα2

k .

By summing rk over k = 2, 3, . . . ,K, for some K ≥ 2, we have

K∑

k=2

rk ≤ m
(
K∑

k=1

pk−1

)

α1

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m√mC
K∑

k=2

k−1∑

t=1

pk−t−1α2
t +mC

K∑

k=2

α2
k

<
m

1 − pα1

√
√
√
√

m∑

i=1

‖xi(0)‖2 +m√mC
K−1∑

s=1

s∑

t=1

ps−tα2
t +mC

K∑

k=2

α2
k ,

where we use the fact that p ∈ (0, 1) and we shift the indices in the double-sum
term. Furthermore, by exchanging the order of summation, we see that

K−1∑

s=1

s∑

t=1

ps−t α2
t =

K−1∑

t=1

α2
t

K−1∑

s=t
ps−t <

K−1∑

t=1

α2
t

1

1 − p .
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Therefore,

K∑

k=2

rk <
m

1 − pα1

√
√
√
√

m∑

i=1

‖xi(0)‖2 + m
√
mC

1 − p
K−1∑

t=1

α2
t +mC

K∑

k=2

α2
k .

In view of the assumption that
∑∞
k=1 α

2
k <∞, it follows that

∑∞
k=2 rk <∞. Since

sk = 2C
√
mrk +mα2

k+1C
2

(see (1.22) and (1.23)), it follows that

∞∑

k=0

sk <∞.

�

1.3.1.4 Convergence Result for Agents’ Iterates

Using Proposition 1, we establish a convergence result for the iterates xi(k), as given
in the following theorem.

Theorem 1 Let Assumptions 1–3 hold. Assume that there is a constant C such that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X.

Let the stepsize satisfy the following conditions

αk+1 ≤ αk for all k ≥ 1,
∞∑

k=1

αk = ∞,
∞∑

k=1

α2
k <∞,

and assume that problem (1.1) has a solution. Then, the iterate sequences {xi(k)},
i ∈ [m], generated by the method (1.9), converge to an optimal solution of
problem (1.1), i.e.,

lim
k→∞‖xi(k)− x∗‖ = 0 for all i ∈ [m] and some x∗ ∈ X∗.

Proof By letting x = x∗ in Proposition 1, for an arbitrary x∗ ∈ X∗, we obtain for
all i ∈ [m] and k ≥ 0,

m∑

i=1

‖xi(k + 1)− x∗‖2 ≤
m∑

j=1

‖xj (k)− x∗‖2 − 2αk+1
(
f (xav(k))− f (x∗)

)+ sk,
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with sk > 0 satisfying
∑∞
k=0 sk <∞. By summing these relations over k = K,K+

1, . . . , T for any T ≥ K ≥ 0, after re-arranging the terms, we further obtain for all
x∗ ∈ X∗ and all T ≥ K ≥ 0,

m∑

i=1

‖xi(T + 1)− x∗‖2 + 2
T∑

k=K
αk+1

(
f (xav(k))− f (x∗)

)

≤
m∑

j=1

‖xj (K)− x∗‖2 +
T∑

k=K
sk. (1.24)

Note that f (xav(k))−f (x∗) > 0 since xav(k) ∈ X. Thus, the preceding relation
implies that the sequences {xi(k)}, i ∈ [m], are bounded and, also, that

∞∑

k=0

αk+1
(
f (xav(k))− f ∗) <∞

since
∑∞
k=0 sk <∞, where f ∗ = f (x∗) for any x∗ ∈ X∗. Thus, it follows that

lim inf
k→∞

(
f (xav(k))− f ∗) = 0.

Let {k	} be a sequence of indices that attains the above limit inferior, i.e.,

lim
	→∞ f (xav(k	)) = f

∗. (1.25)

Since the sequences {xi(k)}, i ∈ [m], are bounded, so is the average
sequence {xav(k)}. Hence, {xav(k	)} contains a converging subsequence. Without
loss of generality, we may assume that {xav(k	)} converges to some point x̂,
i.e.,

lim
	→∞ xav(k	) = x̂.

Note that x̂ ∈ X since {xav(k)} ⊂ X and the set X is assumed to be closed.
Note further that f is continuous on R

n since it is convex on R
n. Hence, we

have

lim
	→∞ f (xav(k	)) = f (x̂) with x̂ ∈ X,

which together with relation (1.25) yields f (x̂) = f ∗. Therefore, x̂ is an optimal
point.
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Next, we show that {xi(k	)} converges to x̂ for all i. By Lemma 6 we have for
all k ≥ 0 and all i ∈ [m],

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 ≤ mpk
√
√
√
√

m∑

i=1

‖xi(0)‖2

+m√mC
k∑

t=1

pk−t αt +mCαk+1.

Letting k = k	 − 1 for any k	 ≥ 1, we see that for all i ∈ [m],
√
√
√
√

m∑

i=1

‖xi(k	)− xav(k	)‖2 ≤ mpk	−1

√
√
√
√

m∑

i=1

‖xi(0)‖2

+m√mC
k	−1∑

t=1

pk	−1−t αt +mCαk	 .

Since p ∈ (0, 1) and αk→ 0 (due to
∑∞
k=1 α

2
k <∞), it follows that

lim sup
	→∞

√
√
√
√

m∑

i=1

‖xi(k	)− xav(k	)‖2 ≤ m√mC lim sup
	→∞

k	−1∑

t=1

pk	−1−tαt .

We note that

lim sup
	→∞

k	−1∑

t=1

pk	−1−tαt = lim
k→∞

k−1∑

t=1

pk−1−t αt

= lim
k→∞

((
k−1∑

τ=1

pk−1−τ
)

1
∑k−1
τ=1 p

k−1−τ

k−1∑

t=1

pk−1−tαt

)

= lim
k→∞

(
k−1∑

τ=1

pk−1−τ
) (

lim
k→∞

1
∑k−1
τ=1 p

k−1−τ

k−1∑

t=1

pk−1−t αt

)

= 1

1 − p lim
t→∞αt , (1.26)

where in the last equality we use that fact that any convex combination of a
convergent sequence {αk} converges to the same limit as the sequence itself. Hence,
we have

lim sup
	→∞

k	−1∑

t=1

pk	−1−t αt = 0,
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implying that

lim sup
	→∞

√
√
√
√

m∑

i=1

‖xi(k	)− xav(k	)‖2 = 0.

Therefore, since lim	→∞ xav(k	) = x̂, it follows that

lim
	→∞ xi(k	) = x̂ for all i ∈ [m], with x̂ ∈ X∗. (1.27)

Now, since x̂ ∈ X∗, we let x∗ = x̂ in (1.24). Then, we letK = k	 in (1.24) and by
omitting the term involving the function values, from (1.24) we obtain for all 	 ≥ 1,

lim sup
T→∞

m∑

i=1

‖xi(T + 1)− x̂‖2 ≤
m∑

j=1

‖xj (k	)− x̂‖2 +
∞∑

k=k	
sk.

Letting 	→ ∞, and using relation (1.27), we see that

lim sup
T→∞

m∑

i=1

‖xi(T + 1)− x̂‖2 ≤ lim
	→∞

∞∑

k=k	
sk = 0,

where lim	→∞
∑∞
k=k	 sk = 0 holds since

∑∞
k=0 sk < ∞. Thus, it follows that for

x̂ ∈ X∗,

lim
k→∞‖xi(k)− x̂‖ = 0 for all i ∈ [m].

�

1.3.2 Numerical Examples

Here, we show some numerical results obtained for a variant of the algorithm
in (1.9) as applied to a data classification problem from Example 3. We will
consider an extension of that problem to the case when the data set is not
perfectly separable. In this case, there is an additional slack variable u that enters
the model, and the distributed version of the problem assumes the following
form:

min
(x,u)∈Rn×R

f (x, u) f (x, u) =
m∑

i=1

fi(x, u),
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Fig. 1.5 An undirected
network with four nodes

where each fi : Rn × R → R is given by:

fi(x, u) = ρ

2m
‖x‖2 +

∑

j∈Di
max{0, 1 − yj 〈x, zj 〉 + u},

whereDi is the collection of the data points at the center i (agent i).
Letting x = (x, u) ∈ R

n × R, we consider the following distributed algorithm3

for this problem over a static graphG = ([m], E):

yi (k + 1) = xi (k)− ηk+1

m∑

j=1

rij xj (k) (rij = 0 when i ↔ j /∈ E),

xi (k + 1) = yi (k + 1)− αk+1gi(k + 1), (1.28)

where gi(k + 1) is a subgradient of fi at yi (k + 1). We note that the weights
used in the update of yi (k + 1) are different from the weights used in (1.9). The
weights here are based on a Laplacian formulation of the consensus problem, which
include another parameter ηk+1 > 0. This parameter can be viewed as an additional
stepsize that is associated with the feasibility step for the consensus constraints.
Under some (boundedness) conditions on ηk+1 and standard conditions on the
stepsize (akin to those in Theorem 1), the method converges to a solution of the
problem [144].

We illustrate the behavior of the method in (1.28) for the case of a network with
four nodes organized in a ring, as depicted in Fig. 1.5. The simulations are generated
for the regularization parameter ρ = 6. The stepsize values used in the experiment
are: ηk = 0.8 and αk = 1

k
, for all k ≥ 1. The behavior of the method is depicted in

Fig. 1.6 where the resulting hyperplanes produced by agents are shown after 20 and
after 500 iterations. The plots also show the true separating hyperplane that solves
the centralized problem.

The algorithm (1.28) assumes perfect communication links, which is not typi-
cally the case in wireless networks. To capture the effect of communication noise,

3See [144, 146] for more details.
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Fig. 1.6 The top plot shows the agents’ iterates xi (k) after 20 iterations and the true solution (the
hyperplane in red color), while the bottom plot shows the agents’ iterates after 500 iterations
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consider the following variant of the method:

yi (k + 1) = xi (k)− ηk+1

m∑

j=1

rij (xj (k)+ ξij (k)) (rij = 0 when i ↔ j /∈ E),

xi (k + 1) = yi (k + 1)− αk+1gi(k + 1), (1.29)

where ξij (k) is a link dependent noise associated with messages received by agent i
from a neighbor j . The parameter ηk+1 > 0 can be viewed as a noise-damping
stepsize. In this case, for the method to converge to a solution of the problem,
the noise-damping stepsize ηk has to be coordinated with the subgradient-related
stepsize αk . In particular, the following conditions are imposed:

∞∑

k=1

αk = ∞,
∞∑

k=1

α2
k <∞,

∞∑

k=1

ηk = ∞,

∞∑

k=1

η2
k <∞,

∞∑

k=1

αkηk <∞,
∞∑

k=1

α2
k

ηk
<∞.

The simulations are performed for a different set of data and the ring graph shown
in Fig. 1.5, where the links were assumed to be noisy. The noise is modeled by the
i.i.d. zero mean Gaussian process with the variance equal to 1. The regularization
parameter is ρ = 6, while the noise-damping parameter and the stepsize are ηk =

1
k0.55 and αk = 1

k
for all k ≥ 1. The results for one of the typical simulation run

are shown in Fig. 1.7. These simulation results are taken from [144], where more
simulation results can be found.

1.4 Distributed Asynchronous Algorithms for Static
Undirected Graphs

There are several drawbacks of synchronous updates that limit their applications,
including

• All agents have to update at the same time. Imagine that each agent has its own
clock and it updates at each tick of its clock. Then, the requirement that the
agents update synchronously, as in method (1.9), means that the agents must
have their local clocks perfectly synchronized throughout the computation task.
This is hard to ensure in practice for some networks, such as wireless networks
where communication interference is an issue.

• The communication links in the connectivity graphs Gk have to be perfectly
activated to transmit and receive information. Some communication protocols
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Fig. 1.7 The top plot shows the agents’ iterates xi (k) after the first iteration and the true solution
(the hyperplane in red color), while the bottom plot shows the agents’ iterates after 500 iterations
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Fig. 1.8 The agent
communication graph is
static, undirected and
connected. However, not all
the links will necessarily be
active at each time instance.
A function fi is a local
objective of agent i

require receiving message acknowledgements (“acks"), which can lead to dead-
locks when the links are not perfect.

• Communications can be costly (consume power) and it may not be efficient for
agents to be activated too frequently to communicate, due to their limited power
supply for example.

In order to alleviate these drawbacks of simultaneous updates, one possibility
is to randomize the activation of communication links in the network or the
activation of the agents. We will discuss two such random activations: gossip and
broadcast protocols. Gossip could be viewed as a random link activation process,
while broadcast is a random-agent activation process. We will here treat both as a
random-agent activation, by assuming that the agents are equipped with local clocks
that tick according to the same rate (the same inter-click time), but do not click
synchronously.

Throughout this section, we assume that the underlying communication graph
is static and undirected, denoted by G = ([m], E), see Fig. 1.8 for an illustration
of the graph. The randomization we will use to develop asynchronous algorithms
will have some stepsizes that can be easily analyzed for a static graph. While their
extensions to time-varying graphs may be possible, we will not consider them here.

To develop asynchronous algorithms for solving problem (1.1), we will use
the asynchronous methods for consensus. Thus, we will at first discuss random
asynchronous consensus methods in Sect. 1.4.1 and, then, we give the corresponding
asynchronous optimization methods in Sect. 1.4.2.

1.4.1 Random Gossip and Random Broadcast for Consensus

Both random gossip and random broadcast algorithms can be used to achieve a
consensus. These two approaches share in common the mechanism that triggers the
update events, but they differ in the update rule specifications.

More concretely, these two approaches use the same random process to wake up
an agent that will initiate a communication event that includes an iterate update.
However, in the random gossip algorithm the agent that wakes up contacts one
of its neighbors at random, thus, randomly activating a single undirected link for
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communication, and both the agent and the selected neighbor perform updates.
Unlike this, in the random broadcast approach, the agent that wakes up broadcasts its
information to all of its neighbors, thus resulting in using directed communication
links (even-though the links are undirected). Moreover, upon the broadcast, the
agent that triggered the communication event goes to an inactive mode and only
its neighbors perform updates.

Let us now describe the random process that triggers the communication events
for both gossip and broadcast models. Each agent has its own local Poisson clock
that ticks with a rate equal to 1 (the rate can take any other positive value as
long as all agents have the same rate). Each agent’s clock ticks independently of
the other agents’ clocks. At a tick of its clock, an agent wakes up and initiates a
communication event. The ticks of the local agents’ clocks can be modeled as single
virtual Poisson clock that ticks with a rate m. Letting {Zk} be the Poisson process
of the virtual clock tick-times, we discretize the time according to {Zk} since these
are the only times when a change will occur in some of the agent values xi(k). The
inter-tick times {Zk+1 − Zk} are i.i.d. exponentially distributed with the rate m.

1.4.1.1 Gossip-Based Consensus Algorithm

In the gossip-model, the randomly activated agent wakes up and selects randomly
one of its neighbors, as depicted in Fig. 1.9. The activated agent and its selected
neighbor exchange their information and perform an iterate update. Upon the
update, both agents go to sleep.

To formalize the process, we let Ik be the index of the agent that is activated at
time Zk , i.e., the agent whose clock ticks at time Zk . The variables {Ik} are i.i.d.
with a uniform distribution over {1, . . . ,m}, i.e.,

Prob{Ik = i} = 1

m
for all i ∈ [m].

For agent i, let pij > 0 be the probability of contacting its neighbor j ∈ Ni ,
j �= i. Let Jk be the index of a neighbor of agent Ik that is selected randomly for
communication at time Zk . Let P = [pij ] be the matrix of contact probabilities,
where pij = 0 if j �∈ Ni , and note that P is row-stochastic.

Fig. 1.9 Random gossip
communication protocol: an
agent that wakes up
establishes a connection with
a randomly selected neighbor.
Thus, a random link is
activated (shown in green
color)
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At time k, the active agents Ik and Jk exchange their current values xIk (k) and
xJk(k), and then both update as follows:

xIk (k + 1) = 1

2

(
xIk (k)+ xJk (k)

)
, xJk (k + 1) = 1

2

(
xJk(k)+ xIk (k)

)
,

(1.30)

while the other agents do nothing (they sleep),

xi(k + 1) = xi(k) for all i /∈ {Ik, Jk}.

A value other than 1/2 can be used in the updates in (1.30); however, we will work
with 1/2.

Assuming that the agent values xi(k) are scalars, the gossip iteration update can
be compactly written, as follows:

x(k + 1) = Wg(k)x(k) for all k ≥ 0, (1.31)

where x(k) is a vector with components xi(k), i ∈ [m], and the matrix Wg(k) is
symmetric with the entries given by

[Wg(k)]Ik,Jk = [Wg(k)]Jk,Ik =
1

2
, [Wg(k)]Ik,Ik =

1

2
, [Wg(k)]Jk,Jk =

1

2
,

[Wg(k)]ii = 1 for all i ∈ [m] \ {Ik, Jk}, and else [Wg(k)]ij = 0.

Equivalently, the random matrixWg(k) is given by

Wg(k) = W(IkJk), with W(ij) = I − 1

2
(ei − ej )(ei − ej )′ for all i, j ∈ [m],

where ei is the unit vector with its ith entry equal to 1 and the other entries equal to 0.
Thus, the random matrix Wg(k) takes values Wg(k) = W(ij) with the probability
(pij + pji)/m.

Every realization ofWg(k) is a symmetric and stochastic matrix, hence,Wg(k) is
doubly stochastic. Furthermore, it can be seen that every realizationW(ij) ofWg(k)
is a projection matrix4 on the sub-space

Sij = {x ∈ R
m | xi = xj }.

Therefore, we have

W ′
g(k)Wg(k) = W 2

g (k) = Wg(k) for all k ≥ 0.

4A matrix A is a projection matrix if A2 = A.



40 A. Nedić

The convergence of the gossip algorithm has been shown in [16]. In the following
theorem, we provide a statement based on the result in [16] that is relevant to our
subsequent discussion on distributed asynchronous methods.

Theorem 2 ([16]) Assume that the graph G is connected. Then, the iterate
sequences {xi(k)}, i ∈ [m], produced by the gossip algorithm (1.31) satisfy the
following relation

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
x(k)− 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦ ≤ λkg

∥
∥
∥
∥
∥
∥
x(0)− 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2

for all k ≥ 0,

where 0 < λg < 1 is the second largest eigenvalue of W̄g = E
[
Wg(k)

]
.

Proof Defining

z(k) = x(k)− 1

m

m∑

j=1

xj (0) 1,

and using the gossip updates in (1.31), the following relation has been shown in [16]:

E

[
‖z(k + 1)‖2 | z(k)

]
= 〈z(k),E

[
W ′
g(k)Wg(k)

]
z(k)〉

(see equation (14) in [16]). Since W ′
g(k)Wg(k) = Wg(k) and since {Wg(k)} is an

i.i.d. matrix sequence, by letting E
[
Wg(k)

] = W̄g , we obtain

E

[
‖z(k + 1)‖2 | z(k)

]
= 〈z(k), W̄gz(k)〉.

The matrix W̄g is symmetric and doubly stochastic, since each realization W(ij) of
anyWg(k) is symmetric and doubly stochastic. Furthermore, since each realization
W(ij) is a projection matrix, eachW(ij) is positive semi-definite. Hence, W̄g is also
positive semi-definite and, consequently, all eigenvalues of W̄g are non-negative.
Moreover, we have

[W̄g]ii > 0 for all i ∈ [m],

and for all i �= j,

[W̄g]ij > 0 ⇐⇒ i ↔ j ∈ E.

Since the graph G is connected, W̄g is irreducible and by Theorem 4.3.1, page 106
in [46], the matrix W̄g has 1 as the largest eigenvalue of multiplicity 1, with the
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associated eigenvector 1. Since z(k) ⊥ 1, it follows that

〈z(k), W̄gz(k)〉 ≤ λg‖z(k)‖2,

where 0 < λg < 1 is the second largest eigenvalue of W̄g .
Therefore, we have

E

[
‖z(k + 1)‖2 | z(k)

]
≤ λg‖z(k)‖2 for all k ≥ 0,

implying that

E

[
‖z(k + 1)‖2

]
≤ λgE

[
‖z(k)‖2

]
≤ · · · ≤ λk+1

g ‖z(0)‖2 for all k ≥ 0.

�
From Theorem 2 it follows that

∞∑

k=0

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
x(k)− 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦ <∞,

which (by Fatou’s Lemma) implies that with probability 1,

lim
k→∞

∥
∥
∥
∥
∥
∥
x(k)−

⎛

⎝
1

m

m∑

j=1

xj (0)

⎞

⎠ 1

∥
∥
∥
∥
∥
∥

2

= 0,

showing that the iterates converge to the average of their initial values with
probability 1. We note that the same result is true if the agents variables xj (0) were
vectors due to the linearity of the update rule (1.31).

1.4.1.2 Broadcast-Based Consensus Algorithm

In the broadcast model, at time Zk , the randomly activated agent Ik broadcasts its
value xIk (k) to all of its neighbors j ∈ N̆Ik in the graph G = ([m], E). Here, the
neighbor set N̆i of an agent i does not include the agent i itself,

N̆i = {j ∈ [m] | i ↔ j ∈ E}.

Thus, even though the graph G is undirected, the actual links that are used at any
instance of time are virtually directed, as shown in Fig. 1.10.
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Fig. 1.10 Broadcast communication protocol: an agent that wakes up broadcasts its value to its
neighbors, resulting in a random set of agents that are activated for performing an update. In a
wireless network, the neighbors of an agent are typically defined as those agents that are within a
certain radius of a given agent

Upon receiving the broadcasted value, the agents j ∈ N̆Ik perform an update of
their values, while the other agents do nothing (they sleep), including the agent Ik
that broadcasted its information. Formally, the updates are given by

xj (k + 1) = (1 − β)xj (k)+ βxIk (k) for all j ∈ N̆Ik ,
xj (k + 1) = xj (k) for all j �∈ N̆Ik ,

where β ∈ (0, 1).
We define the matrixWb(k), as follows:

[Wb(k)]ii = 1 − β for all i ∈ N̆Ik , [Wb(k)]iIk = β for all i ∈ N̆Ik ,

[Wb(k)]ii = 1 for all i �∈ NIk and else [Wb(k)]ij = 0.

Using this matrix, the broadcast method can be written as:

x(k + 1) = Wb(k)x(k) for all k ≥ 0. (1.32)

Note that the random matrix Wb(k) is stochastic, but not necessarily doubly
stochastic. Also, note that it is not symmetric. The expected matrix W̄b = E [Wb(k)]
is in fact doubly stochastic. Specifically, as shown in [2, 3], W̄b is given by

W̄b = I − β

m
LG,

where LG is the Laplacian of the graph G, i.e., LG = D − A where A is the 0-1
adjacency matrix for the graph G and D is the diagonal matrix with entries dii =
|N̆i |, i ∈ [m]. Since G is undirected, its Laplacian LG is symmetric. Furthermore,
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since LG1 = 0, it follows that W̄b1 = 1, which due to the symmetry of W̄b also
implies that 1′W̄b = 1′.

In addition, it has been shown in [2, 3] that, when the graph G is connected, the
spectral norm of the matrix

W̄b − 1

m
11′

is less than 1 (see Lemma 2 in [3]). This spectral property of the matrix W̄b − 1
m

11′
is sufficient to guarantee the convergence of the random broadcast algorithm to a
consensus in expectation only. Its convergence with probability 1 requires some
additional analysis of the properties of the random matrices Wb(k). In particular,

the spectral norm of the matrix E

[
W ′
b(k)(I − 1

m
11′)Wb(k)

]
plays a crucial role in

establishing such a convergence result. LetQ denote this matrix, i.e.,

Q = E

[

W ′
b(k)

(

I − 1

m
11′

)

Wb(k)

]

, (1.33)

where I denotes the identity matrix of the appropriate dimension.
It has been shown in Proposition 2 of [3] that, when the graph G is connected,

then the matrix Q has a spectral radius less than 1 for any β ∈ (0, 1) (see the
role of β in the definition of matrix Wb(k)). This property is a key in proving the
convergence of the method with probability 1, as given in Theorem 1 in [3]. In
the next theorem, we summarize some key relations which have been established
in [3].

Theorem 3 (Lemma 3 and Proposition 2 of [3]) Assume that the graph G is
connected. Then, for any β ∈ (0, 1), we have

(a) The spectral radius of the matrixQ in (1.33) is less than 1.
(b) The iterate sequences {xi(k)}, i ∈ [m], produced by the random broadcast

algorithm (1.32) satisfy the following relation

E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥
x(k)− 1

m

m∑

j=1

xj (k) 1

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦ ≤ λkb

∥
∥
∥
∥
∥
∥
x(0)− 1

m

m∑

j=1

xj (0) 1

∥
∥
∥
∥
∥
∥

2

for all k ≥ 0,

where 0 < λb < 1 is the spectral norm of the matrixQ given in (1.33).

An extension of Theorem 3 to the case when the links are unreliable can be found
in [101]. We note that the random broadcast algorithm does not lead to the consensus
on the average of the initial agents’ values with probability 1. It guarantees, with
probability 1, that the agents will reach a consensus on a random point whose
expected value is the average of the initial agents’ values. Concretely, as shown



44 A. Nedić

in Theorem 1 of [3], there holds

Prob

{

lim
k→∞ x(k) = c1

}

= 1,

where c is a random scalar satisfying

E [c] = 1

m

m∑

i=1

xi(0).

1.4.2 Distributed Asynchronous Algorithm

In this section, we consider a general distributed asynchronous algorithm for
optimization problem (1.1) based on random matrices. The random matrices are
employed for the alignment of the agents iterates. As special cases of this algorithm,
one can obtain the algorithms that use the random gossip and the random broadcast
communications.

In particular, we will consider an algorithm with random asynchronous updates,
as follows. We assume that there is some random i.i.d. process that triggers the
update timesZk (as for the cases of gossip and broadcast). Without going into details
of such a process, we can simply keep a virtual index to count the update times
(corresponding to the times when at least one agent is active). We also assume that
the agents communicate over a network with connectivity structure captured by an
undirected graphG.

At the time of the k + 1st update, a random stochastic matrix W(k) is available
that captures the communication pattern among the agents, i.e., wij (k) > 0 if and
only if agent i receives xj (k) from its neighbor j ∈ Ni . We let Ak be the set of
agents that are active (perform an update) at time k + 1. Then, the agents iterates at
time k + 1 are described through the following two steps:

vi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = ΠX[vi(k + 1)− αi,k+1gi(k + 1)]χ{i∈Ak}
+ vi(k + 1)χ{i /∈Ak}, (1.34)

where αi,k+1 > 0 is a stepsize of agent i, gi(k+1) is a subgradient of fi at vi(k+1)
and χE is the characteristic function of an event E. We will assume that the initial
points {xi(0), i ∈ [m]} ⊂ X are deterministic.

Note that each agent uses its own stepsize αi,k+1. It is important to note that,
since W(k) is stochastic, the event {i ∈ Ak} is equivalent to {wii(k) �= 1}. Thus,
when i �∈ Ak , which is equivalent to {wii(k) = 1}, we have vi(k + 1) = xi(k)



1 Distributed Optimization Over Networks 45

and xi(k + 1) = xi(k). Hence, the relation i �∈ Ak corresponds to agent i not
updating at all, so the iterate updates in (1.34) are equivalent to the following update
scheme:

vi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi(k + 1) = ΠX[vi(k + 1)− αi,k+1gi(k + 1)] for all i ∈ Ak,

and otherwise

xi(k + 1) = xi(k).

Moreover, when the matricesW(k) are stochastic, we have

xi(k + 1) ∈ X for all k ≥ 0 and all i ∈ [m].

There is an alternative view for the updates of xi(k + 1) in (1.34) that will be
useful in our analysis. Specifically, noting that χ{i /∈Ak} = 1 − χ{i∈Ak}, from the
definition of xi(k + 1) in (1.34) it follows that

xi(k + 1) = χ{i∈Ak}ΠX[vi(k + 1)− αi,k+1gi(k + 1)] + (
1 − χ{i∈Ak}

)
vi(k + 1).

(1.35)

Thus, we can view xi(k + 1) as a convex combination of two points, namely, a
convex combination ofΠX[vi(k + 1)− αi,k+1gi(k + 1)] ∈ X and vi(k + 1). When
W(k) is a stochastic matrix, the point vi(k + 1) is in the set X.

If the random gossip protocol is used for communications, thenW(k) = Wg(k).
Similarly, if the agents communicate using the random broadcast protocol, then
W(k) = Wb(k). Thus, the random gossip and random broadcast algorithms can
be viewed as a special case of a more general random communication model,
where the weight matrices W(k) are random, drawn independently in time from
the same distribution, and have the properties as specified in the following assump-
tion.

Assumption 4 Let {W(k)} be a sequence ofm×m random i.i.d. matrices such that
the following conditions are satisfied:

(a) Each realization ofW(k) is a stochastic matrix compatible with the graphG =
([m], E), i.e., wij (k) > 0 only if j ∈ Ni .

(b) The spectral norm of the matrixQ = E

[
W ′(k)

(
I − 1

m
11′

)
W(k)

]
is less than

1.
(c) The expected matrix E [W(k)] = W̄ is doubly stochastic.
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In view of Assumption 4(a), the entry W̄ij of the expected matrix may be positive
only if j ∈ Ni . We do not assume explicitly that the graphG is connected, however,
this property of the graph is subsumed within Assumption 4(b).

Note that the random matrices corresponding to the gossip and the broadcast
model satisfy Assumption 4 when the graph G is connected. In fact, the random
matrices corresponding to the gossip model in (1.31) satisfy a stronger condition
than that of Assumption 4(a), since each realization ofWg(k) is a doubly stochastic
matrix.

Under Assumption 4(a), the event {i ∈ Ak} that agent i updates (is awaken) at
time k + 1 has a stationary probability, denoted by pi , i.e.,

pi = Prob{i ∈ Ak}.
We now specify the stepsize rule for the algorithm. We consider the case when

every agent i choses its stepsize value αi,k+1 based on its own local count of the
update times. Letting Γi(k + 1) be the number of times the agent was awaken up to
(including) time k, i.e.,

Γi(k + 1) =
k∑

t=0

χ{i∈At },

we define the stepsize αi,k+1, as follows

αi,k+1 = 1

Γi(k + 1)
for all i ∈ [m] and k ≥ 0. (1.36)

We note that

Γi(k + 1) ≥ Γi(k) for all k ≥ 0 and i ∈ [m],

implying that

αi,k+1 ≤ αi,k for all k ≥ 0 and i ∈ [m]. (1.37)

In what follows, we will work with the conditional expectations with respect
to the past iterates of the algorithm. For this, we let Fk denote the history of the
algorithm (1.34), i.e.,

Fk = {W(0), . . . ,W(k − 1)} for all k ≥ 1,

and F0 = ∅.
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1.4.3 Convergence Analysis of Asynchronous Algorithm

We investigate the convergence properties of the algorithm assuming that the
stepsize αi,k+1 is selected by agent i based on its local information. Prior to
specifying the stepsize, we provide a result that is valid for any stepsize choice.
It is also valid for any matrix sequence {W(k)}.
Lemma 7 Assume that the problem is convex (i.e., Assumption 1 holds). Then, for
the iterates of the algorithm (1.34) with any stepsize αi,k+1 > 0 we have for all
x ∈ X, for all i ∈ [m] and all k ≥ 0,

m∑

i=1

‖xi(k + 1)− x‖2 ≤
m∑

i=1

‖vi(k + 1)− x‖2

− 2
m∑

i=1

αi,k+1χ{i∈Ak} (fi(vi(k + 1))− fi(x))

+
m∑

i=1

α2
i,k+1χ{i∈Ak}‖gi(k + 1)‖2.

Proof From the relation in (1.35) by the convexity of the squared norm, it follows
that for any x ∈ X, all k ≥ 0 and all i ∈ [m],

‖xi(k + 1)− x‖2 ≤χ{i∈Ak}‖ΠX[vi(k + 1)− αi,k+1gi(k + 1)] − x‖2

+ (
1 − χ{i∈Ak}

) ‖vi(k + 1)− x‖2.

By Lemma 4, for the point ΠX[vi(k + 1) − αi,k+1gi(k + 1)] and any x ∈ X, we
have

‖ΠX[vi(k + 1)− αi,k+1gi(k + 1)] − x‖2 ≤ ‖vi(k + 1)− x‖2

− 2αi,k+1 (fi(vi(k + 1))− fi(x))+ α2
i,k+1‖gi(k + 1)‖2.

By combining the preceding two relations, we obtain

‖xi(k + 1)− x‖2 ≤‖vi(k + 1)− x‖2 − 2αi,k+1χ{i∈Ak} (fi(vi(k + 1))− fi(x))
+ α2

i,k+1χ{i∈Ak}‖gi(k + 1)‖2.

The desired relation follows by summing the preceding inequalities over i ∈ [m].
�
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We have the following refinement of Lemma 7 for the random stepsizes αi,k+1
given by (1.36), which are measurable with respect to Fk for all i ∈ [m]. The result
is developed under the assumption that the setX is compact, which is used to bound
the error induced by the asynchronous updates and, in particular, the error due to a
different frequency of agents’ updates. The result assumes that the matrix sequence
{W(k)} is just an i.i.d. sequence.

Proposition 2 Let the problem be convex (Assumption 1) and, also, assume that
the set X is bounded. Let the random matrix sequence {W(k)} be i.i.d. Con-
sider the iterates produced by method (1.34) with the random stepsizes αi,k+1
as given in (1.36). Then, with probability 1, we have for all k ≥ 0 and all
x ∈ X,

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi (k + 1)− x‖2 | Fk

]

− 2

k + 1
(f (xav(k))− f (x))+ rk,

where

rk =2CD
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi(k + 1)− xav(k)‖2 | Fk

]

+ 2
√
mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

+ C2 α2
i,k,

with pi denoting the probability of the event χ{i∈Ak}, C being the uniform upper
bound on the subgradient norms of fi over the set X, and D = maxx,y∈X
‖x − y‖.

Proof In view of the compactness of the set X, it follows that the subgradients of
fi are uniformly bounded over the set X for all i, i.e., there exists a constant C such
that

‖s‖ ≤ C for every subgradient s of fi(z) at any z ∈ X. (1.38)
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Therefore, each function fi is Lipschitz continuous on X, so that for all x ∈ X, all
k ≥ 0, and all i ∈ [m],

fi(vi(k + 1))− fi(x) = fi(vi(k + 1))− fi(xav(k)) + fi(xav(k))− fi(x)
≥ −C‖vi(k + 1)− xav(k)‖ + fi(xav(k))− fi(x),

where xav(k) = 1
m

∑m
j=1 xj (k).

By using the preceding estimate in Lemma 7 and the fact that the subgradients
are bounded, we obtain

m∑

i=1

‖xi(k + 1)− x‖2

≤
m∑

i=1

‖vi(k + 1)− x‖2 − 2
m∑

i=1

αi,k+1χ{i∈Ak} (fi(xav(k))− fi(x))

2C
m∑

i=1

αi,k+1χ{i∈Ak}‖vi(k + 1)− xav(k)‖ + C2
m∑

i=1

α2
i,k+1χ{i∈Ak}.

We take the conditional expectation with respect to Fk in both sides of the preceding
relation and further obtain, with probability 1, for all x ∈ X and all k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]

− 2
m∑

i=1

E
[
αi,k+1χ{i∈Ak} | Fk

]
(fi(xav(k))− fi(x))

+ 2C
m∑

i=1

E
[
αi,k+1χ{i∈Ak}‖vi(k + 1)− xav(k)‖ | Fk

]

+ C2
m∑

i=1

E

[
α2
i,k+1χ{i∈Ak} | Fk

]
. (1.39)

Since αi,k+1χ{i∈Ak} ≤ αi,k+1 and the stepsize is non-increasing (see (1.37)), it
follows that

αi,k+1χ{i∈Ak} ≤ αi,k for all i ∈ [m] and all k ≥ 0.

Hence, with probability 1,

E

[
α2
i,k+1χ{i∈Ak} | Fk

]
≤ E

[
α2
i,k | Fk

]
= α2

i,k, (1.40)
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where in the last equality we use the fact that αi,k is completely determined given
the past Fk. By substituting relation (1.40) in inequality (1.39), we obtain

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]

− 2
m∑

i=1

E
[
αi,k+1χ{i∈Ak} | Fk

]
(fi(xav(k))− fi(x))

+ 2C
m∑

i=1

E
[
αi,k+1χ{i∈Ak}‖vi(k + 1)− xav(k)‖ | Fk

]+ C2 α2
i,k . (1.41)

By adding and subtracting 2
∑m
i=1

E
[
χ{i∈Ak }|Fk

]

(k+1)pi
(fi(xav(k))− fi(x)) to the second

term on the right hand side of (1.41), and by doing similarly with a corresponding
expression for the third term, we have

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]

− 2
m∑

i=1

E
[
χ{i∈Ak} | Fk

]

(k + 1)pi
(fi(xav(k))− fi(x))

+ 2
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]

(fi(xav(k))− fi(x))
∣
∣
∣
∣

+ 2C

k + 1

m∑

i=1

1

pi
E
[
χ{i∈Ak}‖vi(k + 1)− xav(k)‖ | Fk

]

︸ ︷︷ ︸
T1

+ 2C

∣
∣
∣
∣
∣

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak}‖vi(k + 1)− xav(k)‖ | Fk
]∣∣
∣
∣
∣

︸ ︷︷ ︸
T2

+ C2α2
i,k, (1.42)

where pi is the probability of the event that agent i is updating.
To estimate the term T1, we use Hölder’s inequality

r∑

i=1

E [|aibi |] ≤
√
√
√
√

r∑

i=1

E
[
a2
i

]
√
√
√
√

r∑

i=1

E
[
b2
i

]
,
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and obtain

T1 ≤
√
√
√
√

m∑

i=1

E

[
1

p2
i

χ{i∈Ak}

]√
√
√
√

m∑

i=1

E
[‖vi(k + 1)− xav(k)‖2 | Fk

]

≤
√
√
√
√

m∑

i=1

1

pi

√
√
√
√

m∑

i=1

E
[‖vi(k + 1)− xav(k)‖2 | Fk

]
, (1.43)

where in the first inequality we also use the fact that the event {i ∈ Ak} is
independent from the past, while in the last inequality we use the fact that the
probability that the event {i ∈ Ak} occurs is pi .

For the term T2 in (1.42), by Hölder’s inequality, we have

T2 ≤
√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

×
√
√
√
√

m∑

i=1

E
[‖vi (k + 1)− xav(k)‖2 | Fk

]
. (1.44)

We now substitute the estimates (1.43) and (1.44) in the inequality (1.42) and
obtain that, with probability 1, there holds for all x ∈ X and k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]

− 2
m∑

i=1

E
[
χ{i∈Ak} | Fk

]

(k + 1)pi
(fi(xav(k))− fi(x))

+ 2
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]

(fi(xav(k))− fi(x))
∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi(k + 1)− xav(k)‖2 | Fk

]

+ 2C

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

×
√
√
√
√

m∑

i=1

E
[‖vi (k + 1)− xav(k)‖2 | Fk

]+ C2 α2
i,k .
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In view of compactness of X, and xav(k) ∈ X and vi(k + 1) ∈ X for all i and k, it
follows that for all x ∈ X,

|fi(xav(k))− fi(x)| ≤ C‖xav(k)− x‖ ≤ CD, ‖vi(k + 1)− xav(k)‖ ≤ D,

whereD = maxy,z∈X ‖y − z‖. We also note that

E
[
χ{i∈Ak} | Fk

]

(k + 1)pi
= 1

k + 1
.

By using the preceding relations, we have that, with probability 1, there holds for
all x ∈ X and k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]

≤
m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]
− 2

k + 1
(f (xav(k))− f (x))

+ 2CD
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi (k + 1)− xav(k)‖2 | Fk

]

+ 2
√
mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

+ C2 α2
i,k .

The desired relation follows by introducing the notation for the sum of the last four
terms on the right hand side of the preceding relation. �

To establish the convergence of the method, one of the goals is to show that the
error terms rk in Proposition 2 are well behaved in the sense that

∑∞
k=0 rk < ∞

with probability 1. We note that the error rk has two types of terms, one type related
to the stepsize and the other related to the distances of iterates vi(k + 1) and the
average vector xav(k), which also involves the stepsize implicitly. So we start by
investigating some properties of the stepsize.

1.4.3.1 Stepsize Analysis

We consider the random agent based stepsize defined in (1.36), which is the inverse
of the number Γi(k + 1) of agent i updates from time t = 0 up to time t = k,
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inclusively. We establish some relations for the stepsize that involve expectations
and a set of results for the stepsize sums.

We start with the relations involving the expectations of the stepsize in the term
rk of Proposition 2.

Lemma 8 Let the matrix sequence {W(k)} be an i.i.d. random sequence. Then, for
the stepsize αi,k in (1.36), with probability 1, we have for all k ≥ 0 and i ∈ [m],

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]∣
∣
∣
∣ ≤pi

∣
∣
∣
∣αi,k −

1

kpi

∣
∣
∣
∣+ (1 − pi)αi,k

k
,

√
√
√
√
E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

≤√
2pi

∣
∣
∣
∣αi,k −

1

kpi

∣
∣
∣
∣

+ (1 − pi)
√

2

pi

αi,k

k
.

Proof Recall that the event χ{i∈Ak} that agent i updates has probability pi . Thus,
using the independence of the event χ{i∈Ak} given the past Fk , we have with
probability 1 for all k ≥ 0 and i ∈ [m],

E
[
αi,k+1χ{i∈Ak} | Fk

] = pi

Γi(k)+ 1
.

Using the preceding relation and E
[
χ{i∈Ak} | Fk

] = pi , we obtain

M1 :=
∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]∣
∣
∣
∣

=
∣
∣
∣
∣pi

(
1

Γi(k)+ 1
− 1

(k + 1)pi

)∣
∣
∣
∣

= pi |kpi − Γi(k)+ p − 1|
(k + 1)pi(Γi(k)+ 1)

,

where the last equality is obtained by re-grouping the terms in the numerator. Thus,
it follows that

M1 ≤ pi |kpi − Γi(k)| + (1 − pi)
(k + 1)pi(Γi(k)+ 1)

≤ pi |kpi − Γi(k)| + (1 − pi)
kpiΓi(k)

.

By separating the terms, we have

M1 ≤ pi |kpi − Γi(k)|
kpiΓi(k)

+ (1 − pi)
kΓi(k)

= pi
∣
∣
∣
∣

1

Γi(k)
− 1

kpi

∣
∣
∣
∣+

(1 − pi)
kΓi(k)

.
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Recognizing that αi,k = 1
Γi (k)

, we obtain

M1 ≤ pi
∣
∣
∣
∣αi,k −

1

kpi

∣
∣
∣
∣+ (1 − pi)αi,k

k
,

thus showing the first relation stated in the lemma.
For the second relation we have

M2 :=E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

= pi
(

1

Γi(k)+ 1
− 1

(k + 1)pi

)2

=pi
(
(k + 1)pi − Γi(k)− 1

(k + 1)pi(Γi(k)+ 1)

)2

= pi (kpi − Γi(k)+ p − 1)2

(k + 1)2p2
i (Γi(k)+ 1)2

.

Now using the relation (a + b)2 ≤ 2(a2 + b2), which is valid for any scalars a and
b, we obtain

M2 ≤ 2pi
(kpi − Γi(k))2 + (1 − pi)2
(k + 1)2p2

i (Γi(k)+ 1)2
≤ 2pi

(kpi − Γi(k))2 + (1 − pi)2
k2p2

i Γ
2
i (k)

.

By separating the terms we further have

M2 ≤ 2pi
(kpi − Γi(k))2
k2p2

i Γ
2
i (k)

+ 2(1 − pi)2
k2piΓ

2
i (k)

= 2pi

(
1

Γi(k)
− 1

kpi

)2

+ 2(1 − pi)2
k2piΓ

2
i (k)

.

By substituting αi,k = 1
Γi(k)

, it follows that

M2 ≤ 2pi

(

αi,k − 1

kpi

)2

+ 2(1 − pi)2α2
i,k

k2pi
.

Using
√
a + b ≤ √

a +√
b, which is valid for any a, b ≥ 0, we have

√
M2 ≤

√

2pi

(

αi,k − 1

kpi

)2

+
√

2(1 − pi)2α2
i,k

k2pi

= √
2pi

∣
∣
∣
∣αi,k −

1

kpi

∣
∣
∣
∣+ (1 − pi)

√
2

pi

αi,k

k
,

which establishes the second relation of the lemma. �
We next investigate some properties of the stepsize sums under the assumption

that the random matrix sequence {W(k)} is i.i.d. In this case, for each i ∈ [m], the
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events {i ∈ Ak} are i.i.d., so that we have

E [Γi(k)] = (k + 1)pi.

By the law of iterated logarithms [41] (pages 476–479), we have that for any q > 0,

Prob

{

lim
k→∞

|Γi(k)− (k + 1)pi |
(k + 1)

1
2+q

= 0

}

= 1 for all i ∈ [m]. (1.45)

We use this relation to establish some results for the sums involving the stepsize, as
given is the following lemma.

Lemma 9 Let the random matrix sequence {W(k)} be i.i.d., and consider the
stepsize αi,k as given in (1.36). Then, we have

Prob

{ ∞∑

k=1

α2
i,k <∞, for all i ∈ [m]

}

= 1,

Prob

{ ∞∑

k=1

∣
∣
∣
∣αi,k −

1

kpi

∣
∣
∣
∣ <∞, for all i ∈ [m]

}

= 1,

Prob

{ ∞∑

k=1

αi,k

k
<∞, for all i ∈ [m]

}

= 1.

Proof The proof is based on considering sample paths, where a sample path
corresponds to a sequence of realizations of the matrices, which is denoted byω. We
fix a sample path ω for which the limit in (1.45) is zero. Then, using relation (1.45),
we can show that for every q ∈ (0, 1

2 ) there exists an index5 k̃(ω) such that for all
k ≥ k̃(ω) and for all i ∈ [m], we have6

αi,k(ω) ≤ 2

kpi
,

∣
∣
∣
∣αi,k(ω)−

1

kpi

∣
∣
∣
∣ ≤

1

k
3
2−qp2

i

. (1.46)

Thus, there holds for all i ∈ [m],
∑

k≥k̃(ω)
α2
i,k(ω) <∞,

∑

k≥k̃(ω)

∣
∣
∣
∣αi,k(ω)−

1

kpi

∣
∣
∣
∣ <∞,

5The index k̃(ω) also depends on q, but this dependence is suppressed in the notation.
6The derivation of the relations in (1.46) can be found in the proof of Lemma 3 in [100], where the
analysis is to be performed on a sample path.
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where the last relation holds due to q ∈ (0, 1
2 ). Furthermore, we have for all k ≥

k̃(ω) and for all i ∈ [m],
αi,k(ω)

k
≤ 2

k2pi
,

implying that

∑

k≥k̃(ω)

αi,k(ω)

k
<∞ for all i ∈ [m].

Since the preceding relations are true for almost all but zero measure sample paths
ω that satisfy relation (1.45), the stated results follow. �

1.4.3.2 Relation for Agents’ Iterates and Their Averages

We now turn our attention to the disagreements ‖xi(k) − xav(k)‖. We establish a
relation for these disagreements which will be combined with Proposition 2 to assert
the convergence behavior of the distances ‖xi(k)− x∗‖ for an optimal solution x∗.

We start by re-writing the iterations of the method (1.34), as follows:

vi(k + 1) =
m∑

j=1

wij (k)xj (k),

xi (k + 1) = vi(k + 1) + (
ΠX[vi(k + 1) − αi,k+1gi(k + 1)] − vi(k + 1)

)
χ{i ∈ Ak}

︸ ︷︷ ︸
φi(k+1)

.

Hence, for all i ∈ [m] and k ≥ 0,

xi(k + 1) =
m∑

j=1

wij (k)xj (k)+ φi(k + 1),

φi(k + 1) = (
ΠX[vi(k + 1)−αi,k+ 1gi(k + 1)] − vi(k + 1)

)
χ{i ∈Ak}, (1.47)

vi(k + 1) =
m∑

j=1

wij (k)xj (k).

Thus, we perceive the iterates xi(k + 1) as obtained through a perturbed random
consensus algorithm with random perturbations φi(k + 1).

Under Assumption 4(a) and (c), in the following lemma, we establish a relation
for the iterates xi(k + 1).
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Lemma 10 Let the matrices W(k) satisfy Assumptions 4(a) and (b). Then, for the
iterate process in (1.47), we have for all k ≥ 0 with probability 1,

√
√
√
√E

[
m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 | Fk
]

≤
√
√
√
√

m∑

i=1

ρ‖xi(k)− xav(k)‖2

+
√
√
√
√

m∑

i=1

‖φi(k + 1)‖2,

where xav(k) = 1
m

∑m
j=1 xj (k) and ρ ∈ (0, 1) is the spectral norm of the matrix

Q = E

[
W ′(k)(I − 1

m
11′)W(k)

]
(see Assumption 4(b)).

Proof We first write the iterates xi(k + 1) in (1.47) in a matrix form. We construct
a matrix X(k) by placing the vectors x ′i (k) in its rows, and similarly, we construct
the matrix Φ(k) by placing the vectors φ′i (k) in its rows. By doing so, we have the
following representation for the evolution of the iterates xi(k + 1):

X(k + 1) = W(k)X(k)+Φ(k + 1) for all k ≥ 0. (1.48)

By multiplying both sides of (1.48) with the matrix 1
m

11′, we have

1

m
11′X(k + 1) = 1

m
11′W(k)X(k)+ 1

m
11′Φ(k + 1).

By subtracting the preceding relation from (1.48), we obtain for all k ≥ 0,

X(k+1)− 1

m
11′X(k+1) =

(

W(k)− 1

m
11′W(k)

)

X(k)+Φ(k+1)− 1

m
11′Φ(k+1).

SinceW(k) is stochastic, we haveW(k)1 = 1, implying that
(
W(k)− 1

m
11′W(k)

)

1 = 0, so that we have

(

W(k)− 1

m
11′W(k)

)

X(k) =
(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)

.

Therefore, for all k ≥ 0,

X(k + 1)− 1

m
11′X(k + 1) =

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)

+Φ(k + 1)− 1

m
11′Φ(k + 1). (1.49)
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By taking the squared Frobenius norms of both sides in (1.49), and using the fact
that ‖AB‖F ≤ ‖A‖F ‖B‖F for any two (compatible) matrices, we obtain for all
k ≥ 0,

∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

≤
∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

+
∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

+ 2

∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥
F

×
∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥
F

.

Next, we take conditional expectation with respect to Fk and obtain for all k ≥ 0
with probability 1,

E

[∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

≤ E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]

+ E

[∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

+ 2E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥
F

×
∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥
F

| Fk
]

.

By using Hölder’s inequality for expectations (see [8], page 242), we can see that

E

[∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

≤ E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]
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+ E

[∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

+ 2

√
√
√
√
E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]

×
√
√
√
√
E

[∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

.

Hence, for all k ≥ 0 with probability 1 we have

E

[∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

≤
⎛

⎝

√
√
√
√
E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]

+
√
√
√
√
E

[∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk
]⎞

⎠

2

. (1.50)

Next, using the column vectors x	(k) of the matrixX(k) and the definition of the
Frobenius norm, we can write

∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

=
m∑

	=1

∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

x	(k)− 1

m
11′x	(k)

)∥
∥
∥
∥

2

=
m∑

	=1

〈

x	(k)− 1

m
11′x	(k),Q(k)

(

x	(k)− 1

m
11′x	(k)

)〉

,

where

Q(k) =
(

W(k) − 1

m
11′W(k)

)′ (
W(k) − 1

m
11′W(k)

)

.
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After some elementary algebra, it can be seen that forQ(k) we have

Q(k) = W(k)′W(k)− 1

m
W ′(k)11′W(k) = W ′(k)

(

I − 1

m
11′

)

W(k).

Given the history Fk , the column vectors x	(k) are deterministic, so that by
using Q = E [Q(k)] (see Assumption 4(b)), we have with probability 1 for all
k ≥ 0,

E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]

=
m∑

	=1

〈

x	(k)− 1

m
11′x	(k),E [Q(k)]

(

x	(k)− 1

m
11′x	(k)

)〉

≤
m∑

	=1

‖Q‖
∥
∥
∥
∥x	(k)− 1

m
11′x	(k)

∥
∥
∥
∥

2

≤ ρ
m∑

	=1

∥
∥
∥
∥x	(k)− 1

m
11′x	(k)

∥
∥
∥
∥

2

= ρ
∥
∥
∥
∥X(k)− 1

m
11′X(k)

∥
∥
∥
∥

2

F

,

where ρ ∈ (0, 1) is the spectral norm of the matrixQ (note that ρ is smaller than 1
by Assumption 4(b)). Hence, we have

E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]

≤ ρ
∥
∥
∥
∥X(k)− 1

m
11′X(k)

∥
∥
∥
∥

2

F

.

Finally by noticing that the matrix 1
m

11′X(k) has identical rows, where each its
row is given by the vector 1

m
1′X(k) = x ′av(k) with xav(k) = 1

m

∑m
j=1 xj (k), we see

that

E

[∥
∥
∥
∥

(

W(k)− 1

m
11′W(k)

)(

X(k)− 1

m
11′X(k)

)∥
∥
∥
∥

2

F

| Fk
]

≤ ρ ∥
∥X(k)− 1x ′av(k)

∥
∥2
F

= ρ
m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2
. (1.51)



1 Distributed Optimization Over Networks 61

Similarly, using the definition of the Frobenius norm and the matricesΦ(k), we can
see that

E

[∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

= E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)− φav(k + 1)

∥
∥2 | Fk

⎤

⎦,

where φav(k) = ∑m
	=1 φ	(k). Since the distance

∑m
j=1 ‖φi(k + 1)− y‖2 is

minimized over all y ∈ R
n at y∗ = φav(k + 1), we obtain (using y = 0)

E

[∥
∥
∥
∥Φ(k + 1)− 1

m
11′Φ(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

≤ E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦.

(1.52)

Using relations (1.51) and (1.52) in inequality (1.50), we have for all k ≥ 0 with
probability 1,

E

[∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

≤
⎛

⎜
⎝

√
√
√
√ρ

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 +

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦

⎞

⎟
⎠

2

.

Hence, by taking square roots on both sides, we see that

√
√
√
√
E

[∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

| Fk
]

≤
√
√
√
√ρ

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 +

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦. (1.53)

The desired relation follows from (1.53) by using the fact that

∥
∥
∥
∥X(k + 1)− 1

m
11′X(k + 1)

∥
∥
∥
∥

2

F

=
m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2.

�
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Based on Lemma 10, we can prove that the agents’ disagreements are well
behaved. The proof makes use of an (almost) supermartingale convergence result.
The result is due to Robbins and Siegmund [136], and it can also be found in [129]
(Chapter 2.2, Lemma 11).

Lemma 11 ([136]) Let Vk , uk , βk and γk be non-negative random variables
adapted to some σ -algebra σk . If with probability 1 we have

∑∞
k=0 uk < ∞,∑∞

k=0 βk <∞, and

E [Vk+1 | σk] ≤ (1 + uk)Vk − γk + βk for all k ≥ 0,

then Vk converges to some non-negative scalar and
∑∞
k=0 γk < ∞ with probabil-

ity 1.

We have the following result for the disagreement sum
∑m
j=1

∥
∥xj (k)− xav(k)

∥
∥2.

Lemma 12 Let the problem be convex (Assumption 1 holds) and let the set X
be bounded. Let the matrices W(k) satisfy Assumption 4(a) and (b). Then, with
probability 1,

∞∑

k=0

1

k + 1

√
√
√
√

m∑

i=1

‖xi(k)− xav(k)‖2 <∞,

lim inf
k→∞

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 = 0.

Proof By Lemma 10 and by using the relation E [a] ≤
√
E
[
a2

]
, we have with

probability 1 for all k ≥ 0,

E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 | Fk
⎤

⎦ ≤
√
√
√
√ρ

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2

+

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦,

(1.54)
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with ρ ∈ (0, 1). From the definition of φj (k+1) in (1.47) and the non-expansiveness
property of the projection operator, we can se that

‖φi(k + 1)‖2 ≤ α2
i,k+1‖gi(k + 1)‖2χ{i ∈ Ak} ≤ α2

i,k+1C
2χ{i ∈ Ak},

where the last inequality follows from the compactness ofX, which implies that the
subgradients of each fi are uniformly bounded over the set X. Therefore, we have
with probability 1,

E

[
‖φi(k + 1)‖2 | Fk

]
≤ C2

E

[
α2
i,k+1χ{i ∈ Ak}

]
= C2pi

(Γi(k)+ 1)2
≤ C2pi

Γ 2
i (k)

= C2piα
2
i,k,

implying that

√
√
√
√
√E

⎡

⎣
m∑

j=1

∥
∥φj (k + 1)

∥
∥2 | Fk

⎤

⎦ ≤ C
√
√
√
√

m∑

i=1

piα
2
i,k ≤ C

m∑

i=1

√
piαi,k,

where the last inequality follows from relation
∑r
i=1 a

2
i ≤ (

∑r
i=1 ai)

2 which holds
for any nonnegative scalars ai . By using the preceding estimate in relation (1.54),
we obtain with probability 1 for all k ≥ 0,

E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 | Fk
⎤

⎦

≤
√
√
√
√ρ

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 + C

m∑

i=1

√
piαi,k . (1.55)

We divide both sides of (1.55) by 1
k+1 and obtain with probability 1 for all k ≥ 0,

1

k + 1
E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 | Fk
⎤

⎦

≤
√
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 + C

m∑

i=1

√
piαi,k

k + 1
.
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We add and subtract 1
k

√∑m
j=1

∥
∥xj (k)− xav(k)

∥
∥2 to the right hand side of the

preceding relation, so we can write

1

k + 1
E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 | Fk
⎤

⎦

≤ 1

k

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 −

(
1

k
−

√
ρ

k + 1

)
√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2

+ C
m∑

i=1

√
piαi,k

k + 1
.

We note that

1

k
−

√
ρ

k + 1
= k + 1 −√

ρk

k(k + 1)
= k(1 −√

ρ)+ 1

k(k + 1)
≥ (1 −√

ρ)

(k + 1)
,

where we use the fact that ρ ∈ (0, 1). Therefore, we have with probability 1 for all
k ≥ 0,

1

k + 1
E

⎡

⎣

√
√
√
√

m∑

i=1

‖xi(k + 1)− xav(k + 1)‖2 | Fk
⎤

⎦ ≤ 1

k

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2

− 1 −√
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 + C

m∑

i=1

√
piαi,k

k + 1
. (1.56)

We now apply Lemma 11 with the following identification

Vk = 1

k

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2
, uk = 0, βk = C

m∑

i=1

√
piαi,k

k + 1
,

γk = 1 −√
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2
.

Note that by Lemma 9 we have

∞∑

k=1

m∑

i=1

√
piαi,k

k + 1
<∞ with probability 1,
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so that the condition
∑∞
k=0 βk < ∞ with probability 1 is also satisfied. Thus, by

the Robinson-Siegmund (almost) supermartingale convergence result in Lemma 11,
from (1.56) we have that

∞∑

k=0

1 −√
ρ

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2
<∞ with probability 1.

Since 1 −√
ρ > 0, the preceding relation implies that with probability 1,

∞∑

k=0

1

k + 1

√
√
√
√

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2
<∞, (1.57)

lim inf
k→∞

m∑

j=1

∥
∥xj (k)− xav(k)

∥
∥2 = 0,

where the last relation can be shown by arguing per sample path ω for which
relation (1.57) is valid. �

1.4.3.3 Convergence Result for Asynchronous Algorithm

We are now in position to assert the convergence of the iterates of the algo-
rithm (1.34) with probability 1, as stated in the following theorem. The proof is
based on Proposition 2 and the almost supermartingale convergence result as given
in Lemma 11. To verify that the conditions of Lemma 11 are satisfied, we rely on
Lemmas 8, 9 and 12.

Theorem 4 Let the problem be convex (Assumption 1) and, also, assume that the
set X is bounded. Let the random matrix sequence {W(k)} satisfy Assumption 4.
Consider the iterates produced by method (1.34) with the random stepsizes αi,k+1
as given in (1.36). Then, with probability 1, the sequences {xi(k)}, i ∈ [m], converge
to a common (random) optimal solution of the problem.

Proof The proof has two main parts: (i) proving that xi(k) − xav(k) converges to
0, as k tends to infinity, with probability 1 for all i, and (ii) proving that the iterate
sequences {xi(k)}, i ∈ [m], converge to the same (random) optimal solution7 with
probability 1. We start by deriving a relation that will be used in both parts (i) and
(ii) of the proof.

7Different sample paths may converge to different solutions.
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By Proposition 2 we have with probability 1 for all k ≥ 0 and all x ∈ X,

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]
≤

m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]

− 2

k + 1
(f (xav(k))− f (x))+ rk, (1.58)

with

rk =2CD
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]∣
∣
∣
∣

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi(k + 1)− xav(k)‖2 | Fk

]

+ 2
√
mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

+ C2 α2
i,k, (1.59)

where pi is the probability of the event χ{i∈Ak}, C is a uniform upper bound on
the subgradient norms of fi over the set X, and D = maxx,y∈X ‖x − y‖. By the
definition, vi(k + 1) is a convex combination of xj (k), j ∈ [m], so that by the
convexity of the norm and the assumption that W(k) is a stochastic matrix (see
Assumption 4(a)), we have for any x ∈ R

n,

‖vi(k + 1)− x‖2 ≤
m∑

j=1

wij (k)‖xj (k)− x‖2,

implying that

E

[
‖vi(k + 1)− x‖2 | Fk

]
≤

m∑

j=1

E

[
wij (k)‖xj (k)− x‖2 | Fk

]

=
m∑

j=1

E
[
wij (k)

]‖xj (k)− x‖2

=
m∑

j=1

W̄ij‖xj (k)− x‖2.
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By summing the preceding inequalities over i ∈ [m] and by using the assumption
that W̄ doubly stochastic (cf. Assumption 4(c)), we obtain for any x ∈ R

n,

m∑

i=1

E

[
‖vi(k + 1)− x‖2 | Fk

]
≤

m∑

j=1

‖xj (k)− x‖2. (1.60)

By substituting (1.60) in relation (1.58), we obtain with probability 1 for all k ≥ 0
and all x ∈ X,

m∑

i=1

E

[
‖xi(k + 1)− x‖2 | Fk

]

≤
m∑

j=1

‖xj (k)− x‖2 − 2

k + 1
(f (xav(k))− f (x))+ rk. (1.61)

We will use relation (1.61) with x = xav(k) and x = x∗ for an arbitrary x∗ ∈
X∗. In either case, we will use the almost supermartingale convergence result of
Lemma 11. To use Lemma 11, we need to verify that

∑∞
k=0 rk <∞ with probability

1. For this, we break down rk in its terms, as follows:

rk =2CD
m∑

i=1

∣
∣
∣
∣E

[(

αi,k+1 − 1

(k + 1)pi

)

χ{i∈Ak} | Fk
]∣
∣
∣
∣

︸ ︷︷ ︸
r1,k

+ 2
√
mCD

√
√
√
√

m∑

i=1

E

[(

αi,k+1 − 1

(k + 1)pi

)2

χ{i∈Ak} | Fk
]

︸ ︷︷ ︸
r2,k

+
2C

√∑m
i=1

1
pi

k + 1

√
√
√
√

m∑

i=1

E
[‖vi (k + 1)− xav(k)‖2 | Fk

]

︸ ︷︷ ︸
r3,k

+C2 α2
i,k . (1.62)

By Lemmas 8 and 9 we can see that

∞∑

k=0

r1,k <∞ and
∞∑

k=0

r2,k <∞ with probability 1.
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By Lemma 12 it follows that

∞∑

k=0

r3,k <∞ with probability 1,

while by Lemma 9 we have

∞∑

k=0

α2
i,k <∞ with probability 1.

Hence, from the preceding relations and relation (1.62) we have

∞∑

k=0

rk <∞ with probability 1. (1.63)

(i) We now use relation (1.61) with x = xav(k) and, thus, obtain with probability 1
for all k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1)− xav(k)‖2 | Fk

]
≤

m∑

j=1

‖xj (k)− xav(k)‖2 + rk. (1.64)

By noting that
∑m
i=1 ‖xi(k + 1)− xav(k + 1)‖2 ≤ ∑m

i=1 ‖xi(k + 1)− y‖2 for any
y ∈ R

n, we have
∑m
i=1 ‖xi(k + 1)− xav(k + 1)‖2 ≤ ∑m

i=1 ‖xi(k + 1)− xav(k)‖2.
Thus relation (1.64) implies that with probability 1 for all k ≥ 0,

m∑

i=1

E

[
‖xi(k + 1)− xav(k + 1)‖2 | Fk

]

≤
m∑

j=1

‖xj (k)− xav(k)‖2 + rk. (1.65)

By the almost supermartingale convergence of Lemma 11, we conclude that

⎧
⎨

⎩

m∑

j=1

‖xj (k)− xav(k)‖2

⎫
⎬

⎭
is convergent with probability 1.

Since by Lemma 12 lim infk→∞
∑m
j=1

∥
∥xj (k)− xav(k)

∥
∥2 = 0, we must have that

lim
k→∞

m∑

j=1

‖xj (k)− xav(k)‖2 = 0 with probability 1. (1.66)
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(ii) Since the set X is compact, the optimal set X∗ must be nonempty. Thus, by
letting x = x∗ in relation (1.61) for any x∗ ∈ X∗, we have with probability 1 for all
k ≥ 0 and all x∗ ∈ X∗,

m∑

i=1

E

[
‖xi(k + 1)− x∗‖2 | Fk

]

≤
m∑

j=1

‖xj (k)− x∗‖2 − 2

k + 1

(
f (xav(k))− f ∗)+ rk.

By the almost supermartingale convergence of Lemma 11, it follows that

⎧
⎨

⎩

m∑

j=1

‖xj (k)− x∗‖2

⎫
⎬

⎭
is convergent with probability 1 for all x∗ ∈ X∗,

(1.67)

∞∑

k=0

2

k + 1

(
f (xav(k))− f ∗) <∞ with probability 1.

Thus, with probability 1 we must have

lim inf
k→∞

(
f (xav(k))− f ∗) = 0.

Since X is bounded so is the sequence {xav(k)}, and we can choose a subsequence
{xav(k	)} such that, with probability 1, lim	→∞ f (xav(k	)) = f ∗, xav(k	) → x̃

where x̃ ∈ X. By continuity of f , it follows that f (x̃) = f ∗, i.e., x̃ ∈ X∗ with
probability 1.

Since we have shown that
∑m
j=1 ‖xj (k)− xav(k)‖2 → 0 with probability 1 (see

relation (1.66)), it follows that

lim
	→∞

m∑

j=1

‖xj (k	)− x̃‖2 = 0 with probability 1.

By using relation (1.67) with x∗ = x̃, we find that limk→∞
∑m
j=1 ‖xj (k)− x̃‖2 = 0

with probability 1. �
Theorem 4 shows that the random updates driven by an i.i.d. matrix sequence

{W(k)}, where agents are updating using their own stepsizes (based on their
frequency of updates) leads to a convergence to some consensual (random) solution
of the problem. Theorem 4 includes as special cases the random gossip and
random broadcast methods, by setting W(k) = Wg(k) and W(k) = Wb(k). It can
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accommodate other asynchronous approaches whose corresponding matricesW(k)
satisfy Assumption 4.

Prior work on convex multi-agent problems that explored the use of random
gossip method, with frequency-based stepsize, can be found in [131], while the
random broadcast method with such a stepsize has been proposed and studied
in [100]. Error rate results for these methods with a constant stepsize can be found
in [132] (see also [130]). Another related work on distributed convex optimization
that considers random matrices is reference [86].

1.5 Literature Overview and New Research Directions

1.5.1 Literature on Consensus Algorithms

The consensus algorithms have drawn a renewed interest in more recent years,
which was inspired by the work [60]. There has been a large body of work
on the stability property and the convergence behavior of consensus dynamic in
continuous-time [98, 118, 119, 134, 135], including the variants with switching
network topology and time delays. Also, there are many papers investigating
convergence of consensus algorithm in discrete-time, such as [21–24, 97, 99, 135,
180–182], where different aspects are also considered including time-switching
network topology and asynchrony. The convergence rate properties have been
studied in [122, 124] (for a more detailed overview see [102]).

