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Abstract. This paper deals with the novel PermonSVM machine learn-
ing tool. PermonSVM is a part of our PERMON toolbox. It implements
the linear two-class Support Vector Machines. PermonSVM is built on
top of PermonQP (PERMON module for quadratic programming) which
in turn uses PETSc. The main advantage of PermonSVM is that it is par-
allel. The parallelism comes from a distribution of matrices and vectors.
The MPRGP algorithm, implemented in PermonQP, is used as a solver of
the quadratic programming problem arising from the dual SVM formu-
lation. The scalability of MPRGP was proven in problems of mechanics
with more than billion of unknowns solved on tens of thousands of cores.
Apart from the scalability of our approach, we also investigate the rela-
tions between training rate, hyperplane margin, the value of the dual
functional, and the norm of the projected gradient.
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1 Introduction

In the last two decades, the Support Vector Machines (SVMs) [7], due to
their accuracy and obliviousness to dimensionality [18], have become a popu-
lar machine learning technique with applications including genetics [5], image
processing [9], and weather forecasting [16]. In this paper, we are only interested
in SVMs for classification. SVMs belong to supervised learning algorithms, i.e.
algorithms developing a decision model from labelled training samples (training
dataset). The SVM decision model is represented by the maximal-margin hyper-
plane, i.e. the hyperplane that separates the training dataset into two classes
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with the maximal possible gap between the hyperplane and both classes. Devel-
opment of the SVM decision model leads to solving a quadratic programming
(QP) problem. A brief description of SVMs is given in Sect. 2.

In Sect. 3, PermonSVM [10] is introduced. PermonSVM represents one of a
few open-source SVM implementations for distributed environment (it is paral-
lelized using MPI). It focuses on solving large SVM problems on supercomputers.
PermonSVM is build on top of PETSc [4] and PermonQP [11]. PermonQP is a
PETSc based package for the solution of large scale QP problems. It includes
implementations of several QP solvers and it can also use any of KSP [17] and
TAO [14] solvers.

Section 4 describes the MPRGP [8] algorithm used for the solution of the QP
arising from the SVM formulation. MPRGP is implemented in PermonQP.

Finally, numerical results are presented in Sect. 5. We investigate the con-
vergence of SVM by looking, in each MPRGP iteration, at the training rate
(percentage of correctly classified samples in the training dataset), the hyper-
plane margin, the value of the QP cost function, and the norm of the projected
gradient (used in the stopping criterion of MPRGP). The scalability of our app-
roach is also demonstrated.

2 Support Vector Machines for Classifications

SVM is a supervised binary classifier, i.e. a classifier that decides whether a
sample falls into either Class A (label 1) or Class B (label −1) by means of a
model. The model is determined from the already categorised training samples
in the training phase of the classifier. Unless otherwise stated, let us assume that
the training samples are linearly separable, i.e. it is possible to separate the Class
A samples and the Class B samples using a hyperplane. The essential idea of the
SVM classifier training is to find the maximal-margin hyperplane that divides
the Class A from the Class B samples by the widest possible empty strip, which
is called the functional margin. The samples contributing to the definition of
such hyperplane are called the support vectors – see the circled samples lying on
the dashed hyperplanes depicted in Fig. 1.

Let us denote the training samples as a set of ordered pairs such that

T := {(x1, y1) , (x2, y2) , . . . , (xm, ym)},

where m is the number of samples, xi ∈ R
n (n ∈ N represents a number of

attributes) is the i-th sample and yi ∈ {−1, 1} denotes the label of the i-th sam-
ple, i ∈ {1, 2, . . . ,m}. Let H be the maximal-margin hyperplane wT x − b = 0,
where w is a normal vector; b

‖w‖ determines the offset of the hyperplane H from
the origin along its normal vector w. The problem of finding the hyperplane
H can be formulated as a constrained optimization problem in the following
hard-margin primal SVM formulation:

min
w ,b

1
2
wT w s.t. yi

(
wT xi − b

) ≥ 1. (1)
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Fig. 1. An example of a two-class classification problem solved by the linear hard-
margin SVM.

