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Abstract. The paper concerns development of highly parallelizable pre-
conditioners for solving nonstationary Darcy flow problems. The dis-
cretization of the solved problem is done by mixed finite elements in
space and by first order implicit Euler discretization in time. The sys-
tems with generalized saddle point matrices, which appear in each time
step of the implicit Euler method, are then solved by FGMRES method
with a block type preconditioner. Moreover, highly parallelizable, one-
level additive Schwarz method is used for preconditioning of the velocity
block. Both analysis and numerical experiment show that this applica-
tion of the Schwarz method is highly efficient for a class of flow problems
with parameters corresponding to many applications in geosciences.

1 Introduction

The fluid flow in porous media appears in many applications in geomechanics,
environmental problems, biomechanics etc. This paper is devoted to a model
of nonstationary flow in fully saturated media. The model is based on Darcy
law and an assumption of nonzero storativity - ability to increase fluid amount
in a volume with increasing fluid pressure. The storativity results from a slight
compressibility of the fluid and deformability of the solid matrix.

The discretization of the porous media flow problem is done by a mixed finite
elements in space, namely the lowest order Raviart-Thomas are used, see [10].
The Euler type systems with generalized saddle point matrices, which appear
in each time step of the implicit Euler method, are then solved by MINRES or
FGMRES method with Schur complement type preconditioner.

Numerical complexity is concentrated into solving the Euler type systems and
especially into the preconditioning of the velocity block of the preconditioner. To
this aim, highly parallelizable one-level additive Schwarz method can be used,
see the analysis in [1]. Both analysis and numerical experiments show that this
Schwarz method is highly efficient for a class of flow problems with material
parameters corresponding to many applications in geosciences.
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The content of this paper is as follows. Section 2 describes the nonstationary
Darcy problem and its discretization. The block preconditioners for the systems
arising in each time step of the implicit Euler method are described in Sect. 3.
The Schwarz method for solving the velocity block systems is then described in
Sect. 4 with analysis, which strengthens the results from [1]. Section 5 discuses
implementation on parallel computers and provides numerical experiments on a
massively parallel computer.

The main conclusion is that the combination of the block preconditioners
and the additive Schwarz method provides efficient and highly parallelizable
preconditioners for a class of nonstationary Darcy flow problems with parameters
corresponding to many applications in geosciences and other fields.

2 Nonstationary Darcy Flow Problem and Its
Discretization

The nonstationary Darcy problem for very slightly compressible liquid and
matrix can be written in the following mixed form

K−1v + ∇p = 0 in Ω,

∇ · v + cpp∂tv = f in Ω,
(1)

where Ω ⊂ Rd is the problem domain, p is the fluid pressure, v is the Darcy
velocity, K ∈ Rd×d is the permeability represented in a general anisotropic media
by a symmetric positive definite matrix and cpp is the storativity constant. Note
that in Sects. 4 and 5, we restrict ourselves to isotropic media K = kI, where
k = k(x) ≥ k0 > 0 and I is the identity matrix. The model is described in detail
e.g. in [11].

The weak formulation of the problem (1) leads to finding the pair (v, p),
v = v(x, t) and p = p(x, t), which fulfils a mixed variational identity in V ×X =
H(div, Ω) × L2(Ω), see e.g. [13].

We assume discretization in Vh × Xh with Raviart-Thomas finite elements
on squares [10] for velocity and piecewise constant functions for pressure. The
choice of a basis Vh = span {ψi} and Xh = span {φi} and induced isomorphisms
Vh ↔ V h ≡ RN , vh ↔ v, Xh ↔ Xh ≡ RZ , ph ↔ p then provides differential
algebraic system of the form

A1
d

dt
U + AU = F

A1 =
[

0 0
0 −C

]
, A =

[
M BT

B 0

]
, U =

[
v
p

]
,

where M ∈ RN×N B ∈ RZ×N and C ∈ RZ×Z are matrices defined by the
following identities

