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Abstract. We discuss various applications of trace estimation tech-
niques for evaluating functions of the form tr(f(A)) where f is certain
function. The first problem we consider that can be cast in this form is
that of approximating the Spectral density or Density of States (DOS)
of a matrix. The DOS is a probability density distribution that measures
the likelihood of finding eigenvalues of the matrix at a given point on the
real line, and it is an important function in solid state physics. We also
present a few non-standard applications of spectral densities. Other trace
estimation problems we discuss include estimating the trace of a matrix
inverse tr(A−1), the problem of counting eigenvalues and estimating the
rank, and approximating the log-determinant (trace of log function). We
also discuss a few similar computations that arise in machine learning
applications. We review two computationally inexpensive methods to
compute traces of matrix functions, namely, the Chebyshev expansion
and the Lanczos Quadrature methods. A few numerical examples are
presented to illustrate the performances of these methods in different
applications.

1 Introduction

Let A ∈ R
n×n be a symmetric (real) matrix with an eigen-decomposition A =

UΛU�, where Λ = diag(λ1, . . . , λn), and λi, i = 1, . . . , n are the eigenvalues of
A and where the columns ui, i = 1, . . . , n of U are the associated eigenvectors.
For the matrix function f(A), defined as f(A) = Uf(Λ)U�, where f(Λ) =
diag(f(λ1), . . . , f(λn)) [18], the trace estimation problems consist of computing
an approximation of the trace of the matrix function f(A), i.e.,

tr(f(A)) =
n∑

i=1

f(λi). (1)

The problem of estimating the trace of a matrix function appears in a very
broad range of applications that include machine learning, signal processing, sci-
entific computing, statistics, computational biology and computational physics
[2,5,12,13,17,20,22,27,29]. Clearly, a trace of a matrix function can be triv-
ially computed from the eigen-decomposition of A. However, matrices in most
of the applications just mentioned are typically very large and so computing the
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complete eigen-decomposition can be expensive and sometimes even infeasible.
Hence, the problem is to develop fast and scalable algorithms to perform such
tasks without requiring the eigen-decomposition. This specific problem, which
has been at the forefront of research in many distinct areas whether in physics
or data-related applications, is the primary focus of this paper.

2 Trace Estimation Problems

We begin by first discussing a few trace estimation problems that arise in certain
application areas.

2.1 Spectral Density

The first problem that we consider is that of computing the spectral density of a
matrix [23], a very common problem in solid state physics. The spectral density
of matrix, also known as Density of States (DOS) in physics, is a probability
density distribution that measures the likelihood of finding eigenvalues of the
matrix at a given point on the real line. Formally, the spectral density of a
matrix is expressed as a sum of delta functions of the eigenvalues of the matrix.
That is,

φ(t) =
1
n

n∑

i=1

δ(t − λi),

where δ is the Dirac distribution or Dirac δ-function. This is not a proper function
but a distribution and it is clearly not practically computable as it is defined.
What is important is to compute a smoothed or approximate version of it that
does not require computing eigenvalues, and several inexpensive methods have
been proposed for this purpose, [23,31,35]. Recently, the DOS has been used in
applications such as eigenvalue problem, e.g., for spectral slicing [38], for counting
eigenvalues in intervals (‘eigencounts’) [11], and for estimating ranks [33,34].
In Sect. 4, we present a few other (new) applications where the DOS can be
exploited.

Article [23] reviews a set of inexpensive methods for computing the DOS.
Here we briefly discuss two of these methods, namely the Kernel Polynomial
method [35] and the Lanczos approximation method [23]. As was already men-
tioned the DOS is not a proper function. At best it can practically be viewed as a
highly discontinuous function, which is difficult to handle numerically. The idea
then is to replace the delta function by a surrogate Gaussian blurring function
as is often done. A “blurred” version of the DOS is given by:

