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Abstract. This study deals with the problem of optimal setting of
experimental design variables, which controls the accuracy of the numer-
ical process of determining model parameters from data. Our approach,
although case independent, is formulated as an inverse problem of a
diffusion coefficient estimation using the FRAP (Fluorescence Recovery
After Photobleaching) experimental technique. The key concept relies
on the analysis of the sensitivity of the measured output with respect to
the model parameters. Based on this idea, we optimize an experimental
design factor being the initial concentration of some particles. Numer-
ical experiments on a 2D finite domain show that the discretized opti-
mal initial condition attains only two values representing the existence
or non-existence of diffusive particles. The number of jumps between
these values determines the connectivity (or the bleaching pattern) and
is dependent on the value of a diffusion coefficient, e.g., the annulus
shaped initial condition is better than a disc for some specific range of
model parameters.
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1 Introduction

The continuous enhancement and sophistication of experimental devices in ser-
vice of biological community take advantage of the fast development of infor-
matics and image processing. However, it is not a rare case that a large amount
of spatio-temporal data, e.g., in form of a time sequence of images, is routinely
generated without a clear idea about further data processing.
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 160–173, 2018.
https://doi.org/10.1007/978-3-319-97136-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97136-0_12&domain=pdf


Disc vs. Annulus: On the Bleaching Pattern Optimization for FRAP 161

The aim of this paper is to (re)establish the link between experimental condi-
tions (experimental protocol) and the accuracy of the resulting data processing.
Our simplified case study on FRAP (Fluorescence Recovery After Photobleach-
ing) data processing [6,14] serves as a paradigmatic example of the inverse prob-
lem of the diffusion parameter estimation from spatio-temporal measurements
of fluorescent particle concentration. The FRAP technique is based on mea-
suring the fluorescence intensity (proportional to non-bleached particles con-
centration) in a region of interest (being usually an Euclidian 2D domain) in
response to a high-intensity laser pulse. The laser pulse (the so-called bleach)
causes an irreversible loss in fluorescence of some particles residing originally in
the bleached area, presumably without any damage to intracellular structures.
After the bleach, we observe the change in fluorescence intensity in a monitored
region reflecting the diffusive transport of fluorescent particles from the area
outside the bleach [12,17].

A natural question is how the experimental settings influence the accuracy of
the resulting parameter estimates. There are many rather empirical recommen-
dations related to the design of a photobleaching experiment, e.g., the bleach
spot shape and size [2], the region of interest (its location and size), or the
total time of measurement, see [16] and references within. However, we would
have a more rigorous tool for the choice of experimental design factors. This
is because the setting of initial conditions of an experiment not only influences
the following data measurement process. There is somewhat hidden a related
data processing part. Mainly in case of a model-based design of experiments and
when the measured data are used in the frame of an inverse problem of model
parameter estimation. Having a reliable process model, e.g. [11], we can perform
the subsequent sensitivity analysis with respect to the model parameters [3].
Consequently, we are allowed to formulate the problem as the maximization of a
sensitivity measure leading to the optimal initial condition (an optimal bleaching
pattern).

The paper is organized as follows. In Sect. 2, we introduce the problem,
define the sensitivity measure and formulate the optimization problem. Section 3
describes some numerical issues of sensitivity measure evaluation. In Sect. 4, we
provide a numerical example to show that our theoretical basis is well founded
and that the optimal initial condition strongly depends on the diffusion coeffi-
cient and leads to a variety of bleaching patterns. Finally, some conclusions are
presented in Sect. 5.

