
A High Arithmetic Intensity Krylov
Subspace Method Based on Stencil

Compiler Programs

Simplice Donfack1, Patrick Sanan1, Olaf Schenk1(B), Bram Reps2,
and Wim Vanroose2

1 Institute of Computational Science, Università della Svizzera italiana (USI),
Lugano, Switzerland

{simplice.donfack,patrick.sanan,olaf.schenk}@usi.ch
2 University of Antwerp, Antwerp, Belgium
{bram.reps,wim.vanroose}@uantwerpen.be

Abstract. Stencil calculations and matrix-free Krylov subspace solvers
represent important components of many scientific computing applica-
tions. In these solvers, stencil applications are often the dominant part
of the computation; an efficient parallel implementation of the kernel is
therefore crucial to reduce the time to solution. Inspired by polynomial
preconditioning, we remove upper bounds on the arithmetic intensity
of the Krylov subspace building block by replacing the matrix with a
higher-degree matrix polynomial. Using the latest state-of-the-art stencil
compiler programs with temporal blocking, reduced memory bandwidth
usage and, consequently, better utilization of SIMD vectorization and
thus speedup on modern hardware, we are able to obtain performance
improvements for higher polynomial degrees than simpler cache-blocking
approaches have yielded in the past, demonstrating the new appeal of
polynomial techniques on emerging architectures. We present results in a
shared-memory environment and an extension to a distributed-memory
environment with local shared memory.

Keywords: Stencil compilers · Performance engineering
Krylov methods · Code generation · Autotuning · HPC · CG
Polynomial preconditioning

1 Introduction

Simulation as a discipline relies on increasingly compute-intensive models that
require ever more computational resources. Many simulations in science and
engineering (e.g., fluid dynamics, meteorology, and geophysics) are based on
implicit time-stepping computations using Krylov subspace methods to solve
systems based on stencil operators on structured grids. As a result, these appli-
cations represent an important high-performance computing software pattern
on the current generation of processor architectures [1]. Advancing both stencil
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 1–18, 2018.
https://doi.org/10.1007/978-3-319-97136-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97136-0_1&domain=pdf


2 S. Donfack et al.

grid applications and matrix-free Krylov subspace linear solvers is of utmost
importance for implicit time integration applications on structured grids.

0.1 1 10

10

100

Pea
k B

and
wid

th

Peak Flop Rate

Arithmetic Intensity (Flops/B)

A
tt
ai
na
bl
e
P
er
fo
rm

an
ce

(G
Fl
op

s/
s) Peak

STREAMS Peak
Without AVX
Single Thread

Fig. 1. Roofline model based on the
Intel Xeon 2660 v2 Ivy Bridge microar-
chitecture used in the performance
experiments in this paper.

2007 2008 2009 2010 2011 2012 2013 2014

1

10

Xeon
X54

82

Xeon
X54

92

Xeon
W5590

Xeon
X56

80

Xeon
X56

90

Xeon
E5-2

690Xeon
E5-2

697
v2

Xeon
E5-2

699
v3

Tesl
a C106

0

Tesl
a C106

0

Tesl
a C205

0

Tesl
a C209

0

Tesl
a K20

Tesl
a K20

X

Tesl
a K40

Rad
eon

HD
3870

Rad
eon

HD
4870

Rad
eon

HD
5870
Rad

eon
HD

6970

Rad
eon

HD
6970

Rad
eon

HD
7970

GHz
Ed.

Rad
eon

HD
8970

FireP
ro W9100

Xeon
Phi

X71
20X

Xeon
Phi

X71
20X

End of Year

A
rit
hm

et
ic

In
te
ns
ity

(F
lo
ps
/B

)

CPU (Intel)
GPU (NVIDIA)
GPU (AMD)
MIC (Intel)

Fig. 2. Double-precision arithmetic
intensity to fully utilize the floating-
point capabilities of high-performance
processing units; reproduced from [28].

Structured grid applications require relatively few arithmetic operations per
byte read or written. Vector processor unit performance is thus limited by mem-
ory bandwidth rather than compute power, causing structured grid applications
to perform poorly on current microarchitectures. The large number of com-
ponents and machine complexity of future manycore-based architectures will
further exacerbate the issue.

Thus, arithmetic intensity, the number of floating point operations executed
per byte fetched from main memory, has become a more important metric to eval-
uate numerical algorithms than the number of required arithmetic operations.
Figure 1 shows the relationship between attainable performance and arithmetic
intensity on a recent microarchitecture. Below a critical value of arithmetic inten-
sity, performance is limited by memory bandwidth. Stencil-based operations typ-
ically fall far below this value. Vectorization (e.g., AVX) allows higher peaks, but
requires a higher arithmetic intensity to achieve them. Figure 2 shows the recent
increase of the critical value on high-end hardware, plotting the required arith-
metic intensity to transition between compute-limited and memory-bandwidth-
limited regimes; this trend highlights the need for algorithms to allow simulation
codes to adapt.

A given algorithm has a maximum arithmetic intensity, assuming perfect data
reuse. Increasing the theoretical maximum is inconsequential if data reuse (with
the help of hardware caches) is too suboptimal. Näıve implementations of stencil
applications do not come close to achieving this maximum. Blocking strategies
are more performant, yet the optimal implementation depends on the details
of the cache(s) available. Hence, stencil-code engineering to increase arithmetic
intensity has received increased attention in the last few years, evidenced by the
appearance of a number of stencil-code programming languages and compilers,
such as Pochoir [31], Pluto [6], Patus [11], Modesto [23], and Gscl [5].



