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Preface

This volume comprises the proceedings of the Third International Conference on High
Performance Computing in Science and Engineering – HPCSE 2017, which was held
in the hotel Soláň in the heart of the Beskydy Mountains, Czech Republic, during May
22–25, 2017. The biennial conference was organized by IT4Innovations National
Supercomputing Center at VSB - Technical University of Ostrava, and its goal was to
bring together specialists in applied mathematics, numerical methods, and parallel
computing, to exchange experience, and to initiate new research coollaborations. We
are glad that our invitation was accepted by distinguished experts from world-leading
research institutions.

This conference has become an international forum for exchanging ideas among
researchers involved in scientific and parallel computing, including theory and appli-
cations, as well as applied and computational mathematics. The focus of HPCSE 2017
was on models, algorithms, and software tools that facilitate efficient and convenient
utilization of modern parallel and distributed computing architectures, as well as on
large-scale applications.

The scientific committee of HPCSE 2017 comprised Radim Blaheta, Zdeněk Dostál,
Tomáš Kozubek, Josef Málek, Zdeněk Strakoš, Jakub Šístek, Miroslav Tůma, and Vít
Vondrák.

The plenary talks were presented by:

• Erin Claire Carson from New York University (USA)
• Froilan Dopico from Universidad Carlos III de Madrid (Spain)
• Pavel Jiránek from Siemens Industry Software NV, Leuven (Belgium)
• Luca Frediani from the University of Tromsø (Norway)
• Daniel Loghin from the University of Birmingham (UK)
• Dalibor Lukáš from VŠB - Technical University of Ostrava (Czech Republic)
• Kent-Andre Mardal from the University of Oslo (Norway)
• Catherine Powell from the University of Manchester (UK)
• Stefan Ratschan from the Institute of Computer Science, AS CR, Prague (Czech

Republic)
• Yousef Saad from the University of Minnesota, Minneapolis (USA)
• Olaf Schenk from Università della Svizzera italiana, Lugano (Switzerland)
• Radek Tezaur from Stanford University (USA)
• Sivan Toledo from Tel Aviv University (Israel)
• Gerardo Toraldo from Università degli Studi di Napoli Federico II (Italy)
• Ludmil Zikatanov from The Pennsylvania State University, State College (USA)

The conference was supported by The Ministry of Education, Youth and Sports
from the National Programme of Sustainability (NPU II) project “IT4Innovations
excellence in science - LQ1602.” We gratefully acknowledge this support.



The HPCSE 2017 conference was a fruitful event, providing interesting lectures,
showcasing new ideas, demonstrating the beauty of applied mathematics, presenting
numerical linear algebra, optimization methods, and high performance computing, and
starting or strengthening collaborations and friendships.

This meeting attracted more than 100 participants from 10 countries. All participants
were invited to submit an original paper to this book of proceedings. We give thanks
for all contributions as well as for the work of the reviewers, and hope that this volume
will be useful for readers. The proceedings were edited by Tomáš Kozubek, Martin
Čermák, Petr Tichý, Radim Blaheta, Jakub Šístek, Dalibor Lukáš, and Jiří Jaroš.

Finally, we would like to cordially invite readers to participate in the next HPCSE
conference, which is planned to be held at the same place during May 20–23, 2019.

June 2018 Tomáš Kozubek
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A High Arithmetic Intensity Krylov
Subspace Method Based on Stencil

Compiler Programs

Simplice Donfack1, Patrick Sanan1, Olaf Schenk1(B), Bram Reps2,
and Wim Vanroose2

1 Institute of Computational Science, Università della Svizzera italiana (USI),
Lugano, Switzerland

{simplice.donfack,patrick.sanan,olaf.schenk}@usi.ch
2 University of Antwerp, Antwerp, Belgium
{bram.reps,wim.vanroose}@uantwerpen.be

Abstract. Stencil calculations and matrix-free Krylov subspace solvers
represent important components of many scientific computing applica-
tions. In these solvers, stencil applications are often the dominant part
of the computation; an efficient parallel implementation of the kernel is
therefore crucial to reduce the time to solution. Inspired by polynomial
preconditioning, we remove upper bounds on the arithmetic intensity
of the Krylov subspace building block by replacing the matrix with a
higher-degree matrix polynomial. Using the latest state-of-the-art stencil
compiler programs with temporal blocking, reduced memory bandwidth
usage and, consequently, better utilization of SIMD vectorization and
thus speedup on modern hardware, we are able to obtain performance
improvements for higher polynomial degrees than simpler cache-blocking
approaches have yielded in the past, demonstrating the new appeal of
polynomial techniques on emerging architectures. We present results in a
shared-memory environment and an extension to a distributed-memory
environment with local shared memory.

Keywords: Stencil compilers · Performance engineering
Krylov methods · Code generation · Autotuning · HPC · CG
Polynomial preconditioning

1 Introduction

Simulation as a discipline relies on increasingly compute-intensive models that
require ever more computational resources. Many simulations in science and
engineering (e.g., fluid dynamics, meteorology, and geophysics) are based on
implicit time-stepping computations using Krylov subspace methods to solve
systems based on stencil operators on structured grids. As a result, these appli-
cations represent an important high-performance computing software pattern
on the current generation of processor architectures [1]. Advancing both stencil
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 1–18, 2018.
https://doi.org/10.1007/978-3-319-97136-0_1
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grid applications and matrix-free Krylov subspace linear solvers is of utmost
importance for implicit time integration applications on structured grids.

0.1 1 10

10

100

Pea
k B

and
wid

th

Peak Flop Rate

Arithmetic Intensity (Flops/B)

A
tt
ai
na
bl
e
P
er
fo
rm

an
ce

(G
Fl
op

s/
s) Peak

STREAMS Peak
Without AVX
Single Thread

Fig. 1. Roofline model based on the
Intel Xeon 2660 v2 Ivy Bridge microar-
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experiments in this paper.
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Fig. 2. Double-precision arithmetic
intensity to fully utilize the floating-
point capabilities of high-performance
processing units; reproduced from [28].

Structured grid applications require relatively few arithmetic operations per
byte read or written. Vector processor unit performance is thus limited by mem-
ory bandwidth rather than compute power, causing structured grid applications
to perform poorly on current microarchitectures. The large number of com-
ponents and machine complexity of future manycore-based architectures will
further exacerbate the issue.

Thus, arithmetic intensity, the number of floating point operations executed
per byte fetched from main memory, has become a more important metric to eval-
uate numerical algorithms than the number of required arithmetic operations.
Figure 1 shows the relationship between attainable performance and arithmetic
intensity on a recent microarchitecture. Below a critical value of arithmetic inten-
sity, performance is limited by memory bandwidth. Stencil-based operations typ-
ically fall far below this value. Vectorization (e.g., AVX) allows higher peaks, but
requires a higher arithmetic intensity to achieve them. Figure 2 shows the recent
increase of the critical value on high-end hardware, plotting the required arith-
metic intensity to transition between compute-limited and memory-bandwidth-
limited regimes; this trend highlights the need for algorithms to allow simulation
codes to adapt.

A given algorithm has a maximum arithmetic intensity, assuming perfect data
reuse. Increasing the theoretical maximum is inconsequential if data reuse (with
the help of hardware caches) is too suboptimal. Näıve implementations of stencil
applications do not come close to achieving this maximum. Blocking strategies
are more performant, yet the optimal implementation depends on the details
of the cache(s) available. Hence, stencil-code engineering to increase arithmetic
intensity has received increased attention in the last few years, evidenced by the
appearance of a number of stencil-code programming languages and compilers,
such as Pochoir [31], Pluto [6], Patus [11], Modesto [23], and Gscl [5].
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In this paper, we make a novel combination of the two approaches to improv-
ing performance of stencil-based codes: we simultaneously increase the theoreti-
cal maximum arithmetic intensity by reformulating the Krylov solver, and utilize
stencil compilers to approach this maximum on current hardware. Both ingredi-
ents are essential.

An iteration of a Krylov subspace method includes elementwise vector oper-
ations, vector reductions (dot products and norms), and matrix-vector multipli-
cations that are tightly interwoven. This is illustrated in Figs. 3 and 4. In Fig. 3,
a 7-point stencil results in the update of a single grid point, after which the sten-
cil is applied repeatedly. In Fig. 4, however, in-between the stencil updates there
are additional, interdependent dot products and vector updates. The resulting
data dependencies prevent the solver from efficiently applying the subsequent
in-place matrix-vector products required both to increase the theoretical arith-
metic intensity and to take advantage of advanced stencil engineering techniques
(“temporal blocking”).

1: for t = 1 to nu
2: for i = 1 to nx
3: for j = 1 to ny
4: for k = 1 to nz
5: U t+1

i,j,k 6 ∗ U t
i,j,k

6: −U t
i−1,j,k − U t

i+1,j,k

7: −U t
i,j−1,k − U t

i,j+1,k

8: −U t
i,j,k−1 − U t

i,j,k+1

Fig. 3. Stencil example: three-
dimensional (3D) Laplacian, 7-point
stencil with constant coefficients.

1: Initialize X, R and P .
2: for t = 1 to nu do
3: for i = 1 to nx do
4: for j = 1 to ny do
5: for k = 1 to nz do
6: St+1

i,j,k 6 ∗ P t
i,j,k

7: −P t
i−1,j,k − P t

i+1,j,k

8: −P t
i,j−1,k − P t

i,j+1,k

9: −P t
i,j,k−1 − P t

i,j,k+1
10: dot products and vector updates

with X,S,P ,and R

Fig. 4. More complicated data depen-
dencies inside the conjugate gradient
(CG). Dot products and vector updates
that use the results of the dot product
limit the arithmetic intensity and make
it impossible to use temporal blocking
out of the box. See also Algorithm 1.

We use the concept of polynomial preconditioning to reformulate these iso-
lated matrix-vector multiplications with matrix-polynomial-vector multiplica-
tions pm(A) with higher arithmetic intensity. The derived stencil computation
can be optimized separately using an efficient stencil computation approach.
From a numerical point of view, the search space constructed with a low-order
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polynomial pm(A) might be suboptimal compared to the Krylov subspace based
on regular powers of A and therefore needs more cumulative applications of the
matrix A. However, due to the fact that data are better reused and that vector
units can be used more effectively, overall time to solution can decrease.

This approach differs from s-step methods wherein intermediate vectors are
stored and later orthogonalized using TSQR [26]. Our approach communicates
only initial and final vectors, increasing the volume of computation and hence
the arithmetic intensity. This difference reflects the different objectives of s-step
preconditioners (removing the lower bounds on the amount of communication)
and our approach (removing upper bounds on the arithmetic intensity achiev-
able).

In this work, we leverage stencil compilers, specific code generation, and
autotuning methodology to make Krylov subspace kernels both code- and
performance-efficient, in a novel way that critically depends on the combination
of polynomial reformulation and the use of advanced stencil compilers. After
stencil computation and their challenges are discussed in Sect. 2, in Sects. 3–4,
we present a careful performance-oriented reformulation of a polynomial Krylov
subspace solver, analyze the performance of automatic stencil code generation in
this context, and show scalability on current Intel microarchitecture. Section 5
presents results of the approach in two-dimensional experiments, and we con-
clude with Sect. 6 which demonstrates the implementation and performance of
the technique in a three-dimensional, distributed-memory environment.

2 Node-Level Stencil Performance Engineering

Extracting good performance from stencil-based codes can be challenging
because their maximum arithmetic intensity is rather low and thus performance
is limited by the bandwidth between memory and compute units. Moreover, if
the application requires that the stencil be applied multiple times to each of the
spatial grids point, there is potential for performance increase by exploiting tem-
poral data locality, i.e., reuse of the computed data before they are transferred
back to memory. As an example, the image in Fig. 3 shows a visualization of the
stencil structure of a second-order discretization of the 3D Laplacian.

A fair amount of research has addressed the algorithmic changes and code
transformations needed. Loop-tiling approaches [17,22] and compilers using the
polyhedral model fall into this category. This is used to determine good tile sizes
as well as for autoparallelization. However, only a few stencil compilers can carry
out the requested, mostly nontrivial transformations for practical usage. We use
the following tools in this work:

– Patus [10–12] decouples the algorithm from the scheduling of the compu-
tation, i.e., what is vectorized, which loops are tiled or unrolled, and which
ones are parallelized. Thus, the “schedule” can be (auto)tuned for the target
architecture. The goal is to enable a clean implementation of an algorithm
(as opposed to C code cluttered by optimizations) while still delivering the
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Fig. 5. Impact of AVX vectorization for various stencils using 1 (left) and 10 cores
(right) on one socket of an Intel Xeon 2660 v2 Ivy Bridge.

performance of well-optimized implementations. Patus takes advantage of
spatial blocking but temporal blocking is not yet available.

– Pluto [7] is a research source-to-source (C-to-C) compiler using the polyhe-
dral model. Recently, Pluto was extended to automatically detect iterative
stencil computations and to apply both spatial- and time-skewing, allowing
concurrent processing of space-time tiles [34]. In this work, we use diamond-
tiling loop transformations available in [7] which are more efficient on current
microarchitectures. A recent advanced diamond-tiling implementation and
performance analysis is also available in [25].

SIMD vectorization has proven to be the key optimization for numerous sten-
cils in all data-centric stencil compiler programs, especially in view of growing
SIMD vector width. Using the hardware’s SIMD units in an optimal way is crit-
ical for performance; even if one trusts the compiler to vectorize scalar code one
can observe that explicitly vectorized code using SIMD intrinsics yields signifi-
cantly better performance. General purpose compilers must be on the safe side
and apply vectorization conservatively. Patus and Pluto can generate code
using explicit SIMD intrinsics. The benefit is that in the non-unit-stride dimen-
sions no loads are needed which are not aligned at SIMD vector boundaries, as
unaligned loads may incur a latency penalty or may not even be supported on
other architectures and therefore require a workaround.

However, it is well known that extra care is needed when using SIMD on
multiple cores in the presence of limited bandwidth. This is illustrated in Fig. 5,
showing AVX vectorization results using Pluto and the GNU GCC compiler
(4.9.2). Nonvectorized results are shown as Pluto (No SIMD) and GCC (No
SIMD), whereas AVX vectorization has been exploited in the GCC and Pluto
cases. Double-precision performance is shown for 5- and 7-point Laplacian sten-
cils on a single socket Intel Xeon 2660 v2 Ivy Bridge node, using 1 and 10 hard-
ware threads. While the automatic vectorization SIMD code generation methods
based on the GNU compiler always work well on a single core (with an accelera-
tion of 2.0× for Pluto), it is noticeable that these results cannot automatically
be transferred to multiple cores on a socket. As shown in Fig. 6, on multiple cores,
the GNU compiler reaches the memory bandwidth limitation of 41.1 GB/s for
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Fig. 6. Performance (left) and bandwidth (right) measurements of a 3D Laplacian of
size n = 9603 using a 7-point stencil with constant coefficients.

this memory-bound stencil computation1. As a result, there is no improvement
from SIMD vectorization. However, if we use techniques such as diamond-tiling
loop transformations with Pluto, we reduce the memory-bandwidth pressure
and the beneficial impact of SIMD vectorization can be observed even by using
up to 10 hardware threads. The trend is also visible in Fig. 6, which shows
the performance and measured bandwidth of the Laplacian 7-point stencil with
constant coefficients when the number of threads varies. PATUS is highly opti-
mized software and includes optimization techniques beyond autovectorization,
so is omitted from Fig. 5. Figure 6 shows that it yields better performance than
the näıve approach but does not solve the scalability and bandwidth bottleneck
issues. In the rest of the paper, we use PATUS as reference for the best spatial
blocking implementation. The main question is how a Krylov subspace method,
with much more complicated data dependencies, may benefit from SIMD vec-
torization, fully utilize all cores without saturating the bandwidth, and take
advantage of efficient stencil compilers.

3 Increasing Arithmetic Intensity of Krylov Subspace
Methods

Time spent in linear solvers often dominates total execution time in computa-
tional science applications, as processor count and problem size increase [9,33].
Krylov subspace methods are commonly used within large-scale, distributed-
memory codes. These involve applications of operators, such as the stencils
we have considered, interspersed with global reductions (inner products and
norms); mitigating the bottleneck created by these operations at extreme scale
has prompted the development of methods to hide, as in pipelined Krylov meth-
ods [19,20], or avoid, as in s-step methods [13,14], these reductions. Reductions
have another detrimental effect beyond the resources required to compute them:
they constitute barriers which impose an upper bound on arithmetic intensity,
even with perfect data reuse.
1 We also compared the impact on the vectorization with the Intel icc compilers and

obtained similar results.
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Large, sparse linear systems of the form

Ax = b (1)

can be solved with Krylov subspace methods [35] which accept an initial guess
x(0) and generate a sequence of iterates x(k) such that the corrections x(k) −x(0)

lie in nested subspaces. The iterates satisfy a method-specific optimality criterion
and converge toward the solution x. The Krylov subspace of degree k is the space
of matrix polynomials of degree less than k applied to r(0)

.= b−Ax(0), the initial
residual:

x(k) − x(0) ∈ Kk(A, r(0)) = span{r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}.

Depending on the properties of A, the minimization procedure in the search
space can be simplified. For example, the CG method [27], shown in Algorithm 1,
does not require explicit storage of basis vectors for Kk(A, r(0)) when A is sym-
metric and positive definite.

Algorithm 1. CG.
1: r ← b − Ax(0)

2:
3: p ← r
4: ρold ← ‖r‖2

5: for i = 0, 1, . . . do
6: s ← Ap
7: α ← ρold/ 〈s, p〉
8: x ← x + αp
9: r ← r − αs

10: ρnew ← ‖r‖2

11:
12: β ← ρnew/ρold

13: p ← r + βp
14: ρold ← ρnew

15: end for

Algorithm 2. Preconditioned CG.
1: r ← b − Ax(0)

2: z ← M−1r
3: p ← z
4: ρold ← 〈r, z〉
5: for i = 0, 1, . . . do
6: s ← Ap
7: α ← ρold/ 〈s, p〉
8: x ← x + αp
9: r ← r − αs

10: ρnew ← 〈r, z〉
11: z ← M−1r
12: β ← ρnew/ρold

13: p ← z + βp
14: ρold ← ρnew

15: end for

The residual after k steps, r(k)
.= b − Ax(k), can be written as a polynomial

of A of degree k, applied to the initial residual r(0):

r(k) = b − A

⎛
⎝x(0) +

k−1∑
j=0

γjA
jr(0)

⎞
⎠ = r(0) +

k−1∑
j=0

γjA
j+1r(0) = Pk(A)r(0).

The operations in Algorithm1 are typically limited by available memory
bandwidth and thus cannot take advantage of additional arithmetic operations
available in modern devices. Consider a matrix A with nnz nonzero elements.
Computing a matrix-vector product, as on line 6 of Algorithm 1, requires reading
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nnz matrix elements and at least n elements from the input vector and writing n
elements of the output vector. The number of arithmetic operations is 2nnz−n.2

Thus the arithmetic intensity is at most

q =
2nnz − n

b(nnz + 2n)
≤ 2

b
, (2)

where b is the number of bytes required to represent a scalar.3 This represents
a small fraction of the arithmetic intensity required to reach peak performance
(see Fig. 2).

For matrices described by applying a stencil on a computational grid, matrix
entries may be computed instead of read. If no entries need be retrieved from
memory, neglecting any floating point operations required to compute the coef-
ficients, the maximum arithmetic intensity of a matrix-free operator application
can be expressed as

qmatfree =
2nnz − n

2bn
≤ nnz

bn
. (3)

This quantity is characterized by the average number of nonzero entries per row,
divided by b. Thus, for some operators, qmatfree can be significantly greater than
q, but is nonetheless a fixed function of A, and may not be suitable for a given
microarchitecture.

However, when m matrix-vector products are done in-place, with the operator
A applied repeatedly to v to produce Amv, m(2nnz−n) operations are performed
for a single read of the matrix, one read of the input vector, and one write of
the output vector. This results in maximum arithmetic intensities of

q =
m(2nnz − n)
b(nnz + 2n)

, qmatfree =
m(2nnz − n)

2bn
. (4)

These quantities increase linearly with m. The expressions assume that each
element of v is read exactly once from main memory, typically impossible, and
as such actual attained arithmetic intensity depends on the details of the cache
hierarchy and the implementation of the polynomial kernel.

In light of Fig. 1, it is now apparent that one can attempt to improve the
performance of Krylov subspace methods by introducing subsequent matrix-
vector products instead of isolated matrix-vector products per iteration.

Polynomial preconditioning offers a natural, tunable way to accomplish this,
reducing the number of iterations required for convergence of the Krylov sub-
space method without using additional memory bandwidth. It was first described
shortly after CG [29] and became of greater interest with the advent of vector
computers [15]. For more, see Sect. 5 of Saad’s survey [30]. Multiply (1) on both
sides by the polynomial qm−1(A),

pm(A)x = b̃
.= qm−1(A)b, (5)

2 nnz multiplies and nnz − n adds.
3 For instance, b = 8 for double-precision floating point numbers, giving q < 1

4
.
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where pm(A) .= qm−1(A)A, producing an equivalent linear system with a new
operator. Algorithm 2 shows the preconditioned version of the CG method
(PCG), where a preconditioning step is explicitly computed on line 11 with
the application of a preconditioning operator M−1. This generalized algorithm
is useful when the preconditioner is given by a (black box) routine such as alge-
braic multigrid or ILU decomposition and reduces to Algorithm1 when M = I.
However, as pm(A) is symmetric for symmetric A and can be chosen to be pos-
itive definite for positive definite A, polynomial preconditioning only requires
standard CG, as in Algorithm1; line 6 simply computes s = pm(A)pi instead of
s = Api, and b is replaced with b̃. This corresponds to searching for an optimal
error correction in a Krylov subspace based on powers of pm(A):

x(k) − x(0) ∈ Kk(pm(A), r(0)) = span{r(0), pm(A)r(0), . . . pm(A)k−1r(0)}.

Note that Kk(pm(A), r0) ⊂ Km(k−1)+1(A, r(0)) since pm(A)r0 can be written as
a linear combination of the first m vectors of KM (A, r0) for M > m. As a result,
the residual can be expressed as a polynomial P of the matrix polynomial pm(A)
applied to the initial residual, r(k) = P (pm(A))r(0).4

As discussed in Sect. 4, the polynomial pm(A) should be defined such that
it reduces the number of iterations of the Krylov subspace method. Although
the number of arithmetic operations per iteration increases, the overall time to
solution is often lower than in the unpreconditioned case.

All other operations in Algorithm1 are vector updates or dot products with a
lower arithmetic intensity than matrix-vector multiplication; reducing the num-
ber of total iterations reduces the number of times these must be performed.

The routine to apply the polynomially preconditioned operator pm(A) can be
provided as a black box to a CG solver, allowing it to be optimized with a stencil
compiler. This further reduces the demand on memory bandwidth, allowing for
arithmetic intensity closer to the ideal in (4) than for a single application of
the matrix or a näıvely implemented polynomial kernel. To realize this benefit
without the use of a stencil compiler would require expert, hardware-specific
implementation. The total number of matrix-vector multiplies with A required
to reach a given convergence tolerance typically increases with the use of a
polynomially preconditioned system, as opposed to an unpreconditioned one, but
time to solution can decrease since the average time per application decreases.

4 Selection and Implementation of the Polynomial Kernel

As test cases, we use simple constant-coefficient Poisson problems in 2 and 3
dimensions,

∇2u(x) = f(x), x ∈ R
{2,3}, (6)

discretized with central finite differences, leading to the familiar 5- and 7-point
stencils.
4 This contrasts with s-step Krylov methods [14] that compute iterates in standard

Krylov spaces, s basis vectors at a time.
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Algorithm 3. Recursive calculation of matrix vector product wm = pm(A)v.
1: θ = (λmax + λmin) /2, δ = (λmax − λmin) /2
2: σ1 = θ/δ
3: ρ0 = 1/σ1

4: w0 = 0, w1 = 1
θ
Av

5: Δw1 = w1 − w0

6: for k = 2, . . . , m do
7: ρk−1 = 1/(2σ1 − ρk−2)
8: Δwk = ρk−1

[
2
δ
A(v − wk−1) + ρk−2Δwk−1

]

9: wk = wk−1 + Δwk

10: end for

The choice of polynomials pm is ultimately problem dependent, and has been
studied in the literature [2]. A common goal is to minimize, in some norm,
1−pm(λ) over all eigenvalues λ of A. For symmetric systems, this corresponds to
the fact that the condition number and clustering of the spectrum provide useful
bounds on the convergence [35]. In the case of the simple Laplacian approxima-
tions we have chosen, the spectrum is known analytically [8]. It is well-separated
over an interval, motivating the choice of Chebyshev polynomials.

If little is known about the spectrum of A, a good polynomial can be con-
structed based on the Ritz values of A. These can be estimated using a few iter-
ations of CG and calculating the eigenvalues of the tridiagonal Lanczos matrix
that contains αi and βi.

The recursive definition of Chebyshev polynomials can be used to define a
function to apply pm(A). Algorithm 3 presents such a recursive routine which
computes wm = pm(A)v, where pm is a scaled and shifted Chebyshev poly-
nomial that maps the spectrum of A around 1. The algorithm comprises only
simple operations (and notably no reductions). Thus, when A can be defined as
a stencil application, the entire polynomial application is amenable to automatic
tiling and cache blocking. This possibility will be exploited in the experiments
described in Sects. 5 and 6.

In order to provide data dependencies suitable for tiling with PLUTO, our
polynomial kernel implementation used in Sects. 5 and 6 includes the option to
use an auxiliary buffer for the vector to which to apply the polynomial.

5 Single-Node Experimental Results

Throughout this section, we compare three solver variants implementing a poly-
nomial stencil application as described in Algorithm3:

1. a näıve OpenMP implementation obtained by adding #pragma omp
parallel for directives around the outer spatial loop to parallelize,

2. an improved approach based on the Pluto compiler, and
3. a corresponding implementation using Patus.
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Table 1. Relevant hardware information for the Emmy cluster, used for all the exper-
iments in this paper.

Nodes 560
Sockets/node 2
Socket hardware Xeon 2660v2

(Ivy Bridge)
Cores/socket 10
Clock frequency 2.2 GHz
Double-precision 8

flops/cycle/core
Peak flop rate/socket 176 GFlops/sec

Peak memory 59.7 GB/s
bandwidth / socket

Peak STREAMS 41.1 GB/s
memory bandwidth

DRAM per node 64 GB
L1 cache per core 32 KB instruction

+ 32 KB data
L2 cache per core 256 KB
L3 cache per socket 25 MB

5.1 Experimental Environment

All the experiments were performed on the Emmy cluster at RRZE Erlangen,
as described in Table 1. We fix the maximum clock rate to 2.2 GHz, disabling
“turbo” mode, do not use hyperthreading, and focus on single-socket perfor-
mance. We use the LIKWID performance tools [32] to bind threads to cores on
one socket and run the STREAMS benchmark to measure an attainable memory
bandwidth of 41.1 GB/s. The measured bandwidth corresponds to the rate of
data transfer between one socket and main memory. The experiments in this
section solve a 3D Poisson problem of size N = 512 in each dimension, near the
maximum size that can be allocated for a single socket. Here, Dirichlet boundary
conditions are set in buffer grid points, and loops proceed over interior points
only, with a uniform stencil. Code was compiled using gcc with −O3 optimization
and AVX enabled. “Degree m” refers to the order of the polynomial pm(A)v.

5.2 Krylov Subspace Method Convergence

Figures 7 and 8 illustrate that the reduction in communication costs results in
faster times to solution. Figure 7 shows the convergence history of ‖r(k)‖ as a
function of the number of matrix-vector multiplies for polynomial orders up to
m = 4. Note that, for each value of m, CG minimizes the error in a different
norm, though the residuals can still be used to monitor the convergence.

It is clear that the total number of matrix-vector products before convergence
increases with m. This is to be expected, as the iterates lie in subspaces of the
full Krylov subspace. Note, however, that the number of dot products to reach
convergence (proportional to the number of plot markers) decreases, as does
the number of sweeps over the vector. This may allow for lower communication
overhead and better cache reuse.

Figure 8 presents the same results as Fig. 7 but plots the residual norm ver-
sus time. The polynomial of degree 2 converges faster than the polynomial of
degree 1 and, subsequently, convergence time then increases with m. This can
be explained by the increasing cost of the matrix-vector products m.
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Fig. 7. Polynomial CG convergence as
a function of effective matrix-vector
multiplies.

Fig. 8. Polynomial CG convergence
using näıve OpenMP, PATUS, and
Pluto.

Figure 8 also shows the improvement in terms of convergence rate from using
the Pluto compiler. The efficient implementation of the polynomial of degree
2 surpasses all variants of the näıve implementation, and maximal speedup is
obtained with a polynomial of degree 4.

Figure 9 shows the time per operation using the näıve OpenMP imple-
mentation, Pluto, and PATUS. With the use of the stencil compilers, the
matrix-vector product time tends to decrease considerably, resulting in a marked
improvement in the time to solution. Using the näıve OpenMP implementation,
the total time for the axpy and dot product operations decrease as expected
with the number of iterations, while the total time for the matrix-vector multi-
ply increases. By implementing the polynomial matrix-vector product pm(A)v as
presented in Algorithm 3 using stencil-based compilers, a speedup of up to 1.5×
is attained by using the efficient spatial blocking algorithm Patus, compared
to the näıve implementation. The same algorithm using the Pluto temporal
blocking algorithm results in speedups of up to 2.6×.

5.3 Scalability

We present the performance scalability of our implementation when the number
of threads varies. Figure 10 shows the total time to solution and the measured
bandwidth. At around 6 cores, the näıve implementation reaches a measured
bandwidth of 40 GB/s, comparable to the maximum attainable bandwidth as
measured by the STREAMS benchmark.

By using Patus, we observe a small decrease in the measured bandwidth and
a speedup in the time to solution of up to 1.5×, compared to the näıve OpenMP
implementation, thanks to the reuse of cache data. Since data reuse is optimized
by Patus, each core is likely to use the bus less often. However, each new itera-
tion of the matrix-vector product requires a new load of all the associated data.
This problem can be solved using Pluto, thanks to its temporal reuse of data.
As shown in the same figure, the Pluto implementation reduces the pressure
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Fig. 9. Time spent for each operation within the OpenMP, PATUS, and PLUTO
implementations.