For the case of the non-perfectly linearly separable training samples, the
soft-margin SVM was designed. To handle the sensitivity of the SVM classi-
fier to possible outliers, we introduce slack variables ξ1, ξ2, . . . , ξm, and modify
the hard-margin primal SVM formulation (1) into the soft-margin primal SVM
formulation

min
w , b, ξi

1
2
wT w + C

m∑

i=1

ξi s.t.

{
yi

(
wT xi − b

) ≥ 1 − ξi,

ξi ≥ 0,
(2)

where C is a user-specified penalty1. Higher value of C increases the importance
of minimising ‖w‖ (equivalent to maximising the margin) at the expense of
satisfying the margin constraint for fewer samples. Let us refer here to several
monographs mentioning the significance of C:

– “In the support-vector networks algorithm one can control the trade-off
between complexity of decision rule and frequency of error by changing the
parameter C,. . . ” [7]

– “The parameter C controls the trade off between errors of the SVM on training
data and margin maximization (C = ∞ leads to hard-margin SVM)” [15, p.
82].

– “. . . the coefficient C affects the trade-off between complexity and proportion
of nonseparable samples and must be selected by the user” [6, p. 366].

We can observe that if 0 ≤ ξi ≤ 1, then the i-th sample lies somewhere
between the margin and their respective hyperplane (illustrated in Fig. 2); if
ξi > 1, the i-th sample is misclassified (illustrated in Fig. 3).
1 The penalty C is often called a regularization parameter in ML communities.
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Fig. 2. Soft-margin SVM example: the
encircled samples are correctly classi-
fied, but are on the wrong side of their
respective hyperplane
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Fig. 3. Soft-margin SVM example: the
encircled samples are misclassified.

The primal formulation of the soft-margin SVM (2) can be simplified
by exploiting the Lagrange duality with the Lagrange multipliers α =
[α1, α2, . . . , αm]T , β = [β1, β2, . . . , βm]T . Evaluating the Karush-Kuhn-
Tucker conditions, eliminating β and using other modifications, the problem
results into the dual formulation with an inequality (box) constraint [7].

min
α

1
2
αT Y T KY α − αT e s.t. o ≤ α ≤ Ce, (3)

where e = [1, 1, . . . , 1]T , o = [0, 0, . . . , 0]T , X = [x1, x2, . . . ,xm], y =
[y1, y2, . . . , ym]T , Y = diag(y), and K ∈ R

n×n is symmetric positive semi-
definite (SPS) matrix such that K := XT X. In the machine learning communi-
ties, K is called the Gram matrix, the kernel matrix, or in the QP terminology,
the Hessian.

Further, we introduce dual to primal reconstruction formulas for the normal
vector

w = XY α, (4)

and the bias
b =

1
|ISV |

∑

i∈ISV

(
xT

i w − yi

)
, (5)

where ISV denotes the support vector index set, i.e. ISV := {i | αi > 0, i =
1, 2, . . . ,m}, and

∣
∣ISV

∣
∣ is the cardinality of ISV . From the normal vector w and

bias b, we can easily set up the decision rule

If wT x + b ≥ 0, then x belongs to Class A, else x belongs to Class B. (6)

The decision rule (6) with concrete w and b is also called the SVM model for
the linearly separable problems.
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3 PermonSVM: SVM Implementation Based on PETSc

PermonSVM is a new SVM tool designed to run mainly in parallel even on
large supercomputers. It is written on top of PETSc [4] and PermonQP [11].
Distribution of matrices using MPI through the PETSc framework provides the
parallelism.

PermonSVM provides an implementation of the two-class classification via
soft-margin SVM. It implements a scalable training procedure based on a linear
kernel. In the training procedure, PermonSVM takes advantage of the scalable
matrix-vector product of PETSc matrices and vectors and an implicit represen-
tation of the Gram matrix (i.e. the matrix product XT X is not formed), which
saves memory and CPU time.

The resulting QP problem with an implicit Hessian matrix is solved by the
scalable QP solvers implemented in the PermonQP package.