2 Problem Formulation

Let us consider the Fickian diffusion with a constant diffusion coefficient D > 0
and assume a spatially radially symmetric observation domain, i.e., the data
are observed on a cylinder with the radius R and height T [8]. Taking into
account the usual case of radial symmetry of the FRAP experiment, the simplest
governing equation for the spatio-temporal distribution of fluorescent particle
concentration u(r, t) is the diffusion equation as follows
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)
, (1)

where r ∈ (0, R], t ∈ [0, T ], with the initial and Neumann boundary conditions

u(r, 0) = u0(r),
∂u

∂r
(R, t) = 0. (2)

We consider the diffusion equation in polar coordinates since both the whole
boundary value problem and the bleaching pattern used in FRAP experiments
have the rotational (radial) symmetry.1

The main issue in FRAP and related inverse problems of parameter estima-
tion is to find the value of the underlying model parameters (e.g., the diffusion
coefficient D) from spatio-temporal measurements of the concentration u(r, t),
see [13,14].

Obviously, the measured data are discrete and each data entry quantifies the
variable u at a particular spatio-temporal point (r, t) in a finite domain, i.e.,

u(ri, tj) ∈ [0, umax], i = 0 . . . n, j = 0 . . . m,

where i is the spatial index uniquely identifying the pixel position where the value
of fluorescence intensity u is measured and j is the time index (the initial con-
dition corresponds to j = 0). Usually, the data points are uniformly distributed
both in time (the time interval Δt between two consecutive measurements is
constant) and space, i.e., on an equidistant mesh with the step-size Δr, see [8].
Having Ndata := (m + 1) × (n + 1) the total number of spatio-temporal data
points, we can define a forward map (also called a parameter-to-data map)

F : R → RNdata

(D) → u(rk, tk)Ndata
k=1 . (3)

Our regression model is now
F (D) = ue, (4)

where the data ue ∈ RNdata are modeled as contaminated with additive white
noise

ue = F (DT ) + e = u(rk, tk)Ndata
k=1 + (ek)Ndata

k=1 . (5)

Here DT denotes the true coefficient and e ∈ RNdata is a data error vector, which
we assume to be normally distributed with variance σ2 for each time instant tj ,
i.e., ej = N (0, σ2), j = 0, . . . , m, ej ∈ Rn+1.

Given some data, the aim of the parameter estimation problem is to find DT ,
such that Eq. (4) is satisfied in some appropriate sense. Since Eq. (4) usually con-
sists of an overdetermined system (there are more data points than unknowns),
it cannot be expected that it holds with equality, but instead an appropriate
notion of a solution is that of a least-squares solution Dc (with ‖ . ‖ denoting
the Euclidean norm on RNdata):

‖ ue − F (Dc) ‖2= min
D>0

‖ ue − F (D) ‖2 . (6)

1 In our preceding papers [6–8,14], we employed the Cartesian coordinate system.
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Remark 1. The above defined parameter identification problem (6) is usually ill-
posed (in a Hadamard sense) for non-constant coefficients [5] and a regularization
technique has to be employed. Let us state, that the theory of regularization of
ill-posed problems is well developed, see [4] and references within there. For
some practical examples related to FRAP data processing see our works [6,7,
14]. However, if we a-priori restrict the coefficients D to be constant, then the
identification problem becomes well-posed.

Having the noisy data as in (5), the estimated value Dc of the true diffusion
coefficient DT can be computed numerically by solving the inverse problem to
initial boundary value (IBV) problems (1)–(2). It can be shown [1,3,8], that
for our case of single scalar parameter estimation and white noise as data error
assumed, the expected relative error in DT depends on the data noise level and a
factor, which we call the global semi-relative squared sensitivity SGRS , as follows

E

(∣∣∣∣Dc − DT

DT

∣∣∣∣
2
)

∼ σ2

SGRS
, (7)

where E is the expected value and σ2 denotes the variance of the additive Gaus-
sian noise. The sensitivity measure SGRS , that depends on the initial condition
u0, is defined on a spatio-temporal mesh by