A High Arithmetic Intensity Krylov Subspace Method 3

In this paper, we make a novel combination of the two approaches to improv-
ing performance of stencil-based codes: we simultaneously increase the theoreti-
cal maximum arithmetic intensity by reformulating the Krylov solver, and utilize
stencil compilers to approach this maximum on current hardware. Both ingredi-
ents are essential.

An iteration of a Krylov subspace method includes elementwise vector oper-
ations, vector reductions (dot products and norms), and matrix-vector multipli-
cations that are tightly interwoven. This is illustrated in Figs. 3 and 4. In Fig. 3,
a 7-point stencil results in the update of a single grid point, after which the sten-
cil is applied repeatedly. In Fig. 4, however, in-between the stencil updates there
are additional, interdependent dot products and vector updates. The resulting
data dependencies prevent the solver from efficiently applying the subsequent
in-place matrix-vector products required both to increase the theoretical arith-
metic intensity and to take advantage of advanced stencil engineering techniques
(“temporal blocking”).

1: for t = 1 to nu
2: for i = 1 to nx
3: for j = 1 to ny
4: for k = 1 to nz
5: U t+1

i,j,k 6 ∗ U t
i,j,k

6: −U t
i−1,j,k − U t

i+1,j,k

7: −U t
i,j−1,k − U t

i,j+1,k

8: −U t
i,j,k−1 − U t

i,j,k+1

Fig. 3. Stencil example: three-
dimensional (3D) Laplacian, 7-point
stencil with constant coefficients.

1: Initialize X, R and P .
2: for t = 1 to nu do
3: for i = 1 to nx do
4: for j = 1 to ny do
5: for k = 1 to nz do
6: St+1

i,j,k 6 ∗ P t
i,j,k

7: −P t
i−1,j,k − P t

i+1,j,k

8: −P t
i,j−1,k − P t

i,j+1,k

9: −P t
i,j,k−1 − P t

i,j,k+1
10: dot products and vector updates

with X,S,P ,and R

Fig. 4. More complicated data depen-
dencies inside the conjugate gradient
(CG). Dot products and vector updates
that use the results of the dot product
limit the arithmetic intensity and make
it impossible to use temporal blocking
out of the box. See also Algorithm 1.

We use the concept of polynomial preconditioning to reformulate these iso-
lated matrix-vector multiplications with matrix-polynomial-vector multiplica-
tions pm(A) with higher arithmetic intensity. The derived stencil computation
can be optimized separately using an efficient stencil computation approach.
From a numerical point of view, the search space constructed with a low-order



4 S. Donfack et al.

polynomial pm(A) might be suboptimal compared to the Krylov subspace based
on regular powers of A and therefore needs more cumulative applications of the
matrix A. However, due to the fact that data are better reused and that vector
units can be used more effectively, overall time to solution can decrease.

This approach differs from s-step methods wherein intermediate vectors are
stored and later orthogonalized using TSQR [26]. Our approach communicates
only initial and final vectors, increasing the volume of computation and hence
the arithmetic intensity. This difference reflects the different objectives of s-step
preconditioners (removing the lower bounds on the amount of communication)
and our approach (removing upper bounds on the arithmetic intensity achiev-
able).

In this work, we leverage stencil compilers, specific code generation, and
autotuning methodology to make Krylov subspace kernels both code- and
performance-efficient, in a novel way that critically depends on the combination
of polynomial reformulation and the use of advanced stencil compilers. After
stencil computation and their challenges are discussed in Sect. 2, in Sects. 3–4,
we present a careful performance-oriented reformulation of a polynomial Krylov
subspace solver, analyze the performance of automatic stencil code generation in
this context, and show scalability on current Intel microarchitecture. Section 5
presents results of the approach in two-dimensional experiments, and we con-
clude with Sect. 6 which demonstrates the implementation and performance of
the technique in a three-dimensional, distributed-memory environment.

2 Node-Level Stencil Performance Engineering

Extracting good performance from stencil-based codes can be challenging
because their maximum arithmetic intensity is rather low and thus performance
is limited by the bandwidth between memory and compute units. Moreover, if
the application requires that the stencil be applied multiple times to each of the
spatial grids point, there is potential for performance increase by exploiting tem-
poral data locality, i.e., reuse of the computed data before they are transferred
back to memory. As an example, the image in Fig. 3 shows a visualization of the
stencil structure of a second-order discretization of the 3D Laplacian.

A fair amount of research has addressed the algorithmic changes and code
transformations needed. Loop-tiling approaches [17,22] and compilers using the
polyhedral model fall into this category. This is used to determine good tile sizes
as well as for autoparallelization. However, only a few stencil compilers can carry
out the requested, mostly nontrivial transformations for practical usage. We use
the following tools in this work:

– Patus [10–12] decouples the algorithm from the scheduling of the compu-
tation, i.e., what is vectorized, which loops are tiled or unrolled, and which
ones are parallelized. Thus, the “schedule” can be (auto)tuned for the target
architecture. The goal is to enable a clean implementation of an algorithm
(as opposed to C code cluttered by optimizations) while still delivering the



A High Arithmetic Intensity Krylov Subspace Method 5

0

1

2

3

4

5

6

7

2D Laplacian 
(4002 )

3D Laplacian 
(128 )

3D Laplacian 
(512 )

3D Laplacian 
(960 )

G
Fl

op
/s

GCC (No SIMD) GCC PLUTO (No SIMD) PLUTO

0

10

20

30

40

50

60

2D Laplacian 
(4002 )

3D Laplacian 
(128 )

3D Laplacian 
(512 )

3D Laplacian 
(960 )

G
Fl

op
/s

GCC (No SIMD) GCC PLUTO (No SIMD) PLUTO

Fig. 5. Impact of AVX vectorization for various stencils using 1 (left) and 10 cores
(right) on one socket of an Intel Xeon 2660 v2 Ivy Bridge.

performance of well-optimized implementations. Patus takes advantage of
spatial blocking but temporal blocking is not yet available.