Fig. 10. Performance scalability of our implementation when the number of threads
varies. On the left, the time for the solution and, on the right, the measured bandwidth.

on the memory bandwidth when the number of cores increases, and scalability
of the algorithm increases considerably. This leads to an implementation up to
2.5× faster than the näıve approach.

6 Multinode Experimental Results

We have shown that the use of a polynomial preconditioner can considerably
reduce the iteration count in the CG algorithm. This includes a reduction in the
total time spent performing axpy and dot product operations.

In this section, we present an implementation and evaluation of our algo-
rithm on multiple nodes as a large-scale, distributed-memory application of our
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algorithm in a hybrid MPI/Pthreads environment. In order to reduce the cost
of the matrix-vector products, the most time-consuming part of the solver, we
use Pluto to increase the arithmetic intensity of the node-level portion of the
underlying stencil-based matrix-vector product. We use a distributed version
of the CG algorithm where the communications between different processors
running on the nodes are performed by MPI, and within each node we use a
multithreaded version of the basic operations such as axpy, dot product, and
matrix-vector product. In order to parallelize the matrix-vector product, we use
OpenMP and Pluto. Because of the distributed-memory setting, all the data
required to compute the local part of the matrix-vector product at each itera-
tion are stored on the corresponding processor, including redundant “halo” data
at the boundaries of per-processor subdomains. Boundaries are computed with
specialized, nonoptimized stencils over the appropriate grid points.

For a polynomial of degree m, since we perform m matrix-vector products
grouped together, it is necessary to store and exchange a halo region m times the
width of the stencil. The extra memory required scales as m times the surface
area of the subdomains, mN

d−1
d , which is small outside of the strong-scaling

regime. This approach allows the use of OpenMP and Pluto for the matrix-
vector product within each node.

For our tests, we use code leveraging the PETSc library [3,4], linked with
the multithreaded BLAS from the Intel MKL. We define our own matrix-free
operator which applies the matrix polynomial to data stored on a distributed
array (DMDA) object, and use it within PETSc’s CG. The code used to produce
the results in this section, including tests, is available under an open-source
license5. All results are computed on multiple nodes of the same machine used
for the single-node experiments, as described in Table 1. Again, we only use
a single socket per node. We compare a version of the code parallelized with
OpenMP and a second version which uses Pluto to optimize the polynomial
application.

Figure 11 shows the solution time for 2, 4, and 8 nodes when the problem
size is fixed at 2048 and the polynomial degree m varies. We observe that while
we see strong scaling (and even superlinear strong scaling as the local prob-
lem size becomes small enough to fit into the L3 cache), the time to solution
using OpenMP tends to increase with the degree of the polynomial. The use of
Pluto helps to remove this limitation, allowing further acceleration by increas-
ing the polynomial degree. Figure 12 shows the solution time when the size of
the problem increases for a polynomial of degree 10 using 16 and 32 nodes.

We observe that the OpenMP implementation on 32 nodes is up to 2 times
faster than on 16 nodes, and that the use of Pluto contributes to the best
solution. Figure 13 shows strong scaling with a polynomial preconditioner of
degree 10 for a small problem of size 1024. Initial superlinear scaling is observed,
likely due to cache effects.

5 https://bitbucket.org/psanan/polykrylovpetscexample.

https://bitbucket.org/psanan/polykrylovpetscexample
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Fig. 11. Solution time
for a fixed-size prob-
lem, using a polynomial
preconditioner on 2–8
distributed-memory
nodes.

Fig. 12. Time to solu-
tion using degree 10
polynomial precondi-
tioning on 16 and 32
distributed-memory
nodes.

Fig. 13. Strong scal-
ing behavior in time to
solution using degree
10 polynomial precon-
ditioning for a small
problem of size 1024.

7 Conclusions and Outlook

Krylov subspace solvers use a sparse matrix-vector products, dot products, and
vector updates to solve linear system. Each of these building blocks is a low arith-
metic intensity operation, limited by available memory bandwidth and imple-
mentation’s ability to maximize data reuse. As a result, Krylov methods perform
poorly on modern processing units that require, high arithmetic intensity algo-
rithms to operate at peak performance, due to widening SIMD registers and
increasing shared-memory concurrency.

Modern stencil compilers including temporal blocking can significantly reduce
the bandwidth usage of algorithms with repeated application of the same stencil,
for example in explicit time evolution.

In this paper we have shown that the same stencil compilers and temporal
blocking techniques can also be used to accelerate Krylov methods, although
these algorithms have a much more complicated data dependencies. Our insight
is that by using polynomial preconditioning in combination with modern sten-
cil compilers, one can simultaneously increase both the maximum and achieved
arithmetic intensity, allowing for demonstrable speedup greatly superior to that
of direct application on stencil compilers or polynomial preconditioning alone.
Indeed, without advanced stencil compilers (or expert, machine-specific tuning),
the polynomial approach here would not be beneficial for higher order polynomi-
als, and without the polynomial approach, maximum arithmetic intensity would
be limited to that of a single operator application.

The Poisson problem used as a proof of concept here has explicitly known
extremal eigenvalues, required to choose a suitable polynomial. For more general
operators, these values must be estimated.

A well-known limitation of polynomial preconditioning is that for most opera-
tors of interest and fixed m, the number of iterations to convergence of a Krylov
method increases with problem size. This may be mitigated in the future as
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communication-avoiding preconditioners [21] are developed, and the methods
here may also be used with nested or hierarchical solves. A promising area of
application is in those situations where a simple, diagonally-preconditioned CG
solve, using O(1) iterations, is used within a larger, scalable solver. Examples
include multilevel Krylov methods [16]; indeed, an approach of this kind has
been shown to be highly effective in an extreme-scale finite element solver, scal-
ing to hundreds of billions of degrees of freedom on hundreds of thousands of
cores, using a hierarchy of simply-preconditioned CG solves [18].

We have focused on finite-difference stencils, with regular access patterns
allowing efficient optimization. Many problems of interest, such as the applica-
tion of finite element operators on unstructured meshes, involve more complex
access patterns. Stencil compilers for these cases are in their infancy [24], but
clear hardware trends will strongly encourage their development, as indeed they
will encourage the use and extension of the methods described in this work.
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Abstract. We discuss various applications of trace estimation tech-
niques for evaluating functions of the form tr(f(A)) where f is certain
function. The first problem we consider that can be cast in this form is
that of approximating the Spectral density or Density of States (DOS)
of a matrix. The DOS is a probability density distribution that measures
the likelihood of finding eigenvalues of the matrix at a given point on the
real line, and it is an important function in solid state physics. We also
present a few non-standard applications of spectral densities. Other trace
estimation problems we discuss include estimating the trace of a matrix
inverse tr(A−1), the problem of counting eigenvalues and estimating the
rank, and approximating the log-determinant (trace of log function). We
also discuss a few similar computations that arise in machine learning
applications. We review two computationally inexpensive methods to
compute traces of matrix functions, namely, the Chebyshev expansion
and the Lanczos Quadrature methods. A few numerical examples are
presented to illustrate the performances of these methods in different
applications.

1 Introduction

Let A ∈ R
n×n be a symmetric (real) matrix with an eigen-decomposition A =

UΛU�, where Λ = diag(λ1, . . . , λn), and λi, i = 1, . . . , n are the eigenvalues of
A and where the columns ui, i = 1, . . . , n of U are the associated eigenvectors.
For the matrix function f(A), defined as f(A) = Uf(Λ)U�, where f(Λ) =
diag(f(λ1), . . . , f(λn)) [18], the trace estimation problems consist of computing
an approximation of the trace of the matrix function f(A), i.e.,

tr(f(A)) =
n∑

i=1

f(λi). (1)

The problem of estimating the trace of a matrix function appears in a very
broad range of applications that include machine learning, signal processing, sci-
entific computing, statistics, computational biology and computational physics
[2,5,12,13,17,20,22,27,29]. Clearly, a trace of a matrix function can be triv-
ially computed from the eigen-decomposition of A. However, matrices in most
of the applications just mentioned are typically very large and so computing the
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 19–33, 2018.
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complete eigen-decomposition can be expensive and sometimes even infeasible.
Hence, the problem is to develop fast and scalable algorithms to perform such
tasks without requiring the eigen-decomposition. This specific problem, which
has been at the forefront of research in many distinct areas whether in physics
or data-related applications, is the primary focus of this paper.

2 Trace Estimation Problems

We begin by first discussing a few trace estimation problems that arise in certain
application areas.

2.1 Spectral Density

The first problem that we consider is that of computing the spectral density of a
matrix [23], a very common problem in solid state physics. The spectral density
of matrix, also known as Density of States (DOS) in physics, is a probability
density distribution that measures the likelihood of finding eigenvalues of the
matrix at a given point on the real line. Formally, the spectral density of a
matrix is expressed as a sum of delta functions of the eigenvalues of the matrix.
That is,

φ(t) =
1
n

n∑

i=1

δ(t − λi),

where δ is the Dirac distribution or Dirac δ-function. This is not a proper function
but a distribution and it is clearly not practically computable as it is defined.
What is important is to compute a smoothed or approximate version of it that
does not require computing eigenvalues, and several inexpensive methods have
been proposed for this purpose, [23,31,35]. Recently, the DOS has been used in
applications such as eigenvalue problem, e.g., for spectral slicing [38], for counting
eigenvalues in intervals (‘eigencounts’) [11], and for estimating ranks [33,34].
In Sect. 4, we present a few other (new) applications where the DOS can be
exploited.

Article [23] reviews a set of inexpensive methods for computing the DOS.
Here we briefly discuss two of these methods, namely the Kernel Polynomial
method [35] and the Lanczos approximation method [23]. As was already men-
tioned the DOS is not a proper function. At best it can practically be viewed as a
highly discontinuous function, which is difficult to handle numerically. The idea
then is to replace the delta function by a surrogate Gaussian blurring function
as is often done. A “blurred” version of the DOS is given by:

φσ(t) =
1
n

n∑

i=1

hσ(t − λi),

where hσ(t) = 1√
2πσ2 e− t2

2σ2 . The spectral density can then approximated by
estimating this trace of this blurred function, e.g., using the Lanczos algorithm.
An older method consists of just expanding (formally) the DOS into Chebyshev
polynomials. These two methods will be discussed later in Sect. 3.
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2.2 Eigencount and Numerical Rank

The second trace estimation application we consider is that of counting eigenval-
ues located in a given interval (eigencount) and the related problem of estimat-
ing the numerical rank of a matrix. Estimating the number of eigenvalues η[a,b]

located in a given interval [a, b] (including the possible multiplicities) of a large
sparse symmetric matrix is a key ingredient of effective eigensolvers [11], because
these eigensolvers require an estimate of the dimension of the eigenspace to com-
pute to allocate resources and tune the method under consideration. Estimating
the numerical rank rε = η[ε,λ1] is another closely related problem that occurs in
machine learning and data analysis applications such as Principal Component
Analysis (PCA), low rank approximations, and reduced rank regression [33,34].
Both of these problems can be viewed from the angle of estimating the trace of
a certain eigen-projector, i.e., the number of eigenvalues η[a, b] in [a, b] satisfies:

η[a,b] = tr(P ), where P =
∑

λi ∈ [a, b]

uiu
�
i .

We can interpret P as a step function of A given by

P = h(A), where h(t) =
{

1 if t ∈ [a, b]
0 otherwise . (2)

The problem then is to find an estimate of the trace of h(A). A few inexpensive
methods are proposed in [11,33,34,40] to approximately compute this trace. We
can also compute the eigencount from the spectral density since

η[a, b] =
∫ b

a

∑

j

δ(t − λj)dt ≡
∫ b

a

nφ(t)dt. (3)

2.3 Log-Determinant

Log-determinants have numerous applications in machine learning and related
fields [17,27,29]. The logarithm of the determinant of a given positive definite
matrix A ∈ R

n×n, is equal to the trace of the logarithm of the matrix, i.e.,

log det(A) = tr(log(A)) =
n∑

i=1

log(λi).

So, estimating the log-determinant of a matrix leads once more to the estimation
of the trace of a matrix function in this case the logarithm function.

Various methods have been proposed for inexpensively computing logdeter-
minants. These methods differ in the approach used to approximate the log
function. For example, the article [17] uses Chebyshev polynomial approxima-
tions of the log function, while [8,39] uses Taylor series expansions. On the other
hand, Aune et al. [3] developed a method based on rational approximations of
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the logarithm. More recently, a method based on Lanczos Quadrature has been
advocated for computing log determinants [32].

Log-Likelihood Estimation: One of the applications of log-determinants com-
putation is in the in likelihood estimation problems that arise in Gaussian pro-
cesses [27]. Maximum Likelihood Estimation (MLE) is a popular approach used
for parameter estimation in high dimensional Gaussian models. The objective
is to maximize the log-likelihood function with respect to a hyperparameter
vector ξ:

log p(z | ξ) = −1
2
z�S(ξ)−1z − 1

2
log det S(ξ) − n

2
log(2π), (4)

where z is the data vector and S(ξ) is the covariance matrix parameterized by
ξ. As seen from the above expression, a log-determinant must be computed to
obtain the log-likelihood, see [32].

2.4 Other Applications

Other frequent matrix function trace estimation problems include estimating the
trace of a matrix inverse, the Schatten norms, and the Estrada index. These are
discussed in turn.

Trace of a Matrix Inverse: The matrix inverse trace estimation problem
amounts to computing the trace of the inverse function f(t) = t−1 of a positive
definite matrix A ∈ R

n×n, whose eigenvalues lie in the interval [λmin, λmax] with
λmin > 0. This problem appears in uncertainty quantification and in lattice
quantum chromodynamics [20,37], where it is necessary to estimate the trace of
the inverse of covariance matrices.

Schatten p-Norms: Given an input matrix X ∈ R
d×n, the Schatten p-norm of

X is defined as

‖X‖p =
( r∑

i=1

σp
i

)1/p

,

where the σi’s are the singular values of X and r its rank. The nuclear norm
is the Schatten 1-norm so it is just the sum of the singular values. Estimating
the nuclear norm and the Schatten p-norms of large matrices appears in matrix
completion and in rank-constrained optimization problems, differential privacy
and theoretical chemistry [25,32]. It is also used in SVD entropy computations [1]
which has many applications [25]. Suppose we define a positive semidefinite
matrix A as1 A = X�X or A = XX�. Then, the Schatten p-norm of X is
defined as

‖X‖p =
( r∑

i=1

λ
p/2
i

)1/p

=
(
tr(Ap/2)

)1/p

.

1 The matrix product is not formed explicitly since the methods involved typically
require only matrix vector products.
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Hence, Schatten p-norms (the nuclear norm being a special case with p = 1)
are the traces of matrix functions of A with f(t) = tp/2, and they can be com-
puted inexpensively using methods such as Lanczos Quadrature [32], Chebyshev
expansions [16] and others [25].

Estrada Index: The Estrada index of graphs is a common tool in computational
biology, and has applications that include protein indexing [12], statistical ther-
modynamics and information theory [9]. Estimating the Estrada index amounts
to finding an approximation to the trace of the exponential function, i.e., we
need to estimate tr(exp(A)), where A is the adjacency matrix of the graph.
Articles [16,25,32] discuss methods for a fast estimation of the Estrada index of
graphs.

3 Methods

We now discuss two inexpensive techniques for estimating traces of matrix func-
tions. The first approach is well-known among solid-state physicists. Termed
‘Kernel Polynomial Method’ (KPM) [34–36] or ‘Chebyshev expansion method’
[16,17,33], it consists simply of expanding the spectral density into Chebyshev
polynomials. The second approach is based on the Lanczos algorithm [23,32],
where the relation between the Lanczos procedure and Gaussian quadrature for-
mulas is exploited to construct a good approximation for the matrix function.
We first discuss a standard tool known as the ‘stochastic trace estimator’, which
is a key ingredient used in the methods to be discussed.

3.1 Stochastic Trace Estimator

The stochastic trace estimator [4,19,28] approximates the trace of a matrix
function f(A) by means of matrix-vector products with f(A). This method takes
a sequence of random vectors vl, l = 1, ..,nv whose components have zero mean
E[vl] = 0 and whose 2-norm is one, ‖vl‖2 = 1 and it then computes the average
over the samples of v�

l f(A)vl to approximate the trace,

tr(f(A)) ≈ n

nv

nv∑

l=1

v�
l f(A)vl. (5)

Convergence has been analyzed in [4,28]. A variant of this method can be used
to estimate the diagonal entires of f(A), see [7]. Note that f(A) need not be
explicitly formed since we only need to efficiently compute the vectors f(A)vl

for any vl. This can be accomplished in a number of effective ways.

3.2 Chebyshev (Kernel) Polynomial Method

The Kernel Polynomial Method (KPM) proposed in [30,35] computes an approx-
imate DOS of a matrix using Chebyshev polynomial expansions, see, [23] for a
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discussion. In KPM, the matrix is linearly transformed so as to map its eigen-
values from the initial interval [λn, λ1] into the interval [−1, 1]. This requires
estimating the extreme eigenvalues, see [34]. KPM seek the expansion of:

φ̂(t) =
√

1 − t2φ(t) =
√

1 − t2 · 1
n

n∑

j=1

δ(t − λj),

instead of the original φ(t) since the Chebyshev polynomials are orthogonal with
respect to the weight function (1− t2)−1/2. Then, we write the partial expansion
of φ̂(t) as

φ̂(t) ≈
m∑

k=0

μkTk(t),

where Tk(t) is the Chebyshev polynomial of degree k. A little calculation
reveals that, formally at least, each expansion coefficient μk is given by μk =
(2−δk0)

π tr(Tk(A)). Here δij is the Kronecker symbol, so 2 − δk0 is 1 when k = 0
and 2 otherwise. The trace of Tk(A) can now be estimated with the help of the
expansion coefficients the corresponding expansion coefficient μk are approxi-
mated as,

μk ≈ 2 − δk0

πnv

nv∑

l=1

(vl)
�

Tk(A)vl.

Scaling back by the weight function (1 − t2)−1/2, we obtain the approximation
for the spectral density function in terms of Chebyshev polynomial of degree m.

General Function f(A): For a general function f : [−1, 1] → R, it is possible
to obtain an approximation of the form

f(t) ≈
m∑

k=0

γkTk(t).

using Chebyshev polynomial expansions or interpolations, see [24] for details.
Here Tk(t) is the Chebyshev polynomial of degree k and γk are corresponding
coefficients specific to expanding the function f(t). Hence, we can approximate
the trace of f(A) as

tr(f(A)) ≈ n

nv

nv∑

l=1

[
m∑

k=0

γk(vl)T Tk(A)vl

]
, (6)

using the Chebyshev expansions and the stochastic trace estimator (5). Arti-
cles [11,33] discussed the expansion of step functions using Chebyshev polyno-
mials to compute eigencounts and numerical ranks of matrices, respectively.

Han et al. [16] discussed the above Chebyshev expansion method to approx-
imately estimate the traces tr(f(A)), when the function f is analytic over an
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interval. They proposed using Chebyshev interpolations to obtain the coefficients
γk. Problems such as estimating log-determinants, Estrada index, trace of matrix
inverse and Shcatten p norms were discussed. The functions log(t), exp(t), t−1

and tp/2 are all analytic in the spectrum interval [λmin, λmax], with λmin > 0.
When expanding discontinuous functions including the DOS and step func-

tions using Chebyshev polynomials, oscillations known as Gibbs Oscillations
appear near the discontinuities [11]. To reduce or suppress these oscillations,
damping multipliers are often used, see [11,23] for details. An important prac-
tical consideration is that we can economically compute vectors of the form
Tk(A)v using the three term recurrence of Chebyshev polynomials, see [16,34].
The recent article [16] analyzed the convergence of methods for approximating
tr(f(A)) with the Chebyshev method when the function f(A) is analytic over
the interval of interest.

3.3 Lanczos Quadrature

The Lanczos Quadrature method was developed in [14], and the idea of combin-
ing the stochastic trace estimator with the Lanczos Quadrature method appeared
in [5,6]. This method was recently analyzed and applied to matrix function trace
estimation in [32]. In the Stochastic Lanczos Quadrature (SLQ) method, the
scalar quantities v�f(A)v in the trace estimator (5) are computed by treating
them to Riemann-Stieltjes integral, and then using the Gauss quadrature rule to
approximate this integral. Given the eigen-decomposition A = QΛQ�, we can
write the scalar product as Riemann-Stieltjes integral given by,

v�f(A)v = v�Qf(Λ)Q�v =
n∑

i=1

f(λi)μ2
i =

∫ b

a

f(t)dμ(t), (7)

where μi are the components of the vector Q�v and the measure μ(t) is a
piecewise constant function defined as

μ(t) =

⎧
⎪⎨

⎪⎩

0, if t < a = λ1,∑i−1
j=1 μ2

j , if λi−1 ≤ t < λi, i = 2, . . . , n,∑n
j=1 μ2

j , if b = λn ≤ t,

(8)

with λi ordered nondecreasingly. However, the complete eigen-decomposition of
A will not be available, and will be very expensive to compute for large matrices.
So, we consider estimating the integral using the Gauss quadrature rule [15]

∫ b

a

f(t)dμ(t) ≈
m∑

k=0

ωkf(θk), (9)

where {ωk} are the weights and {θk} are the nodes of the (m + 1)-point Gauss
quadrature. We can then compute these weights and nodes using the Lanczos
algorithm [13].
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Given symmetric matrix A ∈ R
n×n and a starting vector w0 of unit 2-norm,

the Lanczos algorithm generates an orthonormal basis Wm+1 for the Krylov sub-
space span{w0, Aw0, . . . , A

mw0} such that W�
m+1AWm+1 = Tm+1, where Tm+1

is an (m+1)×(m+1) tridiagonal matrix. The columns wk of Wm+1 are related as

wk = pk−1(A)w0, k = 1, . . . ,m,

where pk are the Lanczos polynomials. The Lanczos polynomials are orthogonal
with respect to the measure μ(t) in (8); see Theorem 4.2 in [13]. The nodes and
the weights of the quadrature rule in (9) can be computed as the eigenvalues
and the squares of the first entries of the eigenvectors of Tm+1. Thus, we have

v�f(A)v ≈
m∑

k=0

τ2
kf(θk) with τ2

k =
(
e�
1 yk

)2
, (10)

where (θk, yk), k = 0, 1, ...,m are eigenpairs (eigenvalues and eigenvectors) of
Tm+1 by using v as the starting vector w0. Note that eigen-decomposition of
Tm+1 for small m is inexpensive to compute. Then, the trace of matrix function
f(A) can be computed as,

tr(f(A)) ≈ n

nv

nv∑

l=1

(
m∑

k=0

(τ (l)
k )2f(θ(l)k )

)
, (11)

where (θ(l)k , τ
(l)
k ), k = 0, 1, ...,m are eigenvalues and the first entries of the eigen-

vectors of the tridiagonal matrix T
(l)
m+1 corresponding to the starting vectors

vl, l = 1, . . . ,nv. A convergence analysis for this SLQ method was proposed in
the recent article [32]. For analytic functions, it has been shown that the con-
vergence of the Lanczos quadrature approximation is twice as fast as that of
Chebyshev approximation methods. This stems from the fact that an m-point
quadrature rule is exact for any polynomial of degree 2m, see [32] for details.

Lanczos Approximation for the DOS. The Lanczos approximation tech-
nique for estimating spectral densities discussed in [23] is based on the above
Lanczos Quadrature framework. Given a polynomial p(t), we can use the Lanc-
zos quadrature formula in Eq. (10), to compute the (Riemann-Stieltjes) integral
v�p(A)v, see [13] for details. Since this is a Gaussian quadrature formula, it is
exact when p is a polynomial of degree ≤ 2m + 1.

As seen earlier, for an initial vector w0 of the Lanczos sequence, expanded
in the eigenbasis {ui}n

i=1 of A as w0 =
∑n

i=1 βiui and we consider the discrete
(Stieltjes) integral:

∫
p(t)dμ(t) = (p(A)w0, w0) =

n∑

i=1

β2
i p(λi). (12)
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This integral is a distribution φw0 applied to p, written as (p(A)w0, w0) ≡
〈φw0 , p〉 . If we assume an idealistic situation where β2

i = 1/n for all i, then
φw0 will be exactly the distribution, the DOS function. In the sense of distribu-
tions,

〈φw0 , p〉 ≡ (p(A)w0, w0) =
n∑

i=1

β2
i p(λi) =

n∑

i=1

β2
i 〈δλi

, p〉 =
1
n

n∑

i=1

〈δλi
, p〉 ,

where δλi
is a δ-function at λi. Then, from the Gaussian quadrature rule (10),

we have: 〈φw0 , p〉 ≈ ∑m
k=1 τ2

kp(θk) =
∑m

k=1 τ2
k 〈δθk

, p〉 and

φw0 ≈
m∑

k=1

τ2
k δθk

.

Since the βi’s are not equal in practice, we will need to use several starting
vectors vl and average the result of the above formula over them. This is the
Lanczos approximation method for computing an approximate DOS [23].

If (θ(l)k , y
(l)
k ), k = 1, 2, ...,m are eigenpairs of the tridiagonal matrix Tm corre-

sponding to the starting vector vl, l = 1, . . . ,nv and τ
(l)
k is the first entry of y

(l)
k ,

then the DOS function by Lanczos approximation is given by

φ̃(t) =
1
nv

nv∑

l=1

(
m∑

k=1

(τ (l)
k )2δ(t − θ

(l)
k )

)
. (13)

The above function is a weighted spectral distribution of Tm, where τ2
k is the

weight for the corresponding θk and it approximates the spectral density of A.

Computational Cost: The most expensive step in KPM is when computing
the scalars (vl)�Tk(A)vl for l = 1, . . . ,nv, k = 0, . . . ,m. Hence, the computa-
tional cost for estimating matrix function traces by KPM will be O(nnz(A)mnv)
for sparse matrices, where nnz(A) is the number of nonzero entries of A. Simi-
larly, the most expensive part of the Lanczos Quadrature procedure is to perform
the m Lanczos steps with the different starting vectors. The computational cost
for matrix function trace estimation by SLQ will be O((nnz(A)m + nm2)nv) for
sparse matrices where there is an assumed cost for reorthogonalizing the Lanczos
vectors. As can be seen, these algorithms are inexpensive relative to methods
that require matrix factorizations such as the QR or SVD.

4 Applications of the DOS

Among the applications of the DOS that were mentioned earlier, we will discuss
two that are somewhat related. The first is a tool employed for estimating the
rank of a matrix. This is only briefly sketched as it has been discussed in details
earlier in [33,34]. The second application, is in clustering and the problem of
community detection in social graphs.
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Threshold Selection for Rank Estimation: The numerical rank of a general
matrix X ∈ R

d×n is defined with respect to a positive tolerance ε as follows:

rε = min{rank(B) : B ∈ R
d×n, ‖X − B‖2 ≤ ε}. (14)

To estimate rε we need to provide a good value for the threshold ε to be used
to determine the rank. Recently, references [33,34] proposed a method for deter-
mining this threshold ε based on the plot of DOS. The idea is to detect a gap
between the noisy and relevant eigenvalues (we are interested in the count of
these relevant eigenvalues) by locating a local minima near zero in the DOS
plot. The cutoff point is chosen to be where the derivative of the spectral den-
sity function becomes close to zero (local minimum) for the first time. Thus, the
threshold ε can be selected as

ε = min{t : φ′(t) ≥ tol, λn ≤ t ≤ λ1}, (15)

for a small tolerance, e.g., tol = −0.01 and not zero for practical reasons.

Fig. 1. Matrix of size n = 902 showing a block structure (left) and a zoom at the
pattern focusing in the first 2 blocks (center). The DOS plot zooms in on the part
between 0 and ≈ 0.7 (right).

Community Detection in Graphs: A problem of primary importance in
various scientific and engineering disciplines is to determine dense subgraphs or
communities within a given graph [21,26] Here we exploit the idea of spectral
densities to determine the number of communities in a graph.

Let W denote the adjacency graph of a given (undirected) graph and let
L = D−W be the graph Laplacian with D = diag(We) the diagonal matrix with
diagonal entries as the sums of the entries of the corresponding row in W . In the
ideal case of perfect clusters, where each cluster is a clique, the matrix L will have
an eigenvalue of zero for each block, leading to a multiple zero eigenvalue, one
for each block. By way of illustration consider left plot of Fig. 1. This represents
the sparsity pattern of a small synthetic example made up of k = 15 sparse
diagonal blocks that have a good density (about half dense) completed by some
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sparse matrix that has a lower density. The sizes of the blocks vary from 105 to
190. The right side of the figure shows a zoom on the first two blocks to provide
an illustration.

In an ideal scenario, each of the diagonal blocks is dense and there are no
elements outside of these blocks. Then, the graph Laplacian will have exactly k
zero eigenvalues where k is the number of blocks, which is 15 here. This is still
true when the matrix is block diagonal but each diagonal block is a small sparse
Laplacian, that contributes one zero eigenvalue. When we have certain off-block
diagonal entries (equivalent to noise), the zero eigenvalues are perturbed, and
we get a cluster of eigenvalues close to the origin. This is illustrated in the DOS
plot corresponding to this matrix (zoomed in), see rightmost plot of Fig. 1. If we
count the number of eigenvalues included in that cluster we will find that it is
equal to the number of blocks. It is not too difficult to devise small subroutines
that will consider the DOS curve and spot the point where the curve levels off
after descending from its peak value to the left. A short matlab script we wrote
finds the value τ = 0.136 and the number of blocks detected with the help of
spectral densities is close to the correct number of k = 15. Thus, this technique
can be used to find an effective way to estimate the number of dense subgraphs.

Fig. 2. The spectrum (Left), and the approximate DOS found by KPM (Middle), and
by SLQ for the example Si2.

Spectral densities can be used to extract a wealth of additional information.
For example, the graphs may have multi-level clustering or sub-communities
within the larger communities. Such situations are common in social networks,
document and product categorization, etc. For such matrices, the multi-level
clustering will result in a matrix with multiple clusters of eigenvalues in the DOS
curve. It is possible to identify such clusters using the DOS and count the eigen-
values within these clusters, corresponding to the number of sub-communities.

