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Abstract. We introduce an efficient method for computing the Stekloff
eigenvalues associated with the indefinite Helmholtz equation. In general,
this eigenvalue problem requires solving the Helmholtz equation with
Dirichlet and/or Neumann boundary condition repeatedly. We propose
solving the discretized problem with Fast Fourier Transform (FFT) based
on carefully designed extensions and restrictions operators. The proposed
Fourier method, combined with proper eigensolver, results in an efficient
and easy approach for computing the Stekloff eigenvalues.
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1 Introduction

We consider the problem of computing the Stekloff eigenvalues corresponding
to the indefinite Helmholtz equation. The efficient computation of such eigen-
values is needed in several numerical models. For example, in inverse scattering,
as discussed in Cakoni et al. (2016), these eigenvalues carry information of the
refractive index of an obstacle. To begin with, we introduce the following bound-
ary value problem:

L(α, λ; η)w :=

{
−Δw − η2w = f in Ω,

α∂w
∂n + λw = 0 on Γ = ∂Ω.

(1)

We call λ a Stekloff eigenvalue when the homogenous problem (f = 0 in (1))
has a non-trivial solution with α = 1. For details on existence and properties of
such eigenvalue problems we refer to Cakoni et al. (2016) (Sects. 2 and 4 for real
and complex η respectively), Colton and Kress (2012).

As pointed out in Cakoni et al. (2016), the efficient computation of Stekloff
eigenvalues is a challenging task. In addition, another important application of
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the techniques that we propose here is of interest in computing transmission
eigenvalues where the aim is to find the kernel of the difference of two indefinite
Stekloff operators, see Cakoni and Kress (2017). The efficient solution of such
problems, whether direct or inverse, requires fast solution of the Dirichlet prob-
lem, corresponding to L(0, 1; k(x)), and the Neumann problem, corresponding
to L(1, 0; k(x)), as defined in (1). Here, k(x) is the wave number and in case of
non homogenous problem, the data f(x) is the external force.

The difficulties associated with solving the indefinite Helmholtz equation
numerically, especially in high frequency regimes, are well known (see Brandt
and Livshits (1997), Ernst and Gander (2012)). Traditional iterative methods,
such as Krylov subspace methods or standard MultiGrid (MG) and Domain
Decomposition (DD) methods, are inefficient as discussed in Ernst and Gander
(2012).

Over the last two decades, different preconditioners and solvers for the
Helmholtz equation have been proposed. We refer to the classical works
by Brandt and Livshits (1997), and Elman et al. (2001) for MG solvers and
also to the more recent developments in Helmholtz preconditioning presented
in Gander et al. (2015), Osei-Kuffuor and Saad (2010), Lahaye and Vuik (2017)
and Sheikh et al. (2016). More recently, Engquist and Ying (2011) introduced
the so called sweeping preconditioners which were further extended by Eslaminia
and Guddati (2016) to double-sweeping preconditioners. Stolk (2013) proposed
a DD preconditioner based on special transmission conditions between subdo-
mains. Other DD methods are found in Chen and Xiang (2013), Zepeda-Núnez
and Demanet (2016).

In our focus are the computations of Stekloff eigenvalues and the techniques
which we propose here lead to efficient algorithms in many cases of practical
interest and provide preconditioners for the Helmholtz problem. More impor-
tantly, our techniques easily extend to the Maxwell’s system because they are
based on the Fourier method.

The rest of the paper is organized as follows. We introduce the Fourier
method for solving the constant coefficients boundary value problem in Sect. 2.1
(Dirichlet) and in Sect. 2.2 (Neumann). Further, in Sect. 3, we formulate the
Stekloff eigenvalue problem and show how the FFT based Helmholtz solver
can be applied. We conclude with several numerical tests on Stekloff eigenvalue
computations as well as solution of the Helmholtz equation with variable wave
number.

2 Periodic Extensions and Fourier Method

In this section, we focus on Fourier method for solving the Dirichlet problem
and the Neumann problem with constant wave number k(x) = k. Non-constant
case will also be considered in Sect. 4 as a numerical example.
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2.1 Dirichlet Boundary Conditions

Dirichlet Problem in 1D. To explain the ideas, we consider the 1D version
of (1) in the interval (0, 1) with constant wave number k:

−u′′ − k2u = f, u(0) = u(1) = 0.