Consensus has been used in rendezvous problems [78, 79], flocking [11], opinion
dynamics [90, 91], and parameter estimation [65]. There are several Ph.D. theses
that provide a comprehensive study of the averaging dynamics and its properties
for deterministic and random matrices, including [12, 52, 120, 144, 155, 156].
Moreover, various communication effects have been investigated such as the effects
of the delay [9, 10, 107], quantization effects [20, 25, 26, 43, 66, 71, 110], and
the effects of link failures and noise [56, 63, 64, 125, 127, 128, 158]. A question
of (non)existence of quadratic Lyapunov function for consensus dynamic has been
investigated in [123, 163], while in [53, 54, 166] some cut-related properties have
been explored.

Consensus algorithms implemented in a network using a gossip-based or a
broadcast-based communications have been studied in [2, 3, 16, 82], while a
different consensus algorithm (the so called push-sum method) has been considered
in [7, 67]. Paper [93] explores a connection between consensus problems and
potential games. An averaging dynamic for opinion spread has been proposed
in [51] (leading to a formation of agents’ groups with each group reaching its own
consensus value).

The robustness of consensus including robustness to adversarial agents, faulty
nodes, resilience and privacy preserving are studied in [29, 72, 149–151, 185]. Fast
convergence of consensus algorithms in networks with quantized communications
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has been recently investigated in [4, 30]. There are also recent works on complex
consensus [84], consensus stability [83, 85], and the use of semi-norms [32, 81] to
study the stability. The best known convergence rate (in terms of its dependence
on the number of agents) has been accomplished in a recent paper [121], which
provides a consensus algorithm inspired by the fast Nesterov method [117].

There is a stream of work focused on the consensus problem over random
graphs and weighted (random) averaging dynamics [5, 13, 27, 45, 50, 55–58, 126,
152, 153, 156, 157, 159–162, 164–166]. One may refer to survey paper [38] for a
detailed account of gossip algorithms and their applications to signal processing
in sensor networks. An application of an asynchronous gossip algorithm to the
problem of spectral ranking has been explored in [14], while a nonlinear gossip is
investigated in [95]. A monograph [138] discusses applications of consensus-based
approaches to parameter estimation, learning and adaptation in networks, while
monograph [102] discusses weighted-averaging algorithms for solving constrained
and unconstrained consensus problems over time-varying (deterministic) graphs.

1.5.2 Literature on Distributed Methods for Optimization in
Networks

1.5.2.1 Weighted Averaging-Based Approaches

The approaches that use consensus models with stochastic matrices are often
referred to as weighted-averaging methods. Thus, both algorithms (1.9) and (1.34)
are based on weighted-averaging methods, where the former uses deterministic
weights while the latter employs random weights.

There are various extensions and modifications to the algorithm (1.9) which were
developed over the past few years. The early work on consensus-based optimization
can be found in [171], where the agents share a common objective function. The
first work on distributed optimization in a network with agent based local objective
functions can be found in [88, 106, 108]. In [106, 108] a slightly different algorithm
has been considered (with a fixed stepsize), namely

xi(k + 1) =
m∑

j=1

wij (k)xj (k)− αkdi(k), (1.68)

where di(k) is a subgradient of fi(x) at x = xi(k). The convergence rate of this
algorithm has been investigated in [105]. An extension of this algorithm to the case
of quantized messages has been investigated in [109], while its implementation over
random networks has been studied in [86]. In [89, 172] both of these alternative
approaches, namely, algorithm (1.9) and (1.68) have been studied for distributed
estimation.
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A variant of the distributed optimization problem, where agents want to solve the
problem of minimizing

∑m
i=1 fi(x) over X = ∩mi=1Xi , with each agent i handling

its own function fi and its constraint set Xi , has been considered in [111]. To solve
the problem, a modification of the algorithm (1.9) has been proposed, where each
agent i updates using the projection on its constraint set Xi , instead of the common
set X. Thus, agent i updates assume the following form:

xi(k + 1) = ΠXi
⎡

⎣
m∑

j=1

wij (k)xj (k)− αkgi(k)
⎤

⎦ ,

where gi(k) is a subgradient of fi(x) at x = ∑m
j=1 wij (k)xj (k). This algorithm

has been studied in [73–75] for synchronous updates over time-varying graphs
and for gossip-based asynchronous updates over a static graph. A different variant
of this algorithm (using the Laplacian formulation of the consensus problem) for
distributed optimization with distributed constraints in noisy networks has been
studied in [144–146]. Distributed algorithms for special quadratic convex problems
arising in parameter estimation in sensor networks have been developed and studied
in [28, 33, 88, 89, 172, 173].

The consensus-based algorithms for other types of network objective functions
have been considered in [133]. A Bregman-distance based distributed algorithm has
been developed in [147], as well as consensus-based algorithms for solving certain
min-max problems. Distributed algorithms, both synchronous and asynchronous,
for solving special type of games (aggregative games) have been studied in [68].

A distributed dual Nesterov algorithm has been proposed in [40], while a
distributed algorithm using the gradient differences has been recently proposed
in [142]. A distributed algorithm that is based on the idea of preserving an optimality
condition at every stage of the algorithm has been proposed in [92]. Distributed
convex optimization algorithms for weight-balanced directed graphs have been
investigated in continuous-time [48].

A different type of a distributed algorithm for convex optimization has been
proposed in [77], where each agent keeps an estimate for all agents’ decisions. This
algorithm solves a problem where the agents have to minimize a global cost function
f (x1, . . . , xm) while each agent i can control only its variable xi . The algorithm
of [77] has been recently extended to the online optimization setting in [76, 113].

Distributed algorithms using augmented Lagrangian approach with gossip-type
communications have been studied in [61], while accelerated versions of distributed
gradient methods have been proposed and studied in [62].

A consensus-based algorithm for solving problems with a separable constraint
structure and the use of primal-dual distributed methods has been studied in [147,
189, 190], while a distributed primal-dual approach with perturbations has been
explored in [31]. Work [176] provides algorithms for centralized and distributed
convex optimization from control perspective, while [175] considers an event-
triggered distributed optimization for sensor networks. In [19], a distributed simplex
algorithm has been developed for linear programming problems, while a Newton-
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Raphson consensus-based method has been proposed in [186] for distributed convex
problems.

All of the prior work relies on the use of state-independent weights, i.e., the
weights that do not depend on agents’ iterates. A consensus-based algorithm
employing state-dependent weights have been proposed and analyzed in [87].

The application of distributed methods to hypothesis testing problems in graphs
has recently attracted attention, resulting in a stream of papers [70, 112, 139, 140].
While these works deal mainly with finitely many hypothesis, a recent paper [114]
extends the framework to the case of infinitely many hypotheses. Paper [116]
considers several algorithms that use different types of consensus models, namely,
weighted-averaging as well as push-sum models, which are discussed in the next
paragraph with some more details.

1.5.2.2 Push-Sum Based Approaches

Another class of distributed algorithms has recently been developed that employs
a different type of consensus strategy known as push-sum model. It has also been
referred to as doubly-linear iteration or ratio consensus algorithm, due to its form
which involves ratio of two variables that evolve according to the same linear
dynamics, but differ in the choice of the initial point. This algorithm was originally
proposed in [67] for consensus problem over a static network (in a random gossip-
based form), and has been recently investigated in [39] in a deterministic setting. It
has been extended to time-varying networks in [7].

The first work that has employed the push-sum consensus model to develop
distributed optimization methods is [169], which has been further investigated
in [167, 168, 170]. This work has been focused on static graphs and it has been
proposed as an alternative to the algorithm based on weighted averages in order
to eliminate deadlocks and synchronization issues among others. The prior work
also offers a push-sum algorithm that can deal with constraints by using Nesterov
dual-averaging approach. Recently, this push-sum consensus-based algorithm has
been extended to a subgradient-push algorithm in [103, 104] that can deal with
convex optimization problems over time-varying directed graphs. More recently,
the paper [148] has extended the push-sum algorithm to a larger class of distributed
algorithms that are applicable to nonconvex objective functions, convex constraint
sets, and time-varying graphs (see the subsequent paragraph on new directions for
more details).

1.5.2.3 ADMM Based Approaches

Another approach for solving problem (1.1) in a distributed fashion over a static
network can be constructed by using the Alternate Direction Multiplier Method
(ADMM). This method is based on an equivalent formulation of consensus con-
straints. Unlike consensus-based (sub)-gradient method (1.9) which operates in
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the space of the primal-variables, the ADMM solves a corresponding Lagrangian
dual problem (obtained by relaxing the equality constraints that are associated
with consensus requirement). Just as any dual method, the ADMM is applicable
to problems where the structure of the objective functions fi is simple enough so
that the ADMM updates can be executed efficiently. The algorithm has potential
of solving the problem with geometric convergence rate, which requires global
knowledge of some parameters including eigenvalues of a weight matrix associated
with the graph. A recent survey on the ADMM and its various applications is given
in [17].

The first works to address the development of distributed ADMM over a network
are [80, 177, 178], while a linear convergence rate of the ADMM has been shown
in [141]. In [1] the ADMM with linearization has been proposed for special
composite optimization problems over graphs.

1.5.2.4 New Directions

Within the area of distributed (multi-agent) optimization over networks, loosely
speaking, two main directions of research can be noted, namely toward efficiency
improvements (to develop “fast” distributed algorithms whose performance can
meet the best known performance guarantees in a centralized setting) and toward
addressing non-convex problems over networks.

In the domain of efficiency improvements, there are new approaches that
are rooted in the idea of distributing the optimality conditions for multi-agent
problems and the approaches that investigate gradient-consensus models. The
consensus-based primal algorithms with a constant step-size are not likely to reach
geometric convergence rate even when the overall objective function is strongly
convex. Papers [142, 143] develop the algorithm EXTRA and its proximal-gradient
variant by employing a carefully selected gradient-difference scheme to cancel
out the steady-state error that occurs in some distributed methods with a constant
stepsize [106, 108]. The EXTRA algorithm converges at an o(1/k) rate when
the objective network function is convex, and it has a geometric rate when the
objective function is strongly convex. These developments have considered a static
and undirected graph.

References [179, 187] combine EXTRA with the push-sum protocol of [67] to
produce DEXTRA (Directed Extra-Push) algorithm for optimization over a directed
graph. It has been shown that DEXTRA converges at a geometric (R-linear) rate for
a strongly convex objective function, but it requires a careful stepsize selection. It
has been noted in [179] that the feasible region of stepsizes which guarantees this
convergence rate can be empty in some cases.

The work [183, 184] utilizes an adapt-then-combine (ATC) strategy [137, 138]
of dynamic weighted-average consensus approach [188] to develop a distributed
algorithm, termed Aug-DGM algorithm. This algorithm can be used over static
directed or undirected graphs (but requires doubly stochastic matrices). The most
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interesting aspect of the Aug-DGM algorithm is that it can produce convergent
iterates even when different agents use different (constant) stepsizes.

Simultaneously and independently, the idea of tracking the gradient averages
through the use of consensus has been proposed in [184] for convex unconstrained
problems and in [35] for non-convex problems with convex constraints. The
work in [35–37] develops a large class of distributed algorithms, referred to as
NEXT, which utilizes various “function-surrogate modules” thus providing a great
flexibility in its use and rendering a new class of algorithms that subsumes many
of the existing distributed algorithms. The ideas in [36, 37] and in [183] have also
been proposed independently, with the former preceding the latter. The algorithm
framework of [35–37] is applicable to nonconvex problems with convex constraint
sets over time-varying graphs, but requires the use of doubly stochastic matrices.
This assumption was recently removed in [148] by using column-stochastic matri-
ces, which are more general than the degree-based column-stochastic matrices of
the push-sum method. Simultaneously and independently, the papers [37] and [154]
have appeared to treat nonconvex problems over graphs. The work in [154] proposes
and analyzes a distributed gradient method based on the push-sum consensus in
deterministic and stochastic setting for unconstrained problems.

The idea of using a consensus process to track gradients has also been recently
used in [115] to develop a distributed algorithm, referred to as DIGing, with a
geometric convergence rate over time-varying graphs. This is the first paper to
establish such a rate for a consensus-based algorithms for convex optimization
over time-varying graphs. We note that the algorithm uses a fixed stepsize, and the
rate result is applicable to the problems with a strongly convex smooth objective
function.
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Chapter 2
Five Lectures on Differential Variational
Inequalities

Jong-Shi Pang

Abstract Complex engineering and economic systems are often dynamic in nature
and its time-varying variables are subject to algebraic restrictions that are cast
in the form of equalities and inequalities; furthermore, these variables may be
related to each other via some logical conditions. For such constrained dynamical
systems, the classical approach based on ordinary differential equations (ODEs)
alone is inadequate to fully capture the intricate details of the system evolution.
Combining an ODE with a variational condition on an auxiliary algebraic variable
that represents either a constrained optimization problem in finite dimensions or its
generalization of a variational inequality, the mathematical paradigm of differential
variational inequalities (DVIs) was born. On one hand, a DVI addresses the need
to extend the century-old ODE paradigm to incorporate such elements as algebraic
inequalities, mode changes, and logical relations, and on the other hand, introduces
a temporal element into a static optimization or equilibrium problems. The resulting
DVI paradigm transforms the basic science of dynamical systems by leveraging
the modeling power and computational advances of constrained optimization and
its extension of a variational inequality, bringing the former (dynamical systems)
to new heights that necessitate renewed analysis and novel solution methods and
endowing the latter (optimization) with a novel perspective that is much needed for
its sustained development. Introducing the subject of the DVI and giving a survey
of its recent developments, this report is an expanded version of five lectures that
the author gave at the CIME Summer School on Centralized and Distributed Multi-
agent Optimization Models and Algorithms held in Cetraro, Italy, June 23–27, 2014.

J.-S. Pang (�)
The Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern
California, Los Angeles, CA, USA
e-mail: jongship@usc.edu

© Springer Nature Switzerland AG 2018
F. Facchinei, J.-S. Pang (eds.), Multi-agent Optimization, Lecture Notes
in Mathematics 2224, https://doi.org/10.1007/978-3-319-97142-1_2

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97142-1_2&domain=pdf
mailto:jongship@usc.edu
https://doi.org/10.1007/978-3-319-97142-1_2


86 J.-S. Pang

2.1 Introduction

Complex engineering and economic systems are often dynamic in nature and its
time-varying variables are subject to algebraic restrictions that are cast in the form of
equalities and inequalities; furthermore, these variables may be related to each other
via some logical conditions. For such constrained dynamical systems, the classical
approach based on ordinary differential equations (ODEs) alone is inadequate to
fully capture the intricate details of the system evolution. Combining an ODE
with a variational condition on an auxiliary algebraic variable that represents
either a constrained optimization problem in finite dimensions or its generalization
of a variational inequality, the mathematical paradigm of differential variational
inequalities (DVIs) was born. On one hand, a DVI addresses the need to extend the
century-old ODE paradigm to incorporate such elements as algebraic inequalities,
mode changes, and logical relations, and on the other hand, introduces a temporal
element into a static optimization or equilibrium problems. The resulting DVI
paradigm transforms the basic science of dynamical systems by leveraging the
modeling power and computational advances of constrained optimization and its
extension of a variational inequality, bringing the former (dynamical systems) to
new heights that necessitate renewed analysis and novel solution methods and
endowing the latter (optimization) with a novel perspective that is much needed
for its sustained development. Thus, the DVI serves as a bridge between the worlds
of optimization and dynamical systems.

Inspired by applications in stochastic queuing networks [60], the unpublished
reference [91] is arguably the earliest publication where a dynamical system with
explicit complementarity conditions, albeit in integral form, was formulated. In
the optimization literature, a special instance of the DVI, called the nonlinear
differential complementarity problems, was first studied in the Ph.D. thesis [68] as
an extension of the (static) finite-dimensional nonlinear complementarity problem
[45]. Independently of these two earlier works [68, 91], two doctoral theses [25, 62]
from the Netherlands School have studied the linear complementarity systems
(LCSs) and piecewise affine systems from the perspective of hybrid dynamical
systems and control theory [108, 109]. With the goal of introducing a unified
mathematical framework for these non-traditional dynamical systems, the author
and his collaborator, David Stewart at the University of Iowa, formally defined
the DVI in a 2008 paper [102]. From the beginning, it was recognized that
the DVI, while providing a very broad setting for many applications, is a very
challenging mathematical problem whose rigorous treatment requires the fusion
of a variety of analytical tools and numerical techniques from both ODE and
mathematical programming. Since the publication of these early works, there has
been a steady growth in the study of the DVI and the closely related differential
complementarity systems (DCSs); see the references [30–33, 55–57, 59, 65, 100,
114–117, 126, 127, 134, 135]. Increasingly, the importance of the DVIs and (DCSs)
in applications is being recognized as documented in the surveys [21, 63, 111]
and several recent publications [4, 85, 87, 88, 104, 127, 129], as well as the
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Habilitation thesis [2] that contains many references discussing applications in
mechanical, electrical, and biological systems [3, 5, 9, 13, 14, 23, 35, 39, 43, 47, 52–
54, 64, 66, 67, 78, 80, 81, 93, 94, 124, 125, 128, 131, 138, 140]. In spite of these
efforts to date, a comprehensive investigation of the DVI is very much in its infancy
stage, with lots of open questions to be resolved, solution methods to be developed,
and applications to be explored.

One of the most challenging aspects of the DVI and the complementarity system
is the mode switches caused by the activation and inactivation of the constraints.
The unknown timing of these switches and their frequencies are two major sources
of difficulty for the long-time analysis (such as stability) and the development
of provably fast convergent numerical methods. Such switches could give rise
to the so-called Zeno phenomenon (i.e., infinite switches in finite time) whose
existence would create all sorts of technical complications that need to be addressed.
Besides the understanding of this phenomenon and the identification of Zeno-free
systems, many system-theoretic properties remain to be investigated in full detail.
The design of efficient provably convergent numerical methods for approximating
a solution trajectory of these variational/complementarity constrained dynamical
systems is another major topic that requires further investigation. To achieve
practical efficiency of such methods it is important to leverage the advances of
computational mathematical programming for solving the time-discretized sub-
systems. All in all, a systematic investigation of the DVI requires a long-term
focused effort in order to fully develop this highly promising new discipline to
fruition and for the subject to realize its impact on the applied domains. It is with
these dual objectives that this chapter is written, hoping to introduce this class of
novel dynamical systems to a broad audience spanning both the optimization and
engineering communities.

This paper is organized according to the five lectures that the author delivered at
the CIME Summer School on Centralized and Distributed Multi-agent Optimization
Models and Algorithms held in Cetraro, Italy, June 23–27, 2014. These lectures are:

Lecture I: Introduction to differential variational systems
Lecture II: A study of non-Zenoness
Lecture III: Time-stepping methods and their convergence analysis
Lecture IV: Linear-quadratic optimal control with mixed state-control constraints
Lecture V: Open-loop differential Nash games with mixed state-control constraints.

These topics are drawn from the author’s joint work with his collaborators as
contained in the cited references. Consistent with the main theme of the Summer
School, the lectures aim at presenting the DVI/DCS as a powerful framework for
multi-agent optimization-based decision making in continuous time. A compre-
hensive survey of the topic of DVI addressed to the broad applied mathematics
community is presently being prepared that contains many other topics including a
host of engineering applications and details on system-theoretic issues.
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2.2 Lecture I: Differential Variational Systems

On one hand, ODEs with smooth right-hand sides have a long history in mathemat-
ics:

ẋ � dx(t)

dt
= f (t; x(t)) modeling systems in evolution

0 = Ψ (x(0); x(T )) prescribed initial and terminal conditions,

where f : R1+n → R
n and Ψ : R2n → R

n are differentiable vector functions
and T > 0 is the time horizon of the system. On the other hand, mathematical
programming is a post-world war II subject, typically posed as a constrained
optimization problem in finite dimensions:

minimize
x∈X θ(x), (2.1)

where X is a closed subset of Rn, which in many applications is convex and θ :
Ω → R is a continuous scalar-valued function defined on an open superset of X.
While there are several extensions of ODEs, most notably, differential algebraic
equations [11, 77], equations with discontinuous right-hand sides [49, 121], multi-
valued differential equations [42], differential inclusions [15, 118], studies in the
differential world have been minimally connected to the contemporary subject of
optimization.

Extending the first-order optimality condition of the optimization problem (2.1)
when the objective function θ is differentiable and the feasible set X is closed and
convex, the finite-dimensional variational inequality [45], denoted VI (X,Φ), where
Φ : Ω → R

n is a given continuous vector function, is to find a vector x ∈ X such
that

( x ′ − x )T Φ(x) ≥ 0, ∀ x ′ ∈ X.

The solution set of this VI is denoted by SOL(X,Φ). The special case of X being a
cone C leads to the complementarity problem that has the form:

C � x ⊥ Φ(x) ∈ C ∗,

where C ∗ � {v ∈ R
n | vT x ≥ 0 for all x ∈ C } is the dual cone of C as in

convex analysis. While there are also many extensions and special cases of the
VI/CP, such as the quasi-VI (where the constant set X is replaced by the varying
set X(x)), the generalized VI (where Φ is multi-valued), and the Karush-Kuhn-
Tucker (KKT) conditions (when the set X is finitely representable satisfying certain
constraint qualifications),the study of these variational problems remains in a static
(at best discrete-time) setting where the temporal element is never a part of the
problems. In spite of this deficiency, the strengths of the mathematical programming
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field are the fruitful treatment of algebraic inequalities and the emphasis on
computational efficiency. As a consequence, piecewise properties, non-smoothness,
multi-valuedness, disjunctions, and logical relations are nowadays all amenable to
effective treatment in practical applications.

Formally, defined by the tuple (K;F ;H ;Ψ ;T ), where K is a closed convex
set in R

m, F and H are continuous mappings from R
1+n+m into R

n, and Ψ and
T are the same as above, the differential variational inequality with initial and
boundary conditions is to find continuous-time trajectories x : [0,T ] → R

n and
u : [0,T ] → R

m such that

ẋ(t) = F(t, x(t), u(t)) system dynamics

u(t) ∈ SOL (K,H(t, x(t), •)) variational condition

0 = Ψ (x(0), x(T )) two-point boundary condition.

(2.2)

When Ψ (x, y) = x − b for some constant vector b, the system becomes one of the
initial-value kind. A differential complementarity system is the special case where
the set K is a cone. Among the special cases of the DCS is the time-invariant affine
complementarity system (LCS) with affine two-point boundary conditions that is
defined by the matrices A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n, D ∈ R
m×m and two

matrices M and N that are both n × n, as well as vectors r ∈ R
n, s ∈ R

m, and
b ∈ R

n:

ẋ = r + Ax + Bu
0 ≤ u ⊥ s + Cx +Du ≥ 0

b = Mx +Nu.
(2.3)

For ease of reference, we let SOL(q, R) denote the solution set of the linear
complementarity problem, which we denote by LCP (q, R): 0 ≤ u ⊥ q + Ru ≥ 0
for a given vector q and matrix R of the same order as the dimension of q .
Exemplified by the LCS, DVIs form a non-traditional mathematical paradigm
offering a broad, unifying framework for modeling many applied (dis)equilibrium
problems containing:

• dynamics (pathway to equilibrium)
• inequalities (unilateral constraints), and
• disjunctions (paradigm switch).

As a consequence of these features, these dynamical systems exhibit the follow-
ing characteristics:

• state-triggered mode transition that are distinct from arbitrary switchings
• non-smoothness of solution trajectories, extending smooth dynamical systems
• the presence of an endogenous auxiliary variable, satisfying a variational condi-

tion such as complementarity.
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The result is a powerful framework that on one hand can exploit the advances in
mathematical programming to benefit classical unconstrained dynamical systems,
on the other hand extends many optimization and equilibrium problems to a (often
more realistic) continuous-time setting.

An early source of applications of differential variational systems arises from
three-dimensional frictional contact problems in engineering mechanics. Unlike
the traditional setting of continuum mechanics that employs partial differential
equations to describe the fine physics of body deformations under stresses and
strains (see e.g. the work of Klarbring [74, 75] who advocated mathematical pro-
gramming methods for solving these problems), discrete or discretized mechanical
systems [76] are useful for the modeling of multi-rigid-body systems where body
deformations are ignored. The complementarity approach for the treatment of such
systems was initiated by the pioneering work of Lötstedt [82, 83] and has today
developed into a very effective framework for the numerical simulation of rather
complex mechanical systems under frictional contact. There are several monographs
[20, 105, 127], reviews [22, 76, 123], and a vast literature including [1, 3, 6–
8, 10, 36, 37, 51, 101, 122, 130, 136, 137] to name a sample of references. As an
alternative to a rigid-body model, a local compliance model was introduced in the
Ph.D. thesis [119] to circumvent many of the deficiencies of the former model; see
also [97, 120]. In this resulting DVI, the algebraic variable u ∈ R

m is partitioned in
2 components: y ∈ R

	1 and v ∈ R
	2 with y being subject to a complementarity

condition (modeling a non-penetration condition in the normal direction) and v
satisfying a variational condition that is parameterized by (x, y) (modeling a friction
principle in two tangential directions),

ẋ = A(x, y)+ B(x, y)v
0 ≤ y ⊥ G(x, y) ≥ 0

v ∈ SOL(K(x, y),H(x, y, •)),
(2.4)

where we have omitted the initial/boundary conditions. Incidentally, the particular
form of the right-hand side in the ODE—linearity in the primary variable v of the
VI—is essential to derive existence results and algorithmic convergence for the DVI;
see the discussion following Proposition 1.

2.3 Lecture I: DVI in a Multi-Agent Paradigm

In order to discuss the role of the DVI in the context of optimization-based
multi-agent decision making, it would be useful to first introduce the static non-
cooperative game without the temporal aspect. In this multi-agent game, there are
N selfish players each optimizing an objective function subject to constraints on
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his/her strategies while anticipating the rivals’ strategies. For i = 1, · · · , N , let
Xi ⊆ R

ni be a closed convex set of player i’s admissible strategies and θi : Ω → R

be his/her objective function defined on the open set Ω containing X �
N∏

i=1

Xi .

Anticipating x−i �
(
xj

)
j �=i , player i solves the following parametric optimization

problem to determine a best response:

minimize
xi∈Xi

θ(xi, x−i ). (2.5)

A Nash equilibrium (NE) is a tuple x∗ �
(
x∗,j

)N
j=1 such that

x∗,i ∈ minimize
xi∈Xi

θi(x
i, x∗,−i ).

When each θi(•, x−i ) is convex and differentiable for every fixed x−i ∈ X−i �∏

j �=i
X j , it follows that x∗ is a NE if and only if x∗ ∈ SOL(X,Φ), where Φ(x) �

(∇xi θi(x)
)N
i=1. For a recent summary of the Nash equilibrium problem, see [46]

where the reader can find many references on distributed algorithms for solving this
problem.

The continuous-time extension of the above static game replaces each player’s
finite-dimensional optimization problem (2.5) by an optimal control problem, which
we formulate as follows [59]. Given a time horizon T > 0 and an initial state
ξ ∈ R

n, find an absolutely continuous state trajectory x : [0,T ] → R
n and an

integrable control u : [0,T ] → R
m:

minimize
x,u

V (x, u) � ϕ(x(T ))+
∫ T

0
φ(t, x(t), u(t)) dt

subject to x(0) = ξ and for almost all t ∈ [ 0,T ] :
ẋ(t) = r + Ax(t)+ Bu(t)
︸ ︷︷ ︸

linear dynamics

and f + Cx(t)+Du(t) ≥ 0
︸ ︷︷ ︸

mixed state-control constraints

,

where (A,B,C,D) are constant matrices, (r, f ) are constant vectors, and ϕ and φ
are given functions. To simplify the discussion, we consider only linear dynamics
but allow the algebraic constraints to contain both the state and control variables
jointly. To formulate the optimality conditions of the above control problem as a
DVI, let λ(t) be the adjoint variable associated with the ODE. We then have the
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following system:

λ̇(t) = −∇xφ(t, x(t), u(t))− AT λ(t), λ(T ) = ∇ϕ(x(T ))
ẋ(t) = r + Ax(t)+ Bu(t), x(0) = ξ,

and u(t) ∈ argmin
u

⎡

⎣φ(t, x(t), u)+ λ(t)T ( r + Ax(t)+ Bu )
︸ ︷︷ ︸

Hamiltonian

⎤

⎦

subject to f + Cx(t)+Du ≥ 0,

which has an initial condition x(0) = ξ and a terminal condition λ(T ) =
∇ϕ(x(T )) on the (primal) state variable x and the (dual) adjoint variable λ,
respectively. Extending the single optimal control problem to a multi-agent context
yields the differential Nash game, which is formally defined as follows. While
anticipating rivals’ pairs (x−i , u−i ) �

(
xj , uj

)
j �=i of strategy trajectories, player

i seeks a pair of state-control trajectories (xi, ui) to

minimize
xi ,ui

V (xi, x−i , ui, u−i )

subject to xi(0) = ξ i and for almost all t ∈ [ 0,T ] :
ẋi(t) = ri + Aixi(t)+ Biui(t)

and f i + Cixi(t)+Diui(t) ≥ 0.

A differential Nash equilibrium is a tuple (x∗, u∗) �
(
x∗,i , u∗,i

)N
i=1 of players’

strategies such that for all i = 1, · · · , N ,

( x∗,i, u∗,i ) ∈ argmin
xi ,ui

V (xi, x∗,−i , ui, u∗,−i )

subject to (xi, ui) satisfies player i’s constraints.

Concatenating the optimality conditions of the players’ problems, we obtain an
aggregated DVI whose solutions will be shown to be Nash equilibria. Unlike
the static problem where the players’ strategies are finite-dimensional vectors,
the differential Nash problem considerably more complicated to analyze; for one
thing, we have not even prescribed the regularity property of a solution trajectory
to the differential variational problems introduced thus far. Unlike the treatment
in the monograph [18] where computation is not emphasized, the optimization-
based DVI framework allows us to develop effective algorithms for solving this
continuous-time game as defined above. Such algorithms are in turn based on time
discretizations of the interval [0,T ] that result in finite-dimensional optimization
subproblems which can be solved by well established algorithms.
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2.4 Lecture I: Modeling Breadth

By way of a simple LCS, we illustrate the complexity of such a differential system
coupled with complementarity constraints. It is well known that the (trivial) initial-
value ODE: ẋ = Ax with x(0) = x0 has an explicit solution x(t; x0) = eAtx0 that
is a linear function of x0 for every fixed t; moreover, many other obvious properties
can be said about this solution. For instance, x(•; x0) is an analytic function for
fixed x0. Now, consider a simple variant with A �= B

ẋ =

⎧
⎪⎪⎨

⎪⎪⎩

Ax if cT x < 0

? if cT x = 0

Bx if cT x > 0,

(2.6)

which identifies one mode of the system on the “positive” side of the hyperplane
cT x = 0 and a possibly different mode on the other side of the same hyperplane;
thus (2.6) is potentially a bimodal system. There are two cases depending on how the
system evolves on the hyperplane. One case is that the trajectory crosses smoothly,
which happens when Ax = Bx on cT x = 0 that corresponds to the situation where
the right-hand side of the ODE is continuous; the other case is when the crossing
is discontinuous, i.e., Ax �= Bx when cT x = 0. In the former case, we must have
B = A+ bcT for some vector b. Hence, the ODE (2.6) becomes

ẋ = Ax + bmax(0, cT x), (2.7)

with the right-hand side being a simple piecewise linear function. Despite its
simplicity, there is no explicit form for a solution to this piecewise linear ODE with
initial condition x0, although such a solution x(t; x0) still has the desirable property
that x(•; x0) is a C1, albeit no longer analytic, function for fixed x0. Moreover,
to show that the continuous dependence of the solution on the initial condition
x0 is no longer as trivial as the previous case of a linear ODE. It turns out one
can establish that x(t; •) is semismooth [100], a property that is fundamental in
nonsmooth analysis; see [45, Definition 7.4.2].

The system (2.7) is a special piecewise ODE. Specifically, we recall [45,
Definition 4.2.1] that a continuous function Φ : R

n → R
n is piecewise affine

(linear) if there exists a polyhedral (conic) subdivision Ξ of Rn and a finite family
of affine (linear) functions {Gi} such that Φ coincides with one of the functionsGi

on each polyhedron in Ξ . In turn, a polyhedral (conic) subdivision Ξ of Rn is a
finite family of polyhedral sets (cones) that has the following three properties:

• the union of all polyhedra in the family is equal to R
n;

• each polyhedron in the family is of dimension n, and
• the intersection of any two polyhedra in the family is either empty or a common

proper face of both polyhedra.
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A conwise linear system (CLS) is a piecewise system: ẋ = Φ(x) where Φ is a
(continuous) piecewise linear function. Since the latter function must be (globally)
Lipschitz continuous, the existence and uniqueness of a C1 trajectory to a CLS for
every initial condition is immediate.

Returning to the discontinuous case of (2.6), Filippov [49] proposed convex-
ification of the right-hand side, expressing this bimodal system as a differential
inclusion:

ẋ ∈ F(x) �

⎧
⎪⎪⎨

⎪⎪⎩

{Ax } if cT x > 0

{ λAx + (1 − λ)Bx | λ ∈ [0, 1]} if cT x = 0

{Bx } if cT x < 0.

(2.8)

In turn, one can convert the set-valued right-hand side into a single-valued using the
complementarity condition. To do this, write cT x = η+ − η− as the difference
of its nonnegative and nonpositive part, η±, respectively so that the set-valued
ODE (2.8) becomes a complementarity system with a bilinear ODE and a linear
complementarity condition defined by a positive semidefinite, albeit asymmetric
matrix:

ẋ = λAx + (1 − λ)Bx

0 ≤
(
λ

η+
)

⊥
(−cT x

1

)

+
[

0 1
−1 0

]

︸ ︷︷ ︸

asymmetric positive
semidefinite

(
λ

η+
)

≥ 0.

The multivalued signum function can be expressed by a complementarity condition

as follows: for a scalar a, this function defined as sgn(a)

⎧
⎨

⎩

� 1 if a > 0
∈ [−1, 1] if a = 0
� −1 if a < 0

is characterized as a scalar â satisfying, for some λ, the two complementarity
conditions: 0 ≤ 1 + â ⊥ −a + λ ≥ 0 and 0 ≤ λ ⊥ 1 − â ≥ 0. Scalar piecewise
functions can also be expressed by the complementarity condition. For instance,
consider the following univariate function f , which we assume, for notational
convenience, is defined on the real line:

f (x) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) if −∞ < x ≤ a1

f2(x) if a1 ≤ x ≤ a2

...
...

fk(x) if ak−1 ≤ x ≤ ak
fk+1(x) if ak ≤ x <∞,
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with each fi being a smooth function and the overall function f being continuous.
It is not difficult to verify the following complementarity representation of this
piecewise function:

f (x) = f1(x1)+
k+1∑

i=2

[fi(ai−1 + xi)− fi(ai−1) ] with x =
k+1∑

i=1

xi,

where each xi denotes the portion of x in the interval [ai−1, ai ], and satisfies

0 ≤ x2 ⊥ a1 − x1 ≥ 0

and for i = 3, · · · , k + 1,

0 ≤ xi ⊥ ( ai−1 − ai−2 )− xi−1 ≥ 0.

As a result of the breadth of the variational and complementarity conditions in
modeling mathematical properties and physical phenomena, the DVI and DCS pro-
vide a promising framework for the constructive treatment of nonsmooth dynamics,
enabling the fruitful application of the advances in the fundamental theory and
computational methods for solving the finite-dimensional VI/CP to the dynamic
contexts.

We have so far described several contexts where the DVI and DCS have an
important role to play; these include: optimal control problems with joint state and
control constraints that are the basis for extension to differential non-cooperative
multi-agent games, and the reformulation of ODEs with discontinuous and multi-
valued right-hand sides. We have briefly mentioned the application to frictional
contact problems; there are several other areas where the these non-traditional
differential systems arise, in continuous-time dynamic user equilibrium in traffic
planning [58, 85–89, 104], and in biological synthesis modeling [4, 41, 90].

2.5 Lecture I: Solution Concepts and Existence

The DVI (2.2) can be converted to an ODE with the same initial-boundary
conditions under a strong monotonicity assumption of mapping H(t, x, •) in the
variational condition. Specifically, if there exists a constant γ > 0 such that for all
u and u ′ in K ,

(
u− u ′ )T [

H(t, x, u) −H(t, x, u ′) ] ≥ γ ‖u− u ′‖2, ∀ ( t, x ) ∈ [ 0,T ] × R
n,

then for every (t, x) ∈ [0,T ] × R
n, the VI (K,H(t, x, •)) has a unique solution

which we denote u(t, x); moreover, this solution is Lipschitz continuous in (t, x) if
H(•, •, u) is Lipschitz continuous with a modulus that is independent of u ∈ K .
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Thus under these assumptions, the DVI (2.2) become the (classic) ODE with a
Lipschitz continuous right-hand side, provided that F is Lipschitz continuous in
its arguments:

ẋ(t) = F(t, x(t)) � F(t, x(t), u(t, x(t)))

with the same initial-boundary conditions. Using Robinson’s theory of strong reg-
ularity [107] that since its initial publication has many extensions and refinements,
one can obtain a similar conversion, albeit only locally near a tuple (0, x0, u0),
where u0 is a strongly regular solution of the VI (K,H(0, x0, •)). We omit the
details which can be found in [102]. For the LCS (2.3), a similar conversion holds
provided that the matrix D is of the class P, i.e., all its principal minors are positive
[38].

When the Lipschitz conversion fails, the next best thing would be to obtain a
weak solution in the sense of Carathéodory; such is a pair of trajectory (x, u), with
x being absolutely continuous and u being (Lebesque) integrable on [0,T ] so that
the ODE holds in the integral sense; i.e.,

x(t) = x(0)+
∫ t

0
F(s, x(s), u(s)) ds, ∀ t ∈ [ 0,T ],

and the membership u(t) ∈ SOL(K,H(t, x(t), •) holds for almost all t ∈ [0,T ],
or equivalently, u(t) ∈ K for almost all t ∈ [0,T ] and for all continuous function
v : [0,T ] → K ,

∫ T

0
( u(s)− v(s) )T H(s, x(s), u(s)) ds ≥ 0.

Conditions for the existence of a weak solution of the DVI can be found in [102].
In what follows, we present an existence result via the formulation of (2.2) as a
differential inclusion (DI):

ẋ(t) ∈ F(t, x(t)) � F(t, x(t),SOL(K,H(t, x(t), •)), x(0) = x0. (2.9)

Specifically, the result [15, 118] provides two conditions on the abstract set-valued
mapping F under which a weak solution in the sense of Carathéodory exists; such
is an absolutely continuous (thus differentiable almost everywhere) function x(t)
satisfying the initial condition and the inclusion ẋ(t) ∈ F(t, x(t)) for almost all
t ∈ [0,T ]. One condition is the upper semicontinuity of F(t, x) on its domain.
In general, a set-valued map Φ : Rn → R

n is upper semi-continuous at a point
x̂ ∈ dom(Φ) if for every open set V containingΦ(̂x), an open neighborhood N of
Φ(̂x) exists such that, for each x ∈ N , V containsΦ(x).
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Proposition 1 Suppose that F : [0, T ] × R
n → R

n is an upper semi-continuous
set-valued map with nonempty closed convex values and satisfies

• the linear growth condition, i.e., ∃ ρ > 0 such that

sup { ‖ y ‖ | y ∈ F(t, x) } ≤ ρ ( 1 + ‖ x ‖ ), ∀ (t, x) ∈ [0,T ] × R
n.

Then for all x0,

(a) the DI (2.9) has a weak solution in the sense of Carathéodory on [0,T ];
(b) a measurable function z : [0,T ] → R

m exists such that for almost all t ∈
[0, T ], z(t) ∈ SOL(K,H(t, x(t), •)) and ẋ(t) = F(t, x(t), z(t)), where x(t) is
the solution in (a). �

Specialized to the VI (K,H(t, x, •)), the two conditions (a) and (b) beg the
following questions:

• When is the map: F : (t, x) → F(t, x,SOL(K,H(t, x, •))) upper semi-
continuous with nonempty closed convex values?

• When does the linear growth condition hold for the composite VI map?

In essence, the latter two questions can both be answered by invoking results
form variational inequality theory [45]. Nevertheless, the convexity of the set
F(t, x,SOL(K,H(t, x, •))) restricts the function F(t, x, •) to be affine in the last
argument so that F(t, x, u) = A(t, x) + B(t, x)u for some vector-valued function
A : [0,T ] × R

n → R
n and matrix-valued function B : [0,T ] × R

n →
R
n×m. Details can be found in [102] which also contains results for the two-point

boundary-value problem. Uniqueness of solution for the (initial-value) DCS has
been analyzed extensively in [126]. For the initial-value LCS (2.3) with N = 0
and M = I , a sufficient condition for the existence of a unique C1 x-trajectory
with no guarantee on uniqueness on the u-trajectory is when the set BSOL(Cx,D)
is a singleton for all x ∈ R

n; we call this a x-uniqueness property. An LCS
with the latter singleton property is an instance of a conewise linear system.
Parallel to the study of hybrid systems [29], the well-posedness (i.e., existence
and uniqueness of solutions) of conewise linear systems have been studied in
[27, 65, 134, 135]. It should be cautioned that all these well-posedness results
are of the initial-value kind and are not directly applicable to either the mixed
state-control constrained optimal control problem or its multi-agent generalization
of a non-cooperative game, which, for one thing, are special problems with two-
point boundary conditions. Details of the latter two problems will be presented
subsequently. Finally, we refer to [100] where results on the dependence on initial
conditions of the solution trajectory can be found, under a uniqueness hypothesis of
the solution.
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2.6 Lecture I: Summary

In this lecture, we have

• motivated and formally defined several differential variational/complementarity
systems;

• presented several applications of such systems, including the differential
Nash game involving multiple competitive, optimizing decision makers in a
continuous-time setting;

• briefly described a number of technical issues, discussed the Lipschitz case,
introduced the concept of a weak solution and provided a general existence result
based on the formulation as a differential inclusion.

2.7 Lecture II: The Zeno Phenomenon

There are many paradoxes due to the Greek philosopher Zeno of Elea (ca. 490–430
BC); a famous one is the time-motion paradox having to do with a race between
Tortoise and Archilles. The paradox is as follows.

The Tortoise challenged Achilles to a race, claiming that he would win as long as Achilles
gave him a small head start. Achilles laughed at this, for of course he was a mighty warrior
and swift of foot, whereas the Tortoise was heavy and slow. “How big a head start do you
need?” he asked the Tortoise with a smile. “Ten meters,” the latter replied. Achilles laughed
louder than ever. “You will surely lose, my friend, in that case,” he told the Tortoise, “but
let us race, if you wish it.” “On the contrary,” said the Tortoise, “I will win, and I can prove
it to you by a simple argument.” “Go on then,”; Achilles replied, with less confidence than
he felt before. He knew he was the superior athlete, but he also knew the Tortoise had the
sharper wits, and he had lost many a bewildering argument with him before this.
[http://platonicrealms.com/encyclopedia/Zenos-Paradox-of-the-Tortoise-and-Achilles]

Mathematically, the Zeno phenomenon is probably the most fundamental prop-
erty of a dynamical system subject to mode changes. The phenomenon refers to the
possibility that there exist infinitely many such changes in a finite time interval. If a
particular state of a solution trajectory is of the Zeno type, i.e., if this phenomenon
occurs in a time interval surrounding this state, it will lead to great difficulty
in faithfully analyzing and simulating such a trajectory in practice; the reason is
simple: it is not possible to capture and predict the infinitely many mode transitions.
The Zenoness of a state is a local property that arises at a finite time instance;
there is also the asymptotic Zenoness that one needs to be concerned with if one
is interested in investigating the long-time behavior (such as stability) of a solution
trajectory; for such a solution trajectory, there is not a single mode in which the
trajectory will remain in no matter how long time passes. For both theoretical and
practical considerations, it is important to gain a clear understanding of the Zeno
property, both long and short-time, of a constrained dynamical systems, particularly
to identify systems where Zenoness is absent in their solutions.

http://platonicrealms.com/encyclopedia/Zenos-Paradox-of-the-Tortoise-and-Achilles
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In the case of the DCS where algebraic inequalities and logical disjunctions
are present, mode switches are the result of activation and de-activation of these
inequalities and the realization of the disjunctions. Historically, mode changes
in (smooth) ODEs with piecewise analytic right-hand sides have been studied in
[24, 133]. There are subsequent studies of “one-side non-Zenoness” for certain
complementarity systems [26] and hybrid systems in control theory [71, 141].
A systematic study of (two-sided) non-Zenoness for complementarity systems was
initiated in [114] that has led to several extensions [30, 55, 99, 113, 115–117]. We
summarize the results in these references in the next several sections.

Before doing so, we return to the Zeno’s paradox of the Tortoise and Archilles.
What’s the Tortoise’s argument? Who wins the race? Define an event as a moment
when Achilles catches up to the Tortoise’s previous position. How many events
are there during the race? Can all such events be tracked? How is this paradox
related to the DVI? How do we formalize events mathematically and analyze the
Zeno phenomenon for the DVI? Let’s translate these questions to the bimodal ODE
given by

ẋ = Ax + b max( 0, cT x ), x(0) = x0,

whose unique solution we denote x(t; x0). The following are the above questions
rephrased for this trajectory. How often does the trajectory x(t; x0) switch between
the two halfspaces? In finite time? In infinite time? What does “switch” mean
formally? Is touching the hyperplane considered a switch? Does the system exhibit
the Zeno behavior, i.e., are there infinitely many mode switches in finite time?
Are there bimodal systems with (in)finite many switches in long time? Can we
characterize bimodal systems with finite numbers of switches, including zero, in
infinite time? These are questions that the study of (non)-Zenoness aims to address.

2.8 Lecture II: Non-Zenoness of Complementarity Systems

Consider the time-invariant nonlinear complementarity system (NCS):

ẋ = F(x, y)
0 ≤ u ⊥ G(x, u) ≥ 0.

(2.10)

Let (x(t), u(t)) denote a given solution trajectory. Associated with this solution,
define three fundamental index sets at time t:

α(t) � { i | ui(t) > 0 = Gi(x(t), u(t)) } , inactive u-indices

β(t) � { i | ui(t) = 0 = Gi(x(t), u(t)) } , degenerate u-indices

γ (t) � { i | ui(t) = 0 < Gi(x(t), u(t)) } , strongly active u-indices.
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The switchings of the index sets amount to the transitions among the differential
algebraic equations (DAEs):

ẋ = F(x, u)
0 = uI
0 = GJ (x, u),

each called a mode of the NCS, for various pairs of index sets I and J that
partition {1, · · · ,m}. There are 2m such pairs of index sets. Phrasing the discussion
in the last section in this specific context, we re-iterate that mode switchings are a
major concern in

• the design and analysis of the convergence rates of numerical schemes, particu-
larly for methods with high-order methods (for T <∞), and

• establishing any kind of asymptotic system-theoretic properties, such as Lya-
punov stability, observability, reachability (for T = ∞).

Practically, it is impossible to simulate all mode switchings near a Zeno state.
Analytically, all classical results in systems theory are invalidated due to the mode
switches. Throughout the absence of Zeno states is key. The two main challenges in
an analysis of Zenoness are:

• nonsmoothness: solution trajectory is at best once continuously differentiable,
• unknown switchings: dependent on initial conditions, implicit and at unknown

times.

2.8.1 Solution Expansion

In what follows, we summarize the steps in the analysis that lead to the demon-
stration of non-Zenoness of the LCS that has F(x, u) = Ax + Bu and G(x, u) =
Cx + Du; cf. (2.3). First is the assumption that D is a P-matrix [38], which yields
the existence and uniqueness of a solution to the LCP (q,D) for all vectors q ∈ R

m.
This then implies the existence and uniqueness of a solution pair (x(t), u(t)) of the
initial-value LCS:

ẋ = Ax + Bu, x(0) = x0

0 ≤ u ⊥ Cx +Du ≥ 0.
(2.11)

The P-property of D further implies for that every x, the LCP (Cx,D) has a
unique solution which we denote u(x); moreover this solution function is piecewise
linear. Thus it is directionally differentiable everywhere with directional derivative,
denoted u ′(x; d) at x at a direction d ∈ R

n being the unique vector v satisfying the
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mixed linear complementarity conditions:

vα = 0 ≤ ( Cx +Du )α
0 ≤ vβ ⊥ ( Cx +Du )β ≤ 0

vγ ≥ 0 = ( Cx +Du )α,
Fix a time t∗ > 0 (the following analysis applies also to the initial time t = 0 except
that there is no backward time to speak about in this case). Suppose that the state
x∗ � x(t∗) is unobservable for the linear system; that is, suppose that CAjx∗ = 0
for all j = 0, 1, · · · . In this case the trivial solution x(t) = eA(t−t∗)x∗ derived from
u(t) = 0 is the unique solution trajectory; thus the three index sets α(t), β(t), and
γ (t) remain constant throughout the time duration.

Theorem 1 Let D be a P-matrix and (x(t), u(t)) be the unique pair of solutions
to the initial-value LCS (2.11). For every t∗ > 0, there exist ε > 0 and index sets
(α±t∗ , β

±
t∗ , γ

±
t∗ ) so that

( α(t), β(t), γ (t) ) = (
α−t∗ , β

−
t∗ , γ

−
t∗

)
, ∀ t ∈ [ t∗ − ε, t∗ )

( α(t), β(t), γ (t) ) = (
α+t∗ , β

+
t∗ , γ

+
t∗

)
, ∀ t ∈ ( t∗, t∗ + ε ].

Hence for every T > 0, both x(t) and u(t) are continuous, piecewise analytic in
[0,T ]; more precisely, there exists a finite partition of this time interval:

0 = t0 < t1 < t2 < · · · < tN−1 < tN � T (2.12)

such that both x(t) and u(t) are analytic functions in each open subinterval (ti−1, ti )

for i = 1, · · · , N . �
The proof of the above result is based on an expansion of the solution trajectory

x(t) near time t∗: Let x∗ = x(t∗) be the state of the solution trajectory (x(t), u(t))
at this time. Without loss of generality, we may assume that a nonnegative integer k
exists such that CAjx∗ = 0 for all j = 0, · · · k − 1. For all t > t∗,

x(t) =
k+2∑

j=0

(t − t∗)j
j ! Ajx∗ + (t − t∗)k+1

(k + 1)! Bu(CAkx∗)

+ (t − t∗)
k+2

(k + 2)! Bu ′(CAkx∗;CA(k+1)x∗ + CBu(CAkx∗))+ o((t − t∗)k+2)

u(t) = (t − t∗)k
k!︸ ︷︷ ︸

dominant term

u(CAkx∗)

+ (t − t∗)
k+1

(k + 1)! u ′(CAkx∗;CA(k+1)x∗ + CBu(CAkx∗))+ o((t − t∗)k+1).
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Here u(CAkx∗) is the unique solution of the LCP (CAkx∗,D). The latter expansion
establishes that locally near t∗, the sign of ui(t) is dictated by the sign of ui(CAkx∗),
where k is the first nonnegative index for which CAkx∗ �= 0; similarly for w(t) �
Cx(t) + Du(t). The proof is completed by an inductive argument via a dimension
reduction of the LCS. A similar expansion and argument can be derived for t < t∗.
The existence of the partition (2.12) and the analyticity of (x(t), u(t)) on each of the
(open) subintervals follow from the piecewise constancy of the triple of index sets
(α(t), β(t), γ (t)) which implies that each of the subintervals, the pair of trajectories
coincide with the solution of the linear DAE:

ẋ = Ax + Bu
0 = Cα•x +Dααuα
0 = uβ, and uγ = 0

with the principal submatrixDαα being nonsingular.
Calling a state x∗ = x(t∗) for which the triple of index set (α(t), β(t), γ (t))

remains constant for all times t sufficiently close to the nominal time t∗ in the sense
of Theorem 1 non-Zeno, we deduce from this theorem that the unique solution
trajectory of an LCS defined by the tuple (A,B,C,D) with D being a P-matrix
has no Zeno states. A similar result holds for the NCS (2.10) for analytic functions
F and G under the assumption that the state u∗ is a strongly regular solution of
the NCP

0 ≤ u ⊥ G(x∗, u) ≥ 0. (2.13)

Strong regularity can be characterized in a number of ways. In particular, a matrix-
theoretic characterization of the condition is as follows. Writing (α∗, β∗, γ∗) �
(α(t∗), β(t∗), γ (t∗)), we may partition the Jacobian matrix JuG(x∗, u∗) as

⎡

⎢
⎢
⎣

Jα∗Gα∗(x
∗, u∗) Jβ∗Gα∗(x∗, u∗) Jγ∗Gα∗(x∗, u∗)

Jα∗Gβ∗(x
∗, u∗) Jβ∗Gβ∗(x∗, u∗) Jγ∗Gβ∗(x∗, u∗)

Jα∗Gγ∗(x
∗, u∗) Jβ∗Gγ∗(x∗, u∗) Jγ∗Gγ∗(x∗, u∗)

⎤

⎥
⎥
⎦ .

It is known [45, Corollary 5.3.20] that u∗ is a strongly regular solution of the NCP
(2.13) if and only if: a) the principal submatrix Jα∗Gα∗(x

∗, u∗) is nonsingular, and
b) the Schur complement

Jβ∗Gβ∗(x
∗, u∗)− Jα∗Gβ∗(x∗, u∗)

[
Jα∗Gα∗(x

∗, u∗)
]−1
Jβ∗Gα∗(x

∗, u∗)

is a P-matrix. Under this assumption, it follows that there exist open neighborhoods
V and U of x∗ and u∗, respectively, and a Lipschitz continuous function u : V →
U such that for every x ∈ V , u(x) is the unique vector u in U that satisfies the
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NCP: 0 ≤ u ⊥ G(x, u) ≥ 0. Employing this NCP solution function, it follows
that near the time t∗, there is a unique solution trajectory (x(t), u(t)) of the NCS
(2.10) passing through the pair (x(t∗), u(t∗)) at time t∗ and staying near this base
pair. Moreover, we can derive a similar expansion of this solution trajectory similar
to that of the LCS. To describe this expansion, let Lkf C(x) denote the Lie derivative
[73, 95] of a smooth vector-valued function C(x) with respect to the vector field
f (x), that is, L0

f C(x) � C(x), and inductively,

Lkf C(x) =
[
JLk−1

f C(x)
]
f (x), for k ≥ 1,

where JLk−1
f C(x) denote the Jacobian matrix of the vector functionLk−1

f C(x). See
the cited references for the fundamental role the Lie derivatives play in nonlinear
systems theory. In deriving the solution expansion of the solution pair (x(t), u(t))
near time t∗, we take u∗ = G(x∗, u∗) = 0 without loss of generality because
otherwise, i.e., if either u∗ �= 0 orG(x∗, u∗) �= 0, we may then reduce the dimension
of the algebraic variable u by at least one and obtain a system locally equivalent to
the original NCS for which the induction hypothesis is applicable to establish the
constancy of the index sets (α(t), β(t), γ (t)) near t∗. With u∗ = G(x∗, u∗) = 0, let
f (x) � F(x, 0) and C(x) � G(x, 0). The strong regularity of u∗ implies that the
Jacobian matrix D∗ � JG(x∗, 0) is a P-matrix. Suppose that Lif C(x

∗) = 0 for all
i = 1, · · · , k − 1, then for all t > t∗ sufficiently near t∗,

x∗(t) = x∗ +
k∑

j=0

(t − t∗)(j+1)

(j + 1)! L
j
f f (x

∗)

+ (t − t∗)(k+1)

(k + 1)! JuF (x
∗, u∗)vk∗ + o((t − t∗)k+1)

u∗(t) = (t − t∗)k
k! vk∗,

where vk∗ is the unique solution to the LCP (Lkf C(x
∗),D). Based on this assump-

tion and dividing the argument into two cases: Lkf C(x
∗) = 0 for all nonnegative

integer k or otherwise, we can complete the proof of the desired invariance of the
index triple (α(t), β(t), γ (t)) near t∗.

The above non-Zeno results have been extended to the Karush-Kuhn-Tucker
(KKT) system derived from the DVI (2.4) by assuming thatK(x, y) is a polyhedron
given by {v | D(x, y)+ Ev ≥ 0} and H(x, y, v) � C(x, y)+N(x)v:

ẋ = A(x, y)+ B(x, y)v,
0 ≤ y ⊥ G(x, y) ≥ 0,

0 = C(x, y)+N(x)v − ET λ,
0 ≤ λ ⊥ D(x, y)+ Ev ≥ 0,

(2.14)
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where E is a constant matrix, and λ represents the Lagrange multiplier of the
constraint D(x, y) + Ev ≥ 0, which is non-unique in general. The condition
0 = C(x, y) + N(x)v − ET λ implies that the vector C(x, y) + N(x)v belongs to
the conical hull of the columns of ET , which we denote pos(ET ). In addition to the
fundamental index sets α(t), β(t), and γ (t) associated with the complementarity
condition: 0 ≤ y ⊥ G(x, y) ≥ 0, we also have the following index sets for the
second complementarity condition:

I (t) � { i | [D(x(t), y(t))+ Ev(t)]i = 0 },
J (t) � { i | [D(x(t), y(t))+ Ev(t)]i > 0 }.

Furthermore, for a given state (x∗, y∗, v∗) of a solution trajectory (x(t), y(t), v(t))
at time t∗, we assume that (i) the functions A, B, G, C, D, and N are analytic in a
neighborhood of (x∗, y∗); (ii) v∗ is a strongly regular solution of the NCP: 0 ≤ y ⊥
G(x∗, y) ≥ 0; (iii) the matrix N(x∗) is positive definite; and (iv) K(x, y) �= ∅ for
any (x, y) with y ≥ 0 in a neighborhood of (x∗, y∗). Under these assumptions, the
following two properties can be proved:

• For all (x, y) near (x∗, y∗) with y ≥ 0, SOL(K(x, y);H(x, y, •)) is a singleton
whose unique element we denote v(x, y);

• The solution function v(x, y) for y ≥ 0 is Lipschitz continuous and piecewise
analytic near (x∗, y∗).

In terms of the above implicit functions y(x) and v(x, y), the DVI is equivalent to
ẋ = Υ (x) � A(x, y(x))+ B(x, y(x))v(x, y(x)), with Υ being Lipschitz near x∗.

Like the LCS, we first treat the case where the unique solution, denoted x̂ f , to
the ODE: ẋ = f (x) � A(x, 0) with x(0) = x∗ derived from u = 0 and y = 0 is
the (unique) solution of (2.14). Let

g(x) � G(x, 0); h(x) � D(x, 0), and c(x) � C(x; 0).

If (a) Ljf g(x
∗) = 0 and Ljf h(x

∗) = 0 for all j , and (b) c(̂x f (t)) ∈ pos(ET ) for

all t ≥ 0, then (̂x f , 0, 0) is the unique solution to (2.14). The remaining analysis
treats the case where the conditions (a) and (b) do not hold; a solution expansion is
derived that enables an inductive argument to complete the proof of the following
theorem. For details, see [55].

Theorem 2 Under the above assumptions (i)–(iv), there exist a scalar ε∗ > 0 and
two tuples of index sets (α±, β±, γ±,I±,J±) such that

(
α(t), β(t), γ (t),I (t),J (t)

) = (
α+, β+, γ+,I+,J+

)
, ∀ t ∈ (t∗, t∗ + ε∗],

(
α(t), β(t), γ (t),I (t),J (t)

) = (
α−, β−, γ−,I−,J−

)
, ∀ t ∈ [t∗ − ε∗, t∗).
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In the application of the system (2.4) to contact problems with Coulomb friction
[120], the set K(x, y) is the Lorentz cone. Presently, the extension of Theorem 2 to
this non-polyhedral case remains unsolved.

2.8.2 Non-Zenoness of CLSs

Consider the CLS defined by:

ẋ = Aix, if x ∈ C i (2.15)

where the family of polyhedral cones {C i}Ii=1 is a polyhedral conic subdivision
of Rn. This system is said to satisfy the (forward and backward) non-Zeno property
if for any initial condition x0 ∈ R

n and any t∗ ≥ 0, there exist a scalar ε+ > 0
and indices i± ∈ {1, · · · , I } such that x(t; x0) ∈ C i+ for all t ∈ [t∗, t∗ + ε∗], and
for any t∗ > 0, x(t; x0) ∈ C i− for all t ∈ [t∗ − ε∗, t∗] (backward-time non-Zeno).
A time t∗ ∈ [0,T ] is non-switching in the weak sense if there exist ε∗ > 0 and an
index i∗ ∈ {1, · · · , I } such that x(t) ∈ C i∗ for all t ∈ [t∗ − ε∗, t∗ + ε∗].
Proposition 2 The CLS (2.15) has the non-Zeno property. Moreover, every solution
trajectory of the CLS has at most a finite number of switching times in [0,T ]. �

Not surprisingly, we can also establish the constancy of index sets for the CLS
similar to that for the P-matrix case of the LCS. We refer the readers to [30]
where a proof to Proposition 2 and many other related results for the CLS can be
found.

2.9 Lecture II: Summary

In this lecture, relying heavily on the theories of the LCP and strong regularity, we
have

• explained the Zeno phenomenon and present its formal definition;
• sketched how the non-Zenoness of certain LCS/DVI can be analyzed;
• presented a solution expansion of the trajectory near a nominal state; and
• briefly touched on the property of switching of cone-wise linear complementarity

systems.
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2.10 Lecture III: Numerical Time-Stepping

We next discuss numerical methods for approximating a solution trajectory to the
initial-value, time-invariant DVI:

ẋ = F(x, y, v), x(0) = x0

0 ≤ y ⊥ G(x, y) ≥ 0

v ∈ SOL(K(x, y),H(x, y, •)).
(2.16)

Let h > 0 be a time step so that Nh � T /h is an integer. Let th,0 � 0 and
inductively th,i+1 � th,i + h, for i = 0, 1, · · · , Nh − 1. We approximate the time
derivative by the forward divided difference:

ẋ(t) ≈ x(t + h)− x(t)
h

and let xh,i ≈ x(th,i), yh,i ≈ x(th,i), and vh,i ≈ v(th,i ) be discrete-time iterates
approximating the continuous-time solution trajectory at the discrete time sequence:

0 = th,0 < th,1 < · · · < th,Nh−1 < th,Nh = T .

For a given step size h > 0, we generate the discrete-time iterates

{ xh,i; yh,i; vh,i }Nhi=0 (2.17)

by solving a finite-dimensional subproblem. Using the above iterates, we then
construct discrete-time trajectories by interpolation as follows:

• The state trajectory xh(t) is obtained by piecewise linear interpolation joining
consecutive iterates; specifically, for i = 0, 1, · · · , Nh − 1,

xh(t) � xh,i + xh,i+1 − xh,i
h

, for t ∈ [ th,i , th,i+1 ].

• The algebraic trajectories yh(t) and vh(t) are obtained as piecewise constant
functions; specifically, for i = 0, 1, · · · , Nh − 1,

yh(t) � yh,i+1

vh(t) � vh,i+1

}

for t ∈ [ th,i , th,i+1 ].

It is desirable that these numerical trajectories converge in a sense to be specified,
at least subsequentially, to some limiting trajectories that constitute a weak
solution of the DVI.
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To facilitate the implementation and analysis of the iterations, the discrete-time
subproblems need to be defined carefully. For this purpose, we focus on the case
where the function F(x, y, v) is given by F(x, y, v) = A(x)+B(x)y +C(x)v; cf.
(2.4) for some vector-valued functionA and matrix-valued functions B and C. Note
the linearity in the pair u � (y, v) for fixed x. Let xh,0 = x0. At time step i ≥ 0, we
generate the next iterate (xh,i+1, yh,i+1, vh,i+1) by a backward Euler semi-implicit
scheme:

xh,i+1 = xh,i + h
⎡

⎢
⎣A(x

h,i+1)+ B(xh,i)yh,i+1 + C(xh,i)vh,i+1
︸ ︷︷ ︸

note the presence of the unknown iterates

⎤

⎥
⎦

0 ≤ yh,i+1 ⊥ G(xh,i+1, yh,i+1) ≥ 0

vh,i+1 ∈ SOL(K(xh,i+1, yh,i+1),H(xh,i+1, yh,i+1, •)).

From the first equation, we may solve for xh,i+1 in terms of (xh,i, yh,i+1, uh,i+1)

for all h > 0 sufficiently small, provided that ‖A(x)‖ is bounded uniformly for all
x. Specifically, we have

xh,i+1 = [ I − hA(•) ]−1
{
xh,i + h

(
B(xh,i)yh,i+1 + C(xh,i)vh,i+1

) }
.

(2.18)
This solution function may then be substituted into the complementarity and
variational conditions, yielding: a quasi-variational inequality (QVI):

uh,i+1 �

⎛

⎝
yh,i+1

vh,i+1

⎞

⎠ ∈ SOL

⎛

⎝L̂ h,i

⎛

⎝ uh,i+1
︸ ︷︷ ︸

quasi nature

⎞

⎠ , Φ̂ h,i

⎞

⎠ ,

where L̂h,i (uh,i+1) � R
	1 ×K(xh,i+1, yh,i+1) and

Φ̂ h,i (uh,i+1) �
(
Ĝ h,i(uh,i+1)

Ĥ h,i(uh,i+1)

)

�
(

G(xh,i+1, yh,i+1)

H(xh,i+1, yh,i+1, vh,i+1)

)

with xh,i+1 substituted by the right-hand side in (2.18). Needless to say, the
solvability of the latter QVI is key to the well-definedness of the iterations; more
importantly, we need to demonstrate that the above QVI has a solution for all h > 0
sufficiently small. Such a demonstration is based on [45, Corollary 2.8.4] specialized
to the QVI on hand; namely, with m = 	1 + 	2 where 	1 and 	2 are the dimensions
of the vectors y and v, respectively, and with “cl” and “bd” denoting, respectively,
the closure and boundary of a set, there exists h̄ > 0 such that for all h ∈ (0, h̄],
• L̂h,i : Rm → R

m is closed-valued and convex-valued;
• there exist a bounded open set Ω ⊂ R

m and a vector uh,i;ref ∈ Ω such that
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(a) for every ū ∈ cl Ω , L̂h,i(ū) �= ∅ and the set limit holds: lim
u→ūL̂

h,i(u) = L̂h,i (ū);
(b) zh;ref ∈ L̂h,i (u) for every u ∈ clΩ ; and
(c) the set

{
u ∈ L̂h,i (u) | (u− uh,i;ref)T Ψ̂ h,i(u) < 0

} ∩ bdΩ = ∅.

The above conditions can be shown to hold under the following postulates on the
DVI (2.4):

• A : Rn → R
n is continuous and sup

x∈Rn
‖A(x) ‖ <∞;

• K : Rn × R
	1+ → R

	2 is a nonempty-valued, closed-valued, convex-valued, and
continuous set-valued map;

• there exists vref ∈ K(x, y) for all (x, y) ∈ R
n ×R

	1+ ;

• the map (y, v) "→
(
G(x, y)

H(x, y, v)

)

is strongly monotone on R
	1+ × R

	2 with a

modulus that is independent of x ∈ R
n.

These postulates are very loose and can be sharpened; they are meant to illustrate
the solvability of the subproblems under a set of reasonable assumptions. We will
return to discuss more about this issue for the LCS subsequently.

Having constructed the numerical trajectories
{
(xh(t), yh(t), vh(t)) | h > 0

}
, by

piecewise interpolation, we next address the convergence of these trajectories. The
result below summarizes the criteria for convergence; for a proof, see [102].

Proposition 3 Suppose that there exist positive constants h̄, cx , and cu such that
for all h ∈ (0, h̄], and all integers i = 0, 1, · · · , Nh − 1,

‖uh,i+1 ‖ ≤ cu

(
1 + ‖ xh,i ‖

)
and ‖ xh,i+1−xh,i ‖ ≤ h cx

(
1 + ‖ xh,i ‖

)
.

The following two statements hold:

• boundedness: there exist positive constants c0x , c1x , c0u, and c1u such that for all
h ∈ (0, h̄],

max
0≤i≤Nh

‖ xh,i ‖ ≤ c0x+c1x ‖ xh,0 ‖ and max
1≤i≤Nh

‖ xh,i ‖ ≤ c0u+c1u ‖ xh,0 ‖;

• convergence: there exists a subsequence {hν} ↓ 0 such that the following two
limits exists: xhν → x̂∞ uniformly in [0,T ] and uhν → û∞ = (ŷ∞, v̂∞)
weakly in L2(0,T ) as ν → ∞. �
The steps in the proof of the above theorem are as follows. Apply the Arzelá-

Ascoli Theorem [79, page 57–59] to deduce the uniform convergence of a subse-
quence {̂x hν }ν∈κ to a limit x̂∞ in the supremum, i.e., L∞-norm:

lim
ν(∈κ)→∞ sup

t∈[0,T ]
‖ x̂hν (t)− x̂∞(t) ‖ = 0.