φσ(t) =
1
n

n∑

i=1

hσ(t − λi),

where hσ(t) = 1√
2πσ2 e− t2

2σ2 . The spectral density can then approximated by
estimating this trace of this blurred function, e.g., using the Lanczos algorithm.
An older method consists of just expanding (formally) the DOS into Chebyshev
polynomials. These two methods will be discussed later in Sect. 3.
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2.2 Eigencount and Numerical Rank

The second trace estimation application we consider is that of counting eigenval-
ues located in a given interval (eigencount) and the related problem of estimat-
ing the numerical rank of a matrix. Estimating the number of eigenvalues η[a,b]

located in a given interval [a, b] (including the possible multiplicities) of a large
sparse symmetric matrix is a key ingredient of effective eigensolvers [11], because
these eigensolvers require an estimate of the dimension of the eigenspace to com-
pute to allocate resources and tune the method under consideration. Estimating
the numerical rank rε = η[ε,λ1] is another closely related problem that occurs in
machine learning and data analysis applications such as Principal Component
Analysis (PCA), low rank approximations, and reduced rank regression [33,34].
Both of these problems can be viewed from the angle of estimating the trace of
a certain eigen-projector, i.e., the number of eigenvalues η[a, b] in [a, b] satisfies:

η[a,b] = tr(P ), where P =
∑

λi ∈ [a, b]

uiu
�
i .

We can interpret P as a step function of A given by

P = h(A), where h(t) =
{

1 if t ∈ [a, b]
0 otherwise . (2)

The problem then is to find an estimate of the trace of h(A). A few inexpensive
methods are proposed in [11,33,34,40] to approximately compute this trace. We
can also compute the eigencount from the spectral density since

η[a, b] =
∫ b

a

∑

j

δ(t − λj)dt ≡
∫ b

a

nφ(t)dt. (3)

2.3 Log-Determinant

Log-determinants have numerous applications in machine learning and related
fields [17,27,29]. The logarithm of the determinant of a given positive definite
matrix A ∈ R

n×n, is equal to the trace of the logarithm of the matrix, i.e.,

log det(A) = tr(log(A)) =
n∑

i=1

log(λi).

So, estimating the log-determinant of a matrix leads once more to the estimation
of the trace of a matrix function in this case the logarithm function.

Various methods have been proposed for inexpensively computing logdeter-
minants. These methods differ in the approach used to approximate the log
function. For example, the article [17] uses Chebyshev polynomial approxima-
tions of the log function, while [8,39] uses Taylor series expansions. On the other
hand, Aune et al. [3] developed a method based on rational approximations of
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the logarithm. More recently, a method based on Lanczos Quadrature has been
advocated for computing log determinants [32].

Log-Likelihood Estimation: One of the applications of log-determinants com-
putation is in the in likelihood estimation problems that arise in Gaussian pro-
cesses [27]. Maximum Likelihood Estimation (MLE) is a popular approach used
for parameter estimation in high dimensional Gaussian models. The objective
is to maximize the log-likelihood function with respect to a hyperparameter
vector ξ:

log p(z | ξ) = −1
2
z�S(ξ)−1z − 1

2
log det S(ξ) − n

2
log(2π), (4)

where z is the data vector and S(ξ) is the covariance matrix parameterized by
ξ. As seen from the above expression, a log-determinant must be computed to
obtain the log-likelihood, see [32].

2.4 Other Applications

Other frequent matrix function trace estimation problems include estimating the
trace of a matrix inverse, the Schatten norms, and the Estrada index. These are
discussed in turn.

Trace of a Matrix Inverse: The matrix inverse trace estimation problem
amounts to computing the trace of the inverse function f(t) = t−1 of a positive
definite matrix A ∈ R

n×n, whose eigenvalues lie in the interval [λmin, λmax] with
λmin > 0. This problem appears in uncertainty quantification and in lattice
quantum chromodynamics [20,37], where it is necessary to estimate the trace of
the inverse of covariance matrices.