〈Mu, v〉 =
ˆ

Ω

K−1uh · vh dΩ, 〈Bv, p〉 = −
ˆ

Ω

div(vh)ph dΩ ∀vh ∈ Vh, ph ∈Xh,

(2)
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〈Cp, q〉 =
ˆ

Ω

cppphqh dΩ, ph, qh ∈ Xh, (3)

where 〈·, ·〉 denotes Euclidean inner product.
Note, that the regularity of the solution will be low when there are large

jumps in the permeability, so we restrict ourselfs only to the lowest order Raviart-
Thomas elements for discretization of velocity.

Implicit Euler method [13] uses time discretization 0 = t0 < . . . < tk < . . .

and computes the values Uk =
[

vk

pk

]
in the time steps tk, k ≥ 1 by solving the

systems with the matrices AE ,

AEUk+1 = Fk+1 +
1
τk

A1Uk, (4)

AE =
1
τk

A1 + A =
[

M BT

B − 1
τk

C

]
. (5)

The time step τk = tk+1 − tk can be variable or fixed. In the analysis of pre-
conditioners, we use the notation τk ≡ τ without a loss of generality since we
always consider solving system with matrix (5) during one specific timestep.

3 Preconditioning of the Euler Type Systems

The preconditioners for AE are based on the two by two partition shown in
(5). Since the matrix C is diagonal for the piecewise constant approximation
for pressure, we can consider the Schur complement MC = M + τBT C−1B
and either block diagonal or block triangular preconditioners with the Schur
complement block MC ,

PD =
[

MC 0
0 1

τ C

]
and PT =

[
MC BT

0 − 1
τ C

]

The block diagonal preconditioner PD is positive definite and in the ideal
case (when the problems connected with MC and C are solved exactly) can
be combined with MINRES method. The convergence is then driven by spec-
tral properties, specifically by the following localization of the spectrum of the
preconditioned matrix

σ(P−1
D AE) ⊂

〈
−1 −

√
5

2
,−1

〉
∪

〈
−1 +

√
5

2
, 1

〉
.

The proof of this localization can be found e.g. in [6,9]. Note that this result
depends only on the algebraic structure of the matrix AE and the localization
result is robust with respect to the material parameters (permeability, storativ-
ity) of the model and discretization parameters (h, τ).
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Even stronger localization of spectrum of the preconditioned system occurs
for the block triangular preconditioner,

P−1
T AE = P−1

T

[
M BT

B − 1
τ C

]
= P−1

T

[
MC BT

0 − 1
τ C

] [
I1 0

−τC−1B I2

]
.

Thus in the ideal case (exact solvers for MC and C, no influence of finite arith-
metic) it holds that

P−1
T AE =

[
I1 0

−τC−1B I2

]

and consequently σ
(
P−1

T AE

)
= {1} and P−1

T AE has minimal polynomial of

order two
(
P−1

T AE − I
)2

= 0 . The block triangular preconditioner spoils the
symmetry, which requires to use e.g. GMRES method. Two iterations of any
Krylov space method are sufficient to solve the system.

In the implementation described in Sect. 5, we use an exact solver for the
block C but inexact solver for the velocity block MC . This solver uses conjugate
gradient (CG) method with one level additive Schwarz preconditioning described
in the next section. Numerical experiments show that when the accuracy of the
inner solver is reasonably good, the outer iterations realized by flexible GMRES
behave similarly to the ideal case.

4 Additive Schwarz Method for the Velocity Block

Both preconditioners presented in the previous section require the solution of the
system with the Schur complement matrix MC . This matrix is symmetric and
positive definite and therefore can be solved by the conjugate gradient method.
This section describes one level additive Schwarz preconditioner for the Schur
complement system including the theory based on element-by-element analysis.
The results presented in this section extend the results from [1] by considering
nonzero block C and by utilising the elementwise computed maximum contrast
c−1
pp k.

