
Implementation of BM3D Filter on Intel
Xeon Phi for Rendering in Blender Cycles

Milan Jaros, Petr Strakos(B), and Tomas Karasek

IT4Innovations, VSB - Technical University of Ostrava,
17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic

{milan.jaros,petr.strakos,tomas.karasek}@vsb.cz

Abstract. In this paper parallel implementation of Sparse 3D
Transform-Domain Collaborative filter (BM3D) on the Intel Xeon Phi
architecture is presented. Efficiency of the implementation in terms
of speedup compared to serial implementation of the filter is demon-
strated on denoising of rendered images. We also provide comparison
with another parallel CPU version and show that ours performs better.

Using the state-of-the-art image filters such as BM3D offers power-
ful denoising capability in the area of image filtering. To achieve the
highest possible quality of the result, the filter has to perform multiple
demanding tasks over a single image. Effective implementation of the
filter is therefore very important. This is also the case, when filtering is
used for image rendering. Rendering times can be significantly decreased
by application of powerful time efficient denoising filters. Unfortunately
the existing serial implementation of the BM3D filter is time consuming.
In this paper we provide efficient parallel implementation of the BM3D
filter, and we apply it as a noise reduction technique to the rendered
images that reduces the rendering times. We also provide an optimized
version of the filter for the Intel Xeon Phi and Intel Xeon architecture.

Keywords: Image denoising · Intel Xeon Phi · Blender cycles
Rendering · Collaborative filtering · High performance computing

1 Introduction

There are plenty of areas where advanced image filtering methods can be
employed. They are extensively used in medical imaging, computer vision, or
they can be effectively applied in the area of image rendering. Here, very often,
path tracing algorithms utilizing the Monte Carlo (MC) method are used [9].
Based on the statistical approach, such rendering systems trace each ray of the
light in the scene and calculate its effect on an individual object based on the
environmental and material parameters. The results of such renderers bring high
level of realism. This is unfortunately paid back by long rendering times. On the
other hand, using only a small amount of rendered samples per pixel can reduce
the time but also incorporates a high level of noise in the image. To reduce the
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 101–114, 2018.
https://doi.org/10.1007/978-3-319-97136-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97136-0_8&domain=pdf


102 M. Jaros et al.

rendering times while keeping the photo realistic quality, utilization of the image
denoising methods has been studied [1,5].

The computationally extensive tasks are usually solved on powerful work-
stations, or they can use the computational power of supercomputers. Image
rendering is one of the areas that generates high computational load. Utilization
of supercomputers therefore becomes an interesting idea.

In our contribution, we concentrate on the state-of-the-art image denois-
ing BM3D method and customize it for HPC or multi-core environment. The
method has been published in [3] and is one of the best in the area of image
denoising [7]. We use the color variant of the method, which has been presented
in [2]. Since the method is computationally demanding, its practical potential
has been lower. For this reason, we provide its effective parallel implementation.
We present implementation that suits two different computer architectures, Intel
Xeon and Intel Xeon Phi. Our main focus is put on Intel Xeon Phi with their
many integrated core (MIC) architecture. It is nowadays extensively used in
supercomputing centres worldwide, apart from the typical CPU architecture.
We provide comparison of our parallel version of the filter running on the two
architectures with the sequential version of the filter [2]. We also compare our
implementation with different parallel implementation from Lebrun [8] that uti-
lizes OpenMP and runs on CPU. We present results in terms of total rendering
and filtering times, and we also provide results showing increasing improve-
ment by different optimizations. We also show the positive effect of the filter
on the reduction of the rendering time while conserving the final image qual-
ity. It is important to mention that we have elaborated the method within our
own developed rendering concept called CyclesPhi that can utilize the power of
supercomputers, and we make it available within the open-source 3D creation
Blender suite.

2 Previous Work

Large amount of algorithms has been studied by researchers in terms of noise
reduction in rendering methods based on Monte Carlo. It is possible to divide
the algorithms into those trying to modify sampling of the renderer and those
using filtering techniques to decrease the residual noise of the renderer.