5 Numerical Examples

In this section, we present a few examples to illustrate the performances of the
Kernel polynomial and the Lanczos Quadrature methods for different problems
of estimating traces of matrix functions.
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Spectral Density. In the first experiment, to illustrate the performances of
KPM and the Lanczos Approximation for approximating the DOS using a small
example with matrix2 Si2 of size 769. Figure 2 plots the matrix spectrum (left),
and the DOS plots obtained using KPM (Middle) and SLQ (right) with degree
m = 50 and a number of samples nv = 30, respectively. The red triangular lines
in both plots represent the actual histogram (spectral density) of the matrix.
The blue circle lines are the estimated DOS. Jackson damping [23] was used for
KPM and Gaussian blurring with σ = 0.25 was used for Lanczos approximation
plot. We note that the Lanczos algorithm gives slightly more accurate results for
the same degree m compared to KPM. However,the Lanczos method is slightly
more expensive due to the orthogonalization step.

Numerical Rank Estimation. The following experiment will illustrate the
performances of the two techniques, KPM and SLQ, for estimating the numeri-
cal rank, see Fig. 3. We consider a 1961×1961 matrix named netz4504 from the
SuiteSparse collection (see footnote 2), see [10]. The matrix spectrum and the
DOS plot obtained using KPM with degree m = 50 and a number of samples
nv = 30 are given in the left plots of Fig. 3. The threshold ε (the gap) estimated
using this DOS plot was ε = 0.12. The middle figure plots the estimated approx-
imate ranks for different degrees m (top) and different number of starting vector
nv (bottom) using KPM (black solid line). Similarly, the right plots in Fig. 3
shows the estimated approximate ranks by the Lanczos approximation method
using different degrees m (or the dimension of the Krylov subspace for the Lanc-
zos method) and different number of sample vectors nv. nv = 30 in the top plot

Fig. 3. The spectrum, the DOS found by KPM, and the approximate ranks estimation
by KPM and by SLQ for the example netz4504.

2 The matrices used in the experiments can be obtained from the SuiteSparse matrix
collection: https://sparse.tamu.edu/.

https://sparse.tamu.edu/
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and m = 50 in the bottom in both cases. The average approximate rank esti-
mated over 30 sample vectors is equal to 1323.12 by KPM and by SLQ is equal
to 1325.68. The exact number of eigenvalues in the interval is 1324, (indicated
by the dash line in the plot). In this case (m = 50,nv = 30), the number of
matrix-vector multiplications required for both the rank estimator techniques is
1500.

6 Conclusion

The aim of this article, and the related presentation at HPCSE17, has been to
provide a brief overview of the applications of traces of matrix functions and
of effective related techniques for approximating them. In particular, we strived
to highlight the broad applicability and the importance of spectral densities.
These provide vital information in certain disciplines in physics and for this
reason physicists were the first to develop effective methods such as KPM for
computing them. On the other hand, the use of spectral densities, and more
generally traces of matrix functions, in other areas such as machine learning and
computational statistics, is more recent. There is no doubt that the interest in
this topic will gain in importance given the rapid progress of disciplines that
exploit large datasets.

Acknowledgments. This work was supported by NSF under grant CCF-1318597.
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Abstract. We introduce an efficient method for computing the Stekloff
eigenvalues associated with the indefinite Helmholtz equation. In general,
this eigenvalue problem requires solving the Helmholtz equation with
Dirichlet and/or Neumann boundary condition repeatedly. We propose
solving the discretized problem with Fast Fourier Transform (FFT) based
on carefully designed extensions and restrictions operators. The proposed
Fourier method, combined with proper eigensolver, results in an efficient
and easy approach for computing the Stekloff eigenvalues.

Keywords: Stekloff eigenvalues · FFT · Helmholtz equation

1 Introduction

We consider the problem of computing the Stekloff eigenvalues corresponding
to the indefinite Helmholtz equation. The efficient computation of such eigen-
values is needed in several numerical models. For example, in inverse scattering,
as discussed in Cakoni et al. (2016), these eigenvalues carry information of the
refractive index of an obstacle. To begin with, we introduce the following bound-
ary value problem:

L(α, λ; η)w :=

{
−Δw − η2w = f in Ω,

α∂w
∂n + λw = 0 on Γ = ∂Ω.

(1)

We call λ a Stekloff eigenvalue when the homogenous problem (f = 0 in (1))
has a non-trivial solution with α = 1. For details on existence and properties of
such eigenvalue problems we refer to Cakoni et al. (2016) (Sects. 2 and 4 for real
and complex η respectively), Colton and Kress (2012).

As pointed out in Cakoni et al. (2016), the efficient computation of Stekloff
eigenvalues is a challenging task. In addition, another important application of
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the techniques that we propose here is of interest in computing transmission
eigenvalues where the aim is to find the kernel of the difference of two indefinite
Stekloff operators, see Cakoni and Kress (2017). The efficient solution of such
problems, whether direct or inverse, requires fast solution of the Dirichlet prob-
lem, corresponding to L(0, 1; k(x)), and the Neumann problem, corresponding
to L(1, 0; k(x)), as defined in (1). Here, k(x) is the wave number and in case of
non homogenous problem, the data f(x) is the external force.

The difficulties associated with solving the indefinite Helmholtz equation
numerically, especially in high frequency regimes, are well known (see Brandt
and Livshits (1997), Ernst and Gander (2012)). Traditional iterative methods,
such as Krylov subspace methods or standard MultiGrid (MG) and Domain
Decomposition (DD) methods, are inefficient as discussed in Ernst and Gander
(2012).

Over the last two decades, different preconditioners and solvers for the
Helmholtz equation have been proposed. We refer to the classical works
by Brandt and Livshits (1997), and Elman et al. (2001) for MG solvers and
also to the more recent developments in Helmholtz preconditioning presented
in Gander et al. (2015), Osei-Kuffuor and Saad (2010), Lahaye and Vuik (2017)
and Sheikh et al. (2016). More recently, Engquist and Ying (2011) introduced
the so called sweeping preconditioners which were further extended by Eslaminia
and Guddati (2016) to double-sweeping preconditioners. Stolk (2013) proposed
a DD preconditioner based on special transmission conditions between subdo-
mains. Other DD methods are found in Chen and Xiang (2013), Zepeda-Núnez
and Demanet (2016).

In our focus are the computations of Stekloff eigenvalues and the techniques
which we propose here lead to efficient algorithms in many cases of practical
interest and provide preconditioners for the Helmholtz problem. More impor-
tantly, our techniques easily extend to the Maxwell’s system because they are
based on the Fourier method.

The rest of the paper is organized as follows. We introduce the Fourier
method for solving the constant coefficients boundary value problem in Sect. 2.1
(Dirichlet) and in Sect. 2.2 (Neumann). Further, in Sect. 3, we formulate the
Stekloff eigenvalue problem and show how the FFT based Helmholtz solver
can be applied. We conclude with several numerical tests on Stekloff eigenvalue
computations as well as solution of the Helmholtz equation with variable wave
number.

2 Periodic Extensions and Fourier Method

In this section, we focus on Fourier method for solving the Dirichlet problem
and the Neumann problem with constant wave number k(x) = k. Non-constant
case will also be considered in Sect. 4 as a numerical example.
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2.1 Dirichlet Boundary Conditions

Dirichlet Problem in 1D. To explain the ideas, we consider the 1D version
of (1) in the interval (0, 1) with constant wave number k:

−u′′ − k2u = f, u(0) = u(1) = 0.

After discretization with central finite difference, we obtain the following
linear system

ADu = f , AD = TD − k2h2I ∈ R
n×n, (2)

where TD = tridiag(−1, 2,−1) is a tri-diagonal matrix, u = (u1, . . . , un)t, u0 =
un+1 = 0, h = 1/(n + 1), f = h2(f1, . . . , fn)t, and fj = f(jh), uj ≈ u(jh),
j = 1, . . . n. Here and in the following, the superscript t denotes transpose of a
matrix or vector.

Let us now consider the same equation on a larger domain (0, 2) and with
periodic boundary conditions:

− v′′ − k2v = g, v(0) = v(2), v′(0) = v′(2). (3)

The finite difference discretization leads to a linear system for v =
(v1, . . . , vN )t, N = 2n + 2, which is as follows:

APv = g, AP = TP − k2h2I ∈ R
N×N . (4)

Here, e1 = (1, 0, . . . , 0)t and eN = (0, . . . , 0, 1)t are the standard Euclidean basis
vectors and TP = tridiag(−1, 2,−1)−e1e

t
N−eNet

1 is a circulant matrix. The right
hand side g = h2(g1, . . . , gN )t is a given vector in R

N depending on f , which
we specify later. The unknowns in this case are vj ≈ v(2j/N), j = 1, . . . , N .
Notice that from the periodic boundary conditions, we have vN ≈ v(0) = v(2)
and v1 ≈ v(2/N) and this is reflected in the first and the last equation in the
linear system (4).

The solution of systems with circulant matrices can be done efficiently using
the Fast version (FFT) of the Discrete Fourier Transform (DFT) (see Cooley
and Tukey (1965) for a description of FFT). The DFT is given by an operator
F : C

N → C
N represented by a matrix (denoted again with F) defined as:

Fjm = z(j−1)(m−1), z = e− 2iπ
N , with j = 1, . . . , N and m = 1, . . . , N . As is well

known, we have the DFT inversion formula:

F−1 =
1
N

F∗ =
1
N

F .

Since AP here is a circulant matrix it is diagonalized by F , see Cooley and Tukey
(1965), Golub and Van Loan (2012), and

FAP F−1 = DP = diag(dl), dl = 4 sin2 π(l − 1)
N

− k2h2, l = 1, . . . N. (5)

As a consequence of this proposition, the solution v to the problem (4) can be
obtained by

v = F−1(DP )−1Fg. (6)
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Let us now consider the special case when g in (4) corresponds to an “odd”
extension of f . That is g :=Ef defined as

C
N � g = Ef , gj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fj , j = 1, . . . , n,

0, j = n + 1,

−fN−j , j = n + 2, . . . , 2n + 1,

0, j = N.

(7)

Here, N = 2n + 2. We have the following simple result.

Proposition 1. If N = 2n + 2 and g satisfies gj = −gN−j, for j = n + 2, n +
3, . . . , 2n+1 and gn+1 = g2n+2 = 0, then the solution to (4) satisfies the relation:

vj = −vN−j , j = n + 2, . . . , 2n + 1. (8)

Proof. We note that by assumption, g is an “odd” function with respect to
the middle of the interval (0, 2). Since AD is an invertible matrix, let u satisfy
[ADu]j = gj , j = 1, . . . , n. Next, we define v = Eu ∈ C

N where E is defined in
(7) and it is immediate to verify that APv = g. Since AP is also invertible, v
must be the unique solution of APv = g. From the definition of E, we conclude
that v satisfies (8).

Based on this observation, to solve the Dirichlet problem, we can define a
linear operator B (which we will soon prove equals (AD)−1) as follows: we first
define a restriction operator

C
n � w = Rv, wj = vj , j = 1, . . . n, v ∈ R

N . (9)

We then set
Bf = RF−1(DP )−1FEf . (10)

As the next proposition shows, B provides the exact solution to problem (2).

Proposition 2. With B defined in (10) we have

B = (AD)−1, and hence, u = Bf .

Proof. We notice that R = (In, 0n,n+2) ∈ R
n×N , and E =

(In, 0n×1,−Ĩn, 0n×1)t ∈ R
N×n, where In is the n × n identity matrix and

Ĩn = (δi,n+1−j)ij . Computing the product ADR(AP )−1E then shows that:

ADR(AP )−1E = AD(I, 0)(AP )−1E = (AD, 0)(AP )−1E = (I, 0)E = I. (11)

Indeed, the identities in (11) are verified by direct calculation:

((AD, 0)(AP )−1)ij

= − 1
N

(F−1(DP )−1F)i−1,j +
2
N

(F−1(DP )−1F)i,j − 1
N

(F−1(DP )−1F)i+1,j
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=
1
N

N∑
l=1

(−z̄(i−2)(l−1) + (2 − k2h2)z̄(i−1)(l−1) − z̄i(l−1))dlz
(k−1)(j−1)

=
1
N

N∑
l=1

(2 − k2h2 − 2 cos(
2π(l − 1)

N
))dlz

(k−1)(j−i)

=
1
N

N∑
l=1

z(k−1)(j−i) = δij . (12)

This completes the proof.

Generalization to Higher Dimensions (Dirichlet Problem). We now con-
sider the Helmholtz problem L(0, 1; k), defined in (1) in d-dimensions, i.e. we
take Ω = (0, 1)d. With central finite difference discretization, we have the linear
system:

ADu = f , AD =
d∑

j=1

(
I⊗(j−1) ⊗ TD ⊗ I⊗(d−j)

)
− k2h2I⊗d ∈ R

nd×nd

. (13)

Here M⊗p := M ⊗ . . . ⊗ M︸ ︷︷ ︸
p copies

for any matrix M and TD as in (2) is the tri-diagonal

matrix.
The extension and restriction operators in higher dimensions can be written

as E⊗d and R⊗d. The “odd” extension of f is then g = E⊗df . As in the 1D
case, the linear system for the extended Helmholtz equation is:

APv = g, AP =
d∑

j=1

(
I⊗(j−1) ⊗ TP ⊗ I⊗(d−j)

)
− k2h2I⊗d ∈ R

Nd×Nd

, (14)

where TP has been defined in (4). As in the one dimensional case (5), the matrix
AP is diagonalized by the multidimensional DFT Fd = F⊗d. The multidimen-
sional version of (5) then is

FdA
P F−1

d = DP
d :=

d∑
j=1

(
I⊗(j−1) ⊗ DP ⊗ I⊗(d−j)

)
− k2h2I⊗d.

As a consequence, we obtain inversion formula similar to the one presented
in Proposition 2. To show such representation, we need the following result.

Lemma 1. Let E and R be extension and restriction operator defined in (7)
and (9) respectively. Then the following identity holds

AD = R⊗dAP E⊗d. (15)
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Proof. By using the standard properties of the tensor product, we have

R⊗dAP E⊗d = R⊗d

⎛
⎝ d∑

j=1

(
I⊗(j−1) ⊗ TP ⊗ I⊗(d−j)

)
− k2h2I⊗d

⎞
⎠ E⊗d

= R⊗d

⎛
⎝ d∑

j=1

(
E⊗(j−1) ⊗ TP E ⊗ E⊗(d−j)

)
− k2h2E⊗d

⎞
⎠

=
d∑

j=1

(
I⊗(j−1) ⊗ RTP E ⊗ I⊗(d−j)

)
− k2h2I⊗d.

It is straightforward to check that RTP E = TD. Thus, R⊗dAP E⊗d = AD.

The following theorem gives the representation of the inverse of the discretized
Dirichlet problem in the multidimensional case.

Theorem 1. The inverse of AD can be written as

(AD)−1 = R⊗d(AP )−1E⊗d, and hence, u = R⊗d(AP )−1E⊗df . (16)

Proof. Clearly, it is straight forward to see the following

ADR⊗d(AP )−1E⊗d = R⊗dAP E⊗dR⊗d(AP )−1E⊗d = I,

by the using properties of the matrix tensor product, Lemma1 and identity
RE = I.

Notice here, all the above results can be extended to rectangle (non-square)
domain without too much difference. As a conclusion, we can solve the constant
coefficient Helmholtz equation with Dirichlet boundary condition by FFT with
complexity O(n log n), where n is the problem size.

2.2 Neumann Boundary Conditions

Neumann Problem in 1D. Let us consider the following 1D Helmholtz equa-
tion with one side Neumann boundary condition in (0, 1):

− u′′ − k2u = f, u(0) = 0, u′(0) = g. (17)

After discretization with central finite difference, we have the linear system

Au = f

where

A = tridiag(−1, 2 − k2h2,−1) − (1 − 1
2
k2h2)en+1e

t
n+1 ∈ R

(n+1)×(n+1), (18)
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and u = (u1, . . . , un+1)t, h = 1/(n + 1), uj ≈ u(jh), fj = f(jh), for j =
1, . . . , n + 1, and f = (h2f1, . . . , h

2fn, 1
2h2fn+1 + hg)t.

With Fourier method for the Dirichlet problem in mind, we do “even” exten-
sion of the system (18) to get a Toeplitz system similar to (2):

Aeue = fe, Ae = tridiag(−1, 2 − k2h2,−1) ∈ R
M×M , (19)

where M = 2n + 1, ue = (u1, . . . , uM )t, and fe = (h2f1, . . . , h
2fn, h2fn+1 +

2hg, h2fn, . . . , h2f1)t. By symmetry, the solution of system (19), when restricted
on interval (0, 1), will be the same as solution of system (18). Even though the
problem size has been doubled, the extended system is Toeplitz, thus can be
solved by Fourier method from Sect. 2.

In summary, we have the following inverse of the Neumann operator, that is
the solution of:

A−1f = RnF−1(DP )−1FEoEef .

The operators involved in the definition above are (from right to left): even
extension, odd extension followed by the inverse of the periodic problem and
then restriction to Neumann problem. More precisely, for the even extension Ee

we have,

C
M � fe = [Eef ]j =

⎧⎪⎨
⎪⎩

fj , j = 1, . . . , n,

2fn+1, j = n + 1,

fM+1−j , j = n + 2, . . . ,M.

(20)

Next, for the extension as to odd functions/vectors we have:

C
2M+2 � fo = [Eof

e]j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fe
j , j = 1, . . . ,M,

0, j = M + 1,

−fe
N−j , j = M + 2, . . . , 2M + 1,

0, j = 2M + 2.

(21)

Finally, as in (5), we have the diagonal matrix DP = diag(dl) with dl =
4 sin2 π(l−1)

2M+2 − k2h2 for l = 1, . . . , 2M + 2, and the restriction Rn operator (to
Neumann problem (18)):

v ∈ R
2M+2, C

n+1 � u = Rnv, uj = vj , j = 1, . . . n + 1.

Generalization to Higher Dimensions (Neumann problem). The Fourier
method for Neumann problem can also be generalized to any dimension d in a
fashion similar to the procedure given earlier for the Dirichlet problem. Just for
illustration, we consider the following problem in 2D:⎧⎪⎨

⎪⎩
−Δu − η2u = f in Ω = (0, 1)2,
∂u
∂x = g on Γ1 = {x = 1} × (0, 1),
u = 0 on ∂Ω/Γ1.

(22)
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We first do an “even” extension of the linear system and arrive at

Aeue = F e, Ae = IM ⊗ T d
n + T d

M ⊗ In − k2h2IMn ∈ R
Mn×Mn, (23)

where T d
j = tridiag(−1, 2,−1) ∈ R

j×j for any j, ue = (u1, . . . ,uM )t, and F e =
(h2f1, . . . , h

2fn, h2fn+1 +2hg, h2fn, . . . , h2f1)t. Clearly, the restriction of ue on
Ω∪Γ1 is the same as the solution of the Neumann problem. Now, for the solution
of (23) we can apply the method we have already described in Sect. 2.1.

3 Stekloff Eigenvalue Computation with Fourier Method

3.1 Variational Formulation

Multiplying the first equation in (1) with α = 1 by v ∈ H1(Ω) and integrating
by parts, we get: ∫

Ω

∇w∇v − η2

∫
Ω

wv = −λ

∫
Γ

wv.

Define A(η) : H1(Ω) → H−1(Ω) as

〈A(η)w, v〉 := (∇w,∇v)Ω − η2(w, v)Ω ∀v ∈ H1(Ω), (24)

where (·, ·)Ω is the L2 inner product and 〈·, ·〉 is duality pairing between H−1(Ω)
and H1(Ω). The Stekloff operator, or Dirichlet-to-Neumann (DtN), S(η) can be
defined in two steps:

Firstly, for any f ∈ H1/2(Γ ), define f0 ∈ H1
0 (Ω) as the unique function

satisfying:
〈A(η)f0, v0〉 = −〈A(η)(Ef), v0〉, ∀v0 ∈ H1

0 (Ω),

where Ef is H1-bounded extension of f , e.g. harmonic extension.
Secondly, define the action of S(η) : H1/2(Γ ) → H−1/2(Γ ) as

〈S(η)f, g〉1/2 = 〈A(η)(f0 + Ef), Eg〉, ∀g ∈ H1/2(Γ ), (25)

where 〈·, ·〉1/2 is the duality pairing between H1/2(Γ ) and H−1/2(Γ ).

Lemma 2. The Eq. (1) with α = 1 has a non-trivial solution if and only if −λ
is an eigenvalue of the Stekloff operator S(η).

Proof. We prove one side of this equivalence here since the other half is similar.
Suppose u is solution to (1) with α = 1, then

〈A(η)u, v0〉 = 0, ∀v0 ∈ H1
0 (Ω).

From the above equation, we have

〈A(η)(u − EuΓ ), v0〉 = −〈A(η)EuΓ , v0〉, ∀v0 ∈ H1
0 (Ω),

where uΓ := u|Γ is the trace of u on Γ . Denote u0 := u − EuΓ . It is easy to see
that u0 ∈ H1

0 (Ω) and the following equation holds:

〈S(η)uΓ , g〉1/2 = 〈A(η)(u0 + EuΓ ), Eg〉 = 〈A(η)u,Eg〉 = −(λuΓ , g).

This shows that −λ must be the eigenvalue of S(η).
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This lemma implies that solving problem (1) is equivalent to finding the
eigenvalue for S(η) with given η. In the next section we describe an efficient
method for this task, namely the Fourier method for Stekloff eigenvalues.

3.2 Neumann-to-Dirichlet and Dirichlet-to-Neumann Operators

We start with the definition of Neumann-to-Dirichlet operator T : L2(Γ ) →
L2(Γ ). Let μ ∈ L2(Γ ) and define wμ ∈ H1(Ω) to be the solution of Neumann
problem L(1, 0; η)w = (0, μ)t. Equivalently, wμ ∈ H1(Ω) satisfies

〈A(η)wμ, v〉 = 〈μ, v〉1/2, for any v ∈ H1(Ω). (26)

Taking the trace of wμ, we can define Neumann-to-Dirichlet (NtD) operator T
as Tμ = wμ|Γ .

After discretization the Neumann problem L(1, 0; η)w = (0, μ)t with finite
differences1, we have the following linear system:[

AII AIB

ABI ABB

] [
wI

wB

]
=

[
0
µ

]
, (27)

where µ is discretized version of μ, wI and wB are approximations to solution of
(26) restricted inside Ω and on boundary Γ respectively. Notice here we order the
grids by their positions in the domain for illustration purpose. As we discussed
in Sect. 2.2, Eq. (27) can be solved efficiently with Fourier method.

The discretized NtD operator Th corresponding to the NtD operator T is

Thµ =
[
0, I

] [
AII AIB

ABI ABB

]−1 [
0
µ

]
. (28)

To discretize the Dirichlet-to-Neumann operator, we consider the Dirichlet
problem L(0, 1; η)w = (0, g)t. With analogous discretization, we have the follow-
ing linear system: [

AII AIB

0 I

] [
wI

wB

]
=

[
0
g

]
. (29)

Here g is discretization of g. Clearly, wB = g as expected and the discrete
version of (25) gives the action of Sh as

Shg = (ABB − ABIA
−1
II AIB)g. (30)

We have the following Lemma, which shows that Th is the inverse of Sh.

Lemma 3. For the operators Th and Sh defined in (28) and (30), respectively,
we have ShTh = I.

1 The discretization with piece-wise linear continuous Lagrange finite elements pro-
duces the same, albeit scaled, matrix. Thus, the consideration that follow apply to
finite element discretizations as well.
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Proof. We just need to show ShThµ = µ for any µ. This can be easily proved
by Block-LU factorization.

ShThµ = Sh

[
0, I

] [
AII AIB

ABI ABB

]−1 [
0
µ

]

= Sh

[
0, I

] ( [
I 0

ABIA
−1
II I

] [
AII AIB

0 Sh

] )−1 [
0
µ

]
= µ.

(31)

The results from the previous two sections show that we can efficiently com-
pute the Stekloff eigenvalues of small magnitude as well as large magnitude.
For example, the eigenvalues of small magnitude of Sh can be approximated by
the reciprocal of the eigenvalues of NtD operator Th. The action of Th, which
is needed repeatedly in such a procedure, can be efficiently computed by the
Fourier method applied to the solution of the Helmholtz-Neumann problem as
we have discussed earlier. For eigenvalues of the largest magnitude the same
applies, except that we need the action of Sh, which requires fast solution of the
corresponding Dirichlet problems, which we also described earlier.

4 Numerical Examples

In this section, we present two applications of the Fourier method described
in Sect. 2. In the first example, the Fourier method is utilized in computing the
Stekloff eigenvalues as discussed in Sect. 3. For the second example, given the fact
that we can compute the numerical solution of constant coefficient Helmholtz
equation efficiently, we apply such solver as preconditioner for varying efficient
problem. Both examples are implemented in MATLAB and all tests have been
performed on the same computer with dual-core 2.5 GHz CPU.

4.1 Computing Stekloff Eigenvalues

In this numerical example, we calculate the Stekloff eigenvalues corresponding
to the problem: ⎧⎪⎨

⎪⎩
−Δw − η2w = 0 in Ω = (0, 1)2,
∂w
∂n + λw = 0 on Γ1 = {x = 1} × (0, 1),
w = 0 on ∂Ω/Γ1.

(32)

As is discussed in Sect. 3, the Stekloff eigenvalues can be numerically approx-
imated by the eigenvalues of discretized DtN operator Sh in (30). To find the
eigenvalues of Sh with small magnitude, for example, we need an efficient algo-
rithm to compute the action of Th = S−1

h on a vector. As in (28), one Neumann
problem needs to be solved for computing each action. Thus, we create a function
handle that solves the Neumann boundary problem in (28) with FFT, which is
then used in MATLAB eigensolver eigs. For different η and grid size n × n, the
smallest six eigenvalues in magnitude are reported in Table 1.
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Table 1. Smallest six Stekloff eigenvalues in magnitude for different η on n × n grid
with n = 50, 100.

η λ1 λ2 λ3 λ4 λ5 λ6

n=50 n=100 n=50 n=100 n=50 n=100 n=50 n=100 n=50 n=100 n=50 n=100

1 2.994 2.993 6.210 6.205 9.397 9.378 12.588 12.542 15.795 15.707 19.028 18.876

2 2.461 2.461 5.962 5.958 9.233 9.216 12.464 12.421 15.696 15.610 18.943 18.795

4 −3.159 −3.154 4.846 4.846 8.548 8.537 11.959 11.925 15.291 15.216 18.603 18.468

8 −1.245 −1.218 3.914 3.968 4.963 4.978 9.692 9.691 13.562 13.529 17.1817 17.098

4.2 Helmholtz Equation with Varying Wave Number

We consider the Helmholtz equation with homogeneous Dirichlet boundary con-
dition and varying coefficient on domain (0, 1)2, i.e.

L(0, 1; k(x, y))u = (f(x, y), 0)t.

The external force f(x, y) is set to be constant 1. The wave number fields are
ki(x, y) = ω/ci(x, y) with constant angular frequency ω and varying velocity
fields ci(x, y) for i = 1, 2 as follows:

1. c1(x, y) = 4
3 [1 − 0.5 exp(−0.5(x − 0.5)2],

2. c2(x, y) = 4
3 [1 − 0.5 exp(−0.5(x − 0.5)2 + (y − 0.5)2)].

After discretizing the equation with central finite difference, we use GMRES
as iterative solver for the linear system (relative residual tolerance 10−3). The
preconditioner is implemented by solving the constant wave number problem
with k equaling the average value of number field over the entire domain.

To study how the preconditioning performance is depending on the magni-
tude of ki(x, y), we gradually increase ω and grid size n (in each dimension),
while keeping the ratio ω/n fixed. In fact, this is the most computationally chal-
lenging case, since the relative percentage of positive eigenvalues for the linear
system is fixed. We record the number of iteration Ni and CPU time Ti for the
preconditioned GMRES to converge in Table 2. As a special case, for ω = 6.4π,
the wave number fields ki(x, y) and resulted wave fields ui(x, y) in each case have
been shown in Fig. 1.

Table 2. Varying ω and n, GMRES iterations number and time.

ω n2 N1 T1 N2 T2

1.6π 502 4 0.068 4 0.062

3.2π 1002 5 0.074 5 0.076

6.4π 2002 6 0.12 6 0.12

12.8π 4002 13 0.60 10 0.46
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(a) wave number function k1(x, y) (b) wave simulated u1(x, y)

(c) wave number function k2(x, y) (d) wave simulated u2(x, y)

Fig. 1. Simulation results for different velocity fields.

5 Conclusions

In this paper, we proposed an efficient method for finding eigenvalues of indefi-
nite Stekloff operators. The main tool that we developed is a fast Fourier method
for solving constant coefficient Helmholtz equation with Dirichlet or Neumann
boundary condition discretized on a uniform mesh. The resulting algorithm is
efficient, transparent, and easy to implement. Our numerical experiments show
that such algorithm works also as a solver for the Helmholtz problem with
mildly varying coefficients (non-constant wave number). Another pool of impor-
tant applications will be the computation of transmission eigenvalues, where our
method has the potential to provide an efficient computational tool.
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Abstract. Two proportionality based gradient methods for the solu-
tion of large convex bound constrained quadratic programming
problems, MPRGP (Modified Proportioning with Reduced Gradient Pro-
jections) and P2GP (Proportionality-based Two-phase Gradient Projec-
tion) are presented and applied to the solution of auxiliary problems in
the inner loop of an augmented lagrangian algorithm called SMALBE
(Semi-monotonic Augmented Lagrangian for Bound and Equality con-
straints). The SMALBE algorithm is used to generate the Lagrange mul-
tipliers for the equality constraints. The performance of the algorithms
is tested on the solution of the discretized contact problems by means of
TFETI (Total Finite Element Tearing and Interconnecting).

Keywords: QP optimization · Contact problems · P2GP · MPRGP

1 Introduction

This work is focused on the solution of quadratic programming problems char-
acterized by bound constraints and linear equality constraints, i.e. problems of
the form

min f(x) := 1
2x

� Ax − x�b
s.t. Bx = 0

x ∈ Ω
(1)

where A ∈ R
n×n denotes a symmetric positive definite matrix, B ∈ R

m×n is full
rank and m < n, so KerB �= {0}, x,b ∈ R

n. The set Ω is a closed convex set
of the form

Ω = {x ∈ R
n : li ≤ xi ≤ ui, i = 1, . . . , n}.
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We admit li = −∞ and/or ui = ∞, so that Ωi can be defined by box or bound
constraints.