After discretization with central finite difference, we obtain the following
linear system

ADu = f , AD = TD − k2h2I ∈ R
n×n, (2)

where TD = tridiag(−1, 2,−1) is a tri-diagonal matrix, u = (u1, . . . , un)t, u0 =
un+1 = 0, h = 1/(n + 1), f = h2(f1, . . . , fn)t, and fj = f(jh), uj ≈ u(jh),
j = 1, . . . n. Here and in the following, the superscript t denotes transpose of a
matrix or vector.

Let us now consider the same equation on a larger domain (0, 2) and with
periodic boundary conditions:

− v′′ − k2v = g, v(0) = v(2), v′(0) = v′(2). (3)

The finite difference discretization leads to a linear system for v =
(v1, . . . , vN )t, N = 2n + 2, which is as follows:

APv = g, AP = TP − k2h2I ∈ R
N×N . (4)

Here, e1 = (1, 0, . . . , 0)t and eN = (0, . . . , 0, 1)t are the standard Euclidean basis
vectors and TP = tridiag(−1, 2,−1)−e1e

t
N−eNet

1 is a circulant matrix. The right
hand side g = h2(g1, . . . , gN )t is a given vector in R

N depending on f , which
we specify later. The unknowns in this case are vj ≈ v(2j/N), j = 1, . . . , N .
Notice that from the periodic boundary conditions, we have vN ≈ v(0) = v(2)
and v1 ≈ v(2/N) and this is reflected in the first and the last equation in the
linear system (4).

The solution of systems with circulant matrices can be done efficiently using
the Fast version (FFT) of the Discrete Fourier Transform (DFT) (see Cooley
and Tukey (1965) for a description of FFT). The DFT is given by an operator
F : C

N → C
N represented by a matrix (denoted again with F) defined as:

Fjm = z(j−1)(m−1), z = e− 2iπ
N , with j = 1, . . . , N and m = 1, . . . , N . As is well

known, we have the DFT inversion formula:

F−1 =
1
N

F∗ =
1
N

F .

Since AP here is a circulant matrix it is diagonalized by F , see Cooley and Tukey
(1965), Golub and Van Loan (2012), and

FAP F−1 = DP = diag(dl), dl = 4 sin2 π(l − 1)
N

− k2h2, l = 1, . . . N. (5)

As a consequence of this proposition, the solution v to the problem (4) can be
obtained by

v = F−1(DP )−1Fg. (6)
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Let us now consider the special case when g in (4) corresponds to an “odd”
extension of f . That is g :=Ef defined as

C
N � g = Ef , gj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fj , j = 1, . . . , n,

0, j = n + 1,

−fN−j , j = n + 2, . . . , 2n + 1,

0, j = N.

(7)

Here, N = 2n + 2. We have the following simple result.

Proposition 1. If N = 2n + 2 and g satisfies gj = −gN−j, for j = n + 2, n +
3, . . . , 2n+1 and gn+1 = g2n+2 = 0, then the solution to (4) satisfies the relation:

vj = −vN−j , j = n + 2, . . . , 2n + 1. (8)

Proof. We note that by assumption, g is an “odd” function with respect to
the middle of the interval (0, 2). Since AD is an invertible matrix, let u satisfy
[ADu]j = gj , j = 1, . . . , n. Next, we define v = Eu ∈ C

N where E is defined in
(7) and it is immediate to verify that APv = g. Since AP is also invertible, v
must be the unique solution of APv = g. From the definition of E, we conclude
that v satisfies (8).

Based on this observation, to solve the Dirichlet problem, we can define a
linear operator B (which we will soon prove equals (AD)−1) as follows: we first
define a restriction operator

C
n � w = Rv, wj = vj , j = 1, . . . n, v ∈ R

N . (9)

We then set
Bf = RF−1(DP )−1FEf . (10)

As the next proposition shows, B provides the exact solution to problem (2).

Proposition 2. With B defined in (10) we have

B = (AD)−1, and hence, u = Bf .

Proof. We notice that R = (In, 0n,n+2) ∈ R
n×N , and E =

(In, 0n×1,−Ĩn, 0n×1)t ∈ R
N×n, where In is the n × n identity matrix and

Ĩn = (δi,n+1−j)ij . Computing the product ADR(AP )−1E then shows that:

ADR(AP )−1E = AD(I, 0)(AP )−1E = (AD, 0)(AP )−1E = (I, 0)E = I. (11)

Indeed, the identities in (11) are verified by direct calculation:

((AD, 0)(AP )−1)ij

= − 1
N

(F−1(DP )−1F)i−1,j +
2
N

(F−1(DP )−1F)i,j − 1
N

(F−1(DP )−1F)i+1,j
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=
1
N

N∑
l=1

(−z̄(i−2)(l−1) + (2 − k2h2)z̄(i−1)(l−1) − z̄i(l−1))dlz
(k−1)(j−1)

=
1
N

N∑
l=1

(2 − k2h2 − 2 cos(
2π(l − 1)

N
))dlz

(k−1)(j−i)

=
1
N

N∑
l=1

z(k−1)(j−i) = δij . (12)

This completes the proof.