The recent filtering techniques within the Monte Carlo based rendering sys-
tems propose, for example, the iterative approach as in [10]. Here, the authors
use a two-step iterative process. First, for the initially rendered image with low
samples they use a set of filters in every pixel and select the filter that minimizes
the pixel error in terms of mean square error (MSE). Second, for the filter selec-
tion they additionally increase the pixel samples based on the filter selection and
re-render the image and proceed again through first step. The authors are using
discrete set of simple Gaussian filters, which need appropriate amount of sam-
ples/pixel (32 samples/pixel used) to work effectively and to obtain satisfactory
results.



Implementation of BM3D Filter on Intel Xeon Phi 103

Another filtering approach presented in [6] considers utilization of the
advanced filtering methods in the concept that is primarily intended as a post-
processing filtering step. It utilizes the BM3D method as a filter. The authors
provide a multilevel denoising algorithm, which first estimates the noise level
locally from the close neighbourhood around each image pixel. For such a noise
map they reconstruct a histogram of noise levels. Histogram is then divided to
several levels defined by the user. To do this, cumulative distribution function
(CDF) of the noise map is used. Each discrete level is characterized with the
value of standard deviation. For every value of standard deviation filtering is
provided. Resulting images are then combined to compute the final image. The
provided concept does not depend on used filter, but it performs best with the
BM3D method. The authors use the original Matlab C/C++ MEX implemen-
tation of BM3D method provided by Dabov et al. in [2,3]. This version does
not leverage any parallel programming. Although in context of total rendering
time of a single image its runtime is fast, in context of image filtering of larger
image series it is slow. This version also can not utilize a specific hardware such
as GPU or MIC. In our contribution we provide an optimized parallel version of
the color BM3D filter for CPU and MIC architecture.

Concerning the BM3D filter and its available parallel implementations that
can serve for general purpose, meaning also for rendering, we have found just
two of them [8,11]. The one from Lebrun utilizes multi-core CPUs while the
Sarjanoja et al. tackle GPUs. As for the implementation of Sarjanoja et al., they
perform better than original Dabov’s single threaded version only if they use
the so called modified profile. This modified profile unfortunately brings lower
filtering quality than the original parameters [4] of the method. Sometimes the
difference is negligible sometimes it is not. Within the original profile, beside the
lower speed they also run out the memory while filtering UHD (3840 × 2160)
images. An odd thing, which we find in their contribution, is that their testing
of Lebrun’s parallel version performs worse than the original single threaded
version of Dabov’s. This is completely opposite to the findings one would expect
and it is also opposite to our findings we provide in our contribution within
Sect. 7.

3 BM3D Filtering Method

Block-matching and the 3D collaborative filtering method operate over the image
trying to minimize the amount of noise based on sparsity of similar image blocks.
The filtering method is general with respect to the type of attenuated noise [3],
but for ease of explanation the noise is assumed as Additive White Gaussian
Noise (AWGN). This can be formulated by the following equation

z(x) = y(x) + η(x), (1)

where z stands for the evaluated image, y is the noiseless image and η is the
additive zero-mean Gaussian noise. Variable x stands for the pixel coordinate
within the image.



104 M. Jaros et al.

The detailed description of the BM3D method is covered in [3]. The color
version of the method is presented in [2]. Here we summarize just the main
aspects of the method and accentuate the most computationally extensive parts
of the algorithm.

BM3D is a two-step method. In the first step, image is divided into several
overlapping areas where similar smaller parts of the image called patches are
searched for. Searching for the similar patches is done in a sparse domain pro-
vided by wavelet transform of each patch. The found similar patches are stacked
in the 3D array and the whole stack is transformed from image to sparse repre-
sentation by 3D transform (specific combination of transform matrices providing
the 3D transform is stated in [3]). Here the filtering operation in the form of the
hard thresholding is performed. After this the stack is transformed back to the
image domain. This can be symbolically written as

Y = T−1
3D (Υ (T3DZ)), (2)

where Y is the stack of filtered patches, T3D is specific 3D transform, Υ represent
the filtering operation and Z is the stack of noisy image patches. This is the
core of the method and due to the searching of the similar patches in sparse
domain the filtering can be very effective. Each patch from the filtered stack is
redistributed back to its position within the image and all overlapping pixels
are aggregated and averaged out by weighted average. This can be symbolically
written as

ŷ(x) =
∑ ∑

w · Y (x)
∑ ∑

w · χ(x)
, (3)

where ŷ is the filtered image, w is appropriate weight, Y is a patch from the
considered stack of patches, and χ is the patch support. Summation goes through
all the patches within one stack and through all the stacks within one image.