The preconditioner PAS is defined via a decomposition of the finite element
space Vh = V1 + · · ·+Vm, where the subspaces Vk are defined via an overlapping
decomposition of the domain Ω, Ω̄ = Ω̄1 ∪ . . . ∪ Ω̄m. We assume that Ω̄k are
aligned with the finite element division Th, which is used for definition of Vh

(lowest order Raviart-Thomas RT(0) elements). Then

Vk = {vh ∈ Vh, vh ≡ 0 in Ω \ Ωk} .

Functions vh ∈ Vh are represented by algebraic vectors v ∈ V h ≡ RN through
isomorphism Vh ↔ V , the same isomorphism provides relations Vk ↔ V k ≡
RNk . The inclusion Vk ⊂ Vh induces restriction V → V k represented by the
matrix Rk ∈ RN×Nk . Then the preconditioner PAS to MC can be defined as

P−1
AS =

m∑
k=1

RT
k M−1

Ck
Rk, MCk

= RkMCRT
k . (6)
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The matrix MC = M + τBT C−1B is created from the matrices defined varia-
tionally in (2) and (3). For a subsequent analysis, it is important that MC can
be also defined variationally, in particular

〈MCu, v〉 = m(uh, vh) + τd(uh, vh) = a(uh, vh),

where m(uh, vh) =
´
Ω

k−1uhvh dx, we presume that k is constant on mesh ele-
ments from Th, k = kE on E ∈ Th, and d(uh, vh) is defined as follows

d(uh, vh) =
〈
BT C−1Bu, v

〉
=

〈
C−1Bu, Bv

〉

=
∑

i

c−1
ii

⎛
⎝ˆ

Ω

div(uh)ψi dx

⎞
⎠

⎛
⎝ˆ

Ω

div(vh)ψj dx

⎞
⎠

=
∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

div(uh) dx

⎞
⎠

⎛
⎝ˆ

E

div(vh) dx

⎞
⎠ .

The summation above is over E ∈ Th and we use the fact that the basis functions
ψi of the space Xh are equal to 1 on E = Ei ∈ Th and to zero on the other
elements E �= Ei. Moreover, cij = δij

´
Ei

cpp = δijcpp |E|, where δij is the
Kronecker’s symbol. As div(uh) is constant on E for RT(0) function uh,

d(uh, vh) =
∑
E

c−1
pp |E|−1

div(uh)div(vh) |E|2

=
∑
E

ˆ

E

c−1
pp div(uh)div(vh) dx

and we conclude that a(uh, vh) is a weighted H(div) inner product, which guar-
antees positive definiteness of a.

The condition number of the preconditioned matrix P−1
ASMC can be bounded

by
cond(P−1

ASMC) ≤ c0c1, (7)

see e.g. [7,8], where the constants c0, c1 come from the conditions

∀vh ∈ Vh, ∃vk ∈ Vk, vh =
m∑

k=1

vk :
m∑

k=1

a(vk, vk) ≤ c0a(vh, vh), (8)

∀vh ∈ Vh, ∀vk ∈ Vk, vh =
m∑

k=1

vk : a(vh, vh) ≤ c1

m∑
k=k0

a(vk, vk). (9)

The rest of this section is devoted to determining the values of c0, c1. It is
easy to show that c1 can be taken as maximal number of subdomains which
mutually intersect cnis.
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The estimate of c0 is more complicated and requires a suitable construction
of the decomposition of the elements v ∈ V . To derive the estimate we analyse
the decomposition provided by

v =
m∑

k=1

vk, vk = ΠRT (θkv),

where θk are functions of a decomposition of unity [18],

1 =
m∑

k=1

θk, supp(θk) = Ω̄k, 0 ≤ θk ≤ 1, ‖grad(θk)‖ ≤ cδ−1,

where δ is an overlap (usually a nonoverlapping decomposition Ω̄ = Ω̄0
1 ∪

. . . ∪ Ω̄0
m is enlarged to overlapping one by construction of subdomains Ωk ={

x ∈ Ω, dist(x, Ω0
k) ≤ δ

}
).