Generalization to Higher Dimensions (Dirichlet Problem). We now con-
sider the Helmholtz problem L(0, 1; k), defined in (1) in d-dimensions, i.e. we
take Ω = (0, 1)d. With central finite difference discretization, we have the linear
system:

ADu = f , AD =
d∑

j=1

(
I⊗(j−1) ⊗ TD ⊗ I⊗(d−j)

)
− k2h2I⊗d ∈ R

nd×nd

. (13)

Here M⊗p := M ⊗ . . . ⊗ M︸ ︷︷ ︸
p copies

for any matrix M and TD as in (2) is the tri-diagonal

matrix.
The extension and restriction operators in higher dimensions can be written

as E⊗d and R⊗d. The “odd” extension of f is then g = E⊗df . As in the 1D
case, the linear system for the extended Helmholtz equation is:

APv = g, AP =
d∑

j=1

(
I⊗(j−1) ⊗ TP ⊗ I⊗(d−j)

)
− k2h2I⊗d ∈ R

Nd×Nd

, (14)

where TP has been defined in (4). As in the one dimensional case (5), the matrix
AP is diagonalized by the multidimensional DFT Fd = F⊗d. The multidimen-
sional version of (5) then is

FdA
P F−1

d = DP
d :=

d∑
j=1

(
I⊗(j−1) ⊗ DP ⊗ I⊗(d−j)

)
− k2h2I⊗d.

As a consequence, we obtain inversion formula similar to the one presented
in Proposition 2. To show such representation, we need the following result.

Lemma 1. Let E and R be extension and restriction operator defined in (7)
and (9) respectively. Then the following identity holds

AD = R⊗dAP E⊗d. (15)
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Proof. By using the standard properties of the tensor product, we have

R⊗dAP E⊗d = R⊗d

⎛
⎝ d∑

j=1

(
I⊗(j−1) ⊗ TP ⊗ I⊗(d−j)

)
− k2h2I⊗d

⎞
⎠ E⊗d

= R⊗d

⎛
⎝ d∑

j=1

(
E⊗(j−1) ⊗ TP E ⊗ E⊗(d−j)

)
− k2h2E⊗d

⎞
⎠

=
d∑

j=1

(
I⊗(j−1) ⊗ RTP E ⊗ I⊗(d−j)

)
− k2h2I⊗d.

It is straightforward to check that RTP E = TD. Thus, R⊗dAP E⊗d = AD.

The following theorem gives the representation of the inverse of the discretized
Dirichlet problem in the multidimensional case.

Theorem 1. The inverse of AD can be written as

(AD)−1 = R⊗d(AP )−1E⊗d, and hence, u = R⊗d(AP )−1E⊗df . (16)

Proof. Clearly, it is straight forward to see the following

ADR⊗d(AP )−1E⊗d = R⊗dAP E⊗dR⊗d(AP )−1E⊗d = I,

by the using properties of the matrix tensor product, Lemma1 and identity
RE = I.

Notice here, all the above results can be extended to rectangle (non-square)
domain without too much difference. As a conclusion, we can solve the constant
coefficient Helmholtz equation with Dirichlet boundary condition by FFT with
complexity O(n log n), where n is the problem size.

2.2 Neumann Boundary Conditions

Neumann Problem in 1D. Let us consider the following 1D Helmholtz equa-
tion with one side Neumann boundary condition in (0, 1):

− u′′ − k2u = f, u(0) = 0, u′(0) = g. (17)

After discretization with central finite difference, we have the linear system

Au = f

where

A = tridiag(−1, 2 − k2h2,−1) − (1 − 1
2
k2h2)en+1e

t
n+1 ∈ R

(n+1)×(n+1), (18)
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and u = (u1, . . . , un+1)t, h = 1/(n + 1), uj ≈ u(jh), fj = f(jh), for j =
1, . . . , n + 1, and f = (h2f1, . . . , h

2fn, 1
2h2fn+1 + hg)t.