2 Five Lectures on Differential Variational Inequalities 109

Next, apply Alaoglu’s Theorem [79, page 71–72] to deduce the weak convergence
of a further subsequence {̂uhν }ν∈κ ′ , where κ ′ ⊆ κ to a limit û∞, which implies: for
any function ϕ ∈ L2(0,T )

lim
ν(∈κ ′)→∞

∫ T

0
ϕ(s)T û hν ′ (s) ds =

∫ T

0
ϕ(s)T û∞(s) ds.

By Mazur’s Theorem [79, page 88], we deduce the strong convergence of a sequence
of convex combinations of {̂uhν }ν∈κ ′ . A subsequence of such convex combinations
converges pointwise to û∞ for almost all times in [0,T ]; hence by convexity of the
graph Gr(K) of the set-valued map K , it follows that (̂x∞(t), û∞(t)) ∈ Gr(K) for
almost all t ∈ [0,T ].

Ideally, one would want to establish that every limit tuple (̂x∞, ŷ∞, v̂∞) is a
weak solution of the DVI (2.4). Nevertheless, the generality of the setting makes this
not easy; the case where G(x, y) and H(x, y, v) are separable in their arguments
and the set-valued map K is a constant has been analyzed in detail in [102]; the
paper [103] analyzed the convergence of a time-stepping method for solving the
DVI arising from a frictional contact problem with local compliance. In the next
section, we present detailed results for the initial-value LCS (2.3).

2.11 Lecture III: The LCS

Consider the time-invariant, initial-value LCS (2.3):

ẋ = Ax + Bu, x(0) = x0

0 ≤ u ⊥ Cx +Du ≥ 0.
(2.19)

For this system, the semi-implicit scheme becomes a (fully) implicit scheme:

xh,i+1 = xh,i + h (
Axh,i+1 + Buh,i+1

)
, i = 0, 1, · · · , Nh − 1

0 ≤ uh,i+1 ⊥ Cxh,i+1 +Duh,i+1 ≥ 0

Solving for xh,i+1 in the first equation and substituting into the complementarity
condition yields the LCP:

0 ≤ uh,i+1 ⊥ qh,i+1 +Dhuh,i+1 ≥ 0, (2.20)

where properties of the matrix Dh � D − C [ I − hA ]−1 B are central to the well-
definedness and convergence of the scheme. The first thing to point out regarding the
convergence of the numerical trajectories (̂x h, û h) is that the matrix D is required
to be positive semidefinite, albeit not necessarily definite.
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We make several remarks regarding the above iterative algorithm. In general,
the iteration matrix Dh is not necessarily positive semidefinite in spite of the same
property of D. If the LCP (2.20) has multiple solutions, to ensure the boundedness
of at least one such solution, use the least-norm solution obtained from:

minimize
u

‖u ‖2 subject to (2.20);

boundedness means ‖uh,i‖ ≤ ρ (1 + ‖xh,i‖) for some constant ρ > 0. In
general, the above LCP-constrained least-norm problem is a quadratic program
with linear complementarity constraints [16, 17]. When Dh is positive semidefinite
as in the case of a “passive” LCS (see definition below), such a least-norm
solution can be obtained by an iterative procedure that solves a sequence of linear
complementarity subproblems. The same matrix Dh appears in each time step
i = 0, 1, · · · , Nh − 1; thus some kind of warm-start algorithm can be exploited in
practical implementation, if possible, for an initial-value problem. Nevertheless, as
with all time-stepping algorithms, the stepwise procedure is not applicable for two-
point boundary problems such as (instead of x(0) = x0) Mx(0) + Nx(T ) = b,

which couples all the iterates
{
x(0) � xh,0, xh,1, · · · , xh,Nh � x(T )

}
.

In order to present a general convergence result, we need to summarize some
key LCP concepts that are drawn from [38]. Given a real square matrix M , the
LCP-Range of M , denoted LCP-Range(M), is the set of all vectors q for which
the LCP(q,M) is solvable, i.e., SOL(q,M) �= ∅; the LCP-Kernel of M , which we
denote LCP-Kernel(M), is the solution set SOL(0,M) of the homogeneous LCP:
0 ≤ v ⊥ Mv ≥ 0. An R0-matrix is a matrix M for which LCP-Kernel(M) = {0}.
For a given pair of matrices A ∈ R

n×n and C ∈ R
m×n, let O(C,A) denote the

unobservability space of the pair of matrices (C,A); i.e., v ∈ O(C,A) if and only
if CAiv = 0 for all i = 0, 1, · · · , n − 1. The result below employs these concepts;
a proof can be found in [57].

Theorem 3 Suppose the following assumptions hold:

(A) D is positive semidefinite,
(B) Range(C) ⊆ LCP-Range(Dh) for all h > 0 sufficiently small, and
(C) the implication below holds:

LCP-Kernel(D) � u∞ ⊥ s∞ + CBu∞ ∈ [ LCP-Kernel(D)]∗

for some s∞ ∈ LCP-Range(D)

}

⇒ Bu∞ ∈ O(Cβ•, A), where β ≡ {i : (Du∞)i = 0}.
(2.21)

Then there exist an h̄ > 0 such that, for every x0 satisfying Cx0 ∈ LCP-Range(D),
the two trajectories x̂h(t) and ûh(t) generated by the least-norm time-stepping
scheme are well defined for all h ∈ (0, h̄] and there is a sequence {hν} ↓ 0 such that
the following two limits exist: x̂hν (·)→ x̂(·) uniformly on [0,T ] and ûhν (·)→ û(·)
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weakly in L2(0, T ). Moreover, all such limits (̂x(·), û(·)) are weak solutions of the
initial-value LCS (2.19). �

A large class of LCSs that satisfy the assumptions of the above theorem is of
passive type [28, 34]. A linear system Σ(A,B,C,D) given by

ẋ(t) = Ax(t)+ Bz(t)
w(t) = Cx(t)+Dz(t)

(2.22)

is passive if there exits a nonnegative-valued function V : Rn → R+ such that for
all t0 ≤ t1 and all trajectories (z, x,w) satisfying the system (2.22), the following
inequality holds:

V (x(t0))+
∫ t1

t0

zT (t)w(t)dt ≥ V (x(t1)).

Passivity is a fundamental property in linear systems theory; see the two cited
references. Moreover, it is well known that the system Σ(A,B,C,D) is passive
if and only if there exists a symmetric positive semidefinite matrix K such that the
following symmetric matrix:

[
ATK +KA KB − CT
BT K − C −(D +DT )

]

(2.23)

is negative semidefinite. Checking passivity can be accomplished by solving a linear
matrix inequality using methods of semidefinite programming [19].

Corollary 1 If Σ(A,B,C,D) is passive, then the conclusion of Theorem 3
holds. �

2.12 Lecture III: Boundary-Value Problems

A classic family of methods for solving boundary-value ODEs [11, 12, 72] (see also
[132, Section 7.3]) is that of shooting methods. The basic idea behind these methods
is to cast the boundary-value problem as a system of algebraic equations whose
unknown is the initial condition that defines an initial-value ODE. An iterative
method, such as a bisection or Newton method, for solving the algebraic equations
is then applied; each evaluation of the function defining the algebraic equations
requires solving an initial-value ODE. Multiple-shooting methods refine this basic
idea by first partitioning the time interval of the problem into smaller sub-intervals
on each of which a boundary-value problem is solved sequentially. Convergence of
the overall method requires differentiability of the algebraic equations if a Newton-
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type method is employed to facilitate speed-up. In what follows, we apply the basic
idea of a shooting method to the time-invariant, boundary-value DVI:

ẋ = F(x, u)
u ∈ SOL (K,H(x, •))
0 = Ψ (x(0), x(T )).

(2.24)

For simplicity, suppose that the mapping H(x, •) is strongly monotone with a
modulus independent of x. This implies for every x0, the ODE ẋ = F(x, u(x))

with x(0) = x0, where u(x) is the unique solution of the VI (K,H(x, •)), has a
unique solution which we denote x(t; x0). This solution determines the terminal
condition x(T ) uniquely as x(T ; x0). Thus the two-point boundary-value problem
becomes the algebraic equation:

Φ(x0) � Ψ (x0, x(T ; x0)) = 0. (2.25)

As a function of its argument, Φ is typically not differentiable; thus a fast
method such as the classical Newton method is not applicable. Nevertheless, a
“semismooth Newton method” [45, Chapter 7] can be applied provided that Φ is
a semismooth function. In turn, this will be so if for instance the boundary function
Ψ is differentiable and the solution x(T ; •) depends semismoothly on the initial
condition x0. In what follows, we present the semismoothness concept [106] and
the resulting Newton method for finding a root of Φ, which constitutes the basic
shooting method for solving the boundary-value DVI (2.24). We warn the reader
that this approach has not been tested in practice and refinements are surely needed
for the method to be effective.

There are several equivalent definitions of semismoothness. The following
one based on the directional derivative is probably the most elementary without
requiring advanced concepts in nonsmooth analysis.

Definition 1 Let G : Ω ⊆ $n → $m, with Ω open, be a locally Lipschitz
continuous function on Ω . We say that G is semismooth at a point x̄ ∈ Ω if G
is directionally differentiable (thus B(ouligand)-differentiable) near x̄ and such that

lim
x̄ �=x→x̄

‖G ′(x; x − x̄)−G ′(x̄; x − x̄) ‖
‖ x − x̄ ‖ = 0. (2.26)

If the above requirement is strengthened to

lim sup
x̄ �=x→x̄

‖G ′(x; x − x̄)−G ′(x̄; x − x̄) ‖
‖ x − x̄ ‖2 < ∞, (2.27)

we say that G is strongly semismooth at x̄. If G is (strongly) semismooth at each
point ofΩ , then we say thatG is (strongly) semismooth onΩ . �
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Let ΞT � {x(t, ξ0) | t ∈ [0,T ]}, where x(t, ξ) is a solution of the ODE
with initial condition: ẋ = f (x) and x(0) = ξ0. Suppose that f is Lipschitz
continuous and directionally differentiable, thus B(ouligand)-differentiable, in an
open neighborhood NT containingΞT . The following two statements hold:

• x(t, •) is B-differentiable at ξ0 for all t ∈ [0,T ] with the directional derivative
x(t, •)′(ξ0; η) being the unique solution y(t) of the directional ODE:

ẏ(t) = f ′(x(t, ξ0); y); y(0) = η; (2.28)

• if f is semismooth at all points in NT , then x(t, •) is semismooth at ξ0 for all
t ∈ [0,T ].
Before introducing the semismooth-based shooting method, we need to address

the question of when the solution u(x) of the VI (K,H(x, •)) is a semismooth
function of x. A broad class of parametric VIs that possess this property is when
K is a polyhedron, or more generally, a finitely representable convex set satisfying
the constant rank constraint qualification (CRCQ) [45, Chapter 4]. For simplicity,
we present the results for the case where K is a polyhedron. Suppose that u∗ is a
strongly regular solution of the VI (K,H(x∗, •)). Similar to the NCP, there exist
open neighborhoods V and U of x∗ and u∗, respectively, and a B-differentiable
function u : V → U such that for every x ∈ V , u(x) is the unique solution in
U that is a solution of the VI (K,H(x, •)); moreover, the directional derivative
u ′(x∗; dx) at x∗ along a direction dx is given as the unique solution du of the CP:

du ∈ T (K; x∗) ∩ H(x∗, u∗)⊥
︸ ︷︷ ︸

critical cone C (x∗)
JxH(x

∗, u∗)dx + JuH(x∗, u∗)du ∈ [
T (K; x∗) ∩ H(x∗, u∗)⊥ ]∗

du ⊥ JxH(x∗, u∗)dx + JuH(x∗, u∗)du,
(2.29)

where T (K; x∗) is the tangent cone of K at x∗ and H(x∗, u∗)⊥ denotes the
orthogonal complement of the vector H(x∗, u∗).

Returning to the DVI (2.24), we may deduce that, assuming the differentia-
bility of F and H , the strong regularity of the solution u(x(t, ξ0)) of the VI
(K,H(x(t, ξ0), •)), and by combining (2.28) with (2.29), x(t, •) ′(ξ0; η) is the
unique solution y(t) of:

ẏ(t) = JxF (x(t, ξ
0), u(x(t, ξ0)))y + JuF (x(t, ξ0), u(x(t, ξ0)))v,

y(0) = ηv ∈ C (x(t, ξ0))

JxH(x(t, ξ
0), u(x(t, ξ0)))y + JuH(x(t, ξ0), u(x(t, ξ0)))v ∈ [

C (x(t, ξ0))
]∗

v ⊥ JxH(x(t, ξ
0), u(x(t, ξ0)))y + JuH(x(t, ξ0), u(x(t, ξ0)))v,
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or equivalently,

ẋ = F(x, u), x(0) = ξ0

ẏ = JxF (x, u)y + JuF (x, u)v, y(0) = η

u ∈ SOL(K,H(x, •))
C (x) � v ⊥ JxH(x, u)y + JuH(x, u)v ∈ [C (x(t)) ]∗ .

Let

z �
(
x

y

)

, w �
(
u

v

)

, z0 �
(
ξ 0

η

)

, F̂ (z,w) �
(

F(x, u)

JxF (x, u)y + JuF (x, u)v

)

K̂(z) � K × C (x), and Ĥ (z,w) �
(

Ψ (x, u)

JxH(x, u)y + JuH(x, u)v

)

;

we deduce that the triple (x(t, ξ0), u(x(t, ξ0)), x(t, •) ′(ξ0; η)) is the unique triplet
(x, u, y), which together with an auxiliary variable z, satisfies the DVI:

ż = F̂ (z,w); z(0) = (ξ0, η)

w ∈ SOL(K̂(z), Ĥ ).

This is a further instance of a DVI where the defining set of the variational condition
varies with the state variable; cf. (2.4).

Returning to the algebraic equation reformulation (2.25) of the boundary-value
DVI (2.4), we sketch the semismooth Newton method for finding a zero x0 of
the composite function Φ(x0) = Ψ (x0, x(T , x0)). This is an iterative method
wherein at each iteration ν, given a candidate zero ξν , we compute a generalized
Jacobian matrix A(ξν) of Φ at ξ ν and then let the next iterate xν+1 be the (unique)
solution of the (algebraic) linear equation: Φ(ξ ν) + A(ξ ν)(ξ − ξ0) = 0. This is
the version of the method where a constant unit step size is employed. Under a
suitable nonsingularity assumption at an isolated zero of Φ whose semismoothness
is assumed, local superlinear convergence of the generated sequence of (vector)
iterates can be proved; see [45, Chapter 7]. To complete the description of the
method, the matrix A(ξ ν) needs to be specified. As a composite function of Ψ and
the solution function x(T , •), A(ξ ν) can be obtained by the chain rule provided
that a generalized Jacobian matrix of the latter function at the current iterate ξν is
available. Details of this can be found in [100] which also contains a statement of
convergence of the overall method.
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2.13 Lecture III: Summary

In this lecture, we have

• introduced a basic numerical time-stepping method for solving the DVI (2.4),
• provided sufficient conditions for the weak, subsequential convergence of the

method,
• specialized the method to the LCS and presented sharpened convergence results,

including the case of a passive system, and
• outlined a semismooth Newton method for solving an algebraic equation refor-

mulation of a boundary-value problem, whose practical implementation requires
further study.

2.14 Lecture IV: Linear-Quadratic Optimal Control
Problems

An optimal control problem is the building block of a multi-agent optimization
problem in continuous time. In this lecture, we discuss the linear-quadratic (LQ)
case of the (single-agent) optimal control problem in preparation for the exposition
of the multi-agent problem in the next lecture. The LQ optimal control problem
with mixed state-control constraints is to find continuous-time trajectories (x, u) :
[0,T ] → R

n+m to

minimize
x,u

V (x, u) � cT x(T )+ 1
2 x(T )

T Sx(T )

+
∫ T

0

⎡

⎣

(
x(t)

u(t)

)T (
p(t)

q(t)

)

+ 1
2

(
x(t)

u(t)

)T [
P Q

QT R

](
x(t)

u(t)

)⎤

⎦ dt

subject to x(0) = ξ, and for almost all t ∈ [ 0,T ]
dx(t)

dt
� ẋ(t) = Ax(t)+ Bu(t)+ r(t)

and Cx(t)+Du(t)+ f ≥ 0
︸ ︷︷ ︸

mixed state-control constraints

,

(2.30)

where the matrices Ξ �
[
P Q

QT R

]

and S are symmetric positive semidefinite.

Unlike these time-invariant matrices and the constant vector f , (p; q; r) is a triple
of properly dimensioned Lipschitz continuous vector functions. The semi-coercivity
assumption on the objective function, as opposed to coercivity, is a major departure
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of this setting from the voluminous literature on this problem. For one thing, the
existence of an optimal solution is no longer a trivial matter. Ideally, we should aim
at deriving an analog of Proposition 4 below for a convex quadratic program in finite
dimensions, which we denote QP(Z(b), e,M):

minimize
z∈Z(b)

eT z + 1
2 z
TMz,

where M is an m × m symmetric positive semidefinite matrix, Z(b) � {z ∈ R
m |

Ez + b ≥ 0}, where E is a given matrix and e and b are given vectors, all of
appropriate orders. It is well known that the polyhedronZ(b) has the same recession
coneZ∞ � {v ∈ R

m | Ev ≥ 0} for all b for which Z(b) �= ∅. Let SOL(Z(b), e,M)
denote the optimal solution set of the above QP.

Proposition 4 Let M be symmetric positive semidefinite and let E be given. The
following three statements hold.

(a) For any vector b for which Z(b) �= ∅, a necessary and sufficient condition for
the QP(Z(b), e,M) to have an optimal solution is that eT d ≥ 0 for all d in
Z∞ ∩ ker(M).

(b) If Z∞ ∩ ker(M) = {0}, then SOL(Z(b), e,M) �= ∅ for all (e, b) for which
Z(b) �= ∅.

(c) If SOL(Z(b), e,M) �= ∅, then SOL(Z(b), e,M) = {z ∈ Z(b) | Mz =
Mẑ, eT ẑ = eT ẑ} for any optimal solution ẑ; thus MSOL(Z(b), e,M) is a
singleton whenever it is nonempty.

Extending the KKT conditions for the QP(Z(b), e,M):

0 = e +Mz− ET μ
0 ≤ μ ⊥ Ez+ b ≥ 0,

we can derive a 2-point BV-LCS formulation of (2.30) as follows. We start by
defining the Hamiltonian function:

H(x, u, λ) � xT p + uT q + 1
2 x

T Px + xTQu+ 1
2 u

T Ru+ λT (Ax + Bu+ r ) ,

where λ is the costate (also called adjoint) variable of the ODE ẋ(t) = Ax(t) +
Bu(t)+ r , and the Lagrangian function:

L(x, u, λ,μ) � H(x, u, λ)− μT (Cx +Du+ f ) ,

where μ is the Lagrange multiplier of the algebraic constraint: Cx +Du + f ≥ 0.
Inspired by the Pontryagin Principle [139, Section 6.2] and [61, 112], we introduce
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the following DAVI:

(
λ̇(t)

ẋ(t)

)

=
(−p(t)
r(t)

)

+
[−AT −P

0 A

](
λ(t)

x(t)

)

+
[−Q
B

]

u(t)+
[
C T

0

]

μ(t)

0 = q(t)+QT x(t)+ Ru(t)+ BT λ(t)−DT μ(t)
0 ≤ μ(t) ⊥ Cx(t)+Du(t) + f ≥ 0

}

[

⇒ u(t) ∈ argmin
u∈U(x(t))

H (x(t), u, λ(t))

]

x(0) = ξ and λ(T ) = c + Sx(T ),

(2.31)

where U(x) � {u ∈ R
m | Cx+Du+ f ≥ 0}. Note that the above is a DAVI with a

boundary condition:λ(T ) = c+Sx(T ); this is one challenge of this system. Another
challenge is due to the mixed state-control constraint: Cx(t) + Du(t) + f ≥ 0.
While the membership u(t) ∈ argmin

u∈U(x(t))
H (x(t), u, λ(t)) implies the existence of a

multiplier μ̂(t) such that

0 = q(t)+QT x(t)+ Ru(t)+ BT λ(t)−DT μ̂(t)
0 ≤ μ̂(t) ⊥ Cx(t)+Du(t)+ f ≥ 0,

we seek in (2.31) a particular multiplier μ(t) that also satisfies the ODE. So far, we
have only formally written down the formulation (2.31) without connecting it to the
optimal control problem (2.30). As a DAVI with (x, λ) as the pair of differential
variables and (u, μ) as the pair of algebraic variables, the tuple (x, u, λ,μ) is a
weak solution of (2.31) if (i) (x, λ) is absolutely continuous and (u, μ) is integrable
on [0,T ], (ii) the differential equation and the two algebraic conditions hold for
almost all t ∈ (0,T ), and (iii) the initial and boundary conditions are satisfied.
In addition to the positive semidefiniteness assumption of the matrices Ξ and S,
we need three more blanket conditions assumed to hold throughout the following
discussion:

• (a feasibility assumption) a continuously differentiable function x̂fs with x̂fs(0) =
ξ and a continuous function ûfs exist such that for all t ∈ [0, T ]: dx̂fs(t)/dt =
Ax̂fs(t)+ Bûfs(t)+ r(t) and ûfs(t) ∈ U(̂xfs(t));

• (a primal condition) [Ru = 0, Du ≥ 0] implies u = 0;
• (a dual condition) [DTμ = 0, μ ≥ 0] implies (CAiB)T μ = 0 for all integers
i = 0, · · · , n− 1, or equivalently, for all nonnegative integers i.
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It is easy to see that the primal Slater condition: [∃ û such that Dû > 0] implies
the dual condition, but not conversely. For more discussion of the above conditions,
particularly the last one, see [59].

Here is a roadmap of the main Theorem 4 below. It starts with the above
postulates, under which part (I) asserts the existence of a weak solution of the
DAVI (2.31) in the sense of Carathéodory. The proof of part (I) is based on
a constructive numerical method. Part (II) of Theorem 4 asserts that any weak
solution of the DAVI yields an optimal solution of (2.30); this establishes the
sufficiency of the Pontryagin optimality principle. The proof of this part is based
on a direct verification of the assertion, from which we can immediately obtain
several properties characterizing an optimal solution of (2.30). These properties are
summarized in part (III) of the theorem. From these properties, part (IV) shows
that any optimal solution of (2.30) must be a weak solution of the DAVI (2.31),
thereby establishing the necessity of the Pontryagin optimality principle. Finally,
part (V) asserts the uniqueness of the solution obtained from part (I) under the
positive definiteness of the matrix R.

Theorem 4 Under the above setting and assumptions, the following five statements
(I–V) hold.
(I: Solvability of the DAVI) The DAVI (2.31) has a weak solution (x∗, λ∗, u∗, μ∗).
(II: Sufficiency of Pontryagin) If (x∗, λ∗, u∗, μ∗) is any weak solution of (2.31), then
the pair (x∗, u∗) is an optimal solution of the problem (2.30).
(III: Gradient characterization of optimal solutions) If (̂x, û) and (̃x, ũ) are any two
optimal solutions of (2.30), then the following three properties hold:

(a) for almost all t ∈ [0, T ],
[
P Q

QT R

](
x̂(t)− x̃(t)
û(t)− ũ(t)

)

= 0,

(b) Sx̂(T ) = Sx̃(T ), and

(c) cT (̂x(T )− x̃(T ))+
∫ T

0

(
p(t)

q(t)

)T (
x̂(t)− x̃(t)
û(t)− ũ(t)

)

dt = 0.

Thus given any optimal solution (̂x, û) of (2.30), a feasible tuple (̃x, ũ) of (2.30) is
optimal if and only if conditions (a), (b), and (c) hold.
(IV: Necessity of Pontryagin) Let (x∗, λ∗, u∗, μ∗) be the tuple obtained from part
(I). A feasible tuple (̃x, ũ) of (2.30) is optimal if and only if (̃x, λ∗, ũ, μ∗) is a weak
solution of (2.31).
(V: Uniqueness under positive definiteness) If R is positive definite, then for any two
optimal solutions (̂x, û) and (̃x, ũ) of (2.30), x̂ = x̃ everywhere on [0, T ] and û = ũ
almost everywhere on [0, T ]. In this case (2.30) has a unique optimal solution
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( x̂, û ) such that x̂ is continuously differentiable and û is continuous on [0, T ], and
for any optimal λ̂, û(t) ∈ argmin

u∈U(̂x(t))
H (̂x(t), u, λ̂(t)) for all t ∈ [0, T ]. �

It should be noted that in part (V) of the above, the uniqueness requires the
positive definiteness of the principal block R of Ξ , and not of this entire matrix
Ξ , which nonetheless is assumed to be positive semidefinite. The reason is twofold:
one: via the ODE, the state variable x can be solved uniquely in terms of the control
variable u; two: part (I) implies that the difference û− ũ is equal to R−1Qx̂ − x̃ for
any two solution pairs (̃x, ũ) and (̃x, ũ). Combining these two consequences yields
the uniqueness in part (V) under the positive definiteness assumption of R. This is
the common case treated in the optimal control literature.

2.14.1 The Time-Discretized Subproblems

A general time-stepping method for solving the LQ problem (2.30) proceeds
similarly to (2.16), albeith with suitable modifications as described below. Let h > 0

be an arbitrary step size such that Nh � T

h
is a positive integer. We partition the

interval [0,T ] into Nh subintervals each of equal length h:

0 � th,0 < th,1 < th,2 < · · · < th,Nh−1 < th,Nh � T .

Thus th,i+1 = th,i + h for all i = 0, 1, · · · , Nh − 1. We step forward in time

and calculate the state iterates xh �
{
xh,i

}Nh
i=0 and control iterates uh �

{
uh,i

}Nh
i=1

by solving Nh finite-dimensional convex quadratic subprograms, provided that the
latter are feasible. From these discrete-time iterates, continuous-time numerical
trajectories are constructed by piecewise linear and piecewise constant interpolation,
respectively. Specifically, define the functions x̂ h and û h on the interval [0, T ]: for
all i = 0, · · · , Nh − 1:

x̂ h(t) � xh,i + t − th,i
h

( xh,i+1 − xh,i ), ∀ t ∈ [ th,i , th,i+1 ]
û h(t) � uh,i+1, ∀ t ∈ ( th,i , th,i+1 ].

(2.32)

The convergence of these trajectories as the step size h ↓ 0 to an optimal solution
of the LQ control problem (2.30) is a main concern in the subsequent analysis.
Neverthless, since the DAVI (2.31) is essentially a boundary-value problem, care is
needed to define the discretized subproblems so that the iterates (xh,uh) are well
defined. Furthermore, since the original problem (2.30) is an infinite-dimensional
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quadratic program, one would like the subproblems to be finite-dimensional QPs.
The multipliers of the constraints in the latter QPs will then define the adjoint
trajectory λ̂ h(t) and the algebraic trajectory μ̂ h(t); see below.

In an attempt to provide a common framework for the analysis of the backward
Euler discretization and the model predictive control scheme [48, 50, 92] that has
a long tradition in optimal control problems, a unified discretization method was
proposed in [59] that employed several families of matrices {B(h)}, {A(h)}, {E(h)}
and {Ê(h)} parametrized by the step h > 0; these matrices satisfy the following
limit properties:

lim
h↓0

A(h)− I
h

= A; lim
h↓0

B(h)

h
= B; and lim

h↓0

E(h)

h
= lim

h↓0

Ê(h)

h
= I.

Furthermore, in order to ensure that each discretized subproblem is solvable, a two-
step procedure was introduced: the first step computes the least residual of feasibility
of such a subproblem by solving the linear program:

ρh(ξ) � minimum
ρ; {xh,i ,uh,i}Nhi=1

ρ

subject to xh,0 = ξ, ρ ≥ 0

and for i = 0, 1, · · · , Nh :

(2.33)

⎧
⎨

⎩

xh,i+1 = [
θ E(h) rh,i + (1 − θ) Ê(h) rh,i+1

]+ A(h)xh,i + B(h)uh,i+1

Cxh,i+1 +Duh,i+1 + f + ρ 1 ≥ 0

⎫
⎬

⎭
,

where rh,i � r(th,i ) for all i = 0, 1, · · · , Nh, and 1 is the vector of all ones.
The above linear program must have a finite optimal solution and the optimal
objective value ρh(ξ) satisfies lim

h↓0
ρh(ξ) = 0; this limit ensures that the pair

of limit trajectories x̂ h(t) and û h(t) constructed from the discrete-time iterates
will be feasible to (2.30) for almost all times t ∈ [0,T ]. The scalar θ ∈ [0, 1]
adds flexibility to the above formulation and leads to different specific schemes
with proper choices. For instance, when θ = 0, by letting Ê(h) � hA(h),
A(h) � (I − hA)−1, and B(h) � hA(h)B, we obtain a standard backward
Euler discretization of the ODE constraint in (2.30). When θ = 1, by letting

E(h) �
∫ h

0
eAsds, A(h) � eAh, and B(h) �

∫ h

0
eAsdsB, we obtain the MPC

approximation of this ODE.
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Employing the minimum residual ρh(ξ), the relaxed, unified time-stepping
method solves the following (feasible) convex quadratic program at time th,i+1:

(Q̂P
h
) : minimize

{xh,i ,uh,i}Nh+1
i=1

Vh(xh,uh) � ( xh,Nh+1 )T
(

c + 1

2
Sxh,Nh+1

)

+h
2

Nh∑

i=0

⎧
⎨

⎩
2

(
θxh,i + (1 − θ)xh,i+1

uh,i+1

)T (
ph,i+1

qh,i+1

)

+
(
θxh,i + (1 − θ)xh,i+1

uh,i+1

)T [
P Q

QT R

](
θxh,i + (1 − θ)xh,i+1

uh,i+1

)⎫
⎬

⎭

subject to xh,0 = ξ, and for i = 0, 1, · · · , Nh :
⎧
⎪⎨

⎪⎩

xh,i+1 = [
θ E(h) rh,i + (1 − θ) Ê(h) rh,i+1

]+ A(h)xh,i + B(h)uh,i+1

f + Cxh,i+1 +Duh,i+1 + ρh(ξ) 1
︸ ︷︷ ︸

relaxed feasibility

≥ 0

⎫
⎪⎬

⎪⎭
.

The primal condition on the pair (R,D) and the use of the least residual ρh(ξ) are
sufficient to ensure that an optimal solution to the above QP exists. Notice that
unlike the case in Lecture III of an initial-value DVI (2.16) or the LCS (2.19),
the Q̂P

h
is coupled in the discrete-time iterates and does not decompose into

individual subproblems according to the time steps. Thus this quadratic subprogram
is potentially of very large size and its practical solution requires care.

Letting {λh,i}Nhi=0 be the multipliers of the discrete-time state constraints and

{μh,i+1}Nhi=0 be the multipliers of the algebraic state-control inequalities, we define
the λ-trajectory similarly to the x-trajectory; namely, for i = 0, · · · , Nh,

λ̂ h(t) � λh,i + t − th,i
h

( λh,i+1 − λh,i ), ∀ t ∈ [ th,i , th,i+1 ],

with λh,Nh+1 � c + Sxh,Nh+1, and the μ-trajectory similarly to the u-trajectory;
namely, for i = 0, · · · , Nh,

μ̂ h(t) � μh,i+1

h
, ∀ t ∈ ( th,i , th,i+1 ].

The convergence of the numerical trajectories is formally stated in the theorem
below.

Theorem 5 Assume the setting state above. Let x̂h(t) and ûh(t) be as defined by
(2.32) and λ̂ h(t) and μ̂ h(t) as above. The following four statements hold.
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(a) There exists a sequence of step sizes {hν} ↓ 0 such that the two limits exist:(
x̂ hν , λ̂ hν

) → (
x̂, λ̂

)
uniformly on [0, T ] and

(
û hν , μ̂ hν

) → (̂u, μ̂) weakly
in L2(0, T ); moreover, x̂ and λ̂ are Lipschitz continuous.

(b) The sequences

{[
P Q

QT R

](
x̂ h

û h

)}

and
{
DT μ̂h

}
converge to

[
P Q

QT R

](
x̂

û

)

and DT μ̂ uniformly on [0, T ], respectively.
(c) Any limit tuple (̂x, û, λ̂, μ̂) from (a) is a weak solution of (2.31); thus (̂x, û) is

an optimal solution of (2.30).
(d) Part (I) of Theorem 4 holds. �

The proof of the above theorem hinges on establishing the bounds in Proposi-
tion 3 for the differential iterates (xh,i, λh,i ) and the algebraic iterates (uh,i, μh,i ).
This is highly technical, partly due the relaxed assumptions we have made—
e.g., the positive semidefiniteness, instead of positive definiteness of the matrix

Ξ �
[
P Q

QT R

]

—and partly due to the boundary-value nature of the DAVI. Details

can be found in [59].
When R is positive definite, we can establish the uniform convergence of the

u-variable by redefining the discrete-time trajectory û h using piecewise linear
interpolation instead of the piecewise constant interpolation in the semidefinite case.

First notice that uh,0 is not included in the (Q̂P
h
). By letting uh,0 be the unique

solution of the QP at the initial time t = 0,

minimize
u∈U(ξ)

[
qh,0 + h−1B(h)T λh,0 +QT ξ

]T
u+ 1

2 u
T Ru,

we redefine

ûh(t) � uh,i + t − th,i
h

( uh,i+1 − uh,i ) ∀ t ∈ [ th,i , th,i+1 ]. (2.34)

It can be shown that the sequences of state and control trajectories {̂x h} and {̂uh}
converge, respectively, to the unique optimal solution (̂x, û) of the problem (2.30)
with x̂ being continuously differentiable and û Lipschitz continuous on [0, T ]. We
omit the details.

2.15 Lecture IV: Summary

In this lecture, we have

• introduced the linear-quadratic optimal control problem with mixed state-control
constraints

• described a time-stepping method for solving the problem that unifies time
stepping and model predictive control, and

• presented a convergence result under a set of assumptions.
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This development is the basis for extension to a multi-agent non-cooperative game
where each player solves such an LQ optimal control problem parameterized by the
rivals’ time-dependent strategies.

2.16 Lecture V: Open-Loop Differential Nash Games

Non-cooperative game theory provides a mathematical framework for conflict res-
olution among multiple selfish players each seeking to optimize his/her individual
objective function that is impacted by the rivals’ decisions and subject to constraints
that may be private, coupled, or shared. A solution concept of such a game was
introduced by John Nash and has been known as a Nash equilibrium. There have
been several recent surveys on the static Nash equilibrium problem defined in terms
of multiple finite-dimensional optimization problems, one for each player; see e.g.
[44, 46] where the reader can also find an extensive literature including historical
account, theory, algorithms, and selected applications. This lecture pertains to the
Nash equilibrium problem (NEP) defined in continuous time wherein each player’s
optimization problem is the single-agent LQ optimal control problem discussed in
the last lecture and extended herein to the case of multiple agents. The discussion
below is drawn from the recently published paper [110].

Specifically, we consider a linear-quadratic (LQ) N-player noncooperative game
on the time interval [0,T ], where T < ∞ is the finite horizon and N is the
number of players of the game. Each player i ∈ {1, · · · , N} chooses an absolutely
continuous state function xi : [0,T ] → R

ni and a bounded measurable (thus
integrable) control function ui : [0,T ] → R

mi for some positive integers ni andmi
via the solution of a LQ optimal control problem. These state and control variables
are constrained by a player-specific ODE and a linear inequality system.

Notation x−i �
(
xj

)N
i �=j=1; u−i �

(
uj

)N
i �=j=1 denote the rivals’ pairs of state and

control variables, respectively.
Anticipating the pair (x−i , u−i ) of rivals’ trajectory and treating only private

constraints, player i solves

minimize
xi ,ui

θi(xi, x−i , ui , u−i ) � xi(T )T

(

ci +
N∑

i ′=1

Wii ′ xi ′(T )

)

+

∫ T

0

(
xi(t)

ui(t)

)T ((
pi(t)

qi(t)

)

+
N∑

i ′=1

[
Pii ′ Qii ′

Rii ′ Sii ′

] (
xi ′(t)

ui ′(t)

))

dt

subject to xi(0) = ξi and for almost all t ∈ [ 0,T ] :
ẋi(t) = ri(t)+ Aixi(t)+ Biui(t)

and fi + Cixi(t)+Diui(t) ≥ 0,

(2.35)
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where each Wii and

[
Pii Qii

Rii Sii

]

are symmetric positive semidefinite, resulting in

(2.35) being a convex LQ optimal control problem in player i’s variables. The other
notations are extensions of (2.30) that is the case of a single player. Moreover, the
assumptions previously introduced for (2.30) extend to each player’s problem in the
game.

An aggregated pair of trajectories (x∗,u∗), where x∗ �
(
x∗i

)N
i=1 and u∗ �

(
u∗i

)N
i=1, is a Nash equilibrium (NE) of the above game if for each i = 1, · · · , N ,

(x∗i , u∗i ) ∈ argmin
(xi ,ui)

θi(xi, x
∗−i , ui, u∗−i )

subject to (xi, ui) feasible to (2.35).

Toward the analysis of this game, we distinguish two cases:

• Ξii ′ �
[
Pii ′ Qii ′

Rii ′ Sii ′

]

=
[
Pi ′i Qi ′i

Ri ′i Si ′i

]T

� ΞT
i ′i and Wii ′ = WT

i ′i for all i �= i ′,

reflecting the symmetric impact of the strategy of player i ′ on player i’s objective
function and vice versa.

• (Wii ′,Ξii ′) �=
(
WT
i ′i , Ξ

T
i ′i

)
for some i �= i ′, reflecting the asymmetric impact of

the strategy of player i ′ on player i’s objective function and vice versa.

The treatment of these two cases is different. In the symmetric case, we show that a
NE of the game can be obtained as a stationary solution of a single optimal control
problem with an objective function that is the sum of the players’ objectives and
whose constraints are the Cartesian product of the individual players’ constraints.
In the asymmetric case, we provide a best-response algorithm to constructively
establish the existence of a NE to the game; such an algorithm iteratively solves
single-player LQ optimal control problems by fixing the rivals’ variables at their
current iterates.

2.16.1 The Symmetric Case

Writing the symmetric assumption more succinctly, we assume that the matrices W
and Ξ are symmetric positive semidefinite, where

W �
[

[Wii ′ ]N
i,i ′=1 + diag(Wii )Ni= 1

]

Ξ �

⎡

⎣
P Q

R S

⎤

⎦ �

⎡

⎣
[Pii ′ ]Ni,i ′=1 + diag(Pii )Ni= 1 [Qii ′ ]Ni,i ′=1 + diag(Qii)Ni= 1

[Rii ′ ]Ni,i ′=1 + diag(Rii)Ni= 1 [Sii ′ ]Ni,i ′=1 + diag(Sii )Ni= 1

⎤

⎦
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The aggregated LQ optimal control problem in the variables (x,u) is then

minimize
x,u

x(T )T
[

c + 1
2 Wx(T )

]
+

∫ T

0

(
x(t)

u(t)

)T ((
p(t)

q(t)

)

+ 1
2

[
P Q

R S

](
x(t)

u(t)

))

dt

subject to xi(0) = ξi for all i ∈ {1, · · · , N} and almost all t ∈ [0,T ] :
ẋi(t) = ri (t)+ Aixi(t)+ Biui(t),

and fi + Cixi(t)+Diui(t) ≥ 0.

(2.36)

Theorem 6 Under the above symmetry assumption and the conditions on each of
the players’ problems set forth in Lecture IV, the following statements hold between
the N-person differential Nash game and the aggregated optimal control problem
(2.36):

• Equivalence: A pair (x∗,u∗) is a NE if and only if (x∗,u∗) is an optimal solution
of the aggregate optimal control problem.

• Existence: A NE exists such that x∗ is absolutely continuous and u∗ is square-
integrable on [ 0,T ].

• Uniqueness: If in addition S is positive definite, then (x∗,u∗) is the unique NE
such that x∗ is continuously differentiable and u∗ is Lipschitz continuous on
[ 0,T ].

• Computation: A NE can be obtained as the limit of a sequence of numerical
trajectories obtained by discretizing the optimal control problem (2.36) as
described in Lecture IV. �
It should be noted that while the symmetry assumption of the matrices W

and Ξ are essential for the equivalence between the game and the single optimal
control formulation, the positive semidefiniteness of these matrices makes the
problem (2.36) a convex problem, albeit in continuous time, to which the time-
discretization method is applicable for its numerical solution. Without the positive
semidefiniteness condition, we should settle for a solution to the DAVI formulation
of (2.36) that is only a stationary solution but not necessarily a globally optimal
solution. In this case, the solution method of the last Lecture needs to be examined
for applicability and its convergence requires an extended proof.

2.16.2 The Asymmetric Case

In addition to the assumptions for the individual players’ problems, the asymmetric
case requires a few more conditions that are motivated by the convergence analysis
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of the best-response scheme for the static NEP. These additional conditions are
stated below:

(̂A) For all i = 1, · · · , N , the matrices Ξii are positive definite with minimum
eigenvalues σΞi > 0; the matricesWii remain (symmetric) positive semidefinite.

(W) For all i = 1, · · · , N , the matrices Wii ′ = 0 for all i ′ �= i; (to somewhat
simplify the notation). [Otherwise, the matrix Γ needs to be modified.]

(̂D) For all i = 1, · · · , N , the following implication holds: Diui ≥ 0 ⇒ ui = 0,
implying the boundedness of the feasible controls

ui ∈ Ui(xi) �
{
u ∈ R

mi | fi + Cixi +Diui ≥ 0
}
, for all x.

Define the matrix Γ � [Γii ′ ]N
i,i′=1, where

Γii ′ �

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = i ′
1

√
σΞi σ

Ξ
i ′

‖Ξii ′ ‖ if i �= i ′,

A Key Postulate The spectral radius ρ(Γ ) < 1.
Dating back to the convergence analysis of fixed-point iterations for solving

systems of linear equations [96] and extending to splitting methods for the linear
complementarity problems [38], the spectral radius condition generalizes the well-
known property of (strictly) diagonally dominance and has been key to the
convergence of best-response algorithms for static games; see e.g. [84, 98]. The
interesting fact is that this spectral radius condition remains key in the continuous-
time game.

The following is a Jacobi-type iterative algorithm for solving the continuous-
time non-cooperative game. A particular feature of the algorithm is that it is
of the distributed type, meaning that each player can update his/her response
simultaneously and independently of the other players; after such an update a
synchronization occurs leading to a new iteration. A sequential Gauss-Seidel type
algorithm can be stated; we omit the details.

A Continuous-Time Best-Response Algorithm Given a pair of state-control
trajectories (xν,uν) at the beginning of iteration ν + 1, where xν is continuously
differentiable and uν is Lipschitz continuous, we compute the next pair of such
trajectory (xν+1,uν+1) by solvingN LQ optimal control problems (2.35), where for
i = 1, · · · , N , the i-th such LQ problem solves for the pair (xν+1

i , uν+1
i ) from (2.35)

by fixing (xj , uj ) at (xνj , u
ν
j ) for all j �= i. �

The above is a continuous-time distributed algorithm that requires solving
LQ subproblems in parallel; in turn each such subproblem is solved by time
discretization that leads to the solution of finite-dimensional quadratic programs.
This is in contrast to first discretization that results in solving finite-dimensional
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subgames, which can in turn be solved by a distributed algorithm (in discrete time).
The relative efficiency of these two approaches: first best-response (in continuous
time) followed by discretization versus first discretization followed by best-response
(in discrete tim) on applied problem has yet to be understood.

The convergence of the above algorithm is summarized in the following result
whose proof can be found in [110].

Theorem 7 In the above setting, the following two statements hold for the sequence
{(xνi , uνi )} generated by the Jacobi iterative algorithm.

• (Well-definedness) The sequence is well-defined with xνi being continuously
differentiable and uνi Lipschitz continuous on [ 0,T ] for all ν.

• (Contraction and strong convergence) The sequence contracts and converges
strongly to a square-integrable, thus integrable, limit (x∞i (t), u∞i (t))

N
i=1 in the

space L2[ 0,T ] that is the unique NE of the differential LQ game. Indeed, it
holds that

eν ≤ Γ eν−1, ∀ ν = 1, 2, · · · ,

where eν �
(
eνi

)N
i=1, with eνi �

√
σΞi

√
√
√
√

∫ T

0

∥
∥
∥
∥
∥

(
xνi (t)− xν+1

i (t)

uνi (t)− uν+1
i (t)

)∥
∥
∥
∥
∥

2

dt;

moreover, strong convergence means that

lim
ν→∞

∫ T

0

∥
∥
∥
∥
∥

(
xνi (t)− x∞i (t)
uνi (t)− u∞i (t)

)∥
∥
∥
∥
∥
dt = 0.

2.16.3 Two Illustrative Examples

Illustrating the abstract framing of the symmetric and asymmetric problems in the
previous two sections, we present two concrete examples of how such problems may
arise in applied game theory. The first example model is an adaptation of the well-
known Nash-Cournot equilibrium problem while the second is a conjectured supply
function equilibrium problem. Although these types of problems are typically
studied in a static setting, the differential formulations presented herein represent
natural problem extensions for which solution existence can be established from the
previous results. In the Nash-Cournot version of this problem, each player believes
that their output affects the commodity price which is represented as a function of
total output. For a two-player, two-node problem with a linear pricing function and
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quadratic cost functions, let player 1’s optimal control problem be

minimize
g1, s1, r1

∫ T

0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g11(t)

g12(t)

s11(t)

s12(t)

r11(t)

r12(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 − w(t)
a12

−P 0
1 + w(t)

−P 0
2

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11

b12

P 0
1

Q0
1
P 0

2

Q0
2

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g11(t)

g12(t)

s11(t)

s12(t)

r11(t)

r12(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

P 0
1

Q0
1
P 0

2

Q0
2

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g21(t)

g22(t)

s21(t)

s22(t)

r21(t)

r22(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

dt

=
∫ T

0

⎧
⎨

⎩

2∑

j=1

(

a1j g1j (t)+ b1j g1j (t)
2 −

[

P 0
j −

P 0
j

Q0
j

(s1j (t)+ s2j (t))
]

s1j (t)

)

+ (s11(t)− g11(t))w(t)} dt

subject to g11(0) = g0
11, g12(0) = g0

12, and for almost all t ∈ [ 0,T ] :
ġ11(t) = r11(t)

ġ12(t) = r12(t)

−r1j + r1j (t) ≥ 0 for j = 1, 2

r1j − r1j (t) ≥ 0 for j = 1, 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒ r11 ≤ ġ11(t) ≤ r11

r12 ≤ ġ12(t) ≤ r12

and − g11(t)− g12(t) + s11(t)+ s12(t) ≥ 0,
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where the state variables are {gij (t)}2
i,j = 1, representing player i’s production at

node j at time t , and the control variables are {sij (t), rij (t)}2
i,j = 1, representing

player i’s sales and ramp rate (instantaneous change in production) at node j at
time t , respectively. The term aij gij (t)+ bij gij (t)2 is the quadratic production cost

function, P 0
j − P 0

j

Q0
j

(
2∑

i=1

sij (t)

)

is the linear nodal pricing equation at time t with

intercept P 0
j and slope

P 0
j

Q0
j

where P 0
j andQ0

j are positive, and (sij (t)− gij (t))w(t)
is the transportation cost with w(t) being the marginal directional shipment cost at
time t . The first group of constraints describes generation ramp rates, namely that
the rate of generation change for player i at node j is bounded by rij and rij . The
last two constraints equate total generation with total sales.

Player 2’s objective function is easily shown to be identical to that given above
except with 1 and 2 interchanged in player index i. Therefore, it is apparent that

Ξ �
[
Ξ11 Ξ12

Ξ21 Ξ22

]

is the symmetric matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2b11

2b12

2
P 0

1

Q0
1

P 0
1

Q0
1

2
P 0

2

Q0
2

P 0
2

Q0
2

0

0

2b21

2b22

P 0
1

Q0
1

2
P 0

1

Q0
1

P 0
2

Q0
2

2
P 0

2

Q0
2

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is not difficult to verify that the matrix Ξ is positive semidefinite.
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We next turn our attention to a conjectured supply function (CSF) problem [40,
69, 70] to demonstrate the existence of games that take an asymmetric form. In
the Nash-Cournot problem, symmetry arises from the assumptions that each player
uses the same commodity pricing function and that no player anticipates competitor
production/sales changes with respect to price. In a conjectured supply function
equilibrium problem, players instead use a function to predict how total competitor
production will change based on price. For this example, we will simplify the model
to include only one node so that generation and sales quantities are equivalent and
transmission is not needed.

For player i, let the function σi(G−i (t), pi(t), t) represent the relationship
between price and total competitor production in time t . For our linear-quadratic
problem, we will define

σi(G−i (t), pi(t), t) � G−i (t)+ βi(G−i (t), p∗i (t), t)(pi (t)− p∗i (t)),

whereG−i (t) is the total amount of competitor generation expected at the specified
equilibrium price p∗i (t) at time t . Notice that players may expect different equi-
librium price trajectories here; this setting generalizes the case in which players
use the same equilibrium price trajectory where p∗i (t) = p∗(t) for i = 1, 2. It
follows that, depending on the specification of βi(G−i (t), p∗i (t), t), the conjectured
total production from other players will rise or fall if the realized price pi(t) does
not equal the equilibrium price p∗i (t). Upon substitution into the production-pricing
relationship

gi(t)+ σi(G−i (t), pi(t), t) = Q0 − Q0

P 0 pi(t),

invertibility of
Q0

P 0 +βi(G−i (t), p∗i (t), t) provides an explicit equation for player i’s

conjectured price pi(t). This invertibility will hold in realistic market settings since
βi(G−i (t), p∗i (t), t) should be nonnegative so total competitor production levels are
believed to change in the same direction as price differences (i.e., higher prices than
expected at equilibrium should not decrease conjectured production). In the special
case assumed here where βi(G−i (t), p∗i (t), t) � B−i for some positive constant
B−i , we obtain

pi(t) = Q0 −Gi(t)+ B−ip∗i (t)
Q0

P 0 + B−i
.

Using this conjectured price, we can formulate player 1’s optimal control problem
as a cost minimization problem in which the conjectured supply function price is
used for determining revenue and costs include a quadratic production cost and a
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quadratic ramp rate cost:

minimize
g1, r1

∫ T

0

(
g1(t)

r1(t)

)T

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

a11 − Q0 + B−1p
∗
1(t)

Q0

P 0 + B−1

0

⎞

⎟
⎟
⎟
⎠

+

⎡

⎢
⎢
⎢
⎣

b11 + 1

Q0

P 0 + B−1

0

0 a12

⎤

⎥
⎥
⎥
⎦

(
g1(t)

r1(t)

)

+

⎡

⎢
⎢
⎢
⎣

1

Q0

P 0 + B−1

0

0 0

⎤

⎥
⎥
⎥
⎦

(
g2(t)

r2(t)

)
⎞

⎟
⎟
⎟
⎠
dt

subject to g1(0) = g0
1 and for almost all t ∈ [ 0,T ] :

ġ1(t) = r1(t)

−r1 + r1(t) ≥ 0

r1 − r1(t) ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

⇒ r1 ≤ ġ1(t) ≤ r1

Similarly, player 2’s optimal control problem just interchanges 1 and 2 for the player
index. If the player supply conjectures are not identical (i.e., B−1 �= B−2),

Ξ12 =

⎡

⎢
⎢
⎣

1

Q0

P 0
+ B−1

0

0 0

⎤

⎥
⎥
⎦ �=

⎡

⎢
⎢
⎣

1

Q0

P 0
+ B−2

0

0 0

⎤

⎥
⎥
⎦ = ΞT21.

It follows that a conjectured supply function game in which players have different
conjectures is not a symmetric game.

To prove ρ(Γ ) < 1, we can use the fact that ρ(Γ ) ≤ ‖Γ k‖ 1
k for all natural

numbers k. With k = 1 and employing the Euclidean norm, ‖Γ ‖ is the largest

eigenvalue of (Γ T Γ )
1
2 , which is equal to

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

0
1

√
σΞ2 σ

Ξ
1

‖Ξ21‖

1
√
σΞ1 σ

Ξ
2

‖Ξ12‖ 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0
1

√
σΞ1 σ

Ξ
2

‖Ξ12‖

1
√
σΞ2 σ

Ξ
1

‖Ξ21‖ 0

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

1
2

= 1
√
σΞ1 σ

Ξ
2

⎡

⎢
⎣

‖Ξ12‖ 0

0 ‖Ξ21‖

⎤

⎥
⎦
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where σΞi is the minimum eigenvalue of Ξii . For this problem,

σΞ1 � min

⎛

⎜
⎜
⎝b11 + 1

Q0

P0
+ B−1

, a12

⎞

⎟
⎟
⎠ and σΞ2 � min

⎛

⎜
⎜
⎝b21 + 1

Q0

P0
+ B−2

, a22

⎞

⎟
⎟
⎠ .

Hence, if

‖Ξ12 ‖
‖

1

Q0

P 0
+ B−1

<

√
√
√
√
√
√
√

min

⎛

⎜
⎜
⎝ b11 + 1

Q0

P0
+ B−1

, a12

⎞

⎟
⎟
⎠ min

⎛

⎜
⎜
⎝ b21 + 1

Q0

P0
+ B−2

, a22

⎞

⎟
⎟
⎠

‖
√
σΞ1 σ

Ξ
2

‖

1

Q0

P 0
+ B−2

<

√
√
√
√
√
√
√

min

⎛

⎜
⎜
⎝ b11 + 1

Q0

P0
+ B−1

, a12

⎞

⎟
⎟
⎠ min

⎛

⎜
⎜
⎝ b21 + 1

Q0

P0
+ B−2

, a22

⎞

⎟
⎟
⎠

‖
‖Ξ21 ‖ ,

then ρ(Γ ) < 1. The above condition can clearly be satisfied for a wide variety of
parameter values. We have thus proven that Theorem 7 holds for the above CSF
problem specification and the presented Jacobi iterative algorithm will converge to
the unique differential Nash equilibrium.

2.17 Lecture V: Summary

In this lecture, we have

• presented an open-loop differential LQ Nash game,
• shown the equivalence in the symmetric case of the game with a single

concatenated linear-quadratic optimal control problem,
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• discussed, in the asymmetric case, a Jacobi-type iterative solution scheme and
presented a converge result under certain conditions to a unique differential Nash
equilibrium, and

• illustrated the results using two simple instances of a Nash production game.

2.18 Closing Remarks

We close these lectures with the following remarks:

• Based on a differential variational framework, these lectures lay down the
foundation for distributed, competitive multi-agent optimal decision making
problems in continuous time.

• The first four lectures prepare the background for the fifth lecture which extends
the other four lectures of this summer school to a continuous-time setting.

• In general, many real-life systems are dynamic in nature and subject to unilateral
constraints and variational principles.

• The dynamics has to be recognized in the modeling and solution of the systems.
• The DVI provides a very powerful framework for this purpose, in particular, for

the study of non-cooperative games in continuous times.
• Some extensive results are available, but there remain many questions and issues

of the DVI to be studied.
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Chapter 3
Parallel and Distributed Successive
Convex Approximation Methods
for Big-Data Optimization

Gesualdo Scutari and Ying Sun

Abstract Recent years have witnessed a surge of interest in parallel and distributed
optimization methods for large-scale systems. In particular, nonconvex large-
scale optimization problems have found a wide range of applications in several
engineering fields. The design and the analysis of such complex, large-scale,
systems pose several challenges and call for the development of new optimization
models and algorithms. First, many of the aforementioned applications lead to huge-
scale optimization problems. These problems are often referred to as big-data. This
calls for the development of solution methods that operate in parallel, exploiting
hierarchical computational architectures. Second, many networked systems are
spatially (or virtually) distributed. Due to the size of such networks and often to the
proprietary regulations, these systems do not possess a single central coordinator
or access point that is able to solve alone the entire optimization problem. In this
setting, the goal is to develop distributed solution methods that operate seamless
in-network. Third, many formulations of interest are nonconvex, with nonconvex
objective functions and/or constraints. Except for very special cases, computing
the global optimal solution of nonconvex problems might be computationally
prohibitive in several practical applications. The desiderata is designing (paral-
lel/distributed) solution methods that are easy to implement (in the sense that
the computations performed by the workers are not expensive), with provable
convergence to stationary solutions (e.g., local optima) of the nonconvex problem
under consideration. To this regard, a powerful and general tool is offered by the
so-called Successive Convex Approximation (SCA) techniques: as proxy of the
nonconvex problem, a sequence of “more tractable” (possibly convex) subproblems
is solved, wherein the original nonconvex functions are replaced by properly chosen
“simpler” surrogates.

In this contribution, we put forth a general, unified, algorithmic framework, based
on Successive Convex Approximation techniques, for the parallel and distributed
solution of a general class of non-convex constrained (non-separable, networked)
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problems. The presented framework unifies and generalizes several existing SCA
methods, making them appealing for a parallel/distributed implementation while
offering a flexible selection of function approximants, step size schedules, and
control of the computation/communication efficiency. This contribution is orga-
nized according to the lectures that one of the authors delivered at the CIME
Summer School on Centralized and Distributed Multi-agent Optimization Models
and Algorithms held in Cetraro, Italy, June 23–27, 2014. These lectures are: I)
Successive Convex Approximation Methods: Basics; II) Parallel Successive Convex
Approximation Methods; and III) Distributed Successive Convex Approximation
Methods.

3.1 Introduction

Recent years have witnessed a surge of interest in parallel and distributed opti-
mization methods for large-scale systems. In particular, nonconvex large-scale opti-
mization problems have found a wide range of applications in several engineering
fields as diverse as (networked) information processing (e.g., parameter estimation,
detection, localization, graph signal processing), communication networks (e.g.,
resource allocation in peer-to-peer/multi-cellular systems), sensor networks, data-
based networks (including Facebook, Google, Twitter, and YouTube), swarm
robotic, and machine learning (e.g., nonlinear least squares, dictionary learning,
matrix completion, tensor factorization), just to name a few—see Fig. 3.1.

The design and the analysis of such complex, large-scale, systems pose several
challenges and call for the development of new optimization models and algorithms.

Fig. 3.1 A bird’s-eye view of some relevant applications generating nonconvex large-scale
(networked) optimization problems
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– Big-Data: Many of the aforementioned applications lead to huge-scale opti-
mization problems (i.e., problems with a very large number of variables).
These problems are often referred to as big-data. This calls for the devel-
opment of solution methods that operate in parallel, exploiting hierarchical
computational architectures (e.g., multicore systems, cluster computers, cloud-
based networks), if available, to cope with the curse of dimensionality and
accommodate the need of fast (real-time) processing and optimization. The
challenge is that such optimization problems are in general not separable in
the optimization variables, which makes the design of parallel schemes not a
trivial task.

– In-network optimization: The networked systems under consideration are
typically spatially distributed over a large area (or virtually distributed). Due to
the size of such networks (hundreds to millions of agents), and often to the pro-
prietary regulations, these systems do not possess a single central coordinator or
access point with the complete system information, which is thus able to solve
alone the entire optimization problem. Network/data information is instead
distributed among the entities comprising the network. Furthermore, there are
some networks such as surveillance networks or some cyber-physical systems,
where a centralized architecture is not desirable, as it makes the system prone to
central entity fails and external attacks. Additional challenges are encountered
from the network topology and connectivity that can be time-varying, due, e.g.,
to link failures, power outage, and agents’ mobility. In this setting, the goal
is to develop distributed solution methods that operate seamless in-network,
by leveraging the network connectivity and local information (e.g., neighbor
information) to cope with the lack of global knowledge on the optimization
problem and offer robustness to possible failures/attacks of central units and/or
to time-varying connectivity.

– Nonconvexity: Many formulations of interest are nonconvex, with nonconvex
objective functions and/or constraints. Except for very special classes of
nonconvex problems, whose solution can be obtained in closed form, computing
the global optimal solution might be computationally prohibitive in several
practical applications. This is the case, for instance, of distributed systems
composed of workers with limited computational capabilities and power (e.g.,
motes or smart dust sensors). The desiderata is designing (parallel/distributed)
solution methods that are easy to implement (in the sense that the computations
performed by the workers are not expensive), with provable convergence to
stationary solutions of the nonconvex problem under consideration (e.g., local
optimal solutions). To this regard, a powerful and general tool is offered by
the so-called Successive Convex Approximation (SCA) techniques: as proxy
of the nonconvex problem, a sequence of “more tractable” (possibly convex)
subproblems is solved, wherein the original nonconvex functions are replaced
by properly chosen “simpler” surrogates. By tailoring the choice of the sur-
rogate functions to the specific structure of the optimization problem under
consideration, SCA techniques offer a lot of freedom and flexibility in the
algorithmic design.
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Fig. 3.2 In-network big-data analytics: Traditional centralized processing and optimization are
often infeasible or inefficient when dealing with large volumes of data distributed over large-scale
networks. There is a necessity to develop fully decentralized algorithms that operate seamless in-
network

As a concrete example, consider the emerging field of in-network big-data
analytics: the goal is to preform some, generally nonconvex, analytic tasks from
a sheer volume of data, distributed over a network—see Fig. 3.2—examples include
machine learning problems such as nonlinear least squares, dictionary learning,
matrix completion, and tensor factorization, just to name a few. In these data-
intensive applications, the huge volume and spatial/temporal disparity of data render
centralized processing and storage a formidable task. This happens, for instance,
whenever the volume of data overwhelms the storage capacity of a single computing
device. Moreover, collecting sensor-network data, which are observed across a
large number of spatially scattered centers/servers/agents, and routing all this local
information to centralized processors, under energy, privacy constraints and/or
link/hardware failures, is often infeasible or inefficient.

The above challenges make the traditional (centralized) optimization and control
techniques inapplicable, thus calling for the development of new computational
models and algorithms that support efficient, parallel and distributed nonconvex
optimization over networks. The major contribution of this paper is to put forth
a general, unified, algorithmic framework, based on SCA techniques, for the
parallel and distributed solution of a general class of non-convex constrained (non-
separable) problems. The presented framework unifies and generalizes several
existing SCA methods, making them appealing for a parallel/distributed imple-
mentation while offering a flexible selection of function approximants, step size
schedules, and control of the computation/communication efficiency.

This chapter is organized according to the lectures that one of the authors
delivered at the CIME Summer School on Centralized and Distributed Multi-agent
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Optimization Models and Algorithms held in Cetraro, Italy, June 23–27, 2014. These
lectures are:

Lecture I—Successive Convex Approximation Methods: Basics (Sect. 3.2)
Lecture II—Parallel Successive Convex Approximation Methods (Sect. 3.3)
Lecture III—Distributed Successive Convex Approximation Methods

(Sect. 3.4)

Omissions Consistent with the main theme of the Summer School, the lectures
aim at presenting SCA-based algorithms as a powerful framework for parallel
and distributed, nonconvex multi-agent optimization. Of course, other algorithms
have been proposed in the literature for parallel and distributed optimization. This
paper does not cover schemes that are not directly related to SCA-methods or
provably applicable to nonconvex problems. Examples of omissions are: primal-
dual methods; augmented Lagrangian methods, including the alternating direction
methods of multipliers (ADMM); and Newton methods and their inexact versions.
When relevant, we provide citations of the omitted algorithms at the end of each
lecture, in the section of “Source and Notes”.

3.2 Successive Convex Approximation Methods: Basics

This lecture overviews the majorization-minimization (MM) algorithmic frame-
work, a particular instance of Successive Convex Approximation (SCA) Methods.
The MM basic principle is introduced along with its convergence properties, which
will set the ground for the design and analysis of SCA-based algorithms in the
subsequent lectures. Several examples and applications are also discussed.

Consider the following general class of nonconvex optimization problems

minimize
x∈X V (x), (3.1)

where X ⊆ R
m is a nonempty closed convex set and V : O → R is continuous

(possibly nonconvex and nonsmooth) on O , an open set containing X. Further
assumptions on V are introduced as needed.

The MM method applied to Problem (3.1) is based on the solution of a sequence
of “more tractable” subproblems whereby the objective function V is replaced by a
“simpler” suitably chosen surrogate function. At each iteration k, a subproblem is
solved of the type

xk+1 ∈ argmin
x∈X

Ṽ (x | xk), (3.2)

where Ṽ (• | xk) is a surrogate function (generally dependent on the current iterate
xk) that upperbounds V globally (further assumptions on Ṽ are introduced as
needed). The sequence of majorization-minimization steps are pictorially shown
in Fig. 3.3. The underlying idea of the approach is that the surrogate function Ṽ
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Fig. 3.3 Pictorial description of the MM procedure [230]

is chosen so that the resulting subproblem (3.2) can be efficiently solved. Roughly
speaking, surrogate functions enjoying the following features are desirable:

• (Strongly) Convexity: this would lead to (strongly) convex subproblems (3.2);
• (Additively) Block-separability in the optimization variables: this is a key enabler

for parallel/distributed solution methods, which are desirable to solve large-scale
problems;

• Minimizer over X in closed-form: this reduces the cost per iteration of the MM
algorithm.

Finding the “right” surrogate function for the problem under consideration
(possibly enjoying the properties above) might not be an easy task. A major goal
of this section is to put forth general construction techniques for Ṽ and show their
application to some representative problems in signal processing, data analysis, and
communications. Some instances of Ṽ are drawn from the literature, e.g., [230],
while some others are new and introduced for the first time in this chapter. The
rest of this lecture is organized as follows. After introducing in Sect. 3.2.1 some
basic results which will lay the foundations for the analysis of SCA methods in the
subsequent sections, in Sect. 3.2.2 we describe in details the MM framework along
with its convergence properties; several examples of valid surrogate functions are
also discussed (cf. Sect. 3.2.2.1). When the surrogate function Ṽ is block separable
and so are the constraints in (3.2), subproblems (3.2) can be solved leveraging
parallel algorithms. For unstructured functions V , in general separable surrogates
are difficult to be found. When dealing with large scale optimization problems,
solving (3.2) with respect to all variables might not be efficient or even possible;
in all these cases, parallel block schemes are mandatory. This motivates the study of
so-called “block MM” algorithms—only some blocks of the variables are selected
and optimized at a time. Section 3.2.3 is devoted to the study of such algorithms.
In Sect. 3.2.4 we will present several applications of MM methods to problems in
signal processing, machine learning, and communications. Finally, in Sect. 3.2.5 we
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overview the main literature and highlight some extensions and generalizations of
the methods described in this lecture.

3.2.1 Preliminaries

We introduce here some preliminary basic results which will be extensively used
through the whole paper.

We begin with the definition of directional derivative of a function and some
basic properties of directional derivatives.

Definition 2.1 (Directional Derivative) A function f : R
m → (−∞,∞] is

directionally differentiable at x ∈ domf � {x ∈ R
m : f (x) < ∞} along a

direction d ∈ R
m if the following limit

f ′ (x; d) � lim
λ↓0

f (x + λd)− f (x)
λ

(3.3)

exists; this limit f ′ (x; d) is called the directional derivative of f at x along d.
If f is directionally differentiable at x along all directions, then we say that f is
directionally differentiable at x. �

If f is differentiable at x, then f ′ (x; d) reads: f ′ (x; d) = ∇f (x)T d, where
∇f (x) is the gradient of f at x. Some examples of directional derivatives of some
structured functions (including convex functions) are discussed next.

• Case Study 1: Convex Functions Throughout this example, we assume that
f : Rm → (−∞,∞] is a convex, closed, proper function; and int(domf ) �= ∅
(otherwise, one can work with the relative interior of domf ), with int(domf )
denoting the interior of domf .

We show next that if x ∈ domf , f ′ (x; d) is well defined, taking values in
[−∞,+∞]. In particular, if x ∈ domf can be approached by the direction d ∈ R

m,
then f ′ (x; d) is finite. For x ∈ domf , d ∈ R

m and nonzero λ ∈ R, define

λ "→ gλ(x; d) � f (x + λd)− f (x)
λ

.

A simple argument by convexity (increasing slopes) shows that g(d; λ) is increasing
in λ. Therefore, the limit in (3.3) exists in [−∞,∞] and can be replaced by

f ′ (x; d) = inf
λ>0

1

λ
[f (x + λd)− f (x)] .

Moreover, for 0 < λ ≤ β ∈ R, it holds

g−β(x; d) ≤ g−λ(x; d) ≤ gλ(x; d) ≤ gβ(x; d).
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If x ∈ int(domf ), both g−β(x; d) and gβ(x; d) are finite, for sufficiently small
β > 0; therefore, we have

−∞ < g−β(x; d) ≤ f ′ (x; d) = inf
λ>0
gλ(d; x) ≤ gβ(x; d) < +∞.