SGRS(u0) = D2
T

n∑
i=0

m∑
j=1

[
∂

∂D
u(ri, tj)|D=DT

]2

, (8)

where ∂
∂Du(ri, tj) is the usual sensitivity of the model output at the spatio-

temporal point (ri, tj) with respect to the parameter D.
It is obvious from this estimate that if the noise level is fixed, the esti-

mation of DT can only be improved by switching to an experimental design
with a higher sensitivity. The sensitivity measure (8) involves several design
parameters. If the spatio-temporal grid for the data measurement is given,
i.e., all the above parameters R, T,Δr,Δt are fixed, there is only one way
to maximize the sensitivity measure SGRS : to consider the initial condition
u0 in (2) as the experimental design parameter. It means, for the discretized
version of the IBV problems (1)–(2), the aim is to find the initial condition
(u00, . . . , u0n)T = (u0(r0), . . . , u0(rn))T ∈ Rn+1 such that SGRS is maximized
and hence the expected error in DT is minimized. In order to do so, we establish
the bounds where the initial condition is considered: u0 ≤ u0i ≤ u0, i = 0, . . . , n,
where u0, u0 ∈ R, u0 < u0. The optimization problem is formulated as follows

uopt
0 = arg max

u0∈Rn+1
SGRS(u0) subject to u0 ≤ u0i ≤ u0, i = 0, . . . , n. (9)

Without loss of generality, we set u0 = 0 (zero components) and u0 = 1 (non-zero
components).
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3 Numerical Issues of Sensitivity Measure (8) evaluation

Based on the previously fixed parameters R, T , it is convenient to introduce
the following scaling of the space and time coordinates and to define a scaled
diffusion coefficient δ

r̃ :=
r

R
, t̃ :=

t

T
, δ :=

DT

R2
. (10)

Instead of the Fick diffusion Eq. (1), the concentration u, in the scaled coordi-
nates r̃, t̃, then satisfies the equation

∂u

∂t̃
= δ

(
∂2u

∂r̃2
+

1
r̃

∂u

∂r̃

)
, (11)

where r̃ ∈ (0, 1], t̃ ∈ [0, 1], with the initial and Neumann boundary conditions

u(r̃, 0) = u0(r̃),
∂u

∂r̃
(1, t̃) = 0. (12)

Let us fix n+ 1 as a number of spatial points and m + 1 as a number of time
measurements. Consider a spatio-temporal grid {r̃i, t̃j}, i = 0 . . . n, j = 0 . . . m,
where r̃0 = 0, r̃n = 1, t̃0 = 0, t̃m = 1, with corresponding spatial and time steps
Δr̃ = 1

n and Δt̃ = 1
m , respectively. Consequently, u(r̃i, 0) = u0(r̃i), i = 0 . . . n,

represents the initial condition (evaluated at discrete points r̃i) and ∂u
∂r̃ (1, t̃j) =

0, j = 1 . . . m, represents the homogeneous Neumann boundary condition.
We use the finite difference Crank-Nicolson scheme to compute a numerical

solution ui,j := u(r̃i, t̃j), i = 0 . . . n − 1, j = 1 . . . m, of the IBV problems
(11)–(12). After some algebraic manipulation we arrive at a linear system with
a three-diagonal symmetric positive definite matrix

(γ+Z − hS)u.,j = (γ−Z + hS)u.,j−1 (13)

for (u0,j , . . . , un−1,j)T . The Neumann boundary condition implies un,j = un−1,j .
Here

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 s0
s0 0 s1

s1 0 s2
. . . . . . . . .

sn−3 0 sn−2

sn−2 sn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

h =
Δt̃

Δr̃
, γ+ =

Δr̃

δ
+ h, γ− =

Δr̃

δ
− h, sk =

2k + 1
4

, k = 0, . . . , n − 1,

Z = diag(14 , 1, 2, . . . , n − 2, n − 1).