Our analysis will make use of the Raviart-Thomas interpolation ΠRT
h :

C(Ω) → RT0 given by

ΠRT
h v =

∑
i

⎛
⎝ 1

|ei|

ˆ

ei

v · nei
ds

⎞
⎠ ψi,

where the summation goes over the degrees of freedom (located on edges of the
elements), see [15].

We will show that
∑

k

m(vk, vk) ≤ κcnism(vh, vh), (10)

∑
k

d(vk, vk) ≤ 2cnisd(vh, vh) + 2τcnisδ
−2 max

E

{
c−1
pp kE

}
m(vh, vh) (11)

The constant κ will be determined later in the analysis.
To derive the estimate (10) we consider

∑
k

m(vk, vk) =
∑

k

∑
E⊂Ω̄k

ˆ

E

k−1
E vk · vk =

∑
k

∑
E⊂Ω̄k

k−1
E

ˆ

E

vk · vk

≤ cnis

∑
E∈Th

k−1
E

ˆ

E

∥∥ΠRT
h (θkvh)

∥∥2 ≤ cnisκ
∑
E

ˆ

E

k−1
E ‖vh‖2

≤ cnisκm(vh, vh).

Above, we used fact that ΠRT
h (θkvh) |E =

∑
i ziψ̂i where ψ̂i are local (element)

RT0 basis functions and

zi =
1

|ei|

ˆ

ei

(θkvh) ·nei
ds =

1
|ei|

ˆ

ei

θk(vh ·nei
) ds = (vh ·nei

)
1

|ei|

ˆ

ei

θk ds ≤ vh ·nei
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as vh · nei
is constant on ei for v ∈ RT0. Therefore,

ˆ

E

∥∥ΠRT
h (θkvh)

∥∥2
=

ˆ

E

∥∥∥∥∥
∑

i

ziψ̂i

∥∥∥∥∥
2

= 〈MEz, z〉 ≤ μmax(ME) ‖z‖2

≤ μmax(ME) ‖v‖2 ≤ μmax(ME)
μmin(ME)

〈MEv, v〉

= κ

ˆ

E

‖v‖2
,

where ME is the velocity mass matrix, (ME)ij =
´

E
ψ̂i · ψ̂j and κ = μmax(ME)

μmin(ME) ,
i.e. the condition number of the local mass matrix.

To prove (11), we investigate
∑

k d(vk, vk)

∑
k

d(vk, vk) =
∑

k

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

div
(
ΠRT

h (θkvh)
)

dx

⎞
⎠

2

=
∑

k

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

div(θkvh) dx

⎞
⎠

2

(12)

=
∑

k

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

θkdiv(vh) + grad(θk) · vh dx

⎞
⎠

2

≤ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

θkdiv(vh) dx

⎞
⎠

2

+ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

grad(θk) · vh dx

⎞
⎠

2

≤ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝div(vh)

ˆ

E

θk dx

⎞
⎠

2

(13)

+ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

‖grad(θk)‖2
dx

⎞
⎠

⎛
⎝ˆ

E

‖vh‖2
dx

⎞
⎠

≤ 2cnis

∑
E

c−1
pp |E|−1

div(vh)2 |E|2

+ 2cnis

∑
E

c−1
pp |E|−1 (

δ−2 |E|
)
kE

⎛
⎝ˆ

E

k−1
E ‖vh‖2

dx

⎞
⎠

= 2cnisd(vh, vh) + 2cnisδ
−2 max

E

{
c−1
pp kE

}
m(vh,, vh)
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In (13) we use the fact that div(vh) is constant on elements from Th, (12)
follows from ˆ

E

div
(
ΠRT

h (θkv)
)

dx =
ˆ

E

div(θkv) dx,

i.e.