Finally, since f is convex, it is locally Lipschitz continuous: for sufficiently small
β > 0, there exists some finite L > 0 such that gβ(x; d) ≤ L‖d‖ and g−β(x; d) ≥
−L‖d‖. We have proved the following result.

Proposition 2.2 For convex functions f : Rm → (−∞,∞], at any x ∈ domf and
for any d ∈ R

m, the directional derivative f ′ (x; d) exists in [−∞,+∞] and it is
given by

f ′ (x; d) = inf
λ>0

1

λ
[f (x + λd)− f (x)] .

If x ∈ int(domf ), there exists a finite constant L > 0 such that |f ′ (x; d) | ≤ L‖d‖,
for all d ∈ R

m. �
Directional Derivative and Subgradients The directional derivative of a convex
function can be also written in terms of its subgradients, as outlined next. We first
introduce the definition of subgradient along with some of its properties.

Definition 2.3 (Subgradient) A vector ξ ∈ R
m is a subgradient of f at a point

x ∈ domf if

f (x + d) ≥ f (x)+ ξT d, ∀d ∈ R
m. (3.4)

The subgradient set (a.k.a. subdifferential) of f at x ∈ domf is defined as

∂f (x) �
{
ξ ∈ R

m : f (x + d) ≥ f (x)+ ξT d, ∀d ∈ R
m
}
. (3.5)

Partitioning x in blocks, x = (xi )ni=1, with xi ∈ R
mi and

∑n
i=1mi = m, similarly

to (3.5), we can define the block-subdifferential with respect to each xi , as given
below, where (x)i � (0T , . . . , xTi , . . . , 0T )T ∈ R

m.

Definition 2.4 (Block-Subgradient) The subgradient set ∂if (x) of f at x =
(xi )ni=1 ∈ domf with respect to xi is defined as

∂if (x) �
{
ξ i ∈ R

mi : f (x + (d)i) ≥ f (x)+ ξTi di , ∀di ∈ R
mi

}
. (3.6)

Intuitively, when a function f is convex, the subgradient generalizes the deriva-
tive of f . Since a convex function has global linear underestimators of itself, the
subgradient set ∂f (x) should be non-empty and consist of supporting hyperplanes
to the epigraph of f . This is formally stated in the next result (see, e.g., [24, 104]
for the proof).
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Theorem 2.5 Let x ∈ int(domf ). Then, ∂f (x) is nonempty, compact, and convex.

Note that, in the above theorem, we cannot relax the assumption x ∈ int(domf )with
x ∈ domf . For instance, consider the function f (x) = −√

x, with domf = [0,∞).
We have ∂f (0) = ∅.

The subgradient definition describes a global properties of the function whereas
the (directional) derivative is a local property. The connection between a directional
derivative and the subdifferential of a convex function is contained in the next two
results, whose proof can be found in [24, Ch.3].

Lemma 2.6 The subgradient set (3.5) at x ∈ domf can be equivalently written as

∂f (x) �
{
ξ ∈ R

m : f ′(x; d) ≥ ξT d, ∀d ∈ R
m
}
. (3.7)

Note that, since f ′(x; d) is finite for all d ∈ R
m (cf. Proposition 2.2), the above

representation readily shows that ∂f (x), x ∈ int(domf ), is a compact set (as proved
already in Theorem 2.5). Furthermore, ξ ∈ ∂f (x) satisfies

‖ξ‖2 = sup
d : ‖d‖2≤1

ξT d ≤ sup
d : ‖d‖2≤1

f ′(x; d) <∞.

Lemma 2.6 above showed how to identify subgradients from directional deriva-
tive. Lemma 2.7 below shows how to move in the reverse direction.

Lemma 2.7 (Max Formula) At any x ∈ int(domf ) and all d ∈ R
m, it holds

f ′(x; d) = sup
ξ∈∂f (x)

ξT d. (3.8)

Lastly, we recall a straightforward result, stating that the subgradient is simply
the gradient of differentiable convex functions. This is a direct consequence of
Lemma 2.6. Indeed, if f is differentiable at x, we can write [cf. (3.7)]

ξT d ≤ f ′(x; d) = ∇f (x)T d, ∀ξ ∈ ∂f (x).

Since the above inequality holds for all d ∈ R
m, we also have ξT (−d) ≤

f ′(x; −d) = ∇f (x)T (−d), and thus ξT d = ∇f (x)T d, for all d ∈ R
m. This proves

∂f (x) = {∇f (x)}.
The subgradient is also intimately related to optimality conditions for convex

minimization. We discuss this relationship in the next subsection. We conclude this
brief review with some basic examples of calculus of subgradient.

Examples of Subgradients As the first example, consider

f (x) = |x|.
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It is not difficult to check that

∂|x| =
{

sign(x), if x �= 0;
[−1, 1] if x = 0; (3.9)

where sign(x) = 1, if x > 0; sign(x) = 0, if x = 0; and sign(x) = −1, if x < 0.
Similarly, consider the 	1 norm function, f (x) = ‖x‖1. We have

∂‖x‖1 =
m∑

i=1

∂|xi| =
m∑

i=1

{
ei · sign(xi), if xi �= 0;
ei · [−1, 1], if xi = 0;

=
∑

xi>0

ei −
∑

xi<0

ei +
∑

xi=0

[−ei , ei], (3.10)

where ei denotes the i-th standard basis vector of Rm; and the sum for xi = 0 is the
Minkowski sum. Therefore,

∂‖0‖1 =
m∑

i=1

[−ei, ei ] =
{
x ∈ R

m : ‖x‖∞ ≤ 1
}
.

A more complex example is given by considering any norm function ‖ • ‖.
Introducing the dual norm

‖x‖∗ � sup
y : ‖y‖≤1

xT y,

one can show that

∂‖x‖ =
{
ξ ∈ R

m : ‖ξ‖∗ ≤ 1, ξT x = ‖x‖
}
. (3.11)

As a concrete example, consider the 	2 norm, f (x) = ‖x‖2. Observing that

‖x‖2 = sup
‖y‖2≤1

xT y,

a direct application of (3.11) yields

∂‖x‖2 =
{
ξ ∈ R

m : ‖ξ‖2 ≤ 1, ξT x = ‖x‖2

}

=
⎧
⎨

⎩

x
‖x‖2

, if x �= 0;
{ξ ∈ R

m : ‖ξ‖2 ≤ 1} , if x = 0.
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• Case Study 2: Pointwise Max of Functions Consider the pointwise maximum
of (possibly) nonconvex functions

g(x) � max
i=1,...,I

fi(x), (3.12)

where each fi : Rm → (−∞,+∞] is assumed to be directionally differentiable
at a given x̄ along the direction d (with finite directional derivative). For notational
simplicity, we assume that all fi have the same effective domain. The following
lemma shows that g(x) is directional differentiable at x̄ along d and provides an
explicit expression for g′(x̄; d).

Lemma 2.8 In the above setting, the function g defined in (3.12) is directionally
differentiable at x̄ along d, with

g′(x̄; d) = max
i∈A(x̄)

f ′
i (x̄; d), (3.13)

where A(x) � {i = 1, . . . , I : fi(x) = g(x)}.
Proof The proof follows similar steps of that of Danskin’s theorem [57]. Let {tk} be
a sequence of positive numbers tk such that tk → 0 as k→ ∞. Define xk = x̄+tk d;
and let ik and ī be two indices in A(xk) and A(x̄), respectively. We prove (3.13) by
showing that

lim sup
k→∞

g(xk)− g(x̄)
tk

≤ max
i∈A(x̄)

f ′
i (x̄; d) ≤ lim inf

k→∞
g(xk)− g(x̄)

tk
. (3.14)

We prove the right inequality first. We have

lim inf
k→∞

g(xk)− g(x̄)
tk

= lim inf
k→∞

fik (x
k)− fī(x̄)
tk

= lim inf
k→∞

fik (x
k)− fī(xk)+ fī(xk)− fī(x̄)

tk

(a)≥ lim inf
k→∞

fī(x
k)− fī(x̄)
tk

(b)= f ′̄
i
(x̄; d),

(3.15)

where (a) follows from fik (x
k)− fī(xk) ≥ 0; and in (b) we used the fact that each

fi is directionally differentiable at x̄ along d. Since ī is any arbitrary index in A(x̄),
we have

lim inf
k→∞

g(xk)− g(x̄)
tk

≥ max
i∈A(x̄)

f ′
i (x̄; d). (3.16)
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We prove next the inequality on the left of (3.14). Following similar steps, we
have

lim sup
k→∞

g(xk)− g(x̄)
tk

= lim sup
k→∞

fik (x
k)− fī(x̄)
tk

= lim sup
k→∞

fik (x
k)− fik (x̄)+ fik (x̄)− fī(x̄)

tk

(a)≤ lim sup
k→∞

fik (x
k)− fik (x̄)
tk

(b)≤ max
i∈A(x̄)

f ′
i (x̄; d),

(3.17)

where (a) comes from fik (x̄)−fī(x̄) ≤ 0; and (b) is due to limk→∞ minj∈A(x̄) |ik−
j | = 0, which is a consequence of limk→∞ ‖xk − x̄‖ = 0, as showed next.

Suppose that the above statement is not true. Then, there exits a subsequence
of ik—say ik	 , with ik	 ∈ A(xk	)—such that lim	→∞ ik	 = i∞ /∈ A(x̄) (note that
A(x̄) has a finite cardinality). Therefore, for sufficiently large 	, it holds g(xk	 ) =
fik	 (x

k	 ) = fi∞(xk	). Letting 	 → +∞ and invoking continuity of g (it is the
point-wise maximum of finitely many continuous functions), we get g(x̄) = fi∞(x̄),
which is in contradiction with i∞ /∈ A(x̄). �
Optimality Conditions As a non-convex optimization problem, globally optimal
solutions of Problem (3.1) are in general not possible to be computed. Thus, one
has to settle for computing a “stationary” solution in practice. Even in this case,
there are many kinds of stationary solutions for Problem (3.1). Ideally, one would
like to identify a stationary solution of the sharpest kind. Arguably, for the convex
constrained nonconvex program (3.1), a d(irectional)-stationary solution defined in
terms of the directional derivatives of the objective function would qualify for this
purpose. For the sake of simplicity, we will make the following blanket assumptions
on Problem (3.1): (1) V is directionally differentiable on X; and (2)X is closed and
convex. We introduce next two concepts of stationarity, namely: d-stationarity and
coordinate-wise d-stationarity.

Definition 2.9 (d-Stationarity) Given Problem (3.1) in the above setting, x∗ ∈ X
is a d-stationary solution of (3.1) if

V ′ (x∗; y − x∗
) ≥ 0, ∀y ∈ X. (3.18)

Two remarks are in order. When V is convex, it follows from Lemma 2.7 that x∗
is a d-stationary (and thus a global optimal) solution of Problem (3.1) if there exists a
ξ ∈ ∂f (x∗) such that ξT (y − x∗) ≥ 0, ∀y ∈ X. Furthermore, if V is differentiable,
since V ′(x; d) = ∇V (x)T d, (3.18) reads (y − x∗)T∇V (x∗) ≥ 0, ∀y ∈ X.
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Definition 2.10 (Coordinate-Wise d-Stationary) Given Problem (3.1), with X =
X1 × · · · ×Xn, Xi ⊆ R

mi , and
∑n
i=1mi = m, x∗ is a coordinate-wise d-stationary

solution of Problem (3.1) if V ′ (x∗; (y − x∗)i
) ≥ 0, ∀y ∈ X and all i = 1, . . . , n.

In words, a coordinate-wise stationary solution is a point for which x∗ is
stationary w.r.t. every block of variables. Coordinate-wise stationarity is a weaker
form of stationarity. It is the standard property of a limit point of a convergent
coordinate-wise scheme (see, e.g., [250]). It is clear that a stationary point is always
a coordinate-wise stationary point; the converse however is not always true, unless
extra conditions on V are satisfied.

Definition 2.11 (Regularity) Problem (3.1) is regular at a coordinate-wise d-
stationary solution x∗ ∈ X = X1 × · · · × Xn, if x∗ is also a d-stationary point
of the problem.

The regularity condition is readily satisfied in the following two simple cases:

(a) V is additively separable (possibly nonsmooth), i.e., V (x) = ∑n
i=1 Vi(xi );

(b) V is differentiable around x∗.

Note that (a) is due to the separability of the directional derivative, that is,
V ′(x; d) = ∑n

i=1 V
′
i (xi; di ); and so does (b).

Of course the two cases above are not at all inclusive of situations for which
regularity holds. As an example of a nonseparable function for which regularity
holds at a point at which is not continuously differentiable, consider the function
arising in logistic regression problems V (x) = ∑I

i=1 log(1 + e−ai yTi x) + c · ‖x‖2,
whereX = R

m, and yi ∈ R
m and ai ∈ {−1, 1} are given constants. Such a function

V is continuously differentiable, and thus regular, at any stationary point but x∗ �= 0.
It is easy to check that V is regular also at x∗ = 0, if c < log 2.

Finally, an example of a nonsmooth, nonseparable function that is not regular
is V (x) = ‖Ax‖1, with A = [3 4; 2 1] and X = R

2. Point x∗ = [−4 3]T is a
coordinate-wise d-stationary point, but not d-stationary [cf. Fig. 3.4].

3.2.2 The Majorization-Minimization (MM) Algorithm

We study Problem (3.1) under the following blanket assumptions.

Assumption 2.12 Given Problem (3.1), we assume that:

1. X �= ∅ is a closed and convex set in R
m;

2. V : O → R is continuous on the open set O ⊇ X;
3. V ′(x; d) exists at any x ∈ X and for all feasible directions d ∈ R

m at x;
4. V is bounded from below.

Note that the above assumptions are quite standard and are satisfied by most of
the problems of practical interest; see Sect. 3.2.4 for some illustrative examples.
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Fig. 3.4 Contour of
V (x) = ‖Ax‖1, with
A = [3 4; 2 1]. The function
is not regular at
x∗ = [−4, 3]T [194]

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(−4, 3)

As already anticipated at the beginning of this section, the idea of the MM
procedure is to approximate, at each iteration, the objective function V in (3.1)
by a “simpler” properly chosen surrogate function Ṽ (• | xk) and solve the resulting
optimization problem (3.2). Convergence of this iterative method is guaranteed if
the following conditions are satisfied in the choice of Ṽ . In what follows, we denote
by Ṽ ′ (y; d | x) the directional derivative of Ṽ (• | x) at y along the direction d.

Assumption 2.13 The surrogate function Ṽ : O × O → R satisfies the following
conditions:

1. Ṽ (• | •) is continuous on X ×X;
2. y ∈ argminx∈X Ṽ (x | y)− V (x);
3. The directional derivative of Ṽ satisfies Ṽ ′ (x; d | x) = V ′ (x; d), for all x ∈ X

and feasible directions d ∈ R
m at x.

Assumption 2.13.2 states that, at any feasible y, Ṽ (• | y) upperbounds V (•) on X,
in the following sense:

Ṽ (x | y) ≥ V (x)+ cy, ∀x ∈ X, (3.19)

with cy � Ṽ (y | y) − V (y), where the equality is achieved when x = y.
Assumption 2.13.3 is a derivative consistency condition: roughly speaking, it
ensures that Ṽ (• | x) has the same first order properties of V (•) at x ∈ X.

The MM algorithm is summarized in Algorithm 1 and its convergence is stated
in Theorem 2.14.

Theorem 2.14 Let {xk}k∈N+ be the sequence generated by Algorithm 1 under
Assumptions 2.12 and 2.13. Then, every limit point of {xk}k∈N+ (if exists) is a d-
stationary solution of Problem (3.1).
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Algorithm 1 The majorization-minimization (MM) algorithm

Data : x0 ∈ X. Set k = 0.
(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Update x as

xk+1 ∈ argmin
x∈X

Ṽ (x | xk); (3.20)

(S.3) : k← k + 1, and go to (S.1).

Proof The main properties of Algorithm 1 is to generate a nonincreasing sequence
{V (xk)}. Indeed, we have

V (xk+1)
(3.19)≤ Ṽ (xk+1 | xk)− ck (3.20)≤ Ṽ (xk | xk)− ck (a)= V (xk), (3.21)

where ck � Ṽ (xk | xk) − V (xk), and (a) follows from the fact that the inequality
(3.19) is achieved with equality at x = xk .

Let x∗ be a limit point of {xk}k∈N+ , that is, limt→∞ xkt = x∗ ∈ X. We have

Ṽ (xkt+1 | xkt+1)− ckt+1 = V (xkt+1)
(3.21)≤ V (xkt+1)

≤ Ṽ (xkt+1 | xkt )− ckt ≤ Ṽ (x | xkt )− ckt ,

for all x ∈ X. Let t → +∞; invoking the continuity of Ṽ (• | •) and V (•), we have
that the sequence {ckt }t∈N+ converges (to a finite value). Therefore,

Ṽ
(
x∗ | x∗

) ≤ Ṽ (
x | x∗

)
, ∀x ∈ X, (3.22)

which implies

0 ≤ Ṽ ′ (x∗; d | x∗
) (a)= V ′ (x∗; d

)
, ∀d ∈ R

m such that x∗+d ∈ X, (3.23)

where (a) follows from Assumption 2.13.3. This shows that x∗ is a d-stationary
solution of Problem (3.1). �

Note that, since the sequence {V (xk)} is nonincreasing, a sufficient condition for
{xk} to admit a limit point is that the set {x ∈ X : V (x) ≤ V (x0)} is compact. A
sufficient condition for that is the coercivity of V on X.

On the Termination Criterion We briefly discuss how to choose the termination
criterion in Step 2 of Algorithm 1; we refer the interested reader to [241] for more
details. Let M : X → X be a map such that M(xk) ∈ argminx∈XṼ (x | xk) and
xk+1 = M(xk) [cf. (3.2)]. In words, among all the global minimizers of Ṽ (• | xk)
on X, M uniquely selects the one, xk+1, used in Step 2 of the MM algorithm. We
show next that V (M(x)) = V (x) is a sufficient condition of x being a d-stationary
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solution of Problem (3.1). It follows from (3.21) that V (M(x)) = V (x) forces
Ṽ (M(x) | x) = Ṽ (x | x), which implies that x is a minimizer of Ṽ (• | x) on X,
and thus (by Assumption 2.13.3) a d-stationary point of (3.1). Based on the above
observation and assuming that M(•) is continuous, the following is a valid merit
function to measure distance from stationarity of the iterate xk:

J k+1 � V (xk)− V (xk+1)

max(1, |V (xk)|) . (3.24)

The continuity assumption of M maybe hard to check directly. A stronger
condition implying continuity of M is that the minimizer of Ṽ (• | xk) over X is
unique, for all xk ∈ X [241, Lemma 1]. Note that, in such a case, it is not difficult to
check that, if x is a fixed-point ofM , then it must be a d-stationary point of Problem
(3.1). Therefore, in the aforementioned setting, an alternative merit function is

J k+1 � ‖xk+1 − xk‖. (3.25)

Other termination criteria are discussed in Lecture II (cf. Sect. 3.3 ) for SCA-
based algorithms.

3.2.2.1 Discussion on Algorithm 1

The following comments on Algorithm 1 are in order.

On the Choice of Surrogate Function
The successful application of the MM algorithms relies on the possibility of
finding a valid surrogate function Ṽ . The critical assumption to be satisfied is
undoubtedly the upperbound condition, as stated in Assumption 2.13.2. We provide
next some systematic rules which help to build a surrogate function that meets this
condition (and the other required assumptions); several illustrating examples are
also discussed. Although for specific (structured) problems it is possible to find
a nonconvex surrogate function whose minimizer can be computed efficiently, a
convex surrogate is in general preferred, since it leads to a convex subproblem (3.2).
Therefore, next we mainly focus on convex surrogates.

1) First Order Taylor Expansion Suppose V is a differentiable concave function
on X. A natural choice for Ṽ satisfying Assumption 2.13 is then: given y ∈ X,

Ṽ (x | y) = V (y)+∇V (y)T (x − y). (3.26)

More generally, Ṽ can be chosen as any convex differentiable function on X, say
Ṽcvx, satisfying the gradient consistency condition ∇Ṽcvx(x | x) = ∇V (x), for all
x ∈ X; this is enough for Assumption 2.13.2 (and thus Assumption 2.13) to be
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satisfied, as shown by the following chain of inequalities

V (x)− V (y) (a)≤ ∇V (y)T (x − y)
(b)= ∇Ṽcvx(y | y)T (x − y)

(c)≤ Ṽcvx(x | y)− Ṽcvx(y | y),
(3.27)

where (a) follows from the concavity of V ; in (b) we used ∇Ṽcvx(y | y) = ∇V (y);
and (c) follows from the convexity of Ṽcvx. Equation (3.27) shows that (3.19) (thus
Assumption 2.13.2) is satisfied by such a Ṽcvx.

Example 1 V (x) = log(x) is concave on (0,+∞]. Hence, it can be majorized by
Ṽ (x | y) = x/y, for any given y > 0.

Example 2 V (x) = |x|p, with p ∈ (0, 1), is concave on (−∞, 0) and (0,+∞).
It thus can be majorized by the quadratic function Ṽ (x | y) = p

2 |y|p−2 x2, for any
given y �= 0.

2) Second Order Taylor Expansion Suppose V is C1, with L-Lipschitz gradient
on X. Then V can be majorized by the surrogate function: given y ∈ X,

Ṽ (x | y) = V (y)+∇V (y)T (x − y)+ L

2
‖x − y‖2. (3.28)

Moreover, if V is twice differentiable and there exists a matrix M ∈ R
m×m such

that M − ∇2V (x) ' 0, for all x ∈ X, then V can be majorized by the following
valid surrogate function

Ṽ (x | y) = V (y)+∇V (y)T (x − y)+ 1

2
(x − y)TM (x − y). (3.29)

Example 3 (The Proximal Gradient Algorithm) Suppose that V admits the struc-
ture V = F + G, where F : Rm → R is C1, with L-Lipschitz gradient on X, and
G : Rm → R is convex (possibly nonsmooth) on X. Using (3.28) to majorize F , a
valid surrogate for V is: given y ∈ X,

Ṽ (x | y) = F(xk)+∇F(y)T (x − y)+ L

2
‖x − y‖2 +G(x). (3.30)

Quite interestingly, the above choice leads to a strongly convex subproblem (3.2),
whose minimizer has the following closed form:

xk+1 = prox1/L,G

(

xk − 1

L
∇F(xk)

)

, (3.31)

where proxγ,G(•) is the proximal response, defined as

proxγ,G(x) � argmin
z

{

G(z)+ 1

2 γ
‖z − x‖2

}

.
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The resulting MM algorithm (Algorithm 1) turns out to be the renowned proximal
gradient algorithm, with step-size γ = 1/L.

3) Pointwise Maximum Suppose V : Rm → R can be written as the pointwise
maximum of functions {fi}Ii=1, i.e.,

V (x) � max
i=1,...,I

fi(x),

where each fi : Rm → R satisfies Assumption 2.12.2 and 2.12.3. Then V can be
majorized by

Ṽ (x | y) = max
i=1,...,I

f̃i (x | y), (3.32)

for any given y ∈ X, where f̃i : X × X → R is a surrogate function of fi
satisfying Assumption 2.13 and f̃i(y | y) = fi(y). It is not difficult to verify that
Ṽ above satisfies Assumption 2.13. Indeed, the continuity of Ṽ follows from that
of f̃i . Moreover, we have Ṽ (y | y) = V (y). Finally, condition 2.13.3 is a direct
consequence of Lemma 2.8:

V ′(x; d)
(3.13)= max

i∈A(x)
f ′
i (x; d) = max

i∈A(x)
f̃ ′
i (x; d | x) = Ṽ ′(x; d | x), (3.33)

where A(x) = {i : fi(x) = V (x)} = {i : f̃i (x | x) = Ṽ (x)}.
4) Composition by a Convex Function SupposeV : Rm → R can be expressed as
V (x) � f

(∑n
i=1 Aix

)
, where f : Rm → R is a convex function and Ai ∈ R

m×m
are given matrices. Then, one can construct a surrogate function of V leveraging the
following inequality due to convexity of f :

f

(
n∑

i=1

wixi

)

≤
n∑

i=1

wif (xi ) (3.34)

for all
∑n
i=1 wi = 1 and eachwi > 0. Specifically, rewrite first V as: given y ∈ R

m,

V (x) =f
(
n∑

i=1

Aix

)

= f
(
n∑

i=1

wi

(
Ai (x − y)
wi

+
n∑

i=1

Aiy

))

.

Then, using (3.34) we can upperbound V as

V (x) ≤ Ṽ (x|y) =
n∑

i=1

wi f

(
Ai (x − y)
wi

+
n∑

i=1

Ai y

)

. (3.35)
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It is not difficult to check that Ṽ satisfies Assumption 2.13. Equation (3.35) is
particularly useful to construct surrogate functions that are additively separable in
the (block) variables, which opens the way to parallel solution methods wherein
(blocks of) variables are updated in parallel. Two examples are discussed next.

Example 4 Let V : Rm → R be convex and let x ∈ R
m be partitioned as x =

(xi )ni=1, where xi ∈ R
mi and

∑n
i=1mi = m. Let us rewrite x in terms of its block

as x = ∑n
i=1 Aix, where Ai ∈ R

m×m is the block diagonal matrix such that Aix =
(x)i , with (x)i � [0T , . . . , 0T , xTi , 0

T , . . . , 0T ]T denoting the operator nulling all
the blocks of x except the i-th one. Then using (3.35) one can choose the following
surrogate function: given y = (yi )ni=1, with each yi ∈ R

mi ,

V (x) = V
(
n∑

i=1

Aix

)

≤ Ṽ(x | y) �
n∑

i=1

wi V

(
1

wi
((x)i − (y)i)+ y

)

.

It is easy to check that such a Ṽ is separable in the blocks xi’s.

Example 5 Let V : R → R be convex and let vectors x, a ∈ R
m be partitioned

as x = (xi )ni=1 and a = (ai )ni=1, respectively, with xi and ai having the same size.
Then, invoking (3.35), a valid surrogate function of the composite function V (aT x)
is: given y = (yi )ni=1, partitioned according to x,

V (aT x) = V
(

n∑

i=1

(a)Ti x

)

≤ Ṽ (x | y) �
n∑

i=1

wi V

(
(a)Ti (x − y)

wi
+

n∑

i=1

(a)Ti y

)

=
n∑

i=1

wiV

(
aTi (xi − yi )

wi
+ aT y

)

.

(3.36)

This is another example of additively (block) separable surrogate function.

5) Surrogates Based on Special Inequalities Other techniques often used to con-
struct valid surrogate functions leverage specific inequalities, such as the Jensen’s
inequality, the arithmetic-geometric-mean inequality, and the Cauchy-Schwartz
inequality. The way of using these inequalities, however, depends on the specific
expression of the objective function V under consideration; generalizing these
approaches to arbitrary V ’s seems not possible. We provide next two illustrative
(nontrivial) case studies based on the Jensen’s inequality and the arithmetic-
geometric-mean inequality while we refer the interested reader to [230] for more
examples building on this approach.

Example 6 (The Expectation-Maximization Algorithm) Given a pair of random
(vector) variables (s, z)whose joint probability distributionp(s, z|x) is parametrized
by x, we consider the maximum likelihood estimation problem of estimating x
only from s while the random variable z is unobserved/hidden. The problem is
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formulated as

x̂ML = argmin
x

{
V (x) � − logp(s|x)

}
, (3.37)

where p(s|x) is the (conditional) marginal distribution of s.
In general, the expression of p (s|x) is not available in closed form; moreover

numerical evaluations of the integration of p(s, z|x) with respect to z can be
computationally too costly, especially if the dimension of z is large. In the following
we show how to attach Problem (3.37) using the MM framework. We build next a
valid surrogate function for V leading to a simpler optimization problem to solve.

Specifically, we can rewrite V as

V (x) = − logp (s|x)

= − log
∫

p(s|z, x)p(z|x)dz

= − log
∫ (

p(s|z, x)p(z|s, xk)
p(z|s, xk)

)

p(z|x)dz

= − log
∫ (

p(s|z, x)p(z|x)
p(z|s, xk)

)

p(z|s, xk)dz

(a)≤ −
∫

log

(
p(s|z, x)p(z|x)
p(z|s, xk)

)

p(z|s, xk)dz

= −
∫

log (p(s, z|x)) p(z|s, xk)dz +
∫

log
(
p(z|s, xk)

)
p(z|s, xk)dz

︸ ︷︷ ︸
constant

,

where (a) follows from the Jensen’s inequality. This naturally suggests the following
surrogate function of V : given y,

Ṽ (x | y) = −
∫

log (p(s, z|x)) p(z|s, y)dz. (3.38)

In fact, it is not difficult to check that such a Ṽ satisfies Assumption 2.13.
The update of x resulting from the MM algorithm then reads

xk+1 ∈ argmin
x

{

−
∫

log (p(s, z|x)) p(z|s, xk)dz
}

. (3.39)

Problem (3.39) can be efficiently solved for specific probabilistic models, including
those belonging to the exponential family, the Gaussian/multinomial mixture model,
and the linear Gaussian latent model.

Quite interestingly, the resulting MM algorithm [Algorithm 1 based on the update
(3.39)] turns out to be the renowned Expectation-Maximization (EM) algorithm
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[66]. The EM algorithm starts from an initial estimate x0 and generates a sequence
xk by repeating the following two steps:

• E-step: Calculate Ṽ (x | xk) as in (3.38);
• M-step: Update xk+1 as xk+1 ∈ argmaxx −Ṽ (x | xk).

Note that these two steps correspond exactly to the majorization and minimiza-
tion steps (3.38) and (3.39), respectively, showing that the EM algorithm belongs to
the family of MM schemes, based on the surrogate function (3.38).

Example 7 (Geometric Programming) Consider the problem of minimizing a sig-
nomial

V (x) =
J∑

j=1

cj

n∏

i=1

x
αij
i

on the nonnegative orthantRn+, with cj , αij ∈ R. In the following, we assume that V
is coercive on R

n+. A sufficient condition for this to hold is that for all i = 1, . . . , n
there exists at least one j such that cj > 0 and αij > 0, and at least one j such that
cj > 0 and αij < 0 [136].

We construct a separable surrogate function of V at given y ∈ R
n++. We first

derive an upperbound for the summand in V with cj > 0 and a lowerbound for those
with cj < 0, using the arithmetic-geometric mean inequality and the concavity of
the log function (cf. Example 1), respectively.

Let zi and αi be nonnegative scalars, the arithmetic-geometric mean inequality
reads

n∏

i=1

z
αi
i ≤

n∑

i=1

αi

‖α‖1
z
‖α‖1
i . (3.40)

Since yi > 0 for all i = 1, . . . , n, let zi = xi/yi for αi > 0 and zi = yi/xi for
αi < 0. Then (3.40) implies that the monomial

∏n
i=1 x

αi
i can be upperbounded on

R
n++ as

n∏

i=1

x
αi
i ≤

(
n∏

i=1

(yi)
αi

)
n∑

i=1

|αi |
‖α‖1

(
xi

yi

)‖α‖1sign(αi)

. (3.41)

To upperbound the terms in V with negative cj on R
n++, which is equivalent to

find a lowerbound of
∏n
i=1 x

αi
i , we use the bound introduced in Example 1, with

x = ∏n
i=1 x

αi
i , which yields

log

(
n∏

i=1

x
αi
i

)

≤ log

(
n∏

i=1

(yi)
αi

)

+
(
n∏

i=1

(yi)
αi

)−1 ( n∏

i=1

x
αi
i −

n∏

i=1

(yi)
αi

)

.
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Rearranging the terms we have

n∏

i=1

x
αi
i ≥

n∏

i=1

(yi)
αi

(

1 +
n∑

i=1

αi log xi −
n∑

i=1

αi log yi

)

. (3.42)

Combining (3.41) and (3.42) leads to the separable surrogate function Ṽ (x | y) �∑n
i=1 Ṽi(xi | y) of V , with

Ṽi(xi | y) �
∑

j :cj>0

cj

(
n∏

	=1

(y	)
α	j

)
|αij |
‖αj‖1

(
xi

yi

)‖αj ‖1sign(αij )

+
∑

j :cj<0

cj

(
n∏

	=1

(y	)
α	j

)

αij log xi.

(3.43)

Function Ṽ (• | y) is coercive since it is continuous and upperbounds V on R
n++,

therefore xk+1 ∈ R
n++ (recall that we assumed xk ∈ R

n++). Moreover, the following
chain of inequalities holds:

V (xk+1) ≤ Ṽ (xk+1 | xk) ≤ Ṽ (xk | xk) = V (xk) ≤ · · · ≤ V (x0) < +∞, (3.44)

which implies that, given x0 ∈ R++, the sequence {xk} generated by the MM
algorithm always stays in the compact set X0 � {x |V (x) ≤ V (x0)} ⊆ R

n++.
As Ṽ (x | xk) is separable, xk+1 thus can be computed in parallel. In addition,

focusing on a single component xi and performing the change of variable xi = ezi ,
it is not difficult to check that Ṽi is convex in zi ; its global minimizer can be then
computed efficiently by solving a one dimensional convex optimization problem.

Parallel Implementation
When dealing with large-scale optimization instances of Problem (3.1), solving
subproblem (3.2) with respect to the entire x might be either computationally too
costly or practically infeasible. When the feasible set X admits a Cartesian product
structure, i.e., X = X1 × · · · ×Xn, with Xi ⊆ R

mi , a natural approach to cope with
the curse of dimensionally is partitioning the vector of variables x into n blocks

according to X, i.e., x = [
xT1 , . . . , x

T
n

]T
and each xi ∈ R

mi , and leveraging a multi-
core computing environment to optimize the blocks in parallel. When using the
MM algorithm, a natural way to achieve this goal is to construct a surrogate function
Ṽ (• | y) that is additively separable in the blocks, i.e., Ṽ (x | y) = ∑n

i=1 Ṽi(xi | y), so
that the subproblem (3.2) can be decoupled in independent optimization problems,
one per block. Some of the examples discussed above [cf. (3.26), (3.28), (3.35)]
show cases where this can be readily achieved by exploring the special structure of
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the objective function V . However, when the objective function V does not enjoy
any special structure, it seems that there is no general procedure to leverage to
obtain a separable surrogate function satisfying Assumption 2.13. In such cases,
a way to cope with the curse of dimensionality is to solve the subproblem (3.2) by
minimizing the (nonseparable) surrogate function block-wise. Such a version of the
MM algorithm, termed Block-MM, is discussed in details in the next section.

3.2.3 The Block Majorization-Minimization Algorithm

In this section, we introduce the Block MM (BMM) algorithm solving Problem
(3.1), whose feasible set is now assumed to have a Cartesian product structure.

Assumption 2.15 The feasible setX of Problem (3.1) admits the Cartesian product
structure X = X1 × · · · ×Xn, with each Xi ∈ R

mi and
∑n
i=1mi = m.

In the above setting, the optimization variables of (3.1) can be partitioned in
(nonoverlapping) blocks xi . When judiciously exploited, this block-structure can
lead to low-complexity algorithms that are implementable in a parallel/distributed
manner. The BMM algorithm is a variant of the MM scheme (cf. Algorithm 1)
whereby only one block of variables is updated at a time. More specifically, at
iteration k, a block is selected according to some predetermined rule, say block
ik, and updated by solving the subproblem

xk+1
ik

∈ argmin
x
ik
∈X

ik

Ṽik

(
xik | xk

)
, (3.45)

whereas xk+1
j = xkj , for all j �= ik . In (3.45), Ṽik (• | xk) is a suitably chosen

surrogate function of V , now function only of the block xik . Conditions on Ṽik are
similar to those already introduced for the MM algorithm (cf. Assumption 2.13) and
summarized below. We use the following notation: Oi ⊆ R

mi is an open set con-
taining Xi and O = O1 × · · · ×On; x−i � [xT1 , . . . , xTi−1, x

T
i+1, . . . , x

T
n ]T denotes

the vector containing all the blocks of x but the i-th one; (x)i � [0T , . . . , 0T ,
xTi , 0

T , . . . , 0T ]T denotes the operator nulling all the blocks of x except for the
i-th one; and with a slight abuse of notation, we use (xi , y−i ) to denote the ordered
tuple (y1, . . . , yi−1, xi , yi+1, . . . , yn).

Assumption 2.16 Each surrogate function Ṽi : Oi×O → R satisfies the following
conditions:

1. Ṽi (• | •) is continuous on Xi ×X;
2. yi ∈ argminxi∈Xi Ṽi (xi | y)− V (xi , y−i ), for all y ∈ X;
3. The directional derivative of Ṽ ′

i satisfies Ṽ ′
i (xi; di | x) = V ′ (x; (d)i

)
, for all

xi ∈ Xi and feasible directions di ∈ R
mi at xi .
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The next question is how to choose the blocks to be updated at each iteration, in
order to have convergence. Any of the following rules can be adopted.

Assumption 2.17 Blocks in (3.45) are chosen according to any of the following
rules:

1. Essentially cyclic rule: There exits a finite positive T such that
⋃T−1
t=0 {ik+t } =

{1, . . . , n}, for all k = 0, 1, . . .;
2. Maximum block improvement rule: Choose

ik ∈ argmin
i=1,...,m

V
(

xk+1
i , xk−i

)
;

3. Random-based rule: There exists a pmin > 0 such that P
(
ik = j |xk−1, . . . , x0

)

= pkj ≥ pmin, for all j = 1, . . . n and k = 0, 1, . . ..

The first two rules above are deterministic rules. Roughly speaking, the essentially
cyclic rule (Assumption 2.17.1) states that all the blocks must be updated at least
once within any T consecutive iterations, with some blocks possibly updated more
frequently than others. Of course, a special case of this rule is the simple cyclic
rule, i.e., ik = (k mod n) + 1, whereby all the blocks are updated once every T
iterations. The maximum block improvement rule (Assumption 2.17.2) is a greedy-
based update: only the block that generates the largest decrease of the objective
function V at xk is selected and updated. Finally the random-based selection rule
(Assumption 2.17.3) selects block randomly and independently, with the condition
that all the blocks have a bounded away from zero probability to be chosen. The
BMM algorithm is summarized in Algorithm 2.

Convergence results of Algorithm 2 consist of two major statements. Under
the essential cyclic rule (Assumption 2.17.1), quasi convexity of the objective
function is required [along with the uniqueness of the minimizer in (3.45)], which
also guarantees the existence of the limit points. This is in the same spirit as the
classical proof of convergence of Block Coordinate Descent methods; see, e.g.,
[14, 218, 250]. If the maximum block improvement rule (Assumption 2.17.2) or
the random-based selection rule (Assumption 2.17.3) are used, then a stronger
convergence result can be proved by relaxing the quasi-convexity assumption and

Algorithm 2 Block MM algorithm

Data : x0 ∈ X. Set k = 0.
(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Choose an index ik ∈ {1, . . . , n};
(S.3) : Update xk as

− Set xk+1
ik

∈ argminx
ik
∈X

ik
Ṽik

(
xik | xk

)
;

− Set xk+1
j = xkj , for all j �= ik ;

(S.4) : k← k + 1, and go to (S.1).
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imposing the compactness of the level sets of V . In order to state the convergence
result, we introduce the following additional assumptions.

Assumption 2.18 Ṽi (• | y) is quasi-convex and subproblem (3.45) has a unique
solution, for all y ∈ X.

Assumption 2.19 The level set X0 � {x ∈ X : V (x) ≤ V (
x0

)} is compact and
subproblem (3.45) has a unique solution for all xk ∈ X and at least n− 1 blocks.

We are now ready to state the main convergence result of the BMM algorithm
(Algorithm 2), as given in Theorem 2.20 below (the statement holds almost surely
for the random-based selection rule). The proof of this theorem can be found in
[194]; see also Sect. 3.2.5 for a detailed discussion on (other) existing convergence
results.

Theorem 2.20 Given Problem (3.1) under Assumptions 2.12 and 2.15, let {xk}k∈N+
be the sequence generated by Algorithm 2, with Ṽ chosen according to Assump-
tion 2.16. Suppose that, in addition, either one of the following two conditions is
satisfied:

(a) ik is chosen according to the essentially cyclic rule (Assumption 2.17.1) and Ṽ
further satisfies either Assumption 2.18 or 2.19;

(b) ik is chosen according to the maximum block improvement rule (Assump-
tion 2.17.2) or the random-based selection rule (Assumption 2.17.3).

Then, every limit point of {xk}k∈N+ is a coordinate-wise d-stationary solution of
(3.1). Furthermore, if V is regular, then every limit point is a d-stationary solution
of (3.1). �

3.2.4 Applications

In this section, we show how to apply the (B)MM algorithm to solve some
representative nonconvex problems arising from applications in signal processing,
data analysis, and communications. More specifically, we consider the following
problems: (1) Sparse least squares; (2) Nonnegative least squares; (3) Matrix
factorization, including low-rank factorization and dictionary learning; and (4) the
multicast beamforming problem. Our list is by no means exhaustive; it just gives a
flavor of the kind of structured nonconvexity and applications which (B)MM can be
successfully applied to.

3.2.4.1 Nonconvex Sparse Least Squares

Retrieving a sparse signal from its linear measurements is a fundamental problem
in machine learning, signal processing, bioinformatics, physics, etc.; see [269] and
[4, 99] for a recent overview and some books, respectively, on the subject. Consider
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a linear model, z = Ax+n, where x ∈ R
m is the sparse signal to estimate, z ∈ R

q is
the vector of available measurements, A ∈ R

q×m is the given measurement matrix,
and n ∈ R

q is the observation noise. To estimate the sparse signal x, a mainstream
approach in the literature is to solve the following optimization problem

minimize
x

V (x) � ‖z − Ax‖2 + λG(x), (3.46)

where the first term in the objective function measures the model fitness whereas the
regularization G is used to promote sparsity in the solution, and the regularization
parameter λ ≥ 0 is chosen to balance the trade-off between the model fitness and
sparsity of the solution.

The ideal choice for G would be the cardinality of x, also referred to as 	0
“norm” of x. However, its combinatorial nature makes the resulting optimization
problem numerically intractable as the variable dimensionm becomes large. Due to
its favorable theoretical guarantees (under some regularity conditions on A [32, 33])
and the existence of efficient solution methods for convex instances of (3.46), the
	1 norm has been widely adopted in the literature as convex surrogate G of the 	0
function (in fact, the 	1 norm is the convex envelop of the 	0 function on [−1, 1]m)
[30, 235]. Yet there is increasing evidences supporting the use of nonconvex
formulations to enhance the sparsity of the solution as well as the realism of the
models [2, 36, 96, 154, 224]. For instance, it is well documented that nonconvex
surrogates of the 	0 function, such as the SCAD [82], the “transformed” 	1, the
logarithmic, the exponential, and the 	p penalty [268], outperform the 	1 norm
in enhancing the sparsity of the solution. Table 3.1 summarizes these nonconvex
surrogates whereas Fig. 3.5 shows their graph.

Quite interestingly, it has been recently shown that the aforementioned noncon-
vex surrogates of the 	0 function enjoy a separable DC (Difference of Convex)
structure (see, e.g., [2, 143] and references therein); specifically, we have the
following

G(x) =
m∑

i=1

g(xi), with g (xi) = η (θ) |xi |︸ ︷︷ ︸
�g+(xi)

− (η (θ) |xi | − g (xi))︸ ︷︷ ︸
�g−(xi)

, (3.47)

Table 3.1 Examples of nonconvex surrogates of the 	0 function having a DC structure [cf. (3.47)]

Penalty function Expression

Exp [28] gexp(x) = 1 − e−θ |x|
	p(0 < p < 1) [90] g	+p (x) = (|x| + ε)1/θ
	p(p < 0) [193] g	−p (x) = 1 − (θ |x| + 1)p

SCAD [82] gscad(x)=

⎧
⎪⎪⎨

⎪⎪⎩

2θ
a+1 |x|, 0 ≤ |x| ≤ 1

θ
−θ2|x|2+2aθ |x|−1

a2−1
, 1

θ
< |x| ≤ a

θ

1, |x| > a
θ

Log [248] glog(x) = log(1+θ |x|)
log(1+θ)
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Fig. 3.5 Nonconvex surrogate functions of the 	0 function given in Table 3.1

Table 3.2 Explicit
expression of η(θ) and
dg−/dx [cf. (3.47)]

g η(θ) dg−θ /dx

gexp θ sign(x) · θ · (1 − e−θ |x|)
g	+p

1
θ
ε1/θ−1 1

θ
sign(x) · [ε 1

θ
−1 − (|x| + ε) 1

θ
−1]

g	−p −p · θ −sign(x) · p · θ · [1 − (1 + θ |x|)p−1]

gscad
2θ
a+1

⎧
⎪⎪⎨

⎪⎪⎩

0, |x| ≤ 1
θ

sign(x) · 2θ(θ |x|−1)
a2−1

, 1
θ
< |x| ≤ a

θ

sign(x) · 2θ
a+1 , otherwise

glog
θ

log(1+θ) sign(x) · θ2|x|
log(1+θ)(1+θ |x|)

where the specific expression of g : R → R is given in Table 3.1; and η (θ) is a fixed
given function, whose expression depends on the surrogate g under consideration,
see Table 3.2. Note that the parameter θ controls the tightness of the approximation
of the 	0 function: in fact, it holds that limθ→+∞ g(xi) = 1 if xi �= 0, otherwise
limθ→+∞ g(xi) = 0. Moreover, it can be shown that for all the functions in
Table 3.1, g− is convex and has Lipschitz continuous first derivative dg−/dx [143],
whose closed form is given in Table 3.2.

Motivated by the effectiveness of the aforementioned nonconvex surrogates of
the 	0 function and recent works [2, 151, 212, 261, 268], in this section, we show
how to use the MM framework to design efficient algorithms for the solution of
Problem (3.46), whereG is assumed to have the DC structure (3.47), capturing thus
in a unified way all the nonconvex 	0 surrogates reported in Table 3.1. The key
question is how to construct a valid surrogate function Ṽ of V in (3.46). We address
this issue following two steps: (1) We first find a surrogate G̃ for the nonconvexG in
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(3.47) satisfying Assumption 2.16; and (2) then we construct the overall surrogate
Ṽ of V , building on G̃.

Step 1: Surrogate ˜G of G There are two ways to construct G̃, namely: (i) tailoring
G̃ to the specific structure of the function g under consideration (cf. Table 3.1); or
(ii) leveraging the DC structure of g in (3.47) and obtain a unified expression for G̃,
valid for all the DC functions in Table 3.1. Few examples based on the approach (i)
are shown first, followed by the general design as in (ii).

Example 8 (The Log 	0 Surrogate) Let G be the “log” 	0 surrogate, i.e., G(x) =∑m
i=1 glog(xi), where glog is defined in Table 3.1. A valid surrogate is obtained

majorizing the log function glog (cf. Example 1), which leads to G̃(x | y) =∑m
i=1 g̃log(xi | yi), with

g̃log(xi | yi) = θ

log(1 + θ) ·
1

1 + θ |yi | |xi |. (3.48)

Example 9 (The 	p(0 < p < 1) Surrogate) LetG be the 	p(0 < p < 1) function,
i.e., G(x) = ∑m

i=1 g	+p (xi), where g	+p is defined in Table 3.1. Similar to the Log
surrogate, we can derive a majorizer of such a G(x) by exploiting the concavity of
g	+p . We have

g̃	+p (xi | yi) =
1

θ
(|yi | + ε)1/θ−1|xi |. (3.49)

The desired valid surrogate is then given by G̃(x | y) = ∑m
i=1 g̃	+p (xi | yi).

Example 10 (DC Surrogates) We consider now nonconvex regularizers having the
DC structure (3.47). A natural approach is to keep the convex component g+ in
(3.47) while linearizing the differentiable concave part −g−, which leads to the
following convex majorizer:

g̃(xi | yi) = η(θ) |xi| − dg−(x)
dx

∣
∣
∣
∣
x=yi

· (xi − yi), (3.50)

where the expression of dg(x)−/dx is given in Table 3.2. The desired majorization
then reads G̃(x | y) = ∑m

i=1 g̃(xi | yi).
Note that although the log and 	p surrogates provided in Example 8 and 9 are

special cases of DC surrogates, the majorizer constructed using (3.50) is different
from the ad-hoc surrogates g̃log and g̃	+p in (3.48) and (3.49), respectively.

Step 2: Surrogate ˜V of V We derive now the surrogate of V , when G is given by
(3.47). Since the loss function ‖z − Ax‖2 is convex, two natural options for Ṽ are:
1) keeping ‖z−Ax‖2 unaltered while replacingG with the surrogate G̃ discussed in
Step 1; or 2) majorizing also ‖z−Ax‖2. The former approach “better” preserves the
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structure of the objective function but at the price of a higher cost of each iteration
[cf. (3.2)]: the minimizer of the resulting Ṽ does not have a closed form expression;
the overall algorithm is thus a double-loop scheme. The latter approach is instead
motivated by the goal of obtaining low-cost iterations. We discuss next both options
and establish an interesting connection between the two resulting MM algorithms.

• Option 1 Keeping ‖z−Ax‖2 unaltered while using (3.50), leads to the following
update in Algorithm 1:

xk+1 ∈ argmin
x

{

Ṽ (x | xk) � ‖Ax − z‖2 + λ
m∑

i=1

g̃(xi | xki )
}

. (3.51)

Problem (3.51) is convex but does not have a closed form solution. To solve (3.51),
we develop next an ad-hoc iterative soft-thresholding-based algorithm invoking
again the MM framework on Ṽ (• | xk) in (3.51).

We denote by xk,r the r-th iterate of the (inner loop) MM algorithm (Algorithm 1)
used to solve (3.51); we initialize the inner algorithm by xk,0 = xk . Since the
quadratic term ‖Ax − z‖2 in (3.51) has Lipschitz gradient, a natural surrogate
function for Ṽ (x | xk), is [cf. (3.28)]: given xk,r ,

Ṽ k(x | xk,r ) = 2xTAT (Axk,r − z)+ L

2
‖x − xk,r‖2 + λ

m∑

i=1

g̃(xi | xki ), (3.52)

where L = 2 λmax(ATA). Denoting

bk,r � xk,r − 2

L
AT (Axk,r − z)+ λ

L
·
(
dg−(x)
dx

∣
∣
∣
∣
x=xki

)m

i=1

,

the main update of the inner MM algorithm minimizing Ṽ k(x | xk,r ) reads

xk,r+1 = argmin
x

L

2
‖x − bk,r‖2 + λ η(θ) ‖x‖1. (3.53)

Quite interestingly, the solution of Problem (3.53) can be obtained in closed form.
Writing the first order optimality condition

0 ∈ (x − bk,r )+ λ η(θ)

L
∂‖x‖1,

and recall that the subgradient of ‖x‖1 takes the following form [cf. (3.10)]:

∂‖x‖1 = {ζ : ζ T x = ‖x‖1, ‖ζ‖∞ ≤ 1},
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we have the following expression for xk,r+1:

xk,r+1 = sign(bk,r ) · max

{

|bk,r | − λ η(θ)

L
, 0

}

,

where the sign and max operators are applied component-wise. Introducing the soft-
thresholding operator

Sα(x) � sign(x) · max{|x| − α, 0}, (3.54)

xk,r+1 can be rewritten succinctly as

xk,r+1 = Sλη(θ)
L

(bk,r ), (3.55)

where the soft-thresholding operator is applied component-wise.
Overall the double loop algorithm, based on the MM outer updates (3.51) and

MM inner iterates (3.55) is summarized in Algorithm 3.

Termination Criteria As the termination criterion of Step 1 and Step 3 in Algo-
rithm 3, one can use any valid merit function measuring the distance of the iterates
from stationarity of (3.46) and optimality of (3.53), respectively. For both the
inner and outer loop, it is not difficult to check that the objective functions of
the associated optimization problems—(3.53) and (3.51), respectively—are strictly
convex if λ > 0; therefore both optimization problem have unique minimizers. It
turns out that both functions defined in (3.24) and (3.25) can be adopted as valid
merit functions. The loop can be then terminated once the value of the chosen
function goes below the desired threshold.

• Option 2 Algorithm 3 is a double loop MM-based algorithm: in the outer loop,
the surrogate function Ṽ (• | xk) [cf. (3.51)] is iteratively minimized by means of
an inner MM algorithm based on the surrogate function Ṽ k(x | xk,r ) [cf. (3.52)]. A
closed look at (3.51) and (3.52) shows that the following relationship holds between

Algorithm 3 MM Algorithm for nonconvex sparse least squares

Data : x0 ∈ X. Set k = 0.
(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Set r = 0. Initialize xk,0 as xk,0 = xk ;
(S.3) : If xk,r satisfies a termination criterion: STOP;

(a) : Update xk,r as

xk,r+1 = S λη(θ)
L

(
bk,r

)
;

(b) : r ← r + 1, and go to (S.3).
(S.4) : xk+1 = xk,r , k← k + 1, and go to (S.1).
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Ṽ and Ṽ k:

Ṽ k(x | xk,0) ≥ Ṽ (x | xk) ≥ V (x).

The above inequality shows that Ṽ k,0(x | xk) is in fact a valid surrogate function of
V at x = xk. This means that the inner loop of Algorithm 3 can be terminated after
one iteration without affecting the convergence of the scheme. Specifically, Step 3
of Algorithm 3 can be replaced with the following iterate

xk+1 = Sλη(θ)
L

(
bk,0

)
. (3.56)

The resulting algorithm is in fact an MM scheme minimizing Ṽ k,0(• | xk), whose
convergence is guaranteed by Theorem 2.14.

3.2.4.2 Nonnegative Least Squares

Finding a nonnegative solution x ∈ R
m of the linear model z = Ax + n has

attracted significant attention in the literature. This problem arises in applications
where the measured data is nonnegative; examples include image pixel intensity,
economical quantities such as stock price and trading volume, biomedical records
such as weight, height, blood pressure, etc. [75, 142, 213]. It is also one of the
key ingredients in nonnegative matrix/tensor factorization problem for analysing
structured data set. The nonnegative least squares (NNLS) problem consists in
finding a nonnegative x that minimizes the residual error between the data and the
model in least square sense:

minimize
x

V (x) � ‖z − Ax‖2

subject to x ≥ 0,
(3.57)

where z ∈ R
q and Aq×m are given.

Note that Problem (3.57) is convex. We show next how to construct a surrogate
function satisfying Assumption 2.13 which is additively separable in the compo-
nents of x, so that the resulting subproblems (3.2) can be solved in parallel. To this
end, we expand the square in the objective function and write

V (x) = xTATAx − 2zTAx + zT z. (3.58)

Let M ' AAT . Using (3.29), we can majorize V by

Ṽ (x | y) = V (y)+ 2(ATAy − AT z)T (x − y)+ (x − y)TM (x − y), (3.59)
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for any given y ∈ R
m. The goal is then finding a matrix M ' AAT that is diagonal,

so that Ṽ (x | y) becomes additively separable. We provide next two alternative
expressions for M.

• Option 1 Since ∇V is Lipschitz continuous on R
m, we can use the same

upperbound as in Example 3. This corresponds to choose M = λI, with λ such
that λ ≥ λmax

(
ATA

)
. This leads overall to the following surrogate of V :

Ṽ (x | y) = V (y)+ 2(ATA y − AT z)T (x − y)+ λ‖x − y‖2.

The above choice leads to a strongly convex subproblem (3.2), whose minimizer
has the following closed form:

xk+1 =
[

xk − 1

λ

(
ATAxk − AT z

)]

+
, (3.60)

where [•]+ denotes the Euclidean projection onto the nonnegative orthant. The
resulting MM algorithm (Algorithm 1) based on the update (3.60) turns out to be
the renowned gradient projection algorithm with constant step-size 1/λ.

• Option 2 If Problem (3.57) has some extra structure, the surrogate Ṽ can be
tailored to V even further. For instance, suppose that in addition to the structure
above, there hold A ∈ R

q×m
++ , z ∈ R

q
+ and z �= 0. It has been shown in [58, 142] that

the following diagonal matrix

M � Diag

(
(ATA xk)1

xk1

, · · · , (A
TA xk)m
xkm

)

(3.61)

satisfies M ' ATA. Substituting (3.61) in (3.59), one obtains the following closed
form solution of the resulting subproblem (3.2):

xk+1 = (AT z/ATAxk) · xk,

wherein both division and multiplication are intended to be applied element-wise.

3.2.4.3 Sparse Plus Low-Rank Matrix Decomposition

Another useful paradigm is to decompose a partly or fully observed data matrix into
the sum of a low rank and (bilinear) sparse term; the low-rank component captures
correlations and periodic trends in the data whereas the bilinear term explains
parsimoniously data patterns, (co-)clusters, innovations or outliers.

Let Y ∈ R
m×t (m ≤ t) be the data matrix. The goal is to find a low rank matrix

L ∈ R
m×t with rank r0 � rank(L) ( m, and a sparse matrix S ∈ R

m×t such that
Y = L + S + V, where V ∈ R

m×t accounts for measurement errors. To cope with
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the missing data in Y, we introduce i) the set Ω ⊆ M × T of index pairs (i, j),
where M � {1, . . . ,m} and T � {1, . . . , t}; and ii) the sampling operator PΩ(·),
which nulls the entries of its matrix argument not in Ω , leaving the rest unchanged.
In this way, one can express incomplete and (possibly noise-)corrupted data as

PΩ(Y) ≈ PΩ(L + S), (3.62)

where ≈ is quantified by a specific loss function (and regularization) [220].
Model (3.62) subsumes a variety of statistical learning paradigms including:

(robust) principal component analysis [35, 41], compressive sampling [34], dictio-
nary learning (DL) [77, 180], non-negative matrix factorization [109, 125, 141],
matrix completion, and their robust counterparts [114]. Task (3.62) also emerges
in various applications such as (1) network anomaly detection [132, 156, 157];
(2) distributed acoustic signal processing [73, 74]; (3) distributed localization and
sensor identification [206]; (4) distributed seismic forward modeling in geological
applications [173, 271] (e.g., finding the Green’s function of some model of a
portion of the earth’s surface); (5) topic modeling for text corpus from social
media [199, 266]; (6) data and graph clustering [100, 128, 129, 236]; and (7) power
grid state estimation [95, 122].

In the following, we study task (3.62) adopting the least-squares (LS) error as
loss function for ≈. We show in detail how to design an MM algorithm for the
solution of two classes of problems under (3.62), namely: (i) the low-rank matrix
completion problem; and (ii) the dictionary learning problem. Similar techniques
can be used also to solve other tasks modeled by (3.62).

1) Low-Rank Matrix Completion The low-rank matrix completion problem
arises frequently in learning problems where the task is to fill in the blanks in the
partially observed collinear data. For instance, in movie rating problems, Y is the
rating matrix whose entries yij represent the score of movie j given by individual i
if he/she has watched it, and considered missing otherwise. Despite of being highly
incomplete, such a data set is also rank deficient as individuals sharing similar
interests may give similar ratings (the corresponding rows of Y are collinear), which
makes the matrix completion task possible. Considering model (3.62), the question
becomes how to impose a low-rank structure on L and sparse structure on S. We
describe next two widely used approaches.

A first approach is enforcing a low-rank structure on L by promoting sparsity on
the singular values of L [denoted by σi(L), i = 1, . . . ,m] as well as on the elements
of S via regularization. This leads to the following formulation

minimize
L,S

V (L,S) � ‖PΩ (Y − L − S)‖2
F + λr ·Gr(L)+ λs ·Gs(S),

(3.63)

where Gr(L) �
∑m
i=1 gr (σi (L)) and Gs(S) �

∑r
i=1

∑t
j=1 gs

(
sij

)
are sparsity

promoting regularizers, and λr and λs positive coefficients. Since Gr(L) promotes
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sparsity on the singular values of L, this will induce a low-rank structure on L.
Note that the general formulation (3.63) contains many popular choices of low-
rank inducing penalties. For instance, choosing gr(x) = gs(x) = card(x), one
gets Gr(L) = rank(L) and Gs(S) = ‖S‖0 � ‖vec(S)‖0, which become the
exact (nonconvex) rank penalty on L and the cardinality penalty on S, respectively.
Another popular choice is gr(x) = |x|, which leads to the convex nuclear norm
penalty Gr(L) = ‖L‖∗; another example is gr(x) = log(x), which yields the
nonconvex logdet penalty. To keep the analysis general, in the following we tacitly
assume that gr and gs are any of the DC surrogate functions of the 	0 function
introduced in Sect. 3.2.4.1 [cf. (3.47)]. Note that, since gr and gs are DC and σi(L)
is a convex function of L, they are all directionally differentiable (cf. Sect. 3.2.1).
Therefore, V (L,S) in (3.63) is directionally differentiable.

A second approach to enforce a low-rank structure on L is to “hard-wire” a rank
(at most) r into the structure of L by decomposing L as L = DX, where D ∈ R

m×r
and X ∈ R

r×t are two “thin” matrices. The problem then reads

minimize
D,X

‖PΩ(Y − DX − S)‖2
F + λr ·Gr(D,X)+ λs ·Gs(S), (3.64)

where Gr and Gs promote low-rank and sparsity structures, respectively. While Gs
can be chosen as in (3.63), the choice of Gr acting on the two factors D and X
while imposing the low-rankness of L is less obvious; two alternative choices are
the following. Since

‖L‖∗ = inf
D X=L

1

2

(
‖D‖2

F + ‖X‖2
F

)
,

an option is choosing

Gr(D,X) = 1

2

(
‖D‖2

F + ‖X‖2
F

)
.

Another low-rank inducing regularizer is the max-norm penalty

‖L‖max � inf
D X=L

‖D‖2,∞ + ‖X‖2,∞,

where ‖ • ‖2,∞ denotes the maximum 	2 row norm of a matrix; this leads to

Gr(D,X) = ‖D‖2,∞ + ‖X‖2,∞.

Here we focus only on the first formulation, Problem (3.63); the algorithmic
design for (3.64) will be addressed within the context of the dictionary learning
problem, which is the subject of the next section.

To deal with Problem (3.63), the first step is to rewrite the objective function
in a more convenient form, by getting rid of the projection operator PΩ . Define
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Q � diag (q), with qi = 1 if
(
vec

(
PΩ (Y)

))
i
�= 0; and qi = 0 otherwise. Then,

V (L,S) in (3.63) can be rewritten as

V (L,S) = ‖vec(Y)− vec(L + S)‖2
Q

︸ ︷︷ ︸
Q(L,S)

+λr ·Gr(L)+ λs ·Gs(S), (3.65)

where ‖x‖2
Q � xTQ x. Note that since qi is equal to either 0 or 1, we have

λmax (Q) = 1. In the following, we derive an algorithm that alternately optimizes L
and S based on the block MM algorithm described in Algorithm 2. In the following,
we denote by mij the (i, j)-th entry of a generic matrix M.

We start with the optimization of S, given L = Lk . One can easily see
that V (Lk,S) is of the same form as the objective function in Problem (3.46).
Therefore, two valid surrogate functions can be readily constructed using the same
technique already introduced in Sect. 3.2.4.1. Specifically, two alternative surrogates
of V (Lk,S) are [cf. (3.51)]: given Sk ,

Ṽ (1)(Lk,S | Sk) = Q(Lk,S)+ λs
r∑

i=1

t∑

j=1

g̃s (sij | skij ) (3.66)

and [cf. (3.52)]

Ṽ (2)(Lk,S | Sk)

= Q(Lk,Sk)+ 2
(

vec(Y − Lk)− vec(Sk)
)T

Q
(

vec(Y − Lk)− vec(S)
)

+
∥
∥
∥vec(S)− vec(Sk)

∥
∥
∥

2 + λs
r∑

i=1

t∑

j=1

g̃s (sij | skij )

=
∥
∥
∥S − Ỹk − (λs/2) · Wk

∥
∥
∥

2

F
+ λs η(θ) ‖S‖1 + const.,

(3.67)

where Wk and Ỹk are matrices of the same size of S, with (i, j)-th entries defined
as

wkij �
dg−s (x)
dx

∣
∣
∣
∣
x=skij

and ỹkij �
{
yij − 	kij , if (i, j) ∈ Ω,
skij , otherwise,

(3.68)

respectively; and in const. we absorbed irrelevant constant terms.
The minimizer of V (1)(Lk, • | Sk) and V (2)(Lk, • | Sk) can be computed follow-

ing the same steps as described in Option 1 and Option 2 in Sect. 3.2.4.2, respec-
tively. Next, we only provide the update of S based on minimizing V (2)(Lk, • | Sk),
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which is given by

sk+1
ij = sign

(
ỹij + (λs/2) ·wkij

)
· max

{∣
∣
∣̃yij + (λs/2) ·wkij

∣
∣
∣− η(θ)/2, 0

}
.

(3.69)

Next, we fix S = Sk+1 and optimize L. In order to obtain a closed form update
of L, we upperbound Q(•,Sk+1) and Gr(•) in (3.65) using (3.28) and (3.26),
respectively, and following similar steps as to obtain (3.67). Specifically, a surrogate
ofQ(•,Sk+1) is: given Lk ,

Q̃(L,Sk+1 |Lk) = ‖L − Xk‖2
F + const., (3.70)

where Xk is a matrix having the same size of Y, with entries defined as

xkij �
{
yij − sk+1

ij , (i, j) ∈ Ω;
	kij , otherwise.

(3.71)

To upperbound the nonconvex regularizer Gr(L) = ∑m
i=1 g (σi (L)), we invoke

(3.50) and obtain

g̃r

(
σi(L) | σi(Lk)

)
= η(θ)|σi (L) | − wki ·

(
σi (L)− σi(Lk)

)
, (3.72)

with

wki �
dg−r (x)
dx

∣
∣
∣
∣
x=σi(Lk)

.

Using the directional differentiability of the singular values σi(Lk) (see, e.g., [97])
and the chain rule, it is not difficult to check that Assumption 2.13 (in particular
the directional derivative consistency condition 2.13.3) is satisfied for g̃r ; therefore
g̃r

(• | σi(Lk)
)

is a valid surrogate function of gr .
Combining (3.70) and (3.72) yields the following surrogate function of

V (L,Sk+1):

Ṽ
(

L,Sk+1 |Lk
)
= ‖L − Xk‖2

F + λr
m∑

i=1

(
η|σi (L) | − wki σi (L)

)
. (3.73)

The final step is computing the minimizer of Ṽ (L |Lk). To this end, we first
introduce the following lemma [244].
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Lemma 2.21 (von Neumann’s Trace Inequality) Let A and B be two m × m
complex-valued matrices with singular values σ1(A) ≥ · · · ≥ σm(A) and σ1(B) ≥
· · · ≥ σm(B), respectively. Then,

|Tr(AB)| ≤
m∑

i=1

σi(A)σi(B). (3.74)

Note that Lemma 2.21 can be readily generalized to rectangular matrices.
Specifically, given A, BT ∈ R

m×t , define the augmented square matrices
Ã � [A; 0(t−m)×t] and B̃ � [B, 0t×(t−m)], respectively. Applying Lemma 2.21
to Ã and B̃, we get

Tr(AB) = Tr(ÃB̃) ≤
t∑

i=1

σi(Ã)σi(B̃) =
m∑

i=1

σi(A)σi(B), (3.75)

where equality is achieved when A and BT share the same singular vectors. Using
(3.75), we can now derive the closed form of the minimizer of (3.73).

Proposition 2.22 Let Xk = UXΣXVTX be the singular value decomposition (SVD)
of Xk . The minimizer of Ṽ

(
L,Sk+1 |Lk

)
in (3.73) (and thus the update of L) is

given by

Lk+1 = UXDηλr
2

(
ΣX + Diag({wki λr/2}mi=1)

)
VTX, (3.76)

where Dα (Σ) denotes a diagonal matrix with the i-th diagonal element equal to
(Σ ii − α)+, and (x)+ � max(0, x).

Proof Expanding the squares we rewrite Ṽ
(
L,Sk+1 |Lk

)
as

Ṽ (L,Sk+1 |Lk)

= Tr(LLT )− 2Tr(L(Xk)T )+ Tr(Xk(Xk)T )+ λr
m∑

i=1

(
η|σi (L) | − wki σi (L)

)

=
m∑

i=1

σ 2
i (L)− 2Tr(L(Xk)T )+ λr

m∑

i=1

(
η|σi (L) | − wki σi (L)

)
+ Tr(Xk(Xk)T ).

(3.77)

To find a minimizer of Ṽ (•,Sk+1 |Lk), we introduce the SVD of L = ULΣLVTL ,
and optimize separately on UL, VL, and ΣL, with ΣL = diag(σ1(L), . . . , σm(L)).