With Fourier method for the Dirichlet problem in mind, we do “even” exten-
sion of the system (18) to get a Toeplitz system similar to (2):

Aeue = fe, Ae = tridiag(−1, 2 − k2h2,−1) ∈ R
M×M , (19)

where M = 2n + 1, ue = (u1, . . . , uM )t, and fe = (h2f1, . . . , h
2fn, h2fn+1 +

2hg, h2fn, . . . , h2f1)t. By symmetry, the solution of system (19), when restricted
on interval (0, 1), will be the same as solution of system (18). Even though the
problem size has been doubled, the extended system is Toeplitz, thus can be
solved by Fourier method from Sect. 2.

In summary, we have the following inverse of the Neumann operator, that is
the solution of:

A−1f = RnF−1(DP )−1FEoEef .

The operators involved in the definition above are (from right to left): even
extension, odd extension followed by the inverse of the periodic problem and
then restriction to Neumann problem. More precisely, for the even extension Ee

we have,

C
M � fe = [Eef ]j =

⎧⎪⎨
⎪⎩

fj , j = 1, . . . , n,

2fn+1, j = n + 1,

fM+1−j , j = n + 2, . . . ,M.

(20)

Next, for the extension as to odd functions/vectors we have:

C
2M+2 � fo = [Eof

e]j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fe
j , j = 1, . . . ,M,

0, j = M + 1,

−fe
N−j , j = M + 2, . . . , 2M + 1,

0, j = 2M + 2.

(21)

Finally, as in (5), we have the diagonal matrix DP = diag(dl) with dl =
4 sin2 π(l−1)

2M+2 − k2h2 for l = 1, . . . , 2M + 2, and the restriction Rn operator (to
Neumann problem (18)):

v ∈ R
2M+2, C

n+1 � u = Rnv, uj = vj , j = 1, . . . n + 1.

Generalization to Higher Dimensions (Neumann problem). The Fourier
method for Neumann problem can also be generalized to any dimension d in a
fashion similar to the procedure given earlier for the Dirichlet problem. Just for
illustration, we consider the following problem in 2D:⎧⎪⎨

⎪⎩
−Δu − η2u = f in Ω = (0, 1)2,
∂u
∂x = g on Γ1 = {x = 1} × (0, 1),
u = 0 on ∂Ω/Γ1.

(22)
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We first do an “even” extension of the linear system and arrive at

Aeue = F e, Ae = IM ⊗ T d
n + T d

M ⊗ In − k2h2IMn ∈ R
Mn×Mn, (23)

where T d
j = tridiag(−1, 2,−1) ∈ R

j×j for any j, ue = (u1, . . . ,uM )t, and F e =
(h2f1, . . . , h

2fn, h2fn+1 +2hg, h2fn, . . . , h2f1)t. Clearly, the restriction of ue on
Ω∪Γ1 is the same as the solution of the Neumann problem. Now, for the solution
of (23) we can apply the method we have already described in Sect. 2.1.

3 Stekloff Eigenvalue Computation with Fourier Method

3.1 Variational Formulation

Multiplying the first equation in (1) with α = 1 by v ∈ H1(Ω) and integrating
by parts, we get: ∫

Ω

∇w∇v − η2

∫
Ω

wv = −λ

∫
Γ

wv.

Define A(η) : H1(Ω) → H−1(Ω) as

〈A(η)w, v〉 := (∇w,∇v)Ω − η2(w, v)Ω ∀v ∈ H1(Ω), (24)

where (·, ·)Ω is the L2 inner product and 〈·, ·〉 is duality pairing between H−1(Ω)
and H1(Ω). The Stekloff operator, or Dirichlet-to-Neumann (DtN), S(η) can be
defined in two steps:

Firstly, for any f ∈ H1/2(Γ ), define f0 ∈ H1
0 (Ω) as the unique function

satisfying:
〈A(η)f0, v0〉 = −〈A(η)(Ef), v0〉, ∀v0 ∈ H1

0 (Ω),

where Ef is H1-bounded extension of f , e.g. harmonic extension.
Secondly, define the action of S(η) : H1/2(Γ ) → H−1/2(Γ ) as

〈S(η)f, g〉1/2 = 〈A(η)(f0 + Ef), Eg〉, ∀g ∈ H1/2(Γ ), (25)

where 〈·, ·〉1/2 is the duality pairing between H1/2(Γ ) and H−1/2(Γ ).

Lemma 2. The Eq. (1) with α = 1 has a non-trivial solution if and only if −λ
is an eigenvalue of the Stekloff operator S(η).