A number of methods have been proposed for the solution of (1), basically
based either on iterior point (see for instance [5,6] and references therein) or
active set strategies [15]. In this paper we will just consider algorithms which
belong to the latter class. More specifically, we are interested in SMALBE,
a variant of Augmented Lagrangian methods which generates approximations
for the Lagrange multipliers for the equality constraints in the outer loop and
proportionality-based gradient methods for the bound constrained minimization
of the lagrangian in the inner loop. A unique feature of SMALBE is a bound
on the number of outer iterations which is independent on the conditioning of
the constraints. Two algorithms are used for the solution of the auxiliary inner
loop problems. The first one is the MPRGP algorithm (Modified Proportioning
with Reduced Gradient Projections). A nice feature of MPRGP, which combines
conjugate gradient method with gradient projections, is the bound on the rate
of convergence in terms of the condition number of the Hessian, so that it can
solve a class of problems (1) with the spectrum of A in a given positive inter-
val in a number of iterations which is independent of n [21]. In particular, such
property is enjoyed by a class of problems (1) obtained by various discretizations
of variational inequalities that describe the equilibrium of a system of bodies in
mutual contact, so that the cost of a solution is asymptotically proportional to
n (see Dostál et al. [18,20], or [19, Chap. 11]). The second algorithm is P2GP
(Proportionality-based Two-phase Gradient Projection), which combines mono-
tonic spectral method with gradient projections and turned out to be very effi-
cient for the solution of several problems [9]. Here we briefly describe the above
algorithms and compare their performance on the solution of discretized contact
problems of elasticity.

2 The SMALBE Framework

The SMALBE algorithm [12] works with the augmented Lagrangian in the form

L(x,λ, �) =
1
2
x� Ax − x�b + x�B�λ +

�

2
‖Bx‖2,

where λ ∈ R
m is the vector of the lagrangian multipliers associated with the

linear equality constraints and � > 0 is a fixed regularization parameter. In
the inner loop, the algorithm carries out an approximate bound constrained
minimization of the augmented lagrangian with the precision controlled by a
multiple of the feasibility error and the projected gradient

gP
i (x) ≡ gP

i (x,λ, �) :=

⎧
⎨

⎩

∇Lxi
(x,λ, �) if i ∈ F(x),

min{0,∇Lxi
(x,λ, �)} if i ∈ Al(x),

max{0,∇Lxi
(x,λ, �)} if i ∈ Au(x),

where

F(x) = {i : xi ∈ (�i, ui)}, A�(x) = {i : xi = �i}, Au(x) = {i : xi = ui}.
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The minimization in the inner loop can be carried out by any convergent
algorithm. Here we use the gradient methods described in the next section. The
SMALBE algorithm reads as follows.

Algorithm 1. (SMALBE)
1: tol ≥ 0; η > 0; 1 > ϑ > 0; � > 0; M0 = M1 ∈ R; λ0 ∈ R

m; x0 ∈ R
n; k = 0;

2: while (‖gP (xk, λk, �)‖ ≤ tol and ‖Bxk‖ ≤ tol) do � Main loop
3: Find xk+1 ∈ Ω such that
4: ‖gP (xk+1, λk, �)‖ ≤ min{Mk+1‖Bxk+1‖, η} � BQP subproblem
5: λk+1 = λk + �Bxk+1

6: if (Mk+1 = Mk and L(xk+1, λk+1, �) < L(xk, λk, �) + �
2
‖Bxk+1‖) then

7: Mk+2 = ϑMk+1 � Tighten precision control
8: else
9: Mk+2 = Mk+1

10: end if
11: k = k + 1
12: end while

3 Gradient Methods Based on Proportionality Measures

In the previous section we saw that solving problem (1) by means of the
SMALBE framework leads to the solution of a series of quadratic programs
subject to bound constraints only (BQPs), i.e. problems of the form

min f̂(x)
s.t. li ≤ xi ≤ ui, i = 1, . . . , n,

where f̂(x) = L(x,λ, �).
The minimization of the Lagrangian in Step 4 does not affect λ, �, so we

shall consider in this section cost functions with only one variable.
Many gradient-based methods have been proposed which alternate steps

aimed at identifying the variables which are on the bound at the solution (iden-
tification) and steps aimed at reducing the objective function on the face deter-
mined by the current active set. The latter, in particular, are usually uncon-
strained minimization steps for the solution of an auxiliary problem of the form

min f̂(x + d)
s.t. di = 0, i ∈ A(x),

(2)

where we have defined the active set as A(x) := A�(x)∪Au(x). If the minimizer
of (2) is unfeasible, a projected line-search is usually used to recover a feasible
point on the face under analysis.

A crucial issue in the development of such kind of algorithms is to define
suitable criteria to decide how much a face is worth to be explored. Indeed



50 Z. Dostál et al.

finding an approximate solution for the auxiliary problem with an high level of
accuracy may be a computational expensive task, which ends up to be useless
if the current active set is far from being the optimal one. To overcome the
inefficiencies associated with the use of heuristic criteria such as imposing a
maximum number of consecutive minimization steps, some practical termination
condition have been proposed in literature. An effective one is the one based on
the concept of proportionality (see, e.g., Dostál [11], Dostál and Schöberl [21],
Friedlander and Mart́ınez [24], or Bielchowsky et al. [3]). An iterate xk is called
proportional if, for a suitable constant Γ > 0,

‖β(xk)‖2 ≤ Γ ϕ̃�(xk)ϕ(xk), (3)

where ϕ(x), ϕ̃�(x), and β(x) are the so-called free, reduced free, and chopped
gradients, respectively, defined component-wise as

ϕi :=

⎧
⎨

⎩

∇Lxi
if i ∈ F ,

0 if i ∈ Al,
0 if i ∈ Au,

βi :=

⎧
⎨

⎩

0 if i ∈ F ,
min{0,∇Lxi

} if i ∈ Al,
max{0,∇Lxi

} if i ∈ Au,

ϕ̃i =
{

max{ϕi,
ui−xi

α } if ϕi < 0,
min{ϕi,

ui−xi

α } if ϕi > 0 ,

where for ease of notation the dependence from x or (x,λ, �) has been omitted.
We note that x∗ is stationary for the BQP problem if and only if

‖β(x∗)‖ + ‖ϕ(x∗)‖ = 0,

moreover it is easy to show that, for each x ∈ Ω, β(x)+ϕ(x) = gP (x). The vector
ϕ coincides with the restriction of the gradient to the reduced space (the one
containing the current face), therefore it provides a measure of the optimality of
the current point with respect to the current face. The vector β instead provides
a measure of the optimality over the complementarity space. The ratio between
the two is in fact the ratio of the norms of the violation of the Karush-Kuhn-
Tucker conditions at free and active variables. It has been proved that if the
Hessian of the objective function is positive definite, disproportionality of xk

guarantees that the solution of the BQP problem does not belong to the face
determined by the active variables at xk, and thus exploration of that face is
stopped [11]. The idea of proportional iteration has been recently extended to a
more general class of linearly constrained problems, i.e. those subject to bound
constraints and a single linear constraint [9].

In the following we will briefly introduce two examples of algorithm proposed
in literature which can be ascribed to the class of proportionality and gradient-
based active-set algorithms, namely the MPRGP [21] and the P2GP [9].

3.1 The MPRGP Algorithm

The MPRGP algorithm is an active set based algorithm which explores the cur-
rent face by the conjugate gradient method as long as feasible steps are generated
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and the violation of the KKT conditions on the free set dominates that on the
active set, i.e., as long as (3) holds true. If the iteration is not proportional,
then the algorithm releases some indices from the active set using the decrease
direction −β, and if the iteration is not feasible, the algorithm proceeds along
the conjugate direction as long as possible (feasible halfstep) and then carries
out the reduced gradient step with a fixed steplength. Notice that in case of
bound constraints, it is possible to take an optimal unconstrained steplength in
order to release the active constraints in the direction −β. The steplength does
not change during the computation and its length is based on the analysis of the
decrease of the cost function along the gradient path (see, e.g., [14,16,21]).

Algorithm 2. (MPRGP)
1: x0 ∈ Ω; tol > 0; α ∈ (0, 2‖A‖−1); Γ > 0; k = 0; g = Ax0 − b; p = ϕ(x0)
2: while (‖gP (xk)‖ > tol) do � Main loop

3: if
(
‖β(xk)‖2 ≤ Γ ϕ̃�(xk)ϕ(xk)

)
then � Proportional xk

4: αcg = g�p/p�Ap, y = xk − αcgp � Trial CG step
5: αf = max{α| xk − αp ∈ Ω}
6: if (αcg ≤ αf ) then
7: xk+1 = y; g = g − αcgAg � CG step
8: β = ϕ�(y)Ap/p�Ap; p = ϕ(y) − βp
9: else � Expansion of active set

10: xk+ 1
2 = xk − αfp; g = g − αfAp � Feasible halfstep

11: xk+1 = PΩ(xk+ 1
2 − αϕ(xk+ 1

2 )) � fixed steplength expansion step
12: g = Axk+1 − b; p = ϕ(xk+1)
13: end if
14: else
15: d = β(xk); αcg = g�d/d�Ad � Proportioning step
16: αfcg = min{max{α| xk − αd ∈ Ω}, αcg},
17: xk+1 = xk − αfcgd; g = g − αfcgAd; p = ϕ(xk+1)
18: end if
19: k = k + 1
20: end while

The expansion is implemented by means of Euclidean projection PΩ , i.e.,

PΩ(x) = arg min
y∈Ω

‖y − x‖.

3.2 The P2GP Algorithm

Gradient projection methods have been widely used for the solution of problems
characterized by constraints for which the projection onto the feasible set can be
computed cheaply, as in the case of bound constraints. Apart from being easy
to implement, gradient projection methods have been shown to have nice identi-
fication properties [7], which together with their capability of adding/removing
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multiple variables to/from the active set in a single iteration, made them a nat-
ural choice for the identification of the active constraints in active-set methods.
A well-known method based on this approach is the GPCG [25] by Moré and
Toraldo, developed for strictly convex quadratic programs subject to bound on
the variables. The acronym GPCG stands for “Gradient Projection - Conjugate
Gradient”, the algorithm indeed alternates between two phases: an identifica-
tion phase, which performs GP iterations until a suitable face of the feasible
set is identified or no reasonable progress toward the solution is achieved, and
a minimization phase, which exploits the Conjugate Gradient (CG) method to
find an approximate minimizer of the objective function in the reduced space
resulting from the previous phase. The global convergence of the GPCG method
relies on the global convergence of GP with steplengths satisfying a suitable suf-
ficient decrease conditions [7]. In their recent work, di Serafino et al. [9] devel-
oped a new active-set method based on gradient projection, called the P2GP
(Proportionality-based Two-phase Gradient Projection). The P2GP can be seen
not only as an extension of the original GPCG framework to the solution of a
wider class of linearly constrained problems, but also an improvement of the orig-
inal two-phase algorithm with the introduction of spectral steplengths proposed
in literature for gradient methods [8], and the replacement of the original heuris-
tic used for the switch between minimization and identification, with a determin-
istic rule based on the concept of proportional iterate. This last improvement,
from the theoretical point of view, allowed to prove finite termination of the
algorithm for strictly convex problems, even in the case of dual degeneracy of
the solution. Anyway, apart from the improved theoretical properties, the intro-
duction of the proportionality-based stopping criterion for the termination of the
minimization phase, together with the use of Barzilai Borwein-like steplengths [2]
of Frassoldati [23] for the gradient projection, which have shown to be effective
in several application areas [1,4,10], led to better computational performances
with respect to the original GPCG algorithm in the solution of BQPs.

The algorithm for the strictly convex case is sketched in Algorithm 3.
P2GP alternates identification phases, where GP steps satisfying sufficient

decrease conditions are performed, and minimization phases, where an approx-
imate solution to the auxiliary problem is searched. Unless a point satisfying
the stopping condition is found, the identification phase proceeds either until a
promising active set Ak+1 is identified (i.e., an active set that remains fixed in
two consecutive iterations) or no reasonable progress is made in reducing the
objective function, i.e.,

f̂k − f̂k+1 ≤ η max
k̄≤l<k

(f̂ l − f̂ l+1), (4)

where η ∈ (0, 1) is a suitable constant and k̄ is the first iteration of the cur-
rent identification phase. In the minimization phase, an approximate solution to
problem (2) is searched for. In detail, the minimization of the auxiliary uncon-
strained problem is abandoned if an approximation to a stationary point is com-
puted satisfying a criterion similar to (4). The proportionality criterion (3) is
used to decide when the minimization phase has to be terminated.
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Algorithm 3. (P2GP)
1: x0 ∈ Ω; tol ≥ 0; η ∈ (0, 1); Γ > 0; k = 0;
2: conv = (‖gP (xk)‖ ≤ tol); phase1 = .true.; phase2 = .true.
3: while (∼ conv) do � Main loop
4: m = k;
5: while (phase1) do � Identification Phase
6: xk+1 = PΩ(xk − αk∇f̂k) where αk satisfies suff. decrease conditions [7];
7: conv = (‖gP (xk+1)‖ ≤ tol);
8: phase1 = (Ak+1 �= Ak) ∧ (f̂k − f̂k+1 > η max

m≤l<k
(f̂ l − f̂ l+1)) ∧ (¬ conv);

9: k = k + 1;
10: end while
11: if (conv) then
12: phase2 = .false.;
13: end if
14: while (phase2) do � Minimization Phase
15: Compute an approximate solution dk to the auxiliary problem (2);
16: xk+1 = PΩ(xk + αkdk) with αk such that f̂k+1 ≤ f̂k;
17: conv = (‖gP (xk+1)‖ ≤ tol);
18: phase2 = (‖βk+1‖ ≤ Γ ‖ϕk+1‖) ∧ (¬ conv);
19: k = k + 1;
20: end while
21: phase1 = .true.; phase2 = .true.;
22: end while

4 Numerical Results

We have implemented our algorithms in MATLAB and used them to solve sta-
tionary 2D contact problems with optional Tresca friction and 3D frictionless
contact problems. Let us recall that using the duality, the dicretized contact
problem reduces to the problem of finding the minimizer of

min Θ(λ) := 1
2λ�Fλ − λ�d

s.t. Gλ = 0,

λ ∈ Λ̃(Ψ),

where Λ̃(Ψ ) = Λ(Ψ) − λ̃, with

Λ(Ψ ) =
{

(λ�
n ,λ�

t ,λ�
E , )�

∣
∣
∣ λn ≥ 0, ‖λt,i‖ ≤ Ψi, i = 1, . . . , nt

}
.

For 3D frictinless problem and 2D problem with a given (Tresca) friction, the
feasible set is defined by bound and/or box inequality constraints as (1) (see,
e.g., [17,19]). The same type of problem arises in implementation of any time-
step of implicit scheme for transient contact problems [18]. In 3D problems with
friction, the box constraints are replaced by separable circular constraints, but
the resulting QCQP problem can be solved by similar algorithms. A detailed
formulation of contact problems and their effective discretization is out of the
scope of this article therefore we refer the reader to and [19] from which we
borrowed the notation.
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4.1 2D Beam with Material Insets and Coulomb Friction

Our first benchmark is the 2D beam problem depicted in left part of Fig. 1,
where inside the “soft” (E = 4.4 e+5, σ = 0.34) rectangular beam there are 8
stiff (E = 1.6 e+7, σ = 0.32) circular insets. The whole set of bodies is subject
to a force applied to the right side of the soft beam as shown in the figure. The
discretization of the problem leads to a problem with 2222 variables, 1024 of
which are subject either to lower bounds or to both lower and upper bounds, and
60 linear equality constraints. The difficulty of this problem lies in the need for
the iterative solver to distribute the global information across several nonlinear
interfaces.

We solved six different instances of the problem, characterized by differ-
ent choices for the boundary forces (Fx, Fy). The results obtained by solving
the problem with the SMALBE algorithm equipped either with P2GP or with
MPRGP are summarized in Table 1. In particular, the number of variables which
are on a bound (|A|), number of outer iterations and Hessian multiplications are
shown.

Fig. 1. 2D beam with insets - setting (left) and HMH stress (right)

4.2 Hertz 3D Problem Without Friction

The second benchmark is a 3D two-body contact problem depicted in Fig. 2
(left). The problem was solved by a variant of the FETI method introduced by
Farhat and Roux [22] and adapted for contact problems by Dostál et al., see,
e.g., [19]. Let us recall that FETI metodology transforms the minimization of
convex energy function suject to general inequality and equality constraints in
primal formulation to dual problem in Lagramge multipliers for “gluing” of the
subdomains and non-penetration. The equality constraints in the dual formu-
lation enable a correct reconstruction of the displacements, while the bound
constrainned multipliers for the nonpenetration are related to contact foces
(pressure).

The stiff upper body (E = 1.6 e+6, σ = 0.32, ρ = 5.08 e−9) is pressed toward
the softer lower one (E = 4.4 e+5, σ = 0.34, ρ = 1.04 e−9). The upper body has
been divided in 3 × 3 × 2 subdomains, while the lower one has been divided in
3 × 3 × 3 subdomains; each subdomain has been divided in 10 × 10 × 10 parts.
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Table 1. 2D beam with insets - 6 benchmarks, P2GP × MPGRP comparison

P2GP MPRGP

Fx Fy |A| ‖gP ‖ ‖Bx‖ out it Hess ‖gP ‖ ‖Bx‖ out it Hess

100 0 890 1.5e−9 7.0e−7 15 1298 2.7e−14 5.0e−7 19 1667

75 15 879 7.7e−9 1.3e−6 18 1701 5.3e−11 9.9e−7 16 877

75 −15 878 4.0e−9 8.3e−7 16 1427 5.9e−13 8.0e−7 19 1494

−100 0 618 3.8e−9 9.9e−7 14 1432 4.1e−13 5.2e−8 14 1321

−75 15 667 5.8e−9 1.1e−7 16 1625 1.1e−12 1.6e−7 14 1380

−75 −15 666 1.6e−9 6.7e−7 14 1396 2.5e−12 3.9e−7 14 1332

For our test we fixed the radius of the lower body at −50 which translates into a
concave surface and we chose two different radii for the upper body, namely 30
and 45. The first problem is characterized by 34854 variables, 900 of them are
subject to lower bounds, while the second one is characterized by 34914 variables,
960 of them subject to lower bounds; both problems are subject to 270 linear
equality constraints. The problem is not easy as on the solution comprises many
dual degenerate components on the boundary of the active contact interface.
The performance of both algorithms is summarized in Table 2.

4.3 3D Ball Bearing Without Friction

As last benchmark we chose an example of a real-life application, i.e the 3D multi-
body contact problem describing the interaction between the various components
of a ball bearing; in particular only a segment of the ball bearing is considered
(see the right side of Fig. 3). The problem has been solved by means of the
same variant of the FETI method used for the previous case. The discretization
leads to a QP problem characterized by 19976 variables and 120 linear equality
constraints. The active set at the optimal solution consists of 1199 variables
among the 1212 subject to a lower bound. In this case the algorithm equipped
with P2GP as inner solver took 51 iterations for the solution of the problem, with
a total amount of 849 Hessian multiplications, thus outperforming the algorithm
equipped with MPRGP which took 60 iterations and a total amount of 1188
Hessian products.

4.4 Comments

The result of the performed tests show that in some cases P2GP appears to
be competitive with MPRGP, which is a standard choice for contact problems,
and is sometimes able to outperform it. We conjecture that its more aggressive
strategy for the expansion the active set performs better in problems where the
percentage of active constraints is higher (see for example the case of the ball
bearing and the case of the 2D beam). On the other hand, the results in Table 2
indicate that MPRGP is more efficient in treating problems with many dual
degenerate components of the solution.
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Fig. 2. Herz 3D setting (left) and HMH stress (right)

Table 2. 3D Hertz problem - 2 shape configuration with 4 different pressure for each
one - P2GP × MPGRP comparison

P2GP MPRGP

r2 P |A| ‖gP ‖ ‖Bx‖ out it Hess ‖gP ‖ ‖Bx‖ out it Hess

30 1 856/900 4.1e−7 3.4e−6 78 1954 4.6e−7 3.6e−6 61 1687

10 822/900 9.4e−7 3.7e−6 25 2103 8.2e−7 3.6e−6 28 1562

100 729/900 3.3e−6 3.2e−6 17 2176 3.5e−6 3.3e−6 16 1544

1000 556/900 1.4e−6 2.2e−6 14 3461 1.3e−6 3.6e−6 12 2447

45 1 887/960 1.5e−7 5.2e−7 34 1900 1.5e−7 5.1e−7 27 1617

10 821/960 5.1e−7 5.8e−7 20 2306 4.6e−7 6.0e−7 18 1713

100 659/960 3.3e−7 6.1e−7 13 3301 1.6e−7 5.4e−7 13 2778

1000 324/960 1.1e−6 9.7e−7 13 3622 9.4e−7 8.5e−7 11 2496

Fig. 3. Ball bearing setting (left) and displacement stress (right)
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5 Conclusions

We have presented two methods for the solution of bound or box constrained con-
vex quadratic programming problems. The methods combine monotone spectral
gradient method, conjugate gradients, and gradient projections with different
steplength choices. The methods were applied to the solution of auxiliary prob-
lems in the inner loop of the augmented Lagrangian algorithm for the analysis
of 2D and 3D discretized contact problems. The experimental results confirm
effectiveness of both algorithms. It seems that a suitable combination of both
algorithms can result in still faster solver.
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Scalable TFETI algorithm for two dimensional multibody contact problems with
friction. J. Computat. Appl. Math. 235(2), 403–418 (2010)

18. Dostál, Z., Kozubek, T., Brzobohatý, T., Markopoulos, A., Vlach, O.: Scalable
TFETI with preconditioning by conjugate projector for transient frictionless con-
tact problems of elasticity. CMAME 247–248, 37–50 (2012)
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Abstract. The paper concerns development of highly parallelizable pre-
conditioners for solving nonstationary Darcy flow problems. The dis-
cretization of the solved problem is done by mixed finite elements in
space and by first order implicit Euler discretization in time. The sys-
tems with generalized saddle point matrices, which appear in each time
step of the implicit Euler method, are then solved by FGMRES method
with a block type preconditioner. Moreover, highly parallelizable, one-
level additive Schwarz method is used for preconditioning of the velocity
block. Both analysis and numerical experiment show that this applica-
tion of the Schwarz method is highly efficient for a class of flow problems
with parameters corresponding to many applications in geosciences.

1 Introduction

The fluid flow in porous media appears in many applications in geomechanics,
environmental problems, biomechanics etc. This paper is devoted to a model
of nonstationary flow in fully saturated media. The model is based on Darcy
law and an assumption of nonzero storativity - ability to increase fluid amount
in a volume with increasing fluid pressure. The storativity results from a slight
compressibility of the fluid and deformability of the solid matrix.

The discretization of the porous media flow problem is done by a mixed finite
elements in space, namely the lowest order Raviart-Thomas are used, see [10].
The Euler type systems with generalized saddle point matrices, which appear
in each time step of the implicit Euler method, are then solved by MINRES or
FGMRES method with Schur complement type preconditioner.

Numerical complexity is concentrated into solving the Euler type systems and
especially into the preconditioning of the velocity block of the preconditioner. To
this aim, highly parallelizable one-level additive Schwarz method can be used,
see the analysis in [1]. Both analysis and numerical experiments show that this
Schwarz method is highly efficient for a class of flow problems with material
parameters corresponding to many applications in geosciences.
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The content of this paper is as follows. Section 2 describes the nonstationary
Darcy problem and its discretization. The block preconditioners for the systems
arising in each time step of the implicit Euler method are described in Sect. 3.
The Schwarz method for solving the velocity block systems is then described in
Sect. 4 with analysis, which strengthens the results from [1]. Section 5 discuses
implementation on parallel computers and provides numerical experiments on a
massively parallel computer.

The main conclusion is that the combination of the block preconditioners
and the additive Schwarz method provides efficient and highly parallelizable
preconditioners for a class of nonstationary Darcy flow problems with parameters
corresponding to many applications in geosciences and other fields.

2 Nonstationary Darcy Flow Problem and Its
Discretization

The nonstationary Darcy problem for very slightly compressible liquid and
matrix can be written in the following mixed form

K−1v + ∇p = 0 in Ω,

∇ · v + cpp∂tv = f in Ω,
(1)

where Ω ⊂ Rd is the problem domain, p is the fluid pressure, v is the Darcy
velocity, K ∈ Rd×d is the permeability represented in a general anisotropic media
by a symmetric positive definite matrix and cpp is the storativity constant. Note
that in Sects. 4 and 5, we restrict ourselves to isotropic media K = kI, where
k = k(x) ≥ k0 > 0 and I is the identity matrix. The model is described in detail
e.g. in [11].

The weak formulation of the problem (1) leads to finding the pair (v, p),
v = v(x, t) and p = p(x, t), which fulfils a mixed variational identity in V ×X =
H(div, Ω) × L2(Ω), see e.g. [13].

We assume discretization in Vh × Xh with Raviart-Thomas finite elements
on squares [10] for velocity and piecewise constant functions for pressure. The
choice of a basis Vh = span {ψi} and Xh = span {φi} and induced isomorphisms
Vh ↔ V h ≡ RN , vh ↔ v, Xh ↔ Xh ≡ RZ , ph ↔ p then provides differential
algebraic system of the form

A1
d

dt
U + AU = F

A1 =
[

0 0
0 −C

]
, A =

[
M BT

B 0

]
, U =

[
v
p

]
,

where M ∈ RN×N B ∈ RZ×N and C ∈ RZ×Z are matrices defined by the
following identities

〈Mu, v〉 =
ˆ

Ω

K−1uh · vh dΩ, 〈Bv, p〉 = −
ˆ

Ω

div(vh)ph dΩ ∀vh ∈ Vh, ph ∈Xh,

(2)
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〈Cp, q〉 =
ˆ

Ω

cppphqh dΩ, ph, qh ∈ Xh, (3)

where 〈·, ·〉 denotes Euclidean inner product.
Note, that the regularity of the solution will be low when there are large

jumps in the permeability, so we restrict ourselfs only to the lowest order Raviart-
Thomas elements for discretization of velocity.

Implicit Euler method [13] uses time discretization 0 = t0 < . . . < tk < . . .

and computes the values Uk =
[

vk

pk

]
in the time steps tk, k ≥ 1 by solving the

systems with the matrices AE ,

AEUk+1 = Fk+1 +
1
τk

A1Uk, (4)

AE =
1
τk

A1 + A =
[

M BT

B − 1
τk

C

]
. (5)

The time step τk = tk+1 − tk can be variable or fixed. In the analysis of pre-
conditioners, we use the notation τk ≡ τ without a loss of generality since we
always consider solving system with matrix (5) during one specific timestep.

3 Preconditioning of the Euler Type Systems

The preconditioners for AE are based on the two by two partition shown in
(5). Since the matrix C is diagonal for the piecewise constant approximation
for pressure, we can consider the Schur complement MC = M + τBT C−1B
and either block diagonal or block triangular preconditioners with the Schur
complement block MC ,

PD =
[

MC 0
0 1

τ C

]
and PT =

[
MC BT

0 − 1
τ C

]

The block diagonal preconditioner PD is positive definite and in the ideal
case (when the problems connected with MC and C are solved exactly) can
be combined with MINRES method. The convergence is then driven by spec-
tral properties, specifically by the following localization of the spectrum of the
preconditioned matrix

σ(P−1
D AE) ⊂

〈
−1 −

√
5

2
,−1

〉
∪

〈
−1 +

√
5

2
, 1

〉
.

The proof of this localization can be found e.g. in [6,9]. Note that this result
depends only on the algebraic structure of the matrix AE and the localization
result is robust with respect to the material parameters (permeability, storativ-
ity) of the model and discretization parameters (h, τ).
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Even stronger localization of spectrum of the preconditioned system occurs
for the block triangular preconditioner,

P−1
T AE = P−1

T

[
M BT

B − 1
τ C

]
= P−1

T

[
MC BT

0 − 1
τ C

] [
I1 0

−τC−1B I2

]
.

Thus in the ideal case (exact solvers for MC and C, no influence of finite arith-
metic) it holds that

P−1
T AE =

[
I1 0

−τC−1B I2

]

and consequently σ
(
P−1

T AE

)
= {1} and P−1

T AE has minimal polynomial of

order two
(
P−1

T AE − I
)2

= 0 . The block triangular preconditioner spoils the
symmetry, which requires to use e.g. GMRES method. Two iterations of any
Krylov space method are sufficient to solve the system.

In the implementation described in Sect. 5, we use an exact solver for the
block C but inexact solver for the velocity block MC . This solver uses conjugate
gradient (CG) method with one level additive Schwarz preconditioning described
in the next section. Numerical experiments show that when the accuracy of the
inner solver is reasonably good, the outer iterations realized by flexible GMRES
behave similarly to the ideal case.

4 Additive Schwarz Method for the Velocity Block

Both preconditioners presented in the previous section require the solution of the
system with the Schur complement matrix MC . This matrix is symmetric and
positive definite and therefore can be solved by the conjugate gradient method.
This section describes one level additive Schwarz preconditioner for the Schur
complement system including the theory based on element-by-element analysis.
The results presented in this section extend the results from [1] by considering
nonzero block C and by utilising the elementwise computed maximum contrast
c−1
pp k.

The preconditioner PAS is defined via a decomposition of the finite element
space Vh = V1 + · · ·+Vm, where the subspaces Vk are defined via an overlapping
decomposition of the domain Ω, Ω̄ = Ω̄1 ∪ . . . ∪ Ω̄m. We assume that Ω̄k are
aligned with the finite element division Th, which is used for definition of Vh

(lowest order Raviart-Thomas RT(0) elements). Then

Vk = {vh ∈ Vh, vh ≡ 0 in Ω \ Ωk} .