The formula (8) for SGRS involves the derivative of the solution u(r, t) of (1)–(2)
with respect to the diffusion parameter D. Taking the scaled variables (10) and
using the derivative of a composite function, we find that

D
∂u

∂D
= D

∂u

∂δ

∂δ

∂D
=

DT

R2

∂u

∂δ
= δ

∂u

∂δ
= δ

∂u

∂t̃

∂t̃

∂δ
= − Dt

δR2

∂u

∂t̃
= −t̃

∂u

∂t̃
.
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Thus, the scaled sensitivity measure (8) has the form

SGRS = δ2T

n∑
i=0

m∑
j=1

[
∂

∂δ
u(r̃i, t̃j)|δ=δT

]2

=
n∑

i=0

m∑
j=1

[
t̃j

∂

∂t̃
u(r̃i, t̃)|t̃=t̃j

]2

. (14)

Replacing the derivative with a finite difference, and using the fact that t̃j = jΔt̃,
the sensitivity measure SGRS can be approximated as follows

SGRS(u0) ≈
n∑

i=0

m∑
j=1

[
jΔt̃

u(r̃i, t̃j) − u(r̃i, t̃j−1)
Δt̃

]2

=
m∑

j=1

j2
n∑

i=0

[ui,j − ui,j−1]
2 =: Sapp(u0(r̃)), (15)

where the values ui,j are computed from ui,j−1 using (13), thus no extra work
is necessary.

As we already proved in [9], the components of the vector uopt
0 (in discrete

points r̃0, . . . , r̃n) attain only two values u0 and u0. The jumps between these
values in fact represent the discontinuities in bleached domain leading to more
complex bleaching patterns, see [9] for more details.

Remark 2. A variety of patterns arises as optimal for slow diffusive transport
(for low values of δ), e.g., the bleaching pattern is called a disc, an annulus, a
disc & annulus, or an annulus & annulus if

uopt
0 = [u0, . . . , u0, u0, . . . , u0]T ,

uopt
0 = [u0, . . . , u0, u0, . . . , u0, u0, . . . , u0]T ,

uopt
0 = [u0, . . . , u0, u0, . . . , u0, u0, . . . , u0, u0, . . . , u0]T ,

uopt
0 = [u0, . . . , u0, u0, . . . , u0, u0, . . . , u0, u0, . . . , u0, u0, . . . , u0]T ,

respectively, see Fig. 1. Note that this formulation is well suited for both (i) the
optimization of size of a specific bleached domain geometry (shape or pattern),
and (ii) the optimization between all possible patterns (as explained above).

4 Bleaching Pattern Optimization for FRAP Experiments

Previously, in [15], we found that there exists an optimal size of the bleached
domain when the pattern is restricted to the simply connected (disc) shape only.
The quantitative aspect of our result announced in [15], i.e., ropt = 1.728

√
DcT ,

valid for an infinite domain, was confirmed once again in this study, see Fig. 2.
Indeed, comparing two cases with D = 0.1 (the dashed curve) and D = 0.001
(the dotted curve), we see that the optimal disc radius with 100 times lower
diffusive mobility is 10 times smaller. Here, we have numerically (for T = 1),
ropt = 0.56 and ropt = 0.06, for D = 0.1 and D = 0.001, respectively; while the
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Fig. 1. Optimal pattern of initial bleach for two different values of δ = DT
R2 , see [9].

Left: δ = 1/4 (disc), right: δ = 1/12 (annulus).

“analytical formula” according to [15] leads to values ropt(D=0.1) = 0.546 and
ropt(D=0.001) = 0.055, respectively.

In our work [9], we found various optimal initial conditions for an inverse
problem of diffusion constant estimation on an infinite two-dimensional domain.
An interesting pattern of increasingly complicated (with respect to connectiv-
ity) optimal initial shapes was discovered by an efficient algorithm of numerical
optimization. Figure 1 shows the result for two values of dimensionless diffusion
constant δ. The exhaustive explanation of such an interesting result is far of
scope of this paper. Nevertheless, the principal cause behind this phenomenon
is clear: with the restricted observation domain and fixed overall measurement
time interval, the more complex pattern provides a better exploitation of spatio-
temporal data because the sensitivity measure SGRS , see (8), gives a higher value
than for any simpler shape, e.g., a disc (common bleaching shape used in FRAP
community).