In the similar manner, the second step of the method is performed. It uses
the results of the preceding step to filter out the noise even further from the
noisy input image. Equations 2 and 3 are also used here, differences are only in
the way how the searching of similar patches is provided, and how the filtering
inside the sparse domain represented by Υ is provided. Both filtering steps of
the method are graphically summarized in Fig. 1.

3.1 BM3D - Computationally Extensive Parts

The BM3D method operates in a sparse domain, where all the filtering is per-
formed either by hard-thresholding in Step 1 or by Wiener filtering in Step 2.
Conversion to sparse domain is done by matrix multiplication of each selected
image patch with transformation matrices. The number of patches that are trans-
formed and then further processed is high. Based on the recommended setting
of the method, as elaborated in [4,8], it is around 1300 patches for every single
reference patch. The number of the reference patches depends on the image res-
olution, but generally it is about 1/16th of the number of image pixels. In the
case of rendering tasks, image resolution is typically HD (1920 × 1080 pixels) or



Implementation of BM3D Filter on Intel Xeon Phi 105

Fig. 1. Workflow of the collaborative filtering method

higher, which gives approximately 130 000 of reference patches at least. Summing
it all up, it gives around 340 000 000 of image patches that are being processed
just in Step 1. Similar counting holds also for the Step 2. Luckily computations
can be parallelized around each reference patch. Limitations are set if one tries
for concurrency between Step 1 and Step 2. It is not possible since the results
of Step 1 are used right at the start of Step 2.

Another issue arises with pixel aggregation denoted by Eq. 3, where assign-
ment to individual pixel positions is performed. This appears in both of the
filtering steps. If one uses parallelization concept where area around each ref-
erence patch is solved by individual thread of multiple threads, then one needs



106 M. Jaros et al.

to assign to each pixel position sequentially, because the areas are overlapping
and therefore multiple access to same memory location can easily occur if not
carefully treated. This is an huge bottleneck and speed barrier if solved trivially
by sequential code. If we want to parallelize the aggregation process we have to
ensure that at one time instant memory area at specific address is accessed just
by one thread and meanwhile non-blocking any other communication from the
remaining threads.

Our solution to the mentioned issues using parallelization is described in
Sect. 6.

4 Denoising Capabilities of the Collaborative Filtering
Method on Rendered Images

As it is experimentally tested in [7], BM3D as a state-of-the-art filtering method
outperforms many of the actual image denoising methods. We show its applica-
tion on two distinct rendered scenes. They differ in the depth of field (DOF).
First scene of Tatra car has large DOF, while scene with the worm has small
DOF to highlight the worm body from the background. This is to accentuate the
typical filtering problem if one wants to preserve the edges and also blur out the
noise in the background. Each of the scenes has been rendered for an increasing
set of samples per pixel (spp) as shown in Fig. 2, for Tatra and Fig. 3, for the
worm respectively. The number of rendered samples/pixel is proportional to the
level of noise that remains in the image after the rendering. The higher the num-
ber of samples the lower the amount of the residual noise. Filtered images up to
512 samples/pixel are shown in Figs. 4 and 5. For higher sampling filtering looses
its effect because the level of noise after rendering is low. A complete list of the
computed results is presented in Tables 1 and 2. In case of Tatra scene, it makes
sense to use filtering up to 512 samples/pixel and up to 2048 samples/pixel in
case of the worm. It is possible to use 2 or 4 times lower number of samples/pixel
if we use filtering to obtain the same visual quality of the rendered scene.

5 Sequential Implementation of BM3D Filter

The sequential version of the algorithm is summarized in the following pseudo-
code. As stated in Sect. 3.1, computationally extensive parts, printed in bold,
are concentrated in 3(b)i–3(b)iii and in both aggregation parts 4 and 6.