Functions vh ∈ Vh are represented by algebraic vectors v ∈ V h ≡ RN through
isomorphism Vh ↔ V , the same isomorphism provides relations Vk ↔ V k ≡
RNk . The inclusion Vk ⊂ Vh induces restriction V → V k represented by the
matrix Rk ∈ RN×Nk . Then the preconditioner PAS to MC can be defined as

P−1
AS =

m∑
k=1

RT
k M−1

Ck
Rk, MCk

= RkMCRT
k . (6)
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The matrix MC = M + τBT C−1B is created from the matrices defined varia-
tionally in (2) and (3). For a subsequent analysis, it is important that MC can
be also defined variationally, in particular

〈MCu, v〉 = m(uh, vh) + τd(uh, vh) = a(uh, vh),

where m(uh, vh) =
´
Ω

k−1uhvh dx, we presume that k is constant on mesh ele-
ments from Th, k = kE on E ∈ Th, and d(uh, vh) is defined as follows

d(uh, vh) =
〈
BT C−1Bu, v

〉
=

〈
C−1Bu, Bv

〉

=
∑

i

c−1
ii

⎛
⎝ˆ

Ω

div(uh)ψi dx

⎞
⎠

⎛
⎝ˆ

Ω

div(vh)ψj dx

⎞
⎠

=
∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

div(uh) dx

⎞
⎠

⎛
⎝ˆ

E

div(vh) dx

⎞
⎠ .

The summation above is over E ∈ Th and we use the fact that the basis functions
ψi of the space Xh are equal to 1 on E = Ei ∈ Th and to zero on the other
elements E �= Ei. Moreover, cij = δij

´
Ei

cpp = δijcpp |E|, where δij is the
Kronecker’s symbol. As div(uh) is constant on E for RT(0) function uh,

d(uh, vh) =
∑
E

c−1
pp |E|−1

div(uh)div(vh) |E|2

=
∑
E

ˆ

E

c−1
pp div(uh)div(vh) dx

and we conclude that a(uh, vh) is a weighted H(div) inner product, which guar-
antees positive definiteness of a.

The condition number of the preconditioned matrix P−1
ASMC can be bounded

by
cond(P−1

ASMC) ≤ c0c1, (7)

see e.g. [7,8], where the constants c0, c1 come from the conditions

∀vh ∈ Vh, ∃vk ∈ Vk, vh =
m∑

k=1

vk :
m∑

k=1

a(vk, vk) ≤ c0a(vh, vh), (8)

∀vh ∈ Vh, ∀vk ∈ Vk, vh =
m∑

k=1

vk : a(vh, vh) ≤ c1

m∑
k=k0

a(vk, vk). (9)

The rest of this section is devoted to determining the values of c0, c1. It is
easy to show that c1 can be taken as maximal number of subdomains which
mutually intersect cnis.
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The estimate of c0 is more complicated and requires a suitable construction
of the decomposition of the elements v ∈ V . To derive the estimate we analyse
the decomposition provided by

v =
m∑

k=1

vk, vk = ΠRT (θkv),

where θk are functions of a decomposition of unity [18],

1 =
m∑

k=1

θk, supp(θk) = Ω̄k, 0 ≤ θk ≤ 1, ‖grad(θk)‖ ≤ cδ−1,

where δ is an overlap (usually a nonoverlapping decomposition Ω̄ = Ω̄0
1 ∪

. . . ∪ Ω̄0
m is enlarged to overlapping one by construction of subdomains Ωk ={

x ∈ Ω, dist(x, Ω0
k) ≤ δ

}
).

Our analysis will make use of the Raviart-Thomas interpolation ΠRT
h :

C(Ω) → RT0 given by

ΠRT
h v =

∑
i

⎛
⎝ 1

|ei|

ˆ

ei

v · nei
ds

⎞
⎠ ψi,

where the summation goes over the degrees of freedom (located on edges of the
elements), see [15].

We will show that
∑

k

m(vk, vk) ≤ κcnism(vh, vh), (10)

∑
k

d(vk, vk) ≤ 2cnisd(vh, vh) + 2τcnisδ
−2 max

E

{
c−1
pp kE

}
m(vh, vh) (11)

The constant κ will be determined later in the analysis.
To derive the estimate (10) we consider

∑
k

m(vk, vk) =
∑

k

∑
E⊂Ω̄k

ˆ

E

k−1
E vk · vk =

∑
k

∑
E⊂Ω̄k

k−1
E

ˆ

E

vk · vk

≤ cnis

∑
E∈Th

k−1
E

ˆ

E

∥∥ΠRT
h (θkvh)

∥∥2 ≤ cnisκ
∑
E

ˆ

E

k−1
E ‖vh‖2

≤ cnisκm(vh, vh).

Above, we used fact that ΠRT
h (θkvh) |E =

∑
i ziψ̂i where ψ̂i are local (element)

RT0 basis functions and

zi =
1

|ei|

ˆ

ei

(θkvh) ·nei
ds =

1
|ei|

ˆ

ei

θk(vh ·nei
) ds = (vh ·nei

)
1

|ei|

ˆ

ei

θk ds ≤ vh ·nei
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as vh · nei
is constant on ei for v ∈ RT0. Therefore,

ˆ

E

∥∥ΠRT
h (θkvh)

∥∥2
=

ˆ

E

∥∥∥∥∥
∑

i

ziψ̂i

∥∥∥∥∥
2

= 〈MEz, z〉 ≤ μmax(ME) ‖z‖2

≤ μmax(ME) ‖v‖2 ≤ μmax(ME)
μmin(ME)

〈MEv, v〉

= κ

ˆ

E

‖v‖2
,

where ME is the velocity mass matrix, (ME)ij =
´

E
ψ̂i · ψ̂j and κ = μmax(ME)

μmin(ME) ,
i.e. the condition number of the local mass matrix.

To prove (11), we investigate
∑

k d(vk, vk)

∑
k

d(vk, vk) =
∑

k

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

div
(
ΠRT

h (θkvh)
)

dx

⎞
⎠

2

=
∑

k

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

div(θkvh) dx

⎞
⎠

2

(12)

=
∑

k

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

θkdiv(vh) + grad(θk) · vh dx

⎞
⎠

2

≤ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

θkdiv(vh) dx

⎞
⎠

2

+ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

grad(θk) · vh dx

⎞
⎠

2

≤ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝div(vh)

ˆ

E

θk dx

⎞
⎠

2

(13)

+ 2cnis

∑
E

c−1
pp |E|−1

⎛
⎝ˆ

E

‖grad(θk)‖2
dx

⎞
⎠

⎛
⎝ˆ

E

‖vh‖2
dx

⎞
⎠

≤ 2cnis

∑
E

c−1
pp |E|−1

div(vh)2 |E|2

+ 2cnis

∑
E

c−1
pp |E|−1 (

δ−2 |E|
)
kE

⎛
⎝ˆ

E

k−1
E ‖vh‖2

dx

⎞
⎠

= 2cnisd(vh, vh) + 2cnisδ
−2 max

E

{
c−1
pp kE

}
m(vh,, vh)
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In (13) we use the fact that div(vh) is constant on elements from Th, (12)
follows from ˆ

E

div
(
ΠRT

h (θkv)
)

dx =
ˆ

E

div(θkv) dx,

i.e.

0 =
ˆ

E

div
(
θkv − ΠRT

h (θkv)
)

dx

=
ˆ

∂E

(
θkv − ΠRT

h (θkv)
)

· nds

=
∑

i

ˆ

ei

θkv · nds −
ˆ

ei

⎛
⎝ 1

|ei|

ˆ

ei

θkv · nei
ds

⎞
⎠ nei

· nds

=
∑

i

ˆ

ei

θkv · nds −
ˆ

ei

⎛
⎝ 1

|ei|

ˆ

ei

θkv · (nei
· n)nds

⎞
⎠ nei

· nds

=
∑

i

ˆ

ei

θkv · nds − (nei
· n)2

ˆ

ei

θkv · nds = 0

Note that nei
is an apriori selected normal, which is used for definition of the

degrees of freedom and n is the outer normal to the element E, nei
· n = ±1.

The whole estimate is now∑
k

a(vk, vk) ≤
(
κc1 + 2cnisτδ−2 max

E

{
c−1
pp kE

})
m(vh, vh) + 2cnisd(vh, vh)

≤ cnis max
{

2, κ + 2τδ−2 max
E

{
c−1
pp kE

}}
a(vh, vh)

and as cnis and κ are independent of physical and discretization parameters, the
efficiency and robustness of the estimate depends mostly on the term

cAS = τδ−2 max
E

{
c−1
pp kE

}
. (14)

The above results can be summarized in the following theorem.

Theorem. Let us consider the time step matrix AE from (5) with time step
τ and the Schur complement MC = M + τBT C−1B. Let PAS be the additive
Schwarz preconditioner from (6). Then

cond(P−1
ASMC) ≤ c2

nis max
{

2, κ + 2τδ−2 max
E

{
c−1
pp kE

}}
.

We remind the notation in which cnis is the maximum number of mutually over-
lapping subdomains, δ is the overlap of the decomposition, κ is maximum con-
dition number of the element mass matrices ME, cpp and kE are storativity and
permeability assumed to be constant on the finite elements and maxE

{
c−1
pp kE

}
is taken over all elements of the finite element division.
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Remark. Note that for 2D and RT(0) elements on squares 〈x01, x01 + h〉 ×
〈x02, x02 + h〉, we get

ME =
1
6
h2

⎡
⎢⎢⎣

2 0 −1 0
0 2 0 −1

−1 0 2 0
0 −1 0 2

⎤
⎥⎥⎦ , σ(ME) =

1
6
h2 {1; 3} , κ = 3.

5 Implementation and Numerical Experiments

The numerical experiments are computed with our own code available at [19]
written in C on top of PETSc [5,16]. Matrices M , MC , B and C are assembled
element by element from local contributions. All of these matrices are created and
stored in a distributed form using PETSc MatCreateAIJ operation. The system
matrix AE and the preconditioner matrix P are then formed implicitly from
blocks using PETSc MATNEST matrix type. The action of the preconditioner,
which combines separate preconditioners for individual fields, is provided by
PETSc PCFIELDSPLIT operation.

x2

p̂ = 1 Ω = 0, 1 2

v̂ · n = 0

p̂ = 0

x1

Fig. 1. Model problem

For numerical experiments we use a model problem described by (1) with
the zero volume source f ≡ 0, boundary conditions as shown in Fig. 1 and initial
condition v = 0 and p = 0 in Ω. The problem domain Ω = 〈0, 1〉2 is regularly
divided into square elements with the meshsize characterized by the parameter
n = 1/h being the number of segments on the side. Timestep τ = 0.1 is used
for all experiments. The permeability of the material is supposed to be isotropic
and elementwise constant. Values on each element are in the form k = kskr,
log k = log ks + log kr, where kr are sampled from lognormal distribution with
parameters μ = 0 and σ = 2, log k ∈ N(log ks, σ2).
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FGMRES with the block preconditioner is used to solve the outer system with
the matrix AE and conjugate gradients with Schwarz preconditioner are used to
solve the inner system corresponding to the block MC . The stopping criterion
for both outer and inner iterations is the reduction of relative unpreconditioned
residual to be equal or less than 10−6.

The Schwarz preconditioner for the matrix MC uses the PETSc PCASM
functionality. The decomposition to subdomains for the model problem corre-
sponds to the splitting of the domain into horizontal strips which for the regular
mesh and natural numbering of nodes corresponds to row-wise matrix decompo-
sition. In PETSc, the overlap is imposed by adding a proper number of matrix
rows to implicitly performed nonoverlapping row-wise matrix splitting. The pre-
conditioner uses LU decomposition for the solution of systems on subdomains.
The LU decomposition is computed during the setup of the preconditioner and
then it is repeatedly applied during the iterations. Possible generalization of this
approach to 3D problem discretized with regular mesh and numbering aligned
with domain decomposition on layers is straightforward.

Table 1 shows scalability of the implementation. We investigate “weak” scal-
ing with problem size increasing with increasing number of subdomains (proces-
sors), i.e. the size of the subproblems is kept not strongly decreasing. Note that
the subproblems arise by decomposition of AE ∈ RNt×Nt and MC ∈ RN×N . For
the problem on n×n mesh and RT(0)-P0 elements, Nt ∼ 3n2 and N ∼ 2(nsd·n)2,
nsd = 2no+n/np, no is the size of overlap, np is the number of processors. The
parameter no corresponds to number of rows of n × n mesh common to neigh-
bouring subdomains, the geometrical overlap δ is obtained by multiplication no
by the width of the row/strip. The number no is changing to keep the value δ
not strongly dependent on the mesh size (h).

The values of outer iterations in Tables 1–3 report the average number of both
outer FGMRES and inner CG iterations over one time step (averaged over the
first ten timesteps, with zero initial guess within each timestep). Division of the
number of inner iterations by number of outer iterations shows how many inner
iterations are needed for the inner systems. Note that in a class of parameters,
which we investigate there is frequently just one inner iteration per outer one.
The time in all tables express the time spent by solvers that means without
including times for matrix assembly and initialization of preconditioner. The
computations were performed on the Salomon supercomputer, see [17].

The results in Table 1 correspond to the material parameters ks = 10−15,
cpp = 10−10, ks/cpp = 10−5 and use of more efficient triangular preconditioner.
Tables 2 and 3 report number of outer/inner iterations in dependence on the
material parameters, especially on the ratio ks/cpp. It can be seen that for both
triangular preconditioner (Table 2) and diagonal preconditioner (Table 3) the
efficiency is excellent if ks/cpp ≤ 10−4. This condition is fulfilled for many appli-
cations in geomechanics and biomechanics, see Table 5.

Tables 2 and 3 illustrate the dependence of the iterative processes on material
parameters ks and cpp. The first number in each cell is the average number of
outer iterations and the second is the average number of inner iterations over one
time step both averaged over the first ten timesteps, with zero initial guess within
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Table 1. Test on scaling: mesh size n × n, number of DOFs for RT(0)-P0 elements
∼ 3n2. Material parameters ks = 10−15, cpp = 10−10, ks/cpp = 10−5.

n Processors/np Overlap/no Outer it. Inner it. Time[s]

406 2 2 2.0 2.0 3.0

574 4 2 2.0 2.0 2.8

805 8 4 2.0 2.0 2.7

1122 16 6 2.0 2.0 2.6

1550 32 8 2.0 2.0 2.5

2106 64 10 2.0 2.9 2.7

2722 128 14 2.0 4.7 3.8

3390 256 17 2.0 6.3 6.0

4800 512 21 2.0 8.5 18.3

each timestep to assess the convergence without the influence good initial guess
from previous timestep. The Table 4 shows dependence on the overlap measured
by number of rows. The overlap is increasing in the rows, decreasing in the
column. The test is done for unfavourable ratio ks/cpp = 1. For favourable ratio
ks/cpp = 1 ≤ 10−4 the dependence on the overlap is very weak.

Table 2. Dependence of number of iterations for FGMRES - PT (triangular precon-
ditioner) and CG - Schwarz on material parameters ks, σ = 2, cpp. Other parameters
n = 1000, 24 subdomains, overlap 8 are kept constant.

↓ ks\cpp → 10−3 10−4 10−5 10−6

10−7 2.1/3.7 20/9.7 2.1/21.0 2.1/78.6

10−8 2.0/2.0 2.1/3.7 2.0/9.7 2.1/21.0

10−9 2.0/2.0 2.0/2.0 2.1/3.7 2.0/9.7

10−10 2.0/2.0 2.0/2.0 2.0/2.0 2.1/3.7

10−11 2.0/2.0 2.0/2.0 2.0/2.0 2.0/2.0

Table 3. Dependence of number of iterations for FGMRES - PD (diagonal precondi-
tioner) and CG - Schwarz on material parameters ks, σ = 2, cpp. Other parameters
n = 1000, 24 subdomains, overlap 8 are kept constant.

↓ ks\cpp → 10−3 10−4 10−5 10−6

10−7 15.9/44.6 14.9/87.1 14.2/193.9 11.3/437.1

10−8 16.5/24.9 15.9/44.6 14.9/87.1 14.2/193.9

10−9 16.3/16.3 16.5/24.9 15.9/44.6 14.9/87.1

10−10 15.4/15.4 16.3/16.3 16.5/24.9 15.9/44.6

10−11 12.2/12.2 15.4/15.4 16.3/16.3 16.5/24.9
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Table 4. Dependence on the geometrical overlap δ for triangular preconditioner, kS =
10−10, cpp = 10−10, σ = 0, 24 processes.

n\overlap 4 8 16

100 2.1/43.6 2.1/31.4 2.1/24.0

200 20/63.0 2.1/47.3 2.1/34.4

400 2.1/79.2 2.0/65.9 2.1/47.8

800 2.1/101.6 2.0/82.1 2.0/65.8

1600 2.1/141.2 2.1/106.7 2.1/83.5

Table 5. Ranges of matrial parameters

k [m2] cpp [Pa−1]

Unweathered clay 10−20 − 10−16 10−8 − 10−6

Jointed rocks 10−15 − 10−11 10−10 − 10−8

Sound crystalline rocks 10−20 − 10−16 10−11 − 10−9

Water 4.4 · 10−10

6 Conclusions

This paper presents iterative technique for solving the systems arising from non-
stationary Darcy flow problems discretized by mixed finite elements in space
and implicit Euler method in time. The technique combines outer iteration by
FGMRES and block preconditioner with the velocity block solved by inner CG
iteration with Schwarz type preconditioner.

It is shown that the convergence of the outer iterations is practically inde-
pendent on the material parameters and inner iterations converge extremely fast
for the ratio of permeability to storativity small enough (ks/cpp ≤ 10−4). This
observation derived from the numerical tests is also in good agreement with our
theoretical result (14), which follows from extending the analysis provided in [1].
As another robust inner iterative method, we can mention e.g. [14].

Such suitable ratio of permeability to storativity is characteristic in many
geo applications dealing with semi-pervious and impervious materials, see the
following values provided e.g. by references [11,12]:

The presented iterative solution technique is also highly parallelizable and
numerical experiments demonstrate its scalability.

The technique can be also used in the case that time discretization is done
by higher order scheme, such as e.g. the Radau IIA method [3]. The systems
arising within time steps of Radau method can be preconditioned by block pre-
conditioner involving Euler type matrices as blocks, see [4]. The results of this
paper can be also used for solving poroelasticity problems, cf. [2–4].
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S.D., Waśniewski, J. (eds.) LSSC 2015. LNCS, vol. 9374, pp. 3–14. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26520-9 1

5. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object-oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools for Scientific Computing, pp. 163–
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Abstract. Krylov subspace methods based on short recurrences such
as CGL or MINRES represent an attractive way of solving large and
sparse systems of linear algebraic equations. Loss of orthogonality in
the underlying Lanczos process delays significantly their convergence in
finite-precision computation, whose connection to exact computation is
still not fully understood. In this paper, we exploit the idea of simultane-
ous comparison of finite-precision and exact computations for CGL and
MINRES, by taking advantage of their relationship valid also in finite-
precision arithmetic. In particular, we show that finite-precision CGL
residuals and Lanczos vectors have to be aggregated over the interme-
diate iterations to form a counterpart to vectors from the exact com-
putation. Influence of stagnation in exact MINRES computation is also
discussed. Obtained results are supported by numerical experiments.

Keywords: Krylov subspace · CGL · MINRES
Finite-precision computations · Loss of orthogonality
Delay of convergence · Lanczos vectors

1 Introduction

Large and sparse linear algebraic problems of a general form

Ax = b, A ∈ R
n×n, b ∈ R

n,

can be often solved efficiently by Krylov subspace methods. Many of these rely
mathematically on computation of an orthonormal basis of the Krylov subspaces

Kk(A, r0) ≡ span{r0, Ar0, . . . , A
k−1r0}, k = 1, 2, . . . , (1)

where r0 = b − Ax0, with x0 being the initial approximation. For a symmetric
A, such basis can be efficiently computed by short recurrences, represented by
c© Springer International Publishing AG, part of Springer Nature 2018
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the Lanczos algorithm [11]. However, in finite-precision arithmetic, the global
orthogonality and subsequently also the linear independence of the computed
Lanczos vectors v̄j is usually quickly lost, and the subspaces spanned by v̄j are
not Krylov subspaces defined by the input data. As a result, the convergence of
methods such as the Conjugate gradients implemented via the Lanczos algorithm
(CGL) [9,11] or the Minimal residual method (MINRES) [17], is significantly
delayed, and the computed entities, including approximate solutions or residu-
als, can deviate substantially from their mathematical counterparts; see [6]. For
some problems, the computation may not be affected by this delay, for example
because the desired accuracy of the approximate solution is reached before the
severe loss of orthogonality emerges (e.g., when efficient preconditioning can be
used). However, short recurrences in principle cannot guarantee the linear inde-
pendence of the computed vectors when rounding errors are present. Various
techniques for preserving orthogonality, such as the full or selective reorthogo-
nalization (see, e.g., [21,22] or [13, Sect. 4.5]) have been developed, but for large
scale problems, reorthogonalization in the Lanczos algorithm is typically unaf-
fordable since it heavily increases computational time and storage requirements.

The first significant step in explaining the behavior of the Lanczos algorithm
in finite-precision arithmetic was made in [15,16]. It was proved that the loss
of orthogonality among the computed Lanczos vectors is possible only in the
directions of eigenvectors of the matrix A (more specifically, in the directions of
Ritz vectors associated with converged Ritz values). Another fundamental step
was done in [6,7] showing that the behavior in the first k steps of the finite-
precision Lanczos computations is identical to the behavior of exact Lanczos
computations applied to a possibly larger matrix ̂A(k), whose eigenvalues lie
within tiny intervals around the eigenvalues of A; see also [13] for an overview.
In [19] the finite-precision Lanczos process in step k is described via the exact
Lanczos process applied on augmented system containing both the matrix A and
the currently computed tridiagonal Jacobi matrix. Sensitivity of Krylov subspace
to small perturbations of the input data was studied in [1,10,20]. However, these
results assume linear independence of the computed Lanczos vectors, which is
often quickly lost.

Despite the wide attention, the properties of the methods based on the Lanc-
zos process are in finite-precision computations still not fully understood. In
particular, it is not clear how the subspaces generated by the computed Lanczos
vectors differ from the exact Krylov subspaces, or how the computed approxi-
mation or residual vectors resemble their counterparts from exact computation
with the same matrix and starting vector. The approaches in [6,7,19] do not
allow direct comparison of the solution, residual, or Lanczos vectors, since they
involve extended or augmented matrices.

However, combining [6,7] together with the analysis of the convergence of
the exact CGL in [14] gives sufficient reasoning to relate A-norm of the error
in the k-th iteration of finite-precision CGL computation with (an earlier) l-th
iteration of exact computation with the same data as

‖x̄L
k − x‖A ≈ ‖xL

l − x‖A.
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Fig. 1. Illustration of the loss of orthogo-
nality and delay of convergence in CGL.

The gap k − l corresponds to the
notion of the rank-deficiency of the
computed matrix of Lanczos vectors or
to the delay of convergence, see Fig. 1.
Even though this idea has appeared in
the literature repeatedly (see, e.g., [12,
Sect. 5.9], [5, Chap. 3], [8, Sect. 6.7.4])
determination of the corresponding
iterations [k, l] is still an open question
and can be highly problem-dependent.
Furthermore, to the best of our knowl-
edge, the possibility of comparison of
other entities, especially those whose
size does not decay monotonically, has
not been addressed in literature.

In this paper, we consider A symmetric positive-definite1 and we exploit the
idea of simultaneous comparison of finite-precision and exact computations for
two related methods – CGL and MINRES. Since they form a pair of the norm-
minimizing and the Galerkin method, we take advantage of their relationships
proved in [2] to be approximately valid also in finite-precision computations.
Because some finite-precision iterations k are a redundant consequence of reap-
pearing information due to the delay of convergence, we do not consider all k. We
rather assume we are given a subsequence {kl}ml=1, m ≤ n, where kl is the finite-
precision iteration related to the exact iteration l in the sense that the minimized
quantities, i.e., A-norm of the error for CGL and residual norm for MINRES,
are comparable between the two computations.2 We show that some of the other
entities cannot be compared directly. In particular, finite-precision CGL residu-
als (as well as their norms) and Lanczos vectors have to be aggregated over the
intermediate iterations to form a counterpart to exact entities. We discuss influ-
ence of stagnation of MINRES on this comparison. Next, we discuss approaches
to determine the subsequence {kl}. Validity of obtained results is illustrated on
numerical examples with matrices with various eigenvalue distribution.

The paper is organized as follows. Section 2 summarizes the Lanczos pro-
cess and the two methods based on it - CGL and MINRES. Section 3 stud-
ies the relations between finite-precision and exact entities. Section 4 proposes
some approaches to construct the subsequence {kl}. Section 5 provides numerical
experiments. Section 6 gives the conclusions. Throughout the paper, we assume
x0 = 0, i.e., r0 = b; ‖ · ‖, ‖ · ‖A denotes the Euclidean and the energy norm
respectively; ej denotes the j-th column of the identity matrix of a suitable size.
The entities computed in finite-precision arithmetic are denoted by bar.

1 We only assume positive-definite matrices, so that the CGL iterations are well-
defined in each step, although MINRES is well-defined also for indefinite matrices.

2 The length of the subsequence, i.e., the index m, is typically determined by the
iteration in which the finite-precision computation reaches the maximum attainable
accuracy; see [12, Sect. 5.9.3].
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2 Methods Based on Lanczos Tridiagonalization

Let A ∈ R
n×n be a non-singular symmetric positive-definite matrix. Starting

from a vector v1 = b/δ1, δ1 = ‖b‖, and initializing v0 = 0, the tridiagonalization
[11] computes, for k = 1, 2, . . .,

γk = (Avk, vk);
vk+1 = Avk − γkvk − δkvk−1;
δk+1 = ‖vk+1‖, if δk+1 = 0, then stop;
vk+1 = vk+1/δk+1. (2)

Vectors v1, . . . , vk form an orthonormal basis of the Krylov subspace (1). For
simplicity of notation, we assume that the process (2) does not terminate before
the iteration n, i.e., δj+1 > 0, j = 1, . . . n−1. Denoting Vk ≡ [v1, . . . , vk] ∈ R

n×k

and

Tk ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ1 δ2
δ2 γ2 δ3

δ3
. . . . . .
. . . . . . δk

δk γk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
k×k, Tk+1,k ≡

[

Tk

eTk δk+1

]

∈ R
(k+1)×k,

we can write the matrix formulation of the Lanczos tridiagonalization as

AVk = VkTk + δk+1vk+1e
T
k = Vk+1Tk+1,k k = 1, . . . , n. (3)

Based on [18], the Eq. (3) is in finite-precision replaced by

AV̄k = V̄kT̄k + δ̄k+1v̄k+1e
T
k + F̄k = V̄k+1T̄k+1,k + F̄k, k = 1, 2, . . . ,

where F̄k is a small round-off term.
CGL and MINRES represent two methods based on the Lanczos tridiagonal-

ization (2). At the k-th step, they search for the approximation of the solution
in the subspace generated by the vectors v1, . . . , vk, i.e., xk = Vkyk for some
yk ∈ R

k. The corresponding residual has the form

rk ≡ b − Axk = b − AVkyk = Vk+1(δ1e1 − Tk+1,kyk).

The CGL method as a Galerkin method imposes the orthogonality of the resid-
uals yielding

Tky
L
k = δ1e1. (4)

MINRES minimizes the norm of the residual rk yielding

yM
k = argmin

y∈Rk

‖δ1e1 − Tk+1,ky‖. (5)
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Table 1. An overview of the decay properties of various entities in CGL and MINRES
computations with respect to (1). For more details see [4].

Method/quantity ‖xk − x‖ ‖xk − x‖A ‖rk‖ ‖rk‖A

CGL Monotone Minimized – –

MINRES Monotone Monotone Minimized –

Decay properties of various entities in CGL and MINRES are summarized in
Table 1. The residual vectors of the two methods can be related as

rMk = c2kr
L
k + s2kr

M
k−1 with s2k =

‖rMk ‖2
‖rMk−1‖2

, (6)

where sk and ck are the sine and cosine of the last Givens rotation used to
eliminate the subdiagonal entry of the tridiagonal matrix Tk+1,k. The residual
norms are related by the so-called peak-plateau relation

‖rLk‖ =
‖rMk ‖

√

1 − (‖rMk ‖/‖rMk−1‖)2
, (7)

or recursively, for p = 0, 1, . . .,

1
√

∑k+p
j=k 1/‖rLj ‖2

=
‖rMk+p‖

√

1 − (‖rMk+p‖/‖rMk−1‖)2
. (8)

For more details see [2].

3 Comparison of Finite-Precision and Exact Entities

In this section, we show how the vectors rLl and vl can be compared to their
finite-precision counterparts based on the relations between CGL and MINRES
residuals. We assume that we have a sequence {kl}ml=1 satisfying

‖xL
l − x‖A ≈ ‖x̄L

kl
− x‖A, ‖rMl ‖ ≈ ‖r̄Mkl

‖, (9)

xL
l ≈ x̄L

kl
, rMl ≈ r̄Mkl

, (10)

i.e., the quantities minimized in exact arithmetic and the corresponding vectors
are comparable to their finite-precision counterparts, in the sense that the dis-
tance between them measured in a suitable norm is small relative to their size.
The first of the assumptions is based on the observation made in [12, Sect. 5.9],
where the question of the delay of CG convergence and the associated rank defi-
ciency of the computed subspace has been addressed. Approaches to find such
a sequence are discussed in Sect. 4. We consider problems where Tk is not too
badly conditioned and thus the error due to the inexact solution of (4) and (5)
is negligible, and

r̄M,L
k = V̄k+1(‖b‖e1 − T̄k+1,kȳ

M,L
k ) − F̄kȳ

M,L
k . (11)
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Sects. 3.1–3.2 consider the case when the exact MINRES does not stagnate,
i.e., ‖rMl ‖/‖rMl−1‖ �≈ 1 and subsequently ‖r̄Mkl

‖/‖r̄Mkl−1
‖ �≈ 1. The other case is

discussed in Sect. 3.3.