0 =
ˆ

E

div
(
θkv − ΠRT

h (θkv)
)

dx

=
ˆ

∂E

(
θkv − ΠRT

h (θkv)
)

· nds

=
∑

i

ˆ

ei

θkv · nds −
ˆ

ei

⎛
⎝ 1

|ei|

ˆ

ei

θkv · nei
ds

⎞
⎠ nei

· nds

=
∑

i

ˆ

ei

θkv · nds −
ˆ

ei

⎛
⎝ 1

|ei|

ˆ

ei

θkv · (nei
· n)nds

⎞
⎠ nei

· nds

=
∑

i

ˆ

ei

θkv · nds − (nei
· n)2

ˆ

ei

θkv · nds = 0

Note that nei
is an apriori selected normal, which is used for definition of the

degrees of freedom and n is the outer normal to the element E, nei
· n = ±1.

The whole estimate is now∑
k

a(vk, vk) ≤
(
κc1 + 2cnisτδ−2 max

E

{
c−1
pp kE

})
m(vh, vh) + 2cnisd(vh, vh)

≤ cnis max
{

2, κ + 2τδ−2 max
E

{
c−1
pp kE

}}
a(vh, vh)

and as cnis and κ are independent of physical and discretization parameters, the
efficiency and robustness of the estimate depends mostly on the term

cAS = τδ−2 max
E

{
c−1
pp kE

}
. (14)

The above results can be summarized in the following theorem.

Theorem. Let us consider the time step matrix AE from (5) with time step
τ and the Schur complement MC = M + τBT C−1B. Let PAS be the additive
Schwarz preconditioner from (6). Then

cond(P−1
ASMC) ≤ c2

nis max
{

2, κ + 2τδ−2 max
E

{
c−1
pp kE

}}
.

We remind the notation in which cnis is the maximum number of mutually over-
lapping subdomains, δ is the overlap of the decomposition, κ is maximum con-
dition number of the element mass matrices ME, cpp and kE are storativity and
permeability assumed to be constant on the finite elements and maxE

{
c−1
pp kE

}
is taken over all elements of the finite element division.
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Remark. Note that for 2D and RT(0) elements on squares 〈x01, x01 + h〉 ×
〈x02, x02 + h〉, we get

ME =
1
6
h2

⎡
⎢⎢⎣

2 0 −1 0
0 2 0 −1

−1 0 2 0
0 −1 0 2

⎤
⎥⎥⎦ , σ(ME) =

1
6
h2 {1; 3} , κ = 3.

5 Implementation and Numerical Experiments

The numerical experiments are computed with our own code available at [19]
written in C on top of PETSc [5,16]. Matrices M , MC , B and C are assembled
element by element from local contributions. All of these matrices are created and
stored in a distributed form using PETSc MatCreateAIJ operation. The system
matrix AE and the preconditioner matrix P are then formed implicitly from
blocks using PETSc MATNEST matrix type. The action of the preconditioner,
which combines separate preconditioners for individual fields, is provided by
PETSc PCFIELDSPLIT operation.

x2

p̂ = 1 Ω = 0, 1 2

v̂ · n = 0

p̂ = 0

x1

Fig. 1. Model problem

For numerical experiments we use a model problem described by (1) with
the zero volume source f ≡ 0, boundary conditions as shown in Fig. 1 and initial
condition v = 0 and p = 0 in Ω. The problem domain Ω = 〈0, 1〉2 is regularly
divided into square elements with the meshsize characterized by the parameter
n = 1/h being the number of segments on the side. Timestep τ = 0.1 is used
for all experiments. The permeability of the material is supposed to be isotropic
and elementwise constant. Values on each element are in the form k = kskr,
log k = log ks + log kr, where kr are sampled from lognormal distribution with
parameters μ = 0 and σ = 2, log k ∈ N(log ks, σ2).
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FGMRES with the block preconditioner is used to solve the outer system with
the matrix AE and conjugate gradients with Schwarz preconditioner are used to
solve the inner system corresponding to the block MC . The stopping criterion
for both outer and inner iterations is the reduction of relative unpreconditioned
residual to be equal or less than 10−6.