As follows, we present a numerical case study related to the FRAP experi-
ment on a finite domain (with the Neumann homogeneous boundary condition)
when the bleaching pattern (or shape) is not restricted previously. The goal is
twofold: (i) to demonstrate (once again) the influence of Sapp on a solution of
inverse problem (6), and (ii) to show the unexpected variety of patterns corre-
sponding to optimal initial conditions, see Fig. 1.

Further, in order to perform our virtual FRAP experiments (getting several
sets of virtual experimental data), we used two values of D = DT and two levels
of noise σ. The parameters defining the experimental protocol were fixed, more
specifically:

R = 1, T = 1, n = 100, m = 300.

The sequence of numerical computation is the following:

1. Choose a diffusion coefficient DT and the non-zero components of u0 ∈ Rn+1.
2. Generate the time evolution ui,j computed using (13).
3. Produce the noisy data from ui,j using (5).
4. Solve problem (6) and find a solution Dc.

Figure 3 shows illustrative examples of exact and noisy data, which represents
a time sequence of “row” data for further processing. The dashed lines are the



Disc vs. Annulus: On the Bleaching Pattern Optimization for FRAP 167

0 0.2 0.4 0.6 0.8 1
disc radius

0

200

400

600

800

1000

va
lu

es
 S

ap
p

D = 0.1
D = 0.05
D = 0.01
D = 0.005
D = 0.001

Fig. 2. The values Sapp vs. disc radius r for 5 different diffusion coefficients D. The
existence of optimal disc radii for each case is clearly visible.

initial conditions u0 (j = 0) and the solid lines from top to bottom correspond
to every 30-th time instant of exact data, i.e., for j = 30, 60, . . . , 300. The noisy
data are plotted only for j = 0, 150, 300. The known values of DT and σ were
used only a posteriori for the evaluation of relative error E and value σ2

Sapp
, cf.

(7), used in Figs. 4 and 5.
In order to generate our virtual “row” data, we used several following differ-

ent initial conditions u0 ∈ R101 with non-zero components u0i, i ∈ {0, . . . , 100},
listed below, with corresponding values of Sapp. For the first set of initial condi-
tions IC1–IC5 the value DT = 0.1 was used (with two levels of the noise σ = 0.01
and σ = 0.1), while for the second set of initial conditions IC6-IC9 we chose the
slower diffusion DT = 0.01 (and both levels of the noise) in order to allow a
more complicated bleaching pattern as optimal.

The first set of initial conditions for DT = 0.1:

– IC1: u0 has non-zero components for i = 0, . . . , 55 ⇒ Sapp = 949.5
(maximal value of Sapp among all discs)

– IC2: u0 has non-zero components for i = 19, . . . , 51 ⇒ Sapp = 589.2
(the initial condition leading to maximal value of Sapp among all annuli in
case of using another value DT = 0.01)

– IC3: u0 has non-zero components for i = 0, . . . , 79 ⇒ Sapp = 516.7
(suboptimal disc of a large radius)

– IC4: u0 has non-zero components for i = 0, . . . , 29 ⇒ Sapp = 478.9
(suboptimal disc of a small radius)
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Fig. 3. Initial values of u0 (the dashed stepwise curve) and the time evolution of the
solution uij computed using (13) for DT = 0.1. On top: disc – the non-zero components
of u0 have indices i = 0, . . . , 55. Beneath: annulus – the non-zero components of u0

have indices i = 23, . . . , 75. Left: exact data. Right: corresponding noisy data with
σ = 0.1.

– IC5: u0 has non-zero components for i = 44, . . . , 55 ⇒ Sapp = 100.5
(suboptimal annulus).

The second set of initial conditions for DT = 0.01:

– IC6: u0 has non-zero components for i = 19, . . . , 51 ⇒ Sapp = 458.5
(maximal value of Sapp among all annuli)

– IC7: u0 has non-zero components for i = 0, . . . , 18 ⇒ Sapp = 307.7
(maximal value of Sapp among all discs)

– IC8: u0 has non-zero components for i = 42, . . . , 69 ⇒ Sapp = 305.2
(suboptimal annulus)

– IC9: u0 has non-zero components for i = 0, . . . , 57 ⇒ Sapp = 115.7
(suboptimal disc).