Schatten p-Norms: Given an input matrix X ∈ R
d×n, the Schatten p-norm of

X is defined as

‖X‖p =
( r∑

i=1

σp
i

)1/p

,

where the σi’s are the singular values of X and r its rank. The nuclear norm
is the Schatten 1-norm so it is just the sum of the singular values. Estimating
the nuclear norm and the Schatten p-norms of large matrices appears in matrix
completion and in rank-constrained optimization problems, differential privacy
and theoretical chemistry [25,32]. It is also used in SVD entropy computations [1]
which has many applications [25]. Suppose we define a positive semidefinite
matrix A as1 A = X�X or A = XX�. Then, the Schatten p-norm of X is
defined as

‖X‖p =
( r∑

i=1

λ
p/2
i

)1/p

=
(
tr(Ap/2)

)1/p

.

1 The matrix product is not formed explicitly since the methods involved typically
require only matrix vector products.
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Hence, Schatten p-norms (the nuclear norm being a special case with p = 1)
are the traces of matrix functions of A with f(t) = tp/2, and they can be com-
puted inexpensively using methods such as Lanczos Quadrature [32], Chebyshev
expansions [16] and others [25].

Estrada Index: The Estrada index of graphs is a common tool in computational
biology, and has applications that include protein indexing [12], statistical ther-
modynamics and information theory [9]. Estimating the Estrada index amounts
to finding an approximation to the trace of the exponential function, i.e., we
need to estimate tr(exp(A)), where A is the adjacency matrix of the graph.
Articles [16,25,32] discuss methods for a fast estimation of the Estrada index of
graphs.

3 Methods

We now discuss two inexpensive techniques for estimating traces of matrix func-
tions. The first approach is well-known among solid-state physicists. Termed
‘Kernel Polynomial Method’ (KPM) [34–36] or ‘Chebyshev expansion method’
[16,17,33], it consists simply of expanding the spectral density into Chebyshev
polynomials. The second approach is based on the Lanczos algorithm [23,32],
where the relation between the Lanczos procedure and Gaussian quadrature for-
mulas is exploited to construct a good approximation for the matrix function.
We first discuss a standard tool known as the ‘stochastic trace estimator’, which
is a key ingredient used in the methods to be discussed.

3.1 Stochastic Trace Estimator

The stochastic trace estimator [4,19,28] approximates the trace of a matrix
function f(A) by means of matrix-vector products with f(A). This method takes
a sequence of random vectors vl, l = 1, ..,nv whose components have zero mean
E[vl] = 0 and whose 2-norm is one, ‖vl‖2 = 1 and it then computes the average
over the samples of v�

l f(A)vl to approximate the trace,

tr(f(A)) ≈ n

nv

nv∑

l=1

v�
l f(A)vl. (5)

Convergence has been analyzed in [4,28]. A variant of this method can be used
to estimate the diagonal entires of f(A), see [7]. Note that f(A) need not be
explicitly formed since we only need to efficiently compute the vectors f(A)vl

for any vl. This can be accomplished in a number of effective ways.

3.2 Chebyshev (Kernel) Polynomial Method

The Kernel Polynomial Method (KPM) proposed in [30,35] computes an approx-
imate DOS of a matrix using Chebyshev polynomial expansions, see, [23] for a
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discussion. In KPM, the matrix is linearly transformed so as to map its eigen-
values from the initial interval [λn, λ1] into the interval [−1, 1]. This requires
estimating the extreme eigenvalues, see [34]. KPM seek the expansion of:

φ̂(t) =
√

1 − t2φ(t) =
√

1 − t2 · 1
n

n∑

j=1

δ(t − λj),

instead of the original φ(t) since the Chebyshev polynomials are orthogonal with
respect to the weight function (1− t2)−1/2. Then, we write the partial expansion
of φ̂(t) as

φ̂(t) ≈
m∑

k=0

μkTk(t),

where Tk(t) is the Chebyshev polynomial of degree k. A little calculation
reveals that, formally at least, each expansion coefficient μk is given by μk =
(2−δk0)

π tr(Tk(A)). Here δij is the Kronecker symbol, so 2 − δk0 is 1 when k = 0
and 2 otherwise. The trace of Tk(A) can now be estimated with the help of the
expansion coefficients the corresponding expansion coefficient μk are approxi-
mated as,

μk ≈ 2 − δk0

πnv

nv∑

l=1

(vl)
�

Tk(A)vl.