– Pluto [7] is a research source-to-source (C-to-C) compiler using the polyhe-
dral model. Recently, Pluto was extended to automatically detect iterative
stencil computations and to apply both spatial- and time-skewing, allowing
concurrent processing of space-time tiles [34]. In this work, we use diamond-
tiling loop transformations available in [7] which are more efficient on current
microarchitectures. A recent advanced diamond-tiling implementation and
performance analysis is also available in [25].

SIMD vectorization has proven to be the key optimization for numerous sten-
cils in all data-centric stencil compiler programs, especially in view of growing
SIMD vector width. Using the hardware’s SIMD units in an optimal way is crit-
ical for performance; even if one trusts the compiler to vectorize scalar code one
can observe that explicitly vectorized code using SIMD intrinsics yields signifi-
cantly better performance. General purpose compilers must be on the safe side
and apply vectorization conservatively. Patus and Pluto can generate code
using explicit SIMD intrinsics. The benefit is that in the non-unit-stride dimen-
sions no loads are needed which are not aligned at SIMD vector boundaries, as
unaligned loads may incur a latency penalty or may not even be supported on
other architectures and therefore require a workaround.

However, it is well known that extra care is needed when using SIMD on
multiple cores in the presence of limited bandwidth. This is illustrated in Fig. 5,
showing AVX vectorization results using Pluto and the GNU GCC compiler
(4.9.2). Nonvectorized results are shown as Pluto (No SIMD) and GCC (No
SIMD), whereas AVX vectorization has been exploited in the GCC and Pluto
cases. Double-precision performance is shown for 5- and 7-point Laplacian sten-
cils on a single socket Intel Xeon 2660 v2 Ivy Bridge node, using 1 and 10 hard-
ware threads. While the automatic vectorization SIMD code generation methods
based on the GNU compiler always work well on a single core (with an accelera-
tion of 2.0× for Pluto), it is noticeable that these results cannot automatically
be transferred to multiple cores on a socket. As shown in Fig. 6, on multiple cores,
the GNU compiler reaches the memory bandwidth limitation of 41.1 GB/s for



6 S. Donfack et al.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

G
Fl

op
s/

s

Number of threads

GCC
PATUS
PLUTO
PLUTO (No SIMD)

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

G
B

/s

Number of threads

GCC
PATUS
PLUTO
PLUTO (No SIMD)
STREAM (Triad)

Fig. 6. Performance (left) and bandwidth (right) measurements of a 3D Laplacian of
size n = 9603 using a 7-point stencil with constant coefficients.

this memory-bound stencil computation1. As a result, there is no improvement
from SIMD vectorization. However, if we use techniques such as diamond-tiling
loop transformations with Pluto, we reduce the memory-bandwidth pressure
and the beneficial impact of SIMD vectorization can be observed even by using
up to 10 hardware threads. The trend is also visible in Fig. 6, which shows
the performance and measured bandwidth of the Laplacian 7-point stencil with
constant coefficients when the number of threads varies. PATUS is highly opti-
mized software and includes optimization techniques beyond autovectorization,
so is omitted from Fig. 5. Figure 6 shows that it yields better performance than
the näıve approach but does not solve the scalability and bandwidth bottleneck
issues. In the rest of the paper, we use PATUS as reference for the best spatial
blocking implementation. The main question is how a Krylov subspace method,
with much more complicated data dependencies, may benefit from SIMD vec-
torization, fully utilize all cores without saturating the bandwidth, and take
advantage of efficient stencil compilers.

3 Increasing Arithmetic Intensity of Krylov Subspace
Methods

Time spent in linear solvers often dominates total execution time in computa-
tional science applications, as processor count and problem size increase [9,33].
Krylov subspace methods are commonly used within large-scale, distributed-
memory codes. These involve applications of operators, such as the stencils
we have considered, interspersed with global reductions (inner products and
norms); mitigating the bottleneck created by these operations at extreme scale
has prompted the development of methods to hide, as in pipelined Krylov meth-
ods [19,20], or avoid, as in s-step methods [13,14], these reductions. Reductions
have another detrimental effect beyond the resources required to compute them:
they constitute barriers which impose an upper bound on arithmetic intensity,
even with perfect data reuse.
1 We also compared the impact on the vectorization with the Intel icc compilers and

obtained similar results.



A High Arithmetic Intensity Krylov Subspace Method 7

Large, sparse linear systems of the form

Ax = b (1)

can be solved with Krylov subspace methods [35] which accept an initial guess
x(0) and generate a sequence of iterates x(k) such that the corrections x(k) −x(0)

lie in nested subspaces. The iterates satisfy a method-specific optimality criterion
and converge toward the solution x. The Krylov subspace of degree k is the space
of matrix polynomials of degree less than k applied to r(0)

.= b−Ax(0), the initial
residual:

x(k) − x(0) ∈ Kk(A, r(0)) = span{r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}.

Depending on the properties of A, the minimization procedure in the search
space can be simplified. For example, the CG method [27], shown in Algorithm 1,
does not require explicit storage of basis vectors for Kk(A, r(0)) when A is sym-
metric and positive definite.