From (3.75) we have Tr(L(Xk)T ) ≤ ∑m
i=1 σi(L)σi(X

k), and equality is reached
if UL = UX and VL = VX, respectively; which are thus optimal. To compute
the optimal ΣL let us substitute UL = UX and VL = VX in (3.77) and solve the
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resulting minimization problem with respect to ΣL:

minimize
{σi (L)}mi=1

m∑

i=1

σi(L)2 − 2
m∑

i=1

σi(L)σi(Xk)+ λr
m∑

i=1

(
ησi (L)− wki σi (L)

)

subject to σi(L) ≥ 0, ∀i = 1, . . . ,m. (3.78)

Problem (3.78) is additively separable. The optimal value of each σi(L) is

σ�i (L) = argmin
σi(L)≥0

(σi(L)− σi(Xk)−wki λr/2 + ηλr/2)2

= (σi(Xk)+wki λr/2 − ηλr/2)+,
(3.79)

which completes the proof.

The block MM algorithm solving the matrix completion Problem (3.63), based
on the S-updates (3.69) and L-update (3.76), is summarized in Algorithm 4.

2) Dictionary Learning Given the data matrix Y ∈ R
m×t , the dictionary learning

(DL) problem consists in finding a basis, the dictionary D ∈ R
m×r (with r ( t),

over which Y can be sparsely represented throughout the coefficients X ∈ R
r×t .

This problem appears in a wide range of machine learning applications, such as
image denoising, video surveillance, face recognition, and unsupervised clustering.
We consider the following formulation for the DL problem:

minimize
X,D∈D

V (D,X) � ‖Y − DX‖2
F︸ ︷︷ ︸

F(D,X)

+λs G(X),
(3.80)

where D is a convex compact set, bounding the elements of the dictionary so that
the optimal solution will not go to infinity due to scaling ambiguity; and G aims at
promoting sparsity on X, with λs being a positive given constant. In the following,
we assume that G(X) = ∑r

i=1
∑t
j=1 g(xij ), with g being any of the DC functions

introduced in (3.47).
Since F(D,X) in (3.80) is biconvex, we can derive an algorithm for Problem

(3.80) based on the block MM algorithm by updating D and X alternately.

Algorithm 4 Block MM algorithm for matrix completion [cf. (3.63)]

Data : L0,S0 ∈ R
m×t . Set k = 0.

(S.1) : If Lk and Sk satisfy a termination criterion: STOP;
(S.2) : Alternately optimize S and L:

(a) : Update Sk+1 as according to (3.69);
(b) : Update Lk+1 according to (3.76);

(S.3) : k← k + 1, and go to (S.1).
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Given X = Xk , F(D,Xk) is convex in D. A natural choice for a surrogate of
F(D,Xk) is F(D,Xk) itself, that is,

F̃ (1)(D |Xk) � F(D,Xk) = ‖Y − DXk‖2
F , (3.81)

and update D solving

Dk+1 = argmin
D∈D

‖Y − DXk‖2
F . (3.82)

Problem (3.82) is convex, but does not have a closed form solution for a general
constraint set D. In some special cases, efficient iterative method can be derived to
solve (3.82) by exploiting its structure (see, e.g., [195]). For instance, consider the
constraint set D = {D ∈ R

m×r : ‖D‖2
F ≤ α}. Writing the KKT conditions of

(3.82) (note that Slater’s constraint qualification holds), we get

0 ≤ α − ‖D‖2
F ⊥ μ ≥ 0, (3.83a)

∇DL(D, μ) = 0, (3.83b)

where L(D, μ) is the Lagrangian function, defined as

L(D, μ) = ‖Y − DXk‖2
F + μ(‖D‖2

F − α). (3.84)

For any given μ ≥ 0, the solution of (3.83b) is given by

D(μ) = Y(Xk)T (Xk(Xk)T + μI)−1, (3.85)

where μ needs to be chosen in order to satisfy the complementarity condition in
(3.83)

0 ≤ h(μ) ⊥ μ ≥ 0, (3.86)

with h(μ) � α−‖D(μ)‖2
F . Since h(•) is monotone, (3.86) can be efficiently solved

using bisection.
An alternative surrogate function of F(D,Xk) leading to a closed form solution

of the resulting minimization problem can be readily obtained leveraging the
Lipschitz continuity of ∇DF(D,Xk) and using (3.28), which yields

F̃ (2)(D,Xk |Dk) = 2 Tr
{
(DkXkXkT − YXkT )T (D − Dk)

}
+ L‖D − Dk‖2

F + const.,

(3.87)
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where L � λmax(SkSkT ) and const. is an irrelevant constant. The update of D is
then given by

Dk+1 = PD
(

1

L
(DkXkXkT − YXkT )

)

� argmin
D∈D

∥
∥
∥
∥D − (

Dk − 1

L
(DkXkXkT − YXkT )

)
∥
∥
∥
∥

2

,

(3.88)

which has a closed form expression for simple constraint sets such as D = R
m×r+ ,

D = {D |D ∈ R
m×r+ , ‖D‖2

F ≤ α}, andD = {D | ‖di‖2
2 ≤ αi, ∀i = 1, . . . ,m}.

We fix now D = Dk+1, and update X. Problem (3.80) is separable in the columns
of X; the subproblem associated with the j -th column of X, denoted by xj , reads

xk+1
j ∈ argmin

xj

1

2
‖yj − Dk+1xj‖2 + λs

t∑

j=1

gs(xij ). (3.89)

Note that Problem (3.89) is of the same form of (3.46); therefore, it can be solved
using the MM algorithm, based on the surrogate functions derived in Sect. 3.2.4.1
[cf. (3.51) and (3.52)].

3.2.4.4 Multicast Beamforming

We study the Max-Min Fair (MMF) beamforming problem for single group
multicasting [219], where a single base station (BS) equipped with m antennas
wishes to transmit common information to a group of q single-antenna users over
the same frequency band. The goal of multicast beamforming is to exploit the
channels and the spatial diversity offered by the multiple transmit antennas to steer
transmitted power towards the group of desired users while limiting interference
(leakage) to nearby co-channel users and systems.

Denoting by w ∈ C
m the beamforming vector, the Max-Min beamforming

problem reads

maximize
w∈Cm

min
i=1,...,q

wHRiw

subject to ‖w‖2 ≤ PT ,
(3.90)

where PT is the power budget of the BS and Ri ∈ C
m×m is a positive semidefinite

matrix modeling the channel between the BS and user i. Specifically, Ri =
hihHi /σ

2
i if instantaneous Channel State Information (CSI) is assumed, where hi

is the frequency-flat quasi-static channel vector from the BS to user i and σ 2
i is the

variance of the zero-mean, wide-sense stationary additive noise at the i-th receiver;
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and Ri = E{hihHi }/σ 2
i represents the spatial correlation matrix if only long-term

CSI is available (in the latter case, no special structure for Ri is assumed).
Problem (3.90) contains complex variables. One could reformulate the problem

into the real domain by using separate variables for the real and imaginary parts of
the complex variables, but this approach is not advisable because it does not take
advantage of the structure of (real) functions of the complex variables. Following
a well-established path in the signal processing and communication communities,
here we work directly with complex variables by means of “Wirtinger derivatives”.
The main advantage of this approach is that we can use the so-called “Wirtinger
calculus” to easily compute in practice derivatives of the functions in (3.90) directly
in the complex domain. It can be shown that all the results in this chapter extend to
the complex domain when using Wirtinger derivatives instead of classical gradients.
Throughout the chapter we will freely use the Wirtinger calculus and refer the reader
to [105, 126, 209] for more information on this topic.

We derive now an MM algorithm to solve Problem (3.90). To do so, we first
rewrite (3.90) in the equivalent minimization form

minimize
w∈Cm

max
i=1,...,q

−wHRiw

subject to ‖w‖2 ≤ PT .

Since fi(w) � −wHRiw is a concave function on C
m, it can be majorized by its

first order approximation: given y ∈ C
m,

f̃i (w | y) = fi(y)+ 2 Re
{
(y)HRi (w − y)

}
. (3.91)

Using (3.91) and (3.32), it is easy to check that the following convex function is
a valid surrogate of V (w) � maxi=1,...,q −wHRiw:

Ṽ (w | y) = max
i=1,...,q

f̃i (w; y). (3.92)

The main iterate of the MM algorithm based on (3.92) is then given by: given wk ,

xk+1 ∈ argmin
‖w‖2≤PT

{

max
i=1,...,q

−wkHRiwk + 2Re{wkHRi (w − wk)}
}

. (3.93)

Convergence to d-stationary solutions of (3.90) is guaranteed by Theorem 2.14.
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3.2.5 Sources and Notes

A Bit of History The MM algorithmic framework has a long history that traces
back to 1970, when the majorization principle was introduced [181] for descent-
based algorithms, using line search. In 1977, the MM principle was applied to
multidimensional scaling [62, 65]. Concurrently, its close relative, the (generalized)
EM algorithm [66], was proposed by Dempster et al. in 1977 in the context of
maximum likelihood estimation with missing observations. The authors proved the
monotonicity of the EM scheme showing that the E-step generates an upperbound
of the objective function. The idea of successively minimizing an upperbound of
the original function appeared in subsequent works, including [63, 68, 92, 93, 135],
to name a few; and it was introduced as a general algorithmic framework in
[64, 101, 137]. The connection between EM and MM was clarified in [10], where the
authors argued that the majorization step (also referred to as “optimization transfer”)
rather than the missing data is the key ingredient of EM. The EM/MM algorithm has
gained significant attention and applied in various fields ever since [110, 161, 253].
A recent tutorial on the MM algorithm along with its applications to problems in
signal processing, communications, and machine learning can be found in [230].

Building on the plain MM/EM, as described in Algorithm 1, several general-
izations of the algorithm have been developed to improve its convergence speed,
practical implementability, as well as scalability. Some representative examples
are the following. Both the majorization and minimization steps can be performed
inexactly: the global upperbound condition of the surrogate function can be relaxed
to be just a local upperbound; and the exact minimizer of the surrogate function can
be replaced by one that only decreases the value of the surrogate with respect to
the current iterate [66, 133]. MM can also be coupled with line-search schemes to
accelerate its convergence [6, 102, 144, 201]. Furthermore, instead of majorizing
the objective function on the whole space, the “subspace MM” algorithm con-
structs majorizers on an iteration-dependent subspace [47–49, 131]. For structured
problems whose variables are naturally partitioned in blocks, majorization can
be done block-wise to reduce the scale of the subproblems and achieving tighter
upperbounds [83]. Sweeping rules of the blocks such as the (essential-)cyclic rule,
random-based rule, Gauss-Southwell rule, maximum improvement rule, have been
studied in [83, 113, 194]. An incremental MM was proposed in [153] to minimize
sum-utilities composed of a large number of cost functions.

On the Convergence of MM/EM Due to the intimacy between MM and EM,
convergence results of MM cannot be summarized independently from those of EM.
Therefore, in the following we will not distinguish between EM and MM. Earlier
studies including the proof of monotonicity of the sequence of the objective values
along with the characterization of the limit points of the sequence generated my
the EM/MM algorithm were presented in [66]. Results were refined in [27, 252],
under the assumption that the objective function is differentiable and the iterates
lie in the interior of the constraint set: it was shown that, if the surrogate function
satisfies some mild conditions, all the limit points of the sequence generated by
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the EM/MM algorithm are stationary points of the problem. Conditions for the
convergence of the whole sequence were given in [241]. A more comprehensive
study of MM convergence with extensions to constrained problems and block-wise
updates, can be found in [84, 113], where the surrogate only needs to upperbound
the objective function locally. Convergence of (block-)MM applied to problems with
non-smooth objective functions was studied in [194] (cf. Theorems 2.14 and 2.20).
All the above results considered convex constraints. Convergence of MM under
non-convex constraint were only partially investigated; examples include [222] and
[59, 159, 263], the latter focusing on specific problems. In many applications,
the EM/MM has been observed to be slow [110, 253]. Accelerated versions
of EM/MM include: (i) [6, 102, 144, 201], based on modifying the step-size;
(ii) [26, 117, 133, 134, 163], based on adjusting the search direction or inexact
computation of the M-step; (iii) and [152, 242, 273] based on finding a fixed-
point of the algorithmic mapping. We refer the readers to [118, 161, 230] for a
comprehensive overview.

On the Choice of Surrogate Function and Related Algorithms The performance
of MM depends crucially on the choice of the surrogate function. On one hand, a
desirable surrogate function should be sufficiently “simple” so that the resulting
minimization step can be carried out efficiently; on the other hand, it should also
preserve the structure of the objective function, which is expected to enhance the
practical convergence. Achieving a trade-off between these two goals is often a
non-trivial task. Some guidelines on how to construct valid surrogate functions
along with several examples were provided in [110, 153, 253]. Quite interestingly,
under specific choices of the surrogate function, the resulting (block-)MM algorithm
becomes an instance of well-knowns schemes, widely studied in the literature.
Examples include the EM algorithm [66], the convex-concave procedure (CCCP)
[148, 192, 264], the proximal algorithms [8, 15, 50, 53, 184], the cyclic minimization
algorithm [226], and block coordinate descent-based schemes [250]. Finally, the
idea of approximating a function using an upperbound has also been adopted to con-
vexify nonconvex constraint functions; examples include the inner approximation
algorithm [160], the CCCP procedure, and SCA-based algorithms [81, 211, 212].

Applications of MM/EM In the last few years there has been a growing interest in
using the MM framework to solve a gamut of problems in several fields, including
signal/image processing, machine learning, communications, and bioinformatics,
just to name a few. A non-exhaustive list of specific applications include sparse
linear/logistic regression [7, 21, 23, 36, 59, 87, 88, 127, 158], sparse (generalized)
principal component analysis [120, 223, 263], matrix factorization/completion [85,
86, 119, 195], phase retrieval [175, 190], edge preserving regularizations in image
processing [3, 92, 93], covariance estimation [12, 227, 229, 249, 274], sequence
design [222, 254, 272], nonnegative quadratic programming [138, 142, 213], signo-
mial programming [136], and sensor network localization [8, 9, 54, 179].

In the era of big data, the desiderata of MM has steered to low computational
complexity and parallel/online computing. This raises new questions and chal-
lenges, including (i) how to design MM schemes with better convergence rate;
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(ii) how to extend the MM framework to stochastic/online learning problems; and
(iii) how to design surrogate functions exploiting problem structure and leading to
closed form solutions and/or parallel/distributed updates.

3.3 Parallel Successive Convex Approximation Methods

This lecture goes beyond MM-based methods, addressing some limitations and
challenges of the MM design. The MM approach calls for the surrogate function
Ṽ to be a global upperbound of the objective function V ; this requirement might
limit the applicability and the effectiveness of the MM method, for several reasons.

First of all, when V does not have a favorable structure to exploit, it is not easy
to build a surrogate Ṽ (possibly convex) that is a (tight) global upper bound of V .
For instance, suppose that V is twice continuously differentiable and Ṽ is given by
(3.28). A valid choice for L in (3.28) to meet the upperbound requirement is L ≥
supx∈X ‖∇2V (x) ‖2. However, computing supx∈X ‖∇2V (x) ‖2 for unstructured V
is not in general easy. In all such cases, a natural option is leveraging some upper
bound of supx∈X ‖∇2V (x) ‖2 (e.g., by uniformly bounding the largest eigenvalue
of ∇2V on X). In practice, however, these bounds can be quite loose (much larger
than supx∈X ‖∇2V (x) ‖2), resulting in very slow instances of the MM algorithm.

Second, an upper approximation of V might be “too conservative” and not
capturing well the “global behaviour” of V ; this may affect the guarantees of the
resulting MM algorithm. Figure 3.6 depicts such a situation: in Fig. 3.6a an upper
convex approximation is chosen for Ṽ whereas in Fig. 3.6b the surrogate function
is not an upper bound of V but it shares with V the same gradient at the base point
while preserving the “low frequency component” of V . As shown in the figure, the
two surrogates have different minimizers.

Third, building upper approximations of V that are also (additively) block
separable is in general a challenging task, making the MM method not suitable

(a) (b)

Fig. 3.6 Upper versus local approximation of the objective function. (a) MM approach: Upper
approximation (dotted blue line) of the original function (solid black line) at the base point (red
star). (b) SCA approach: Local approximation (dotted blue line) of the original function (solid
black line) at the base point (red star)
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for a parallel implementation, which instead is a desirable feature when dealing
with large-scale problems. Block updates in MM schemes are possible, but in a
sequential (e.g., cyclic) form, as discussed in Sect. 3.2.3 (Lecture I) for the block
alternating MM algorithm (Algorithm 2). This contrasts with the intrinsic parallel
nature of other algorithms for nonconvex problems, like the (proximal) gradient
algorithm.

In this lecture we present a flexible SCA-based algorithmic framework that
addresses the above issues. The method hinges on surrogate functions that (1) need
not be a global upper bound of the objective function but only preserve locally its
first order information; (2) are much easier to be constructed than upper approxi-
mations; and (3) lead to subproblems that, if constraints permit, are block separable
and thus can be solved in parallel. However, the aforementioned surrogates need to
be strongly convex, a property that is not required by MM algorithms. Furthermore,
to guarantee convergence when the surrogate function is not a global upper bound
of the objective function, a step-size is employed in the update of the variables. We
begin by first describing a vanilla SCA algorithm in Sect. 3.3.2, where all the blocks
are updated in parallel; several choices of the surrogate functions are discussed
and convergence of the scheme under different step-size rules is provided. In
Sect. 3.3.3, we extend the vanilla algorithm to the case where (1) a parallel selective
update of the block variables is performed at each iteration—several deterministic
and random-based selection rules will be considered—and (2) inexact solutions
of the block-subproblems are used. This is motivated by applications where the
parallel update of all blocks and/or the computation of the exact solutions of the
subproblems at each iteration is not beneficial or affordable. In Sect. 3.3.4, “hybrid”
parallel SCA methods are introduced, which combine deterministic and random-
based block selection rules. These schemes have been shown to be very effective
when dealing with huge-scale optimization problems. In Sect. 3.3.5, we apply the
proposed (parallel) SCA methods to a variety of problems arising from applications
in signal processing, machine learning, and communications, and compare their
performance with those of existing MM methods. Finally, in Sect. 3.3.7 we overview
the main literature and briefly discuss some extensions of the methods described in
this lecture.

3.3.1 Problem Formulation

We study Problem (3.1), assuming the following structure for V :

minimize
x∈X V (x) � F(x)+G(x). (3.94)

Assumption 3.1 Given Problem (3.94), we assume that

1. X = X1 × · · ·Xn, with each ∅ �= Xi ⊆ R
mi closed and convex;

2. F : O → R is C1 on the open set O ⊇ X, and ∇F is L-Lipschitz on X;
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3. G : O → R is convex, possibly nonsmooth;
4. V is bounded from below on X.

While Assumption 3.1 is slightly more restrictive than Assumption 2.12 (it requires
G to be convex), it is general enough to cover a gamut of formulations, arising from
applications in several fields; some examples are discussed in Sect. 3.3.1.1. On the
other hand, under Assumption 3.1, we have more flexibility in the choice of the
surrogate function and design of parallel algorithms, as it will be discussed shortly.

3.3.1.1 Some Motivating Applications

Many problems in fields as diverse as sensor networks, imaging, machine learning,
data analysis, genomics, and geophysics, can be formulated as Problem (3.94)
and satisfy Assumption 3.1. Some illustrative examples are documented next; see
Sect. 3.3.5 for more details and some numerical results.

Example #1−LASSO Consider a linear regression model with q predictor/feature-
response pairs {(zi, ai )}qi=1, where ai ∈ R

m is a m-dimensional vector of features
or predictors, and zi is the associated response variable. Let z = (z1, . . . , zq)

T

denote the q-dimensional vector of response, and A ∈ R
q×m be the matrix with ai

in its i-th row. Then, the LASSO problem in the so-called Lagrangian form [235],
aiming at finding a sparse vector of regression weights x ∈ R

m, is an instance of
Problem (3.94), with F(x) = ‖z − Ax‖2 and G(x) = λ‖x‖1, where λ is a positive
given constant.

Example #2−Group LASSO There are many regression problems wherein the
covariates within a group become nonzero (or zero) simultaneously. In such settings,
it is natural to select or omit all the coefficient within a group together. The
group LASSO promotes this structure by using sums of (un-squared) 	2 penalties.
Specifically, consider the regression vector x ∈ R

m possessing the group sparse
pattern x = [xT1 , . . . , xTn ]T , i.e., all the elements of xi either take large values or
close to zero [262]. A widely used group LASSO formulation is the instance of
Problem (3.94), with F(x) = ‖z − Ax‖2 and G(x) = λ∑n

i=1 ‖xi‖2, and λ > 0.

Example #3−Sparse Logistic Regression Logistic regression has been popular in
biomedical research for half a century, and has recently gained popularity to model
a wider range of data. Given the training set {zi , wi}qi=1, where zi ∈ R

m is the
feature vector andwi ∈ {−1, 1} is the label of the i-th sample, the logistic regression
problem based on a linear logistic model consists in minimizing the negative log
likelihood [162, 214] F(x) = (1/q) · ∑q

i=1 log(1 + e−wi ·zTi x); regularizations can
be introduced, e.g., in the form G(x) = λ‖x‖1 (or G(x) = λ

∑n
i=1 ‖xi‖2), with

λ > 0. Clearly, this is an instance of Problem (3.94).

Example #4−Dictionary Learning Dictionary learning is an unsupervised learn-
ing problem that consists in finding a basis D ∈ R

q×m—called dictionary—whereby
data zi ∈ R

q can be sparsely represented by coefficients xi ∈ R
m. Let Z ∈ R

q×I



3 Parallel and Distributed SCA 187

and Z ∈ R
m×I be the data and representation matrix whose columns are the data

vectors zi and coefficients xi , respectively. The DL problem is the instance of
Problem (3.94), with F(D,X) = ‖Z − DX‖2

F and G(X) = λ‖X‖1, X = {(D,X) ∈
R
q×m × R

m×I : ‖D ei‖2 ≤ αi,∀i = 1, . . . ,m}, where ei is the i-th canonical
vector, and ‖X‖F and ‖X‖1 denote the Frobenius norm and the 	1 matrix norm of
X, respectively. Note that this is an example of F(D,X) that is not jointly convex in
(D,X), but bi-convex (i.e., convex in D and X separately).

Example #5−(Sparse) Empirical Risk Minimization Given a training set
{Di}Ii=1, the parametric empirical risk minimization problem aims at finding the
model h : Rm � X → R

q , parameterized by x, that minimizes the risk function∑I
i=1 	 (h (x;Di)), where 	 : Rq → R is a loss function, measuring the mismatch

between the model and the data. This optimization problem is a special case of
Problem (3.94), with F(x) = ∑I

i=1 fi(x) and fi(x) � 	
(
h (x;Di)

)
. To promote

sparsity, one can add in the objective function a regularizer G using, e.g., any of
the surrogates of the 	0 cardinality function listed in Table 3.1 (cf. Sect. 3.2.4.1).
By absorbing the smooth G− part in F , the resulting regularized empirical risk
minimization problem is still written in the form (3.94). Note that this general
problem contains the previous examples as special cases, and generalizes them by
incorporating also nonconvex regularizers.

All the above examples contain separable G. Some applications involving
nonseparableG are discussed next.

Example #6−Robust Linear Regression Linear least-squares estimates can
behave badly when the error distribution is not normal, particularly when the
errors are heavy-tailed. One remedy is to remove influential observations from
the least-squares fit. Another approach, termed robust regression, is to use a
fitting criterion that is not as vulnerable as least squares to unusual (outliers) data.
Consider the system model as in Example #1; a simple example of robustification
is replacing the 	2 norm loss function with the 	1 norm, which leads to the instance
of Problem (3.94), with F(x) = 0 and G(x) = ‖Ax − v‖1 [98].

Example #7−The Fermat-Weber Problem This problem consists in finding x ∈
R
n such that the weighted sum of distances between x and the I anchors v1, v2, . . . ,

vI is minimized [76]. It can be formulated as Problem (3.94), with F(x) = 0 and
G(x) = ∑I

i=1 ωi‖Aix − vi‖2, X = R
n, where Ai ∈ R

q×n, vi ∈ R
q , and ωi > 0

are given constants, for all i.

Example #8−The Total Variation (TV) Image Reconstruction TV minimizing
models have become a successful methodology for image processing, including
denoising, deconvolution, and restoration, to name a few [40]. The noise-free
discrete TV reconstruction problem can be formulated as Problem (3.94) with
F(X) = ‖Z − AX‖2 and G(X) = λ · TV(X), X = R

m×m, where A ∈ R
q×m,

X ∈ R
m×m, Z ∈ R

q×m, and TV(X) �
∑m
i,j=1 ‖∇ij (X)‖p is the discrete total

variational semi-norm of X, with p = 1 or 2 and ∇ij (X) being the discrete gradient
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of X defined as ∇ij (X) � [(∇(1)ij (X)), (∇(2)ij (X))], with

∇(1)ij (X) �
{
Xi+1,j −Xi,j , if i < m,

0, i = m;
∇(2)ij (X)(2) �

{
Xi,j+1 −Xi,j , if j < m,

0, j = m;

for all i, j = 1, . . . ,m.

3.3.2 Parallel SCA: Vanilla Version

We begin introducing a vanilla version of the parallel SCA framework wherein all
the block variables are updated in parallel; generalizations of this scheme will be
considered in Sect. 3.3.3.

The most natural parallel (Jacobi-type) solution method one can employ is
solving (3.94) blockwise and in parallel: given xk, all the (block) variables xi are
updated simultaneously by solving the following subproblems

xk+1
i ∈ argmin

xi∈Xi

{
F(xi , xk−i )+G(xi, xk−i )

}
, ∀i ∈ N � {1, . . . , n}. (3.95)

Unfortunately, this method converges only under very restrictive conditions [16]
that are seldom verified in practice (even in the absence of the nonsmooth function
G). Furthermore, the exact computation of xk+1

i is in general difficult, due to the
nonconvexity of F . To cope with these two issues, the proposed approach consists
in solving for each block instead

x̂i (xk) � argmin
xi∈Xi

F̃i (xi | xk)+G(xi, xk−i ), (3.96)

and then setting

xk+1
i = xki + γ k

(
x̂i (xk)− xki

)
. (3.97)

In (3.96), F̃i
(• | xk

)
represents a strongly convex surrogate replacingF(•, xk−i ), and

in (3.97) a step-size γ k ∈ (0, 1] is introduced to control the “length” of the update
along the direction x̂i (xk) − xki . The step-size is needed if one does not require
that the surrogate F̃i

(• | xk
)

is a global upper bound of F(•, xk−i ) (as in the MM
algorithm).

The surrogate function F̃i has the following properties (∇F̃i denotes the partial
gradient of F̃i with respect to the first argument).
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Assumption 3.2 Each function F̃i : Oi × O → R satisfies the following
conditions:

1. F̃i (• | y) is τi -strongly convex on Xi , for all y ∈ X;
2. F̃i (• | y) is differentiable on Oi and ∇yi F (y) = ∇F̃i (yi | y), for all y ∈ X.

Stronger convergence results can be obtained under the following additional
assumptions.

Assumption 3.3 ∇F̃i (xi | •) is L̃i -Lipschitz on X, for all xi ∈ Xi .
Assumption 3.3∗ F̃i (• | •) is continuous on Oi ×O .

Assumption 3.2 states that F̃i should be regarded as a (simple) convex approxima-
tion of F at the current iterate xk that preserves the first order properties of F . Note
that, as anticipated, F̃i need not be a global upper bound of F(•, x−i ). Furthermore,
the above assumptions guarantee that the mapping x̂(x) � (̂xi (x))ni=1, with x̂i :
X → Xi defined in (3.96), enjoys the following properties that are instrumental to
prove convergence of the algorithm to stationary solutions of Problem (3.94).

Lemma 3.4 (Continuity of x̂ ) Consider Problem (3.94) under Assumption 3.1.
The following hold:

(a) If Assumptions 3.2 and 3.3∗are satisfied, x̂(•) is continuous on X;
(b) If Assumptions 3.2 and 3.3 are satisfied, and G is separable, x̂(•) is Lipschitz

continuous on X.

Proof See Appendix—Sect. 3.3.6.1.

Other properties of the best-response (e.g., in the presence of nonconvex constraints)
can be found in [81, 211].

The described algorithm is based on solving in parallel the subproblems in
(3.96), converging thus to fixed-points of the mapping x̂(•). It is then natural to
ask which relation exists between these fixed points and the (d-)stationary solutions
of Problem (3.94). The following lemma addresses this question.

Lemma 3.5 (On the Fixed-Points of x̂) Given Problem (3.94) under Assump-
tion 3.1, let each F̃i in (3.96) be chosen according to Assumption 3.2. The following
hold.

(a) The set of fixed-points of x̂(•) coincides with that of the coordinate-wise d-
stationary solutions of (3.94);

(b) If, in addition, G is separable—G(x) = ∑n
i=1 gi (xi )—then the set of fixed-

points coincides with that of d-stationary solutions of (3.94).

Proof The proof of statement (b) can be found in [79, Proposition 8]. The proof of
statement (a) follows similar steps and thus is omitted. �

To complete the description of the algorithm, we need to specify how to choose
the step-size γ k ∈ (0, 1] in (3.97). Any of the following standard rules can be used.
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Assumption 3.6 The step-size sequence {γ k ∈ (0, 1]}k∈N+ satisfies any of the
following rules:

1. Bounded step-size: 0 < lim infk→∞ γ k ≤ lim supk→∞ γ k < 2 cτ /L, where
cτ � mini=1,...,n τi (cf. Assumption 3.2.1);

2. Diminishing step-size:
∑∞
k=0 γ

k = +∞ and
∑∞
k=0

(
γ k

)2
< +∞;

3. Line search: let α, δ ∈ (0, 1), choose γ k = (δ)tk , where tk is the smallest
nonnegative integer such that

V
(

xk + γ k Δx̂k
)

≤ V (xk)+ α · γ k
(

∇F (
xk

)T
Δx̂k +

n∑

i=1

(
G
(
x̂i (xk), xk−i

)−G(
xk

))
)

(3.98)

with Δx̂k � x̂(xk)− xk.

The parallel SCA procedure is summarized in Algorithm 5.
Convergence of Algorithm 5 is stated below; Theorem 3.7 deals with nonsepara-

ble G while Theorem 3.8 specializes the results to the case of (block) separable G.
The proof of the theorems is omitted, because they are special cases of more general
results (Theorems 3.12 and 3.13) that will be introduced in Sect. 3.3.3.

Theorem 3.7 Consider Problem (3.94) under Assumption 3.1. Let {xk}k∈N+ be the
sequence generated by Algorithm 5, with each F̃i chosen according to Assump-
tions 3.2 and 3.3∗; and let the step-size γ k ∈ (0, 1/n], for all k ∈ N+. Then, there
hold:

(a) If {γ k}k∈N+ is chosen according to Assumption 3.6.2 (diminishing rule), then

lim inf
k→∞ ‖̂x(xk)− xk‖ = 0; (3.100)

Algorithm 5 Parallel successive convex approximation (p-SCA)

Data : x0 ∈ X, {γ k ∈ (0, 1]}k∈N+ .
Set k = 0.

(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : For all i ∈ N , solve in parallel

x̂i (xk) � argmin
xi∈Xi

F̃i (xi | xk)+G(xi , xk−i ); (3.99)

(S.3) : Set xk+1 � xk + γ k (
x̂(xk)− xk

)
;

(S.4) : k← k + 1, and go to (S.1).
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(b) If {γ k}k∈N+ is chosen according to Assumption 3.6.1 (bounded condition) or
Assumption 3.6.3 (line-search),

lim
k→∞ ‖̂x(xk)− xk‖ = 0. (3.101)

Theorem 3.8 Consider Problem (3.94) under Assumption 3.1 and G(x) =∑n
i=1 gi(xi ), with each gi : Oi → R being convex (possibly nonsmooth). Let

{xk}k∈N+ be the sequence generated by Algorithm 5, with each F̃i chosen according
to Assumption 3.2; and let the step-size γ k ∈ (0, 1], for all k ∈ N+. Then, there
hold:

(a) If F̃i satisfies Assumption 3.3∗and {γ k}k∈N+ is chosen according to Assump-
tion 3.6.2 (diminishing rule), then (3.100) holds.

(b) Suppose that either one of the following conditions is satisfied:

(i) Each F̃i satisfies Assumption 3.3∗ and {γ k}k∈N+ is chosen according to
Assumption 3.6.1 (bounded condition) or Assumption 3.6.3 (line-search);

(ii) Each F̃i satisfies Assumption 3.3 and {γ k}k∈N+ is chosen according to
Assumption 3.6.2 (diminishing rule).

Then, (3.101) holds.

The above theorems establish the following connection between the limit points
of the sequence {xk}k∈N+ and the stationary points of Problem (3.94). By (3.101)
and the continuity of x̂(•) (cf. Lemma 3.4), we infer that every limit point x∞ of
{xk}k∈N+ (if exists) is a fixed point of x̂(•) and thus, by Lemma 3.5, it is a coordinate-
wise d-stationary solution of Problem (3.94). If, in addition, G is separable, x∞
is a d-stationary solution of (3.94). When (3.100) holds instead, there exists a
subsequence {xkt }t∈N+ of {xk}k∈N+ such that limt→∞ ‖̂x(xkt ) − xkt ‖ = 0, and the
aforementioned connection with the (coordinate-wise) stationary solutions of (3.94)
holds for every limit point of such a subsequence. The existence of a limit point of
{xk}k∈N+ is guaranteed under standard extra conditions on the feasible set X—e.g.,
boundedness—or on the objective function V—e.g., coercivity on X.

3.3.2.1 Discussion on Algorithm 5

Algorithm 5 represents a gamut of parallel solution methods, each of them
corresponding to a specific choice of the surrogate functions F̃i and step-size rule.
Theorems above provide a unified set of conditions for the convergence of all such
schemes. Some representative choices for F̃i and γ k are discussed next.

On the Choice of the Surrogate ˜Fi Some examples of surrogate functions
satisfying Assumption 3.2 for specific F are the following.

1) Block-Wise Convexity Suppose F(x1, . . . , xn) is convex in each block xi sepa-
rately (but not necessarily jointly). A natural approximation for such an F exploring
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its “partial” convexity is: given y = (yi)ni=1 ∈ X,

F̃ (x | y) =
n∑

i=1

F̃i(xi | y), (3.102)

with each F̃i (xi | y) defined as

F̃i (xi | y) � F(xi , y−i )+ τi

2
(xi − yi )THi (xi − yi ), (3.103)

where τi is any positive constant, and Hi is any mi ×mi positive definite matrix (of
course, one can always choose Hi = I). The quadratic term in (3.103) can be set to
zero if F(•, y−i ) is strongly convex on Xi , for all y−i ∈ X−i � X1 × · · · ×Xi−1 ×
Xi+1 × · · · ×Xn.

2) (Proximal) Gradient-Like Approximations If no convexity is present in F ,
mimicking proximal-gradient methods, a valid choice of F̃ is the first order
approximation of F (plus a quadratic regularization), that is, F̃ is given by (3.102),
with each

F̃i(xi | y) � ∇xi F (y)
T (xi − yi )+ τi

2
‖xi − yi‖2. (3.104)

Note that the above approximation has the same form of the one used in the MM
algorithm [cf. (3.28)], with the difference that in (3.104) τi can be any positive
number (and not necessarily larger than Li ). When τi < Li , F̃i in (3.104) is no
longer a global upper bound of F(•, x−i ). In such cases, differently from the MM
algorithm, step-size γ k = 1 in Algorithm 5 may not be used at each k.

3) Sum-Utility Function Suppose that F(x) �
∑I
i=1 fi(x1, . . . , xn). This structure

arises, e.g., in multi-agent systems wherein fi is the cost function of agent i that
controls its own block variables xi ∈ Xi . In many application it is common that the
cost functions fi are convex in some agents’ variables (cf. Sect. 3.3.5). To exploit
this partial convexity, let us introduce the following set

C̃i �
{
j : fj (•, x−i ) is convex, ∀x−i ∈ X−i

}
, (3.105)

which represents the set of indices of all the functions fj that are convex in xi , for
any feasible x−i ; and let Ci ⊆ C̃i be any subset of C̃i . Then, the following surrogate
function satisfies Assumption 3.2 while exploiting the partial convexity of F (if
any): given y = (yi )ni=1 ∈ X,

F̃ (x | y) =
n∑

i=1

F̃Ci (xi | y),
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with each F̃Ci defined as

F̃Ci (xi | y) �
∑

j∈Ci
fj (xi , y−i )+

∑

	/∈Ci
∇xi f	(y)

T (xi − yi)

+τi
2
(xi − yi )THi (xi − yi ),

(3.106)

where Hi is anymi ×mi positive definite matrix. Roughly speaking, for each agent
i, the above approximation function preserves the convex part of F w.r.t. xi while it
linearizes the nonconvex part.

4) Product of Functions Consider an F that is written as the product of functions
(see [212] for some examples); without loss of generality, here we study only the
case of product of two functions. Let F(x) = f1(x)f2(x), with f1 and f2 convex
and non-negative on X; if the functions are just block-wise convex, the proposed
approach can be readily extended. In view of the expression of the gradient of F
and Assumption 3.2.2, ∇xF = f2∇xf1 + f1∇xf2, it seems natural to consider the
following approximation: given y ∈ X,

F̃ (x | y) = f1(x)f2(y)+ f1(y)f2(x)+ τi

2
(x − y)TH (x − y),

where, as usual, H is a positive definite matrix; this term can be omitted if f1 and
f2 are positive on the feasible set and f1 +f2 is strongly convex (for example if one
of the two functions is strongly convex). In case f1 and f2 are still positive but not
necessarily convex, we can use the expression

F̃ (x | y) = f̃1(x | y) f2(y)+ f1(y) f̃2(x | y),

where f̃1 and f̃2 are any legitimate surrogates of f1 and f2, respectively. Finally, if
f1 and f2 can take nonpositive values, introducing h1(x | y) � f̃1(x | y) f2(y) and
h2(x | y) � f1(y) f̃2(x |y), one can write

F̃ (x | y) = h̃1(x | y)+ h̃2(x | y),

where h̃1 (resp. f̃1) and h̃2 (resp. f̃2) are legitimate surrogates of h1 (resp. f1) and h2
(resp. f2), respectively. Note that in this last case, we no longer need the quadratic
term because it is already included in the approximations f̃1 and f̃2, and h̃1 and h̃2,
respectively. As the final remark, note that the functions F discussed above belong
to a class of nonconvex functions for which it does not seem possible to find a global
convex upper bound; therefore, the MM techniques introduced in Lecture I are not
readily applicable.

5) Composition of Functions Let F(x) = h(f(x)), where h : Rq → R is a finite
convex smooth function such that h(u1, . . . , uq) is nondecreasing in each compo-
nent, and f : Rm → R

q is a smooth mapping, with f(x) = (f1(x), . . . , fq(x))T
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and fi not necessarily convex. Examples of functions F belonging to such a class
are those arising from nonlinear least square-based problems, that is, F(x) =
‖f(x)‖2, where f(x) is a smooth nonlinear (possibly) nonconvex map. A convex
approximation satisfying Assumption 3.2 is: given y ∈ R

m,

F̃ (x | y) � h (f(y)+∇f(y)(x − y))+ τ

2
‖x − y‖2, (3.107)

where ∇f(y) denotes the Jacobian of f at y.

On the Choice of the Step-Size γ k Some possible choices for the step-size
satisfying Assumption 3.6 are the following.

1) Bounded Step-Size Assumption 3.6.1 requires the step-size to be eventually
in the interval [δ, 2cτ /L), for some δ > 0. A simple choice is γ k = γ > 0,
with 2 cτ /γ > L and for all k. This simple (but conservative) condition imposes
a constraint only on the ratio cτ /γ , leaving free the choice of one of the two
parameters. An interesting case is when the proximal gradient-like approximation
in (3.104) is used. Setting therein each τi > L allows one to use step-size γ = 1,
obtaining thus the MM algorithm as a special case.

2) Diminishing Step-Size In scenarios where the knowledge of system parameters,
e.g., L, is not available, one can use a diminishing step-size satisfying Assump-
tion 3.6.2. Two examples of diminishing step-size rules are:

γ k = γ k−1
(

1 − ε γ k−1
)
, k = 1, . . . , γ 0 < 1/ε; (3.108)

γ k = γ k−1 + α(k)
1 + β(k) , k = 1, . . . , γ 0 = 1; (3.109)

where in (3.108) ε ∈ (0, 1) is a given constant, whereas in (3.109) α(k) and β(k)
are two nonnegative real functions of k ≥ 1 such that: (i) 0 ≤ α(k) ≤ β(k); and (ii)
α(k)/β(k) → 0 as k → ∞ while

∑
k (α(k)/β(k)) = ∞. Examples of such α(k)

and β(k) are: α(k) = α or α(k) = log(k)α, and β(k) = β · k or β(k) = β · √k,
where α, β are given constants satisfying α ∈ (0, 1), β ∈ (0, 1), and α ≤ β.

3) Line Search Assumption 3.6.3 is an Armijo-like line-search that employs a
backtracking procedure to find the largest γ k generating sufficient descent of the
objective function at xk along the direction Δx̂k. Of course, using a step-size
generated by line-search will likely be more efficient in terms of iterations than
the one based on diminishing step-size rules. However, as a trade-off, performing
line-search requires evaluating the objective function multiple times per iteration;
resulting thus in more costly iterations. Furthermore, performing a line-search on
a multicore architecture requires some shared memory and coordination among the
cores/processors.
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3.3.3 Parallel SCA: Selective Updates

The parallel SCA algorithm introduced in Sect. 3.3.2 consists in updating at each
iteration all the block variables by computing the solutions of subproblems in
the form (3.96). In this section, we generalize the algorithm by (i) unlocking
parallel updates of a subset of all the blocks at a time, and (ii) allowing inexact
computations of the solution of each subproblem. This is motivated by applications
where computing the exact solutions of large-scale subproblems is computationally
demanding and/or updating all the block variables at each iteration is not beneficial;
see Sect. 3.3.5 for some examples.

Inexact Solutions Subproblems in (3.96) are solved inexactly by computing zk

satisfying ‖zki − x̂i (xk)‖ ≤ εki , where εki is the desired accuracy (to be properly
chosen). Some conditions on the inexact solution (and thus associated error) are
needed to guarantee convergence on the resulting algorithm, as stated next.

Assumption 3.9 Given x̂i(xk) as defined in (3.96), the inexact solutions zki satis-
fies: for all i = 1, . . . , n,

1. ‖zki − x̂i
(
xk

) ‖ ≤ εki and limk→∞ εki = 0;
2. F̃i

(
zki | xk

)+G (
zki , x

k−i
) ≤ F̃i

(
xki | xk

)+G (
xk

)
.

The above conditions are quite natural: Assumption 3.9.1 states that the error
must asymptotically vanish [subproblems (3.96) need to be solved with increasing
accuracy] while Assumption 3.9.2 requires that zki generates a decrease in the
objective function of subproblem (3.96) at iteration k [zki need not be a minimizer
of (3.96)].

Updating Only Some Blocks At each iteration k a suitable chosen subset of
blocks—say Sk ⊆ N [recall that N � {1, . . . , n}]—is selected and updated by
computing for each block i ∈ Sk an inexact solution zki of the associated subproblem
(3.96): given xk and Sk , let

xk+1
i =

{
xki + γ k (zki − xki ), if i ∈ Sk,
xki if i /∈ Sk.

Several options are possible for the block selection rule Sk . For instance, one can
choose the blocks to update according to some deterministic (cyclic) or random-
based rule. Greedy-like schemes—updating at each iteration only the blocks that
are “far away” from the optimum—have been shown to be quite effective in some
applications. Finally, one can also adopt hybrid rules that properly combine the
aforementioned selection methods. For instance, one can first select a subset of
blocks uniformly at random, and then within such a pool updating only the blocks
resulting from a greedy rule. Of course some minimal conditions on the updating
rule are necessary to guarantee convergence, as stated below.
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Assumption 3.10 The block selection satisfies one of the following rules:

1. Essentially cyclic rule: Sk is selected so that
⋃T−1
s=0 S

k+s = N , for all k ∈ N+
and some finite T > 0;

2. Greedy rule: Each Sk contains at least one index i such that

Ei
(
xk

) ≥ ρmax
j∈N Ej (x

k),

where ρ ∈ (0, 1] and Ei
(
xk

)
is an error bound function satisfying

si · ‖̂xi (xk)− xki ‖ ≤ Ei(xk) ≤ s̄i · ‖̂xi (xk)− xki ‖, (3.110)

for some 0 < si ≤ s̄i < +∞;
3. Random-based rule: The sets Sk are realizations of independent random sets Sk

taking value in the power set of N , such that P(i ∈ Sk) ≥ p, for all i = 1, . . . , n
and k ∈ N+, and some p > 0.

The above selection rules are quite general and have a natural interpretation.
The cyclic rule [Assumption 3.10.1] requires that all the blocks are updated (at
least) once within T consecutive iterations, where T is an arbitrary (finite) integer.
Assumption 3.10.2 is a greedy-based rule: only the blocks that are “far” from
the optimum need to be updated at each iteration; Ei

(
xk

)
can be viewed as a

local measure of the distance of block i from optimality. The greedy rule in
Assumption 3.10.2 thus calls for the updates of one block that is within a fraction
ρ from the largest distance Ei

(
xk

)
. Some examples of valid error bound functions

Ei are discussed in Sect. 3.3.3.1. Finally, Assumption 3.10.3 is a random selection
rule: blocks can be selected according to any probability distribution as long as they
have a positive probability to be picked. Specific rules satisfying Assumption 3.10
are discussed in Sect. 3.3.3.1.

The described parallel selective SCA method is summarized in Algorithm 6, and
termed “inexact FLEXible parallel sca Algorithm” (FLEXA).

To complete the description of the algorithm, we need to specify how to choose
the step-size γ k in Step 4. Assumption 3.11 below provides some standard rules.

Algorithm 6 Inexact flexible parallel SCA algorithm (FLEXA)

Data : x0 ∈ X, {γ k ∈ (0, 1]}k∈N+ , εki ≥ 0, for all i ∈ N and k ∈ N+, ρ ∈ (0, 1].
Set k = 0.

(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Choose a set Sk according to any of the rules in Assumption 3.10;
(S.3) : For all i ∈ Sk , solve (3.96) with accuracy εki :

find zki ∈ Xi s.t. ‖zki − x̂i
(
xk

) ‖ ≤ εki ;
Set ẑki = zki for i ∈ Sk , and ẑki = xki for i �∈ Sk ;

(S.4) : Set xk+1 � xk + γ k (̂zk − xk);
(S.5) : k← k + 1, and go to (S.1).
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Assumption 3.11 The step-size sequence {γ k ∈ (0, 1]}k∈N+ satisfies any of the
following rules:

1. Bounded step-size: 0 < lim infk→∞ γ k ≤ lim supk→∞ γ k < cτ /L, where cτ �
mini=1,...n τi;

2. Diminishing step-size:
∑∞
k=0 γ

k = +∞ and
∑∞
k=0(γ

k)2 < +∞. In addition, if
Sk is chosen according to the cyclic rule [Assumption 3.10.1], γ k further satisfies
0 < η1 ≤ γ k+1/γ k ≤ η2 < +∞, for sufficiently large k, and some η1 ∈ (0, 1)
and η2 ≥ 1;

3. Line-search: Let α, δ ∈ (0, 1), choose γ k = (δ)tk , where tk is the smallest
nonnegative integer such that

V (xk + γ k Δx̂k)

≤ V (xk)+ α · γ k
⎛

⎝∇F(xk)T Δx̂k +
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)
⎞

⎠ ,

(3.111)

where Δx̂k � (̂zk − xk).

Convergence of Algorithm 6 is stated below and summarized in the flow chart in
Fig. 3.7. Theorem 3.12 applies to settings where the step-size is chosen according
to the bounded rule or line-search while Theorem 3.13 states convergence under the
diminishing step-size rule.

Problem (94)

separable G nonseparable G

Assumption II.3 Assumption II.3∗ Assumption II.3 or II.3∗

line search/constant diminishing line search/constant (0 ≤ k ≤ 1/n] diminishing

every limit point is
a stationary solution
of Problem (94)

at least one limit
point is a stationary
solution of Problem
(94)

every limit point is
a coordinate-wise
stationary solution
of Problem (94)

at least one
limit point is a
coordinate-wise sta-
tionary solution of
Problem (94)

problem assumption

assumption on ˜Fi

step-size rule

statement

Fig. 3.7 Convergence of FLEXA (Algorithm 6)
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Theorem 3.12 Consider Problem (3.94) under Assumption 3.1. Let {xk}k∈N+ be
the sequence generated by Algorithm 6, under the following conditions:

(i) Each surrogate function F̃i satisfies Assumptions 3.2–3.3 or 3.2–3.3∗;
(ii) Sk is chosen according to any of the rules in Assumption 3.10;

(iii) Each inexact solution zki satisfies Assumption 3.9;
(iv) {γ k}k∈N+ is chosen according to either Assumption 3.11.1 (bounded rule) or

Assumption 3.11.3 (line-search); in addition, if G is nonseparable, {γ k}k∈N+
also satisfies γ k ∈ (0, 1/n], for all k ∈ N+.

Then (3.101) holds [almost surely if Sk is chosen according to Assumption 3.10.3
(random-based rule)].

Theorem 3.13 Consider Problem (3.94) under Assumption 3.1. Let {xk}k∈N+ be
the sequence generated by Algorithm 6, under conditions (i), (ii) and (iii) of
Theorem 3.12. Suppose that {γ k}k∈N+ is chosen according to Assumption 3.11.2
(diminishing rule).

Then, (3.100) holds [almost surely if Sk is chosen according to Assumption 3.10.3
(random-based rule)]. Furthermore, if G is separable and the surrogate functions
F̃i satisfy Assumption 3.3, then also (3.101) holds (almost surely under Assump-
tion 3.10.3).

3.3.3.1 Discussion on Algorithm 6

The framework described in Algorithm 6 can give rise to very different schemes. We
cannot discuss here the entire spectrum of choices; we provide just a few examples
of error bound functions Ei and block selection rules Sk .

On the Choice of the Error Bound Function Ei Any function satisfying (3.110)
is a valid candidate forEi . Of course, one can always chooseEi(x) = ‖̂xi (xk)−xki ‖,
corresponding to si = s̄i = 1 in (3.110). This is a valuable choice if the computation
of x̂i (xk) can be easily accomplished. For instance, this is the case in the LASSO
problem when the block variables are scalars: x̂i(xk) can be computed in closed
form using the soft-thresholding operator [7]; see Sect. 3.3.5 for details.

In situations where the computation of ‖̂xi (xk)− xki ‖ is not possible or advisable
(e.g., when a closed form expression is lacking and the blocks have a large size),
one can resort to alternative less expensive metrics satisfying (3.110). For example,
assume momentarily that G ≡ 0. Then, it is known [78, Proposition 6.3.1] that,
under the stated assumptions, ‖ΠXi (xki − ∇xi F (x

k)) − xki ‖ is an error bound for
the minimization problem in (3.96) and therefore it satisfies (3.110), whereΠXi (y)
denotes the Euclidean projection of y onto the closed and convex setXi . In this case,
one can choose Ei(xk) = ‖ΠXi (xki −∇xi F (x

k))− xki ‖. If G(x) �≡ 0 things become
more involved. In several cases of practical interest, adequate error bounds can be
derived using [238, Lemma 7].
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It is interesting to note that the computation of Ei is only needed if a partial
update of the (block) variables is performed; otherwise (when Sk = N) one can
dispense with the computation of Ei .

On the Block Selection Rule Sk The selection rules satisfying Assumption 3.10
are extremely flexible, ranging from deterministic to random-based selection rules.
For instance, one can always choose Sk = N , resulting in the simultaneous
deterministic update of all the (block) variables at each iteration (Algorithm 5). At
the other extreme, one can update a single (block) variable per time, thus obtaining a
Gauss-Southwell kind of method. Virtually, one can explore all the possibilities “in
between”, e.g., by choosing properly Sk and leveraging the parameter ρ in (3.110)
to control the desired degree of parallelism or using suitably chosen cyclic-based
as well as random-based rules. This flexibility can be coupled with the possibility
of computing at each iteration only inexact solutions (Step 3), without affecting the
convergence of the resulting scheme (provided that Assumption 3.9 is satisfied).

The selection of the most suitable updating rule depends on the specific problem,
including the problem scale, computational environment, data acquisition process,
as well as the communication among the processors. For instance, versions of
Algorithm 6 where all (or most of) the variables are updated at each iteration are
particularly amenable to implementation in distributed environments (e.g., multi-
user communications systems, ad-hoc networks, etc.). In fact, in these settings,
not only the calculation of the inexact solutions zki can be carried out in parallel,
but the information that “the i-th subproblem” has to exchange with the “other
subproblems” in order to compute the next iteration is very limited. A full
appreciation of the potentialities of this approach in distributed settings depends
however on the specific application under consideration; we discuss some examples
in Sect. 3.3.5. The cyclic order has the advantage of being extremely simple
to implement. Random selection-based rules are essentially as cheap as cyclic
selections while alleviating some of the pitfalls of cyclic updates. They are also
relevant in distributed environments wherein data are not available in their entirety,
but are acquired either in batches or over a network. In such scenarios, one might
be interested in running the optimization at a certain instant even with the limited,
randomly available information. A main limitation of random/cyclic selection rules
is that they remain disconnected from the status of the optimization process, which
instead is exactly the kind of behavior that greedy-based updates try to avoid, in
favor of faster convergence, but at the cost of more intensive computation.

We conclude the discussion on the block selection rules providing some specific
deterministic and random-based rules that we found effective in our experiments.

• Deterministic selection: In addition to the selection rules discussed above, a
specific (albeit general) approach is to define first a finite cover {Si}Mi=1 of N and
then update the blocks by selecting the Si ’s cyclically. It is also admissible to
randomly shuffle the order of the sets Si before one update cycle.
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• Random-based selection: The sampling rule S (for notational simplicity the
iteration index k will be omitted) is uniquely characterized by the probability
mass function

P(S) � P (S = S) , S ⊆ N,

which assign probabilities to the subsets S of N . Associated with S, define the
probabilities qj � P(|S| = j), for j = 1, . . . , n. The following proper sampling
rules, proposed in [198] for convex problems with separable G, are instances of
rules satisfying Assumption 3.10.3.

1. Uniform (U) sampling: All blocks are selected with the same (non zero)
probability:

P(i ∈ S) = P(j ∈ S) = E [|S|]
n

, ∀i �= j ∈ N.

2. Doubly Uniform (DU) sampling: All sets S of equal cardinality are generated
with equal probability, i.e., P(S) = P(S

′
), for all S, S

′ ⊆ N such that |S| = |S ′ |.
The density function is then

P(S) = q|S|
(
n

|S|
) .

3. Nonoverlapping Uniform (NU) sampling: It is a uniform sampling assigning
positive probabilities only to sets forming a partition of N . Let S1, . . . , Sp be a
partition of N , with each

∣
∣Si

∣
∣ > 0, the density function of the NU sampling is:

P(S) =
⎧
⎨

⎩

1

p
, if S ∈ {

S1, . . . , Sp
} ;

0 otherwise;

which corresponds to P(i ∈ S) = 1/p, for all i ∈ N .
4. Nice Sampling (NS): Given an integer 0 ≤ τ ≤ n, a τ -nice sampling is a DU

sampling with qτ = 1 (i.e., each subset of τ blocks is chosen with the same
probability).

Using the NS one can control the degree of parallelism of the algorithm by
tuning the cardinality τ of the random sets generated at each iteration, which
makes this rule particularly appealing in a multi-core environment. Indeed, one
can set τ equal to the number of available cores/processors, and assign each
block coming out from the greedy selection (if implemented) to a dedicated
processor/core.
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As a final remark, note that the DU/NU rules contain as special cases sequential
and fully parallel updates wherein at each iteration a single block is updated
uniformly at random, or all blocks are updated.

5. Sequential sampling: It is a DU sampling with q1 = 1, or a NU sampling with
p = n and Sj = j , for j = 1, . . . , p.

6. Fully parallel sampling: It is a DU sampling with qn = 1, or a NU sampling
with p = 1 and S1 = N .

Other interesting uniform and nonuniform practical rules (still satisfying
Assumption 3.10) can be found in [197, 198]. Furthermore, see [55, 56] for extensive
numerical results comparing the different sampling schemes.

3.3.3.2 Convergence Analysis of Algorithm 6

In this subsection, we prove convergence of Algorithm 6 (Theorems 3.12 and 3.13).
We consider only deterministic block selection rules (namely Assumptions 3.10.1
and 3.10.2); the proof under random-based block selection rules follows similar
steps and thus is omitted.

Preliminaries
We first introduce some preliminary technical results that will be used to prove the
aforementioned theorems.

Lemma 3.14 (Descent Lemma[14]) Let F : Rm → R be continuously differen-
tiable, with L-Lipschitz gradient. Then, there holds:

∣
∣
∣F(y)− F(x)−∇F(x)T (y − x)

∣
∣
∣ ≤ L

2
‖y − x‖2, ∀x, y ∈ R

m. (3.112)

Lemma 3.15 Let (ai)ni=1 be a n-tuple of nonnegative numbers such that
∑n
i=1 ai ≥

δ, with δ > 0. Then, it holds
∑n
i=1 ai ≤ n

δ

∑n
i=1 a

2
i .

Proof Define a � [a1, . . . , an]T . The desired result follows readily from ‖a‖2
2

(a)≥
1
n
‖a‖2

1

(b)≥ δ
n
‖a‖1, where in (a) we used the Jensen’s inequality and a ≥ 0 while (b)

is due to ‖a‖1 ≥ δ. �
Lemma 3.16 ([17, Lemma 1]) Let {Y k}k∈N+ , {Wk}k∈N+ , and {Zk}k∈N+ be three
sequences such thatWk is nonnegative for all k. Assume that

Y k+1 ≤ Y k −Wk + Zk, k = 0, 1, . . . , (3.113)
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and that the series
T∑

k=0
Zk converges as T → ∞. Then either Y k → −∞, or else

Y k converges to a finite value and
∞∑
k=0
Wk <∞.

Lemma 3.17 Let {xk}k∈N+ be the sequence generated by Algorithm 6, with each
γ k ∈ (0, 1/n). For every k ∈ N+ and Sk ⊆ N , there holds:

G(xk+1)−G(xk) ≤ γ k
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)
, (3.114)

where zki is the inexact solution defined in Step 3 of the algorithm.
Furthermore, if G is separable, we have: for γ k ∈ (0, 1),

G(xk+1)−G(xk) ≤ γ k
∑

i∈Sk

(
gi(zki )− gi(xki )

)
. (3.115)

Proof See Appendix—Sect. 3.3.6.2. �
Lemma 3.18 Under Assumptions 3.1, 3.2, and 3.9, the inexact solution zki satisfies

∇xi F (x
k)T (zki − xki )+G(zki , xk−i )−G(xk) ≤ −τi

2
‖zki − xki ‖2. (3.116)

Proof The proof follows readily from the strong convexity of F̃i and Assump-
tion 3.9.2. �
Lemma 3.19 Let Sk be selected according to the greedy rule (cf. Assump-
tion 3.10.2). Then, there exists a constant 0 < c̃ ≤ 1 such that

∥
∥
∥
(

x̂(xk)− xk
)

Sk

∥
∥
∥ ≥ c̃

∥
∥
∥̂x(xk)− xk

∥
∥
∥ . (3.117)

Proof See Appendix—Sect. 3.3.6.3. �
Proposition 3.20 Let {xk}k∈N+ be the sequence generated by Algorithm 6, in the
setting of Theorem 3.12 or Theorem 3.13. The following hold [almost surely, if Sk

is chosen according to Assumption 3.10.3 (random-based rule)]:

(a)

∞∑

k=0

γ k
∥
∥
∥̂zk − xk

∥
∥
∥

2
< +∞; (3.118)

(b)

lim
k→∞‖xk+1 − xk‖ = 0. (3.119)
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Proof Without loss of generality, we consider next only the case of nonseparableG.
By the descent lemma (cf. Lemma 3.114) and Steps 3-4 of the algorithm, we have

F(xk+1) ≤ F(xk)+ γ k∇F(xk)T (̂zk − xk)+
(
γ k

)2
L

2
‖̂zk − xk‖2.

Consider the case of G nonseparable. We have:

V (xk+1) = F(xk+1)+G(xk+1)

(3.114)≤ V (xk)+ γ k ∇F(xk)T (̂zk − xk)+
(
γ k

)2
L

2
‖̂zk − xk‖2

+γ k
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)

(3.120)

(3.116)≤ V (xk)− γ k

2
(cτ − γ kL) ‖̂zk − xk‖2. (3.121)

If γ k satisfies either Assumption 3.11.1 (bounded rule) or Assumption 3.11.2
(diminishing rule), statement (a) of the proposition comes readily from Lemma 3.16
and Assumption 3.1.4.

Consider now the case where γ k is chosen according to Assumption 3.11.3 (line
search). First of all, we prove that there exists a suitable γ k ∈ (0, γ 0], with γ 0 ∈
(0, 1/n] (if G is separable γ 0 ∈ (0, 1]), such that the Armijo-like condition (3.111)
holds. By (3.120), the line-search condition (3.111) is satisfied if

γ k

⎛

⎝∇F(xk)T (̂zk − xk)+
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)
⎞

⎠+
(
γ k

)2
L

2
‖̂zk − xk‖2

≤ α · γ k
⎛

⎝∇F(xk)T (̂zk − xk)+
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)
⎞

⎠ ,

which, rearranging the terms, yields

γ k · L
2

‖̂zk − xk‖2

≤ − (1 − α)
⎛

⎝∇F(xk)T (̂zk − xk)+
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)
⎞

⎠ .

(3.122)
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Since (cf. Lemma 3.18)

‖̂zk − xk‖2 ≤ − 2

cτ
·
⎛

⎝∇F(xk)T (̂zk − xk)+
∑

i∈Sk

(
G(zki , x

k−i )−G(xk)
)
⎞

⎠ ,

inequality (3.122) [and thus (3.111)] is satisfied by any γ k ≤ min
{
γ 0,

cτ (1−α)
L

}
<

+∞.
We show next that γ k obtained by (3.111) is uniformly bounded away from zero.

This is equivalent to show tk < +∞. Without loss of generality we consider tk ≥ 1
[otherwise (3.111) is satisfied by γ k = γ 0]. Since tk is the smallest positive integer
such that (3.111) holds with γ k = (δ)tk , it must be that the same inequality is not
satisfied by γ k = (δ)tk−1. Consequently, it must be (δ)tk−1 >

cτ (1−α)
L

, and thus

γ k ≥ min

{

γ 0,
cτ (1 − α)

L
· δ

}

. (3.123)

Using (3.123) in (3.121), we obtain

V (xk+1) ≤ V (xk)− β2 ‖̂zk − xk‖2, ∀k ∈ N+, (3.124)

where β2 > 0 is some finite constant. The rest of the proof follows the same
arguments used to prove the statements of the proposition from (3.121).

We prove now statement (b). By Step 4 of Algorithm 6, it suffices to show that

lim
k→∞ γ

k ‖̂zk − xk‖ = 0.

Using (3.118), we have

lim
k→∞ γ

k ‖̂zk − xk‖2 = 0.

Since γ k ∈ (0, 1], it holds

lim
k→∞

(
γ k ‖̂zk − xk‖

)2 ≤ lim
k→∞ γ

k ‖̂zk − xk‖2 = 0. (3.125)

This completes the proof. �

Proof of Theorem 3.12
We prove (3.101) for each of the block selection rules in Assumption 3.10
separately.
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• Essentially Cyclic Rule [Assumption 3.10.1] We start bounding ‖̂x(xk) − xk‖
as follows:

‖̂x(xk)− xk‖ ≤
n∑

i=1

‖̂xi (xk)− xki ‖

≤
n∑

i=1

(

‖̂xi (xk)− x̂i (xk+s
k
i )‖ + ‖̂xi (xk+s

k
i )− x

k+ski
i ‖ + ‖x

k+ski
i − xki ‖

)

(3.126)

where ski � min{t ∈ {1, . . . , T } | i ∈ Sk+t }, so that k+ ski is the first time that block
i is selected (updated) since iteration k. Note that 1 ≤ ski ≤ T , for all i ∈ N and
k ∈ N+ (due to Assumption 3.10.1). We show next that the three terms on the RHS
of (3.126) are asymptotically vanishing, which proves (3.101).

Since 1 ≤ ski ≤ T , we can write

lim
k→∞‖xk+s

k
i − xk‖ ≤ lim

k→∞

T∑

j=1

‖xk+j − xk+j−1‖ (3.119)= 0, (3.127)

which, by the continuity of x̂(•) (cf. Lemma 3.4), leads also to

lim
k→∞ ‖̂xi (xk)− x̂i (xk+s

k
i )‖ = 0. (3.128)

Let Ti ⊆ N+ be the set of iterations at which block i is updated. It follows
from Assumption 3.10.1 that |Ti | = +∞, for all i ∈ N . This together with (3.118)
implies

∑

k∈Ti
‖zki − xki ‖2 < +∞, ∀i ∈ N,

and thus

lim
Ti�k→∞

∥
∥
∥zki − xki

∥
∥
∥ = 0 ⇒ lim

k→∞

∥
∥
∥
∥z
k+ski
i − x

k+ski
i

∥
∥
∥
∥ = 0, ∀i ∈ N.

Therefore,

lim
k→∞

∥
∥
∥
∥̂xi (xk+s

k
i )− x

k+ski
i

∥
∥
∥
∥

≤ lim
k→∞

∥
∥
∥
∥̂xi (xk+s

k
i )− z

k+ski
i

∥
∥
∥
∥+ lim

k→∞

∥
∥
∥
∥z
k+ski
i − x

k+ski
i

∥
∥
∥
∥ = 0, ∀i ∈ N.

(3.129)
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Combining (3.126) with (3.127)-(3.129) and invoking again the continuity of
x̂(•), we conclude that limk→∞ ‖̂x(xk)− xk‖ = 0.

• Greedy Rule [Assumption 3.10.2] We have

c̃ ‖̂x(xk)− xk‖ (3.117)≤ ‖(̂x(xk)− xk)Sk‖
≤ ‖(̂zk − xk)Sk‖ + ‖(̂x(xk)− ẑk)Sk‖ (3.130)

A.3.9.1≤ ‖̂zk − xk‖ +
∑

i∈Sk
εki −→

k→∞ 0,

where the last implication comes from limk→∞ εki = 0, for all i ∈ N—
cf. Assumption 3.9.1—and limk→∞ ‖̂zk − xk‖ = 0—due to Proposition 3.20 and
the fact that γ k is bounded away from zero, when the step-size is chosen according
to Assumption 3.11.1 or Assumption 3.11.3 [cf. (3.123)]. This proves (3.101).

Proof of Theorem 3.13
Consider now the diminishing step-size rule [Assumption 3.11.2].

1) Proof of (3.100): lim infk→∞ ‖̂x(xk) − xk‖ = 0 By Proposition 3.20 and the
step-size rule, we have lim infk→∞ ‖̂zk−xk‖ = 0, for all choices of Sk . We proceed
considering each of the block selection rules in Assumption 3.10 separately.

• Essentially Cyclic Rule [Assumption 3.10.1] For notational simplicity, let us
assume that Sk is a singleton, that is, Sk = {ik}, where ik denotes the index of the
block selected at iteration k. The proof can be readily extended to the general case
|Sk| > 1.