Additional features include fast, load-balanced cross-validation and grid
search for parameter tuning, L1 and L2 loss-functions, and LIBSVM data parser.
PermonSVM provides an executable for SVM classification as well as C API
designed to be PETSc-like. Its typical usage is presented in Code 1.

4 MPRGP Algorithm

MPRGP (Modified Proportioning and Reduced Gradient Projection) [8] repre-
sents an efficient algorithm for the solution of convex QP with box constraints,
i.e. for

min
1
2
xT Ax − xT b s.t. l ≤ x ≤ u, (7)
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where A ∈ R
n×n is SPS, x is the solution, b is the right hand side, l and u

is the lower respectively upper bound. The basic version can be considered as
a modification of the Polyak algorithm. MPRGP combines the proportioning
algorithm with the gradient projections.

Let g = Ax−b be the gradient. Than we can define component-wise (for j ∈
{1, 2, . . . , n}) gradient splitting which is computed after each gradient evaluation.
The free gradient is defined as

gf
j =

{
0 if xj = lj or xj = uj ,

gj otherwise.

The reduced free gradient is

gr
j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xj = lj or xj = uj ,

min
(

xj−lj
α , gj

)
if lj < xj < uj and gj > 0,

max
(

xj−uj

α , gj

)
if lj < xj < uj and gj ≤ 0,

where α ∈ (0, 2||A||−1] is used as a step length in the expansion step. The
definition of the chopped gradient is

gc
j =

⎧
⎪⎨

⎪⎩

0 if lj < xj < uj ,

min(gj , 0) if xj = lj ,

max(gj , 0) if xj = uj .

Finally, the projected gradient is defined as gP = gf + gc. Its norm decrease is
the natural stopping criterion of the algorithm.

Let the projection onto the feasible set Ω = {x : l ≤ x ≤ u} be defined as

PΩ(x)j = min(uj ,max(lj , xj)).

Now we have all the necessary ingredients to summarise MPRGP in Algo-
rithm1.

5 Numerical Experiments

In this section, we show the scalability of our approach as well as what the
relations between the training rate (percentage of correctly classified samples),
the hyperplane margin, the value of the dual functional, and the norm of the
projected gradient are. The hyperplane (given by w and b) is computed in each
iteration of MPRGP. Using the computed hyperplane, we can evaluate the train-
ing rate and the margin (2/||w||). The value of the dual functional is trivially
computed from the gradient which is available in every MPRGP iteration. The
computation of these metrics is relatively expensive. Therefore, it is by default
disabled, but it can be toggled by a command line switch. The decrease of the
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Algorithm 1. MPRGP
Input: A, x0 ∈ Ω, b, Γ > 0, α ∈ (0, 2||A||−1]

1 g = Ax0 − b, p = gf (x0), k = 0

2 while ||gP (xk)|| is not small :

3 if ||gc(xk)||2 ≤ Γ2gr(xk)T gf (xk):

4 αf = max{αcg : xk − αcgp}
5 αcg = gT p/pT Ap
6 if αcg < αf :
7 // CG step

8 xk+1 = xk − αcgp
9 g = g − αcgAp

10 β = gf (xk+1)T Ap/pT Ap

11 p = gf (xk+1) − βp

12 else:
13 // Expansion step

14 xk+ 1
2 = xk+1 − αfp

15 g = g − αfp

16 xk+1 = PΩ(xk+ 1
2 − αgf (xk+ 1

2 ))

17 g = Axk+1 − b

18 p = gf (xk+1)

19 else:
20 // Proportioning step

21 αcg = gT gc(xk)/gc(xk)T Agc(xk)

22 xk+1 = xk − αcggc(xk)

23 g = g − αcgAgc(xk)

24 p = gf (xk+1)

25 k = k + 1

Output: xk

projected gradient norm is natural as well as the default stopping criterion of
MPRGP.

Relations mentioned above are demonstrated on a dataset from the ExCAPE
project [1] and also on the URL [13] dataset. The ExCAPE project aim is to pre-
dict compound bioactivity for the pharmaceutical industry. The tested dataset
is related to Pfam protein database. It contains 226.1 thousand samples with
2048 attributes. The URL dataset relates to the detecting of malicious websites
involved in criminal scams. It contains 2.4 million samples with 3.23 million
attributes. The dataset is publicly available on LIBSVM datasets websites [2] in
the LIBSVM format.