Algorithm 1. CG.
1: r ← b − Ax(0)

2:
3: p ← r
4: ρold ← ‖r‖2

5: for i = 0, 1, . . . do
6: s ← Ap
7: α ← ρold/ 〈s, p〉
8: x ← x + αp
9: r ← r − αs

10: ρnew ← ‖r‖2

11:
12: β ← ρnew/ρold

13: p ← r + βp
14: ρold ← ρnew

15: end for

Algorithm 2. Preconditioned CG.
1: r ← b − Ax(0)

2: z ← M−1r
3: p ← z
4: ρold ← 〈r, z〉
5: for i = 0, 1, . . . do
6: s ← Ap
7: α ← ρold/ 〈s, p〉
8: x ← x + αp
9: r ← r − αs

10: ρnew ← 〈r, z〉
11: z ← M−1r
12: β ← ρnew/ρold

13: p ← z + βp
14: ρold ← ρnew

15: end for

The residual after k steps, r(k)
.= b − Ax(k), can be written as a polynomial

of A of degree k, applied to the initial residual r(0):

r(k) = b − A

⎛
⎝x(0) +

k−1∑
j=0

γjA
jr(0)

⎞
⎠ = r(0) +

k−1∑
j=0

γjA
j+1r(0) = Pk(A)r(0).

The operations in Algorithm1 are typically limited by available memory
bandwidth and thus cannot take advantage of additional arithmetic operations
available in modern devices. Consider a matrix A with nnz nonzero elements.
Computing a matrix-vector product, as on line 6 of Algorithm 1, requires reading



8 S. Donfack et al.

nnz matrix elements and at least n elements from the input vector and writing n
elements of the output vector. The number of arithmetic operations is 2nnz−n.2

Thus the arithmetic intensity is at most

q =
2nnz − n

b(nnz + 2n)
≤ 2

b
, (2)

where b is the number of bytes required to represent a scalar.3 This represents
a small fraction of the arithmetic intensity required to reach peak performance
(see Fig. 2).

For matrices described by applying a stencil on a computational grid, matrix
entries may be computed instead of read. If no entries need be retrieved from
memory, neglecting any floating point operations required to compute the coef-
ficients, the maximum arithmetic intensity of a matrix-free operator application
can be expressed as

qmatfree =
2nnz − n

2bn
≤ nnz

bn
. (3)

This quantity is characterized by the average number of nonzero entries per row,
divided by b. Thus, for some operators, qmatfree can be significantly greater than
q, but is nonetheless a fixed function of A, and may not be suitable for a given
microarchitecture.

However, when m matrix-vector products are done in-place, with the operator
A applied repeatedly to v to produce Amv, m(2nnz−n) operations are performed
for a single read of the matrix, one read of the input vector, and one write of
the output vector. This results in maximum arithmetic intensities of

q =
m(2nnz − n)
b(nnz + 2n)

, qmatfree =
m(2nnz − n)

2bn
. (4)

These quantities increase linearly with m. The expressions assume that each
element of v is read exactly once from main memory, typically impossible, and
as such actual attained arithmetic intensity depends on the details of the cache
hierarchy and the implementation of the polynomial kernel.

In light of Fig. 1, it is now apparent that one can attempt to improve the
performance of Krylov subspace methods by introducing subsequent matrix-
vector products instead of isolated matrix-vector products per iteration.

Polynomial preconditioning offers a natural, tunable way to accomplish this,
reducing the number of iterations required for convergence of the Krylov sub-
space method without using additional memory bandwidth. It was first described
shortly after CG [29] and became of greater interest with the advent of vector
computers [15]. For more, see Sect. 5 of Saad’s survey [30]. Multiply (1) on both
sides by the polynomial qm−1(A),

pm(A)x = b̃
.= qm−1(A)b, (5)

2 nnz multiplies and nnz − n adds.
3 For instance, b = 8 for double-precision floating point numbers, giving q < 1

4
.



A High Arithmetic Intensity Krylov Subspace Method 9

where pm(A) .= qm−1(A)A, producing an equivalent linear system with a new
operator. Algorithm 2 shows the preconditioned version of the CG method
(PCG), where a preconditioning step is explicitly computed on line 11 with
the application of a preconditioning operator M−1. This generalized algorithm
is useful when the preconditioner is given by a (black box) routine such as alge-
braic multigrid or ILU decomposition and reduces to Algorithm1 when M = I.
However, as pm(A) is symmetric for symmetric A and can be chosen to be pos-
itive definite for positive definite A, polynomial preconditioning only requires
standard CG, as in Algorithm1; line 6 simply computes s = pm(A)pi instead of
s = Api, and b is replaced with b̃. This corresponds to searching for an optimal
error correction in a Krylov subspace based on powers of pm(A):

x(k) − x(0) ∈ Kk(pm(A), r(0)) = span{r(0), pm(A)r(0), . . . pm(A)k−1r(0)}.

Note that Kk(pm(A), r0) ⊂ Km(k−1)+1(A, r(0)) since pm(A)r0 can be written as
a linear combination of the first m vectors of KM (A, r0) for M > m. As a result,
the residual can be expressed as a polynomial P of the matrix polynomial pm(A)
applied to the initial residual, r(k) = P (pm(A))r(0).4

As discussed in Sect. 4, the polynomial pm(A) should be defined such that
it reduces the number of iterations of the Krylov subspace method. Although
the number of arithmetic operations per iteration increases, the overall time to
solution is often lower than in the unpreconditioned case.

All other operations in Algorithm1 are vector updates or dot products with a
lower arithmetic intensity than matrix-vector multiplication; reducing the num-
ber of total iterations reduces the number of times these must be performed.