We have

lim inf
k→∞ ‖̂x(xk)− xk‖ (a)≤ lim inf

r→∞ ‖̂x(xrT )− xrT ‖ ≤ lim inf
r→∞

n∑

i=1

∥
∥
∥̂xi (xrT )− xrTi

∥
∥
∥

≤ lim inf
r→∞

n∑

i=1

(∥
∥
∥
∥̂xi (xrT+s

rT
i )− x

rT+srTi
i

∥
∥
∥
∥+

∥
∥
∥
∥x
rT+srTi
i − xrTi

∥
∥
∥
∥

+
∥
∥
∥̂xi(xrT )− x̂i (xrT+s

rT
i )

∥
∥
∥
)

= lim inf
r→∞

n∑

i=1

∥
∥
∥
∥̂xi (xrT+s

rT
i )− x

rT+srTi
i

∥
∥
∥
∥
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+ lim
r→∞

n∑

i=1

∥
∥
∥
∥x
rT+srTi
i − xrTi

∥
∥
∥
∥

︸ ︷︷ ︸
(3.127)= 0

+ lim
r→∞

n∑

i=1

∥
∥
∥̂xi (xrT )− x̂i (xrT+s

rT
i )

∥
∥
∥

︸ ︷︷ ︸
(3.128)= 0

≤ lim inf
r→∞

n∑

i=1

∥
∥
∥
∥z
rT+srTi
i − x

rT+srTi
i

∥
∥
∥
∥+ lim

r→∞

n∑

i=1

∥
∥
∥
∥̂xi (xrT+s

rT
i )− z

rT+srTi
i

∥
∥
∥
∥

︸ ︷︷ ︸

(A.3.9.1)≤ lim
r→∞

n∑

i=1

ε
rT+srT

i
i

(A.3.9.1)= 0

≤ lim inf
r→∞

(r+1)T∑

k=rT+1

∥
∥
∥zk
ik
− xk

ik

∥
∥
∥ , (3.131)

where (a) follows from the fact that the infimum of a subsequence is larger than that
of the original sequence.

To complete the proof, we show next that the term on the RHS of (3.131) is zero.
Recalling that if the cyclic block selection rule is implemented, the diminishing
step-size γ k is assumed to further satisfy η1 ≤ γ k+1/γ k ≤ η2, with η1 ∈ (0, 1) and
η2 ≥ 1 (cf. Assumption 3.11.2), we have

+∞ (3.118)≥ lim
k→∞

k∑

t=1

γ t ‖̂zt − xt‖2 = lim
k→∞

k∑

t=1

γ t ‖ztit − xtit ‖2

= lim
k→∞

k∑

r=0

(r+1)T∑

t=rT+1

γ t ‖ztit − xtit‖2

≥(η1)
T−1 lim

k→∞

k∑

r=0

γ rT+1
(r+1)T∑

t=rT+1

‖ztit − xtit‖2,

(3.132)

where in the last inequality we used γ k+1/γ k ≥ η1. Since

+∞ = lim
k→∞

k∑

t=1

γ t = lim
k→∞

k∑

r=0

(r+1)T∑

t=rT+1

γ t ≤ T · (η2)
T−1 lim

k→∞

k∑

r=0

γ rT+1,

it follows from (3.132) that

lim inf
r→∞

(r+1)T∑

t=rT+1

‖ztit − xtit‖2 = 0, (3.133)

which, combined with (3.131), proves the desired result.
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• Greedy Rule [Assumption 3.10.2] Taking the liminf on both sides of (3.130)
leads to the desired result.

2) Proof of (3.101) lim supk→∞ ‖̂x(xk)−xk‖ = 0. Recall that in this setting, x̂(•) is
Lipschitz continuous with constant L̂. We prove the result for the essentially cyclic
rule and greedy rule separately.

• Essentially Cyclic Rule [Assumption 3.10.1] As in the proof of Theorem 3.13,
let us assume w.l.o.g. that Sk = {ik}, where ik denotes the index of the block
selected at iteration k.

By (3.126)–(3.129), it is sufficient to prove lim supk→∞ ‖z
k+ski
i − x

k+ski
i ‖ = 0,

for all i ∈ N . Since

lim sup
k→∞

‖z
k+ski
i − x

k+ski
i ‖ ≤ lim sup

k→∞

(k+1)T∑

t=k T+1

‖ztit − xtit ‖
︸ ︷︷ ︸

�Δk

(3.134)

we prove next lim supk→∞Δk = 0.
Assume on the contrary that lim supk→∞Δk > 0. Since lim infk→∞Δk = 0

[cf. (3.133)], there exists a δ > 0 such that Δk < δ for infinitely many k and also
Δk > 2 · T δ for infinitely many k. Therefore, there exists a set K ⊆ N+, with
|K| = ∞, such that for each k ∈ K , one can find an integer jk > k such that

Δk ≥ 2 · δ · T , Δjk ≤ δ (3.135)

δ < Δ	 < 2 · δ · T , if k < 	 < jk. (3.136)

Define the following quantities: for any k ∈ K , let

T ki �
{
r ∈ {k T + 1, . . . , (k + 1) T } | ir = i} and tki � min T ki . (3.137)

Note that T ki (resp. tki ) is the set of (iteration) indices (resp. the smallest index)
within [k T + 1, (k + 1) T ] at which the block index i is selected. Because of
Assumption 3.10.1, it must be 1 ≤ |T ki | ≤ T , for all k, where |T ki | is the number of
times block i has been selected in the iteration window [k T + 1, (k + 1) T ]. Then
we have

δ · T = 2 · δ · T − δ · T

≤Δk − T ·Δjk =
(k+1)T∑

r=k T+1

∥
∥zrir − xrir

∥
∥− T

(jk+1) T∑

r=jk ·T+1

∥
∥zrir − xrir

∥
∥

≤
n∑

i=1

∑

r∈T ki

∥
∥zri − xri

∥
∥−

n∑

i=1

T ·
∥
∥
∥
∥z
t
jk
i

i − x
t
jk
i

i

∥
∥
∥
∥
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≤
n∑

i=1

∑

r∈T ki

∥
∥zri − xri

∥
∥−

n∑

i=1

|T ki | ·
∥
∥
∥
∥z
t
jk
i

i − x
t
jk
i

i

∥
∥
∥
∥

=
n∑

i=1

∑

r∈T ki

(
∥
∥zri − xri

∥
∥−

∥
∥
∥
∥z
t
jk
i

i − x
t
jk
i

i

∥
∥
∥
∥

)

(a)≤
n∑

i=1

∑

r∈T k
i

(∥
∥
∥
∥̂xi (xr )− x̂i (xt

jk
i )

∥
∥
∥
∥+

∥
∥
∥
∥xri − x

t
jk
i

i

∥
∥
∥
∥

)

+
n∑

i=1

∑

r∈T k
i

(ε
t
jk
i

i + εri )
︸ ︷︷ ︸

ε̃k1

(b)≤
(

1 + L̂
) n∑

i=1

∑

r∈T ki

∥
∥
∥
∥xr − xt

jk
i

∥
∥
∥
∥+ ε̃k1

≤
(

1 + L̂
) n∑

i=1

∑

r∈T k
i

t
jk
i −1∑

s=r
γ s

∥
∥zsis − xsis

∥
∥+ ε̃k1 (3.138)

≤
(

1 + L̂
) n∑

i=1

|T ki | ·
t
jk
i −1∑

r=k T+1

γ r
∥
∥zrir − xrir

∥
∥+ ε̃k1

≤
(

1 + L̂
) n∑

i=1

|T ki | ·
⎛

⎜
⎝

jk ·T∑

r=k T+1

γ r
∥
∥zrir − xrir

∥
∥+

t
jk
i −1∑

r=jk ·T+1

γ r
∥
∥zrir − xrir

∥
∥

⎞

⎟
⎠+ ε̃k1

≤
(

1 + L̂
)
· (n · T )

jk ·T∑

r=k T+1

γ r
∥
∥zrir − xrir

∥
∥+

(
1 + L̂

)
· T

t
jk
i −1∑

r=jk ·T+1

γ r
∥
∥zrir − xrir

∥
∥

︸ ︷︷ ︸
ε̃k2

+ ε̃k1

≤
(

1 + L̂
)
· (n · T )

jk−1∑

s=k

(s+1) T∑

r=s T+1

γ r
∥
∥zrir − xrir

∥
∥+ ε̃k1 + ε̃k2

(c)≤
(

1 + L̂
)
· (n · T )

jk−1∑

s=k
(η2)

T−1γ s T+1
(s+1) T∑

r=s T+1

∥
∥zrir − xrir

∥
∥

︸ ︷︷ ︸
=Δs

+ ε̃k1 + ε̃k2

(3.135)−(3.136)=
(

1 + L̂
)
· (n · T ) · (η2)

T−1
jk−1∑

s=k
γ s T+1

(s+1)T∑

r=s T+1

‖zrir − xrir ‖2

‖zrir − xrir ‖
+ ε̃k1 + ε̃k2

(d)≤ T

δ
·
(

1 + L̂
)
· (n · T ) · (η2)

T−1
jk−1∑

s=k
γ s T+1

(s+1)T∑

r=s T+1

‖zrir − xrir ‖2

︸ ︷︷ ︸
ε̃k3

+ ε̃k1 + ε̃k2 ,
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where in (a) we used the reverse triangle inequality and Assumption 3.9.1; (b) is due
to the Lipschitz continuity of x̂i; in (c) we used γ k+1/γ k ≤ η2, with η2 ≥ 1; and
(d) is due to Lemma 3.15.

We prove now that ε̃k1 ↓ 0, ε̃k2 ↓ 0, and ε̃k3 ↓ 0. Since εki ↓ 0 for all i ∈ N (cf.
Assumption 3.9.1), it is not difficult to check that ε̃k1 ↓ 0. The same result for ε̃k2
comes from the following bound:

ε̃k2 ≤
(

1 + L̂
)
· T

(jk+1) T∑

r=jk ·T+1

γ r
∥
∥zrir − xrir

∥
∥ ≤

(
1 + L̂

)
· T · (η2)

T−1 · γ jk ·T+1 ·Δjk

(3.135)≤
((

1 + L̂) · T · (η2)
T−1 · δ

)
γ jk ·T+1 −→

k→∞ 0,

Finally, it follows from (3.132) that the series
∑∞
s=0 γ

s T+1 ∑(s+1)T
r=s T+1 ‖zrir − xrir ‖2

is convergent; the Cauchy convergence criterion implies that

ε̃k3 =
jk−1∑

s=k
γ s T+1

(s+1)T∑

r=s T+1

‖zrir − xrir ‖2 −→
k→∞ 0.

By the vanishing properties of ε̃k1 , ε̃k2 , and ε̃k3 , there exists a sufficiently large
k ∈ K , say k̄, such that

ε̃k1 ≤ T δ

4
, ε̃k2 ≤ T δ

4
, ε̃k3 ≤ δ2

4
(

1 + L̂
)
· n · T · (η2)T−1

, ∀k ∈ K, k ≥ k̄,

(3.139)

which contradicts (3.138). Therefore, it must be lim supk→∞Δk = 0.

• Greedy Rule Assumption 3.10.2 By (3.130), it is sufficient to prove
lim supk→+∞ Δ̂k � ‖̂zk − xk‖ = 0. Assume the contrary, that is,
lim supk→+∞ Δ̂k > 0. Since lim infk→+∞ Δ̂k = 0 (cf. Proposition 3.20), there
exists a δ > 0 such that Δ̂k < δ for infinitely many k and also Δ̂k > 2 · (δ/c̃)
for infinitely many k, where 0 < c̃ ≤ 1 is the constant defined in Lemma 3.19.
Therefore, there is a set K̂ ⊆ N+, with |K̂| = ∞, such that for each k ∈ K̂ , there
exists an integer jk > k, such that

Δ̂k ≥ 2
δ

c̃
, Δ̂jk ≤ δ, (3.140)

δ < Δ̂t < 2
δ

c̃
if k < t < jk. (3.141)
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We have

δ

c̃
= 2δ

c̃
− δ

c̃

≤
∥
∥
∥̂zk − xk

∥
∥
∥− 1

c̃

∥
∥
∥̂zjk − xjk

∥
∥
∥

(a)≤ ‖(̂x(xk)− xk)Sk‖ −
1

c̃
‖(̂x(xjk )− xjk )Sjk ‖ +

∑

i∈Sk
εki +

1

c̃

∑

i∈Sjk
ε
jk
i

︸ ︷︷ ︸
�ε̃k

(3.117)≤ ‖̂x(xk)− xk‖ − ‖̂x(xjk )− xjk‖ + ε̃k

≤ ‖̂x(xk)− x̂(xjk )‖ + ‖xk − xjk‖ + ε̃k
(b)≤ (1 + L̂) ‖xk − xjk‖ + ε̃k

≤ (1 + L̂)
jk−1∑

t=k
γ t ‖̂zt − xt‖ + ε̃k

= (1 + L̂)
jk−1∑

t=k
γ t

‖̂zt − xt‖2

‖̂zt − xt‖ + ε̃k

(3.140)−(3.141)
<

1 + L̂
δ

jk−1∑

t=k
γ t ‖̂zt − xt‖2 + ε̃k, (3.142)

where in (a) we used the triangle inequality and Assumption 3.9.1; and in (b) we
used the Lipschitz continuity of x̂.

Since ε̃k ↓ 0 (due to εki ↓ 0, for all i; see Assumption 3.9.1) and
∑jk−1
t=k γ t ‖̂zt −

xt‖2 −→
k→∞ 0 (due to

∑∞
k=0 γ

k
∥
∥̂zk − xk

∥
∥2
< +∞; see Proposition 3.20), there exists

a sufficiently large k ∈ K̂ , say k̂, such that

ε̃k ≤ δ

3 · c̃ and
jk−1∑

t=k
γ t ‖̂zt − xt‖2 ≤ δ2

3 · c̃ · (1 + L̂) , ∀k ∈ K̂, k ≥ k̂,
(3.143)

which contradicts (3.142). Therefore it must be limk→∞ ‖̂zk − xk‖ = 0.



212 G. Scutari and Y. Sun

3.3.4 Parallel SCA: Hybrid Schemes

FLEXA (Algorithm 6) and its convergence theory cover fully parallel Jacobi as
well as Gauss-Southwell-type methods, and many of their variants. Of course,
every block selection rule Sk has advantages and disadvantages, as discussed in
Sect. 3.3.3.1. A natural question is whether it is possible to design hybrid schemes
that inherit the best of the aforementioned plain selection schemes. In the following,
we introduce three hybrid strategies that are particularly well suited to parallel
optimization on multi-core/processor architectures.

3.3.4.1 Random-Greedy Schemes

In huge-scale optimization problems, the number of variables can be so large that
computing the error bound functions Ei for each block i is not computation-
ally affordable. To reduce the computational burden, one can think of a hybrid
random/greedy block selection rule that combines random and greedy updates in
the following form. First, a random selection is performed—the set Ŝk ⊆ N is
generated. Second, a greedy procedure is invoked to select within the pool Ŝk only
the subset of blocks, say Sk ⊆ Ŝk , that are “promising” according to the value of
Ei(xk). Finally all the blocks in Sk are updated in parallel. This procedure captures
both the advantages of random and greedy schemes: the random selection drops off
a large proportion of the blocks allowing one to save computation while the greedy
selection finds the best candidates that generate the “maximum improvement” on
the objective function. The procedure is summarized in Algorithm 7. Convergence
of the algorithm was studied in [56] when {γ k}k∈N+ is chosen according to the
diminishing step-size rule [Assumption 3.11.2]. The proof can be extended to deal
with the other step-size rules (Assumption 3.11) following similar steps as those in
Sect. 3.3.3.2, and thus is omitted.

Algorithm 7 Hybrid random-greedy FLEXA

Data : x0 ∈ X, {γ k ∈ (0, 1]}k∈N+ , εki ≥ 0, for all i ∈ N and k ∈ N+, ρ ∈ (0, 1].
Set k = 0.

(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Randomly generate a set of blocks Ŝk ⊆ N ;
(S.3) : Set Mk � maxi∈Ŝk {Ei(xk)};

Choose a subset Sk ⊆ Ŝk that contains at least one index i
for which Ei(xk) ≥ ρMk;

(S.4) : For all i ∈ Sk , solve (3.96) with accuracy εki :
find zki ∈ Xi s.t. ‖zki − x̂i

(
xk

) ‖ ≤ εki ;
Set ẑki = zki for i ∈ Sk , and ẑki = xki for i �∈ Sk ;

(S.5) : Set xk+1 � xk + γ k (̂zk − xk);
(S.6) : k← k + 1, and go to (S.1).
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3.3.4.2 Parallel-Cyclic Schemes

In a multi-core/processor architecture, another strategy to tackle huge-scale opti-
mization problems is to adopt a hybrid parallel-cyclic strategy whereby the blocks
of variables are partitioned among the workers (e.g., cores, processors) and updated
in parallel, with each worker processing sequentially one block at a time.

Specifically, suppose that there are P workers. Let {Ip}Pp=1 be a partition of N
(the indices in Ip follow the natural order). Assign the blocks xi , with i ∈ Ip, to
worker p, and write xp � (xp i)i∈Ip , where xp i denotes the i-th block assigned

to worker p; x−p � (xi )i /∈Ip is the vector of remaining variables, assigned to the
other workers. Finally, given Ip, we partition xp as xp = (xp, i<, xp, i≥), where
xp, i< � (xp j )j∈Ip, j<i is the vector containing all the variables in xp that appear

before i (according to the order in Ip) whereas xp, i≥ � (xp j )j∈Ip, j≥i contains the
remaining variables.

Once the optimization variables have been assigned to the P workers, one
could in principle apply the plain parallel algorithm, described in Algorithm 5,
which would lead to the following scheme. All the workers update in parallel
their variables (xpi)i∈Ip , but each worker can process only one block xp i at a
time. This means that, at iteration k, every worker p computes a suitable zkp i ,
for each block i ∈ Ip (one at a time), by keeping all variables but xp i fixed
to (xkp j )i �=j∈Ip and xk−p. Since we are solving the problems for each group of
variables assigned to a worker sequentially but without using the most recent
information for the updates, this approach seems a waste of resources. It is much
more efficient to use, within each worker, a Gauss-Seidel scheme whereby the
most recent iterates are used in all subsequent calculations. More specifically, at
each iteration k, each worker p computes sequentially an inexact version zkp i of

the solution x̂p i
(

xk+1
p, i<, x

k
p, i≥, xk−p

)
, with i ∈ Ip, and updates xp i as xk+1

p i =
xkp i + γ k

(
zkp i − xkp i

)
. The scheme is summarized in Algorithm 8. Convergence

Algorithm 8 Hybrid parallel-cyclic FLEXA

Data : x0 ∈ X, {γ k ∈ (0, 1]}k∈N+ , εkp i ≥ 0, for all i ∈ Ip, p ∈ {1, . . . , P }, and k ∈ N+,
ρ ∈ (0, 1].

Set k = 0.
(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : For all p ∈ {1, . . . , P } do (in parallel),

For all i ∈ Ip do (sequentially)
a) Find zkp i ∈ Xi s.t.

∥
∥
∥zkp i − x̂p i

(
xk+1
p, i<, x

k
p, i≥, x

k−p
)∥
∥
∥ ≤ εkp i;

b) Set xk+1
p i � xkp i + γ k

(
zkp i − xkp i

)
;

(S.3) : k← k + 1, and go to (S.1).
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of the algorithm was studied in [79] when {γ k}k∈N+ is chosen according to the
diminishing step-size rule [Assumption 3.11.2]. The proof can be extended to deal
with the other step-size rules (Assumption 3.11) following similar steps as those in
Sect. 3.3.3.2, and thus is omitted.

3.3.4.3 Parallel-Greedy-Cyclic Schemes

In Algorithm 8, at each iteration k, the workers update all their blocks, sequentially
over (xpi)i∈Ip . However, in some large-scale instances of Problem (3.94), updating
all variables might not always be beneficial or doable. Furthermore, using the
latest information in the updates of each worker may require extra calculations
(e.g., computing all block gradients) and communication overhead (these aspects
are discussed on specific examples in Sect. 3.3.5). It may be of interest then to
consider a hybrid parallel-greedy-cyclic scheme, where Algorithm 8 is equipped
with a greedy selection rule. More specifically, at each iteration k, each worker
proceeds as in Algorithm 8 but performing the cyclic sweeping only on a subset
Skp of its own variables Ip, where the subset Skp is chosen according to the greedy
rule in Assumption 3.10. To introduce formally the scheme, we extend the notation
used in Algorithm 8 as follows. We reorder the components of xp so that the first
|Skp| variables are those in Skp and the remaining variables are those in Ip \ Skp; we
write xp = (xSkp , xIp\Skp ), where xSkp denotes the vector containing the variables

indexed in Skp while xIp\Skp contains the remaining variables in Ip but Skp. Given an

index i ∈ Skp, we partition xSkp as xSkp = (xSkpi<, xSkpi≥), where xSkpi< is the vector

containing all variables in Skp that appear before i (in the order assumed in Skp),
while xSkpi≥ are the remaining variables in Skp. With a slight abuse of notation, we
will write x = (xSkpi<, xSkpi≥, xIp\Skp , x−p). The parallel-greedy-cyclic FLEXA is
formally described in Algorithm 9.

3.3.5 Applications

In this section we apply (Hybrid) FLEXA to some representative convex and
nonconvex problems, arising from applications in communications and signal pro-
cessing/machine learning. More specifically, we consider the following problems:
(i) the transceiver design in Single-Input-Single-Output (SISO) and Multiple-Input-
Multiple-Output (MIMO) multiuser interference systems (cf. Sect. 3.3.5.1); (ii) the
LASSO problem (cf. Sect. 3.3.5.2); and (iii) the logistic regression problem (cf.
Sect. 3.3.5.3). For each of the problems above, we show how to choose ad-hoc
surrogate functions and provide extensive numerical results.
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Algorithm 9 Hybrid parallel-greedy-cyclic FLEXA

Data : x0 ∈ X, {γ k ∈ (0, 1]}k∈N+ , εkp i ≥ 0, for all i ∈ Ip, p ∈ {1, . . . , P }, and k ∈ N+,
ρ ∈ (0, 1].

Set k = 0.
(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Set Mk � maxi{Ei(xk)}.

Choose sets Skp ⊆ Ip so that ∪Pp=1S
k
p contains at least one index i

for which Ei(xk) ≥ ρMk.

(S.3) : For all 	 ∈ P do (in parallel),
For all i ∈ Sk	 do (sequentially)

a) Find zk	i ∈ Xi s.t.

∥
∥
∥
∥zk	i − x̂	i

(

xk+1
Sk	 i<

, xk
Sk
	
i≥, xI	\Sk	 , x

k
−	

)∥
∥
∥
∥ ≤ εk	i;

b) Set xk+1
	i � xk	i + γ k

(
zk	i − xk	i

)

(S.4) : Set xk+1
	i

= xk
	i

for all i �∈ Sk ,
k ← k + 1, and go to (S.1).

3.3.5.1 Resource Allocation in SISO/MIMO Multiuser Systems

Consider a multiuser system, composed of I transmitter-receiver pairs (users). Each
transmitter (resp. receiver) is equipped with nT (resp. nR) transmit (resp. receive)
antennas (w.l.o.g. we assumed that all the transceivers have the same number of
antennas). Each transmitter is interested in transmitting its own data stream to its
own receiver. No multiple access scheme is fixed a-priori (like OFDMA, TDMA, or
CDMA); hence, Multi-User Interference (MUI) is experienced at each receiver. Let
xi ∈ C

nT be the signal transmitted by user i. Assuming a linear channel model, the
received signal from user i reads

yi = Hii xi︸ ︷︷ ︸
desired signal

+
∑

j �=i
Hij xj

︸ ︷︷ ︸
multiuser interference

+ ni︸︷︷︸
noise

, (3.144)

where Hij ∈ C
nR×nT is the channel matrix between the transmitter j and the

receiver i, and ni is the additive Gaussian zero-mean noise at the receiver i, with
variance σ 2

i > 0 (the noise is assumed to be white without loss of generality,
otherwise one can always pre-whiten the channel matrices). The first term on the
RHS of (3.144) represents the useful signal for user i while the second one is the
MUI due to the other users’ concurrent transmissions. Note that the system model
in (3.144) captures a fairly general MIMO setup, describing multiuser transmissions
over multiple channels, which may represent frequency channels (as in multicarrier
systems), time slots (as in time-division multiplexing systems), or spatial channels
(as in transmit/receive beamforming systems); each of the aforementioned cases
corresponds to a specific structure of the channel matrices Hij .
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Denoting by Qi � E(xixHi ) ' 0 the covariance matrix of the symbols
transmitted by agent i, each transmitter i is subject to the following general power
constraints

Qi �
{
Qi ∈ C

nT×nT : Qi ' 0, tr(Qi ) ≤ P ave
i , Qi ∈ Zi

}
, (3.145)

where tr(Qi ) ≤ P ave
i is a constraint on the maximum average transmit power,

with P ave
i being the transmit power in unit of energy per transmission; and

Zi ⊆ C
nT×nT is an arbitrary closed and convex set, which can capture additional

power/interference constraints (if any), such as: (i) null constraints UHi Qi=0, where
Ui ∈ C

nT×ri is a full rank matrix with ri < nT , whose columns represent the
spatial and/or “frequency” directions along with user i is not allowed to transmit;
(ii) soft-shaping constraints tr

(
GHi QiGi

)≤ I ave
i , which permit to control the power

radiated (and thus the interference generated) onto the range space of Gi ∈ C
nT×nT ;

(iii) peak-power constraints λmax
(
THi QiTi

) ≤ I
peak
i , which limit the average

peak power of transmitter i along the direction spanned by the range space of
Ti ∈ C

nT×nT , with λmax denoting the maximum eigenvalue of the argument matrix;
and (iv) per-antenna constraints [Qi]nn ≤ αin, which control the maximum average
power radiated by each antenna.

Under standard information theoretical assumptions, the maximum achievable
rate on each link i can be written as follows: given Q � (Qi )Ii=1,

Ri(Qi ,Q−i ) � log det
(

I + HHii Ri (Q−i )−1HiiQi
)
, (3.146)

where det(•) is the determinant of the argument matrix; Q−i � (Qj )j �=i denotes
the tuple of the (complex-valued) covariance matrices of all the transmitters except
the i-th one; and Ri (Q−i ) � Rni +

∑
j �=i HijQjHHij is the covariance matrix of the

multiuser interference plus the thermal noise Rni (assumed to be full-rank).
As system design, we consider the maximization of the users’ (weighted) sum

rate, subject to the power constraint (3.145), which reads

maximize
Q1,...,QI

I∑

i=1

αi Ri(Qi ,Q−i )

subject to Qi ∈ Qi, ∀i = 1, . . . , I,

(3.147)

where (αi)Ii=1 are given positive weights, which one can use to prioritize some user
with respect to another. We remark that the proposed algorithmic framework can be
applied also to other objective functions involving the rate functions, see [81, 212].

Clearly (3.147) is an instance of (3.94) (with G = 0 and involving complex
variables) and thus we can apply the algorithmic framework described in this
lecture. We begin considering the sum-rate maximization problem (3.147) over
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SISO frequency selective channels; we then extend the analysis to the more general
MIMO case.

Sum-Rate Maximization Over SISO Interference Channels

Given the system model (3.144), consider SISO frequency selective channels: the
channel matrices Hij are m × m Toeplitz circulant matrices and Rni are m × m
diagonal matrices, with diagonal entries σ 2

i 1, . . . , σ
2
i m (σ 2

i 	 is the variance of the
noise on channel 	); and m is the length of the transmitted block [note that in
(3.144) it becomes nT = nR = m]; see, e.g., [246]. The eigendecomposition
of each Hij reads: Hij = F Dij FH , where F is the IFFT matrix, i.e., [F]	′ 	 =
exp(j 2π (	′−1)(	−1)/N)/

√
N , for 	′, 	 = 1, . . . N ; and Dij is the diagonal matrix

whose diagonal entries Hij (1), . . . , Hij (N) are the coefficients of the frequency-
response of the channel between the transmitter j and the receiver i.

Orthogonal Frequency Division Multiplexing (OFDM) transmissions correspond
to the following structure for the covariance matrices: Qi = F diag(pi )FH , where
pi � (pi 	)m	=1 is the transmit power profile of user i over them frequency channels.

The power constraints read: given Imax
i ∈ R

qi+ and Wi ∈ R
qi×m+ ,

Pi �
{

pi ∈ R
N+ : Wi pi ≤ Imax

i

}
, (3.148)

where the inequality has to be intended component-wise. To avoid redundant
constraints, we assume w.l.o.g. that all the columns of Wi are linearly independent.

The maximum achievable rate on each link i becomes [cf. (3.146)]

ri (pi ,p−i ) �
m∑

	=1

log

⎛

⎝1 + |Hii (	)|2 pi 	
σ 2
i 	 +

∑
j �=i

∣
∣Hij (	)

∣
∣2 pj 	

⎞

⎠ , (3.149)

where p−i � (pj )j �=i is the power profile of all the users j �= i.
The system design (3.147) reduces to the following nonconvex optimization

problem

maximize
p1,...,pI

I∑

i=1

αi ri(pi ,p−i )

subject to pi ∈ Pi, ∀i = 1, . . . , I.

(3.150)

We apply next FLEXA (Algorithm 5) to (3.150); we describe two alternative
SCA-decompositions, corresponding to two different choices of the surrogate
functions.
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Decomposition #1−Pricing Algorithms Since the sum-rate maximization prob-
lem (3.150) is an instance of the problem considered in Example 3 in Sect. 3.3.2.1,
a first approach is to use the surrogate (3.106). Since the rate ri(pi ,p−i ) is concave
in pi , for any given p−i ≥ 0, we have C̃i = {i} [cf. (3.105)] and thus Ci ≡ C̃i ,
which leads to the following surrogate function: given pk ≥ 0 at iteration k,

F̃ (p | pk) =
I∑

i=1

F̃i(pi | pk),

where

F̃i(pi | pk) � αi · ri (pi ,pk−i )− π i (pk)T (pi − pki )−
τi

2

∥
∥
∥pi − pki

∥
∥
∥

2
,

τi is an arbitrary nonnegative constant, and π i (pk) � (πi 	(pk))m	=1 is defined as

πi 	(pk) � −
∑

j∈Ni
αj |Hji (	) |2

snrkj 	

(1 + snrkj 	) · muikj 	
;

Ni denotes the set of (out) neighbors of user i, i.e., the set of users j ’s which user
i interferers with; and snrkj 	 and muikj 	 are the Signal-to-Interference-plus-Noise
(SINR) and the multiuser interference-plus-noise power ratios experienced by user
j on the frequency 	, generated by the power profile pk:

snrkj 	 �
|Hjj (	) |2pkj 	

muikj 	
, and muikj 	 � σ 2

j 	 +
∑

i �=j
|Hji (	) |2pki 	.

All the users in parallel will then solve the following strongly concave subprob-
lems: given pk = (pki )Ii=1,

p̂i (pk) � argmax
pi∈Pi

{

αi · ri (pi ,pk−i )− π i (pk)T (pi − pki )−
τi

2

∥
∥
∥pi − pki

∥
∥
∥

2
}

.

Note that the best-response p̂i (pk) can be computed in closed form (up to the mul-
tiplies associated with the inequality constraints in Pi) according to the following
multi-level waterfilling-like expression [209]: setting each τi > 0,

p̂i (pk) �
[

1

2
pki ◦

(
1 − (snrki )−1

)+

− 1

2 τi

(

μ̃i−
√[

μ̃i − τi pki ◦
(
1 + (snrki )−1

)]2 + 4τiwi1
)]

+

(3.151)
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where ◦ denotes the Hadamard product and [•]+ denotes the projection onto the
nonnegative orthant Rm+; (snrki )

−1 � (1/snrki 	)
m
	=1 and μ̃i � π i (pk) + WT

i μi ,
with the multiplier vector μi chosen to satisfy the nonlinear complementarity
condition (CC)

0 ≤ μi ⊥ Imax
i − Wi p̂i (pk) ≥ 0.

The optimal μi satisfying the CC can be efficiently computed (in a finite number of
steps) using the nested bisection method described in [209, Algorithm 6]; we omit
further details here. Note that, in the presence of power budget constraints only, μi
reduces to a scalar quantity μi such that 0 ≤ μi ⊥ pi − 1T p̂i (pk) ≥ 0, whose
solution can be obtained using the classical bisection algorithm (or the methods in
[182]).

Given p̂i (pk), one can now use, e.g., Algorithm 5, with any of the valid choices
for the step-size {γ k} [cf. Assumption 3.6]. Since there is no coordination among
the users as well as no centralized control in network, one is interested in designing
distributed algorithms. This naturally suggests the use of a diminishing step-size
rule in Algorithm 5. For instance, good candidates are the rules in (3.108) or (3.109).
Note that the resulting algorithm is fairly distributed. Indeed, given the interference
generated by the other users [and thus the MUI coefficients muikjn] and the current

interference price π i (pk), each user can efficiently and locally compute the optimal
power allocation p̂i (pk) via the waterfilling-like expression (3.151). The estimation
of the prices πi	(pk) requires however some signaling among nearby users.

Decomposition #2−DC Algorithms An alternative class of algorithms for the
sum-rate maximization problem (3.150) can be obtained exploring the DC structure
of the rate functions (3.149). By doing so, the sum-rate can be decomposed as the
sum of a concave and convex function, namely U(p) = f1(p)+ f2(p), with

f1(p) �
I∑

i=1

αi

m∑

	=1

log

⎛

⎝σ 2
i 	 +

I∑

j=1

∣
∣Hij (	)

∣
∣2 pj 	

⎞

⎠ ,

f2(p) � −
I∑

i=1

αi

m∑

	=1

log

⎛

⎝σ 2
i	 +

I∑

j=1,j �=i

∣
∣Hij (	)

∣
∣2 pj 	

⎞

⎠ .

A concave surrogate can be readily obtained from U(p) by linearizing f2 (p) and
keeping f1 (p) unaltered. This leads to the following strongly concave subproblem
for each agent i: given pk ≥ 0,

p̃i (pk) � argmax
pi∈Pi

{

f1(pi ,pk−i )− π i (pk)T (pi − pki )−
τi

2

∥
∥
∥pi − pki

∥
∥
∥

2
}
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where π i (pk) � (πi 	(pk))m	=1, with

πi 	(pk) � −
∑

j∈Ni
αj |Hji (	) |2 1

muikj 	
. (3.152)

The best-response p̃i (pk) can be efficiently computed using a fixed-point-based
procedure, in the same spirit of [183]; we omit further details. Note that the
communication overhead to compute the prices (3.151) and (3.152) is the same,
but the computation of p̃i (pk) requires more (channel state) information exchange
than that of p̂i (pk), since each user i also needs to estimate the cross-channels
{|Hji (	) |2}j∈Ni .
Numerical Example We compare now Algorithm 5 based on the best-response
p̂i (pk) in (3.151) (termed SR-FLEXA, SR stands for Sum-Rate), with those
proposed in [183] [termed SCALE and SCALE one-step, the latter being a
simplified version of SCALE where instead of solving the fixed-point equation (16)
in [183], only one iteration of (16) is performed], [207] (which is an instance of
the block MM algorithm described in Algorithm 2, and is termed Block-MM),
and [215] (termed WMMSE). Since the algorithms in [183, 207, 215] can only deal
with power budget constraints, to run the comparison, we simplified the sum-rate
maximization problem (3.150) considering only power budget constraints (and all
αi = 1). We assume the same power budget P ave

i = p, noise variances σ 2
i 	 = σ 2,

and snr = p/σ 2 = 3dB for all the users. We simulated SISO frequency-selective
channels with m = 64 subcarriers; the channels are generated as FIR filters of
order L = 10, whose taps are i.i.d. Gaussian random variables with zero mean
and variance 1/(d3

ij (L + 1)2), where dij is the distance between the transmitter
j and the receiver i. All the algorithms are initialized by choosing the uniform
power allocation, and are terminated when (the absolute value of) the sum-utility
error in two consecutive rounds becomes smaller than 1e-3. The accuracy in the
bisection loops (required by all methods) is set to 1e-6. In SR-FLEXA, we used the
rule (3.108) with ε = 1e-2. In Fig. 3.8, we plot the average number of iterations
required by the aforementioned algorithms to converge (under the same termination
criterion) versus the number of users; the average is taken over 100 independent
channel realizations; in Fig. 3.8a we set dij /dii = 3 whereas in Fig. 3.8b we have
dij /dii = 1 while in both figures dij = dji and dii = djj , for all i and j �= i;
the setting in Fig. 3.8a emulates a “low” MUI environment whereas the one in
Fig. 3.8b a “high” MUI scenario. All the algorithms reach the same average sum-
rate. The figures clearly show that the proposed SR-FLEXA outperforms all the
others (note that SCALE and WMMSE are also simultaneous-based schemes). For
instance, in Fig. 3.8a, the gap with WMMSE (in terms of number of iterations needed
to reach convergence) is about one order of magnitude, for all the network sizes
considered in the experiment, which reduces to two times in the “high” interference
scenario considered in Fig. 3.8b. Such a behavior (requiring less iterations than
other methods, with gaps ranging from few times to one order of magnitude) has
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Fig. 3.8 Sum-rate maximization problem (3.150) (SISO frequency-selective channels): Average
number of iterations versus number of users. Note that all algorithms are simultaneous except
Block-MM, which is sequential. Also, all the algorithms are observed to converge to the same
stationary solution of Problem (3.150). The figures are taken from [210]. (a) Low MUI: The
proposed method, SR-FLEXA, is one order of magnitude faster than the WMMSE algorithm. (b)
High MUI: The proposed method, SR-FLEXA, is two times faster than the WMMSE algorithm
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been observed also for other choices of dij /dii , termination tolerances, and step-
size rules; more experiments can be found in [210, 221]. Note that SR-FLEXA,
SCALE one-step, WMMSE, and Block-MM have similar per-user computational
complexity, whereas SCALE is much more demanding and is not appealing for a
real-time implementation. Therefore, Fig. 3.8 provides also a roughly indication of
the per-user cpu time of SR-FLEXA, SCALE one-step, and WMMSE.

Sum-Rate Maximization Over MIMO Interference Channels
Let us focus now on the general MIMO formulation (3.147).

Similarly to the SISO case, we can invoke the surrogate (3.106) with Ci = {i},
corresponding to keeping Ri in (3.146) unaltered and linearizing the rest of the
sum, that is,

∑
j �=i Rj . Invoking the Wirtinger calculus (see, e.g., [105, 126, 209]),

the subproblem solved by each agent i at iteration k reads: given Qk = (Qki )
I
i=1,

with each Qk ' 0,

Q̂i (Qk) � argmax
Qi∈Qi

{

αi ri(Qi ,Qk−i )−
〈
Πi (Xk),Qi

〉
− τi

∥
∥
∥Qi − Qki

∥
∥
∥

2

F

}

(3.153)

where 〈A,B〉 � Re{tr(AHB)}; τi > 0,

Πi (Qk) �
∑

j∈Ni
αj HHji R̃j (Qk−j )Hji,

with Ni defined as in the SISO case; and

R̃j (Qk−j ) � Rj (Qk−j )−1 − (Rj (Qk−j )+ HjjQkjH
H
jj )

−1.

Note that, once the price matrix Πi (Qk) is given, the best-response Q̂i (Qk) can
be computed locally by each user solving a convex optimization problem. Moreover,
for some specific structures of the feasible sets Qi , the case of full-column rank
channel matrices Hi , and τi = 0, a solution in closed form (up to the multipliers
associated with the power budget constraints) is also available [124]; see also [260]
for other examples. Given Q̂i (Qk), one can now use Algorithm 5 (adapted to the
complex case), with any of the valid choices for the step-size {γ k}.
Complexity Analysis and Message Exchange We compare here the computa-
tional complexity and signaling (i.e., message exchange) of Algorithm 5 based on
the best-response Q̂i (Qk) (termed MIMO-SR-FLEXA) with those of the schemes
proposed in the literature for a similar problem, namely the MIMO-Block-MM
[124, 207], and the MIMO-WMMSE [215]. For the purpose of complexity anal-
ysis, since all algorithms include a similar bisection step which generally takes
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few iterations, we will ignore this step in the computation of the complexity.
Also, MIMO-WMMSE and MIMO-SR-FLEXA are simultaneous schemes, while
MIMO-Block-MM is sequential; we then compare the algorithms by given the
per-round complexity, where one round means one update from all the users.
Recalling that nT (resp. nR) denotes the number of antennas at each transmitter
(resp. receiver), the computational complexity of the algorithms is [210]:

• MIMO-Block-MM:O
(
I 2(nT n

2
R + n2

T nR + n3
R)+ I n3

T

)
;

• MIMO-WMMSE:O
(
I 2(nT n

2
R + n2

T nR + n3
T )+ I n3

R

)
[215];

• MIMO-SR-FLEXA:O
(
I 2(nT n

2
R + n2

T nR)+ I (n3
T + n3

R)
)
.

The complexity of the three algorithms is very similar, and equivalent in the case
in which nT = nR(� m), given byO(I 2m3).

In a real system, the MUI covariance matrices Ri (Q−i ) come from an estimation
process. It is thus interesting to understand how the complexity changes when the
computation of Ri (Q−i ) from Rni+

∑
j �=i HijQjHHij is not included in the analysis.

We obtain the following [210]:

• MIMO-Block-MM:O
(
I 2(nT n

2
R + n2

T nR + n3
R)+ I n3

T

)
;

• MIMO-WMMSE:O
(
I 2(n2

T nR + n3
T )+ I (n3

R + nT n2
R)

)
;

• MIMO-SR-FLEXA:O
(
I 2(nT n

2
R + n2

T nR)+ I (n3
T + n3

R)
)
.

Finally, if one is interested in the time necessary to complete one iteration, it can
be shown that it is proportional to the above complexity divided by I .

As far as the communication overhead is concerned, the same remarks we made
about the schemes described in the SISO setting, apply also here for the MIMO case.
The only difference is that now the users need to exchange a (pricing) matrix rather
than a vector, resulting in O(I 2 n2

R) amount of message exchange per-iteration for
all the algorithms.

Numerical Example #1 In Tables 3.3 and 3.4 we compare the MIMO-SR-FLEXA,
the MIMO-Block-MM [124, 207], and the MIMO-WMMSE [215], in terms of average
number of iterations required to reach convergence, for different number of users,
normalized distances d � dij /dii (with dij = dji and dii = djj for all i and j �= i),
and termination accuracy (namely: 1e-3 and 1e-6). All the transmitters/receivers
are equipped with four antenna; we simulated uncorrelated fading channels, whose
coefficients are Gaussian distributed with zero mean and variance 1/d3

ij (all the

Table 3.3 Sum-rate maximization problem (3.147) (MIMO frequency-selective channels): aver-
age number of iterations (termination accuracy=1e-6)

# of users = 10 # of users = 50 # of users = 100

d=1 d=2 d=3 d=1 d=2 d=3 d=1 d=2 d=3

MIMO-Block-MM 1370.5 187 54.4 4148.5 1148 348 8818 1904 704

MIMO-WMMSE 169.2 68.8 53.3 138.5 115.2 76.7 154.3 126.9 103.2

MIMO-SR-FLEXA 169.2 24.3 6.9 115.2 34.3 9.3 114.3 28.4 9.7
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Table 3.4 Sum-rate maximization problem (3.147) (MIMO frequency-selective channels): aver-
age number of iterations (termination accuracy=1e-3)

# of users = 10 # of users = 50 # of users = 100

d=1 d=2 d=3 d=1 d=2 d=3 d=1 d=2 d=3

MIMO-Block-MM 429.4 74.3 32.8 1739.5 465.5 202 3733 882 442.6

MIMO-WMMSE 51.6 19.2 14.7 59.6 24.9 16.3 69.8 26.0 19.2

MIMO-SR-FLEXA 48.6 9.4 4.0 46.9 12.6 5.1 49.7 12 5.5

channel matrices are full-column rank); and we set Rni = σ 2I for all i, and snr �
p/σ 2 = 3 dB. In MIMO-SR-FLEXA, we used the step-size rule (3.108), with ε =
1e-5; in (3.153) we set τi = 0 and computed Q̂i (Qk) using the closed form solution
in [124]. All the algorithms reach the same average sum-rate.

Given the results in Tables 3.3 and 3.4, the following comments are in order.
MIMO-SR-FLEXA outperforms the other schemes in terms of iterations, while
having similar (or even better) computational complexity. Interestingly, the iteration
gap with the other schemes reduces with the distance and the termination accuracy.
More specifically: MIMO-SR-FLEXA (i) seems to be much faster than the other
schemes (about one order of magnitude) when dij /dii = 3 [say low interference
scenarios], and just a bit faster (or comparable to MIMO-WMMSE) when dij /dii = 1
[say high interference scenarios]; and (ii) it is much faster than the others, if an
high termination accuracy is set (see Table 3.3). Also, the convergence speed of
MIMO-SR-FLEXA is not affected too much by the number of users. Finally, in
our experiments, we also observed that the performance of MIMO-SR-FLEXA is
not affected too much by the choice of the parameter ε in the (3.108): a change
of ε of many orders of magnitude leads to a difference in the average number of
iterations which is within 5%; we refer the reader to [221] for details, where one
can also find a comparison of several other step-size rules. We must stress however
that MIMO-Block-MM and MIMO-WMMSE do not need any tuning, which is an
advantage with respect to MIMO-SR-FLEXA.

Numerical Example #2 We compare now the MIMO-WMMSE [215] and the MIMO-
SR-FLEXA in a MIMO broadcast cellular system composed of multiple cells, with
one Base Station (BS) and multiple randomly generated Mobile Terminals (MTs) in
each cell. Each MT experiences both intra-cell and inter-cell interference. We refer
to [215] for a detailed description of the system model, the explicit expressions of
the BS-MT downlink rates, and the corresponding sum-rate maximization problem.

The setup of our experiments is the following [210]. We simulated seven cells
with multiple randomly generated MTs; each BS and MT is equipped with four
transmit and receive antennas. Channels are Rayleigh fading, whose path-loss
are generated using the 3 GPP(TR 36.814) methodology [1]. We assume white
zero-mean Gaussian noise at each mobile receiver, with variance σ 2, and same
power budget p for all the BSs; the SNR is set to snr � p/σ 2 = 3dB. Both
algorithms MIMO-WMMSE and MIMO-SR-FLEXA are initialized by choosing the
same feasible randomly generated point, and are terminated when (the absolute
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value of) the sum-rate error in two consecutive rounds becomes smaller than 1e-
2. In MIMO-SR-FLEXA, the step-size rule (3.108) is used, with ε = 1e-3 and
γ 0 = 1; the unique solution Q̂i (Qk) of users’ subproblems is computed in closed
form adapting the procedure in [124]. The experiments were run using Matlab
R2012a on a 12 × 2.40 GHz Intel Xeon E5645 Processor Cores machine, equipped
with 48 GB of memory and 24,576 Kbytes of data cache; the operation system is
Linux (RedHat Enterprise Linux 6.1 2.6.32 Kernel). In Fig. 3.9a we plot the average
cpu time versus the total number of MTs for the two algorithms under the same
termination criterion, whereas in Fig. 3.9b we reported the final achieved average
sum-rate. The curves are averaged over 1500 channel/topology realizations. It can be
observed that MIMO-SR-FLEXA significantly outperformsMIMO-WMMSE in terms
of cpu time when the number of active users is large; moreover MIMO-SR-FLEXA
also yields better sum-rates. We observed similar results also under different settings
(e.g., SNR, number of cells/BSs, etc.); see [221] for more details.

3.3.5.2 LASSO Problem

Consider the LASSO problem in the following form [235] (cf. Sect. 3.3.1.1):

minimize
x

V (x) � 1

2
‖z − Ax‖2 + λ‖x‖1, (3.154)

where A ∈ R
q×m is the matrix whose columns ai are the prediction or feature

vectors; zi is the response variable associated to ai ; and λ > 0 is the regularization
weight.

FLEXA for LASSO Observing that the univariate instance of (3.154) has a closed
form solution, it is convenient to decompose x in scalar components (mi = 1, for
all i ∈ N) and update them in parallel. In order to exploit the quadratic structure
of V in (3.154) a natural choice for the surrogate function is (3.102). Therefore, the
subproblem associated with the scalar xi reads: given xk ,

x̂i(xk) � argmin
xi∈R

{
1

2

∥
∥
∥rki − ai xi

∥
∥
∥

2 + τi

2
· (xi − xki )2 + λ · |xi |

}

,

where the residual rki is defined as

rki � z −
∑

j �=i
aj xkj .

Invoking the first order optimality conditions (c.f. Definition 2.9) [we write x̂i for
x̂i(xk)]:

−
(

aTi rki + τi xki
)
+

(
τi + ‖ai‖2

)
x̂i + λ ∂ |̂xi| � 0,
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Fig. 3.9 Sum-rate maximization problem over Interference Broadcast Channels:
MIMO-SR-FLEXA versus MIMO-WMMSE. The figures are taken from [210]. (a) Average
cpu time versus the number of mobile terminals. (b) Average sum-rate versus the number of
mobile terminals
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and the expression of ∂|x| [cf. (3.9)], one can readily obtain the closed form
expression of x̂i(xk), that is,

x̂i(xk) = 1

τi + ‖ai‖2 · Sλ
(

aTi rki + τi xki
)
, (3.155)

where Sλ(•) is the soft-thresholding operator, defined in (3.54).
We consider the instance of Algorithm 6, with the following choice of the free

parameters:

• Exact solution x̂i(xk): In Step 3 we use the best-response x̂i(xk) as defined in
(3.155), that is, zki = x̂i(xk) (exact solution).

• Proximal weights τi : While in the proposed algorithmic framework we consid-
ered fixed values of τi , varying τi a finite number of times does not affect the
theoretical convergence properties of the algorithms. We found that the following
choices work well in practice: (i) τi are initially all set to τi = tr(ATA)/(2m),
i.e., to half of the mean of the eigenvalues of ∇2F ; (ii) all τi are doubled if at
a certain iteration the objective function does not decrease; and (iii) they are all
halved if the objective function decreases for ten consecutive iterations or the
relative error on the objective function re(x) is sufficiently small, specifically if

re(x) � V (x)− V ∗

V ∗ ≤ 10−2, (3.156)

where V ∗ is the optimal value of the objective function V (in our experiments
on LASSO, V ∗ is known). In order to avoid increments in the objective function,
whenever all τi are doubled, the associated iteration is discarded, and in Step 4
of Algorithm 6 it is set xk+1 = xk. In any case we limited the number of possible
updates of the values of τi to 100.

• Step-size γ k: The step-size γ k is updated according to the following rule:

γ k = γ k−1
(

1 − min

{

1,
10−4

re(xk)

}

θ γ k−1
)

, k = 1, . . . , (3.157)

with γ 0 = 0.9 and θ = 1e − 7. The above diminishing rule is based on (3.108)
while guaranteeing that γ k does not become too close to zero before the relative
error is sufficiently small.

• Greedy selection rule Sk : In Step 2, we use the following greedy selection rule
(satisfying Assumption 3.10.2):

Sk = {i : Ei(xk) ≥ σ ·Mk}, with Ei(xk) = |̂xi(xk)− xki |.

In our tests we consider two options for σ , namely: (i) σ = 0, which leads to
a fully parallel scheme wherein at each iteration all variables are updated; and
(ii) σ = 0.5, which corresponds to updating only a subset of all the variables
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at each iteration. Note that for both choices of σ , the resulting set Sk satisfies
the requirement in Step 2 of Algorithm 6; indeed, Sk always contains the index
i corresponding to the largest Ei(xk). We will refer to these two instances of the
algorithm as FLEXA σ = 0 and FLEXA σ = 0.5.

Algorithms in the Literature We compared the above versions of FLEXA with
the most competitive parallel and sequential (Block MM) algorithms proposed in the
literature to solve the LASSO problem. More specifically, we consider the following
schemes.

• FISTA: The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) pro-
posed in [7] is a first order method and can be regarded as the benchmark
algorithm for LASSO problems. Building on the separability of the terms in
the objective function V , this method can be easily parallelized and thus take
advantage of a parallel architecture. We implemented the parallel version that
use a backtracking procedure to estimate the Lipschitz constant of ∇F [7].

• SpaRSA: This is the first order method proposed in [251]; it is a popular
spectral projected gradient method that uses a spectral step length together with a
nonmonotone line search to enhance convergence. Also this method can be easily
parallelized, which is the version implemented in our tests. In all the experiments,
we set the parameters of SpaRSA as in [251]: M = 5, σ = 0.01, αmax = 1e30,
and αmin = 1e− 30.

• GRock & Greedy-1BCD: GRock is a parallel algorithm proposed in [187]
that performs well on sparse LASSO problems. We tested the instance of GRock
where the number of variables simultaneously updated is equal to the number of
the parallel processors. It is important to remark that the theoretical convergence
properties of GRock are in jeopardy as the number of variables updated in
parallel increases; roughly speaking, GRock is guaranteed to converge if the
columns of the data matrix A in the LASSO problem are “almost” orthogonal,
a feature that in general is not satisfied by real data. A special instance with
convergence guaranteed is the one where only one block per time (chosen in a
greedy fashion) is updated; we refer to this special case as greedy-1BCD.

• Parallel ADMM: This is a classical Alternating Method of Multipliers
(ADMM). We implemented the parallel version proposed in [67].

In the implementation of the parallel algorithms, the data matrix A of the LASSO
problem is generated as follows. Each processor generates a slice of the matrix itself
such that A = [A1 A2 · · · AP ], where P is the number of parallel processors, and
each Ai has m/P columns. Thus the computation of each product Ax (which is
required to evaluate ∇F ) and the norm ‖x‖1 (that is G) is divided into the parallel
jobs of computing Ai xi and ‖xi‖1, followed by a reducing operation.

Numerical Examples We generated six groups of LASSO problems using the
random generator proposed by Nesterov [174], which permits to control the sparsity
of the solution. For the first five groups, we considered problems with 10,000
variables and matrices A with 9000 rows. The five groups differ in the degree
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of sparsity of the solution, namely: the percentage of non zeros in the solution is
1%, 10%, 20%, 30%, and 40%, respectively. The last group is formed by instances
with 100,000 variables and 5000 rows for A, and solutions having 1% of non zero
variables. In all experiments and for all the algorithms, the initial point was set to
the zero vector.

Results of the experiments for the 10,000 variables groups are reported in
Fig. 3.10, where we plot the relative error as defined in (3.156) versus the CPU
time; all the curves are obtained using (up to) 40 cores, and averaged over ten
independent random realizations. Note that the CPU time includes communication
times (for parallel algorithms) and the initial time needed by the methods to perform
all pre-iteration computations (this explains why the curves of ADMM start after the
others; in fact ADMM requires some nontrivial initializations). For one instance,
the one corresponding to 1% of the sparsity of the solution, we plot also the relative
error versus iterations [Fig. 3.10(a2)]; similar behaviors of the algorithms have been
observed also for the other instances, and thus are not reported. Results for the
LASSO instance with 100,000 variables are plotted in Fig. 3.11. The curves are
averaged over five random realizations.

The following comments are in order. On all the tested problems, FLEXA σ =
0.5 outperforms in a consistent manner all the other implemented algorithms. In
particular, as the sparsity of the solution decreases, the problems become harder
and the selective update operated by FLEXA σ = 0.5 improves over FLEXA σ =
0, where instead all variables are updated at each iteration. FISTA is capable to
approach relatively fast low accuracy when the solution is not too sparse, but has
difficulties in reaching high accuracy. SpaRSA seems to be very insensitive to the
degree of sparsity of the solution; it behaves well on 10,000 variables problems and
not too sparse solutions, but is much less effective on very large-scale problems.
The version of GRock with P = 40 is the closest match to FLEXA, but only when
the problems are very sparse (but it is not supported by a convergence theory on
our test problems). This is consistent with the fact that its convergence properties
are at stake when the problems are quite dense. Furthermore, if the problem is very
large, updating only 40 variables at each iteration, as GRock does, could slow down
the convergence, especially when the optimal solution is not very sparse. From this
point of view, FLEXA σ = 0.5 seems to strike a good balance between not updating
variables that are probably zero at the optimum and nevertheless update a sizeable
amount of variables when needed in order to enhance convergence.

Remark 3.21 (On the Parallelism) Fig. 3.11 shows that FLEXA seems to exploit
well parallelism on LASSO problems. Indeed, when passing from 8 to 20 cores, the
running time approximately halves. This kind of behavior has been consistently
observed also for smaller problems and different number of cores (not reported
here). Note that practical speed-up due to the use of a parallel architecture is given
by several factor that are not easily predictable, including communication times
among the cores, the data format, etc. Here we do not pursue a theoretical study of
the speed-up but refer to [37] for some initial study. We finally observe that GRock
appears to improve greatly with the number of cores. This is due to the fact that
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Fig. 3.10 LASSO problem (3.154) with 10,000 variables; relative error vs. time (in seconds) for:
(a1) 1% non zeros, (b) 10% non zeros, (c) 20% non zeros, (d) 30% non zeros, (e) 40% non zeros;
(a2) relative error vs. iterations for 1% non zeros. The figures are taken from [79]
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Fig. 3.11 LASSO problem (3.154) with 105 variables; Relative error vs. time for: (a) 8 cores, (b)
20 cores. The figures are taken from [79]

in GRock the maximum number of variables that is updated in parallel is exactly
equal to the number of cores (i.e., the degree of parallelism), and this might become
a serious drawback on very large problems (on top of the fact that convergence is in
jeopardy). On the contrary, the theory presented in this chapter permits the parallel
update of any number of variables while guaranteeing convergence.

Remark 3.22 (On Selective Updates) It is interesting to comment why FLEXA
σ = 0.5 behaves better than FLEXA σ = 0. To understand the reason behind
this phenomenon, we first note that Algorithm 6 has the remarkable capability to
identify those variables that will be zero at a solution; we do not provide here the
proof of this statement but only an informal argument. Roughly speaking, it can be
shown that, for k large enough, those variables that are zero in x̂(xk) = (̂xi(xk))mi=1
will be zero also in a limiting solution x̄. Therefore, suppose that k is large enough
so that this identification property already takes place (we will say that “we are in
the identification phase”) and consider an index i such that x̄i = 0. Then, if xki
is zero, it is clear, by Steps 3 and 4, that xk

′
i will be zero for all indices k′ > k,

independently of whether i belongs to Sk or not. In other words, if a variable that
is zero at the solution is already zero when the algorithm enters the identification
phase, that variable will be zero in all subsequent iterations; this fact, intuitively,
should enhance the convergence speed of the algorithm. Conversely, if when we
enter the identification phase xki is not zero, the algorithm will have to bring it back
to zero iteratively. This explains why updating only variables that we have “strong”
reason to believe will be non zero at a solution is a better strategy than updating
them all. Of course, there may be a problem dependence and the best value of σ
can vary from problem to problem. But the above explanation supports the idea that
it might be wise to “waste" some calculations and perform only a partial ad-hoc
update of the variables.
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3.3.5.3 The Logistic Regression Problem

Consider the logistic regression problem in the following form [235]:

minimize
x

V (x) =
q∑

i=1

log(1 + e−wi ·zTi x)+ λ‖x‖1, (3.158)

where zi ∈ R
m is the feature vector of sample i, with the associated label wi ∈

{−1, 1}.
FLEXA for Logistic Regression Problem (3.158) is a highly nonlinear problem
involving many exponentials that, notoriously, gives rise to numerical difficulties.
Because of these high nonlinearities, a Gauss-Seidel (sequential) approach is
expected to be more effective than a pure Jacobi (parallel) method, a fact that was
confirmed by the experiments in [79]. For this reason, for the logistic regression
problem we tested both FLEXA and the hybrid scheme in Algorithm 9, which will
term GJ-FLEXA. The setting of the free parameters in GJ-FLEXA is essentially
the same as the one described for LASSO (cf. Sect. 3.3.5.2), but with the following
differences:

• Exact solution x̂i(xk): The surrogate function F̃i is chosen as the second order
approximation of the original function F : given the current iterate xk ,

F̃i (xi | xk) = F(xk)+∇xiF (xk)·(xi−xki )+
1

2
(∇2
xi xi
F (xk)+τi)·(xi−xki )2+λ·|xi|,

which leads to the following closed form solution for x̂i(xk):

x̂i(xk) = Sλ·t ki
(
xki − tki · ∇xiF (xk)

)
, with tki �

(
τi +∇2

xi xi
F (xk)

)−1
,

where Sλ(•) is the soft-thresholding operator, defined in (3.54).
• Proximal weights τi : The initial τi are set to tr(ZTZ)/(2m), for all i, wherem is

the total number of variables and Z = [z1 z2 · · · zq ]T .
• Step-size γ k: We use the step-size rule (3.157). However, since the optimal value
V ∗ is not known for the logistic regression problem, re(x) can no longer be
computed. We replace re(x) with the merit function ‖M(x)‖∞, with

M(x) � ∇F(x)−Π[−λ,λ]m (∇F(x)− x) .

Here the projectionΠ[−λ,λ]m(y) can be efficiently computed; it acts component-
wise on y, since [−λ, λ]m = [−λ, λ] × · · · × [−λ, λ]. Note that M(x) is a valid
optimality measure function; indeed, it is continuous and M(x) = 0 is equivalent
to the standard necessary optimality condition for Problem (3.94), see [31].
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Table 3.5 Data sets for the
logistic regression tests
[Problem (3.158)]

Data set q m λ

gisette (scaled) 6000 5000 0.25

real-sim 72309 20958 4

rcv1 677399 47236 4

Algorithms in the Literature We compared FLEXA (σ = 0.5) (cf. Sect. 3.3.5.2)
and GJ-FLEXA with the other parallel algorithms introduced in Sect. 3.3.5.2 for the
LASSO problem (whose tuning of the free parameters is the same as in Figs. 3.10
and 3.11), namely: FISTA, SpaRSA, and GRock. For the logistic regression
problem, we also tested one more algorithm, that we call CDM. This Coordinate
Descent Method is an extremely efficient Gauss-Seidel-type method (customized
for logistic regression), and is part of the LIBLINEAR package available at http://
www.csie.ntu.edu.tw/~cjlin/.

We tested the aforementioned algorithms on three instances of the logistic regres-
sion problem that are widely used in the literature, and whose essential data features
are given in Table 3.5; we downloaded the data from the LIBSVM repository http://
www.csie.ntu.edu.tw/~cjlin/libsvm/, which we refer to for a detailed description of
the test problems. In our implementation, the matrix Z is column-wise partitioned

according to Z =
[
Z̃1 Z̃2 · · · Z̃P

]
and distributively stored across P processors,

where Z̃i is the set of columns of Z owned by processor i.
In Fig. 3.12, we plotted the relative error vs. the CPU time (the latter defined

as in Figs. 3.10 and 3.11) achieved by the aforementioned algorithms for the
three datasets, and using a different number of cores, namely: 8, 16, 20, 40; for
each algorithm but GJ-FLEXA we report only the best performance over the
aforementioned numbers of cores. Note that in order to plot the relative error, we had
to preliminary estimate V ∗ (which is not known for logistic regression problems).
To do so, we ran GJ-FLEXA until the merit function value ‖M(xk)‖∞ went below
10−7, and used the corresponding value of the objective function as estimate of V ∗.
We remark that we used this value only to plot the curves. Next to each plot, we also
reported the overall FLOPS counted up till reaching the relative errors as indicated
in the table. Note that the FLOPS of GRock on real-sim and rcv1 are those counted
in 24 h simulation time; when terminated, the algorithm achieved a relative error
that was still very far from the reference values set in our experiment. Specifically,
GRock reached 1.16 (instead of 1e− 4) on real-sim and 0.58 (instead of 1e− 3) on
rcv1; the counted FLOPS up till those error values are still reported in the tables.

The analysis of the figures shows that, due to the high nonlinearities of the
objective function, Gauss-Seidel-type methods outperform the other schemes. In
spite of this, FLEXA still behaves quite well. But GJ-FLEXA with one core, thus
a non parallel method, clearly outperforms all other algorithms. The explanation
can be the following. GJ-FLEXA with one core is essentially a Gauss-Seidel-type
method but with two key differences: the use of a stepsize and more importantly a
(greedy) selection rule by which only some variables are updated at each round. As
the number of cores increases, the algorithm gets “closer and closer” to a Jacobi-type

http://www.csie.ntu.edu.tw/~cjlin/
http://www.csie.ntu.edu.tw/~cjlin/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 3.12 Logistic Regression problem (3.158): relative error vs. time (in seconds) and FLOPS
for (i) gisette, (ii) real-sim, and (iii) rcv. The figures are taken from [79]
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method, and because of the high nonlinearities, moving along a “Jacobi direction”
does not bring improvements. In conclusion, for logistic regression problems, our
experiments suggests that while the (opportunistic) selection of variables to update
seems useful and brings to improvements even in comparison to the extremely
efficient, dedicated CDM algorithm/software, parallelism (at least, in the form
embedded in our scheme), does not appear to be beneficial as instead observed for
LASSO problems.

3.3.6 Appendix

3.3.6.1 Proof of Lemma 3.4

The continuity of x̂(•) follows readily from [200]; see also [106].
We prove next the Lipschitz continuity of x̂(•), under the additional assumption

thatG is separable. Let xi , zi ∈ Xi . Invoking the optimality conditions of x̂i (x) and
x̂i (z), we have

(y1 − x̂i (x))T (∇F̃i (̂xi(x) | x))+ gi(y1)− gi (̂xi (x)) ≥ 0, ∀y1 ∈ Xi,
(y2 − x̂i(z))T (∇F̃i (̂xi (z) | z))+ gi(y2)− gi (̂xi(z)) ≥ 0, ∀y2 ∈ Xi.

Letting y1 = x̂i (z) and y2 = x̂i (x) and summing the two inequalities above, we
obtain

(̂xi (z)− x̂i (x))T
(∇F̃i (̂xi(x) | x)−∇F̃i (̂xi (z) | z)

) ≥ 0.

Adding and subtracting ∇F̃i (̂xi(z) | x) and using the uniform strongly convexity
of F̃i with respect to its first argument (cf. Assumption 3.2.1) and the Lipschitz
continuity of ∇F̃i with respect to its second argument (cf. Assumption 3.3) yield

τi ‖̂xi (z)− x̂i (x)‖2 ≤ (̂xi (z)− x̂i (x))T (∇F̃i (̂xi (z) | x)− ∇F̃i (̂xi (z) | z))

≤ L̃i ‖̂xi (z)− x̂i (x)‖ · ‖x − z‖.

Therefore, x̂i(•) is Lipschitz continuous on X with constant L̂i � L̃i/τi . �

3.3.6.2 Proof of Lemma 3.17

The proof is adapted by [56, Lemma 10] and reported here for completeness.
With a slight abuse of notation, we will use (xi , xj , y−(i,j)), with i < j , to denote

the ordered tuple (y1, . . . , yi−1, xi , yi+1, . . . , yj−1, xj , yj+1, . . . , yn).
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Given k ≥ 0, Sk ⊆ N , and γ k ≤ 1/n, let γ̄ k = γ kn ≤ 1. Define x̌k � (x̌ki )i∈N ,
with x̌ki = xki if i /∈ Sk , and

x̌ki � γ̄ k ẑki + (1 − γ̄ k) xki , (3.159)

otherwise. Then xk+1 in Step 4 of the algorithm can be written as

xk+1 = n− 1

n
xk + 1

n
x̌k. (3.160)

Using (3.160) and invoking the convexity of G, the following recursion holds for
all k:

G(xk+1) = G
(

1

n
(x̌k1, x

k−1)+
1

n
(xk1, x̌

k−1)+
n− 2

n
xk

)

= G
(

1

n
(x̌k1, x

k
−1)+

n− 1

n

(

xk1,
1

n− 1
x̌k−1 +

n− 2

n− 1
xk−1

))

≤ 1

n
G

(
x̌k1, x

k
−1

)
+ n− 1

n
G

(

xk1,
1

n− 1
x̌k−1 +

n− 2

n− 1
xk−1

)

= 1

n
G

(
x̌k1, x

k
−1

)
+ n− 1

n
G

(
1

n− 1

(
xk1, x̌

k
−1

)
+ n− 2

n− 1
xk

)

= 1

n
G

(
x̌k1, x

k
−1

)
+ n− 1

n
G

(
1

n− 1

(
x̌k2, x

k
−2

)

+ 1

n− 1

(
xk1, x

k
2, x̌

k
−(1,2)

)
+ n− 3

n− 1
xk

)

= 1

n
G

(
x̌k1, x

k
−1

)
+ n− 1

n
G

(
1

n− 1

(
x̌k2, x

k
−2

)

+n− 2

n− 1

(

xk1, x
k
2,

1

n− 2
x̌k−(1,2) +

n− 3

n− 2
xk−(1,2)

))

≤ 1

n
G

(
x̌k1, x

k
−1

)
+ 1

n
G

(
x̌k2, x

k
−2

)

+ n− 2

n
G

(

xk1, x
k
2,

1

n− 2
x̌k−(1,2) +

n− 3

n− 2
xk−(1,2)

)

≤ · · · ≤ 1

n

∑

i∈N
G(x̌ki , x

k
−i ).

(3.161)
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Using (3.161), the difference ofG(xk+1) and G(xk) can be bounded as

G(xk+1)−G(xk) ≤ 1

n

∑

i∈N

(
G(x̌ki , x

k
−i )−G(xk)

)

= 1

n

∑

i∈Sk

(
G(x̌ki , x

k
−i )−G(xk)

)
(3.162)

≤ 1

n

∑

i∈Sk

(
γ̄ kG(̂zki , x

k
−i )+ (1 − γ̄ k)G(xk)−G(xk)

)

= γ k
∑

i∈Sk

(
G(̂zki , x

k
−i )−G(xk)

)
.