Scaling back by the weight function (1 − t2)−1/2, we obtain the approximation
for the spectral density function in terms of Chebyshev polynomial of degree m.

General Function f(A): For a general function f : [−1, 1] → R, it is possible
to obtain an approximation of the form

f(t) ≈
m∑

k=0

γkTk(t).

using Chebyshev polynomial expansions or interpolations, see [24] for details.
Here Tk(t) is the Chebyshev polynomial of degree k and γk are corresponding
coefficients specific to expanding the function f(t). Hence, we can approximate
the trace of f(A) as

tr(f(A)) ≈ n

nv

nv∑

l=1

[
m∑

k=0

γk(vl)T Tk(A)vl

]
, (6)

using the Chebyshev expansions and the stochastic trace estimator (5). Arti-
cles [11,33] discussed the expansion of step functions using Chebyshev polyno-
mials to compute eigencounts and numerical ranks of matrices, respectively.

Han et al. [16] discussed the above Chebyshev expansion method to approx-
imately estimate the traces tr(f(A)), when the function f is analytic over an
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interval. They proposed using Chebyshev interpolations to obtain the coefficients
γk. Problems such as estimating log-determinants, Estrada index, trace of matrix
inverse and Shcatten p norms were discussed. The functions log(t), exp(t), t−1

and tp/2 are all analytic in the spectrum interval [λmin, λmax], with λmin > 0.
When expanding discontinuous functions including the DOS and step func-

tions using Chebyshev polynomials, oscillations known as Gibbs Oscillations
appear near the discontinuities [11]. To reduce or suppress these oscillations,
damping multipliers are often used, see [11,23] for details. An important prac-
tical consideration is that we can economically compute vectors of the form
Tk(A)v using the three term recurrence of Chebyshev polynomials, see [16,34].
The recent article [16] analyzed the convergence of methods for approximating
tr(f(A)) with the Chebyshev method when the function f(A) is analytic over
the interval of interest.

3.3 Lanczos Quadrature

The Lanczos Quadrature method was developed in [14], and the idea of combin-
ing the stochastic trace estimator with the Lanczos Quadrature method appeared
in [5,6]. This method was recently analyzed and applied to matrix function trace
estimation in [32]. In the Stochastic Lanczos Quadrature (SLQ) method, the
scalar quantities v�f(A)v in the trace estimator (5) are computed by treating
them to Riemann-Stieltjes integral, and then using the Gauss quadrature rule to
approximate this integral. Given the eigen-decomposition A = QΛQ�, we can
write the scalar product as Riemann-Stieltjes integral given by,

v�f(A)v = v�Qf(Λ)Q�v =
n∑

i=1

f(λi)μ2
i =

∫ b

a

f(t)dμ(t), (7)

where μi are the components of the vector Q�v and the measure μ(t) is a
piecewise constant function defined as

μ(t) =

⎧
⎪⎨

⎪⎩

0, if t < a = λ1,∑i−1
j=1 μ2

j , if λi−1 ≤ t < λi, i = 2, . . . , n,∑n
j=1 μ2

j , if b = λn ≤ t,

(8)

with λi ordered nondecreasingly. However, the complete eigen-decomposition of
A will not be available, and will be very expensive to compute for large matrices.
So, we consider estimating the integral using the Gauss quadrature rule [15]