The routine to apply the polynomially preconditioned operator pm(A) can be
provided as a black box to a CG solver, allowing it to be optimized with a stencil
compiler. This further reduces the demand on memory bandwidth, allowing for
arithmetic intensity closer to the ideal in (4) than for a single application of
the matrix or a näıvely implemented polynomial kernel. To realize this benefit
without the use of a stencil compiler would require expert, hardware-specific
implementation. The total number of matrix-vector multiplies with A required
to reach a given convergence tolerance typically increases with the use of a
polynomially preconditioned system, as opposed to an unpreconditioned one, but
time to solution can decrease since the average time per application decreases.

4 Selection and Implementation of the Polynomial Kernel

As test cases, we use simple constant-coefficient Poisson problems in 2 and 3
dimensions,

∇2u(x) = f(x), x ∈ R
{2,3}, (6)

discretized with central finite differences, leading to the familiar 5- and 7-point
stencils.
4 This contrasts with s-step Krylov methods [14] that compute iterates in standard

Krylov spaces, s basis vectors at a time.



10 S. Donfack et al.

Algorithm 3. Recursive calculation of matrix vector product wm = pm(A)v.
1: θ = (λmax + λmin) /2, δ = (λmax − λmin) /2
2: σ1 = θ/δ
3: ρ0 = 1/σ1

4: w0 = 0, w1 = 1
θ
Av

5: Δw1 = w1 − w0

6: for k = 2, . . . , m do
7: ρk−1 = 1/(2σ1 − ρk−2)
8: Δwk = ρk−1

[
2
δ
A(v − wk−1) + ρk−2Δwk−1

]

9: wk = wk−1 + Δwk

10: end for

The choice of polynomials pm is ultimately problem dependent, and has been
studied in the literature [2]. A common goal is to minimize, in some norm,
1−pm(λ) over all eigenvalues λ of A. For symmetric systems, this corresponds to
the fact that the condition number and clustering of the spectrum provide useful
bounds on the convergence [35]. In the case of the simple Laplacian approxima-
tions we have chosen, the spectrum is known analytically [8]. It is well-separated
over an interval, motivating the choice of Chebyshev polynomials.

If little is known about the spectrum of A, a good polynomial can be con-
structed based on the Ritz values of A. These can be estimated using a few iter-
ations of CG and calculating the eigenvalues of the tridiagonal Lanczos matrix
that contains αi and βi.

The recursive definition of Chebyshev polynomials can be used to define a
function to apply pm(A). Algorithm 3 presents such a recursive routine which
computes wm = pm(A)v, where pm is a scaled and shifted Chebyshev poly-
nomial that maps the spectrum of A around 1. The algorithm comprises only
simple operations (and notably no reductions). Thus, when A can be defined as
a stencil application, the entire polynomial application is amenable to automatic
tiling and cache blocking. This possibility will be exploited in the experiments
described in Sects. 5 and 6.

In order to provide data dependencies suitable for tiling with PLUTO, our
polynomial kernel implementation used in Sects. 5 and 6 includes the option to
use an auxiliary buffer for the vector to which to apply the polynomial.

5 Single-Node Experimental Results

Throughout this section, we compare three solver variants implementing a poly-
nomial stencil application as described in Algorithm3:

1. a näıve OpenMP implementation obtained by adding #pragma omp
parallel for directives around the outer spatial loop to parallelize,

2. an improved approach based on the Pluto compiler, and
3. a corresponding implementation using Patus.



A High Arithmetic Intensity Krylov Subspace Method 11

Table 1. Relevant hardware information for the Emmy cluster, used for all the exper-
iments in this paper.

Nodes 560
Sockets/node 2
Socket hardware Xeon 2660v2

(Ivy Bridge)
Cores/socket 10
Clock frequency 2.2 GHz
Double-precision 8

flops/cycle/core
Peak flop rate/socket 176 GFlops/sec

Peak memory 59.7 GB/s
bandwidth / socket

Peak STREAMS 41.1 GB/s
memory bandwidth

DRAM per node 64 GB
L1 cache per core 32 KB instruction

+ 32 KB data
L2 cache per core 256 KB
L3 cache per socket 25 MB

5.1 Experimental Environment

All the experiments were performed on the Emmy cluster at RRZE Erlangen,
as described in Table 1. We fix the maximum clock rate to 2.2 GHz, disabling
“turbo” mode, do not use hyperthreading, and focus on single-socket perfor-
mance. We use the LIKWID performance tools [32] to bind threads to cores on
one socket and run the STREAMS benchmark to measure an attainable memory
bandwidth of 41.1 GB/s. The measured bandwidth corresponds to the rate of
data transfer between one socket and main memory. The experiments in this
section solve a 3D Poisson problem of size N = 512 in each dimension, near the
maximum size that can be allocated for a single socket. Here, Dirichlet boundary
conditions are set in buffer grid points, and loops proceed over interior points
only, with a uniform stencil. Code was compiled using gcc with −O3 optimization
and AVX enabled. “Degree m” refers to the order of the polynomial pm(A)v.

5.2 Krylov Subspace Method Convergence

Figures 7 and 8 illustrate that the reduction in communication costs results in
faster times to solution. Figure 7 shows the convergence history of ‖r(k)‖ as a
function of the number of matrix-vector multiplies for polynomial orders up to
m = 4. Note that, for each value of m, CG minimizes the error in a different
norm, though the residuals can still be used to monitor the convergence.

It is clear that the total number of matrix-vector products before convergence
increases with m. This is to be expected, as the iterates lie in subspaces of the
full Krylov subspace. Note, however, that the number of dot products to reach
convergence (proportional to the number of plot markers) decreases, as does
the number of sweeps over the vector. This may allow for lower communication
overhead and better cache reuse.