3.1 CGL Residual Norms and Vectors

First, we relate the CGL residual norms. Provided that MINRES does not stag-
nate, we obtain from (9) that

‖rMl ‖
√

1 − (‖rMl ‖/‖rMl−1‖)2
≈ ‖r̄Mkl

‖
√

1 − (‖r̄Mkl
‖/‖r̄Mkl−1

‖)2
, (12)

where the error of approximation is determined by the error of approximation
in (9). Since ‖r̄Mkl

‖/‖r̄Mkl−1
‖ �≈ 1, applying the technique from [2, Theorem 4], we

see that (8) is approximately valid also in finite-precision computation, i.e.,

1
√

∑kl

j=kl−1+1 1/‖r̄Lj ‖2
≈ ‖r̄Mkl

‖
√

1 − (‖r̄Mkl
‖/‖r̄Mkl−1

‖)2
, (13)

where the error of approximation is determined by the round-off terms estab-
lished in [2] not related to (9). Combining (12) and (13) with (7), we conclude
that

‖rLl ‖ ≈ 1
√

∑kl

j=kl−1+1 1/‖r̄Lj ‖2
. (14)

In words, the CGL residual norms cannot be compared directly, but finite-
precision norms have to be aggregated over the intermediate iterations.

Now we turn to CGL residual vectors. Combining (6) and (7), we obtain

1
‖rLl ‖2 rLl =

1
‖rMl ‖2 rMl − 1

‖rMl−1‖2
rMl−1 (15)

for the exact arithmetic. Since we assume that (4) and (5) are solved with a
negligible error, the first relation in (6) becomes in finite-precision computation

c̄2kr̄
L
k = r̄Mk − s̄2kr̄

M
k−1 + F̄kȳ

M
k . (16)

Using [6], s̄k and c̄k can be expressed via the residual norms obtained from the
exact computation with the extended matrix Â in the same way as in the second
equation of (6). Due to [2, Lemmas 4 and 8], these norms are approximately
equal to those obtained by finite-precision computation. Using the relation (16)
recursively, applying the results by Cullum and Greenbaum, and omitting the
round-off terms, we obtain

kl
∑

j=kl−1+1

1
‖r̄Lj ‖2 r̄Lj ≈ 1

‖r̄Mkl
‖2 r̄Mkl

− 1
‖r̄Mkl−1

‖2 r̄Mkl−1
, (17)
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with the error of approximation determined by the round-off terms in [2]. Com-
bining (15) and (17) while taking into account assumptions (9) and (10) on
MINRES gives

1
‖rLl ‖2 rLl ≈

kl
∑

j=kl−1+1

1
‖r̄Lj ‖2 r̄Lj .

Using the relation (14) we finally get

rLl ≈ 1
∑kl

j=kl−1+1
1

‖r̄Lj ‖2

·
kl

∑

j=kl−1+1

1
‖r̄Lj ‖2 r̄Lj . (18)

Thus the residual vectors from finite-precision computation have to be aggre-
gated over the same iterations as their norms.

3.2 Lanczos Vectors

Recall that in exact arithmetic, the residual of CGL is a multiple of the subse-
quent Lanczos vector, i.e., rLl = (−1)l‖rLl ‖vl+1. In finite-precision computation,
(11) gives

r̄Lk ≈ (−1)k‖r̄Lk‖v̄k+1.

This, together with (14) and (18) yields

vl+1 ≈ (−1)l
√

∑kl

j=kl−1+1
1

‖r̄Lj ‖2

·
kl

∑

j=kl−1+1

(−1)j

‖r̄Lj ‖ v̄j+1. (19)

Thus if the exact MINRES does not stagnate, assuming (9) and (10) the exact
Lanczos vectors can be approximated by a linear combination of several consec-
utive Lanczos vectors from finite-precision computation. The derivation above
does not rely on the orthogonality among the vectors v̄kl−1+2, . . . , v̄kl+1.

3.3 Influence of Exact MINRES Stagnation

Now consider a plateau in exact MINRES convergence curve, i.e.,‖rMl ‖/‖rMl−1‖≈1
for some l. This can be caused (among others) by presence of a tight cluster of
eigenvalues in the spectrum of A. Due to (7), we simultaneously observe a peak in
the exact CGL residual norms. In this case, (12) and (13) may not hold and some
of the CGL residual norms in exact arithmetic may not have a finite-precision
counterpart of the form (14).

If the exact MINRES does not stagnate till the last iteration, we can proceed
pl iterations forward to achieve

‖rMl+pl
‖/‖rMl−1‖ � 1. (20)
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Then, the approximations (12) and (13) become valid again for r̄Mkl−1
and r̄Mkl+pl

.
Using (8), we conclude that the norms can be compared as

1
√

∑l+pl

j=l 1/‖rLj ‖2
=

‖rMl+pl
‖

√

1 − (‖rMl+pl
‖/‖rMl−1‖)2

≈
‖r̄Mkl+pl

‖
√

1 − (‖r̄Mkl+pl
‖/‖r̄Mkl−1

‖)2
≈ 1

√

∑kl+pl

j=kl−1+1 1/‖r̄Lj ‖2
, (21)

i.e., both finite-precision and exact-arithmetic norms are aggregated over con-
secutive iterations. Other ways of comparison are also possible.

4 Construction of the Subsequence {kl}m
l=1

In this section, we aim at finding the subsequence of iterations {kl}ml=1. We
discuss several possible approaches, where the first one was in a similar form
considered previously in [5,12].

Numerical Rank of the Computed Subspace. Focusing on the rank-
deficiency of the matrix V̄k of computed Lanczos vectors, the subsequence can
be determined as

krank
l ≡ max{k|num rank(V̄k) = l}.

The definition of numerical rank is generally a subtle issue and the resulting
subsequence is dependent on its choice. Denoting σ̄i the singular values of V̄k,
we use

num rank(V̄k) ≡ {#σ̄i| σ̄i > τ}. (22)

The choice of the truncation parameter τ should reflect the fact that the exact
matrix Vj has orthonormal columns, i.e., its singular values equal 1. We set in
our experiments τ = 0.1. Alternatively, numerical rank could be based, e.g., on
finding the maximum gap between the singular values of V̄k.

Explicit Fitting of the Convergence Curves. Focusing on the delay of
convergence, the subsequence can be found by explicit fitting of the quantities
minimized over the Krylov subspace. In this way we find optimal subsequence
with respect to one of the two assumptions in (9).

Fitting the CGL Convergence Curves:

kL
l = argmin

k

∣

∣‖xL
l − x‖A − ‖x̄L

k − x‖A
∣

∣ . (23)

Fitting the MINRES Convergence Curves:

kM
l = argmin

k
|‖rMl ‖ − ‖r̄Mk ‖|. (24)
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Note that the applicability of the approaches depends on the entities avail-
able. While (22) requires only the matrix V̄k, (24) requires rMl , i.e., exact compu-
tation has to be simulated. Approach (23) requires in addition the true solution
x, which is not available in practical computations. Since CGL and MINRES are
closely related, it is natural to expect that (23) and (24) provide similar subse-
quences. Fitting other entities, such as Ritz values, would theoretically also be
possible. Note that (22) gives a strictly increasing subsequence {kl}ml=1, which
is not necessary the case for the other approaches and which becomes impor-
tant especially for problems with stagnation in the exact convergence curves; see
Sect. 5.

5 Numerical Experiments

Now we compare the approaches to construction of {kl}, we discuss the assump-
tions (9) and (10), and illustrate the results obtained for the CGL residuals and
Lanczos vectors. Exact arithmetic is simulated by incorporating double reorthog-
onalization of the computed Lanczos vectors into the Lanczos process. It was
shown in [18] that such algorithm is backward stable, i.e., it represents an exact
Lanczos process for a nearby problem. The projected problems (4) and (5) are
solved by the MATLAB function mldivide. Computations are stopped before
the maximum attainable accuracy is reached. Experiments are performed in
MATLAB R2015b.

We consider several test matrices from the Harwell-Boeing Collection [3] and
the test matrix strakos introduced in [23], with parameters n = 100, λmin = 0.1,
λmax = 1000, and γ = 0.7. The properties of the matrices are summarized in
Table 2. For all matrices we choose b = [1, . . . , 1]T .

Fulfilling the Assumptions. In order to apply the results of Sect. 3, we first
need the subsequence {kl} fulfilling (9) and (10). Figure 2 shows the subsequences
constructed by approaches proposed in Sect. 4 together with the evolution of the
singular values of the matrix V̄k for problems strakos and bcsstk01. All three
subsequences follow the edge of nonzero singular values throughout the whole
computation. From the differences between {kL

l } and {kM
l } optimal with respect

to the two convergence curves, we conclude that there is no {kl} optimal in all
considered aspects. The plots in Fig. 3 (left) show the match between the exact

Table 2. Properties of the test matrices.

Problem n nnz(A) ‖A‖ κ(A)

strakos 100 100 1 × 104 1 × 105

bcsstk01 48 400 3 × 109 1.6 × 106

bcsstk04 132 3648 9.6 × 106 5.6 × 106

nos7 729 4617 9.9 × 106 4.1 × 109
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Fig. 2. The singular values of the computed matrix V̄k together with the subsequences
{kl} constructed using the three approaches from Sect. 4.

and finite-precision convergence curves shifted using {kl}. We see a nice overlap
of the convergence curves. In the right plots, we observe that

‖xL
l − x̄L

kl
‖A � ‖xL

l − x‖A and ‖rMl − r̄Mkl
‖ � ‖rMl ‖

holds for most iterations, fulfilling sufficiently the assumption (10). From the
experiments, the subsequence {kM

l } obtained by optimal fitting of the MINRES
residual norms seems to provide the best results with respect to (9) and (10)
and therefore it is used in the following experiments.

CGL Residuals and Lanczos Vectors. Now we verify (14), (18), and (19)
derived in Sect. 3. Figure 4 (left) gives the comparison between the exact and
finite-precision residual norms aggregated using (14) and shifted as in Fig. 3. In
both cases, we observe very good match between the exact and aggregated finite-
precision CGL convergence curve. For problem strakos, the approximation error
of (18) for the residual vectors depicted in Fig. 4a (right) is essentially determined
by the approximation error of the MINRES residual vectors, shown in Fig. 3a
(right). For bcsstk01, the approximation is for the CGL residuals slightly worse
than for the MINRES residuals, compare Figs. 3b and 4b. This is caused by
the fact that in several iterations MINRES almost stagnates. A similar plot for
the Lanczos vectors using (19) is provided in Fig. 5. Due to the relation (11),
the approximation error is here similar to the approximation error of the CGL
residuals.

Stagnation in MINRES Convergence. For real problems, the exact MIN-
RES residual norm may not decrease sufficiently in each iteration, and severe
oscillation may appear in the norm of the exact CGL residual.3 Figure 6 shows
results for two test problems of such type. Although (9) is satisfied, (14) does

3 In such a case, approach (24) tends to construct subsequences for which kl = kl−1

may hold for some l.
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Fig. 3. Fulfillment of the assumptions (9) and (10) for two test problems. Left: The match
between the exact convergence curve and the finite-precision convergence curve shifted
using various subsequences {kl}. Right: The match between the vectors themselves.
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Fig. 4. Left: the exact and finite-precision CGL residual norms; ‖rkl‖agr denotes the
right-hand side of (14). Right: relative difference between the exact and aggregated
finite-precision residuals; ragrkl

denotes the right-hand side of (18).

Fig. 5. Difference between the exact and aggregated finite-precision Lanczos vectors;
vagr
kl

denotes the right-hand side of (19).
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Fig. 6. CGL residuals compared as in (14) and (21) (plotted against l+pl), respectively.
Stagnation tolerance η is set to 0.01 (bcsstk04) and 0.002 (nos7).

not hold, see Fig. 6 (left). In order to apply the alternative formula derived in
Sect. 3.3, we need to detect iterations with stagnation. Based on [2, Theorem 4],
we suggest the criterion

1 − (‖rMl ‖/‖rMl−1‖)2 < η, (25)

with η much smaller than the relative approximation error
∣

∣‖rMl ‖ − ‖r̄Mkl
‖∣

∣ /‖rMl ‖.
We proceed as follows. If the stagnation criterion (25) is satisfied, we substitute
rMl by rMl+1 and continue until we get sufficient decrease (20). Both sides of (21)
are then plotted against l + pl. We use every residual norm only once, i.e., in
the next step of comparison we start with lnew ← l + pl + 1. The larger the
value η, the more iterations are aggregated and the sparser plots we get. Results
obtained using this aggregation scheme are shown in Fig. 6 (right).

6 Conclusion

We have demonstrated that in many cases quantities minimized in exact
MINRES and CGL computation can be compared directly to their selected
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finite-precision counterparts for the same linear algebraic problem. We have pro-
posed three approaches for determination of the subsequence of relevant finite-
precision iterations – based on the numerical rank of the computed Lanczos
matrix or on optimal fitting of the convergence curves. We have shown that
entities whose size does not decay monotonically can not be compared directly.
However, we have derived formulas relating the exact CGL residuals (and their
norms) and the exact Lanczos vectors to vectors obtained in the finite-precision
aggregated over the intermediate iterations. We have explained limitations of
this approach for problems, where the exact MINRES method (nearly) stag-
nates and proposed an alternative way of comparison based on more general
aggregation scheme. The results have been supported by experiments on stan-
dard test problems.
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Abstract. Cranial orthoses are used to correct an abnormal children
head shape, and such they have to be designed individually. Customiza-
tion of those orthoses is currently fully manual task. A software tool
should make this process semi-automatic with only small intervention
from the user and speed up the whole process. In the future, this tool
will be part of the process chain from 3D scanning of the patient head
to the 3D printing of the final product. This will allow to produce the
orthosis anywhere, without necessity to have expensive devices on one
place. For high quality of 3D printing, 3D computer models with high-
resolution meshes must be used. We have started development of our tool
by rapid testing of methodology. For this purpose we used open source
software Blender. Although Blender’s functions we used are more robust,
they are also unnecessary computationally more expensive. For this rea-
son we have implemented the necessary transformation functions using
radial basis functions (RBF) which can be easily modified to include
rigid body movements.

Keywords: Cranial orthosis · Software tool · Blender
Radial basis function · Rigid parts

1 Introduction

Treatment of skull deformities of children by cranial orthosis, see Fig. 1, has
been adopted by pediatricians and has been increasingly used since it was first
documented in 1979, by [3]. Orthosis could be used to fix positional skull deformi-
ties such as plagiocephaly, brachycephaly and scaphocephaly, see Fig. 2. These
asymmetric head shapes are caused by external forces applied to an infant’s
malleable skull during prenatal/postnatal development or at birth (e.g. multiple-
birth infants, sleeping position or premature birth). Majority of skull deformities
present at birth improve spontaneously approximately six weeks after the deliv-
ery. Therefore, the most important deformities are those that develop throughout
the first months of child’s life.

The number of cranial deformities has increased considerably since interna-
tional efforts of pediatricians recommended the sleeping supine position as a
strategy to reduce sudden death syndrome of the newborns. Keeping infant too
long in one position (in car seats, baby carriers and other accessories) has also
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 88–100, 2018.
https://doi.org/10.1007/978-3-319-97136-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97136-0_7&domain=pdf
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helped to decrease the time children remain in the prone positions, but on the
other hand increases the number of children who can develop cranial deformities.
More information can be found in [9,10].

Fig. 1. Example of the cranial orthosis.

Fig. 2. Examples of plagiocephaly, brachycephaly and scaphocephaly.

When manufactured, every orthosis has to be designed and customized indi-
vidually, which is currently a fully manual task. Our software tool, which we
have developed, requires only small intervention from a medical technician. This
speeds up the orthosis production and enables individual parts of the process
from 3D scanning to 3D printing to be held anywhere in the world without
expensive devices on one place.

To manufacture cranial orthosis by the method of 3D printing, 3D computer
models with high-resolution meshes must be used to achieve a product of high
quality. To be able to modify the 3D models, large system of linear equations
must be solved. This system grows enormously with the size of the used 3D
models which requires the use of efficient and fast solvers.
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For purpose of rapid prototyping and to test proposed methodology for mod-
ification of 3D models of cranial orthosis based on mesh morphing we have used
open source 3D graphics and animation software Blender. Our first implemen-
tation of the tool was based on modification and enhancement of Blender’s two
specific modifiers, MeshDeform and ShrinkWrap. Existing methods and func-
tions implemented in MeshDeform were parallelized to improve their perfor-
mance. However, even parallel version of the MeshDeform did not provide sat-
isfactory performance, and we decided to abandon the functionality of MeshDe-
form and decided to implement our own transformation procedure using Radial
Basis Function (RBF).

RBFs have become a well-established tool to interpolate scattered data. They
are used as a transformation functions to interpolate the displacements of the
boundary nodes of the mesh to the inner domain. The method requires solving
a relatively small system of equations. But the relativity is caused by comparing
the number of boundary nodes to the whole mesh. With huge meshes even
the boundary becomes large. The implementation of the method is quite simple,
even for the 3D applications, because no grid-connectivity information is needed.
Parallelization of the concept is also straightforward.

2 Cranial Orthosis Model

During the customization of the generic cranial orthosis, the model is modified
to individual patient based on idealized 3D scan of the head, see Fig. 3. This
idealized scan is based on the original deformed scan, which is transformed to be
as close to ideal head shape as possible. The transformation has to meet certain
rules. For example, the circumference of the head can change by maximally 2–
3 cm (according the age), the width of the head can not change, the head has to
be symmetric etc. This transformation is also done fully manually by technician
in CAD like software and it is planned to be automatized. The scan of head is
cropped afterwards by outlines specified by the medical technician.

The model itself is composed of two parts: a helmet and a locking mechanism,
see Fig. 4. Each part is represented by high-resolution mesh.

Fig. 3. Input data: original and cropped 3D scan of patient head.
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(a) Front view of the model. (b) Side view of the model

(c) Rigid part (the locking mechanism)
from the front.

(d) Rigid part (the locking mechanism)
from the side.

Fig. 4. Input data: cranial orthosis model.

Beside that, we also need auxiliary meshes, so-called cages, see Fig. 5 which
purpose is to serve as control points for computing RBF (main cage) and to
compute rigid body movement of the locking mechanism (the secondary cage).

The goal of the transformation is a non-rigid deformation of the orthosis body
to fit the cropped scan and a rigid transformation of the locking mechanism to
its specified position. The locking mechanism can only translate and rotate to
preserve its functionality.

3 Morphing Algorithm

At first, we used modification and enhancement of Blender for rapid testing of
the proposed methodology. We bound the model mesh with the control cage
using MeshDeform modifier, then we shrank the control cage to the scans by
Shrinkwrap modifier (the function is based on finding closest point on surface
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(a) The main cage. (b) The main cage with the
model.

(c) The secondary cage with
the locking mechanism.

Fig. 5. Input data: cages.

with given offset). MeshDeform modifier automatically deforms the model mesh
according to the cage deformation, based on [5]. Since this step is computation-
ally extensive MeshDeform modifier was parallelized using MPI technology to
improve its speed and to allow handling of large data sets.

Although, parallel version of the MeshDeform modifier gives good results, it
is still computationally extensive and we have replaced it completely by transfor-
mation using radial basis function (RBF), which is computationally less expen-
sive. Transformation by RBF also allows easy incorporation of the rigid parts,
which MeshDeform modifier cannot implicitly do.

The final version of the algorithm can be described as follows:

1. Read input Data.
2. Shrink main cage on cropped scan of the head.
3. Project rigid cage to main cage, find principal axes.
4. Identify local rigid body movement from shrunk and original principal axes.
5. Compute main elastic transformation based on RBF with rigid body move-

ment.
6. Transform given parts.
7. Save results.

Graphical representation of the algorithm in form of simplified example is
depicted in Fig. 6.

Fig. 6. Simplified example; from left to right - input data, projected rigid cage on the
main cage before shrink, Shrunk cages on the scan of the head with principal axes of
the locking mechanism, final result
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4 Radial Basis Function

Basic principle of RBF could be described in such a way that we are looking
for a function ϕ : R3 → R

3 that exactly interpolates the displacement uj ∈ R
3

of given control points xj ∈ R
3, j = 1, . . . ,m and smoothly interpolates this

displacement into the mesh. RBF are well known to be suitable for solving this
type of problem [2]. The displacement function is then represented as a linear
combination of polynomial corrections pi and a linear combination of radially
symmetric kernels ρxj

(x) = ρ(‖x − xj‖R3) located at centers xj , independent for
each dimension l = 1, 2, 3:

ϕl(x) =
np∑

i=1

βl,ipi(x) +
m∑

j=1

θl,jρxj
(x),

where np is the dimension of used polynomials. We choose linear, thus np = 4.
The coefficients βl ∈ R

np and θl ∈ R
m are defined by

(
K B�

B 0

)(
θl
βl

)
=

(
ul

0

)
, (1)

where
K := (ρ(‖xj − xk‖R3))j,k=1,...,m ∈ R

m×m,

B := (pi(xk)) i=1,...,np
k=1,...,m

∈ R
np×m

and
ul := (u1,l, . . . , uj,l) ∈ R

m.

The choice of the kernel function ρ(r) has a significant influence on the result of
the deformation. We use triharmonic [12]

ρ(r) = r3

or thin plate spline (TPS) [7]

ρ(r) :=
Γ (3/2 − q)

22qπ3/2(q − 1)!
r2q−3.

To be able to handle rigid transformation, we incorporated techniques from
[6], where certain parts of image are handled as rigid.

Lets have n rigid objects with predefined linear transformations denoted by
matrices Lq ∈ R

3×np , q = 1, . . . , n. Instead of discrete distance transformations
used in image processing we compute distance between given point and closest
point of the mesh using octree-based spatial algorithm, which can search the
mesh to quickly locate the point on the mesh face [11]. D0(x) represents the
distance from a point x to the closest object and Dq(x), q = 1, . . . , n to q-th
object. These functions ensure that the non-linear part of the transformation
and the linear transformations Lq, q �= r tend to zero as we move towards the
r-th rigid object.
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The coefficients βl for polynomial corrections are replaced by weighted sum
of the individual object linear transformations

L(x) =
n∑

q=1

wq(x)Lq,

where

wq(x) =
vq(x)∑n
r=1 vr(x)

, vq(x) =
1

Dq(x)µ

The kernels are also weighted

ρ̃xj
(x) = |D0(x)| |D0(xj)| ρxj

(x).

Thus we get transformation function

ϕl(x) =
np∑

i=1

L(x)pi(x) +
m∑

j=1

θl,j ρ̃xj
(x),

and Eq. (1) can be rewritten as

Kθl + T = ul, l = 1, 2, 3,

where

T =

⎛

⎜⎜⎜⎝

p(x1)TL(x1)T

p(x2)TL(x2)T
...

p(xm)TL(xm)T

⎞

⎟⎟⎟⎠ .

Linear transformation matrix Lq consists of 12 coefficients, and we need 4
points in space to determine them. The easy way is to take these points from

Fig. 7. Simplified 2D example.
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principal axes of the rigid cage, Principal axes are obtained through the principal
component analysis (PCA). PCA is a statistical method used to estimate the
necessary information from the measured data [4,8]. We are able to determine
the axes through the use of eigenvalues and eigenvectors of the covariance matrix
consisting of a small group of neighboring points.

In Fig. 7 we show the simplified 2D example of rigid object transformation
as a part of a more complex mesh. The cage points are marked by circles and
the rigid object is marked by square.

5 Implementation

For our implementation we use the VTK library to work with 3D geometry and
mesh models. To solve large systems of linear equations we use the Intel MKL
library. This library offers direct solvers and it is optimized for high performance.

Beside the time necessary to obtain the solution of the unknowns from the lin-
ear system of equations in (1), another time demanding operation in the design-
ing process is the transformation of the orthosis model to the final shape. The
model consists of millions of polygons, therefore to spatially transform each of
them we have parallelized the operation by utilizing OpenMP technology.

In the following we provide the pseudo code of the whole designing process.
It goes as such:

1. Read mesh files (Wavefront .obj) - see Figs. 4 and 5.
(a) the outer part of the main cage for helmet.
(b) the inner part of the main cage for helmet.
(c) the secondary cage for the rigid part.
(d) the model of the helmet.
(e) the model of the rigid part.
(f) the model of the patient’s head.

2. Shrink cages.
(a) shrink the outer part of the main cage (1a) to the head (1f) and offset it.
(b) shrink the inner part of the main cage (1b) to the head (1f).
(c) shrink the cage of the rigid part (1c) to the inner part of the original main

cage (1b).
(d) shrink the cage of the rigid part (1c) to the shrunk inner part of the main

cage (2b).
3 Merge cages.

(a) merge inner (1b) and outer (1a) part of the original main cage.
(b) merge inner (2b) and outer (2a) part of the shrunk main cage.

4. Estimate the linear transformation of the rigid part between (2c) and (2d).
(a) compute the coordination system of the (2c) using PCA.
(b) compute the coordination system of the (2d) using PCA.
(c) estimate the linear transformation from the solution of the problem

Ax = b which is based on the results of step (4a) and (4b).
5. Compute main elastic transformation based on RBF with rigid body move-

ment.
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(a) utilize the above results to assemble another Ax = b problem, detailed
description is given in Sect. 4.

(b) obtain solution by applying direct solver for dense matrices (Intel MKL).
6. Transform model of the orthosis (1d) and (1e).

(a) utilize solution x from (5b), detailed description is given in Sect. 4.
7. Save results to the OBJ files.

6 Results

To establish performance of our implementation we have performed measure-
ments focusing on algorithm speed and its possible speed-up by utilizing
OpenMP framework on multiple cores. We have also measured computational
demands of the algorithm based on the model size.

For all the tests, configuration of the RBF and the solver was as follows:

– Thin plate spline (TPS) has been used as a kernel function ρ(r), see Sect. 4.
– Bunch-Kaufman factorization of a symmetric matrix using packed storage

has been used as a solver.

6.1 Algorithm Speed and Possible Speed-Up by OpenMP
on Multiple CPU Cores

In Table 1 we provide time measurements of different parts of the implemented
algorithm. As can be seen, the most time consuming part is the transformation
of the model to the desired shape and size. Fortunately, this step can be easily
parallelized and more computational resources can be used. Effect of such par-
allelization is documented in Fig. 8. The problem description that specifies this
particular measurement is following:

– Number of vertices from step (3a) of pseudocode: 5452
– Number of vertices from step (3b) of pseudocode: 5452
– Number of vertices from step (1d) of pseudocode: 612546
– Number of vertices from step (1e) of pesudocode: 4818
– System size (size of A from step (5)): 5452 × 5452

Table 1. Computation times within different phases of the algorithm while utilizing
OpenMP on 1 to 24 CPU cores

CPU cores [-] 1 2 4 8 16 24

Shrink [s] (2) 0.80 0.75 0.73 0.72 0.73 0.72

Prepare [s] (3)–(4) 85.36 46.44 23.32 12.30 7.96 5.63

Solve [s] (5) 3.94 2.65 2.18 1.96 1.88 1.88

Transform [s] (6) 248.07 124.19 62.29 32.56 15.75 10.87

Total [s] (2)–(6) 338.16 174.03 88.51 47.54 26.33 19.09
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Fig. 8. Total time of the algorithm while utilizing increasing number of CPU cores

Table 2. Comparison of computation times for different sizes of the model

Model size [vertices] (1d) 243897 494826 1033902

Shrink [s] (2) 0.24 0.72 2.61

Prepare [s] (3)–(4) 1.65 4.83 18.54

Solve [s] (5) 0.44 1.89 10.19

Transform [s] (6) 2.76 8.79 38.91

Total [s] (2)–(6) 5.09 16.23 70.25

Fig. 9. Total computation time of the algorithm for different sizes of the model
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6.2 Computation Times for Different Sizes of the Model

To evaluate algorithm behavior on different sizes of the problem we have tested
it on three different models, see Table 2. Within the test, all available resources
at computing nodes have been used.

For tests we have always used one node of Salomon supercomputer [1] where
each node is equipped with powerful x86-64 computer consisting of 24 cores (2
x Intel Xeon E5-2680v3, 2.5 GHz, 12 cores) and 128 GB RAM.

Total computation times of the algorithm obtained on the three different
sizes of the model are well depicted in Fig. 9. The largest model fitting to the
desired size and shape of the head is shown in Fig. 10. This particular model also
fulfills the required quality demands for the 3D print, which is about 1 000 000
vertices.

(a) Transfomed model with the cage and
the scan from the front.

(b) Transfomed model with the scan
from the front.

(c) Transfomed model with the scan
from the side.

(d) Transfomed locking mechanism with
the scan from the side.

Fig. 10. Transformed model of the cranial orthosis to specific size and shape of the
head
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7 Conclusion

We have provided suitable method for morphing of a complex 3D model of a
cranial orthosis. Method is based on Radial Basis Functions (RBFs) and it can
adjust the size and shape of the orthosis from the general one to the customized
one based on the scan of the patient’s head. The method can perform non-rigid
transformation of the orthosis together with rigid transformation of its specific
part that has to preserve the size and the shape for its proper functionality.
Our method can therefore provide virtual designing process of the orthosis to
specific patient’s needs without the necessity to create any physical prototypes
that would need to be manually adjusted. Our method has been also speeded
up by OpenMP framework and it can efficiently utilize available resources of a
computer.
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Abstract. In this paper parallel implementation of Sparse 3D
Transform-Domain Collaborative filter (BM3D) on the Intel Xeon Phi
architecture is presented. Efficiency of the implementation in terms
of speedup compared to serial implementation of the filter is demon-
strated on denoising of rendered images. We also provide comparison
with another parallel CPU version and show that ours performs better.

Using the state-of-the-art image filters such as BM3D offers power-
ful denoising capability in the area of image filtering. To achieve the
highest possible quality of the result, the filter has to perform multiple
demanding tasks over a single image. Effective implementation of the
filter is therefore very important. This is also the case, when filtering is
used for image rendering. Rendering times can be significantly decreased
by application of powerful time efficient denoising filters. Unfortunately
the existing serial implementation of the BM3D filter is time consuming.
In this paper we provide efficient parallel implementation of the BM3D
filter, and we apply it as a noise reduction technique to the rendered
images that reduces the rendering times. We also provide an optimized
version of the filter for the Intel Xeon Phi and Intel Xeon architecture.