1. Load image
2. Set parameters and create transformation matrices for Step 1, Step 2 (see

[3,8])
3. Step 1 - Calculate the group estimates

(a) Set positions of reference blocks
(b) for i = 1 ÷ R1 number of reference blocks in the image

i. Do grouping by matching on Channel 1
ii. Use created matching rule on Channel 2, 3



Implementation of BM3D Filter on Intel Xeon Phi 107

Fig. 2. Rendered scene of Tatra car without filtering; from left to right, up to bottom
- 8196 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

Fig. 3. Rendered scene of the worm without filtering; from left to right, up to bottom
- 8196 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

iii. Perform collaborative filtering
iv. Compute the weight value for the composed group of blocks

(c) end
4. Step 1 - Aggregate the group estimates, weights and compute the

initial image estimate
5. Step 2 - Calculate the group estimates

(a) Set positions of reference blocks
(b) for i = 1 ÷ R2 number of reference blocks in the image

i. Do grouping by matching on Channel 1 of the initial image
estimate

ii. Use created matching rule on Channel 2, 3 of the initial image esti-
mate



108 M. Jaros et al.

Fig. 4. Rendered scene of Tatra car with filtering; from left to right, up to bottom -
512 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

Fig. 5. Rendered scene of the worm with filtering; from left to right, up to bottom -
512 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

iii. Collect image blocks from noisy channels using the matching rule
iv. Compute the Wiener coefficients
v. Compute the weight value corresponding to the filtered group of

blocks
vi. Perform the collaborative Wiener filtering

(c) end
6. Step 2 - Aggregate the group estimates, weights and compute the

final image



Implementation of BM3D Filter on Intel Xeon Phi 109

Table 1. Computed values for Tatra scene; 8-bit/channel range; FHD (1920 × 1080)
resolution; MSE - Mean Square Error, SSIM - Structural Similarity Index, PSNR -
Peak Signal-to-Noise Ratio

Tatra Raw Filtered

Samples/pixel MSE SSIM PSNR MSE SSIM PSNR σ

1 4581.158 0.065 11.521 1358.037 0.647 16.802 59.525

2 2524.610 0.095 14.109 509.139 0.754 21.062 46.469

4 1436.970 0.136 16.556 200.482 0.878 25.110 36.123

8 772.817 0.193 19.250 83.286 0.900 28.925 26.842

64 94.142 0.541 28.393 12.235 0.960 37.255 9.509

128 35.356 0.735 32.646 8.703 0.965 38.734 5.851

256 19.637 0.818 35.200 5.740 0.974 40.542 4.354

512 10.262 0.888 38.019 4.285 0.980 41.812 3.146

1024 3.389 0.959 42.831 3.514 0.983 42.673 1.819

8192 0.000 1.000 - 0.000 1.000 - 0.000

Table 2. Computed values for the worm scene; 8-bit/channel range; FHD (1920×1080)
resolution

Worm Raw Filtered

Samples/pixel MSE SSIM PSNR MSE SSIM PSNR σ

1 6496.412 0.053 10.004 3410.300 0.496 12.803 65.007

2 4880.197 0.071 11.246 1938.514 0.588 15.256 60.648

4 3346.443 0.097 12.885 958.296 0.679 18.316 52.962

8 2015.827 0.131 15.086 408.117 0.763 22.023 42.771

64 352.891 0.350 22.654 47.618 0.836 31.353 18.600

128 173.270 0.477 25.744 22.810 0.894 34.550 13.088

256 89.716 0.599 28.602 13.377 0.928 36.867 9.438

512 40.439 0.743 32.063 8.617 0.951 38.777 6.346

1024 18.643 0.849 35.426 5.661 0.963 40.602 4.313

2048 8.049 0.923 39.073 5.965 0.969 40.374 2.834

4096 2.697 0.971 43.822 6.337 0.973 40.112 1.641

8192 0.000 1.000 - 0.000 1.000 - 0.000

6 Parallel Implementation of BM3D Filter

To achieve the best possible implementation in terms of the algorithm speed, we
have implemented it in C++ (Intel Compiler 2017.1) and integrated it under our
CyclesPhi rendering engine. We have used OpenMP standard with its #pragma
directives for parallel programming and SIMD directives for vectorization.