Figure 8 presents the same results as Fig. 7 but plots the residual norm ver-
sus time. The polynomial of degree 2 converges faster than the polynomial of
degree 1 and, subsequently, convergence time then increases with m. This can
be explained by the increasing cost of the matrix-vector products m.



12 S. Donfack et al.

Fig. 7. Polynomial CG convergence as
a function of effective matrix-vector
multiplies.

Fig. 8. Polynomial CG convergence
using näıve OpenMP, PATUS, and
Pluto.

Figure 8 also shows the improvement in terms of convergence rate from using
the Pluto compiler. The efficient implementation of the polynomial of degree
2 surpasses all variants of the näıve implementation, and maximal speedup is
obtained with a polynomial of degree 4.

Figure 9 shows the time per operation using the näıve OpenMP imple-
mentation, Pluto, and PATUS. With the use of the stencil compilers, the
matrix-vector product time tends to decrease considerably, resulting in a marked
improvement in the time to solution. Using the näıve OpenMP implementation,
the total time for the axpy and dot product operations decrease as expected
with the number of iterations, while the total time for the matrix-vector multi-
ply increases. By implementing the polynomial matrix-vector product pm(A)v as
presented in Algorithm 3 using stencil-based compilers, a speedup of up to 1.5×
is attained by using the efficient spatial blocking algorithm Patus, compared
to the näıve implementation. The same algorithm using the Pluto temporal
blocking algorithm results in speedups of up to 2.6×.

5.3 Scalability

We present the performance scalability of our implementation when the number
of threads varies. Figure 10 shows the total time to solution and the measured
bandwidth. At around 6 cores, the näıve implementation reaches a measured
bandwidth of 40 GB/s, comparable to the maximum attainable bandwidth as
measured by the STREAMS benchmark.

By using Patus, we observe a small decrease in the measured bandwidth and
a speedup in the time to solution of up to 1.5×, compared to the näıve OpenMP
implementation, thanks to the reuse of cache data. Since data reuse is optimized
by Patus, each core is likely to use the bus less often. However, each new itera-
tion of the matrix-vector product requires a new load of all the associated data.
This problem can be solved using Pluto, thanks to its temporal reuse of data.
As shown in the same figure, the Pluto implementation reduces the pressure



A High Arithmetic Intensity Krylov Subspace Method 13

Fig. 9. Time spent for each operation within the OpenMP, PATUS, and PLUTO
implementations.

Fig. 10. Performance scalability of our implementation when the number of threads
varies. On the left, the time for the solution and, on the right, the measured bandwidth.

on the memory bandwidth when the number of cores increases, and scalability
of the algorithm increases considerably. This leads to an implementation up to
2.5× faster than the näıve approach.

6 Multinode Experimental Results

We have shown that the use of a polynomial preconditioner can considerably
reduce the iteration count in the CG algorithm. This includes a reduction in the
total time spent performing axpy and dot product operations.

In this section, we present an implementation and evaluation of our algo-
rithm on multiple nodes as a large-scale, distributed-memory application of our



14 S. Donfack et al.

algorithm in a hybrid MPI/Pthreads environment. In order to reduce the cost
of the matrix-vector products, the most time-consuming part of the solver, we
use Pluto to increase the arithmetic intensity of the node-level portion of the
underlying stencil-based matrix-vector product. We use a distributed version
of the CG algorithm where the communications between different processors
running on the nodes are performed by MPI, and within each node we use a
multithreaded version of the basic operations such as axpy, dot product, and
matrix-vector product. In order to parallelize the matrix-vector product, we use
OpenMP and Pluto. Because of the distributed-memory setting, all the data
required to compute the local part of the matrix-vector product at each itera-
tion are stored on the corresponding processor, including redundant “halo” data
at the boundaries of per-processor subdomains. Boundaries are computed with
specialized, nonoptimized stencils over the appropriate grid points.

For a polynomial of degree m, since we perform m matrix-vector products
grouped together, it is necessary to store and exchange a halo region m times the
width of the stencil. The extra memory required scales as m times the surface
area of the subdomains, mN

d−1
d , which is small outside of the strong-scaling

regime. This approach allows the use of OpenMP and Pluto for the matrix-
vector product within each node.

For our tests, we use code leveraging the PETSc library [3,4], linked with
the multithreaded BLAS from the Intel MKL. We define our own matrix-free
operator which applies the matrix polynomial to data stored on a distributed
array (DMDA) object, and use it within PETSc’s CG. The code used to produce
the results in this section, including tests, is available under an open-source
license5. All results are computed on multiple nodes of the same machine used
for the single-node experiments, as described in Table 1. Again, we only use
a single socket per node. We compare a version of the code parallelized with
OpenMP and a second version which uses Pluto to optimize the polynomial
application.

Figure 11 shows the solution time for 2, 4, and 8 nodes when the problem
size is fixed at 2048 and the polynomial degree m varies. We observe that while
we see strong scaling (and even superlinear strong scaling as the local prob-
lem size becomes small enough to fit into the L3 cache), the time to solution
using OpenMP tends to increase with the degree of the polynomial. The use of
Pluto helps to remove this limitation, allowing further acceleration by increas-
ing the polynomial degree. Figure 12 shows the solution time when the size of
the problem increases for a polynomial of degree 10 using 16 and 32 nodes.