Keywords: Image denoising · Intel Xeon Phi · Blender cycles
Rendering · Collaborative filtering · High performance computing

1 Introduction

There are plenty of areas where advanced image filtering methods can be
employed. They are extensively used in medical imaging, computer vision, or
they can be effectively applied in the area of image rendering. Here, very often,
path tracing algorithms utilizing the Monte Carlo (MC) method are used [9].
Based on the statistical approach, such rendering systems trace each ray of the
light in the scene and calculate its effect on an individual object based on the
environmental and material parameters. The results of such renderers bring high
level of realism. This is unfortunately paid back by long rendering times. On the
other hand, using only a small amount of rendered samples per pixel can reduce
the time but also incorporates a high level of noise in the image. To reduce the
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 101–114, 2018.
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rendering times while keeping the photo realistic quality, utilization of the image
denoising methods has been studied [1,5].

The computationally extensive tasks are usually solved on powerful work-
stations, or they can use the computational power of supercomputers. Image
rendering is one of the areas that generates high computational load. Utilization
of supercomputers therefore becomes an interesting idea.

In our contribution, we concentrate on the state-of-the-art image denois-
ing BM3D method and customize it for HPC or multi-core environment. The
method has been published in [3] and is one of the best in the area of image
denoising [7]. We use the color variant of the method, which has been presented
in [2]. Since the method is computationally demanding, its practical potential
has been lower. For this reason, we provide its effective parallel implementation.
We present implementation that suits two different computer architectures, Intel
Xeon and Intel Xeon Phi. Our main focus is put on Intel Xeon Phi with their
many integrated core (MIC) architecture. It is nowadays extensively used in
supercomputing centres worldwide, apart from the typical CPU architecture.
We provide comparison of our parallel version of the filter running on the two
architectures with the sequential version of the filter [2]. We also compare our
implementation with different parallel implementation from Lebrun [8] that uti-
lizes OpenMP and runs on CPU. We present results in terms of total rendering
and filtering times, and we also provide results showing increasing improve-
ment by different optimizations. We also show the positive effect of the filter
on the reduction of the rendering time while conserving the final image qual-
ity. It is important to mention that we have elaborated the method within our
own developed rendering concept called CyclesPhi that can utilize the power of
supercomputers, and we make it available within the open-source 3D creation
Blender suite.

2 Previous Work

Large amount of algorithms has been studied by researchers in terms of noise
reduction in rendering methods based on Monte Carlo. It is possible to divide
the algorithms into those trying to modify sampling of the renderer and those
using filtering techniques to decrease the residual noise of the renderer.

The recent filtering techniques within the Monte Carlo based rendering sys-
tems propose, for example, the iterative approach as in [10]. Here, the authors
use a two-step iterative process. First, for the initially rendered image with low
samples they use a set of filters in every pixel and select the filter that minimizes
the pixel error in terms of mean square error (MSE). Second, for the filter selec-
tion they additionally increase the pixel samples based on the filter selection and
re-render the image and proceed again through first step. The authors are using
discrete set of simple Gaussian filters, which need appropriate amount of sam-
ples/pixel (32 samples/pixel used) to work effectively and to obtain satisfactory
results.
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Another filtering approach presented in [6] considers utilization of the
advanced filtering methods in the concept that is primarily intended as a post-
processing filtering step. It utilizes the BM3D method as a filter. The authors
provide a multilevel denoising algorithm, which first estimates the noise level
locally from the close neighbourhood around each image pixel. For such a noise
map they reconstruct a histogram of noise levels. Histogram is then divided to
several levels defined by the user. To do this, cumulative distribution function
(CDF) of the noise map is used. Each discrete level is characterized with the
value of standard deviation. For every value of standard deviation filtering is
provided. Resulting images are then combined to compute the final image. The
provided concept does not depend on used filter, but it performs best with the
BM3D method. The authors use the original Matlab C/C++ MEX implemen-
tation of BM3D method provided by Dabov et al. in [2,3]. This version does
not leverage any parallel programming. Although in context of total rendering
time of a single image its runtime is fast, in context of image filtering of larger
image series it is slow. This version also can not utilize a specific hardware such
as GPU or MIC. In our contribution we provide an optimized parallel version of
the color BM3D filter for CPU and MIC architecture.

Concerning the BM3D filter and its available parallel implementations that
can serve for general purpose, meaning also for rendering, we have found just
two of them [8,11]. The one from Lebrun utilizes multi-core CPUs while the
Sarjanoja et al. tackle GPUs. As for the implementation of Sarjanoja et al., they
perform better than original Dabov’s single threaded version only if they use
the so called modified profile. This modified profile unfortunately brings lower
filtering quality than the original parameters [4] of the method. Sometimes the
difference is negligible sometimes it is not. Within the original profile, beside the
lower speed they also run out the memory while filtering UHD (3840 × 2160)
images. An odd thing, which we find in their contribution, is that their testing
of Lebrun’s parallel version performs worse than the original single threaded
version of Dabov’s. This is completely opposite to the findings one would expect
and it is also opposite to our findings we provide in our contribution within
Sect. 7.

3 BM3D Filtering Method

Block-matching and the 3D collaborative filtering method operate over the image
trying to minimize the amount of noise based on sparsity of similar image blocks.
The filtering method is general with respect to the type of attenuated noise [3],
but for ease of explanation the noise is assumed as Additive White Gaussian
Noise (AWGN). This can be formulated by the following equation

z(x) = y(x) + η(x), (1)

where z stands for the evaluated image, y is the noiseless image and η is the
additive zero-mean Gaussian noise. Variable x stands for the pixel coordinate
within the image.
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The detailed description of the BM3D method is covered in [3]. The color
version of the method is presented in [2]. Here we summarize just the main
aspects of the method and accentuate the most computationally extensive parts
of the algorithm.

BM3D is a two-step method. In the first step, image is divided into several
overlapping areas where similar smaller parts of the image called patches are
searched for. Searching for the similar patches is done in a sparse domain pro-
vided by wavelet transform of each patch. The found similar patches are stacked
in the 3D array and the whole stack is transformed from image to sparse repre-
sentation by 3D transform (specific combination of transform matrices providing
the 3D transform is stated in [3]). Here the filtering operation in the form of the
hard thresholding is performed. After this the stack is transformed back to the
image domain. This can be symbolically written as

Y = T−1
3D (Υ (T3DZ)), (2)

where Y is the stack of filtered patches, T3D is specific 3D transform, Υ represent
the filtering operation and Z is the stack of noisy image patches. This is the
core of the method and due to the searching of the similar patches in sparse
domain the filtering can be very effective. Each patch from the filtered stack is
redistributed back to its position within the image and all overlapping pixels
are aggregated and averaged out by weighted average. This can be symbolically
written as

ŷ(x) =
∑ ∑

w · Y (x)
∑ ∑

w · χ(x)
, (3)

where ŷ is the filtered image, w is appropriate weight, Y is a patch from the
considered stack of patches, and χ is the patch support. Summation goes through
all the patches within one stack and through all the stacks within one image.

In the similar manner, the second step of the method is performed. It uses
the results of the preceding step to filter out the noise even further from the
noisy input image. Equations 2 and 3 are also used here, differences are only in
the way how the searching of similar patches is provided, and how the filtering
inside the sparse domain represented by Υ is provided. Both filtering steps of
the method are graphically summarized in Fig. 1.

3.1 BM3D - Computationally Extensive Parts

The BM3D method operates in a sparse domain, where all the filtering is per-
formed either by hard-thresholding in Step 1 or by Wiener filtering in Step 2.
Conversion to sparse domain is done by matrix multiplication of each selected
image patch with transformation matrices. The number of patches that are trans-
formed and then further processed is high. Based on the recommended setting
of the method, as elaborated in [4,8], it is around 1300 patches for every single
reference patch. The number of the reference patches depends on the image res-
olution, but generally it is about 1/16th of the number of image pixels. In the
case of rendering tasks, image resolution is typically HD (1920 × 1080 pixels) or
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Fig. 1. Workflow of the collaborative filtering method

higher, which gives approximately 130 000 of reference patches at least. Summing
it all up, it gives around 340 000 000 of image patches that are being processed
just in Step 1. Similar counting holds also for the Step 2. Luckily computations
can be parallelized around each reference patch. Limitations are set if one tries
for concurrency between Step 1 and Step 2. It is not possible since the results
of Step 1 are used right at the start of Step 2.

Another issue arises with pixel aggregation denoted by Eq. 3, where assign-
ment to individual pixel positions is performed. This appears in both of the
filtering steps. If one uses parallelization concept where area around each ref-
erence patch is solved by individual thread of multiple threads, then one needs
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to assign to each pixel position sequentially, because the areas are overlapping
and therefore multiple access to same memory location can easily occur if not
carefully treated. This is an huge bottleneck and speed barrier if solved trivially
by sequential code. If we want to parallelize the aggregation process we have to
ensure that at one time instant memory area at specific address is accessed just
by one thread and meanwhile non-blocking any other communication from the
remaining threads.

Our solution to the mentioned issues using parallelization is described in
Sect. 6.

4 Denoising Capabilities of the Collaborative Filtering
Method on Rendered Images

As it is experimentally tested in [7], BM3D as a state-of-the-art filtering method
outperforms many of the actual image denoising methods. We show its applica-
tion on two distinct rendered scenes. They differ in the depth of field (DOF).
First scene of Tatra car has large DOF, while scene with the worm has small
DOF to highlight the worm body from the background. This is to accentuate the
typical filtering problem if one wants to preserve the edges and also blur out the
noise in the background. Each of the scenes has been rendered for an increasing
set of samples per pixel (spp) as shown in Fig. 2, for Tatra and Fig. 3, for the
worm respectively. The number of rendered samples/pixel is proportional to the
level of noise that remains in the image after the rendering. The higher the num-
ber of samples the lower the amount of the residual noise. Filtered images up to
512 samples/pixel are shown in Figs. 4 and 5. For higher sampling filtering looses
its effect because the level of noise after rendering is low. A complete list of the
computed results is presented in Tables 1 and 2. In case of Tatra scene, it makes
sense to use filtering up to 512 samples/pixel and up to 2048 samples/pixel in
case of the worm. It is possible to use 2 or 4 times lower number of samples/pixel
if we use filtering to obtain the same visual quality of the rendered scene.

5 Sequential Implementation of BM3D Filter

The sequential version of the algorithm is summarized in the following pseudo-
code. As stated in Sect. 3.1, computationally extensive parts, printed in bold,
are concentrated in 3(b)i–3(b)iii and in both aggregation parts 4 and 6.

1. Load image
2. Set parameters and create transformation matrices for Step 1, Step 2 (see

[3,8])
3. Step 1 - Calculate the group estimates

(a) Set positions of reference blocks
(b) for i = 1 ÷ R1 number of reference blocks in the image

i. Do grouping by matching on Channel 1
ii. Use created matching rule on Channel 2, 3
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Fig. 2. Rendered scene of Tatra car without filtering; from left to right, up to bottom
- 8196 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

Fig. 3. Rendered scene of the worm without filtering; from left to right, up to bottom
- 8196 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

iii. Perform collaborative filtering
iv. Compute the weight value for the composed group of blocks

(c) end
4. Step 1 - Aggregate the group estimates, weights and compute the

initial image estimate
5. Step 2 - Calculate the group estimates

(a) Set positions of reference blocks
(b) for i = 1 ÷ R2 number of reference blocks in the image

i. Do grouping by matching on Channel 1 of the initial image
estimate

ii. Use created matching rule on Channel 2, 3 of the initial image esti-
mate
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Fig. 4. Rendered scene of Tatra car with filtering; from left to right, up to bottom -
512 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

Fig. 5. Rendered scene of the worm with filtering; from left to right, up to bottom -
512 samples/pixel, 256 samples/pixel, 64 samples/pixel, 1 sample/pixel

iii. Collect image blocks from noisy channels using the matching rule
iv. Compute the Wiener coefficients
v. Compute the weight value corresponding to the filtered group of

blocks
vi. Perform the collaborative Wiener filtering

(c) end
6. Step 2 - Aggregate the group estimates, weights and compute the

final image
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Table 1. Computed values for Tatra scene; 8-bit/channel range; FHD (1920 × 1080)
resolution; MSE - Mean Square Error, SSIM - Structural Similarity Index, PSNR -
Peak Signal-to-Noise Ratio

Tatra Raw Filtered

Samples/pixel MSE SSIM PSNR MSE SSIM PSNR σ

1 4581.158 0.065 11.521 1358.037 0.647 16.802 59.525

2 2524.610 0.095 14.109 509.139 0.754 21.062 46.469

4 1436.970 0.136 16.556 200.482 0.878 25.110 36.123

8 772.817 0.193 19.250 83.286 0.900 28.925 26.842

64 94.142 0.541 28.393 12.235 0.960 37.255 9.509

128 35.356 0.735 32.646 8.703 0.965 38.734 5.851

256 19.637 0.818 35.200 5.740 0.974 40.542 4.354

512 10.262 0.888 38.019 4.285 0.980 41.812 3.146

1024 3.389 0.959 42.831 3.514 0.983 42.673 1.819

8192 0.000 1.000 - 0.000 1.000 - 0.000

Table 2. Computed values for the worm scene; 8-bit/channel range; FHD (1920×1080)
resolution

Worm Raw Filtered

Samples/pixel MSE SSIM PSNR MSE SSIM PSNR σ

1 6496.412 0.053 10.004 3410.300 0.496 12.803 65.007

2 4880.197 0.071 11.246 1938.514 0.588 15.256 60.648

4 3346.443 0.097 12.885 958.296 0.679 18.316 52.962

8 2015.827 0.131 15.086 408.117 0.763 22.023 42.771

64 352.891 0.350 22.654 47.618 0.836 31.353 18.600

128 173.270 0.477 25.744 22.810 0.894 34.550 13.088

256 89.716 0.599 28.602 13.377 0.928 36.867 9.438

512 40.439 0.743 32.063 8.617 0.951 38.777 6.346

1024 18.643 0.849 35.426 5.661 0.963 40.602 4.313

2048 8.049 0.923 39.073 5.965 0.969 40.374 2.834

4096 2.697 0.971 43.822 6.337 0.973 40.112 1.641

8192 0.000 1.000 - 0.000 1.000 - 0.000

6 Parallel Implementation of BM3D Filter

To achieve the best possible implementation in terms of the algorithm speed, we
have implemented it in C++ (Intel Compiler 2017.1) and integrated it under our
CyclesPhi rendering engine. We have used OpenMP standard with its #pragma
directives for parallel programming and SIMD directives for vectorization.
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We use our own vectorized code for operations with matrices (summation,
subtraction, multiplication, L2 norm) because it performs better than Eigen or
MKL libraries on small matrices that are used within the filter implementa-
tion. We work mainly with matrices of size 8 × 8. Due to such small size of
matrices filter has to perform hundreds of millions of operations. We solve this
issue by #pragma omp simd vectorization of the aforementioned operations. By
using in-lined functions for the operations we further shorten the computation
time. Advantage of using #pragma omp simd is that it accommodates to the
architecture that is being used (AVX2 and KNC in our case).

Although this implementation is already quite efficient, large bottleneck in
matrix multiplications still persisted. This was solved by direct assembler imple-
mentation, which helps especially on MIC architecture, as can be seen in results.
The assembler code was generated by library for small matrix multiplication
(LIBXSMM v1.8). We have generated the assembler code for the commonly
used sizes of multiplied matrices.

Another issue to deal with was the memory allocation for the small matrices.
This problem is more concerning MIC than CPU. While using Eigen library
the time necessary for memory allocation and de-allocation was too high. This
was another reason for moving to our own solution. Beside own code for opera-
tions with matrices we have defined own classes for the matrices and handle the
memory allocation within them. At the beginning, we allocate all the memory
necessary for the computations and during the computations we dynamically
assign the memory. This way we significantly accelerate the computation and
also the initialization of variables that are needed for the task.

For parallelization of serial code the obvious step is to parallelize the oper-
ations around each reference patch using #pragma omp parallel. It means the
for loop 3(b)–3(c), (5(b)–5(c)) in pseudo-code of Sect. 5 was parallelized this
way. Another computationally extensive operation in serial code is aggregation
of the group estimates (4 and 6. in pseudo-code). Here the parallelization has
to be done more carefully, because we are aggregating the results from differ-
ent memory locations to shared memory area for all threads. Multiple writes to
the same part of the memory can occur. To prevent this, while retaining paral-
lelization with its speedup, we efficiently re-ordered the vector of indexes that
localize reference patches within the image. Re-ordering prevents patch overlap-
ping between concurrently solved tasks around reference patches. The situation
is documented in Fig. 6.

We have implemented the code with focus on MIC architecture, but all the
enhancements of the code are fully compatible with CPU architecture. Gradual
improvements on both CPU and MIC architecture are documented in the results
section.

We have also performed a comparison between our parallel implementation
of the BM3D and the one provided by Lebrun [8]. Lebrun implements CPU
version of the BM3D filter that can leverage parallelization using OpenMP. We
have compared our MIC and CPU versions with Lebrun’s in terms of speed
and memory demands. For the reference also Dabov’s single threaded version is
stated [2]. More details can be found in Sect. 7.
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Fig. 6. Re-ordering of reference patches for preventing the area overlapping. Areas out-
lined by same line type (continuous, dashed) are solved concurrently in parallel. First
all areas outlined by dashed line are solved by available thread, before areas outlined
by continuous lines are being processed. In this way multiple writes are eliminated

7 Results

Tatra and worm scenes were used as examples for the tests of filter processing
time. For a reference we also show the rendering times for different samples per
pixel, see Table 3. We have tested the filter for the set of sampling used in Sect. 4.
Specific sampling does not influence the filter runtime directly, but it affect the
value of standard deviation of noise σ. There is a change in parameters of the
filtering method (size of the patch, step between reference patches, etc.) based
on the level of noise represented by the σ as recommended in [4,8]. Parameters
are different if σ > 40 or σ ≤ 40. In case of Tatra, sampling from 1 to 2 sam-
ples/pixel has σ > 40, other sampling has lower σ, see Table 1. In case of the
worm, up to 8 samples/pixel it is σ > 40, rest of the sampling has lower σ, see
Table 2. This distinguishes the measured filtering runtimes. We have thus com-
puted their mean values from all the measurements in each scene based on the
value of σ. Results can be seen in Tables 4 and 5. There are also shown measure-
ments on different architectures (CPU, MIC) with specific optimizations (AVX2,
AVX2+SIMD, AVX2+xsmm+SIMD, KNC-offload, KNC-offload+SIMD, KNC-
offload+xsmm+SIMD). In our tests KNC-offload stands for Xeon Phi (brand
name Knights Corner) with offload programming model. All of these results
are compared with the results obtained by running the filter implementation of
Dabov et al. [2].

Our speed improvements by different optimization of the filtering algorithm
are in graphical form represented in Fig. 7.

Our parallel implementation of the filter was further compared with parallel
version by Lebrun. Comparison was made in terms of speed and memory uti-
lization while filtering Tatra images of increasing resolution. For reference we
have also compared it with single threaded Dabov’s version. Results can be seen
in Table 6. Filters are using the recommended parameter setting as stated in [4]
under the normal profile. Our solution is much more efficient in terms of memory
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Table 3. Rendering times for Tatra and the worm scene for specific samples per pixel;
FHD resolution

Rendering time Time [h:m:s.ms]

Samples/pixel Tatra Worm Samples/pixel Tatra Worm

1 00:04.34 00:32.27 128 00:56.01 07:41.19

2 00:04.68 00:35.73 256 01:48.05 14:57.93

4 00:05.50 00:42.56 512 03:31.49 29:12.96

8 00:07.16 00:55.90 1024 06:58.27 58:13.70

16 00:10.31 01:22.07 2048 14:03.66 01:56:14.17

32 00:16.75 02:16.01 4096 28:02.70 03:52:25.31

64 00:29.68 04:05.13 8192 55:16.09 07:44:07.64

Table 4. Tatra - BM3D runtime for different optimizations and architectures compared
with original version of the filter by Dabov et al.; FHD resolution

Filter runtime Ours [s] Dabov et al. [s]

Arch., Inst. set σ > 40 σ ≤ 40 σ > 40 σ ≤ 40

CPU, AVX2 76.9 139.5 107.4 66.4

CPU, AVX2+SIMD 23.0 24.7

CPU, AVX2+xsmm+SIMD 12.7 15.0

MIC, KNC-offload 369.6 598.8

MIC, KNC-offload+SIMD 81.6 142.3

MIC, KNC-offload+xsmm+SIMD 19.8 38.1

Table 5. Worm - BM3D runtime for different optimizations and architectures com-
pared with original version of the filter by Dabov et al.; FHD resolution

Filter runtime Ours [s] Dabov et al. [s]

Arch., Inst. set σ > 40 σ ≤ 40 σ > 40 σ ≤ 40

CPU, AVX2 77.9 141.4 109.0 62.9

CPU, AVX2+SIMD 23.3 25.2

CPU, AVX2+xsmm+SIMD 12.8 15.1

MIC, KNC-offload 370.2 597.9

MIC, KNC-offload+SIMD 81.6 142.5

MIC, KNC+xsmm-offload+SIMD 19.9 38.5

utilization especially if compared with Lebrun, which utilizes incredible 100 GB
of memory compared to ours 2 GB for image in FUHD resolution. In terms of
speed our solution performs better or is the same up to FHD resolution of the
image. On higher resolutions our implementation starts to lag behind Lebrun.
Single threaded version performs always worse than others.
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Fig. 7. BM3D runtime for different optimizations and architectures

Table 6. Tatra - our BM3D implementation compared to Lebrun’s and Dabov’s; images
with 128 samples per pixel; σ = 5 as a filtering parameter; Normal profile from [4] used
for BM3D setting

Resolution CPU MIC Dabov Lebrun

[s] [GB] [s] [GB] [s] [GB] [s] [GB]

768 × 576 3.1 0.14 7.7 1.51 14.9 0.68 4.4 2.60

1280 × 720 6.7 0.17 16.2 1.55 31.9 0.76 7.7 4.50

1920 × 1080 15.0 0.24 38.1 1.65 73.4 0.92 14.9 8.60

2560 × 1440 30.9 0.33 67.7 1.76 131.3 1.11 24.9 13.50

3840 × 2160 62.2 0.60 151.6 2.15 278.9 1.63 58.6 28.00

7680 × 4320 295.9 2.10 623.8 3.84 955.7 4.20 204.5 101.00

All the tests were performed on one computing node of Salomon supercom-
puter. Specifically on 2x Intel Xeon E5-2680v3, 2.5 GHz for CPU tests and Dabov
et al. tests and 1x Intel Xeon Phi 7120P, 61cores for MIC tests.

From the results it can be seen, how our parallelization concept can help in
speeding up the algorithm runtime. Although the speedup is not ideally propor-
tional in terms of utilized cores, we can bring up to 8× faster implementation
on CPU (24 cores, 24 threads) and up to 5× faster implementation on MIC (61
cores, 244 threads) compared to one core solution of Dabov’s.

8 Conclusion

In our contribution we have presented optimized parallel version of the stat-
of-the-art filtering technique BM3D. Final version of the algorithm can run on
two different architectures (CPU, MIC) and it can be efficiently used on super-
computers. Since compute nodes are often equipped with CPU+MIC our imple-
mentation could completely utilize those computing nodes and thus it can be
extremely suitable in computationally extensive areas such as image rendering.
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Provided implementation is faster than originally presented algorithm. The high-
est speed-up reaches up to 8× in case of CPU and up to 5× in case of MIC.
We perform better also against different parallel implementation of the filter
from Lebrun. Our solution is faster on smaller resolutions and utilizes memory
much more efficiently. Although Lebrun’s version is faster on high resolutions it
becomes impractical due to extreme memory demands.

Acknowledgements. This work was supported by The Ministry of Education, Youth
and Sports from the Large Infrastructures for Research, Experimental Development and
Innovations project “IT4Innovations National Supercomputing Center - LM2015070”.
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Abstract. This paper deals with the novel PermonSVM machine learn-
ing tool. PermonSVM is a part of our PERMON toolbox. It implements
the linear two-class Support Vector Machines. PermonSVM is built on
top of PermonQP (PERMON module for quadratic programming) which
in turn uses PETSc. The main advantage of PermonSVM is that it is par-
allel. The parallelism comes from a distribution of matrices and vectors.
The MPRGP algorithm, implemented in PermonQP, is used as a solver of
the quadratic programming problem arising from the dual SVM formu-
lation. The scalability of MPRGP was proven in problems of mechanics
with more than billion of unknowns solved on tens of thousands of cores.
Apart from the scalability of our approach, we also investigate the rela-
tions between training rate, hyperplane margin, the value of the dual
functional, and the norm of the projected gradient.

Keywords: Support Vector Machines · SVM · PERMON
PermonSVM · PermonQP · MPRGP · Quadratic programming · QP

1 Introduction

In the last two decades, the Support Vector Machines (SVMs) [7], due to
their accuracy and obliviousness to dimensionality [18], have become a popu-
lar machine learning technique with applications including genetics [5], image
processing [9], and weather forecasting [16]. In this paper, we are only interested
in SVMs for classification. SVMs belong to supervised learning algorithms, i.e.
algorithms developing a decision model from labelled training samples (training
dataset). The SVM decision model is represented by the maximal-margin hyper-
plane, i.e. the hyperplane that separates the training dataset into two classes
c© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 115–129, 2018.
https://doi.org/10.1007/978-3-319-97136-0_9
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with the maximal possible gap between the hyperplane and both classes. Devel-
opment of the SVM decision model leads to solving a quadratic programming
(QP) problem. A brief description of SVMs is given in Sect. 2.

In Sect. 3, PermonSVM [10] is introduced. PermonSVM represents one of a
few open-source SVM implementations for distributed environment (it is paral-
lelized using MPI). It focuses on solving large SVM problems on supercomputers.
PermonSVM is build on top of PETSc [4] and PermonQP [11]. PermonQP is a
PETSc based package for the solution of large scale QP problems. It includes
implementations of several QP solvers and it can also use any of KSP [17] and
TAO [14] solvers.

Section 4 describes the MPRGP [8] algorithm used for the solution of the QP
arising from the SVM formulation. MPRGP is implemented in PermonQP.

Finally, numerical results are presented in Sect. 5. We investigate the con-
vergence of SVM by looking, in each MPRGP iteration, at the training rate
(percentage of correctly classified samples in the training dataset), the hyper-
plane margin, the value of the QP cost function, and the norm of the projected
gradient (used in the stopping criterion of MPRGP). The scalability of our app-
roach is also demonstrated.

2 Support Vector Machines for Classifications

SVM is a supervised binary classifier, i.e. a classifier that decides whether a
sample falls into either Class A (label 1) or Class B (label −1) by means of a
model. The model is determined from the already categorised training samples
in the training phase of the classifier. Unless otherwise stated, let us assume that
the training samples are linearly separable, i.e. it is possible to separate the Class
A samples and the Class B samples using a hyperplane. The essential idea of the
SVM classifier training is to find the maximal-margin hyperplane that divides
the Class A from the Class B samples by the widest possible empty strip, which
is called the functional margin. The samples contributing to the definition of
such hyperplane are called the support vectors – see the circled samples lying on
the dashed hyperplanes depicted in Fig. 1.

Let us denote the training samples as a set of ordered pairs such that

T := {(x1, y1) , (x2, y2) , . . . , (xm, ym)},

where m is the number of samples, xi ∈ R
n (n ∈ N represents a number of

attributes) is the i-th sample and yi ∈ {−1, 1} denotes the label of the i-th sam-
ple, i ∈ {1, 2, . . . ,m}. Let H be the maximal-margin hyperplane wT x − b = 0,
where w is a normal vector; b

‖w‖ determines the offset of the hyperplane H from
the origin along its normal vector w. The problem of finding the hyperplane
H can be formulated as a constrained optimization problem in the following
hard-margin primal SVM formulation:

min
w ,b

1
2
wT w s.t. yi

(
wT xi − b

) ≥ 1. (1)
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Fig. 1. An example of a two-class classification problem solved by the linear hard-
margin SVM.

For the case of the non-perfectly linearly separable training samples, the
soft-margin SVM was designed. To handle the sensitivity of the SVM classi-
fier to possible outliers, we introduce slack variables ξ1, ξ2, . . . , ξm, and modify
the hard-margin primal SVM formulation (1) into the soft-margin primal SVM
formulation

min
w , b, ξi

1
2
wT w + C

m∑

i=1

ξi s.t.

{
yi

(
wT xi − b

) ≥ 1 − ξi,

ξi ≥ 0,
(2)

where C is a user-specified penalty1. Higher value of C increases the importance
of minimising ‖w‖ (equivalent to maximising the margin) at the expense of
satisfying the margin constraint for fewer samples. Let us refer here to several
monographs mentioning the significance of C:

– “In the support-vector networks algorithm one can control the trade-off
between complexity of decision rule and frequency of error by changing the
parameter C,. . . ” [7]

– “The parameter C controls the trade off between errors of the SVM on training
data and margin maximization (C = ∞ leads to hard-margin SVM)” [15, p.
82].

– “. . . the coefficient C affects the trade-off between complexity and proportion
of nonseparable samples and must be selected by the user” [6, p. 366].

We can observe that if 0 ≤ ξi ≤ 1, then the i-th sample lies somewhere
between the margin and their respective hyperplane (illustrated in Fig. 2); if
ξi > 1, the i-th sample is misclassified (illustrated in Fig. 3).
1 The penalty C is often called a regularization parameter in ML communities.
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Fig. 2. Soft-margin SVM example: the
encircled samples are correctly classi-
fied, but are on the wrong side of their
respective hyperplane
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Fig. 3. Soft-margin SVM example: the
encircled samples are misclassified.

The primal formulation of the soft-margin SVM (2) can be simplified
by exploiting the Lagrange duality with the Lagrange multipliers α =
[α1, α2, . . . , αm]T , β = [β1, β2, . . . , βm]T . Evaluating the Karush-Kuhn-
Tucker conditions, eliminating β and using other modifications, the problem
results into the dual formulation with an inequality (box) constraint [7].

min
α

1
2
αT Y T KY α − αT e s.t. o ≤ α ≤ Ce, (3)

where e = [1, 1, . . . , 1]T , o = [0, 0, . . . , 0]T , X = [x1, x2, . . . ,xm], y =
[y1, y2, . . . , ym]T , Y = diag(y), and K ∈ R

n×n is symmetric positive semi-
definite (SPS) matrix such that K := XT X. In the machine learning communi-
ties, K is called the Gram matrix, the kernel matrix, or in the QP terminology,
the Hessian.