Remark 3. It could be objected that the optimal annulus is missing among the
initial conditions IC1–IC5. This is true and the reason is simple. In case a disc is
the optimal bleaching pattern, the optimal annulus ends at the domain boundary.
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The proof relies on the evaluation of SGRS (and obviously Sapp, as well), which
leads to the identical results, cf. (14). This kind of “impure” annuli will be
excluded. Note that in case of a “pure annulus” as the optimal bleaching pattern,
the “complement” is the combination of a disc and “impure” annulus. The reason
why to exclude the bleaching domain from the border region as well as the
detailed analysis of the phenomenon of spurious optima is left to the near future.

The sensitivity measure Sapp, computed from exact data (without noise), was
used for determining the values σ2

Sapp
which theoretically give the upper bound

on the expected value E, see (7). In Tables 1–2, we resume the theoretical values
of expected relative errors of a diffusion constant estimate, see (7), for all initial
conditions (IC1–IC9) and both levels of noise (18 quantities in total).

Table 1. Expected values σ2

Sapp
for initial conditions IC1–IC5 (with DT = 0.1) defining

the concentration u0(ri). Two levels of noise are defined by σ.

IC IC1 IC2 IC3 IC4 IC5

Sapp 949.5 589.2 516.7 478.9 100.5

σ 0.01 0.01 0.01 0.01 0.01

σ2/Sapp 1.05E–7 1.70E–7 1.94E–7 2.09E–7 9.95E–7

σ 0.1 0.1 0.1 0.1 0.1

σ2/Sapp 1.05E–5 1.70E–5 1.94E–5 2.09E–5 9.95E–5

Table 2. Expected values σ2

Sapp
for initial conditions IC6–IC9 (with DT = 0.01) defining

the concentration u0(ri). Two levels of noise are defined by σ.

IC IC6 IC7 IC8 IC9

Sapp 458.5 307.7 305.2 115.7

σ 0.01 0.01 0.01 0.01

σ2/Sapp 2.18E–7 3.25E–7 3.28E–7 8.64E–7

σ 0.1 0.1 0.1 0.1

σ2/Sapp 2.18E–5 3.25E–5 3.28E–5 8.64E–5

The 18 data sets defined by 9 different initial bleaching patterns IC1–IC9
and two noise levels were further processed and compared mutually. That is,
two different true diffusion coefficients and two different levels of a Gaussian
white noise (σ = 0.1 and σ = 0.01) were chosen in order to generate 1000
trajectories representing the concentration u (measured as profiles of fluorescent
level). Using our method of diffusion parameter estimation [14] we obtained
1000 values of Dc for each data set. All these values were statistically processed.
Figures 4 and 5 illustrate the results. They are ordered into 4 groups: (i) IC1–
IC5 (for DT = 0.1) and σ = 0.01, (ii) IC1–IC5 (for DT = 0.1) and σ = 0.1,



170 C. Matonoha et al.

(iii) IC6–IC9 (for DT = 0.01) and σ = 0.01, and (iv) IC6–IC9 (for DT = 0.01)
and σ = 0.1.

The distribution of the squared error |Dc−DT

DT
|2 is shown in Fig. 4. As we

expected according to Tables 1–2, the smallest relative error for DT = 0.1 corre-
sponds the IC1 (an optimal disc, Sapp = 949.5), while for a slower diffusion (for
D = 0.01) the optimal annulus (IC6, Sapp = 485.5) gives smaller relative error
than the optimal disc (IC7, Sapp = 307.7).

949.5 589.2 516.7 478.9 100.5
Sapp

0

5

10

10-6 D = 0.1,  = 0.01

949.5 589.2 516.7 478.9 100.5
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10
10-4 D = 0.1,  = 0.1

458.5 307.7 305.2 115.7
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10-6 D = 0.01,  = 0.01

458.5 307.7 305.2 115.7
Sapp

0
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4

6

8

10

12
10-4 D = 0.01,  = 0.1

Fig. 4. The results of numerical estimation of diffusion coefficient. The boxplots show
the distribution of the squared error |Dc−DT

DT
|2, each based on 1000 noisy signal samples.