110 M. Jaros et al.

We use our own vectorized code for operations with matrices (summation,
subtraction, multiplication, L2 norm) because it performs better than Eigen or
MKL libraries on small matrices that are used within the filter implementa-
tion. We work mainly with matrices of size 8 × 8. Due to such small size of
matrices filter has to perform hundreds of millions of operations. We solve this
issue by #pragma omp simd vectorization of the aforementioned operations. By
using in-lined functions for the operations we further shorten the computation
time. Advantage of using #pragma omp simd is that it accommodates to the
architecture that is being used (AVX2 and KNC in our case).

Although this implementation is already quite efficient, large bottleneck in
matrix multiplications still persisted. This was solved by direct assembler imple-
mentation, which helps especially on MIC architecture, as can be seen in results.
The assembler code was generated by library for small matrix multiplication
(LIBXSMM v1.8). We have generated the assembler code for the commonly
used sizes of multiplied matrices.

Another issue to deal with was the memory allocation for the small matrices.
This problem is more concerning MIC than CPU. While using Eigen library
the time necessary for memory allocation and de-allocation was too high. This
was another reason for moving to our own solution. Beside own code for opera-
tions with matrices we have defined own classes for the matrices and handle the
memory allocation within them. At the beginning, we allocate all the memory
necessary for the computations and during the computations we dynamically
assign the memory. This way we significantly accelerate the computation and
also the initialization of variables that are needed for the task.

For parallelization of serial code the obvious step is to parallelize the oper-
ations around each reference patch using #pragma omp parallel. It means the
for loop 3(b)–3(c), (5(b)–5(c)) in pseudo-code of Sect. 5 was parallelized this
way. Another computationally extensive operation in serial code is aggregation
of the group estimates (4 and 6. in pseudo-code). Here the parallelization has
to be done more carefully, because we are aggregating the results from differ-
ent memory locations to shared memory area for all threads. Multiple writes to
the same part of the memory can occur. To prevent this, while retaining paral-
lelization with its speedup, we efficiently re-ordered the vector of indexes that
localize reference patches within the image. Re-ordering prevents patch overlap-
ping between concurrently solved tasks around reference patches. The situation
is documented in Fig. 6.

We have implemented the code with focus on MIC architecture, but all the
enhancements of the code are fully compatible with CPU architecture. Gradual
improvements on both CPU and MIC architecture are documented in the results
section.

We have also performed a comparison between our parallel implementation
of the BM3D and the one provided by Lebrun [8]. Lebrun implements CPU
version of the BM3D filter that can leverage parallelization using OpenMP. We
have compared our MIC and CPU versions with Lebrun’s in terms of speed
and memory demands. For the reference also Dabov’s single threaded version is
stated [2]. More details can be found in Sect. 7.



Implementation of BM3D Filter on Intel Xeon Phi 111

Fig. 6. Re-ordering of reference patches for preventing the area overlapping. Areas out-
lined by same line type (continuous, dashed) are solved concurrently in parallel. First
all areas outlined by dashed line are solved by available thread, before areas outlined
by continuous lines are being processed. In this way multiple writes are eliminated

7 Results

Tatra and worm scenes were used as examples for the tests of filter processing
time. For a reference we also show the rendering times for different samples per
pixel, see Table 3. We have tested the filter for the set of sampling used in Sect. 4.
Specific sampling does not influence the filter runtime directly, but it affect the
value of standard deviation of noise σ. There is a change in parameters of the
filtering method (size of the patch, step between reference patches, etc.) based
on the level of noise represented by the σ as recommended in [4,8]. Parameters
are different if σ > 40 or σ ≤ 40. In case of Tatra, sampling from 1 to 2 sam-
ples/pixel has σ > 40, other sampling has lower σ, see Table 1. In case of the
worm, up to 8 samples/pixel it is σ > 40, rest of the sampling has lower σ, see
Table 2. This distinguishes the measured filtering runtimes. We have thus com-
puted their mean values from all the measurements in each scene based on the
value of σ. Results can be seen in Tables 4 and 5. There are also shown measure-
ments on different architectures (CPU, MIC) with specific optimizations (AVX2,
AVX2+SIMD, AVX2+xsmm+SIMD, KNC-offload, KNC-offload+SIMD, KNC-
offload+xsmm+SIMD). In our tests KNC-offload stands for Xeon Phi (brand
name Knights Corner) with offload programming model. All of these results
are compared with the results obtained by running the filter implementation of
Dabov et al. [2].