The experiments were run on the Salomon supercomputer [3] at
IT4Innovations. Salomon consists of 1008 compute nodes. Each compute node
contains two 2.5 GHz, 12-core Intel Xeon E5-2680v3 (Haswell) processors and
128 GB of memory. Compute nodes are interconnected by InfiniBand FDR56.
Salomon has the peak performance of 2 petaFLOPS.
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The initial guess was set to the zero vector. The relative norm of projected
gradient (i.e. the ratio of the projected gradient norm and the right-hand side
norm) being smaller than 1e−1 was used as the stopping criterion in all numerical
experiments. From our experience, while the tolerance is exceptionally high, it is
more than adequate to find a good solution. This is illustrated by the following
results.

In Tables 1 and 2 and in accompanying Figs. 4 and 5 the impact of the param-
eter C is shown. We report the maximal achieved training rate (Max rate) and
the training rate upon the solver convergence (Converged rate) as well as the
number of iterations needed to reach these rates.

Looking at the results of the ExCAPE dataset (Table 1 and Fig. 4), except for
C = 1e−5, the difference between the maximal rate and converged rate ranges
from 0.4 to 0.63%. Also note, that the best rate is achieved after relatively few
iterations. To actually satisfy the convergence criterion it is necessary to do
between 2.6 and 8 times as many iterations needed to get the maximum rate.

Table 1. ExCAPE dataset: comparison of the maximal achieved training rate (and
iteration it occurred) with training rate obtained after solver converged (and again
iteration this occurred).

C 1e−5 1e−4 1e−3 1e−2 1e−1

Max rate 76.8712 82.4114 84.3426 84.5243 84.6941

Converged rate 73.1472 81.8946 83.9301 84.1291 84.0641

Max rate iter 4 58 756 8415 9976

Converged rate iter 24 277 2868 22240 80306

The differences are much smaller for the URL dataset (Table 2 and Fig. 5).
Again, we ignore in the following discussion the results for the smallest param-
eter C, because the solution is not good enough. The rate attained after the
convergence is between 0.04 and 0.13% lower than the maximum rate. However,
to reach the best rate it is necessary to do only from 50 to 70% of the number
iterations needed to achieve convergence.

Further, we analyse the training rate, margin, value of dual functional, and
norm of the projected gradient on the per iteration basis. The results are shown
for the ExCAPE dataset in Figs. 6 and 7 for C = 1e−3, and for the URL dataset
in Figs. 8 and 9 for C = 1e−5.

The MPRGP algorithm guarantees the decrease of the functional value in
every iteration. In these examples, the norm of the projected gradient decreases
monotonously as well. However, this is not guaranteed, and in fact, we observed
high fluctuations for the ExCAPE dataset with larger values of the C parameter.

More interestingly, the training rate peaks after a relatively small number
of iterations. The training rate also oscillates. It is barely noticeable in these
examples. However, we observed very severe oscillation for the ExCAPE dataset



Investigating Convergence of Linear SVM Implemented in PermonSVM 123

Fig. 4. ExCAPE dataset: comparison of the maximal achieved training rate (and itera-
tion it occurred) with training rate obtained after solver converged (and again iteration
this occurred).

Table 2. URL dataset: comparison of the maximal achieved training rate (and iteration
it occurred) with training rate obtained after solver converged (and again iteration this
occurred).

C 1e−7 1e−6 1e−5 1e−4 1e−3

Max rate 79.2815 96.0976 96.3368 97.2961 98.2226

Converged rate 78.3386 96.0374 96.2101 97.2186 98.1828

Max rate iter 5 60 571 5469 47329

Converged rate iter 10 120 1161 9525 68548

with larger values of the parameter C. The rate difference between consecutive
iterations was sometimes over 17%. Also, notice that the hyperplane margin
starts to decrease after relatively few iterations.