Proof. We prove one side of this equivalence here since the other half is similar.
Suppose u is solution to (1) with α = 1, then

〈A(η)u, v0〉 = 0, ∀v0 ∈ H1
0 (Ω).

From the above equation, we have

〈A(η)(u − EuΓ ), v0〉 = −〈A(η)EuΓ , v0〉, ∀v0 ∈ H1
0 (Ω),

where uΓ := u|Γ is the trace of u on Γ . Denote u0 := u − EuΓ . It is easy to see
that u0 ∈ H1

0 (Ω) and the following equation holds:

〈S(η)uΓ , g〉1/2 = 〈A(η)(u0 + EuΓ ), Eg〉 = 〈A(η)u,Eg〉 = −(λuΓ , g).

This shows that −λ must be the eigenvalue of S(η).
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This lemma implies that solving problem (1) is equivalent to finding the
eigenvalue for S(η) with given η. In the next section we describe an efficient
method for this task, namely the Fourier method for Stekloff eigenvalues.

3.2 Neumann-to-Dirichlet and Dirichlet-to-Neumann Operators

We start with the definition of Neumann-to-Dirichlet operator T : L2(Γ ) →
L2(Γ ). Let μ ∈ L2(Γ ) and define wμ ∈ H1(Ω) to be the solution of Neumann
problem L(1, 0; η)w = (0, μ)t. Equivalently, wμ ∈ H1(Ω) satisfies

〈A(η)wμ, v〉 = 〈μ, v〉1/2, for any v ∈ H1(Ω). (26)

Taking the trace of wμ, we can define Neumann-to-Dirichlet (NtD) operator T
as Tμ = wμ|Γ .

After discretization the Neumann problem L(1, 0; η)w = (0, μ)t with finite
differences1, we have the following linear system:[

AII AIB

ABI ABB

] [
wI

wB

]
=

[
0
µ

]
, (27)

where µ is discretized version of μ, wI and wB are approximations to solution of
(26) restricted inside Ω and on boundary Γ respectively. Notice here we order the
grids by their positions in the domain for illustration purpose. As we discussed
in Sect. 2.2, Eq. (27) can be solved efficiently with Fourier method.

The discretized NtD operator Th corresponding to the NtD operator T is

Thµ =
[
0, I

] [
AII AIB

ABI ABB

]−1 [
0
µ

]
. (28)

To discretize the Dirichlet-to-Neumann operator, we consider the Dirichlet
problem L(0, 1; η)w = (0, g)t. With analogous discretization, we have the follow-
ing linear system: [

AII AIB

0 I

] [
wI

wB

]
=

[
0
g

]
. (29)

Here g is discretization of g. Clearly, wB = g as expected and the discrete
version of (25) gives the action of Sh as

Shg = (ABB − ABIA
−1
II AIB)g. (30)

We have the following Lemma, which shows that Th is the inverse of Sh.

Lemma 3. For the operators Th and Sh defined in (28) and (30), respectively,
we have ShTh = I.

1 The discretization with piece-wise linear continuous Lagrange finite elements pro-
duces the same, albeit scaled, matrix. Thus, the consideration that follow apply to
finite element discretizations as well.
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Proof. We just need to show ShThµ = µ for any µ. This can be easily proved
by Block-LU factorization.

ShThµ = Sh

[
0, I

] [
AII AIB

ABI ABB

]−1 [
0
µ

]

= Sh

[
0, I

] ( [
I 0

ABIA
−1
II I

] [
AII AIB

0 Sh

] )−1 [
0
µ

]
= µ.

(31)

The results from the previous two sections show that we can efficiently com-
pute the Stekloff eigenvalues of small magnitude as well as large magnitude.
For example, the eigenvalues of small magnitude of Sh can be approximated by
the reciprocal of the eigenvalues of NtD operator Th. The action of Th, which
is needed repeatedly in such a procedure, can be efficiently computed by the
Fourier method applied to the solution of the Helmholtz-Neumann problem as
we have discussed earlier. For eigenvalues of the largest magnitude the same
applies, except that we need the action of Sh, which requires fast solution of the
corresponding Dirichlet problems, which we also described earlier.

4 Numerical Examples

In this section, we present two applications of the Fourier method described
in Sect. 2. In the first example, the Fourier method is utilized in computing the
Stekloff eigenvalues as discussed in Sect. 3. For the second example, given the fact
that we can compute the numerical solution of constant coefficient Helmholtz
equation efficiently, we apply such solver as preconditioner for varying efficient
problem. Both examples are implemented in MATLAB and all tests have been
performed on the same computer with dual-core 2.5 GHz CPU.