We observe that the OpenMP implementation on 32 nodes is up to 2 times
faster than on 16 nodes, and that the use of Pluto contributes to the best
solution. Figure 13 shows strong scaling with a polynomial preconditioner of
degree 10 for a small problem of size 1024. Initial superlinear scaling is observed,
likely due to cache effects.

5 https://bitbucket.org/psanan/polykrylovpetscexample.

https://bitbucket.org/psanan/polykrylovpetscexample


A High Arithmetic Intensity Krylov Subspace Method 15

Fig. 11. Solution time
for a fixed-size prob-
lem, using a polynomial
preconditioner on 2–8
distributed-memory
nodes.

Fig. 12. Time to solu-
tion using degree 10
polynomial precondi-
tioning on 16 and 32
distributed-memory
nodes.

Fig. 13. Strong scal-
ing behavior in time to
solution using degree
10 polynomial precon-
ditioning for a small
problem of size 1024.

7 Conclusions and Outlook

Krylov subspace solvers use a sparse matrix-vector products, dot products, and
vector updates to solve linear system. Each of these building blocks is a low arith-
metic intensity operation, limited by available memory bandwidth and imple-
mentation’s ability to maximize data reuse. As a result, Krylov methods perform
poorly on modern processing units that require, high arithmetic intensity algo-
rithms to operate at peak performance, due to widening SIMD registers and
increasing shared-memory concurrency.

Modern stencil compilers including temporal blocking can significantly reduce
the bandwidth usage of algorithms with repeated application of the same stencil,
for example in explicit time evolution.

In this paper we have shown that the same stencil compilers and temporal
blocking techniques can also be used to accelerate Krylov methods, although
these algorithms have a much more complicated data dependencies. Our insight
is that by using polynomial preconditioning in combination with modern sten-
cil compilers, one can simultaneously increase both the maximum and achieved
arithmetic intensity, allowing for demonstrable speedup greatly superior to that
of direct application on stencil compilers or polynomial preconditioning alone.
Indeed, without advanced stencil compilers (or expert, machine-specific tuning),
the polynomial approach here would not be beneficial for higher order polynomi-
als, and without the polynomial approach, maximum arithmetic intensity would
be limited to that of a single operator application.

The Poisson problem used as a proof of concept here has explicitly known
extremal eigenvalues, required to choose a suitable polynomial. For more general
operators, these values must be estimated.

A well-known limitation of polynomial preconditioning is that for most opera-
tors of interest and fixed m, the number of iterations to convergence of a Krylov
method increases with problem size. This may be mitigated in the future as



16 S. Donfack et al.

communication-avoiding preconditioners [21] are developed, and the methods
here may also be used with nested or hierarchical solves. A promising area of
application is in those situations where a simple, diagonally-preconditioned CG
solve, using O(1) iterations, is used within a larger, scalable solver. Examples
include multilevel Krylov methods [16]; indeed, an approach of this kind has
been shown to be highly effective in an extreme-scale finite element solver, scal-
ing to hundreds of billions of degrees of freedom on hundreds of thousands of
cores, using a hierarchy of simply-preconditioned CG solves [18].

We have focused on finite-difference stencils, with regular access patterns
allowing efficient optimization. Many problems of interest, such as the applica-
tion of finite element operators on unstructured meshes, involve more complex
access patterns. Stencil compilers for these cases are in their infancy [24], but
clear hardware trends will strongly encourage their development, as indeed they
will encourage the use and extension of the methods described in this work.

Acknowledgments. We thank Uday Bondhugula for helpful correspondence and
upgrades of PLUTO, Karl Rupp for the data in Fig. 2, and Radim Janalik for ini-
tial results used in Fig. 5. We acknowledge the Swiss National Supercomputing Center
(CSCS) and the University of Erlangen for computing resources. This research has been
funded under the EU FP7-ICT project “Exascale Algorithms and Advanced Compu-
tational Techniques” (project reference 610741).

References

1. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)

2. Ashby, S.F., Manteuffel, T.A., Otto, J.S.: A comparison of adaptive Chebyshev
and least squares polynomial preconditioning for Hermitian positive definite linear
systems. SIAM J. Sci. Stat. Comput. 13(1), 1–29 (1992)

3. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C.,
Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc users manual. Technical
report ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015)

4. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–
202. Birkhäuser Press, Boston (1997). https://doi.org/10.1007/978-1-4612-1986-
6 8

5. Bianco, M., Varetto, U.: A generic library for stencil computations. arXiv preprint
arXiv:1207.1746 (2012)

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: Pluto: a practi-
cal and fully automatic polyhedral program optimization system. In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 2008), June 2008. Citeseer, Tucson (2008)

7. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. ACM SIGPLAN Not. 43(6),
101–113 (2008)

https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-1-4612-1986-6_8
http://arxiv.org/abs/1207.1746


A High Arithmetic Intensity Krylov Subspace Method 17

8. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn.
SIAM, University City (2000)

9. Chow, E., Falgout, R.D., Hu, J.J., Tuminaro, R.S., Yang, U.M.: A survey of par-
allelization techniques for multigrid solvers. In: Parallel Processing for Scientific
Computing, vol. 20, pp. 179–201 (2006)

10. Christen, M., Schenk, O., Burkhart, H.: Automatic code generation and tuning
for stencil kernels on modern microarchitectures. In: Proceedings of International
Supercomputing Conference (ISC 2011), vol. 26, pp. 205–210 (2011)

11. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and auto-
tuning framework for parallel iterative stencil computations on modern microar-
chitectures. In: 2011 IEEE International Conference on Parallel and Distributed
Processing Symposium (IPDPS), pp. 676–687. IEEE (2011)