The decreasing value of the dual functional and that it is negative means,
thanks to positive semi-definiteness of the Hessian and the positiveness of alpha,
that the dual solution α, on the whole, increases. Meaning, that the satisfaction
of the first constraint in (2) improves. The margin generally has a decreasing
tendency, i.e. the norm of w increases, suggesting (from (2)) that the sum of
distances of samples from their respective hyperplanes decreases as well. Note,
that this does not tell us anything about the training rate. In fact, we can see
that improving this sum can lead to decrease in the training rate.
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Fig. 5. URL dataset: comparison of the maximal achieved training rate (and iteration
it occurred) with training rate obtained after solver converged (and again iteration this
occurred).

Fig. 6. ExCAPE dataset, C = 1e−3: the relation of the training rate and margin on the
iteration number. The iteration number given in bold is where the maximum training
rate was reached.
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Fig. 7. ExCAPE dataset, C = 1e−3: the relation of the value of dual functional and
the norm of the projected gradient on the iteration number. The iteration number
given in bold is where the maximum training rate was reached.

Fig. 8. URL dataset, C = 1e−5: the relation of the training rate and margin on the
iteration number. The iteration number given in bold is where the maximum training
rate was reached
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Fig. 9. URL dataset, C = 1e−5: the relation of the value of dual functional and the
norm of the projected gradient on the iteration number. The iteration number given
in bold is where the maximum training rate was reached.

Table 3. ExCAPE dataset, C = 1e−3: MPRGP strong parallel scalability

Number of cores 1 2 4 8 16 24 48

Time 289.36 158.87 81.75 43.86 30.29 28.95 19.63

The default stopping criterion of MPRGP based on the norm of the projected
gradient seems ill-suited for SVM. It appears, despite the large tolerance, that
the problems are solved unnecessary accurately. However, it is relatively easy to
implement and use stopping criteria commonly used in SVM solvers. Looking
only at the training rate, it seems that MPRGP can obtain a reasonable solution
very quickly in few iterations.

Finally, we demonstrate the strong scalability of our solver. The big advan-
tage of PermonSVM is that it can run in a distributed environment. Moreover,
the MPRGP algorithm was proven to be scalable; for example, it can solve
problems of mechanics with more than billion of unknowns on tens of thou-
sands of cores [12]. The scalability results for the ExCAPE dataset are summa-
rized in Table 3 and Fig. 10. The results for the URL dataset are presented in
Table 4 and Fig. 11. The scalability is essentially the same as the scalability of the
sparse matrix-vector product. This operation is memory bounded as illustrated
by “Time on half nodes” results on the URL dataset. In this case, only half of the
cores on each node are used (6 cores on each socket). This MPI rank placement
significantly increases memory throughput. Thanks to this, the scaling is almost
perfect up to 48 cores, after which the size of the distributed dataset starts to
be too small to utilise the cores fully.
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Fig. 10. ExCAPE dataset, C = 1e−3: MPRGP strong parallel scalability

Table 4. URL dataset, C = 1e−5: MPRGP strong parallel scalability

Number of cores 1 2 4 8 16 24 48 72 96 120 144 168

Time 4025.91 1996.99 1030.58 540.32 308.59 242.10 121.80 94.74 86.36 75.67 72.70 72.98

Time on half nodes - - - - - 185.74 89.74 71.87 65.60 61.39 60.55 60.22

Fig. 11. URL dataset, C = 1e−5: MPRGP strong parallel scalability
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6 Conclusion

We have introduced a novel, open-source PermonSVM machine learning tool
employing scalable quadratic programming algorithms implemented in the Per-
monQP module. PermonSVM provides an implementation of the two-class clas-
sification via soft-margin SVM. Currently, it supports only a linear kernel. As a
default, it uses the MPRGP algorithm for the solution of QP obtained from the
dual SVM formulation.

We demonstrated the behaviour of the MPRGP algorithm on a dataset from
the ExCAPE project as well as on the URL dataset. We analysed the relations
between the training rate, the hyperplane margin, the value of the dual functional
and the norm of the projected gradient on the per iteration basis. We note that
the algorithm achieves a good training rate after relatively few iterations. The
scalability of our approach was also demonstrated.

Further work will include implementation of a better stopping criterion and
nonlinear kernels.
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