∫ b

a

f(t)dμ(t) ≈
m∑

k=0

ωkf(θk), (9)

where {ωk} are the weights and {θk} are the nodes of the (m + 1)-point Gauss
quadrature. We can then compute these weights and nodes using the Lanczos
algorithm [13].
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Given symmetric matrix A ∈ R
n×n and a starting vector w0 of unit 2-norm,

the Lanczos algorithm generates an orthonormal basis Wm+1 for the Krylov sub-
space span{w0, Aw0, . . . , A

mw0} such that W�
m+1AWm+1 = Tm+1, where Tm+1

is an (m+1)×(m+1) tridiagonal matrix. The columns wk of Wm+1 are related as

wk = pk−1(A)w0, k = 1, . . . ,m,

where pk are the Lanczos polynomials. The Lanczos polynomials are orthogonal
with respect to the measure μ(t) in (8); see Theorem 4.2 in [13]. The nodes and
the weights of the quadrature rule in (9) can be computed as the eigenvalues
and the squares of the first entries of the eigenvectors of Tm+1. Thus, we have

v�f(A)v ≈
m∑

k=0

τ2
kf(θk) with τ2

k =
(
e�
1 yk

)2
, (10)

where (θk, yk), k = 0, 1, ...,m are eigenpairs (eigenvalues and eigenvectors) of
Tm+1 by using v as the starting vector w0. Note that eigen-decomposition of
Tm+1 for small m is inexpensive to compute. Then, the trace of matrix function
f(A) can be computed as,

tr(f(A)) ≈ n

nv

nv∑

l=1

(
m∑

k=0

(τ (l)
k )2f(θ(l)k )

)
, (11)

where (θ(l)k , τ
(l)
k ), k = 0, 1, ...,m are eigenvalues and the first entries of the eigen-

vectors of the tridiagonal matrix T
(l)
m+1 corresponding to the starting vectors

vl, l = 1, . . . ,nv. A convergence analysis for this SLQ method was proposed in
the recent article [32]. For analytic functions, it has been shown that the con-
vergence of the Lanczos quadrature approximation is twice as fast as that of
Chebyshev approximation methods. This stems from the fact that an m-point
quadrature rule is exact for any polynomial of degree 2m, see [32] for details.

Lanczos Approximation for the DOS. The Lanczos approximation tech-
nique for estimating spectral densities discussed in [23] is based on the above
Lanczos Quadrature framework. Given a polynomial p(t), we can use the Lanc-
zos quadrature formula in Eq. (10), to compute the (Riemann-Stieltjes) integral
v�p(A)v, see [13] for details. Since this is a Gaussian quadrature formula, it is
exact when p is a polynomial of degree ≤ 2m + 1.

As seen earlier, for an initial vector w0 of the Lanczos sequence, expanded
in the eigenbasis {ui}n

i=1 of A as w0 =
∑n

i=1 βiui and we consider the discrete
(Stieltjes) integral:

∫
p(t)dμ(t) = (p(A)w0, w0) =

n∑

i=1

β2
i p(λi). (12)
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This integral is a distribution φw0 applied to p, written as (p(A)w0, w0) ≡
〈φw0 , p〉 . If we assume an idealistic situation where β2

i = 1/n for all i, then
φw0 will be exactly the distribution, the DOS function. In the sense of distribu-
tions,

〈φw0 , p〉 ≡ (p(A)w0, w0) =
n∑

i=1

β2
i p(λi) =

n∑

i=1

β2
i 〈δλi

, p〉 =
1
n

n∑

i=1

〈δλi
, p〉 ,

where δλi
is a δ-function at λi. Then, from the Gaussian quadrature rule (10),

we have: 〈φw0 , p〉 ≈ ∑m
k=1 τ2

kp(θk) =
∑m

k=1 τ2
k 〈δθk

, p〉 and

φw0 ≈
m∑

k=1

τ2
k δθk

.

Since the βi’s are not equal in practice, we will need to use several starting
vectors vl and average the result of the above formula over them. This is the
Lanczos approximation method for computing an approximate DOS [23].

If (θ(l)k , y
(l)
k ), k = 1, 2, ...,m are eigenpairs of the tridiagonal matrix Tm corre-

sponding to the starting vector vl, l = 1, . . . ,nv and τ
(l)
k is the first entry of y

(l)
k ,

then the DOS function by Lanczos approximation is given by

φ̃(t) =
1
nv

nv∑

l=1

(
m∑

k=1

(τ (l)
k )2δ(t − θ

(l)
k )

)
. (13)

The above function is a weighted spectral distribution of Tm, where τ2
k is the

weight for the corresponding θk and it approximates the spectral density of A.