�

3.3.6.3 Proof of Lemma 3.19

The proof can be found in [79, Lemma 10], and reported here for completeness.
For notational simplicity, we will write xSk for (x)Sk [recall that (x)Sk denotes the

vector whose block component i is equal to xi if i ∈ Sk , and zero otherwise]. Let jk
be an index in Sk such thatEjk (x

k) ≥ ρmaxi Ei(xk) (cf. Assumption 3.10.2). Then,
by the error bound condition (3.110) it is easy to check that the following chain of
inequalities holds:

s̄jk ‖̂xSk (x
k)− xk

Sk
‖ ≥ s̄jk ‖̂xjk (x

k)− xkjk‖
≥ Ejk (xk)
≥ ρmax

i
Ei(xk)

≥
(

ρmin
i

si

)(

max
i
{‖̂xi (xk)− xki ‖}

)

≥
(
ρmini si
n

)

‖̂x(xk)− xk‖.

Hence we have for any k,

‖̂xSk (x
k)− xk

Sk
‖ ≥

(
ρ mini si
ns̄jk

)

‖̂x(xk)− xk‖ ≥
(
ρmini si
nmaxj s̄j

)

‖̂x(xk)− xk‖. �
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3.3.7 Sources and Notes

Although parallel (deterministic and stochastic) block-methods have a long history
(mainly for convex problems), recent years have witnessed a revival of such methods
and their (probabilistic) analysis; this is mainly due to the current trend towards
huge scale optimization and the availability of ever more complex computational
architectures that call for efficient, fast, and resilient algorithms. The literature is
vast and a comprehensive overview of current methods goes beyond the scope of
this commentary. Here we only focus on SCA-related methods and refer to [25,
218, 250] (and references therein) as entry point to other numerical optimization
algorithms.

Parallel SCA-Related Methods The roots of parallel deterministic SCA schemes
(wherein all the variables are updated simultaneously) can be traced back at least
to the work of Cohen on the so-called auxiliary principle [51, 52] and its related
developments, see e.g. [7, 29, 91, 164, 167, 174, 185, 187, 198, 210, 238, 251].
Roughly speaking, these works can be divided in two groups, namely: parallel
solution methods for convex objective functions [7, 29, 51, 52, 167, 187, 198] and
nonconvex ones [91, 164, 174, 185, 210, 238, 251]. All methods in the former
group (and [91, 164, 174, 238, 251]) are (proximal) gradient schemes; they thus
share the classical drawbacks of gradient-like schemes; moreover, by replacing
the convex function F with its first order approximation, they do not take any
advantage of any structure of F beyond mere differentiability. Exploiting some
available structural properties of F , instead, has been shown to enhance (practical)
convergence speed, see e.g. [210]. Comparing with the second group of works [91,
164, 174, 185, 210, 238, 251], the parallel SCA algorithmic framework introduced in
this lecture improves on their convergence properties while adding great flexibility
in the selection of the variables to update at each iteration. For instance, with the
exception of [69, 145, 187, 205, 238], all the aforementioned works do not allow
parallel updates of a subset of all variables, a feature that instead, fully explored as
we do, can dramatically improve the convergence speed of the algorithm, as shown
in Sect. 3.3.5. Moreover, with the exception of [185], they all require an Armijo-type
line-search, whereas the scheme in [185] is based on diminishing step-size-rules, but
its convergence properties are quite weak: not all the limit points of the sequence
generated by this scheme are guaranteed to be stationary solutions of (3.94).

The SCA-based algorithmic framework introduced in this lecture builds on and
generalizes the schemes proposed in [56, 79, 210]. More specifically, Algorithm 5
was proposed in [210] for smooth instances of Problem (3.94) (i.e., G = 0);
convergence was established when constant (Assumption 3.11.1) or diminishing
(Assumption 3.11.2) step-sizes are employed (special case of Theorem 3.8). In
[79], this algorithm was extended to deal with nonsmooth separable functions G
while incorporating inexact updates (Assumption 3.9.1) and the greedy selection
rule in Assumption 3.10.2 (cf. Algorithm 6) as well as hybrid Jacobi/Gauss-
Seidel updates (as described in Algorithm 8); convergence was established under
Assumption 3.11.2 (diminishing step-size) (special case of Theorem 3.12). Finally,
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in [56], an instance of Algorithm 6 was proposed, to deal with nonseparable convex
functionsG, and using random block selection rules (Assumption 3.10.4) or hybrid
random-greedy selection rules (Algorithm 7); convergence was established when a
diminishing step-size is employed (special case of Theorem 3.13).

While [56, 79, 210] studied some instances of parallel SCA methods in isolation
(and only for some block selection rules and step-size rules) the contribution of this
lecture is to provide a broader and unified view and analysis of such methods.

SCA Methods for Nonconvex Constrained Optimization (Parallel) SCA meth-
ods have been recently extended to deal with nonconvex constraints; state-of-the-art
developments can be found in [80, 81, 211] along with their applications to
some representative problems in Signal Processing, Communications, and Machine
Learning [212]. More specifically, consider the following generalization of Prob-
lem (3.94):

minimize
x

F(x)+H(x)
s.t. x ∈ X,

gj (x) ≤ 0, j = 1, . . . , J,

(3.163)

where gj (x) ≤ 0, j = 1, . . . , J , represent nonconvex nonsmooth constraints; and
H is now a nonsmooth, possibly nonconvex function.

A natural extension of the SCA idea introduced in this lecture to the general
class of nonconvex problems (3.163) is replacing all the nonconvex functions with
suitably chosen convex surrogates, and solve instead the following convexified
problems: given xk,

x̂(xk) � argmin
x

F̃ (x | xk)+ H̃ (x | xk)

s.t. x ∈ X,
g̃j (x | y) ≤ 0, j = 1, . . . , J ;

(3.164)

where F̃ , H̃ and g̃j are (strongly) convex surrogates for F , H , and gj , respectively.
The update of xk is then given by

xk+1 = xk+1 + γ k
(

x̂(xk)− xk
)
.

Conditions on the surrogates in (3.164) and convergence of the resulting SCA
algorithms can be found in [211] for the case of smooth H and gj (or nonsmooth
DC), and in [81] for the more general setting of nonsmooth functions; parallel
and distributed implementations are also discussed. Here we only mention that the
surrogates g̃j must be a global convex upper bound of the associated nonconvex
gj (as for the MM algorithms—see Lecture I). This condition was removed in [80]
where a different structure for the subproblems (3.164) was proposed. The work
[80] also provides a complexity analysis of the SCA-based algorithms.
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Other SCA-related methods for nonconvex constrained problem are discussed in
[80, 81, 211, 212], which we refer to for details.

Asynchronous SCA Methods In the era of data deluge, data-intensive applications
give rise to extremely large-scale problems, which naturally call for asynchronous,
parallel solution methods. In fact, well suited to modern computational architectures
(e.g., shared memory systems, message passing-based systems, cluster computers,
cloud federations), asynchronous methods reduce the idle times of workers, mitigate
communication and/or memory-access congestion, and make algorithms more fault-
tolerant. Although asynchronous block-methods have a long history (see, e.g.,
[5, 16, 45, 89, 237]), in the past few years, the study of asynchronous parallel
optimization methods has witnessed a revival of interest. Indeed, asynchronous par-
allelism has been applied to many state-of-the-art optimization algorithms (mainly
for convex objective functions and constraints), including stochastic gradient meth-
ods [111, 139, 147, 155, 171, 186, 196] and ADMM-like schemes [107, 112, 247].
The asynchronous counterpart of BCD methods has been introduced and studied in
the seminal work [149], which motivated and oriented much of subsequent research
in the field, see e.g. [60, 61, 150, 188, 189].

Asynchronous parallel SCA methods were recently proposed and analyzed in
[37, 38] for nonconvex problems in the form (3.94), with G separable and Xi
possibly nonconvex [we refer to such a class of problems as Problem (3.94)′]. In the
asynchronous parallel SCA method [37, 38], workers (e.g., cores, cpus, or machines)
continuously and without coordination with each other, update a block-variable by
solving a strongly convex block-model of Problem (3.94)′. More specifically, at
iteration k, a worker updates a block-variable xk

ik
of xk to xk+1

ik
, with ik in the set

N , thus generating the vector xk+1. When updating block ik , in general, the worker
does not have access to the current vector xk, but it will use instead the local estimate

xk−dk � (xk−d
k
1

1 , x
k−dk2
2 , . . . , x

k−dkn
n ), where dk � (dk1 , dk2 , . . . , dkn) is the “vector of

delays”, whose components dki are nonnegative integers. Note that xk−dk is nothing
else but a combination of delayed, block-variables. The way each worker forms its
own estimate xk−dk depends on the particular architecture under consideration and
it is immaterial to the analysis of the algorithm; see [37]. Given xk−dk and ik, block
xk
ik

is updated by solving the following strongly convex block-approximation of
Problem (3.94):

x̂ik (x
k−dk ) � argmin

x
ik
∈X̃

ik
(xk−dk )

F̃ik (xik | xk−dk )+ gik (xik ), (3.165)

and then setting

xk+1
ik

= xk
ik
+ γ

(
x̂ik (x

k−dk )− xk
ik

)
. (3.166)

In (3.165), F̃ik (• | y) represents a strongly convex surrogate of F , and X̃ik is a
convex set obtained replacing the nonconvex functions defining Xik by suitably
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chosen upper convex approximations, respectively; both F̃ik and X̃ik are built using

the out-of-sync information xk−dk . If the set Xik is convex, then X̃ik = Xik . More
details on the choices of F̃ik and X̃ik can be found in [37].

Almost all modern asynchronous algorithms for convex and nonconvex problems
are modeled in a probabilistic way. All current probabilistic models for asyn-
chronous BCD methods are based on the (implicit or explicit) assumption that the
random variables ik and dk are independent; this greatly simplifies the convergence
analysis. However, in reality there is a strong dependence of the delays dk on
the updated block ik; see [37] for a detailed discussion on this issue and several
practical examples. Another unrealistic assumption often made in the literature
[60, 149, 150, 196] is that the block-indices ik are selected uniformly at random.
While this assumption simplifies the convergence analysis, it limits the applicability
of the model (see, e.g., Examples 4 and 5 in [37]). In a nutshell, this assumption
may be satisfied only if all workers have the same computational power and have
access to all variables. In [37] a more general, and sophisticated probabilistic
model describing the statistics of (ik; dk) was introduced, and convergence of
the asynchronous parallel SCA method (3.165)–(3.166) established; theoretical
complexity results were also provided, showing nearly ideal linear speedup when
the number of workers is not too large. The new model in [37] neither postulates the
independence between ik and dk nor requires artificial changes in the algorithm to
enforce it (like those recently proposed in the probabilistic models [139, 155, 186]
used in stochastic gradient methods); it handles instead the potential dependency
among variables directly, fixing thus the theoretical issues that mar most of the
aforementioned papers. It also lets one analyze for the first time in a sound
way several practically used and effective computing settings and new models of
asynchrony. For instance, it is widely accepted that in shared-memory systems, the
best performance are obtained by first partitioning the variables among cores, and
then letting each core update in an asynchronous fashion their own block-variables,
according to some randomized cyclic rule; [37] is the first work proving convergence
of such practically effective methods in an asynchronous setting.

Another important feature of the asynchronous algorithm (3.165)–(3.166) is
its SCA nature, that is, the ability to handle nonconvex objective functions and
nonconvex constraints by solving, at each iteration, a strongly convex optimization
subproblem. Almost all asynchronous methods cited above can handle only convex
optimization problems or, in the case of fixed point problems, nonexpansive
mappings. The exceptions are [147, 265] and [60, 61] that studied unconstrained
and constrained nonconvex optimization problems, respectively. However, [60, 61]
proposed algorithms that require, at each iteration, the global solution of nonconvex
subproblems. Except for few cases, the subproblems could be hard to solve and
potentially as difficult as the original one. On the other hand, the SCA method [37]
needs a feasible initial point and the ability to build approximations X̃i satisfying
some technical conditions, as given in [37, Assumption D]. The two approaches thus
complement each other and may cover different applications.
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3.4 Distributed Successive Convex Approximation Methods

This lecture complements the first two, extending the SCA algorithmic framework
developed therein to distributed (nonconvex, multi-agent) optimization over net-
works with arbitrary, possibly time-varying, topology.

The SCA methods introduced in Lecture II (cf. Sect. 3.3) unlock parallel updates
from the workers; however, to perform its update, each worker must have the
knowledge of some global information on the optimization problem, such as (part
of) the objective function V , its gradient, and the current value of the optimization
variable of the other agents. This clearly limits the applicability of these methods
to network architectures wherein such information can be efficiently acquired
(e.g., through suitably defined message-passing protocols and node coordination).
Examples of such systems include the so-called multi-layer hierarchical networks
(HNet); see Fig. 3.13. A HNet consists of distributed nodes (DNs), cluster heads
(CHs) and a master node, each having some local information on the optimization
problem. Each CH can communicate with a (possibly dynamically formed) cluster
of DNs as well as a higher layer CH, through either deterministic or randomly
activated links. The HNet arises in many important applications including sensor
networks, cloud-based software defined networks, and shared-memory systems. The
HNet is also a generalization of the so-called “star network” (a two-layer HNet)
that is commonly adopted in several parallel computing environments; see e.g. the
Parameter Server [146] or the popular DiSCO [267] algorithm, just to name a few.

On the other hand, there are networks that lack of a hierarchical structure or
“special” nodes; an example is the class of general mesh networks (MNet), which
consists solely of DNs, and each of them is connected with a subset of neighbors,
via possibly time-varying and directional communication links; see Fig. 3.13. When
the directional links are present, the MNet is referred to as a digraph. The MNet
has been very popular to model applications such as ad-hoc (telecommunication)

Fig. 3.13 Left: a three-layer hierarchical network, with one master node, 2 cluster heads, and 5
distributed nodes. Right: A six-node mesh network. The double arrowed (resp. single arrowed)
links represent bi-directional (resp. directional) communication links
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Fig. 3.14 An example of Problem (3.167) over a directed communication network. Each agent i
knows only its own function fi . To solve cooperatively (3.167), the agents create a local copy x(i)
of the common set of variables x. These local copies are iteratively updated by the owners using
only local (neighbor) information, so that asymptotically a consensus among them on a stationary
solution of (3.167) is achieved

networks and social networks, where there are no obvious central controllers.
Performing the SCA methods introduced in the previous lectures on such networks
might incur in a computation/communication inefficient implementation.

The objective of this lecture is to devise distributed algorithms based on SCA
techniques that are implementable efficiently on such general network architectures.
More specifically, we consider a system of I DNs (we will use interchangeably
also the words “workers” or “agents”) that can communicate through a network,
modeled as a directed graph, possibly time-varying; see Fig. 3.14. Agents want to
cooperatively solve the following networked instance of Problem (3.94):

minimize
x∈X V (x) �

I∑

i=1

fi (x)

︸ ︷︷ ︸
F(x)

+G(x) ,
(3.167)

where the objective function F is now the sum of the local cost functions fi : O →
R of the agents, assumed to be smooth but possibly nonconvex whereasG : O → R

is a nonsmooth convex function; O ⊇ X is an open set and X ⊆ R
m is a convex,

closed set. In this networked setting, each agent i knows only its own functions fi
(and G and X as well). The problem and network settings are described in more
details in Sect. 3.4.1, along with some motivating applications.

The design of distributed algorithms for Problem (3.167) faces two challenges,
namely: the nonconvexity of F and the lack of full knowledge of F from each agent.
To cope with these issues, this lecture builds on the idea of SCA techniques coupled
with suitably designed message passing protocols (compatible with the local agent
knowledge of the network) aiming at disseminating information among the nodes
as well as locally estimating ∇F from each agent. More specifically, for each agent
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i, a local copy x(i) of the global variable x is introduced (cf. Fig. 3.14). We say that
a consensus is reached if x(i) = x(j), for all i �= j . To solve (3.167) over a network,
two major steps are performed iteratively: local computation (to enhance the local
solution quality), and local communication (to reach global consensus). In the first
step, all the agents in parallel optimize their own variables x(i) by solving a suitably
chosen convex approximation of (3.167), built using the available local information.

In the second step, agents communicate with their neighbors to acquire some new
information instrumental to align users’ local copies (and thus enforce consensus
asymptotically) and update the surrogate function used in their local optimization
subproblems. These two steps will be detailed in the rest of the sections of this
lecture, as briefly outlined next. Section 3.4.2 introduces distributed weighted-
averaging algorithms to solve the (unconstrained) consensus problem over both
static and time-varying (di-)graphs; a perturbed version of these consensus protocols
is also introduced to unlock tracking of time-varying signals over networks.
These message-passing protocols constitute the core of the distributed SCA-based
algorithms that are discussed in this lecture: they will be used as an underlying
mechanism for diffusing the information from one agent to every other agent
in the network as well as track locally the gradient of the sum-utility F . In
Sect. 3.4.3, we build the proposed distributed algorithmic framework combining
SCA techniques with the consensus/tracking protocols introduced in Sect. 3.4.2,
and study its convergence; a connection with existing (special case) schemes is also
discussed. Some numerical results are presented in Sect. 3.4.4. Finally, the main
literature on related works is discussed in Sect. 3.4.5 along with some extensions
and open problems.

3.4.1 Problem Formulation

We study Problem (3.167) under the following assumptions.

Assumption 4.1 Given Problem (3.167), assume that

1. ∅ �= X ⊆ R
m is closed and convex;

2. fi : O → R is C1 on the open set O ⊇ X, and ∇fi is Li -Lipschitz on X;
3. G : O → R is convex, possibly nonsmooth;
4. V is bounded from below on X.

Assumption 4.1 can be viewed as the distributed counterpart of Assumption 3.1
(Lecture II, cf. Sect. 3.3). Furthermore, we make the blanket assumption that each
agent i knows only its local function fi , the common regularizerG, and the feasible
set X; therefore, agents must communicate over a network to solve (3.167). We
consider the following network setup.

Network Model Agents are connected through a (communication) network, which
is modeled as a graph; the set of agents are the nodes of the graph while the set
of edges represents the communication links. We will consider both static and



3 Parallel and Distributed SCA 245

time-varying graphs, as well as undirected and directed graphs. We will use the
following notation: Gk = (

V,Ek
)

denotes the directed graph that connects the
agent at (the discrete) time k, where V � {1, . . . , I } is the set of nodes and Ek is
the set of edges (agents’ communication links); we use (i, j) ∈ Ek to indicate that
the link is directed from node i to node j . The in-neighborhood of agent i at time k
(including node i itself) is defined as N in, k

i � {j | (j, i) ∈ Ek}∪{i} whereas its out-

neighborhood (including node i itself) is defined asNout, k
i � {j | (i, j) ∈ Ek}∪{i}.

Of course, if the graph is undirected, the set of in-neighbors and out-neighbors are
identical. These neighbors capture the local view of the network from agent i at time
k: At the time the communication is performed, agent i can receive information
from its current in-neighbors and send information to its current out neighbors.
Note that we implicitly assumed that only inter-node (intermittent) communications
between single-hop neighbors can be performed. The out-degree of agent i at time k
is defined as the cardinality ofNout, k

i , and is denoted by dki � |Nout, k
i |. We will treat

static and/or undirected graphs as special cases of the above time-varying directed
setting.

An important aspect of graphs is their connectivity properties. An undirected
(static) graph is connected if there is a path connecting every pair of two distinct
nodes. A directed (static) graph is strongly connected if there is a directed path
from any node to any other node in the graph. For time-varying (di-)graphs we will
invoke the following “long-term” connectivity property.

Assumption 4.2 (B-Strongly Connectivity) The digraph sequence {Gk}k∈N+ is
B-strongly connected, i.e., there exists an integer B > 0 (possibly unknown to the
agents) such that the digraph with edge set ∪k+B−1

t=k Et is strongly connected, for all
k ≥ 0.

Generally speaking, the above assumption permits strong connectivity to occur
over a time window of length B: the graph obtained by taking the union of
any B consecutive graphs is strongly connected. Intuitively, this lets information
propagate throughout the network. Assumption 4.2 is standard and well-accepted in
the literature.

3.4.1.1 Some Motivating Applications

Problems in the form (3.167), under Assumptions 4.1 and 4.2, have found a wide
range of applications in several areas, including network information processing,
telecommunications, multi-agent control, and machine learning. In particular, they
are a key enabler of many nonconvex in-network “big data” analytic tasks, includ-
ing nonlinear least squares, dictionary learning, principal/canonical component
analysis, low-rank approximation, and matrix completion, just to name a few.
Time-varying communications arise, for instance, in mobile wireless networks
(e.g., ad-hoc networks) wherein nodes are mobile and/or communicate throughout
fading channels. Moreover, since nodes generally transmit at different power and/or
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communication channels are not symmetric, directed links is a natural assumption.
Some illustrative examples are briefly discussed next; see Sect. 3.4.4 for more details
and some numerical results.

Example #1−(Sparse) Empirical Risk Minimization In Example #5 in
Sect. 3.3.1.1 (Lecture II), we introduced the empirical risk minimization (ERM)
problem, which consists in estimating a parameter x from a given data set {Di}Ii=1 by

minimizing the risk function F(x) �
∑I
i=1 	

(
h(x,Di)

)
. Consider now the scenario

where the data set is not centrally available but split among I agents, connected
through a network; agent i only owns the portion Di . All the agents want to
collaboratively estimate x, still minimizing F(x). This distributed counterpart of the
ERM problem is an instance of (3.167), with fi(x) � 	

(
h(x,Di)

)
. Many distributed

statistical learning problems fall under this umbrella. Examples include: the least
squares problem with fi(x) � ‖yi−Aix‖2, whereDi � (yi ,Ai ); the sparse logistic

regression with fi(x) �
∑ni
j=1 log(1 + e−wij yTij x

), whereDi � {(wij , yij )}nij=1, and
their sparse counterpart with suitable choices of the regularizer G(x) (cf. Table 3.1
in Lecture I, Sect. 3.2.4.1).

Example #2−Sparse Principal Component Analysis Consider an m-dimen-
sional data set {di}ni=1 with zero mean stored distributively among I agents, each
agent i owns {dj }j∈Ni , where {Ni}Ii=1 forms a partition of {1, . . . , n}. The problem
of sparse principal component analysis is to find a sparse direction x along which the
variance of the data points, measured by

∑n
i=1 ‖dTi x‖2, is maximized. Construct the

matrix Di ∈ R
|Ni |×m by stacking {dj }j∈Ni row-wise, the problem can be formulated

as an instance of (3.167) with fi(x) � −‖Dix‖2, X � {x | ‖x‖2 ≤ 1}, and G(x)
being some sparsity promoting regularizer (cf. Table 3.1 in Lecture I, Sect. 3.2.4.1).

Example #3−Target Localization Consider the problem of locating n targets
using measurements from I sensors, embedded in a network. Each sensor i knows
its own position si and di t , the latter representing the squared Euclidean distance
between the target t and the node. Given the position xt of each target t , an error
measurement of agent i is ei(xt ) �

∑n
t=1 pit (dit−‖xt − si‖2)2, where pit ∈ {0, 1}

is a given binary variable taking value zero if the ith agent does not have any
measurement related to target t . The problem of estimating the locations {xt }nt=1
can be thus formulated as an instance of (3.167), with x � {xt }nt=1, fi(x) � ei(xt ),
and X �

∏n
t=1Xt , where Xt characterizes the region where target t belongs to.

3.4.2 Preliminaries: Average Consensus and Tracking

In this section, we introduce some of the building blocks of the distributed
algorithmic framework that will be presented in Sect. 3.4.3, namely: (i) a consensus
algorithm implementable on undirected (Sect. 3.4.2.1) and directed (Sect. 3.4.2.2)
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time-varying graphs; (ii) a dynamic consensus protocol to track the average of
time-varying signals over time-varying (directed) graphs (Sect. 3.4.2.3); and (iii)
a perturbed consensus protocol unifying and generalizing the schemes in (i) and (ii)
(Sect. 3.4.2.4).

3.4.2.1 Average Consensus Over Undirected Graphs

The consensus problem (also termed agreement problem) is one of the basic
problems arising in decentralized coordination and control. Here we are interested
in the so-called average consensus problem, as introduced next.

Consider a network of I agents, each of which having some initial (vector)
variable ui ∈ R

m. The agents are interconnected over a (time-varying) network;
the graph modeling the network at time k is denoted by Gk (cf. Sect. 3.4.1). Each
agent i controls a local variable x(i) that is updated at each iteration k using the
information of its immediate neighbors N in, k

i ; we denote by xk(i) the value of x(i)
at iteration k. The average consensus problem consists in designing a distributed
algorithm obeying the communication structure of each graphGk , and enforcing

lim
k→∞‖xk(i) − ū‖ = 0, ∀i = 1, . . . , I, with ū � 1

I

I∑

i=1

ui .

One can construct a weighted-averaging protocol that solves the consensus
problem as follows. Let each x0

(i) = u0
(i); given the iterate xk(i), at time k + 1, each

agent receives values xk
(j)

from its current (in-)neighbors, and updates its variable
by setting

xk+1
(i) =

∑

j∈N in,k
i

wkij xk(j), (3.168)

where wkij are some positive weights, to be properly chosen. For a more compact

representation, we define the nonnegative weight-matrix1 Wk � (wkij )Ii,j=1, whose

nonzero pattern is compliant with the topology of the graph Gk (in the sense of
Assumption 4.3 below). Recall that the set of neighborsN in, k

i contains also agent i
(cf. Sect. 3.4.1).

Assumption 4.3 Given the graph sequence {Gk}k∈N+, each matrix Wk �
(wij )

I
i,j=1 satisfies:

1. wkij = 0, if (j, i) /∈ Ek; and wkij ≥ κ , if (j, i) ∈ Ek;

1Note that, for notational simplicity, here we use reverse links for the weight assignment, that is,
each weight wij is assigned to the directed edge (j, i) ∈ Ek.
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2. wkii ≥ κ , for all i = 1, . . . , I ;

for some given κ > 0.

Using Assumption 4.3.1, we can write the consensus protocol (3.168) in the
following equivalent form

xk+1
(i) =

I∑

j=1

wkij xk(j). (3.169)

Note that (3.169) is compliant with the graph topology: the agents can only
exchange information (according to the direction of the edge) if there exists a
communication link between them. Also, Assumption 4.3.2 states that each agent
should include in the update (3.169) its own current information.

Convergence of {xk(i)}k∈N+ in (3.169) to the average ū calls for the following
extra assumption.

Assumption 4.4 Each Wk is doubly-stochastic, i.e., 1TWk = 1T and Wk1 = 1.

Assumption 4.4 requires 1 being both the left and right eigenvector of Wk associated
to the eigenvalue 1; intuitively, the column stochasticity plays the role of preserving
the total sum of the x(i)’s (and thus the average) in the network while the row
stochasticity locks consensus.

When the graphs Gk are undirected (or are directed and admits a compliant
doubly-stochastic matrix), several rules have been proposed in the literature to
build a weight matrix satisfying Assumptions 4.3 and 4.4. Examples include the
Laplacian weight rule [204]; the maximum degree weight, the Metropolis-Hastings,
and the least-mean square consensus weight rules [258]. Table 3.6 summarizes the
aforementioned rules [203], where in the Laplacian weight rule, λ is a positive

Table 3.6 Examples of rules for doubly-stochastic weight matrices compliant to an undirected
graph G = (V ,E) (or a digraph admitting a double-stochastic matrix)

Rule name Weight expression

Metropolis-Hastings wij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

max{di , dj } , if (i, j) ∈ E,
1 −∑

j �=i wkij , if i = j,
0, if (i, j) /∈ E and i �= j ;

Laplacian W = I − λL, λ > 0

Maximum-degree wij =

⎧
⎪⎨

⎪⎩

1/I, if (i, j) ∈ E,
1 − (di − 1)/I, if i = j,
0, if (i, j) /∈ E and i �= j.

In the Laplacian weight rule, λ is a positive constant and L is the Laplacian of the graph
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constant and L is the graph Laplacian, whose the ij -th entry Lij is defined as

Lij �

⎧
⎪⎪⎨

⎪⎪⎩

di − 1, if i = j ;
−1, if (i, j) ∈ E and i �= j ;
0, otherwise;

(3.170)

where di is the degree of node i.
Convergence of the average-consensus protocol (3.169) is stated in the next

theorem, whose proof is omitted because it is a special case of that of Theorem 4.11
(cf. Sect. 3.4.2.4).

Theorem 4.5 Let {Gk}k∈N+ be a sequence of graphs satisfying Assumption 4.2.
Consider the average-consensus protocol (3.169), where each {Wk}k∈N+ is chosen
according to Assumptions 4.3 and 4.4. Then, the sequence {xk � (xk(i))

I
i=1}k∈N+

generated by (3.169) satisfies: for all k ∈ N+,

(a) Invariance of the average:

I∑

i=1

xk+1
(i) =

I∑

i=1

xk(i) = · · · =
I∑

i=1

x0
(i); (3.171)

(b) Geometric decay of the consensus error:

∥
∥
∥
∥
∥
∥

xk(i) −
1

I

I∑

j=1

xk(j)

∥
∥
∥
∥
∥
∥
≤ cu · (ρu)k · ‖x0‖, ∀i = 1, . . . , I, (3.172)

where x0 � (x0
(i))

I
i=1, and cu > 0 and ρu ∈ (0, 1) are constants defined as

cu �
2I

ρu
· 2(1 + κ−(I−1)B)

1 − κ(I−1)B and ρu �
(

1 − κ(I−1)B
) 1
(I−1)B

, (3.173)

with B and κ defined in Assumption 4.2 and Assumption 4.3, respectively.

In words, Theorem 4.5 states that each xk(i) converges to the initial average (1/I) ·
∑I
i=1 x0

(i) at a geometric rate. Since x0
(i) is initialized as x0

(i) � ui , each {xk(i)}k∈N+
converges to ū geometrically.

Remark 4.6 While Theorem 4.5 has been stated under Assumption 4.4 (because we
are mainly interested in the convergence to the average ū), it is important to remark
that the row-stochasticity of each Wk (rather than doubly-stochasticity) is enough
for the sequence {xk}k∈N+ generated by the protocol (3.169) to geometrically reach
a consensus, that is, limk→∞ ‖xk(i) − xk(j)‖ = 0, for all i, j = 1, . . . I and i �= j .

However, the limit point of {xk}k∈N+ is no longer the average of the x0
(i)’s.
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3.4.2.2 Average Consensus Over Directed Graphs

A key assumption for the distributed protocol (3.169) to reach the average consensus
is that each matrix Wk , compliant with the graphGk , is doubly-stochastic.

While such constructions exist for networks with bi-directional (possibly time-
varying) communication links, they become computationally prohibitive or infeasi-
ble for networks with directed links, for several reasons. First of all, not all digraphs
admit a compliant (in the sense of Assumption 4.3) doubly-stochastic weight matrix;
some form of balancedness in the graph is needed [94], which limits the class of
networks over which the consensus protocol (3.169) can be applied. Furthermore,
conditions for a digraph to admit such a doubly-stochastic matrix are not easy to
be checked in practice; and, even when possible, constructing a doubly-stochastic
weight matrix compliant to the digraph calls for computationally intense, generally
centralized, algorithms.

To solve the average consensus problem over digraphs that do not admit a doubly-
stochastic matrix, a further assumption is needed [103] along with a modification of
the protocol (3.169). Specifically, a standard assumption in the literature is that every
agent i knows its out-degree dki at each time k. This means that, while broadcasting
its own message, every agent knows how many nodes will receive it. The problem
of computing the out-degree using only local information has been considered
in a number of works (see, e.g., [121, 243] and the references therein). Various
algorithms have been proposed, mainly based on flooding, which, however, requires
significant communication overhead and storage. A less demanding consensus-
based approach can be found in [44].

Under the above assumption, the average consensus can be achieved on digraphs
using the so-called push-sum protocol [123]. Each agent i controls two local
variables, z(i) ∈ R

m and φ(i) ∈ R, which are updated at each iteration k still using
only the information of its immediate neighbors. The push-sum protocols reads: for
all i = 1, . . . , I ,

zk+1
(i) =

I∑

j=1

akij zk(j),

φk+1
(i) =

I∑

j=1

akij φ
k
(j),

(3.174)

where z(i) and φ(i) are initialized as z0
(i) = ui and φ0

(i) = 1, respectively; and the

coefficient akij are defined as

akij �

⎧
⎪⎨

⎪⎩

1

dkj

, if j ∈ N in, k
i ,

0, otherwise.

(3.175)
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Note that the scheme (3.174) is a broadcast (i.e., one-way) communication protocol:
each agent i broadcasts (“pushes out”) the values zk(j)/d

k
j and φk(j)/d

k
j , which

are received by its out-neighbors; at the receiver side, every node aggregates the
received information according to (3.174) (i.e., summing the pushed values, which
explains the name “push-sum”).

Introducing the weight matrices Ak � (akij )
I
i,j=1, it is easy to check that, for

general digraphs, Ak may no longer be row-stochastic (i.e., Ak1 = 1). This means
that the z- and φ-updates in (3.174) do not reach a consensus. However, because
1T Ak = 1T , the sums of the z- and φ-variables are preserved: at every iteration
k ∈ N+,

I∑

i=1

zk+1
(i) =

I∑

i=1

zk(i) = · · · =
I∑

i=1

z0
(i) =

I∑

i=1

ui ,

I∑

i=1

φk+1
(i) =

I∑

i=1

φk(i) = · · · =
I∑

i=1

φ0
(i) = I.

(3.176)

This implies that, if the iterates (zk(i)/φ
k
(i))

I
i=1 converge to a consensus (note that each

zk(i)/φ
k
(i) is well-defined because the weights φki are all positive), then the consensus

value must be the average ū, as shown next. Let c∞ be the consensus value, that is,
limk→∞ zk(i)/φ

k
(i) = c∞, for all i = 1, . . . , I . Then, it must be

∥
∥
∥
∥
∥

I∑

i=1

ui − I · c∞
∥
∥
∥
∥
∥

(3.176)=
∥
∥
∥
∥
∥

I∑

i=1

(
zk(i) − φk(i) · c∞

)
∥
∥
∥
∥
∥
≤ I ·

I∑

i=1

∥
∥
∥zk(i)/φ

k
(i) − c∞

∥
∥
∥ −→
k→∞ 0,

(3.177)

which shows that c∞ = (1/I) · ∑I
i=1 ui . Convergence of (zk(i)/φ

k
(i))

I
i=1 to the

consensus is proved in [11, 123], which we refer to the interested reader.
Here, we study instead an equivalent reformulation of the push-sum algorithm,

as given in [208, 232], which is more suitable for the integration with optimization
(cf. Sect. 3.4.3). Eliminating the z-variables in (3.174), and considering arbitrary
column-stochastic weight matrices Ak � (akij )Ii,j=1, compliant to the graphGk [not
necessarily given by (3.175)], we have [208, 232]:

φk+1
(i) =

I∑

j=1

akij φ
k
(j),

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) xk(j),

(3.178)
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where x0
(i) is set to x0

(i) = ui/φ0
(i), for all i = 1, . . . , I ; and φ0

(i) are arbitrary positive

scalars such that
∑I
i=1 φ

0
(i) = I . For simplicity, hereafter, we tacitly set φ0

(i) = 1

(implying x0
(i) = ui), for all i = 1, . . . , I . Similarly to (3.174), in the protocol

(3.178), every agent i controls and updates the variables x(i) and φ(i), based on the
information φk(j) and φk(j) xk(j) received from its current in-neighbors. We will refer
to (3.178) as condensed push-sum algorithm.

Combining the weights akij and the φk(i) in the update of xk(i) in a single coefficient

wkij �
akij φ

k
(j)

∑I
j=1 a

k
ij φ

k
(j)

, (3.179)

it is not difficult to check that the matrices Wk � (wkij )
I
i,j=1 are row-stochastic,

that is, Wk1 = 1, and compliant to Gk . This means that each xk+1
(i) in (3.178) is

updated performing a convex combination of the variables (xk(j))j∈N in, k
i

. This is a

key property that will be leveraged in Sect. 3.4.3 to build a distributed optimization
algorithm for constrained optimization problems wherein the feasibility of the
iterates is preserved at each iteration. The above equivalent formulation also sheds
light on the role of the φ-variables: they rebuild dynamically the missing row
stochasticity of the weights akij , thus enforcing the consensus on the x-variables.

Since the following quantities are invariants of the dynamics (3.178) (recall that
Ak are column stochastic), that is, for all k ∈ N+,

I∑

i=1

φk+1
(i) xk+1

(i) =
I∑

i=1

φk(i) xk(i) = · · · =
I∑

i=1

φ0
(i) x0

(i) =
I∑

i=1

ui ,

I∑

i=1

φk+1
(i) =

I∑

i=1

φk(i) = · · · =
I∑

i=1

φ0
(i) = I,

by a similar argument used in (3.177), one can show that, if the xk(i) are consensual—

limk→∞ xk(i) = x∞, for all i = 1, . . . , I—it must be x∞ = (1/I) · ∑I
i=1 ui .

Convergence to the consensus at geometric rate is stated in Theorem 4.8 below,
under the following assumption on the weight matrices Ak (the proof of the theorem
is omitted because it is a special case of that of Theorem 4.11, cf. Sect. 3.4.2.4).

Assumption 4.7 Each Ak is compliant with Gk (i.e., it satisfies Assumption 4.3)
and it is column stochastic, i.e., 1TAk = 1T .

Theorem 4.8 Let {Gk}k∈N+ be a sequence of graphs satisfying Assumption 4.2.
Consider the condensed push-sum protocol (3.178), where each {Ak}k∈N is chosen
according to Assumption 4.7. Then, the sequence {xk � (xk(i))

I
i=1}k∈N+ generated
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by (3.178) satisfies: for all k ∈ N+,

(a) Invariance of the weighted-sum:

I∑

i=1

φk+1
(i) xk+1

(i) =
I∑

i=1

φk(i) xk(i) = · · · =
I∑

i=1

φ0
(i) x0

(i); (3.180)

(b) Geometric decay of the consensus error:
∥
∥
∥
∥
∥
∥

xk(i) −
1

I

I∑

j=1

φk(j) xk(j)

∥
∥
∥
∥
∥
∥
≤ cd · (ρd)k · ‖x0‖, ∀i = 1, . . . , I, (3.181)

where x0 � (x0
(i))

I
i=1, and cd > 0 and ρd ∈ (0, 1) are defined as

cd �
2I

ρ
· 2(1 + κ̃−(I−1)B

d )

1 − κ(I−1)B
d

and ρd �
(

1 − κ̃ (I−1)B
d

) 1
(I−1)B

,

and κ̃d � κ2(I−1)B+1/I , with B and κ defined in Assumption 4.2 and Assump-
tion 4.3, respectively.

Note that to reach consensus, the condensed push-sum protocol requires that the
weight matrices Ak are column stochastic but not doubly-stochastic. Of course, one
can always use the classical push-sum weights as in (3.175), which is an example
of rule satisfying Assumption 4.7. Moreover, if the graph Gk is undirected or is
directed but admits a compliant doubly-stochastic matrix, one can also choose in
(3.178) a doubly-stochastic Ak. In such a case, the φ-update in (3.178) indicates
that φk(i) = 1, for all i = 1, . . . , I and k ∈ N+. Therefore, (3.178) [and also (3.174)]
reduces to the plain consensus scheme (3.169).

3.4.2.3 Distributed Tracking of Time-Varying Signals’ Average

In this section, we extend the condensed push-sum protocol to the case where the
signals ui are no longer constant but time-varying; the value of the signal at time
k owned by agent i is denoted by uki . The goal becomes designing a distributed
algorithm obeying the communication structure of each graph Gk that tracks the
average of (uki )

I
i=1, i.e.,

lim
k→∞‖xk(i) − ūk‖ = 0, ∀i = 1, . . . , I, with ūk � 1

I

I∑

i=1

uki .

We first introduce the algorithm for undirected graphs (or directed ones that admit
a doubly-stochastic matrix); we then extend the scheme to the more general setting
of arbitrary directed graphs.
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Distributed Tracking Over Undirected Graphs

Consider a (possibly) time-varying network, modeled by a sequence of undirected
graphs (or directed graphs admitting a doubly-stochastic matrix) {Gk}k∈N+ . As for
the average consensus problem, we let each agent i maintain and update a variable
xk(i) that represents a local estimate of ūk; we set x0

(i) � u0
i . Since uki is time-

varying, a direct application of the protocol (3.169), developed for the plain average
consensus problem, cannot work because it would drive all xk(i) to converge to

ū0. Therefore, we need to modify the vanilla scheme (3.169) to account for the
variability of uki ’s. We construct next the distributed tracking algorithm inductively,
building on (3.169).

Recall that, in the average consensus scheme (3.169), a key property to set the
consensus value to the average of the initial values x0

(i) is the invariance of the

average
∑I
i=1 xk(i) throughout the dynamics (3.169):

I∑

i=1

xk+1
(i) =

I∑

i=1

I∑

j=1

wkij xk(j) =
I∑

i=1

xk(i) = · · · =
I∑

i=1

x0
(i), (3.182)

which is met if the weight matrices Wk are column stochastic. The row-stochasticity
of Wk enforces asymptotically a consensus. When it comes to solve the tracking
problem, it seems then natural to require such an invariance of the (time-varying)
average, that is,

∑I
i=1 xk(i) =

∑I
i=1 uki , for all k ∈ N+, while enforcing a consensus

on xk(i)’s. Since x0
(i) � u0

i we have
∑I
i=1 x0

(i) �
∑I
i=1 u0

i . Suppose now that,

at iteration k, we have
∑I
i=1 xk(i) = ∑I

i=1 uki . In order to satisfy
∑I
i=1 xk+1

(i) �
∑I
i=1 uk+1

i , it must be

I∑

i=1

xk+1
(i)

=
I∑

i=1

uk+1
i

=
I∑

i=1

uki +
I∑

i=1

(
uk+1
i − uki

)

(a)=
I∑

i=1

xk(i) +
I∑

i=1

(
uk+1
i − uki

)

(b)=
I∑

i=1

⎛

⎝
I∑

j=1

wkij xk(j) +
(

uk+1
i − uki

)
⎞

⎠ ,

(3.183)

where in (a) we used
∑I
i=1 xk(i) = ∑I

i=1 uki ; and (b) follows from the column

stochasticity of Wk [cf. (3.182)]. This naturally suggests the following modification
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of the protocol (3.169): for all i = 1, . . . , I ,

xk+1
(i) =

I∑

j=1

wkij xk(j) +
(

uk+1
i − uki

)
, (3.184)

with x0
(i) = u0

i , i = 1, . . . , I . Generally speaking, (3.184) has the following

interpretation: by averaging neighbors’ information, the first term
∑I
j=1 w

k
ij xk(j)

aims at enforcing a consensus among the xk(i)’s while the second term is a

perturbation that bias the current sum
∑I
i=1 xk(i) towards

∑I
i=1 uki . By (3.183) and

a similar argument as in (3.177), it is not difficult to check that if the xk(i) are

consensual it must be limk→∞ ‖xk(i) − ūk‖ = 0, for all i = 1, . . . , I . Theorem 4.10
proves this result (as a special case of the tracking scheme over arbitrary directed
graphs).

Distributed Tracking Over Arbitrary Directed Graphs
Consider now the case of digraphs {Gk}k∈N+ with arbitrary topology. With the
results established in Sect. 3.4.2.2, the tracking mechanism (3.184) can be naturally
generalized to this more general setting by “perturbing” the condensed push-sum
scheme (3.178) as follows: for i = 1, . . . , I ,

φk+1
(i) =

I∑

j=1

akij φ
k
(j),

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) xk(j) +

1

φk+1
(i)

·
(

uk+1
i − uki

)
,

(3.185)

where x0
(i) = u0

i /φ
0
(i), i = 1, . . . , I ; and (φ0

(i))
I
i=1 are arbitrary positive scalars

such that
∑I
i=1 φ

k
(i) = I . For simplicity, hereafter, we tacitly set φ0

(i) = 1, for
all i = 1, . . . , I . Note that, differently from (3.184), in (3.185), we have scaled
the perturbation by (φk+1

(i) )
−1 so that the weighted average is preserved, that is,

∑I
i=1 φ

k
(i)

xk
(i)

= ∑I
i=1 uki , for all k ∈ N+.

Convergence of the tracking scheme (3.185) is stated in Theorem 4.10 below,
whose proof is omitted because is a special case of the more general result stated in
Theorem 4.11 (cf. Sect. 3.4.2.4).

Assumption 4.9 Let {uki }k∈N+ be such that

lim
k→∞‖uk+1

i − uki ‖ = 0, ∀i = 1, . . . , I.



256 G. Scutari and Y. Sun

Theorem 4.10 Let {Gk}k∈N+ be a sequence of graphs satisfying Assumption 4.2.
Consider the distributed tracking protocol (3.185), where each Ak is chosen
according to Assumption 4.7. Then, the sequence {xk � (xk(i))

I
i=1}k∈N+ generated

by (3.185) satisfies:

(a) Invariance of the weighted-sum:

I∑

i=1

φk(i) xk(i) =
I∑

i=1

uki , ∀k ∈ N+; (3.186)

(b) Asymptotic consensus: if, in addition, the sequence of signals
{(uki )Ii=1}k∈N+ satisfies Assumption 4.9, then

lim
k→∞

∥
∥
∥xk(i) − ūk

∥
∥
∥ = 0, ∀i = 1, . . . , I. (3.187)

3.4.2.4 Perturbed Condensed Push-Sum

In this section, we provide a unified proof of Theorems 4.5, 4.8, and 4.10
by interpreting the consensus and tracking schemes introduced in the previous
sections [namely: (3.169), (3.178) and (3.185)] as special instances of the following
perturbed condensed push-sum protocol: for all i = 1, . . . , I , and k ∈ N+,

φk+1
(i) =

I∑

j=1

akij φ
k
(j),

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) xk(j) + εki ,

(3.188)

with given x0 � (x0
(i))

I
i=1, and φ0

(i) = 1, for all i = 1, . . . , I ; where εki models
a perturbation locally injected into the system by agent i at iteration k. Clearly, the
schemes (3.178) and (3.185) are special case of (3.188), obtained setting εki � 0 and
εki � (φ

k+1
(i) )

−1(uk+1
i −uki ), respectively. Furthermore, if the matrices Ak are doubly-

stochastic, we obtain as special cases the schemes (3.169) and (3.184), respectively.
Convergence of the scheme (3.188) is given in the theorem below.

Theorem 4.11 Let {Gk}k∈N+ be a sequence of graphs satisfying Assumption 4.2.
Consider the perturbed condensed push-sum protocol (3.188), where each Ak is
chosen according to Assumption 4.7. Then, the sequences {xk � (xk(i))Ii=1}k∈N+ and
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{φk � (φk(i))Ii=1}k∈N+ generated by (3.188) satisfy:

(a) Bounded {φk}k∈N+:

φlb � inf
k∈N+

min
1≤i≤I φ

k
(i) ≥ κ2(I−1)B,

φub � sup
k∈N+

max
1≤i≤I φ

k
(i) ≤ I − κ2(I−1)B;

(3.189)

(b) Bounded consensus error: for all k ∈ N+,

∥
∥
∥
∥
∥
∥

xk(i) −
1

I

I∑

j=1

φk(j) xk(j )

∥
∥
∥
∥
∥
∥
≤ c ·

(

(ρ)k ‖x0‖ +
k−1∑

t=0

(ρ)k−1−t ‖εt‖
)

, ∀i = i, . . . , I,

(3.190)

where εk � (εki )Ii=1, and c > 0 and ρ ∈ (0, 1) are constants defined as

c � 2I

ρ
· 2(1 + κ̃−(I−1)B)

1 − κ̃ (I−1)B
and ρ �

(
1 − κ̃ (I−1)B

) 1
(I−1)B

,

with κ̃ � κ · (
φlb/φub

)
, and B and κ defined in Assumption 4.2 and

Assumption 4.3, respectively.

Proof See Sect. 3.4.2.5. �

Discussion
Let us apply now Theorem 4.11 to study the impact on the consensus value of the
following three different perturbation errors:

1. Error free: εki = 0, for all i = 1, . . . , I , and k ∈ N+;
2. Vanishing error: limk→∞ ‖εki ‖ = 0, for all i = 1, . . . , I , and k ∈ N+;
3. Bounded error: There exists a constant 0 ≤ M < +∞ such that ‖εki ‖ ≤M , for

all i = 1, . . . , I , and k ∈ N+.

Case 1: Error Free Since εki = 0, i = 1, . . . , I , the perturbed consensus protocol
(3.188) reduces to the condensed push-sum consensus scheme (3.178). According
to Theorem 4.11, each xk(i) converges to the weighted average (1/I) ·∑I

i=1 φ
k
(i)x

k
(i)

geometrically. Since (1/I) · ∑I
i=1 φ

k
(i)x

k
(i) = (1/I) · ∑I

i=1 φ
0
(i)x

0
(i) = ū, for all

k ∈ N+, each ‖xk(i) − ū‖ vanishes geometrically, which proves Theorem 4.8.

If, in addition, the weighted matrices Ak are also row-stochastic (and thus
doubly-stochastic), we have φk(i) = 1, for all k ∈ N+. Therefore, (3.188) reduces
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to the vanilla average consensus protocol (3.169); and in Theorem 4.11 we have
κ̃ = κ , which proves Theorem 4.5 as a special case.

Case 2: Vanishing Error To study the consensus value in this setting, we need the
following lemma on the convergence of product of sequences.

Lemma 4.12 ([72, Lemma 7]) Let 0 < λ < 1, and let {βk}k∈N+ and {νk}k∈N+ be
two positive scalar sequences. Then, the following hold:

(a) If lim
k→∞β

k = 0, then

lim
k→∞

k∑

t=1

(λ)k−t βt = 0.

(b) If
∞∑
k=1
(βk)2 <∞ and

∞∑
k=1
(νk)2 <∞, then

1) lim
k→∞

k∑

t=1

t∑

l=1
(λ)t−l (βl)2 <∞;

2) lim
k→∞

k∑

t=1

t∑

l=1
(λ)t−l βt νl <∞.

�
Consider (3.190): Since ρ ∈ (0, 1), invoking Lemma 4.12(a) and limk→∞ ‖εk‖ =

0, we have

lim
k→∞

k−1∑

t=0

(ρ)k−1−t ‖εt‖ = 0; (3.191)

hence limk→∞ ‖xk(i) − (1/I) ·
∑I
j=1 φ

k
(j)x

k
(j)‖ = 0 Note that, in this case, the rate

of convergence to the weighted average may not be geometric.
Consider, as special case, the tracking algorithm (3.185). i.e., set in (3.188)

εki = (φk+1
(i) )

−1(uk+1
i − uki ). We have (1/I) · ∑I

i=1 φ
k
(i)x

k
(i) = ūk , which proves

Theorem 4.10.

Case 3: Bounded Error Since ‖εki ‖ ≤ M , i = 1, . . . , I , the consensus error in
(3.190) can be bounded as

∥
∥
∥
∥
∥
∥

xk(i) −
1

I

I∑

j=1

φk(j)x
k
(j)

∥
∥
∥
∥
∥
∥
≤c

(

(ρ)k‖x0‖ +M ·
k−1∑

t=0

(ρ)k−1−t
)

≤c
(

(ρ)k‖x0‖ +M · 1 − (ρ)k
1 − ρ

)

.

(3.192)
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3.4.2.5 Proof of Theorem 4.11

We prove now Theorem 4.11, following the analysis in [208]. We first introduce
some intermediate results and useful notation.

Preliminaries
It is convenient to rewrite the perturbed consensus protocol (3.188) in a more
compact form. To do so, let us introduce the following notation: given the matrix
Ak compliant to the graphGk (cf. Assumption 4.3) and Wk defined in (3.179), let

xk � [xkT(1), . . . , xkT(I )]T , (3.193)

εk � [εkT1 , . . . , εkTI ]T , (3.194)

φk � [φk(1), . . . , φk(I )]T , (3.195)

Φk � Diag(φk), (3.196)

Φ̂
k � Φk ⊗ Im, (3.197)

Âk � Ak ⊗ Im, (3.198)

Ŵk � Wk ⊗ Im, (3.199)

where Diag(•) denotes a diagonal matrix whose diagonal entries are the elements
of the vector argument. Under the column stochasticity of Ak (Assumption 4.7), it
is not difficult to check that the following relationship exists between Wk and Ak

(and Ŵk and Âk):

Wk = (
Φk+1)−1 Ak Φk and Ŵk = (

Φ̂
k+1)−1 Âk Φ̂

k
. (3.200)

Using the above notation, the perturbed consensus protocol (3.188) can be
rewritten in matrix form as

φk+1 = Akφk and xk+1 = Ŵk xk + εk. (3.201)

To study the dynamics of the consensus error in (3.201), let us introduce the
matrix products: given k, t ∈ N+, with k ≥ t ,

Ak:t �
{

AkAk−1 · · ·At , if k > t ≥ 0,

Ak, if k = t ≥ 0,
(3.202)

Wk:t �
{

WkWk−1 · · ·Wt , if k > t ≥ 0,

Wk, if k = t ≥ 0,
(3.203)
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and

Âk:t � Ak:t ⊗ Im, (3.204)

Ŵk:t � Wk:t ⊗ Im. (3.205)

Define the weight-averaging matrix as

Jφk �
1

I

(
1 (φk)T

)
⊗ Im, (3.206)

so that

Jφk xk = 1 ⊗ 1

I

I∑

i=1

φk(i)x
k
(i),

i.e., Jφk xk computes the average of xk(i) weighted by (φk(i))
I
i=1 and stacks it I times

in a column vector. Under the column stochasticity of Ak (Assumption 4.7), it is not
difficult to check that the following property holds between Jφk and Ŵk:t : for all
k, t ∈ N+, with k ≥ t ,

Jφk+1 Ŵk:t = Jφt = Ŵk:t Jφt . (3.207)

Convergence of the perturbed consensus protocol boils down to studying the
dynamics of ‖Ŵk:t − Jφt‖ (this will be more clear in the next subsection). The

following lemma shows that, in the setting of Theorem 4.11, Ŵk:t converges
geometrically to Jφt ; the proof of the lemma is omitted and can be found in [208,
Lemma 2].

Lemma 4.13 Let {Gk}k∈N+ be a sequence of graphs satisfying Assumption 4.2;
let {Ak}k∈N+ be a sequence of weight matrices satisfying Assumption 4.7; and let
{Wk}k∈N+ be the sequence of (row-stochastic) matrices with Wk related to Ak by
(3.200). Then, the following holds: for all k, t ∈ N+, with k ≥ t ,

∥
∥
∥Ŵk:t − Jφt

∥
∥
∥

2
≤ c · (ρ)k−t+1, (3.208)

where c > 0 and ρ ∈ (0, 1) are defined in Theorem 4.11.

Proof of Theorem 4.11
We are now ready to prove the theorem. We start rewriting the dynamics of the
consensus error xk − Jφkx

k in a form that permits the application of Lemma 4.13.
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Applying the x-update in (3.201) recursively, we have

xk = Ŵk−1xk−1 + εk−1

= Ŵk−1
(

Ŵk−2xk−2 + εk−2
)
+ εk−1

= · · · = Ŵk−1:0 x0 +
k−1∑

t=1

Ŵk−1:tεt−1 + εk−1.

(3.209)

Therefore, the weighted average Jφkx
k can be written as

Jφkx
k (3.209)= Jφk Ŵk−1:0 x0 + Jφk

k−1∑

t=1

Ŵk−1:t εt−1 + Jφk εk−1

(3.207)= Jφ0 x0 +
k−1∑

t=1

Jφt ε
t−1 + Jφk εk−1.

(3.210)

Using (3.209) and (3.210) and Lemma 4.13, the consensus error can be
bounded as

∥
∥
∥xk − Jφkx

k
∥
∥
∥

=
∥
∥
∥
∥
∥

(
Ŵk−1:0 − Jφ0

)
x0 +

k−1∑

t=1

(
Ŵk−1:t − Jφt

)
εt−1 +

(
I − Jφk

)
εk−1

∥
∥
∥
∥
∥

(3.208)≤ c · (ρ)k‖x0‖ + c ·
k−1∑

t=1

(ρ)k−t ‖εt−1‖ +
∥
∥
∥I − Jφk

∥
∥
∥

2︸ ︷︷ ︸
≤√2 I

‖εk−1‖

≤ c ·
(

(ρ)k‖x0‖ +
k−1∑

t=0

(ρ)k−t−1 ‖εt‖
)

,

(3.211)

where in the last inequality we used c >
√

2 I . The inequality ‖I − Jφk‖2 ≤ √
2 I

can be proved as follows. Let z ∈ R
I ·m be an arbitrary vector; partition z as z =

(zi )Ii=1, with each zi ∈ R
m. Then,

∥
∥
∥z − Jφk z

∥
∥
∥ ≤‖z − J1 z‖ +

∥
∥
∥J1z − Jφkz

∥
∥
∥
(a)≤ ‖z‖ +

√
I

I

∥
∥
∥
∥
∥

I∑

i=1

zi −
I∑

i=1

φki zi

∥
∥
∥
∥
∥

≤‖z‖ +
√
I

I

√
I 2 − I ‖z‖ ≤ √

2 I ‖z‖,
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where in (a) we used ‖I−J1‖ = 1 (note that I−J1 is a Toeplitz matrix, with diagonal
entries equal to 1 − 1/I and off-diagonal entries all equal to −1/I ; therefore, its
eigenspectrum is given by {0, 1, . . . , 1}).

The inequality (3.211) proves the theorem. �

3.4.3 Distributed SCA Over Time-Varying Digraphs

We are now ready to introduce the proposed distributed algorithmic framework to
solve Problem (3.167), which combines SCA techniques (introduced in the previous
lectures) with the consensus/tracking protocols described in Sect. 3.4.2. We consider
the optimization over time-varying (B-strongly connected) digraphs (cf. Assump-
tion 4.2); distributed algorithms for undirected or time invariant networks can be
obtained as special cases.

As already anticipated, each agent i maintains and updates iteratively a local
copy x(i) of the global variable x, along with an auxiliary variable y(i) ∈ R

m, whose
goal is to track locally the average of the gradients (1/I)·∑I

i=1 ∇fi (the importance
of this extra variable will be clarified shortly), an information that is not available
at the agent’s side; let xk(i) and yk(i) denote the values of x(i) and y(i) at iteration k,
respectively. To update these variables, two major steps are performed iteratively,
namely:

Step 1–Local SCA (optimization): Given xk(i) and yk(i), each agent i solves
a convexification of Problem (3.167), wherein V is replaced by a suitably
chosen strongly convex surrogate, which is built using only the available local
information xk(i) and yk(i);

Step 2–Communication: All the agents broadcast the solutions computed in Step
1, and update their own variables xk(i) → xk+1

(i) and yk(i) → yk+1
(i) , based on the

information received from their neighbors.

The two steps above need to be designed so that: i) all the xk(i) will be asymptotically

consensual, that is, limk→∞ ‖xk(i) − (1/I) ·
∑I
j=1 xk(j)‖ = 0, for all i; and ii) every

limit point of (1/I) · ∑I
j=1 xk

(j)
is a stationary solution of Problem (3.167). We

describe next the above two steps in detail.

Step 1: Local SCA (Optimization) Each agent i faces two issues to solve
Problem (3.167), namely: fi is not convex and

∑
j �=i fj is not known. To cope with

the first issue, we leverage the SCA techniques introduced in the previous lectures.
More specifically, at iteration k, agent i solves a convexification of V in (3.167)
having the following form

x̂i
(
xk(i)

)
� argmin

x(i)∈X
F̃i

(
x(i) | xk(i)

)+G (
x(i)

)
, (3.212)
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where F̃i : O × O → R is a suitably chosen surrogate of F . To guarantee that
a fixed point of x̂i (•) is a stationary solution of (3.167), a naive application of the
SCA theory developed in Lecture II, would call F̃i to satisfy the following gradient
consistency condition (cf. Assumption 3.2, Sect. 3.3.2): F̃i is C1 onO and

∇F̃i
(
xk(i) | xk(i)

) = ∇F (
xk(i)

) = ∇fi
(
xk(i)

)+
∑

j �=i
∇fj (xk(i)), k ∈ N+. (3.213)

For example, a surrogate function satisfying the above condition would be:

F̃i
(
x(i) | xk(i)

) = f̃i
(
x(i) | xk(i)

)+
⎛

⎝
∑

j �=i
∇fj

(
xk(i)

)
⎞

⎠

T
(

x(i) − xk(i)
)
, (3.214)

where f̃i(• | xk(i)) : O → R is a strongly convex surrogate of fi on X, consistent to
fi , in the following sense (cf. Assumption 3.2).

Assumption 4.14 Each function f̃i : O × O → R satisfies the following
conditions:

1. f̃i (• | x) is τi -strongly convex on X, for all x ∈ X;
2. f̃i (• | x) is C1 on O and ∇f̃i (x | x) = ∇fi (x), for all x ∈ X;
3. ∇f̃i (x | •) is L̃i -Lipschitz on X, for all x ∈ X.

Unfortunately, the surrogate function in (3.214) cannot be used by agent i,
because of the lack of knowledge of

∑
j �=i ∇fj (xk(i)); hence a gradient consistency

condition in the form (3.213) cannot be enforced in such a distributed setting.
To cope with this issue, the idea, first proposed in [72] and further developed

in [208], is to replace
∑
j �=i ∇fj (xk(i)) in (3.214) [and in (3.213)] with a local,

asymptotically consistent, approximation, so that condition (3.213) will be satisfied
in the limit, as k → ∞. This can be accomplished, e.g., using the following
surrogate function:

F̃i

(
x(i) | xk(i), y

k
(i)

)
= f̃i

(
x(i) | xk(i)

)
+

(
I · yk(i) − ∇fi(xk(i))

)T (
x(i) − xk(i)

)
,

(3.215)

where f̃i is defined as in (3.214); and yk(i) in (3.215) is an auxiliary variable
controlled by agent i, aiming at tracking locally the average of the gradients
(1/I) ·∑I

j=1 ∇fj (xk(i)), that is, limk→∞ ‖yk(i)− (1/I) ·
∑I
j=1 ∇fj (xk(i))‖ = 0. This

explains the role of the linear term in (3.215): under the claimed tracking property
of yk(i), we have

lim
k→∞

∥
∥
∥
∥
∥
∥

(
I · yk(i) −∇fi(xk(i))

)
−

∑

j �=i
∇fj (xk(i))

∥
∥
∥
∥
∥
∥
= 0, (3.216)
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which would guarantee that the gradient consistency condition (3.213), with now
F̃i (• | xk(i)) replaced by F̃i (• | xk(i), y

k
(i)) in (3.215), will be asymptotically satisfied,

that is,

lim
k→∞

∥
∥
∥∇F̃i (xk(i) | xk(i), y

k
(i))−∇F(xk(i))

∥
∥
∥ = 0.

As it will be shown later, this relaxed condition is in fact enough to prove that,
if convergence and consensus are asymptotically achieved, the limit point of all
the local variables xk(i) is a stationary solution of Problem (3.167). Leveraging the
distributed tracking protocol (3.185) (cf. Sect. 3.4.2.3), in Step 2 below, we show
how to devise an update for the yk(i) variables that uses only local information and
such that (3.216) asymptotically holds.

Using F̃i(• | xk(i), y
k
(i)) defined in (3.215), the local optimization step performing

by each agent i consists then in solving the following strongly convex problem:

x̃ki � argmin
x(i)∈X

F̃i

(
x(i) | xk(i), y

k
(i)

)
+G (

x(i)
)
, (3.217)

followed by the step-size update

xk+1/2
(i) = xk(i) + γ k

(
x̃ki − xk(i)

)
, (3.218)

where γ k ∈ (0, 1] is the step-size, to be properly chosen.

Step 2–Communication Given xk+1/2
(i) and yk(i), each agent i communicates with its

current neighbors in order to achieve asymptotic consensus on x(i)’s as well as track
(1/I)·∑I

j=1 ∇fj (xk(i)) by yk(i). Both goals can be accomplished using (two instances
of) the condensed perturbed push-sum protocol (3.188), introduced in Sect. 3.4.2.4.

More specifically, after obtaining xk+1/2
(j) from its neighbors, each agent i updates

its own local estimate x(i) employing:

φk+1
(i) =

I∑

j=1

akij φ
k
(j); (3.219)

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) xk+1/2

(j) , (3.220)

where the weights Ak � (akij )Ii=1 are chosen according to Assumption 4.7; and the

φk(i) variables are initialized to φ0
(i) = 1. This update can be clearly implemented

locally: All agents i) send their local variables φk(j) and φk(j) xk+1/2
(j) to their out-

neighbors; and ii) linearly combine with coefficients akij the information coming
from their in-neighbors.
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A local update for the yk(i) variable aiming at tracking (1/I) ·∑I
j=1 ∇fj (xk(i)) can

be readily obtained invoking the distributed tracking protocol (3.185), and setting
therein uki � ∇fi(xk(i)). This leads to

yk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) yk(j) +

1

φk+1
(i)

(
∇fi

(
xk+1
(i)

)−∇fi
(
xk(i)

))
, (3.221)

where φk+1
(i) is defined in (3.219), and y0

(i) = ∇fi(x0
(i)). Note that, as for xk+1

(i) , the

update of yk(i) is performed by agent i using only the information coming from its
neighbors, with the same signaling as for (3.219)–(3.220).

The described distributed SCA method (Step 1 and Step 2) is summarized in
Algorithm 10, and termed distributed Successive cONvex Approximation algorithm
over Time-varying digrAphs (SONATA).

Algorithm 10 SCA over time-varying digraphs (SONATA)

Data : x0
(i)

∈ X, φ0
(i)

= 1, y0
(i)

= ∇fi(x0
(i)
), for all i = 1, . . . , I ; {γ k ∈ (0, 1]}k∈N+ .

Set k = 0.
(S.1) : If xk satisfies a termination criterion: STOP;
(S.2) : Local SCA. Each agent i computes

x̃ki � argmin
x(i)∈X

f̃i

(
x(i) | xk(i)

)
+

(
I · yk(i) − ∇fi(xk(i))

)T (
x(i) − xk(i)

)
+G (

x(i)
)
,

xk+1/2
(i)

= xk(i) + γ k
(

x̃ki − xk(i)
)
;

(S.3) : Averaging and gradient tracking.
Each agent i sends out its local variables φk

(i)
, xk+1/2
(i)

and yk
(i)

, and receives

φk
(j)

, xk+1/2
(j)

and yk
(j)

, with j ∈ N in, k
i \{i}. Then, it updates:

φk+1
(i)

=
I∑

j=1

akij φ
k
(j),

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) xk+1/2

(j) ,

yk+1
(i)

= 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) yk(j) +

1

φk+1
(i)

(
∇fi

(
xk+1
(i)

)−∇fi
(
xk(i)

)) ;

(S.4) : k← k + 1, and go to (S.1).
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Convergence of Algorithm 10 is stated in Theorem 4.16 below. We first introduce
a standard condition on the steps-size γ k and a proper merit function assessing the
convergence of the algorithm.

Assumption 4.15 The step-size γ k ∈ (0, 1] satisfies the standard diminishing rule:
limk→∞ γ k = 0 and

∑∞
k=0 γ

k = +∞.

Given {xk � (xk(i))
I
i=1}k∈N+ generated by Algorithm 10, convergence of the

algorithm is stated measuring the distance of the average sequence x̄k � (1/I) ·∑I
i=1 xk(i) from optimality and well as the consensus disagreement among the local

variables xk
(i)

’s. More specifically, let us introduce the following function as a
measure of optimality:

J (x̄k) �
∥
∥
∥
∥
∥

x̄k − argmin
y∈X

{

∇F(x̄k)T (y − x̄k)+ 1

2
‖y − x̄k‖2

2 +G(y)
}∥∥
∥
∥
∥
. (3.222)

Note that J is a valid measure of stationarity because it is continuous and J (x̄∞) =
0 if and only if x̄∞ is a d-stationary solution of Problem (3.167). The consensus
disagreement at iteration k is defined as

D(xk) � ‖xk − 1I ⊗ x̄k‖.

Note thatD is equal to 0 if and only if all the xk(i)’s are consensual. We combine the
metrics J and D in a single merit function, defined as

M(xk) � max
{
J (x̄k)2, D(xk)2

}
,

which captures the progresses of the algorithm towards optimality and consensus.
We are now ready to state the main convergence results for Algorithm 10.