The Schwarz preconditioner for the matrix MC uses the PETSc PCASM
functionality. The decomposition to subdomains for the model problem corre-
sponds to the splitting of the domain into horizontal strips which for the regular
mesh and natural numbering of nodes corresponds to row-wise matrix decompo-
sition. In PETSc, the overlap is imposed by adding a proper number of matrix
rows to implicitly performed nonoverlapping row-wise matrix splitting. The pre-
conditioner uses LU decomposition for the solution of systems on subdomains.
The LU decomposition is computed during the setup of the preconditioner and
then it is repeatedly applied during the iterations. Possible generalization of this
approach to 3D problem discretized with regular mesh and numbering aligned
with domain decomposition on layers is straightforward.

Table 1 shows scalability of the implementation. We investigate “weak” scal-
ing with problem size increasing with increasing number of subdomains (proces-
sors), i.e. the size of the subproblems is kept not strongly decreasing. Note that
the subproblems arise by decomposition of AE ∈ RNt×Nt and MC ∈ RN×N . For
the problem on n×n mesh and RT(0)-P0 elements, Nt ∼ 3n2 and N ∼ 2(nsd·n)2,
nsd = 2no+n/np, no is the size of overlap, np is the number of processors. The
parameter no corresponds to number of rows of n × n mesh common to neigh-
bouring subdomains, the geometrical overlap δ is obtained by multiplication no
by the width of the row/strip. The number no is changing to keep the value δ
not strongly dependent on the mesh size (h).

The values of outer iterations in Tables 1–3 report the average number of both
outer FGMRES and inner CG iterations over one time step (averaged over the
first ten timesteps, with zero initial guess within each timestep). Division of the
number of inner iterations by number of outer iterations shows how many inner
iterations are needed for the inner systems. Note that in a class of parameters,
which we investigate there is frequently just one inner iteration per outer one.
The time in all tables express the time spent by solvers that means without
including times for matrix assembly and initialization of preconditioner. The
computations were performed on the Salomon supercomputer, see [17].

The results in Table 1 correspond to the material parameters ks = 10−15,
cpp = 10−10, ks/cpp = 10−5 and use of more efficient triangular preconditioner.
Tables 2 and 3 report number of outer/inner iterations in dependence on the
material parameters, especially on the ratio ks/cpp. It can be seen that for both
triangular preconditioner (Table 2) and diagonal preconditioner (Table 3) the
efficiency is excellent if ks/cpp ≤ 10−4. This condition is fulfilled for many appli-
cations in geomechanics and biomechanics, see Table 5.

Tables 2 and 3 illustrate the dependence of the iterative processes on material
parameters ks and cpp. The first number in each cell is the average number of
outer iterations and the second is the average number of inner iterations over one
time step both averaged over the first ten timesteps, with zero initial guess within
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Table 1. Test on scaling: mesh size n × n, number of DOFs for RT(0)-P0 elements
∼ 3n2. Material parameters ks = 10−15, cpp = 10−10, ks/cpp = 10−5.

n Processors/np Overlap/no Outer it. Inner it. Time[s]

406 2 2 2.0 2.0 3.0

574 4 2 2.0 2.0 2.8

805 8 4 2.0 2.0 2.7

1122 16 6 2.0 2.0 2.6

1550 32 8 2.0 2.0 2.5

2106 64 10 2.0 2.9 2.7

2722 128 14 2.0 4.7 3.8

3390 256 17 2.0 6.3 6.0

4800 512 21 2.0 8.5 18.3

each timestep to assess the convergence without the influence good initial guess
from previous timestep. The Table 4 shows dependence on the overlap measured
by number of rows. The overlap is increasing in the rows, decreasing in the
column. The test is done for unfavourable ratio ks/cpp = 1. For favourable ratio
ks/cpp = 1 ≤ 10−4 the dependence on the overlap is very weak.