Computational Cost: The most expensive step in KPM is when computing
the scalars (vl)�Tk(A)vl for l = 1, . . . ,nv, k = 0, . . . ,m. Hence, the computa-
tional cost for estimating matrix function traces by KPM will be O(nnz(A)mnv)
for sparse matrices, where nnz(A) is the number of nonzero entries of A. Simi-
larly, the most expensive part of the Lanczos Quadrature procedure is to perform
the m Lanczos steps with the different starting vectors. The computational cost
for matrix function trace estimation by SLQ will be O((nnz(A)m + nm2)nv) for
sparse matrices where there is an assumed cost for reorthogonalizing the Lanczos
vectors. As can be seen, these algorithms are inexpensive relative to methods
that require matrix factorizations such as the QR or SVD.

4 Applications of the DOS

Among the applications of the DOS that were mentioned earlier, we will discuss
two that are somewhat related. The first is a tool employed for estimating the
rank of a matrix. This is only briefly sketched as it has been discussed in details
earlier in [33,34]. The second application, is in clustering and the problem of
community detection in social graphs.
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Threshold Selection for Rank Estimation: The numerical rank of a general
matrix X ∈ R

d×n is defined with respect to a positive tolerance ε as follows:

rε = min{rank(B) : B ∈ R
d×n, ‖X − B‖2 ≤ ε}. (14)

To estimate rε we need to provide a good value for the threshold ε to be used
to determine the rank. Recently, references [33,34] proposed a method for deter-
mining this threshold ε based on the plot of DOS. The idea is to detect a gap
between the noisy and relevant eigenvalues (we are interested in the count of
these relevant eigenvalues) by locating a local minima near zero in the DOS
plot. The cutoff point is chosen to be where the derivative of the spectral den-
sity function becomes close to zero (local minimum) for the first time. Thus, the
threshold ε can be selected as

ε = min{t : φ′(t) ≥ tol, λn ≤ t ≤ λ1}, (15)

for a small tolerance, e.g., tol = −0.01 and not zero for practical reasons.

Fig. 1. Matrix of size n = 902 showing a block structure (left) and a zoom at the
pattern focusing in the first 2 blocks (center). The DOS plot zooms in on the part
between 0 and ≈ 0.7 (right).

Community Detection in Graphs: A problem of primary importance in
various scientific and engineering disciplines is to determine dense subgraphs or
communities within a given graph [21,26] Here we exploit the idea of spectral
densities to determine the number of communities in a graph.

Let W denote the adjacency graph of a given (undirected) graph and let
L = D−W be the graph Laplacian with D = diag(We) the diagonal matrix with
diagonal entries as the sums of the entries of the corresponding row in W . In the
ideal case of perfect clusters, where each cluster is a clique, the matrix L will have
an eigenvalue of zero for each block, leading to a multiple zero eigenvalue, one
for each block. By way of illustration consider left plot of Fig. 1. This represents
the sparsity pattern of a small synthetic example made up of k = 15 sparse
diagonal blocks that have a good density (about half dense) completed by some
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sparse matrix that has a lower density. The sizes of the blocks vary from 105 to
190. The right side of the figure shows a zoom on the first two blocks to provide
an illustration.

In an ideal scenario, each of the diagonal blocks is dense and there are no
elements outside of these blocks. Then, the graph Laplacian will have exactly k
zero eigenvalues where k is the number of blocks, which is 15 here. This is still
true when the matrix is block diagonal but each diagonal block is a small sparse
Laplacian, that contributes one zero eigenvalue. When we have certain off-block
diagonal entries (equivalent to noise), the zero eigenvalues are perturbed, and
we get a cluster of eigenvalues close to the origin. This is illustrated in the DOS
plot corresponding to this matrix (zoomed in), see rightmost plot of Fig. 1. If we
count the number of eigenvalues included in that cluster we will find that it is
equal to the number of blocks. It is not too difficult to devise small subroutines
that will consider the DOS curve and spot the point where the curve levels off
after descending from its peak value to the left. A short matlab script we wrote
finds the value τ = 0.136 and the number of blocks detected with the help of
spectral densities is close to the correct number of k = 15. Thus, this technique
can be used to find an effective way to estimate the number of dense subgraphs.