Theorem 4.16 Consider Problem (3.167) under Assumption 4.1; and let {Gk}k∈N+
be a sequence of graphs satisfying Assumption 4.2. Let {xk � (xk(i))

I
i=1}k∈N+ be

the sequence generated by Algorithm 10 under Assumptions 4.7 and 4.14; and let
x̄k = (1/I) ·∑I

i=1 xk(i) be the average sequence. Furthermore, suppose that either
one of the following is satisfied.

(a) (diminishing step-size): The step-size γ k satisfies Assumption 4.15;
(b) (constant step-size): The step-size γ k is fixed—γ k = γ , for all k ∈

N+—and it is sufficiently small (see [208, Theorem 5] for the specific expression
of the upper bound on γ ).

Then, there holds

lim
k→∞M(x

k) = 0. (3.223)

Proof See Sect. 3.4.3.2. �
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Theorem 4.17 below provides an upper bound on the number of iterations needed
to decrease M(xk) below a given accuracy ε > 0; we omit the proof and refer to
[208, Theorem 6] for more details.

Theorem 4.17 Consider Problem (3.167) and Algorithm 10 in the setting of
Theorem 4.16. Given ε > 0, let Tε be the first iteration k such thatM(xk) ≤ ε.
(a) (diminishing step-size): Suppose that the step-size γ k satisfies

Assumption 4.15. Then,

Tε ≤ inf

{

k ∈ N+ :
k∑

t=0

γ t ≥ B0

ε

}

,

where B0 > 0 is a constant independent on ε [208];
(b) (constant step-size): Suppose that the step-size γ k is fixed, γ k = γ , for

all k ∈ N+. Then, there exists a sufficiently small γ̄ ∈ (0, 1]—independent of ε
(see [208, Theorem 6] for the specific expression of γ̄ )—such that, if γ ∈ (0, γ̄ ],
then it holds

Tε = O
(1

ε

)
.

Discussion and Generalizations
On the Convergence Stating convergence for constrained (nonsmooth) optimiza-
tion problems in the form (3.167), Theorems 4.16 and 4.17 (proved in our work
[208]) significantly enlarge the class of convex and nonconvex problems which
distributed algorithms can be applied to with convergence guarantees. We remark
that convergence is established without requiring that the (sub)gradients of F or G
is bounded; this is a major improvement with respect to current distributed methods
for nonconvex problems [20, 72, 233, 245] and nonsmooth convex ones [169].

We remark that convergence (as stated in the above theorems) can also be
established weakening the assumption on the strongly convexity of the surrogates f̃i
(Assumption 4.14) to just convexity, as long as the feasible set X is compact. Also,
with mild additional assumptions on G—see Lecture II—convergence can be also
proved in the case wherein agents solve their subproblems (3.217) inexactly.

ATC- Versus CAA Updates As a final remark, we note that variants of SONATA
wherein the order of the consensus, tracking, and local updates are differently
combined, are still convergent, in the sense of Theorems 4.16 and 4.17. We briefly
elaborate on this issue next.

Using a jargon well established in the literature [203], the update of the x-
variables in Step 3 of Algorithm 10 is in the form of so-called Adapt-Then-Combine
(ATC) strategy: eliminating the intermediate variable xk+1/2

(i) , each xki follows the



268 G. Scutari and Y. Sun

dynamic

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j)

(
xk(j) + γ k

(
x̃kj − xk(j)

))
. (3.224)

The name ATC comes from the form of (3.224): each agent i first “adapts” its local
copy xk(i) moving along the direction x̃ki − xk(i), that is, xk(i) → xk(i) + γ k (̃xki − xk(i));
and then it “combines” its new update with that of its in-neighbors.

As an alternative to (3.224), one can employ the so-called Combine-And-Adapt
(CAA) update (also termed “consensus strategy” in [203]), which reads

xk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij φ
k
(j) xk(j) +

φk(i)

φk+1
(i)

· γ k
(

x̃ki − xk(i)
)
. (3.225)

According to this protocol, each agent i first “combines” (by weighted-averaging) its
current xk(i) with those of its neighbors, and then “adapt” the resulting update moving

along the direction x̃ki − xk(i). Note that, when dealing with constraint optimization,
the CAA update in general does not preserve the feasibility of the iterates while the
ATC protocol does.

The ATC and CAA protocols can be interchangeably used also in the update of
the tracking variables yk(i) in Step 3 of SONATA. While the y-update as stated in the
algorithm [cf. (3.221)] is in the CAA form, one can also use the ATC-based update,
which reads

yk+1
(i) = 1

φk+1
(i)

I∑

j=1

akij

(
φk(j)y

k
(j) +∇fj

(
xk+1
(j)

)−∇fj
(
xk(j)

))
.

One can show that the above versions of SONATA are all convergent.

3.4.3.1 SONATA (Algorithm 10) and Special Cases

The SONATA framework represents a gamut of algorithms, each of them cor-
responding to a specific choice of the surrogate functions, step-size, and weight
matrices. In this section, we focus on recent proposals in the literature that built on
the idea of distributed gradient tracking [70–72, 172, 191, 257, 259], and we show
that all of them are in fact special cases of SONATA. A more detailed analysis of
the state of the art can be found in Sect. 3.4.5.
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The idea of tracking the gradient averages through the use of consensus
coupled with distributed optimization was independently introduced in the NEXT
& SONATA framework [70–72] and [208, 232] for the general class of (convex)
constrained nonsmooth nonconvex problems (3.167) and in [259] for the special
case of strongly convex unconstrained smooth optimization. The algorithmic frame-
work in [70–72] is applicable to optimization problems over time-varying graphs,
but requires the use of doubly stochastic matrices. This assumption was removed in
SONATA [208, 232] by using column-stochastic matrices as in the push-sum based
methods. The scheme in [259] is implementable only over undirected fixed graphs.
A convergence rate analysis of the scheme in [259] in the case of strongly convex
smooth unconstrained optimization problems was later developed in [172, 191]
for undirected graphs and in [172] for time-varying directed graphs. Complexity
results for NEXT and SONATA for (strongly) convex and nonconvex constrained
optimization problems over (time-varying) digraphs can be found in [208, 231];
differently from [172, 191], the analysis in [208, 231] applies to general surrogate
functions (satisfying Assumption 4.14).

We establish next a formal connection between SONATA and all these schemes.

Preliminaries
Since all the aforementioned works but [70–72] are applicable only to the special
instance of Problem (3.167) whereinX = R

m (unconstrained),G = 0 (only smooth
objectives), and F is strongly convex, throughout this section, for a fair comparison,
we only consider this setting. We begin customizing Algorithm 10 to this special
instance of (3.167) as follows. Choose each surrogate function f̃i in (3.215) as

f̃i (x(i) | xk(i)) = fi(xk(i))+∇fi(xk(i))T (x(i) − xk(i))+
I

2

∥
∥
∥x(i) − xk(i)

∥
∥
∥

2
.

This leads to the following closed form expression for x̃ki in (3.217) (recall that
X = R

m and G = 0):

x̃ki = argmin
xi

(
I · yk(i)

)- (
x(i) − xk(i)

)
+ I

2

∥
∥
∥x(i) − xk(i)

∥
∥
∥

2

= xk(i) − yk(i).

(3.226)

Define now gki � ∇fi(xk(i)), gk = [gk T1 , . . . , gk TI ]T , and yk = [yk T(1) , . . . , yk T(I ) ]T ;

and recall the definitions of φk , Φk , Ak , Wk and Ŵk introduced in Sect. 3.4.2.5.
Using (3.226), Algorithm 10 under the ATC or CAA updates can be rewritten in
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vector/matrix form as: for all k ∈ N+,

φk+1 = Ak φk,

Wk = (Φk+1)−1Ak Φk,

xk+1 =
{

Ŵk
(
xk − γ k yk

)
, if ATC is employed;

Ŵkxk − γ k (Φ̂k+1
)−1Φ̂

k
yk, if CAA is employed; (3.227)

yk+1 =
⎧
⎨

⎩

Ŵk
(

yk + (Φ̂k)−1(gk+1 − gk)
)
, if ATC is employed;

Ŵk yk + (Φ̂k+1
)−1

(
gk+1 − gk

)
, if CAA is employed;

which we will refer to as ATC/CAA-SONATA-L (L stands for “linearized”).
In the special case where all Ak are doubly-stochastic matrices, we have Wk =

Ak and Ŵk � Ak ⊗ Im; ATC/CAA-SONATA-L reduces to

xk+1 =
{

Ŵk
(
xk − γ k yk

)
, for the ATC update;

Ŵkxk − γ k yk, for the CAA update; (3.228)

yk+1 =
{

Ŵk
(
yk + gk+1 − gk

)
, for the ATC update;

Ŵk yk + (
gk+1 − gk

)
, for the CAA update;

which is referred to as ATC/CAA-NEXT-L (because the algorithm becomes an
instance of NEXT [70–72]).

Connection with Current Algorithms
We are now in the position to show that the algorithms in [172, 191, 257, 259] are
all special cases of SONATA and the earlier proposal NEXT [70–72].

Aug-DGM [259] and Algorithm in [191] Introduced in [259] for undirected, time-
invariant graphs, the Aug-DGM algorithm reads

xk+1 = Ŵ
(

xk − Diag (γ ⊗ 1m) yk
)
,

yk+1 = Ŵ
(

yk + gk+1 − gk
)
,

(3.229)

where Ŵ � W ⊗ Im, W is a doubly-stochastic matrix compliant with the graph G
(cf. Assumption 4.3), and γ � (γi)Ii=1 is the vector of agents’ step-sizes.
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A similar algorithm was proposed independently in [191] (in the same network
setting of [259]), which reads

xk+1 = Ŵ
(

xk − γ yk
)
,

yk+1 = Ŵyk + gk+1 − gk.
(3.230)

Clearly Aug-DGM [259] in (3.229) and Algorithm [191] in (3.230) coincide with
ATC-NEXT-L [cf. (3.228)].

(Push-)DIGing [172] Appeared in [172] and applicable to time-varying undirected
graphs, the DIGing Algorithm reads

xk+1 = Ŵk xk − γ yk,

yk+1 = Ŵk yk + gk+1 − gk,
(3.231)

where Ŵk � Wk ⊗ Im and Wk is a doubly-stochastic matrix compliant with
the graph Gk . Clearly, DIGing coincides with CAA-NEXT-L [cf. (3.228)], earlier
proposed in [70–72].

The push-DIGing algorithm [172] extends DIGing to time-varying digraphs, and
it is an instance of ATC-SONATA-L [cf. (3.227)], with akij = 1/dkj , i, j = 1, . . . I .

ADD-OPT [257] Finally, we mention the ADD-OPT algorithm, proposed in [257]
for static digraphs, which takes the following form:

zk+1 = Â zk − γ ỹk,

φk+1 = A φk,

xk+1 = (Φ̂k+1
)−1 zk+1,

ỹk+1 = Â ỹk + gk+1 − gk.

(3.232)

Introducing the transformation yk = (Φ̂
k
)−1̃yk, it is not difficult to check that

(3.232) can be rewritten as

φk+1 = A φk,

Wk = (Φk+1)−1 A Φk,

xk+1 = Ŵk xk − γ (Φ̂k+1
)−1 Φ̂

k
yk,

yk+1 = Ŵk yk + (Φ̂k+1
)−1

(
gk+1 − gk

)
,

(3.233)

where Ŵk � Wk ⊗ Im. Comparing (3.227) with (3.233), one can readily see that
ADD-OPT coincides with CAA-SONATA-L.
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Table 3.7 Connection of SONATA [208, 232] with current algorithms employing gradient
tracking

Algorithms
Connection with
SONATA

Instance of
problem (3.167)

Graph topology/Weight
matrix

NEXT [70, 72] Special case of
SONATA

F nonconvex
G �= 0
X ⊆ R

m

Time-varying
doubly-stochasticable
digraph

Aug-DGM [191, 259] ATC-NEXT-L
(γ = γ1I ) (3.228)

F convex G = 0
X = R

m
Static undirected
graph

DIGing [172] CAA-NEXT-L
(3.228)

F convex G = 0
X = R

m
Time-varying
doubly-stochasticable
digraph

push-DIGing [172] ATC-SONATA-L
(3.227)

F convex G = 0
X = R

m
Time-varying digraph

ADD-OPT [257] CAA-SONATA-L
(3.227)

F convex G = 0
X = R

m
Static digraph

We summarize the connections between the different versions of SONATA(-
NEXT) and its special cases in Table 3.7.

3.4.3.2 Proof of Theorem 4.16

The proof of Theorem 4.16 is quite involved and can be found in [208]. Here we
provide a simplified version, under the extra Assumption 4.18 on Problem (3.167)
(stated below) and the use of a square-summable (and thus diminishing) step-size in
the algorithm.

Assumption 4.18 Given Problem (3.167), in addition to Assumption 4.1, suppose
that

1. The gradient of F is bounded on X, i.e., there exists a constant 0 < LF < +∞
such that ‖∇F(x)‖ ≤ LF , ∀x ∈ X;

2. The subgradient of G is bounded on X, i.e., there exists a constant 0 < LG <
+∞ such that ‖∂G(x)‖ ≤ LG, ∀x ∈ X.

Assumption 4.19 The step size γ k ∈ (0, 1] satisfies the diminishing rule:∑∞
k=0 γ

k = +∞ and
∑∞
k=0(γ

k)2 < +∞.

Next, we prove separately

lim
k→∞D(x

k) = 0, (3.234)
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and

lim
k→∞ J (x

k) = 0, (3.235)

which imply (3.223).

Technical Preliminaries and Sketch of the Proof
We introduce here some preliminary definitions and results along with a sketch of
the proof of the theorem.

Weighted Averages x̄k
φ

and ȳk
φ

Define the weighted averages for the local copies
x(i) and the tracking variables y(i):

x̄kφ � 1

I

I∑

i=1

φk(i)x
k
(i) and ȳkφ � 1

I

I∑

i=1

φk(i)y
k
(i). (3.236)

Using (3.218), (3.220) and (3.221), the dynamics of {x̄kφ}k∈N+ and {ȳkφ}k∈N+
generated by Algorithm 10 read: for all k ∈ N+,

x̄k+1
φ = x̄kφ +

γ k

I

I∑

i=1

φk(i)

(
x̃ki − x̄kφ

)
, (3.237)

and

ȳk+1
φ = ȳkφ +

1

I

I∑

i=1

(
uk+1
i − uki

)
, with uki � ∇fi(xk(i)), (3.238)

respectively. Let uk � (uki )
I
i=1. Note that, since each y0

(i) = u0
i = ∇fi(x0

(i)) and

φ0
i = 1, we have [cf. Theorem 4.10(a)]: for all k ∈ N+,

ȳkφ =
1

I

I∑

i=1

uki . (3.239)

The average quantities x̄kφ and ȳkφ will play a key role in proving asymptotic
consensus and tracking. In fact, by (3.239), tracking is asymptotically achieved if
limk→∞ ‖yk

(i)
− ȳkφ‖ = 0, for all i = 1, . . . , I ; and by

∥
∥
∥xk(i) − x̄k

∥
∥
∥ ≤

∥
∥
∥xk(i) − x̄kφ

∥
∥
∥+

∥
∥
∥
∥
∥
∥

1

I

I∑

j=1

(
xk(j) − x̄kφ

)
∥
∥
∥
∥
∥
∥
≤ B1

I∑

j=1

∥
∥
∥xk(j) − x̄kφ

∥
∥
∥ , i = 1, . . . I,

(3.240)
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with B1 being a finite positive constant, it follows that consensus is asymptotically
reached if limk→∞ ‖xk(i) − x̄kφ‖ = 0, for all i = 1, . . . , I . These facts will will be
proved in Step 1 of the proof, implying (3.234).

Properties of the Best-Response x̃k
i

and Associated Quantities We study here the

connection between agents’ best-responses x̃ki , defined in (3.217), and the “ideal”
best-response x̂i (xk(i)) defined in (3.212) (not computable locally by the agents),

with F̃i given by (3.214), which we rewrite here for convenience: given z ∈ X,

x̂i
(
z
)
� argmin

x(i)∈X
f̃i
(
x(i) | z

)+ (∇F (
z
)−∇fi(z)

)T (
x(i) − z

)+G (
x(i)

)
.

(3.241)

As observed in Sect. 3.4.3, x̃ki can be interpreted as a locally computable proxy
of x̂i (xk(i)). We establish next the following connection among x̃ki , x̂i (•), and the
stationary solutions of Problem (3.167): i) every fixed point of x̂i (•) is a stationary
solution of Problem (3.167) (cf. Lemma 4.20); and ii) the distance between these
two mappings, ‖̃xki − x̂i (xk(i))‖, asymptotically vanishes, if consensus and tracking
are achieved (cf. Lemma 4.21). This also establishes the desired link between the
limit points of xki and the fixed points of x̂i (•) [and thus the stationary solutions of
(3.167)].

Lemma 4.20 In the setting of Theorem 4.16, the best-response map X � z "→
x̂i (z), defined in (3.241), with i = 1, . . . I , enjoys the following properties:

(a) x̂i (•) is L̂i -Lipschitz continuous on X;
(b) The set of fixed points of x̂i (•) coincides with the set of stationary solutions of

Problem (3.167). Therefore, x̂i (•) has a fixed point.

Proof The proof follows the same steps of that of Lemma 3.4 and Lemma 3.5
(Lecture II), and thus is omitted. �
Lemma 4.21 Let {xk = (xk(i))Ii=1}k∈N+ and {yk = (yk(i))Ii=1}k∈N+ , be the sequence

generated by Algorithm 10. Given x̂i (•) and x̃ki in the setting of Theorem 4.16, with
i = 1, . . . , I , the following holds: for every k ∈ N+ and i = 1, . . . , I ,

∥
∥
∥̃xki − x̂i

(
xk(i)

)∥∥
∥ ≤ B2

⎛

⎝
∥
∥
∥yk(i) − ȳkφ

∥
∥
∥+

I∑

j=1

∥
∥
∥xk(j) − x̄kφ

∥
∥
∥

⎞

⎠ , (3.242)

where B2 is some positive, finite, constant.

Proof For notational simplicity, let us define x̂ki � x̂i
(
xk(i)

)
. We will also use the

following shorthand: ±a � +a − a, with a ∈ R. Invoking the first order optimality
condition for x̃ki and x̂ki , we have

(
x̂ki − x̃ki

)T (
∇f̃i (̃xki | xk(i))+ I · yk(i) −∇fi(xk(i))

)
+G(

x̂ki
)−G(

x̃ki
) ≥ 0
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and

(
x̃ki − x̂ki

)T (
∇f̃i (̂xki | xk(i))+∇F (

xk(i)
)−∇fi

(
xk(i)

))+G(
x̃ki

)−G(
x̂i
) ≥ 0,

respectively. Summing the two inequalities and using the strongly convexity of
f̃i (• | xk(i)) [cf. Assumption 4.14.1], leads to the desired result

τi

∥
∥
∥̃xki − x̂ki

∥
∥
∥ ≤

∥
∥
∥∇F (

xk(i)
)− I · yk(i) ± I · ȳkφ

∥
∥
∥

(3.239), A.4.1.2≤ I ·
∥
∥
∥yk(i) − ȳkφ

∥
∥
∥+

I∑

j=1

Lj

∥
∥
∥xk(i) − xk(j)

∥
∥
∥ .

�
Structure of the Proof The rest of the proof is organized in the following steps:

– Step 1: We first study the dynamics of the consensus and tracking errors,
proving, among other results, that asymptotic consensus and tracking are
achieved, that is, limk→∞ ‖xk

(i)
− x̄kφ‖ = 0 and limk→∞ ‖yk

(i)
− ȳkφ‖ = 0, for all

i = 1, . . . , I . By (3.240), this also proves (3.234);
– Step 2: We proceed studying the descent properties of {V (x̄kφ)}k∈N+ , from

which we will infer limk→∞ ‖̃xki − x̄kφ‖ = 0, for all i = 1, . . . , I ;
– Step 3: Finally, using the above results, we prove (3.235).

Step 1: Asymptotic Consensus and Tracking
We begin observing that the dynamics {xk � (xk

(i)
)Ii=1}k∈N+ [cf. (3.220)] and

{yk � (yk(i))
I
i=1}k∈N+ [cf. (3.221)] generated by Algorithm 10 are instances of the

perturbed condensed push-sum protocol (3.188), with errors

εki = γ k(φk+1
(i) )

−1
I∑

j=1

akij φ
k
(j)

(
x̃kj − xk(j)

)
(3.243)

and

εki = (φk+1
(i) )

−1
(

uk+1
i − uki

)
, (3.244)

respectively. We can then leverage the convergence results introduced in
Sect. 3.4.2.4 to prove the desired asymptotic consensus and tracking. To do so,
we first show that some related quantities are bounded.



276 G. Scutari and Y. Sun

Lemma 4.22 Let {xk = (xk(i))
I
i=1}k∈N+ , {yk = (yk(i))

I
i=1}k∈N+ , and {φk =

(φk(i))
I
i=1}k∈N+ be the sequence generated by Algorithm 10, in the setting of

Theorem 4.16 and under the extra Assumptions 4.18–4.19. Then, the following hold:
for all i = 1, . . . , I , (a) {φk}k∈N+ is uniformly bounded:

φlb · 1 ≤ φk ≤ φub · 1, ∀k ∈ N+, (3.245)

where φlb and φub are finite, positive constants, defined in (3.189);
(b)

sup
k∈N+

∥
∥
∥yk(i) − ȳkφ

∥
∥
∥ <∞; (3.246)

(c)

sup
k∈N+

∥
∥
∥xk(i) − x̃ki

∥
∥
∥ <∞. (3.247)

Proof Statement (a) is a consequence of Theorem 4.11(a). Statement (b) follows
readily from (3.192), observing that the errors εki = (φk+1

(i) )
−1(uk+1

i − uki ) are all
uniformly bounded, due to Assumption 4.18.1 and (3.245).

We prove now statement (c). Since x̃k(i) is the unique optimal solution of Problem
(3.217), invoking the first order optimality condition, we have

(
xk(i) − x̃ki

)T (
∇f̃i (̃xki | xk(i))+ I · yk(i) −∇fi(xk(i))+ ξk

)
≥ 0,

where ξ k ∈ ∂G(̃xki ), and ‖ξ k‖ ≤ LG (cf. Assumption 4.18.2). Since f̃i
(• | xki

)
is

τi-strongly convex (cf. Assumption 4.14), we have

∥
∥
∥xk(i) − x̃ki

∥
∥
∥ ≤ I

τi

∥
∥
∥yk(i)

∥
∥
∥+ LG

τi

≤ I

τi

∥
∥
∥yk(i) − ȳkφ

∥
∥
∥+

∥
∥
∥ȳkφ

∥
∥
∥+ LG

τi

(3.239),(3.246)≤ B3 + 1

I

I∑

i=1

∥
∥
∥uki

∥
∥
∥ ≤ B4,

(3.248)

for all k ∈ N+, where the last inequality follows from Assumption 4.18.1, and B3
and B4 are some positive, finite, constants. �

We can now study the dynamics of the consensus error.
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Proposition 4.23 Let {xk = (xk(i))
I
i=1}k∈N+ be the sequence generated by Algo-

rithm 10, in the setting of Theorem 4.16, and under the extra Assumptions 4.18–
4.19; and let {x̄kφ}k∈N+ , with x̄kφ defined in (3.237). Then, all the xk(i) are asymptoti-
cally consensual, that is,

lim
k→∞

∥
∥
∥xk(i) − x̄kφ

∥
∥
∥ = 0, ∀i = 1, . . . , I. (3.249)

Furthermore, there hold: for all i = 1, . . . , I ,

∞∑

k=0

γ k
∥
∥
∥xk(i) − x̄kφ

∥
∥
∥ <∞, (3.250)

∞∑

k=0

∥
∥
∥xk(i) − x̄kφ

∥
∥
∥

2
<∞. (3.251)

Proof We use again the connection between (3.220) and the perturbed condensed
push-sum protocol (3.188), with error εki given by (3.243). Invoking Theorem 4.11
and Lemma 4.12(a) [cf. (3.191)], to prove (3.249), it is then sufficient to show that all
the errors εki are asymptotically vanishing. This follows readily from the following
facts: γ k ↓ 0 (Assumption 4.19); 0 < φlb ≤ φk(i) ≤ φub < ∞, for all k ∈ N+ and

i = 1, . . . , I [cf. Theorem 4.11(a)]; and supk∈N+ ‖xk
(i)
−x̃ki ‖ <∞ [Lemma 4.22(c)].

We prove now (3.250). Invoking Theorem 4.11(b), we can write

lim
k→∞

k∑

t=1

γ t
∥
∥
∥xt(i) − x̄tφ

∥
∥
∥
(3.190)≤ c · lim

k→∞

k∑

t=1

γ t

(

(ρ)t ‖x0‖ +
t−1∑

s=0

(ρ)t−1−s ‖εs‖
)

(a)≤ B5 · lim
k→∞

k∑

t=1

(ρ)t + B6 · lim
k→∞

k∑

t=1

t−1∑

s=0

(ρ)t−1−s γ s γ t

︸ ︷︷ ︸
<∞ [Lemma 4.12(b2)]

<∞,

where B5 and B6 are some positive, finite, constants, and in (a) we used ‖εt‖ ≤
B7 γ

t , for some positive, finite B7 [which follows from the same arguments used to
prove (3.249)].

To prove (3.251), we can use similar steps and write:

lim
k→∞

k∑

t=1

∥
∥
∥xt(i) − x̄tφ

∥
∥
∥

2 ≤ lim
k→∞

k∑

t=1

(

B5 (ρ)
t + B6 ·

t−1∑

s=0

(ρ)t−1−s γ s
)2

≤ 2 · B2
5 lim
k→∞

k∑

t=0

(ρ)2·t + 2B2
6 · lim

k→∞

k∑

t=0

t−1∑

s=0

t−1∑

s′=0

(ρ)t−1−s (ρ)t−1−s′ γ s γ s′
(a)
< ∞,
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where in (a) we used

lim
k→∞

k∑

t=0

t−1∑

s=0

t−1∑

s ′=0

(ρ)t−1−s (ρ)t−1−s ′ γ s γ s ′

≤ lim
k→∞

k∑

t=0

t−1∑

s=0

t−1∑

s ′=0

(ρ)t−1−s (ρ)t−1−s ′ (γ s)2

= lim
k→∞

k∑

t=0

(
t−1∑

s ′=0

(ρ)t−1−s ′
)

︸ ︷︷ ︸
≤ 1

1−ρ

t−1∑

s=0

(ρ)t−1−s (γ s)2 <∞,

where the last implication is a consequence of Lemma 4.12(b1). �
We prove next a similar result for the tracking error.

Proposition 4.24 Let {yk = (yk(i))
I
i=1}k∈N+ be the sequence generated by Algo-

rithm 10, in the setting of Theorem 4.16, and under the extra Assumptions 4.18–
4.19; and let {ȳkφ}k∈N+ , with ȳkφ defined in (3.238). Then, all the yk(i) asymptotically

track the gradient average (1/I) ·∑I
i=1 ∇fi(xk(i)), that is,

lim
k→∞

∥
∥
∥yk(i) − ȳkφ

∥
∥
∥ = 0, ∀i = 1, . . . , I. (3.252)

Furthermore, there holds

∞∑

k=0

γ k
∥
∥
∥yk(i) − ȳkφ

∥
∥
∥ <∞, ∀i = 1, . . . , I. (3.253)

Proof Invoking Theorem 4.10 and using (3.239), to prove (3.252), it is sufficient
to show that Assumption 4.9 holds. By Assumption 4.1.2, this reduces to prove
limk→∞ ‖xk+1

(i) − xk(i)‖ = 0, for all i = 1, . . . , I . We write:

lim
k→∞

∥
∥
∥xk+1
(i) − xk(i)

∥
∥
∥ ≤ lim

k→∞

∥
∥
∥xk+1
(i) − x̄k+1

φ

∥
∥
∥

︸ ︷︷ ︸
(3.249)= 0

+ lim
k→∞

∥
∥
∥xk(i) − x̄kφ

∥
∥
∥

︸ ︷︷ ︸
(3.249)= 0

+ lim
k→∞

∥
∥
∥
∥
∥

γ k

I

I∑

i=1

φk(i)

(
x̃ki − x̄kφ

)
∥
∥
∥
∥
∥

︸ ︷︷ ︸
(3.247)≤ γ k ·B8

= 0,
(3.254)

where B8 is some positive, finite, constant.
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We prove next (3.253). Invoking Theorem 4.11(b), with εti defined in (3.244), we
have

lim
k→∞

k∑

t=1

γ t
∥
∥
∥yt(i) − ȳtφ

∥
∥
∥

(3.190)≤ c · lim
k→∞

k∑

t=1

γ t

(

(ρ)t ‖u0‖ +
t−1∑

s=0

(ρ)t−1−s ‖εs‖
)

(a)≤ B9 · lim
k→∞

k∑

t=1

(ρ)t + B10 · lim
k→∞

I∑

i=1

k∑

t=1

t−1∑

s=0

(ρ)t−1−s γ t
∥
∥
∥xs+1
(i)

− xs(i)

∥
∥
∥

(b)≤ B9 · lim
k→∞

k∑

t=1

(ρ)t + B10 · B8 · I · lim
k→∞

k∑

t=1

t−1∑

s=0

(ρ)t−1−s γ t γ s

︸ ︷︷ ︸
<∞ [Lemma 4.12(b2)]

+ B10 · lim
k→∞

I∑

i=1

k∑

t=1

t−1∑

s=0

(ρ)t−1−s γ t
(∥
∥
∥xs+1
(i)

− x̄s+1
φ

∥
∥
∥+

∥
∥
∥xs(i) − x̄sφ

∥
∥
∥
)

︸ ︷︷ ︸
<∞ [(3.251) & Lemma 4.12(b2)]

<∞,

where B9 and B10 are some positive, finite, constants; in (a) we used the definition
of εti [cf. (3.244)] along with Assumption 4.1.2; and in (b) we invoked the same
upper bound used in (3.254).

�

Step 2: Descent of {V (x̄kφ)}k∈N+
We study now the descent of V along {x̄kφ}k∈N+ . For notational simplicity, define

Δxk(i) � xk(i) − x̄kφ and Δx̃k(i) � x̃ki − x̄kφ, i = 1, . . . , I, (3.255)

where we recall that x̃ki is defined in (3.217). Invoking the first order optimality
condition of x̃ki , it is not difficult to check that the following property holds for
Δx̃k(i):

(
Δx̃k(i)

)T (
∇f̃i

(
x̄kφ | xk(i)

)−∇fi
(
xk(i)

)+ I · yk(i)
)
+G(

x̃ki
)−G(

x̄kφ
) ≤ −τi

∥
∥
∥Δx̃k(i)

∥
∥
∥

2
.

(3.256)
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We begin studying the dynamics of F along {x̄kφ}k∈N+ . Using (3.237) and

invoking the descent lemma [cf. Lemma 3.14], with L �
∑I
i=1 Li , we have:

F
(
x̄k+1
φ

)

≤ F (
x̄kφ

)+ γ k

I

I∑

i=1

φk(i)∇F
(
x̄kφ

)T
Δx̃k(i) +

L

2

(γ k)2

I

I∑

i=1

(φk(i))
2
∥
∥
∥Δx̃k(i)

∥
∥
∥

2

(3.256)≤ F
(
x̄kφ

)− γ k

I

I∑

i=1

φk(i)

(

τi

∥
∥
∥Δx̃k(i)

∥
∥
∥

2 +G(
x̃k(i)

)−G(
x̄kφ

)
)

+ γ k

I

I∑

i=1

φk(i)

(
∇fi

(
xk(i)

)− ∇f̃i
(
x̄kφ | xk(i)

)± ∇f̃i
(
x̄kφ | x̄kφ

))T
Δx̃k(i)

+ γ k

I

I∑

i=1

φk(i)

(
∇F (

x̄kφ
)− I · yk(i) ±

(
I · ȳkφ

))T
Δx̃k(i) +

L

2

(γ k)2

I

I∑

i=1

(φk(i))
2
∥
∥
∥Δx̃k(i)

∥
∥
∥

2

(a)≤ F
(
x̄kφ

)− γ k

I

I∑

i=1

φk(i)

(

τi

∥
∥
∥Δx̃k(i)

∥
∥
∥

2 +G(
x̃k(i)

)−G(
x̄kφ

)
)

+ γ k

I

I∑

i=1

φk(i)

(
Li + L̃i

) ∥
∥
∥Δxk(i)

∥
∥
∥
∥
∥
∥Δx̃k(i)

∥
∥
∥

+ γ k

I

I∑

i=1

φk(i)

⎛

⎝
I∑

j=1

Lj

∥
∥
∥Δxk(j)

∥
∥
∥

⎞

⎠
∥
∥
∥Δx̃k(i)

∥
∥
∥+ γ k

I∑

i=1

φk(i)

∥
∥
∥yk(i) − ȳkφ

∥
∥
∥
∥
∥
∥Δx̃k(i)

∥
∥
∥

+ L

2

(γ k)2

I

I∑

i=1

(φk(i))
2
∥
∥
∥Δx̃k(i)

∥
∥
∥

2
, (3.257)

where in (a) we used (3.239), Assumption 4.14.2, and Assumption 4.1.2.
Invoking the convexity of G and (3.237), we can write

G
(
x̄k+1
φ

) ≤ G(
x̄kφ

)− γ k

I

I∑

i=1

φk(i)

(
G
(
x̄kφ

)−G(
x̃ki

))
. (3.258)
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Substituting (3.258) in (3.257) and using (3.245) [cf. Lemma 4.22], τmin �
mini τi > 0, and (3.249), we can write: for sufficiently large k ∈ N+,

V
(
x̄k+1
φ

) ≤ V (
x̄kφ

)− γ k
(
τmin φlb

I
− Lφ2

ub γ
k

2 I

)
I∑

i=1

∥
∥
∥Δ̃xk(i)

∥
∥
∥

2

+ B11 · γ k
I∑

i=1

⎛

⎝
∥
∥
∥Δxk(i)

∥
∥
∥+

I∑

j=1

∥
∥
∥Δxk(j )

∥
∥
∥+

∥
∥
∥yk(i) − ȳkφ

∥
∥
∥

⎞

⎠
∥
∥
∥Δ̃xk(i)

∥
∥
∥

≤ V (
x̄kφ

)− B12 γ
k

I∑

i=1

∥
∥
∥Δ̃xk(i)

∥
∥
∥

2 + B13 · γ k
I∑

i=1

(∥
∥
∥yk(i) − ȳkφ

∥
∥
∥+

∥
∥
∥Δxk(i)

∥
∥
∥
)

︸ ︷︷ ︸
�T k

(3.259)

whereB11, B12, B13 are some finite, positive, constants, and in the last inequality we
used the fact that

∥
∥Δx̃k(i)

∥
∥ ≤ B14, with i = 1, . . . , I , for sufficiently large k ∈ N+

and some finite, positive, constant B14, which is a direct consequence of (3.247)
(cf. Lemma 4.22) and (3.249) (cf. Proposition 4.23).

Note that,
∑∞
k=0 T

k < ∞, due to Proposition 4.23 [cf. (3.250)] and Proposi-
tion 4.24 [cf (3.253)]. We can then apply Lemma 3.16 to (3.259), with the following
identifications:

Y k = V (
x̄kφ

)
, Zk = T k, and Wk = B12 γ

k
I∑

i=1

∥
∥
∥Δx̃k(i)

∥
∥
∥

2
,

which, using Assumption 3.1.4, yields (i) limk→∞ V
(
x̄kφ

) = V∞, with V∞ finite;
and (ii)

∞∑

k=0

γ k
I∑

i=1

∥
∥
∥Δx̃k(i)

∥
∥
∥

2
<∞. (3.260)

Since
∑∞
k=0 γ

k = ∞, (3.260) implies lim infk→∞
∑I
i=1

∥
∥Δx̃k(i)

∥
∥ = 0.

We prove next that lim supk→∞
∑I
i=1

∥
∥Δx̃k(i)

∥
∥ = 0, for all i = 1, . . . , I . Assume

on the contrary that lim supk→∞
∑I
i=1

∥
∥Δx̃k(i)

∥
∥ > 0. Since lim infk→∞

∑I
i=1

∥
∥

Δx̃k(i)
∥
∥ = 0, there exists an infinite set K ⊆ N+, such that for all k ∈ K , one

can find an integer tk > k such that

∑I
i=1 ‖Δx̃k(i)‖ < δ,

∑I
i=1 ‖Δx̃tk(i)‖ > 2δ, (3.261)

δ ≤ ∑I
i=1 ‖Δx̃j(i)‖ ≤ 2δ, if k < j < tk. (3.262)
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Therefore, for all k ∈ K ,

δ <

I∑

i=1

∥
∥
∥Δx̃tk(i)

∥
∥
∥−

I∑

i=1

∥
∥
∥Δx̃k(i)

∥
∥
∥ ≤

I∑

i=1

∥
∥
∥Δx̃tk(i) −Δx̃k(i) ± x̂i

(
x̄kφ

)± x̂i
(
x̄tkφ

)∥∥
∥

(a)≤
I∑

i=1

(
1 + L̂i

) ∥∥
∥x̄tkφ − x̄kφ

∥
∥
∥+

I∑

i=1

∥
∥
∥̃xtk(i) − x̂i

(
x̄tkφ

)∥∥
∥+

I∑

i=1

∥
∥
∥̃xk(i) − x̂i

(
x̄kφ

)∥∥
∥

︸ ︷︷ ︸

�ek1

(3.245)≤
I∑

i=1

(
1 + L̂i

) φub

I

tk−1∑

j=k
γ j

I∑

	=1

∥
∥
∥Δx̃j(	)

∥
∥
∥+ ek1

≤
I∑

i=1

(
1 + L̂i

) φub

I

tk−1∑

j=k+1

γ τ
I∑

	=1

∥
∥
∥Δx̃j(	)

∥
∥
∥+ ek1 +

I∑

i=1

(
1 + L̂i

) φub

I
γ k

I∑

	=1

∥
∥
∥Δx̃k(	)

∥
∥
∥

︸ ︷︷ ︸

�ek2

(b)≤
I∑

i=1

(
1 + L̂i

) φub

δ

tk−1∑

j=k+1

γ j
I∑

	=1

∥
∥
∥Δx̃j(	)

∥
∥
∥

2 + ek1 + ek2,

(3.263)

where in (a) we used Lemma 4.20(a); and in (b) we used (3.262) and Lemma 3.15.
Note that

1. limk→∞ ek1 = 0, due to Lemma 4.21 [cf. (3.242)], Proposition 4.23 [cf. (3.249)],
and Proposition 4.24 [cf. (3.252)];

2. limk→∞ ek2 = 0, due to (3.260), which implies limk→∞ γ k
∥
∥Δx̃k(i)

∥
∥2 = 0, and

thus limk→∞ γ k
∥
∥Δx̃k(i)

∥
∥ = 0 (recall that γ k ∈ (0, 1]); and

3.

lim
k→∞

tk−1∑

j=k+1

γ j
I∑

i=1

∥
∥
∥Δx̃j(i)

∥
∥
∥

2 = 0,

due to (3.260).

This however contradicts (3.263). Therefore, it must be

lim
k→∞

∥
∥
∥Δx̃k(i)

∥
∥
∥ = 0, i = 1, . . . , I. (3.264)
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Step 3: limk→∞ J (x̄k) = 0
This part of the proof can be found in [208], and is reported below for completeness.

Recalling the definition of J (x̄k) = ‖x̄k − x̄(x̄k)‖ [cf.(3.222)], where for
notational simplicity we introduced

x̄(x̄k) � argmin
y∈X

{

∇F(x̄k)T (y − x̄k)+ 1

2
‖y − x̄k‖2

2 +G(y)
}

, (3.265)

we start bounding J as follows

J (x̄k) =
∥
∥
∥x̄k − x̄(x̄k) ± x̂i

(
x̄k

)∥∥
∥ ≤

∥
∥
∥̂xi

(
x̄k

)− x̄k
∥
∥
∥

︸ ︷︷ ︸
term I

+
∥
∥
∥x̄(x̄k)− x̂i

(
x̄k

)∥∥
∥

︸ ︷︷ ︸
term II

,

(3.266)

where x̂i (•) is defined in (3.241). To prove limk→∞ J (x̄k) = 0, it is then sufficient
to show that both Term I and Term II in (3.266) are asymptotically vanishing. We
study the two terms separately.

1. Term I: We prove limk→∞ ‖̂xi
(
x̄k

)− x̄k‖ = 0.

We begin bounding ‖̂xi
(
x̄k

)− x̄k‖ as

∥
∥
∥̂xi

(
x̄k

)− x̄k
∥
∥
∥ =

∥
∥
∥̂xi(x̄k)± x̂i

(
x̄kφ

)± x̄kφ − x̄k
∥
∥
∥

≤
∥
∥
∥̂xi

(
x̄kφ

)− x̄kφ
∥
∥
∥+ (1 + L̂i )

∥
∥
∥x̄kφ − x̄k

∥
∥
∥. (3.267)

By (3.240) and Proposition 4.23 [cf. (3.249)] it follows that

lim
k→∞

∥
∥
∥x̄kφ − x̄k

∥
∥
∥ = 0. (3.268)

Therefore, to prove limk→∞ ‖̂xi
(
x̄k

)−x̄k‖ = 0, it is sufficient to show that ‖̂xi
(
x̄kφ

)−
x̄kφ‖ is asymptotically vanishing, as proved next.

We bound
∥
∥̂xi

(
x̄kφ

)− x̄kφ
∥
∥ as:

∥
∥
∥̂xi

(
x̄kφ

)− x̄kφ ± x̃k(i) ± x̂i
(
xk(i)

)∥∥
∥

≤
∥
∥
∥Δx̃k(i)

∥
∥
∥+

∥
∥
∥̂xi

(
xk(i)

)− x̃k(i)

∥
∥
∥+

∥
∥
∥̂xi

(
xk(i)

)− x̂i
(
x̄kφ

)∥∥
∥

≤
∥
∥
∥Δx̃k(i)

∥
∥
∥+ B15

I∑

j=1

∥
∥
∥xk(j) − x̄kφ

∥
∥
∥+ B16

∥
∥
∥yk(i) − ȳkφ

∥
∥
∥ , (3.269)
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where B15 and B16 are some positive, finite, constants; and in the last inequality we
used Lemmas 4.20 and 4.21 [cf. (3.242)]. Invoking

1. limk→∞
∥
∥Δx̃k(i)

∥
∥ = 0 [cf. (3.264)];

2. limk→∞
∥
∥xk(i) − x̄kφ

∥
∥ = 0, for all i = 1, . . . , I , [cf. (3.249)]; and

3. limk→∞
∥
∥yk(i) − ȳkφ

∥
∥ = 0, for all i = 1, . . . , I , [cf. (3.252)],

the desired result, limk→∞
∥
∥̂xi

(
x̄kφ

) − x̄kφ
∥
∥ = 0, follows readily. This together with

(3.268) and (3.267) prove

lim
k→∞

∥
∥
∥̂xi

(
x̄k

)− x̄k
∥
∥
∥ = 0. (3.270)

• Term II: We prove limk→∞ ‖x̄(x̄k)− x̂i
(
x̄k

)‖ = 0.

We begin deriving a proper upper bound of ‖x̄(x̄k) − x̂i (x̄k)‖. By the first order
optimality condition of x̄(x̄k) and x̂i(x̄k) we have

(
x̂i (x̄k)− x̄(x̄k)

)T
(
∇F(x̄k)+ x̄(x̄k)− x̄k

)
+G(

x̂i (x̄k)
)−G(

x̄(x̄k)
) ≥ 0,

(
x̄(x̄k)− x̂i (x̄k)

)T
(
∇f̃i (̂xi (x̄k) | x̄k)+∇F(x̄k)−∇fi(x̄k)

)

+G(
x̄(x̄k)

)−G(
x̂i (x̄k)

) ≥ 0,

which yields
∥
∥
∥x̄(x̄k)− x̂i (x̄k)

∥
∥
∥ ≤

∥
∥
∥∇f̃i (̂xi (x̄k) | x̄k)−∇fi(x̄k)− x̂i (x̄k)+ x̄k

∥
∥
∥

≤
∥
∥
∥∇f̃i (̂xi (x̄k) | x̄k)±∇fi (̂xi(x̄k))− ∇fi(x̄k)

∥
∥
∥+

∥
∥
∥̂xi (x̄k)− x̄k

∥
∥
∥

≤ B17

∥
∥
∥̂xi (x̄k)− x̄k

∥
∥
∥, (3.271)

where B17 is some positive, finite, constant; and in the last inequality we used the
Lipschitz continuity of ∇fi(•) (cf. Assumption 4.1) and ∇f̃i (x | •) (cf. Assump-
tion 4.14).

Using (3.270) and (3.271), we finally have

lim
k→∞

∥
∥
∥x̄(x̄k)− x̂i (x̄k)

∥
∥
∥ = 0. (3.272)

Therefore, we conclude

lim
k→∞ J (x̄

k)
(3.266)≤ lim

k→∞

∥
∥
∥̂xi (x̄k)− x̄k

∥
∥
∥

︸ ︷︷ ︸
(3.270)= 0

+ lim
k→∞

∥
∥
∥x̄(x̄k)− x̂i (x̄k)

∥
∥
∥

︸ ︷︷ ︸
(3.272)= 0

= 0. (3.273)

This completes the proof of Step 3, and also the proof of Theorem 4.16. �
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3.4.4 Applications

In this section, we test the performance of SONATA (Algorithm 10) on both
convex and nonconvex problems. More specifically, as convex instance of Prob-
lem (3.167), we consider a distributed linear regression problem (cf. Sect. 3.4.4.1)
whereas as nonconvex instances of (3.167), we study a target localization problem
(cf. Sect. 3.4.4.2). Other applications and numerical results can be found in [208,
228, 232].

3.4.4.1 Distributed Robust Regression

The distributed robust linear regression problem is an instance of the empirical risk
minimization considered in Example 1 in Sect. 3.4.1.1: Agents in the network want
to cooperatively estimate a common parameter x of a linear model from a set of
distributed measures corrupted by noise and outliers; let Di � {di 1, . . . , di ni } be
the set of ni measurements taken by agent i. To be robust to the heavy-tailed errors
or outliers in the response, a widely explored approach is to use the Huber’s criterion
as loss function, which leads to the following formulation

minimize
x

F(x) �
I∑

i=1

ni∑

j=1

H
(

bTij x − di j
)
, (3.274)

where bij ∈ R
m is the vector of features (or predictors) associated with the response

dij , owned by agent i, with j = 1, . . . , ni and i = 1, . . . , I ; and H : R → R is the
Huber loss function, defined as:

H (r) =
{
r2, if |r| ≤ α,
α · (2 |r| − α) , otherwise;

for some given α > 0. This function is quadratic for small values of the residual
r (like the least square loss) but grows linearly (like the absolute distance loss)
for large values of r . The cut-off parameter α describes where the transition from
quadratic to linear takes place. Note that H is convex (but not strongly convex) and
differentiable, with derivative:

H ′(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−2 α, if r < −α,
2 r, if r ∈ [−α, α],
2 α, if r > α.

(3.275)
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Introducing

fi (x) �
ni∑

j=1

H
(

bTij x − di j
)
,

(3.274) is clearly an instance of Problem (3.167), with F = ∑I
i=1 fi and G = 0. It

is not difficult to check that Assumption 4.1 is satisfied.
We apply SONATA to Problem (3.274) considering two alternative choices of

the surrogate functions f̃i . The first choice is the linear approximation of fi (plus a
proximal regularization): given the local copy xk(i),

f̃i

(
x(i) | xk(i)

)
= fi

(
xk(i)

)
+ ∇fi

(
xk(i)

)T (
x(i) − xk(i)

)
+ τi

2

∥
∥
∥x(i) − xk(i)

∥
∥
∥

2 ;
(3.276)

with

∇fi
(

xk(i)
)
=

ni∑

j=1

bij ·H ′ (bTij xk(i) − di j
)
,

where H ′(•) is defined in (3.275). An alternative choice for f̃i is a quadratic
approximation of fi at xk(i):

f̃i

(
x(i) | xk(i)

)
=

ni∑

j=1

H̃ij

(
x(i) | xk(i)

)
+ τi

2
‖x(i) − xk(i)‖2, (3.277)

where H̃ij is given by

H̃ij

(
x(i) | xk(i)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

α

rkij

·
(

bTij x(i) − dij
)2
, if

∣
∣
∣rkij

∣
∣
∣≥α,

(
bTij x(i) − dij

)2
, if

∣
∣
∣rkij

∣
∣
∣<α;

with rkij � bTij xk(i) − dij .

Note that the subproblems in Step 2 of Algorithm 10, with f̃i given by (3.276) or
(3.277), have a closed form solution. In particular, x̃k

(i)
associated with the surrogate

in (3.277) is given by

x̃ki =
(
τi I + 2 BTi Dki Bi

)−1 (
τi xk − (I · yk(i) −∇fi(xk(i)))+ 2 BTi Di di

)
,
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where Bi is the matrix whose j -th row is bTij ; di is the vector whose j -th component

is dij ; and Dki is a diagonal matrix whose j -th diagonal entry is min{1, α/rkij }.
Numerical Example We simulate a network of I = 30 agents, modeled as a
directed time-varying graph. At each iteration, the graph is generated according to
the following procedure. All the agents are connected through a time-varying ring; at
each iteration the order of the agents in the ring is randomly permuted. In addition
to the ring topology, each agent has one out-neighbor, selected at each iteration
uniformly at random. In (3.274), the parameter x to estimate has dimension 200,
with i.i.d. uniformly distributed entries in [−1, 1]; ni = 20 (number of measures
per agent); and the elements of the vectors bij are i.i.d. Gaussian distributed
and then normalized so that ‖bij‖ = 1; the noise affecting the measurements is
generated according to a Gaussian distribution, with standard deviation σ = 0.1,
and each agent has one measurement corrupted by one outlier following a Gaussian
distribution, with standard deviation 5 · σ ; and finally, the cut-off parameter α is set
to be α = 3 · σ .

The free parameters in SONATA (Algorithm 10) are tuned as follows. The
proximal parameters τi in (3.276) and (3.277) are set to τi = 2 and τi = 1.5,
respectively, for all i = 1, . . . , I . In both instances of the algorithm, the step-size
γ k is chosen according to the rule (3.108), with parameters γ 0 = 0.1 and μ = 0.01.
In the consensus and tracking updates (Step 3), the matrices Ak are chosen according
to the push-sum rule: akij = 1/dkj . We will refer to the two instances of SONATA
as SONATA-L (“L” stands for linearized) for the one associated with the surrogate
in (3.276), and SONATA-SCA for the one associated with the surrogate (3.277).
We compare SONATA with the subgradient-push algorithm proposed in [169]. The
step-size in the algorithm is chosen according to (3.108), with parameters γ 0 = 0.5,
μ = 0.01 (this choice resulted in the best practical performance among all the tested
tunings).

To compare the two algorithms, as merit functions, we used J k � ‖∇F(x̄k)‖∞
and Dk � (1/I) · ∑I

i=1 ‖xk(i) − x̄k‖2; the former measures the distance of the

average of the iterates x̄k from stationarity whereas the latter is a measure of the
consensus disagreement. In Fig. 3.15 we plot J k andDk for all the algorithms versus
the number of messages exchanged at each iteration k. For the (sub)gradient-push
algorithm, this number coincides with the iteration index k whereas for the two
instances of SONATA it is 2·k (recall that SONATA employs two communications at
each iteration). The curves are averaged over 100 Monte-Carlo simulations: in each
trial, the parameter x does not change while the noise and graph connectivity are
randomly generated (as described above). The analysis of the figure clearly shows
that both instances of SONATA lock consensus and converge much faster than the
(sub)gradient-push. Furthermore, SONATA-SCA outperforms SONATA-L, since it
better exploits the convexity of the loss function.
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Fig. 3.15 Robust linear regression (3.274): distance from optimality J k and consensus disagree-
ment Dk versus the number of message exchanges. Both instances of SONATA significantly
outperform the (sub)gradient-push [169]

3.4.4.2 Target Localization

Consider the target localization problem described in Example 3 of Sect. 3.4.1.1:

minimize
x�(xt )nt=1

F(x) �
I∑

i=1

n∑

t=1

pit

(
dit − ‖xt − si‖2

)2

subject to x(i) ∈ X ⊆ R
m, ∀i = 1, . . . , I,

(3.278)

where we recall that n is the number of targets; si is the vector of the coordinates
of sensor i’s location; dit is the squared Euclidean distance between the position of
sensor i and that of target t; xt is an estimate (to be found) of the location of target t ;
X is a closed convex set; and pit ∈ {0, 1} is a scalar taking value zero if the ith agent
does not have any measurement related to target t . Clearly (3.278) is an instance of
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Problem (3.167), with F = ∑I
i=1 fi , G = 0, and

fi (x) =
n∑

t=1

pit

(
dit − ‖xt − si‖2

)2
. (3.279)

We consider next two instances of SONATA, associated with two alternative
surrogate functions f̃i . A first choice is using the first order approximation of fi
in (3.279), that is,

f̃i

(
x(i) | xk(i)

)
= fi

(
xk(i)

)
+∇fi

(
xk(i)

)T (
x(i) − xk(i)

)
+ τi

2

∥
∥
∥x(i) − xk(i)

∥
∥
∥

2
,

(3.280)

where xk(i) � (xk(i),t )nt=1, ∇fi(xk(i)) = [∇1fi(xk(i),1)
T , . . . ,∇nfi(xk(i),n)T ]T , and

∇t fi (xk(i),t ) = −4 · pit
(
dit − ‖xk(i),t − si‖2

)
·
(

xk(i),t − si
)
.

A second choice for f̃i is motivated by the observation that (3.279) is a fourth-
order polynomial in each xt ; one may want to preserve the “partial” convexity in fi
by keeping the first and second order (convex) terms in each summand of (3.279)
unaltered and linearizing the higher order terms. This leads to the following:

f̃i

(
x(i) | xk(i)

)
=

n∑

t=1

pit

(

f̃i t

(
x(i),t | xk(i)

)
+ τi

2

∥
∥
∥x(i),t − xk(i),t

∥
∥
∥

2
)

, (3.281)

where x(i) � (x(i),t )nt=1,

f̃i t

(
x(i),t | xk

)
= xT(i),t Si x(i),t − bkTi t

(
x(i),t − xk(i),t

)
,

with Si = 4 · si sTi + 2 · ‖si‖2I, and

bki t = 4‖si‖2si − 4
(
‖xk(i),t‖2 − dit

) (
xk(i),t − si

)
+ 8

(
sTi xk(i),t

)
xk(i),t .

Numerical Example We simulate a network of I = 30 sensors, modeled as a
directed time-varying graph; and we deploy n = 5 targets. The graph is generated
as described in the previous example (cf. Sect. 3.4.4.1). The locations of the sensors
and targets are generated uniformly at random in [0, 1]2. The parameters pit take
values {0, 1}, with equal probability. The distances di t are corrupted by i.i.d. zero-
mean Gaussian noise, with standard deviation set to be the minimum pairwise
distance between sensors and targets. We let the constraint set X = R

2.
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The free parameters in SONATA (Algorithm 10) are tuned as follows. The
proximal parameters τi in (3.280) and (3.281) are set to τi = 7 and τi = 5,
respectively, for all i = 1, . . . , I . In both instances of the algorithm, the step-
size γ k is chosen according to the rule (3.108), with parameters γ 0 = 0.1 and
μ = 10−4. In the consensus and tracking updates (Step 3), the matrices Ak

are chosen according to the push-sum rule: akij = 1/dkj . We will refer to the
two instances of SONATA as SONATA-L (“L” stands for linearized) for the one
associated with the surrogate in(3.280), and SONATA-SCA for the one associated
with the surrogate (3.281). We compare SONATA with the distributed gradient [233]
for unconstrained optimization (adapted here to account for the constraints; note
that for such a version there is no formal proof of convergence in the literature).
The step-size in the algorithm [233] is chosen according to (3.108), with parameters
γ 0 = 0.5, μ = 0.01 (this choice resulted in the best practical performance among
all the tested tunings).

A comparison of the algorithms is given in Fig. 3.16, where we plotted the merit
functions J k � ‖∇F(x̄k)‖∞ and Dk � (1/I) · ∑I

i=1 ‖xk(i) − x̄k‖2 versus the
number of messages exchanged at each iteration k (cf. Sect. 3.4.4.1). The curves

Iteration
0 20 40 60 80 100 120 140 160 180 200

10-8

10-6

10-4

10-2

100

102

SONATA-L
SONATA-SCA
Gradient-push

Fig. 3.16 Target localization problem (3.278): distance from optimality J k and consensus dis-
agreement Dk versus the number of message exchanges. Both instances of SONATA significantly
outperform the distributed gradient algorithm [233]
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are averaged over 100 Monte-Carlo simulations; in each trial, the position of the
sensors and targets were kept fixed, while the noise and graph connectivity were
randomly generated every trial. Figure 3.16 shows that both instances of SONATA
converge much faster than the benchmark distributed gradient algorithm. This can
be explained by the fact that SONATA better exploits the problem’s structure and
employs the tracking of the average of agents’ gradients.

3.4.5 Sources and Notes

Distributed optimization has a rich literature, dating back to the 1980s [240].
Since then, due to the emergence of large-scale networks, advances in computing
and storage, data acquisition, and communications, the development of distributed
algorithms for solving optimization problems over networks has received significant
attention. Besides the distributed approaches we are going to summarize below,
many efforts have been made to solve optimization problems over networks with
specific topology, including multilayer HNets (e.g., master-slave architectures and
shared-memory systems)—see Fig. 3.13. However, all these schemes require some
degree of centralization to be implemented, due to the use of master nodes. Since the
focus of this lecture is on distributed algorithms implementable on general network
architectures, in the following we omit to discuss the literature on algorithms for
HNets. Although the lecture considered mainly nonconvex optimization, we begin
overviewing the much abundant literature of distributed algorithms for convex
problems. In fact, some of the methods and tools introduced in this lecture for
nonconvex problems can be applied and are useful also for convex instances.

3.4.5.1 Distributed Convex Optimization

The literature on distributed solution methods for convex problems is vast and
a comprehensive overview of current methods goes beyond the scope of this
commentary. Here we briefly focus on the methods somehow related to the proposed
SCA approach and distributed gradient tracking. Generally speaking, we roughly
divide the literature in two groups, namely: primal and dual methods.

Primal Methods While substantially different, primal methods can be generi-
cally abstracted as a combination of a local (sub)gradient step and a subsequent
consensus-like update (or multiple consensus updates); examples include [116, 169,
170, 216, 217]. Algorithms for adaptation and learning tasks based on in-network
diffusion techniques were proposed in [39, 46, 202]. Schemes in [39, 46, 170, 202,
217] are applicable only to undirected graphs; [39, 170, 217] require the consensus
matrices to be doubly-stochastic whereas [46, 202] use row-stochastic matrices but
are applicable only to strongly convex agents’ cost functions having a common
minimizer. When the graph is directed, doubly-stochastic weight matrices compliant
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to the graph may not exist; and, when they exist, their construction is compu-
tationally prohibitive for networks with arbitrary topology [94]. Recently, some
new algorithms have been developed that do not require doubly-stochastic weights.
Examples, include [169], where the authors combined the sub-gradient algorithm
[170] with the push-sum consensus protocol [123]; and [256, 257]. However, the
schemes in [170, 256, 257] considered only unconstrained optimization problems;
in fact, up until the very recent works [208, 228, 232], it was not clear how to
leverage push-sum protocols to deal with constraints (e.g., to preserve the feasibility
of the iterates).

In all the aforementioned algorithms but [208, 232], agents perform their local
optimization using only the gradient of their own function, while neglecting the
rest of the sum-cost function F [cf. (3.167)]. This makes the algorithms simple
but usually slow: Even if the objective functions are differentiable and strongly
convex, these methods still need to use a diminishing step-size to converge to a
consensual solution, and thus converge at a sub-linear rate. On the other hand, with
a constant (sufficiently small) step-size, these distributed methods can be faster,
but they only converge to a neighborhood of the solution set. This phenomenon
creates an exactness-speed dilemma. In addition, convergence of these algorithms
was proved only under the assumption that the objective function has bounded
(sub)gradient, which limits the range of applicability of these schemes.

A different class of distributed (primal) approaches that bypasses the above
issues is the one based on the idea of gradient tracking: each agent updates its
own local variables along a surrogate direction that tracks the gradient average∑
i ∇fi . This idea was proposed independently in [70–72] for the general class

of constrained nonsmooth nonconvex problems (3.167), and in [259] for the special
case of strongly convex, unconstrained, smooth, optimization. The works [208, 232]
extended the algorithms to (possibly) time-varying digraphs (still in the nonconvex
setting of [70–72]). A convergence rate analysis of the scheme [259] was later
developed in [172, 191], with [172] considering time-varying (directed) graphs. The
benefit of these schemes is threefold: (1) a constant step-size can be employed,
instead of a diminishing one; (2) the assumption that the gradient is bounded is
no longer needed; and (3) the convergence speed of the algorithms significantly
improves—linear convergence was in fact proved in [172, 191] for unconstrained,
smooth, strongly convex

∑
i fi , and more recently in [231] for the more general

class of constrained, nonsmooth, problems (3.167) (with F strongly convex).
Finally, it is worth mentioning that a difference algorithmic structure was

proposed in [216] to cancel the steady state error in the aforementioned plain
decentralized gradient descent methods and converge to a consensual solution using
a fixed (sufficiently small) step-size. Convergence at a sub-linear rate was proved
when the objective function is smooth and convex (and the problem unconstrained),
and a Q-linear rate when the objective function is (smooth) strongly convex (still
unconstrained optimization).

Dual-Based Methods This class of algorithms is based on a different approach:
slack variables are first introduced to decouple the sum-utility function while forcing
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consistency among these local copies by adding consensus equality constraints
(matching the graph topology). Lagrangian dual variables are then introduced to
deal with such coupling constraints. The resulting algorithms build on primal-dual
updates, aiming at converging to a saddle point of the (augmented) Lagrangian func-
tion. Examples of such algorithms include ADMM-like methods [42, 115, 217, 247]
as well as inexact primal-dual instances wherein a first order [43] or second-order
[165, 166] approximation of the Lagrangian function is minimized at each iteration.
All these algorithms can handle only static and undirected graphs. Dual methods
cannot be trivially extended to time-varying graphs or digraphs, as it is not clear
how to enforce consensus via equality constraints over time-varying or directed
networks. Furthermore, all the above schemes but [42, 217] require the objective
function to be smooth and the optimization problem to be unconstrained.

3.4.5.2 Distributed Nonconvex Optimization

For the general nonconvex problem (3.167), results are scarse. We remark that the
parallel algorithm described in Lecture II as well as those discussed in Sect. 3.3.7
are not applicable to the distributed setting (3.167): either they require the graph
to be complete (i.e., at each iteration, agents must be able to exchange information
with all the others) or they assume full knowledge of F from the agents. There are
only a few distributed algorithms designed for (3.167), including primal methods
[20, 72, 233, 245] and dual methods [108, 275]. The key features of these algorithms
are summarized in Table 3.8 and briefly discussed next.

Primal Methods The distributed stochastic projection scheme [20] implements
random gossip between agents and uses diminishing step-size, and can handle
smooth objective functions over undirected static graphs. In [233], the authors
showed that the distributed push-sum gradient algorithm with diminishing step-size,
earlier proposed for convex objectives in [169], converges also when applied to non-
convex smooth unconstrained problems. The first provably convergent distributed
scheme for (3.167), with G �= 0 and (convex) constraints X, over time-varying
digraphs is NEXT [70–72]. A special instance of NEXT, applied to smooth V over
undirected static graphs, was later proved in [245] to have sub-linear convergence
rate. However, the consensus protocol employed in [72, 245] uses doubly-stochastic
weight matrices, and thus is limited to special digraphs (or undirected graphs).
Moreover, all the algorithms discussed above require that the (sub)gradient of V
is bounded on X (or Rm).

This issue was resolved in SONATA (Algorithm 10, Sect. 3.4.3), proposed in
[208, 232], which combined a judiciously designed perturbed push-sum consensus
scheme with SCA techniques. Based on a new line of analysis whereby optimization
and consensus dynamics are jointly analyzed by introducing a novel Lyapunov
function, SONATA was shown to converge sub-linearly to a stationary solution
of (3.167), without requiring the (sub)gradient of V being bounded. SONATA is
also the first provably convergent algorithm that (i) can deal with constrained,
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nonsmooth, (convex and nonconvex) problems in the form (3.167), and time-varying
digraphs; and (ii) employs either a constant or diminishing step-size.

Dual-Based Methods As their convex counterparts, dual-based schemes [108,
275] cannot deal with time-varying or directed graphs. The algorithm proposed
in [275] is an early attempt of distributed method for nonconvex problems.
However, it calls for the solution of nonconvex subproblems and converges to
(stationary) solutions of an auxiliary problem, which are not necessarily stationary
for the original problem. The prox-PDA algorithm in [108], proposed for linearly
constrained problems, can be applied to Problem (3.167), but it is limited to the
special classes where the functions fi are smooth and X = R

m. The dual-based
algorithms discussed above but [108] assume that the (sub)gradient of V is bounded.

Practical Implementation Issues and Open Questions The majority of the
methods discussed above assume an “ideal” distributed computing environment
wherein all the communication links operate reliably and noise-free, and the agents
communicate and update their own variables in a synchronous fashion. There are
however many practical issues that arise for these models, including difficulties
associated with maintaining time-synchronization in face of computational and
communication delays, reaching deadlock situations requiring re-initializations of
the update process due to node/link failures.

Asynchronous methods based on randomization techniques were proposed in
[18–20, 22, 112, 130, 140, 168, 176, 225, 247, 270]. These algorithms assume
that agents are activated (wakeup) randomly (with no coordination), run some
local computation, and then wake up (some or all) their neighbors to pass them
their most recent update. Both random (e.g., based on gossip consensus schemes)
[18–20, 112, 140, 168, 225, 247, 270] and deterministic (e.g., based on the push-
sum protocol) activations [22, 130, 176] of the neighbors were proposed. While
asynchronous in the activation of the agents performing the update, these schemes
still impose a coordination among the agents, cannot tolerate (arbitrary) delays in
the communications (packet losses are considered in [22, 130, 270]) or optimization
(out-of-sync information), and require the agents to stay all the time in listening
mode. A first attempt to deal with this issue was proposed in [255]: a dual-based
scheme is employed wherein agents are randomly activated, and update their local
copies using possibly outdated information. The probabilistic model for asynchrony
requires that the random variables triggering the activation of the agents and the
delay vector used by the agent to performs its update are independent. While this
greatly simplifies the convergence analysis, it makes the model not realistic—see
Sect. 3.3.7 in Lec. II for a discussion on this issue. Furthermore, [255] is applicable
only to convex instances of (3.167), and over fixed undirected graphs. At the time of
this writing, designing distributed fully asynchronous algorithms for the nonconvex
problem (3.167)—in the sense that (1) agents update their own variables with no
coordination; and (2) can handle arbitrary (deterministic or random) delay profiles—
remains an open problem. A first attempt towards this direction can be found in
[234].
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Despite of asynchrony, another question of practical interest is how to design
and implement distributed algorithms under low communication requirements, and
what trade-offs are involved in such designs/implementations. For instance, in
some sensor networks, broadcast communications can be too expensive in terms of
consumed power. Also, communications are subject to rate constraints (systems are
bandwidth limited). Furthermore, in the emerging distributed big-data applications,
optimization problems are huge-scale: computing at each iteration the gradient
with respect to all the optimization variables, communicating at each iteration, and
sending to the neighbors the entire set of variables would incur in an unaffordable
computational cost and communication overhead or is just infeasible. Some initial
investigations along this lines were presented in the literature, following alternative,
scattered, paths. For instance, in [177, 178], a distributed algorithm for convex and
nonconvex instances of (3.167) was proposed, aiming at reducing both communi-
cation and computation costs by optimizing and transmitting at each iteration only
a subset of the entire optimization variables. While asymptotic convergence of the
method was proved, the tradeoff between communication and computation has not
been studied yet. Some insight on the impact of multiple communications steps
(without optimizing) or multiple optimization steps (without communicating) can
be found in [13, 239]. Finally, some works proposed distributed methods for convex
optimization problems implementing quantized communications. Of course, much
more research needs to be done on these important topics.
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