4.1 Computing Stekloff Eigenvalues

In this numerical example, we calculate the Stekloff eigenvalues corresponding
to the problem: ⎧⎪⎨

⎪⎩
−Δw − η2w = 0 in Ω = (0, 1)2,
∂w
∂n + λw = 0 on Γ1 = {x = 1} × (0, 1),
w = 0 on ∂Ω/Γ1.

(32)

As is discussed in Sect. 3, the Stekloff eigenvalues can be numerically approx-
imated by the eigenvalues of discretized DtN operator Sh in (30). To find the
eigenvalues of Sh with small magnitude, for example, we need an efficient algo-
rithm to compute the action of Th = S−1

h on a vector. As in (28), one Neumann
problem needs to be solved for computing each action. Thus, we create a function
handle that solves the Neumann boundary problem in (28) with FFT, which is
then used in MATLAB eigensolver eigs. For different η and grid size n × n, the
smallest six eigenvalues in magnitude are reported in Table 1.
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Table 1. Smallest six Stekloff eigenvalues in magnitude for different η on n × n grid
with n = 50, 100.

η λ1 λ2 λ3 λ4 λ5 λ6

n=50 n=100 n=50 n=100 n=50 n=100 n=50 n=100 n=50 n=100 n=50 n=100

1 2.994 2.993 6.210 6.205 9.397 9.378 12.588 12.542 15.795 15.707 19.028 18.876

2 2.461 2.461 5.962 5.958 9.233 9.216 12.464 12.421 15.696 15.610 18.943 18.795

4 −3.159 −3.154 4.846 4.846 8.548 8.537 11.959 11.925 15.291 15.216 18.603 18.468

8 −1.245 −1.218 3.914 3.968 4.963 4.978 9.692 9.691 13.562 13.529 17.1817 17.098

4.2 Helmholtz Equation with Varying Wave Number

We consider the Helmholtz equation with homogeneous Dirichlet boundary con-
dition and varying coefficient on domain (0, 1)2, i.e.

L(0, 1; k(x, y))u = (f(x, y), 0)t.

The external force f(x, y) is set to be constant 1. The wave number fields are
ki(x, y) = ω/ci(x, y) with constant angular frequency ω and varying velocity
fields ci(x, y) for i = 1, 2 as follows:

1. c1(x, y) = 4
3 [1 − 0.5 exp(−0.5(x − 0.5)2],

2. c2(x, y) = 4
3 [1 − 0.5 exp(−0.5(x − 0.5)2 + (y − 0.5)2)].

After discretizing the equation with central finite difference, we use GMRES
as iterative solver for the linear system (relative residual tolerance 10−3). The
preconditioner is implemented by solving the constant wave number problem
with k equaling the average value of number field over the entire domain.

To study how the preconditioning performance is depending on the magni-
tude of ki(x, y), we gradually increase ω and grid size n (in each dimension),
while keeping the ratio ω/n fixed. In fact, this is the most computationally chal-
lenging case, since the relative percentage of positive eigenvalues for the linear
system is fixed. We record the number of iteration Ni and CPU time Ti for the
preconditioned GMRES to converge in Table 2. As a special case, for ω = 6.4π,
the wave number fields ki(x, y) and resulted wave fields ui(x, y) in each case have
been shown in Fig. 1.

Table 2. Varying ω and n, GMRES iterations number and time.

ω n2 N1 T1 N2 T2

1.6π 502 4 0.068 4 0.062

3.2π 1002 5 0.074 5 0.076

6.4π 2002 6 0.12 6 0.12

12.8π 4002 13 0.60 10 0.46



FFT for Stekloff Eigenvalues Problem 45

(a) wave number function k1(x, y) (b) wave simulated u1(x, y)

(c) wave number function k2(x, y) (d) wave simulated u2(x, y)

Fig. 1. Simulation results for different velocity fields.

5 Conclusions

In this paper, we proposed an efficient method for finding eigenvalues of indefi-
nite Stekloff operators. The main tool that we developed is a fast Fourier method
for solving constant coefficient Helmholtz equation with Dirichlet or Neumann
boundary condition discretized on a uniform mesh. The resulting algorithm is
efficient, transparent, and easy to implement. Our numerical experiments show
that such algorithm works also as a solver for the Helmholtz problem with
mildly varying coefficients (non-constant wave number). Another pool of impor-
tant applications will be the computation of transmission eigenvalues, where our
method has the potential to provide an efficient computational tool.
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