Fig. 2. The spectrum (Left), and the approximate DOS found by KPM (Middle), and
by SLQ for the example Si2.

Spectral densities can be used to extract a wealth of additional information.
For example, the graphs may have multi-level clustering or sub-communities
within the larger communities. Such situations are common in social networks,
document and product categorization, etc. For such matrices, the multi-level
clustering will result in a matrix with multiple clusters of eigenvalues in the DOS
curve. It is possible to identify such clusters using the DOS and count the eigen-
values within these clusters, corresponding to the number of sub-communities.

5 Numerical Examples

In this section, we present a few examples to illustrate the performances of the
Kernel polynomial and the Lanczos Quadrature methods for different problems
of estimating traces of matrix functions.
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Spectral Density. In the first experiment, to illustrate the performances of
KPM and the Lanczos Approximation for approximating the DOS using a small
example with matrix2 Si2 of size 769. Figure 2 plots the matrix spectrum (left),
and the DOS plots obtained using KPM (Middle) and SLQ (right) with degree
m = 50 and a number of samples nv = 30, respectively. The red triangular lines
in both plots represent the actual histogram (spectral density) of the matrix.
The blue circle lines are the estimated DOS. Jackson damping [23] was used for
KPM and Gaussian blurring with σ = 0.25 was used for Lanczos approximation
plot. We note that the Lanczos algorithm gives slightly more accurate results for
the same degree m compared to KPM. However,the Lanczos method is slightly
more expensive due to the orthogonalization step.

Numerical Rank Estimation. The following experiment will illustrate the
performances of the two techniques, KPM and SLQ, for estimating the numeri-
cal rank, see Fig. 3. We consider a 1961×1961 matrix named netz4504 from the
SuiteSparse collection (see footnote 2), see [10]. The matrix spectrum and the
DOS plot obtained using KPM with degree m = 50 and a number of samples
nv = 30 are given in the left plots of Fig. 3. The threshold ε (the gap) estimated
using this DOS plot was ε = 0.12. The middle figure plots the estimated approx-
imate ranks for different degrees m (top) and different number of starting vector
nv (bottom) using KPM (black solid line). Similarly, the right plots in Fig. 3
shows the estimated approximate ranks by the Lanczos approximation method
using different degrees m (or the dimension of the Krylov subspace for the Lanc-
zos method) and different number of sample vectors nv. nv = 30 in the top plot

Fig. 3. The spectrum, the DOS found by KPM, and the approximate ranks estimation
by KPM and by SLQ for the example netz4504.

2 The matrices used in the experiments can be obtained from the SuiteSparse matrix
collection: https://sparse.tamu.edu/.

https://sparse.tamu.edu/
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and m = 50 in the bottom in both cases. The average approximate rank esti-
mated over 30 sample vectors is equal to 1323.12 by KPM and by SLQ is equal
to 1325.68. The exact number of eigenvalues in the interval is 1324, (indicated
by the dash line in the plot). In this case (m = 50,nv = 30), the number of
matrix-vector multiplications required for both the rank estimator techniques is
1500.

6 Conclusion

The aim of this article, and the related presentation at HPCSE17, has been to
provide a brief overview of the applications of traces of matrix functions and
of effective related techniques for approximating them. In particular, we strived
to highlight the broad applicability and the importance of spectral densities.
These provide vital information in certain disciplines in physics and for this
reason physicists were the first to develop effective methods such as KPM for
computing them. On the other hand, the use of spectral densities, and more
generally traces of matrix functions, in other areas such as machine learning and
computational statistics, is more recent. There is no doubt that the interest in
this topic will gain in importance given the rapid progress of disciplines that
exploit large datasets.
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