Table 2. Dependence of number of iterations for FGMRES - PT (triangular precon-
ditioner) and CG - Schwarz on material parameters ks, σ = 2, cpp. Other parameters
n = 1000, 24 subdomains, overlap 8 are kept constant.

↓ ks\cpp → 10−3 10−4 10−5 10−6

10−7 2.1/3.7 20/9.7 2.1/21.0 2.1/78.6

10−8 2.0/2.0 2.1/3.7 2.0/9.7 2.1/21.0

10−9 2.0/2.0 2.0/2.0 2.1/3.7 2.0/9.7

10−10 2.0/2.0 2.0/2.0 2.0/2.0 2.1/3.7

10−11 2.0/2.0 2.0/2.0 2.0/2.0 2.0/2.0

Table 3. Dependence of number of iterations for FGMRES - PD (diagonal precondi-
tioner) and CG - Schwarz on material parameters ks, σ = 2, cpp. Other parameters
n = 1000, 24 subdomains, overlap 8 are kept constant.

↓ ks\cpp → 10−3 10−4 10−5 10−6

10−7 15.9/44.6 14.9/87.1 14.2/193.9 11.3/437.1

10−8 16.5/24.9 15.9/44.6 14.9/87.1 14.2/193.9

10−9 16.3/16.3 16.5/24.9 15.9/44.6 14.9/87.1

10−10 15.4/15.4 16.3/16.3 16.5/24.9 15.9/44.6

10−11 12.2/12.2 15.4/15.4 16.3/16.3 16.5/24.9
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Table 4. Dependence on the geometrical overlap δ for triangular preconditioner, kS =
10−10, cpp = 10−10, σ = 0, 24 processes.

n\overlap 4 8 16

100 2.1/43.6 2.1/31.4 2.1/24.0

200 20/63.0 2.1/47.3 2.1/34.4

400 2.1/79.2 2.0/65.9 2.1/47.8

800 2.1/101.6 2.0/82.1 2.0/65.8

1600 2.1/141.2 2.1/106.7 2.1/83.5

Table 5. Ranges of matrial parameters

k [m2] cpp [Pa−1]

Unweathered clay 10−20 − 10−16 10−8 − 10−6

Jointed rocks 10−15 − 10−11 10−10 − 10−8

Sound crystalline rocks 10−20 − 10−16 10−11 − 10−9

Water 4.4 · 10−10

6 Conclusions

This paper presents iterative technique for solving the systems arising from non-
stationary Darcy flow problems discretized by mixed finite elements in space
and implicit Euler method in time. The technique combines outer iteration by
FGMRES and block preconditioner with the velocity block solved by inner CG
iteration with Schwarz type preconditioner.

It is shown that the convergence of the outer iterations is practically inde-
pendent on the material parameters and inner iterations converge extremely fast
for the ratio of permeability to storativity small enough (ks/cpp ≤ 10−4). This
observation derived from the numerical tests is also in good agreement with our
theoretical result (14), which follows from extending the analysis provided in [1].
As another robust inner iterative method, we can mention e.g. [14].

Such suitable ratio of permeability to storativity is characteristic in many
geo applications dealing with semi-pervious and impervious materials, see the
following values provided e.g. by references [11,12]:

The presented iterative solution technique is also highly parallelizable and
numerical experiments demonstrate its scalability.

The technique can be also used in the case that time discretization is done
by higher order scheme, such as e.g. the Radau IIA method [3]. The systems
arising within time steps of Radau method can be preconditioned by block pre-
conditioner involving Euler type matrices as blocks, see [4]. The results of this
paper can be also used for solving poroelasticity problems, cf. [2–4].
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