Our speed improvements by different optimization of the filtering algorithm
are in graphical form represented in Fig. 7.

Our parallel implementation of the filter was further compared with parallel
version by Lebrun. Comparison was made in terms of speed and memory uti-
lization while filtering Tatra images of increasing resolution. For reference we
have also compared it with single threaded Dabov’s version. Results can be seen
in Table 6. Filters are using the recommended parameter setting as stated in [4]
under the normal profile. Our solution is much more efficient in terms of memory



112 M. Jaros et al.

Table 3. Rendering times for Tatra and the worm scene for specific samples per pixel;
FHD resolution

Rendering time Time [h:m:s.ms]

Samples/pixel Tatra Worm Samples/pixel Tatra Worm

1 00:04.34 00:32.27 128 00:56.01 07:41.19

2 00:04.68 00:35.73 256 01:48.05 14:57.93

4 00:05.50 00:42.56 512 03:31.49 29:12.96

8 00:07.16 00:55.90 1024 06:58.27 58:13.70

16 00:10.31 01:22.07 2048 14:03.66 01:56:14.17

32 00:16.75 02:16.01 4096 28:02.70 03:52:25.31

64 00:29.68 04:05.13 8192 55:16.09 07:44:07.64

Table 4. Tatra - BM3D runtime for different optimizations and architectures compared
with original version of the filter by Dabov et al.; FHD resolution

Filter runtime Ours [s] Dabov et al. [s]

Arch., Inst. set σ > 40 σ ≤ 40 σ > 40 σ ≤ 40

CPU, AVX2 76.9 139.5 107.4 66.4

CPU, AVX2+SIMD 23.0 24.7

CPU, AVX2+xsmm+SIMD 12.7 15.0

MIC, KNC-offload 369.6 598.8

MIC, KNC-offload+SIMD 81.6 142.3

MIC, KNC-offload+xsmm+SIMD 19.8 38.1

Table 5. Worm - BM3D runtime for different optimizations and architectures com-
pared with original version of the filter by Dabov et al.; FHD resolution

Filter runtime Ours [s] Dabov et al. [s]

Arch., Inst. set σ > 40 σ ≤ 40 σ > 40 σ ≤ 40

CPU, AVX2 77.9 141.4 109.0 62.9

CPU, AVX2+SIMD 23.3 25.2

CPU, AVX2+xsmm+SIMD 12.8 15.1

MIC, KNC-offload 370.2 597.9

MIC, KNC-offload+SIMD 81.6 142.5

MIC, KNC+xsmm-offload+SIMD 19.9 38.5

utilization especially if compared with Lebrun, which utilizes incredible 100 GB
of memory compared to ours 2 GB for image in FUHD resolution. In terms of
speed our solution performs better or is the same up to FHD resolution of the
image. On higher resolutions our implementation starts to lag behind Lebrun.
Single threaded version performs always worse than others.



Implementation of BM3D Filter on Intel Xeon Phi 113

Fig. 7. BM3D runtime for different optimizations and architectures

Table 6. Tatra - our BM3D implementation compared to Lebrun’s and Dabov’s; images
with 128 samples per pixel; σ = 5 as a filtering parameter; Normal profile from [4] used
for BM3D setting

Resolution CPU MIC Dabov Lebrun

[s] [GB] [s] [GB] [s] [GB] [s] [GB]