The cross marks (+) indicate the outliers. The higher value of Sapp corresponds to the
smaller box (and shorter confidence interval). Note that for both the upper left and
right graphical results (for D = 0.1) the IC1 (an optimal disc) gives the smallest relative
error, while for lower two cases of a slower diffusion (for D = 0.01), the optimal annulus
(IC6) beats the optimal disc (IC7).

In order to graphically illustrate the difference between theoretically and
numerically determined values of the relative error in a diffusion constant
estimation, we plotted Fig. 5. It was reached using (7), i.e., the difference

σ2

Sapp
− E

(∣∣∣Dc−DT

DT

∣∣∣2
)

was calculated and consequently statistically processed.
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Again, the respective boxplots show these distributions over data sets with dif-
ferent physical (DT ), technical (σ) and experimental (initial conditions IC1–IC9)
attributes. The discrepancy is low for all cases, thus, we can rely on our sensi-
tivity based approach to the optimum experiment design. Indeed, we see that
the initial condition with maximal value of Sapp exhibits the narrowest intervals
and a distribution that is on average closest to zero than other initial conditions
(which confirms the above statement about sensitivity Sapp based approach).
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Fig. 5. The graphical results show the difference between the theoretically and numer-
ically determined values of the relative error in a diffusion constant estimation.

Remark 4. Let us add some comments about the solution process of optimiza-
tion problem (9) and finding the optimal initial condition uopt

0 . We used a global
optimization method from the UFO system [10]. This method uses local opti-
mization methods for finding local minima. Briefly speaking, we choose an initial
u
(0)
0 = (1/2, . . . , 1/2)T and for k = 0, 1, . . . , until the optimality conditions are

satisfied, we update the next iterate u
(k+1)
0 from u

(k)
0 based on the function value

Sapp(u
(k)
0 ) and its gradient. For each D we obtained a solution on the boundary

of the feasible region. Thus, uopt
0 (ri) ∈ {1, 0} is a binary-valued vector (there

exist non-zero components of uopt
0 ). As we already explained, a small number
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of jumps between 1 and 0 in uopt
0 occurs for large values of a scaled diffusion

coefficient δ. When δ decreases, the number of jumps increases.

5 Conclusion

In this paper, we have shown the importance of an interconnection between two
important activities in performing model based experiments: (i) the setting of
experimental factors, and (ii) data processing based on an underlying mathe-
matical model containing the specific experimental conditions as parameters.
Although our approach is illustrated on a specific case of photobleaching exper-
iment only, it has general validity. The key concept is based on evaluation of
sensitivity of measured data with respect to estimated parameters value. To do
so, first we formulated the problem of parameter estimation in precise terms of
parameter-to-data map, parameter estimates and their relative errors.

Only after that, our idea of the model-based optimization of experimental
conditions was presented on a numerical case study. We set up the numerical
procedure leading simultaneously to the optimal size and shape of a bleached
domain for which the sensitivity measure reaches the maximal value, hence assur-
ing the smallest relative error of the estimated parameter. Numerical calculations
revealed rather surprising results. For high values of the dimensionless diffusion
coefficient, the disc is the optimal shape and for smaller values, shapes with more
and more components (i.e., annuli-type shapes) become optimal. In particular,
this is not the disc which is the best shape, but, for practically relevant values of
the experimental settings, sometimes an annulus can be better because it leads
to a significant improvement in the confidence interval. Hence, it is proved that
the bleach size and shape can be readily optimized and the bleaching pattern rep-
resents one of the most important experimental design factors in photobleaching
experiments.

We hope that our findings will be incorporated into a novel generation of
the FRAP experimental protocols – it is not computationally expensive and the
enhancement of the parameter estimation process can be substantial.
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