12. Christen, M., Schenk, O., Cui, Y.: PATUS for convenient high-performance sten-
cils: evaluation in earthquake simulations. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
SC 2012, pp. 11:1–11:10. IEEE Computer Society Press, Los Alamitos (2012)

13. Chronopoulos, A.T., Swanson, C.D.: Parallel iterative s-step methods for unsym-
metric linear systems. Parallel Comput. 22(5), 623–641 (1996)

14. Chronopoulos, A.T., Gear, C.W.: s-Step iterative methods for symmetric linear
systems. J. Comput. Appl. Math. 25(2), 153–168 (1989)

15. Dubois, P.F., Greenbaum, A., Rodrigue, G.H.: Approximating the inverse of a
matrix for use in iterative algorithms on vector processors. Computing 22(3), 257–
268 (1979)

16. Erlangga, Y.A., Nabben, R.: Multilevel projection-based nested Krylov iteration
for boundary value problems. SIAM J. Sci. Comput. 30(3), 1572–1595 (2008)

17. Feautrier, P., Lengauer, C.: The polyhedron model. In: Encyclopedia of Parallel
Computing, pp. 1581–1592. Springer, Heidelberg (2011)

18. Fujita, K., Ichimura, T., Koyama, K., Inoue, H., Hori, M., Maddegedara, L.: Fast
and scalable low-order implicit unstructured finite-element solver for earth’s crust
deformation problem. In: Proceedings of the Platform for Advanced Scientific Com-
puting Conference, PASC 2017, pp. 11:1–11:10. ACM, New York (2017)

19. Ghysels, P., Vanroose, W.: Hiding global synchronization latency in the precondi-
tioned conjugate gradient algorithm. Parallel Comput. 40(7), 224–238 (2014)

20. Ghysels, P., Ashby, T.J., Meerbergen, K., Vanroose, W.: Hiding global communi-
cation latency in the GMRES algorithm on massively parallel machines. SIAM J.
Sci. Comput. 35(1), C48–C71 (2013)

21. Grigori, L., Moufawad, S.: Communication avoiding ILU0 preconditioner. SIAM J.
Sci. Comput. 37(2), C217–C246 (2015)

22. Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(4),
1250010 (2012)

23. Gysi, T., Grosser, T., Hoefler, T.: MODESTO: data-centric analytic optimization
of complex stencil programs on heterogeneous architectures. In: Proceedings of
the 29th ACM on International Conference on Supercomputing, ICS 2015, pp.
177–186. ACM, New York (2015)

24. King, J., Kirby, R.M.: A scalable, efficient scheme for evaluation of stencil compu-
tations over unstructured meshes. In: 2013 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), pp. 1–12, November
2013



18 S. Donfack et al.

25. Malas, T., Hager, G., Ltaief, H., Stengel, H., Wellein, G., Keyes, D.: Multicore-
optimized wavefront diamond blocking for optimizing stencil updates. SIAM J. Sci.
Comput. 37(4), C439–C464 (2015)

26. Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.: Minimizing communica-
tion in sparse matrix solvers. In: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, p. 36. ACM (2009)

27. Stiefel, E., Hestenes, M.R.: Methods of conjugate gradients for solving linear sys-
tems. Journal of Research of the National Bureau of Standards 49(6) (1952)

28. Rupp, K.: CPU, GPU, and MIC hardware characteristics over time. https://www.
karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

29. Rutishauser, H.: Theory of gradient methods. In: Engeli, M., Ginsburg, T.,
Rutishauser, H., Stiefel, E. (eds.) Refined Iterative Methods for Computation of
the Solution and the Eigenvalues of Self-adjoint Boundary Value Problems, pp.
24–49. Springer, Heidelberg (1959). https://doi.org/10.1007/978-3-0348-7224-9 2

30. Saad, Y.: Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Com-
put. 10(6), 1200–1232 (1989)

31. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E.: The
Pochoir stencil compiler. In: Proceedings of 23rd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2011), pp. 117–128. ACM (2011)

32. Treibig, J., Hager, G., Wellein, G.: LIKWID: lightweight performance tools. In:
Bischof, C., Hegering, H.G., Nagel, W., Wittum, G. (eds.) Competence in High
Performance Computing 2010, pp. 165–175. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-24025-6 14

33. U.S. Department of Energy, Office of Advanced Scientific Computing Research.
Report on the workshop on Extreme-Scale Solvers: Transition to future Archi-
tectures, March 2012. http://science.energy.gov/∼/media/ascr/pdf/program-
documents/docs/reportExtremeScaleSolvers2012.pdf. Accessed Mar 2013

34. Bondhugula, U., Bandishti, V., Pananilath, I.: Tiling stencil computations to maxi-
mize parallelism. In: Proceedings of ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2012), pp. 1–11
(2012)

35. Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13.
Cambridge University Press, Cambridge (2003)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://doi.org/10.1007/978-3-0348-7224-9_2
https://doi.org/10.1007/978-3-642-24025-6_14
https://doi.org/10.1007/978-3-642-24025-6_14
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/reportExtremeScaleSolvers2012.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/reportExtremeScaleSolvers2012.pdf

	A High Arithmetic Intensity Krylov Subspace Method Based on Stencil Compiler Programs
	1 Introduction
	2 Node-Level Stencil Performance Engineering
	3 Increasing Arithmetic Intensity of Krylov Subspace Methods
	4 Selection and Implementation of the Polynomial Kernel
	5 Single-Node Experimental Results
	5.1 Experimental Environment
	5.2 Krylov Subspace Method Convergence
	5.3 Scalability

	6 Multinode Experimental Results
	7 Conclusions and Outlook
	References