768 × 576 3.1 0.14 7.7 1.51 14.9 0.68 4.4 2.60

1280 × 720 6.7 0.17 16.2 1.55 31.9 0.76 7.7 4.50

1920 × 1080 15.0 0.24 38.1 1.65 73.4 0.92 14.9 8.60

2560 × 1440 30.9 0.33 67.7 1.76 131.3 1.11 24.9 13.50

3840 × 2160 62.2 0.60 151.6 2.15 278.9 1.63 58.6 28.00

7680 × 4320 295.9 2.10 623.8 3.84 955.7 4.20 204.5 101.00

All the tests were performed on one computing node of Salomon supercom-
puter. Specifically on 2x Intel Xeon E5-2680v3, 2.5 GHz for CPU tests and Dabov
et al. tests and 1x Intel Xeon Phi 7120P, 61cores for MIC tests.

From the results it can be seen, how our parallelization concept can help in
speeding up the algorithm runtime. Although the speedup is not ideally propor-
tional in terms of utilized cores, we can bring up to 8× faster implementation
on CPU (24 cores, 24 threads) and up to 5× faster implementation on MIC (61
cores, 244 threads) compared to one core solution of Dabov’s.

8 Conclusion

In our contribution we have presented optimized parallel version of the stat-
of-the-art filtering technique BM3D. Final version of the algorithm can run on
two different architectures (CPU, MIC) and it can be efficiently used on super-
computers. Since compute nodes are often equipped with CPU+MIC our imple-
mentation could completely utilize those computing nodes and thus it can be
extremely suitable in computationally extensive areas such as image rendering.



114 M. Jaros et al.

Provided implementation is faster than originally presented algorithm. The high-
est speed-up reaches up to 8× in case of CPU and up to 5× in case of MIC.
We perform better also against different parallel implementation of the filter
from Lebrun. Our solution is faster on smaller resolutions and utilizes memory
much more efficiently. Although Lebrun’s version is faster on high resolutions it
becomes impractical due to extreme memory demands.

Acknowledgements. This work was supported by The Ministry of Education, Youth
and Sports from the Large Infrastructures for Research, Experimental Development and
Innovations project “IT4Innovations National Supercomputing Center - LM2015070”.

References

1. Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive
high-quality global illumination. Comput. Graph. Forum 30(4), 1361–1368 (2011)

2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse
3D collaborative filtering with grouping constraint in luminance-chrominance
space. In: Proceedings - International Conference on Image Processing, ICIP, vol.
1, pp. I313–I316 (2006)

3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-
matching and 3D filtering. In: Proceedings of SPIE - The International Society for
Optical Engineering, vol. 6064 (2006)

4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-
D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8),
2080–2095 (2007)

5. Dammertz, H., Sewtz, D., Hanika, J., Lensch, H.P.A.: Edge-avoiding a-trous
wavelet transform for fast global illumination filtering. In: Doggett, M., Laine,
S., Hunt, W. (eds.) High Performance Graphics. The Eurographics Association
(2010)

6. Kalantari, N.K., Sen, P.: Removing the noise in Monte Carlo rendering with general
image denoising algorithms. Comput. Graph. Forum 32(2 Part 1), 93–102 (2013)

7. Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal
multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1–32 (2010)

8. Lebrun, M.: An analysis and implementation of the BM3D image denoising
method. Image Process. On Line 2, 175–213 (2012)

9. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory
to Implementation, 3rd edn, pp. 1–1233 (2016)

10. Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using
greedy error minimization. ACM Trans. Graph. 30(6), 159:1–159:12 (2011)

11. Sarjanoja, S., Boutellier, J., Hannuksela, J.: BM3D image denoising using het-
erogeneous computing platforms. In: Conference on Design and Architectures for
Signal and Image Processing, DASIP, vol. 2015, December 2015


	Implementation of BM3D Filter on Intel Xeon Phi for Rendering in Blender Cycles
	1 Introduction
	2 Previous Work
	3 BM3D Filtering Method
	3.1 BM3D - Computationally Extensive Parts

	4 Denoising Capabilities of the Collaborative Filtering Method on Rendered Images
	5 Sequential Implementation of BM3D Filter
	6 Parallel Implementation of BM3D Filter
	7 Results
	8 Conclusion
	References