Further, we introduce dual to primal reconstruction formulas for the normal
vector

w = XY α, (4)

and the bias
b =

1
|ISV |

∑

i∈ISV

(
xT

i w − yi

)
, (5)

where ISV denotes the support vector index set, i.e. ISV := {i | αi > 0, i =
1, 2, . . . ,m}, and

∣
∣ISV

∣
∣ is the cardinality of ISV . From the normal vector w and

bias b, we can easily set up the decision rule

If wT x + b ≥ 0, then x belongs to Class A, else x belongs to Class B. (6)

The decision rule (6) with concrete w and b is also called the SVM model for
the linearly separable problems.
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3 PermonSVM: SVM Implementation Based on PETSc

PermonSVM is a new SVM tool designed to run mainly in parallel even on
large supercomputers. It is written on top of PETSc [4] and PermonQP [11].
Distribution of matrices using MPI through the PETSc framework provides the
parallelism.

PermonSVM provides an implementation of the two-class classification via
soft-margin SVM. It implements a scalable training procedure based on a linear
kernel. In the training procedure, PermonSVM takes advantage of the scalable
matrix-vector product of PETSc matrices and vectors and an implicit represen-
tation of the Gram matrix (i.e. the matrix product XT X is not formed), which
saves memory and CPU time.

The resulting QP problem with an implicit Hessian matrix is solved by the
scalable QP solvers implemented in the PermonQP package.

Additional features include fast, load-balanced cross-validation and grid
search for parameter tuning, L1 and L2 loss-functions, and LIBSVM data parser.
PermonSVM provides an executable for SVM classification as well as C API
designed to be PETSc-like. Its typical usage is presented in Code 1.

4 MPRGP Algorithm

MPRGP (Modified Proportioning and Reduced Gradient Projection) [8] repre-
sents an efficient algorithm for the solution of convex QP with box constraints,
i.e. for

min
1
2
xT Ax − xT b s.t. l ≤ x ≤ u, (7)
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where A ∈ R
n×n is SPS, x is the solution, b is the right hand side, l and u

is the lower respectively upper bound. The basic version can be considered as
a modification of the Polyak algorithm. MPRGP combines the proportioning
algorithm with the gradient projections.

Let g = Ax−b be the gradient. Than we can define component-wise (for j ∈
{1, 2, . . . , n}) gradient splitting which is computed after each gradient evaluation.
The free gradient is defined as

gf
j =

{
0 if xj = lj or xj = uj ,

gj otherwise.

The reduced free gradient is

gr
j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xj = lj or xj = uj ,

min
(

xj−lj
α , gj

)
if lj < xj < uj and gj > 0,

max
(

xj−uj

α , gj

)
if lj < xj < uj and gj ≤ 0,

where α ∈ (0, 2||A||−1] is used as a step length in the expansion step. The
definition of the chopped gradient is

gc
j =

⎧
⎪⎨

⎪⎩

0 if lj < xj < uj ,

min(gj , 0) if xj = lj ,

max(gj , 0) if xj = uj .

Finally, the projected gradient is defined as gP = gf + gc. Its norm decrease is
the natural stopping criterion of the algorithm.

Let the projection onto the feasible set Ω = {x : l ≤ x ≤ u} be defined as

PΩ(x)j = min(uj ,max(lj , xj)).

Now we have all the necessary ingredients to summarise MPRGP in Algo-
rithm1.

5 Numerical Experiments

In this section, we show the scalability of our approach as well as what the
relations between the training rate (percentage of correctly classified samples),
the hyperplane margin, the value of the dual functional, and the norm of the
projected gradient are. The hyperplane (given by w and b) is computed in each
iteration of MPRGP. Using the computed hyperplane, we can evaluate the train-
ing rate and the margin (2/||w||). The value of the dual functional is trivially
computed from the gradient which is available in every MPRGP iteration. The
computation of these metrics is relatively expensive. Therefore, it is by default
disabled, but it can be toggled by a command line switch. The decrease of the
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Algorithm 1. MPRGP
Input: A, x0 ∈ Ω, b, Γ > 0, α ∈ (0, 2||A||−1]

1 g = Ax0 − b, p = gf (x0), k = 0

2 while ||gP (xk)|| is not small :

3 if ||gc(xk)||2 ≤ Γ2gr(xk)T gf (xk):

4 αf = max{αcg : xk − αcgp}
5 αcg = gT p/pT Ap
6 if αcg < αf :
7 // CG step

8 xk+1 = xk − αcgp
9 g = g − αcgAp

10 β = gf (xk+1)T Ap/pT Ap

11 p = gf (xk+1) − βp

12 else:
13 // Expansion step

14 xk+ 1
2 = xk+1 − αfp

15 g = g − αfp

16 xk+1 = PΩ(xk+ 1
2 − αgf (xk+ 1

2 ))

17 g = Axk+1 − b

18 p = gf (xk+1)

19 else:
20 // Proportioning step

21 αcg = gT gc(xk)/gc(xk)T Agc(xk)

22 xk+1 = xk − αcggc(xk)

23 g = g − αcgAgc(xk)

24 p = gf (xk+1)

25 k = k + 1

Output: xk

projected gradient norm is natural as well as the default stopping criterion of
MPRGP.

Relations mentioned above are demonstrated on a dataset from the ExCAPE
project [1] and also on the URL [13] dataset. The ExCAPE project aim is to pre-
dict compound bioactivity for the pharmaceutical industry. The tested dataset
is related to Pfam protein database. It contains 226.1 thousand samples with
2048 attributes. The URL dataset relates to the detecting of malicious websites
involved in criminal scams. It contains 2.4 million samples with 3.23 million
attributes. The dataset is publicly available on LIBSVM datasets websites [2] in
the LIBSVM format.

The experiments were run on the Salomon supercomputer [3] at
IT4Innovations. Salomon consists of 1008 compute nodes. Each compute node
contains two 2.5 GHz, 12-core Intel Xeon E5-2680v3 (Haswell) processors and
128 GB of memory. Compute nodes are interconnected by InfiniBand FDR56.
Salomon has the peak performance of 2 petaFLOPS.
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The initial guess was set to the zero vector. The relative norm of projected
gradient (i.e. the ratio of the projected gradient norm and the right-hand side
norm) being smaller than 1e−1 was used as the stopping criterion in all numerical
experiments. From our experience, while the tolerance is exceptionally high, it is
more than adequate to find a good solution. This is illustrated by the following
results.

In Tables 1 and 2 and in accompanying Figs. 4 and 5 the impact of the param-
eter C is shown. We report the maximal achieved training rate (Max rate) and
the training rate upon the solver convergence (Converged rate) as well as the
number of iterations needed to reach these rates.

Looking at the results of the ExCAPE dataset (Table 1 and Fig. 4), except for
C = 1e−5, the difference between the maximal rate and converged rate ranges
from 0.4 to 0.63%. Also note, that the best rate is achieved after relatively few
iterations. To actually satisfy the convergence criterion it is necessary to do
between 2.6 and 8 times as many iterations needed to get the maximum rate.

Table 1. ExCAPE dataset: comparison of the maximal achieved training rate (and
iteration it occurred) with training rate obtained after solver converged (and again
iteration this occurred).

C 1e−5 1e−4 1e−3 1e−2 1e−1

Max rate 76.8712 82.4114 84.3426 84.5243 84.6941

Converged rate 73.1472 81.8946 83.9301 84.1291 84.0641

Max rate iter 4 58 756 8415 9976

Converged rate iter 24 277 2868 22240 80306

The differences are much smaller for the URL dataset (Table 2 and Fig. 5).
Again, we ignore in the following discussion the results for the smallest param-
eter C, because the solution is not good enough. The rate attained after the
convergence is between 0.04 and 0.13% lower than the maximum rate. However,
to reach the best rate it is necessary to do only from 50 to 70% of the number
iterations needed to achieve convergence.

Further, we analyse the training rate, margin, value of dual functional, and
norm of the projected gradient on the per iteration basis. The results are shown
for the ExCAPE dataset in Figs. 6 and 7 for C = 1e−3, and for the URL dataset
in Figs. 8 and 9 for C = 1e−5.

The MPRGP algorithm guarantees the decrease of the functional value in
every iteration. In these examples, the norm of the projected gradient decreases
monotonously as well. However, this is not guaranteed, and in fact, we observed
high fluctuations for the ExCAPE dataset with larger values of the C parameter.

More interestingly, the training rate peaks after a relatively small number
of iterations. The training rate also oscillates. It is barely noticeable in these
examples. However, we observed very severe oscillation for the ExCAPE dataset
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Fig. 4. ExCAPE dataset: comparison of the maximal achieved training rate (and itera-
tion it occurred) with training rate obtained after solver converged (and again iteration
this occurred).

Table 2. URL dataset: comparison of the maximal achieved training rate (and iteration
it occurred) with training rate obtained after solver converged (and again iteration this
occurred).

C 1e−7 1e−6 1e−5 1e−4 1e−3

Max rate 79.2815 96.0976 96.3368 97.2961 98.2226

Converged rate 78.3386 96.0374 96.2101 97.2186 98.1828

Max rate iter 5 60 571 5469 47329

Converged rate iter 10 120 1161 9525 68548

with larger values of the parameter C. The rate difference between consecutive
iterations was sometimes over 17%. Also, notice that the hyperplane margin
starts to decrease after relatively few iterations.

The decreasing value of the dual functional and that it is negative means,
thanks to positive semi-definiteness of the Hessian and the positiveness of alpha,
that the dual solution α, on the whole, increases. Meaning, that the satisfaction
of the first constraint in (2) improves. The margin generally has a decreasing
tendency, i.e. the norm of w increases, suggesting (from (2)) that the sum of
distances of samples from their respective hyperplanes decreases as well. Note,
that this does not tell us anything about the training rate. In fact, we can see
that improving this sum can lead to decrease in the training rate.
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Fig. 5. URL dataset: comparison of the maximal achieved training rate (and iteration
it occurred) with training rate obtained after solver converged (and again iteration this
occurred).

Fig. 6. ExCAPE dataset, C = 1e−3: the relation of the training rate and margin on the
iteration number. The iteration number given in bold is where the maximum training
rate was reached.
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Fig. 7. ExCAPE dataset, C = 1e−3: the relation of the value of dual functional and
the norm of the projected gradient on the iteration number. The iteration number
given in bold is where the maximum training rate was reached.

Fig. 8. URL dataset, C = 1e−5: the relation of the training rate and margin on the
iteration number. The iteration number given in bold is where the maximum training
rate was reached
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Fig. 9. URL dataset, C = 1e−5: the relation of the value of dual functional and the
norm of the projected gradient on the iteration number. The iteration number given
in bold is where the maximum training rate was reached.

Table 3. ExCAPE dataset, C = 1e−3: MPRGP strong parallel scalability

Number of cores 1 2 4 8 16 24 48

Time 289.36 158.87 81.75 43.86 30.29 28.95 19.63

The default stopping criterion of MPRGP based on the norm of the projected
gradient seems ill-suited for SVM. It appears, despite the large tolerance, that
the problems are solved unnecessary accurately. However, it is relatively easy to
implement and use stopping criteria commonly used in SVM solvers. Looking
only at the training rate, it seems that MPRGP can obtain a reasonable solution
very quickly in few iterations.

Finally, we demonstrate the strong scalability of our solver. The big advan-
tage of PermonSVM is that it can run in a distributed environment. Moreover,
the MPRGP algorithm was proven to be scalable; for example, it can solve
problems of mechanics with more than billion of unknowns on tens of thou-
sands of cores [12]. The scalability results for the ExCAPE dataset are summa-
rized in Table 3 and Fig. 10. The results for the URL dataset are presented in
Table 4 and Fig. 11. The scalability is essentially the same as the scalability of the
sparse matrix-vector product. This operation is memory bounded as illustrated
by “Time on half nodes” results on the URL dataset. In this case, only half of the
cores on each node are used (6 cores on each socket). This MPI rank placement
significantly increases memory throughput. Thanks to this, the scaling is almost
perfect up to 48 cores, after which the size of the distributed dataset starts to
be too small to utilise the cores fully.
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Fig. 10. ExCAPE dataset, C = 1e−3: MPRGP strong parallel scalability

Table 4. URL dataset, C = 1e−5: MPRGP strong parallel scalability

Number of cores 1 2 4 8 16 24 48 72 96 120 144 168

Time 4025.91 1996.99 1030.58 540.32 308.59 242.10 121.80 94.74 86.36 75.67 72.70 72.98

Time on half nodes - - - - - 185.74 89.74 71.87 65.60 61.39 60.55 60.22

Fig. 11. URL dataset, C = 1e−5: MPRGP strong parallel scalability



128 J. Kruž́ık et al.

6 Conclusion

We have introduced a novel, open-source PermonSVM machine learning tool
employing scalable quadratic programming algorithms implemented in the Per-
monQP module. PermonSVM provides an implementation of the two-class clas-
sification via soft-margin SVM. Currently, it supports only a linear kernel. As a
default, it uses the MPRGP algorithm for the solution of QP obtained from the
dual SVM formulation.

We demonstrated the behaviour of the MPRGP algorithm on a dataset from
the ExCAPE project as well as on the URL dataset. We analysed the relations
between the training rate, the hyperplane margin, the value of the dual functional
and the norm of the projected gradient on the per iteration basis. We note that
the algorithm achieves a good training rate after relatively few iterations. The
scalability of our approach was also demonstrated.

Further work will include implementation of a better stopping criterion and
nonlinear kernels.
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Abstract. ESPRESO is a FEM package that includes a Hybrid Total
FETI (HTFETI) linear solver targeted at solving large scale engineer-
ing problems. The scalability of the solver was tested on several of the
world’s largest supercomputers. To provide our scalable implementation
of HTFETI algorithms to all potential users, a simple C API was devel-
oped and is presented. The paper describes API methods, compilation
and linking process.

As a proof of concept we interfaced ESPRESO with the CSC ELMER
solver and compared its performance with the ELMER FETI solver.
HTFETI performs two level decomposition, which significantly improves
both memory utilization and solver performance. To select optimal sec-
ond level decomposition we have developed a performance model that
controls decomposition automatically. This is a major simplification for
all users that ensures optimal solver settings.

We show that the ESPRESO HTFETI solver is up to 3.7 times faster
than the ELMER FETI solver when running on 13 500 MPI processes
(the 614 compute nodes of the Salomon supercomputer) and solving 1.5
billion unknown problems of 3D linear elasticity.

Keywords: Total FETI · Hybrid Total FETI · ESPRESO · ELMER
Automatic tunning model · Multi-level decomposition

1 Introduction

The ESPRESO library is an open-source highly parallel library for solving large
scale engineering problems (e.g. heat transfer, structural analysis). Our main
focus is to create a highly efficient parallel solver based on several FETI (Finite
Element Tearing and Interconnecting) algorithms which are suitable for parallel
machines with tens or hundreds of thousands of cores. ESPRESO itself is able
to load problems described in several formats and produce output in the VTK
format.
c© Springer International Publishing AG, part of Springer Nature 2018
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To make the library available to other researchers, a simple plain C array
based API has been developed. Through the API, potential users have all the
benefits of the fast and scalable FETI solver. This paper contains (i) a theoretical
description of FETI methods used, (ii) a practical example of connecting the
library with the widely used open-source tool CSC Elmer, (iii) a performance
model to setup optimal decomposition and (iv) a performance evaluation on a
3D linear elasticity benchmark.

2 Finite Element Tearing and Interconnecting Methods

The history of the FETI (Finite Element Tearing and Interconnecting) method
is longer than twenty years [1]. It is one of the most efficient domain decom-
position techniques for parallel solving of boundary value problems described
by partial differential equations (PDEs). The main idea consists of the PDE
domain splitting into several non-overlapping subdomains, in which the PDEs
are discretized separately and the interconnectivity of the primal PDE solution
is enforced by the dual unknowns that are the Lagrange multipliers (LM). The
classical FETI algorithm is based on eliminating the primal unknowns so that
the resulting linear system, in terms of the LM, can be solved iteratively with the
projected conjugate gradient method [2]. Over the years, numerous variants of
the basic FETI concept have been developed. One reason for this was the effort
to overcome difficulties with computing the action of generalized inverses of the
stiffness matrices and identifying its kernel spaces. The FETI-DP variant [3,4]
modifies the original FETI method so that the stiffness matrix is non-singular,
the kernel space is trivial, and the inverse to the stiffness matrix exists. It is due
to the connectivity of the subdomains in the so-called corner nodes. The draw-
back of FETI-DP appears in real world problems with a complicated geometry,
where it is not immediately clear what the corner nodes should be. The opposite
strategy gave rise to the T(otal)FETI method [5], in which the kernel space is as
large as possible. In this variant, the Dirichlet boundary conditions of the PDE
problem are enforced by the LM so that the stiffness matrix is block diagonal
and all diagonal blocks are subdomain stiffness matrices with the same kernel
spaces.

Another important motivation for development of new FETI variants came
with implementation on more sophisticated computer architectures, where mul-
tiple CPU cores are grouped into CPUs/sockets and multiple sockets are present
in a single compute node. From the minimal communications point of view, it
is reasonable to translate the computer architecture hierarchy into the FETI
method. This leads to a new group of hybrid (two-level) FETI methods. The
FETI–FETI-DP method proposed in [6,7] combines the classical FETI method
used on the global level with the FETI-DP method used on clusters. In this paper
we deal with the TFETI–TFETI method that uses the TFETI method on both
levels [8]. It will be denoted by the H(ybrid)TFETI method. The basic idea of
the two-level FETI method is graphically explained in the following benchmark,
in which we also introduce respective notation.
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The Cube Benchmark Problem

For explanation and better demonstration of some aspects, techniques, manipu-
lation with the algorithms, and methods in this paper, we use the cube bench-
mark with hierarchical decomposition and discretization depicted in Fig. 1.

Fig. 1. Two levels of decomposition: 2 clusters (C = 2), 2 subdomains (N = 2), 3
elements (n = 3) in each space dimension

This hierarchical decomposition and discretization consists of three levels:

– Level 1 - decomposition into clusters is controlled by parameters Cx, Cy, and
Cz (numbers of clusters in x, y, and z direction). Each cluster occupies one
computational node.

– Level 2 - each cluster is decomposed into the subdomains controlled by param-
eters Nx, Ny, and Nz (numbers of subdomains in x, y, and z direction).

– Level 3 - each subdomain is discretized uniformly by hexahedral finite ele-
ments handled by parameters nx, ny, nz (numbers of elements in x, y, and z
direction).

If, for example, the number of clusters in all directions is the same Cx = Cy =
Cz = 2, the description in the text is simplified to C = 2. The simplification is
applied also to subdomains N and elements n.

The implementation of the Hybrid Total FETI method (HTFETI) does not
differ significantly from the original approach (TFETI), and having both algo-
rithms in one library requires few additions.

We will briefly introduce our HTFETI method for the 3-dimensional problem
given by a metallic cube decomposed into two clusters and each cluster into two
subdomains (see Fig. 2). After the FEM discretization, domain decomposition,
and linear algebra object assembly, the linear system reads as follows:
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Fig. 2. Cube: Cx = Cy = 1, Cz = 2, Nx = Ny = 1, Nz = 2, nx = ny = 12, nz = 3
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where Ki is the local stiffness matrix of the i-th subdomain, fi is the corre-
sponding load vector, ui is the corresponding vector of displacements, B =
(B1,B2,B3,B4) are the standard FETI constraints matrices, c is its correspond-
ing right-hand side vector, λ is the vector of Lagrange multipliers enforcing the
above constraints,

Bc =
(
Bc,1 Bc,2 O O
O O Bc,3 Bc,4

)

is the constraints matrix with redundant constraints with respect to B gluing
subdomains inside clusters, λc = (λ�

c,1,λ
�
c,2)

� is the corresponding vector of
Lagrange multipliers.

To simplify the description of the algorithm, system (1) is permuted in the
following way:
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Let us introduce a new notation consistent with the line partitioning in (2)
⎛
⎜⎜⎝
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⎞
⎟⎟⎠ , (3)

where λ = λ̃ and c = c̃. Eliminating ũI , I = 1, 2, we also eliminate the subset
of dual variables λc,I , I = 1, 2 related to matrix Bc. These LM are expressed
exactly, and therefore the structure behaves like a problem decomposed into two
subdomains instead of four. The group of subdomains glued together is denoted
as a cluster. Here, the first cluster consists of subdomains 1 and 2, and the second
cluster of subdomains 3 and 4.

K̃ = diag(K̃1, K̃2), B̃ = (B̃1, B̃2), f̃ = (f̃�
1 , f̃�

2 )�, R̃ = diag(R̃1, R̃2), (4)

where R̃I is a kernel of the stiffness matrix K̃I . Similar to standard FETI nota-
tion we obtain

F̃ = B̃K̃+B̃�, G̃ = −B̃R̃,

d̃ = B̃K̃+f̃ − c̃, ẽ = −R̃�f̃ .
(5)

By elimination of ũI , I = 1, 2 in (3) we get the Schur complement system
(
F̃ G̃
G̃� O

)(
λ̃

α̃

)
=

(
d̃
ẽ

)
(6)

that can be solved by the homogenization of the second equation G̃�λ̃ = ẽ
and application of the same projected iterative methods as in the classical FETI
approach to the homogenized system. The projections onto the kernel of G̃� are
computed by the orthogonal projector

P̃ = I− G̃
(
G̃�G̃

)−1

G̃�. (7)

For 3D linear elasticity problems, the dimension of the Coarse Problem (CP)
matrix G̃�G̃ for 4 subdomains in 2 clusters is adequately smaller (the dimension
of the CP is 2 × 6 = 12, compared to the TFETI case where the dimension is
4 × 6 = 24 for the same subdomain decomposition).

3 Implementation

The library is based on C++ and uses a hybrid parallelization in a form of
MPI + OpenMP and vectorization. The communication between clusters (first
level decomposition) is done using message passing (MPI). Subdomains inside a
cluster (second level of decomposition) reside in a shared memory, therefore their
processing is parallelized using OpenMP. The processing of a single subdomain
is further accelerated by the vectorization.
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The library is able to utilize a few external tools for linear algebra operations.
The most time consuming part is using a sparse linear solver for pseudo inverse
of local stiffness matrices Ki. In the default settings ESPRESO uses sparse and
dense BLAS operations and the PARDISO solver from the Intel MKL library [9].
Optionally, PARDISO from the Intel MKL library can be replaced by the original
version of PARDISO [10,11], or the Dissection solver [12]. For the subdomain
decomposition of a problem, ESPRESO uses Metis [13].

Fig. 3. A block diagram of the ESPRESO library.

The internal structure of ESPRESO is depicted in Fig. 3. The library can be
divided into three main parts: mesh, assembler, and solver.

Mesh serves as an interface for unification of various input and output for-
mats. It contains a description of the whole geometry decomposed into clusters.
Based on the assembler settings, mesh decomposes clusters into subdomains
using Metis and prepares structures for assembling TFETI/HTFETI matrices.
Then, the assembler builds the structural matrices (K, f) and TFETI/HTFETI
specific matrices (B1, B0) that are passed to the (H)TFETI solver. In the current
version the assembler fully supports heat transfer (including transient or non-
linear problems) and has limited support for linear elasticity. The solver has a
general matrix based interface allowing it to solve an arbitrary type of a physical
problem.

To make the ESPRESO library available to other researchers, a simple plain
C array based API has been developed. This approach was chosen to provide a
simple interface usable with programming languages other than C and C++ (e.g.
Fortran). Through the API, potential users obtain all benefits of the ESPRESO
library (a fast FETI solver scalable on several of the world’s largest supercom-
puters [14]).

4 Using ESPRESO as Linear Solver in Third-Party Tools

This section describes the basic usage of the ESPRESO solver in other tools.
At first the compilation and linking issues are described. Then, all provided
functions are listed and explained. The last section describes parameters for
controlling the solver to achieve optimal performance.
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4.1 Compilation and Linking

ESPRESO is distributed under the BSD license. The source files can be obtained
from a public repository [15]. The documentation [16] contains installation
instructions for the latest version. Following the instructions, besides the main
executable files, the feti4i library is also compiled. The header file with Fortran
module files are in the directory ESPRESO ROOT/include. After successful instal-
lation the library libfeti4i.so (libfeti4i.a in the case of static linking) is
placed into the directory ESPRESO ROOT/lib.

4.2 Description of API Methods

Methods in API are designed to be as simple as possible to provide easy usage
together with sufficient variability allowing optimal settings of the FETI solver.
Data are assumed to be decomposed by MPI processes. Each process passes only
its local data together with information about the neighboring processes. The
FETI solver works in two phases:

– Preprocessing - in this phase the problem is decomposed into subdomains,
the mesh prepares required TFETI/HTFETI data, and the assembler gen-
erates the matrices. The matrices are passed to the solver, which performs
the rest of the preprocessing (calculate CP, prepare HTFETI objects, prepare
communication buffers, etc.)

– Solve - the second phase runs the iterative solver.

According to the phases above, the API provides methods FETI4ICreate-
Instance and FETI4ISolve. Both methods have to be called on all MPI
processes as they use MPI collective operations. The FETI4ICreateInstance
method creates an instance with preprocessed data. The method accepts the
following parameters:

– matrix - the stiffness matrix created by FETI4ICreateStiffnessMatrix and
composed from finite elements using method FETI4IAddElement. The matrix
is composed from finite elements matrices which allows the mesh later decom-
position and preparation of objects for the HTFETI.

– rhs - the right-hand side is passed as a single vector. The size has to corre-
spond with the size of the stiffness matrix.

– l2g - local to global mapping of the Degrees Of Freedom (DOF) is used for
identification of interfaces between clusters. The size has to correspond with
the size of the stiffness matrix. Global indices have no restriction except that
the same DOF on different processes have to get the same number.

– neighbors - the list of neighboring processes.
– dirichlet indices, dirichlet values - the Dirichlet boundary condition.

Indices are in local addressing. Its values should be consistent across neighbor-
ing MPI processes - shared DOF should have the same value on all neighboring
processes.
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– options - vectors of integer and real values. Best practice is to man-
ually update only required values, after their setting to default values
using methods FETI4ISetDefaultIntegerOptions and FETI4ISetDefault-
RealOptions.

The created instance holds the data created during the preprocessing. Hence,
changes in the input data have no effect on the instance, and input vectors can
be safely removed. In order to change input data, API provides update methods
that correctly updates the instance (e.g. for solving transient problems). The
instance can be solved by FETI4ISolve.

Before the creation of an instance, a stiffness matrix has to be created. The
matrix contains information about its type (symmetric positive definite, sym-
metric indefinite, unsymmetric) and indexing (usually 1 for Fortran and 0 for
C/C++). The initially empty stiffness matrix is filled by element data. In order
to allow later decomposition each element is passed with its type, node indices,
DOF indices, and element stiffness matrix. The type is equal to element dimen-
sion (volume = 3, plane = 2, line = 1) and the size of the element stiffness matrix
has to be dofsSize x dofsSize. Addition of elements is not thread safe.

When the solver in the ESPRESO library is finished the data should be
destroyed by FETI4IDestroy. A simple example of usage of the library can be
found in the ESPRESO main repository in the file src/app/apitest.cpp. This
example is the best source of instructions for how to use the latest release of the
library.

4.3 Solver Configuration Parameters

The performance of the FETI solver depends on various parameters. Parameters
are passed to the library during the creation of the instance. To avoid setting all
solver parameters manually, ESPRESO provides methods that set all parameters
to their default values. Default settings are given by the library, however, they
can be changed in the ESPRESO Configuration File (ecf). Whenever ESPRESO
is started, it tries to read the espreso.ecf file. If the file exists, the default
settings are changed according to the settings in the file (default espreso.ecf
file. An example is shown in Listing 1.1).

Listing 1.1. Default espreso.ecf file

FETI4ILIBRARY {
DOMAINS 0; // Automatic decomposition
SOLVER {

// TOTAL_FETI , HYBRID_FETI
METHOD HYBRID_FETI;
// PCG , PIPEPCG , ORTHOGONALPCG , GMRES , BICGSTAB
ITERATIVE_SOLVER PCG;
// NONE , LUMPED , WEIGHT_FUNCTION , DIRICHLET
PRECONDITIONER DIRICHLET;
PRECISION 1E-05;
MAX_ITERATIONS 200;

}
}



138 O. Meca et al.

5 Case Study with CSC ELMER

In this section the usage of the ESPRESO library is demonstrated with the
open-source multiphysical simulation software Elmer [17] developed at CSC -
IT Center for Science in Finland. It contains interfaces to various direct and
iterative linear solvers (MUMPS, HYPRE, PARDISO and Trilinos). ELMER
also contains its own implementation of the FETI solver.

However, the Elmer FETI solver does not support multilevel decomposition.
This limits its optimal hardware utilization. In the current version, an interface
for the ESPRESO library was added. Results in Sect. 6 show that the ESPRESO
HTFETI solver is faster than the original FETI implementation.

Elmer is available on GitHub [18]. For compilation with the ESPRESO
library one has to set the environment variable FETI4I ROOT to the directory
with the ESPRESO installation and build Elmer with the flag WITH FETI4I
set to TRUE. The build directory BUILD DIR/fem/tests/WinkelBmNavierFETI4I
contains a use case to test the ESPRESO library which is used in this paper (the
directory is created during installation). The running of Elmer is controlled by
*.sif files. To turn the ESPRESO solver on, the following two parameters have
to be set in the sif file:

– Linear System Solver = Direct
– Linear System Direct Method = FETI4I.

5.1 Automatic Multilevel Decomposition

As mentioned previously ELMER contains an implementation of the FETI
solver. It is used as reference solver for performance comparison. Based on our
measurements for the 3D linear elasticity benchmark (the Winkel benchmark
from Elmer examples), this is the most scalable solver as is also shown in Fig. 4.
This has also been confirmed with ELMER developers.

Fig. 4. Comparison of Elmer FETI, ESPRESO FETI, and Trilinos ML solvers.

The main bottleneck of the ELMER FETI solver is that it can only process
one subdomain per MPI process. Due to the fact that the FETI solver needs to
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Fig. 5. Effect of the second level decomposition for 10 different cluster sizes in the
range 37037–370370 DOF on HTFETI solver total runtime. To suppress the effect of
the OpenMP parallelization, the benchmark ran with one thread per MPI.

do factorization of the subdomain stiffness matrices K̃i the size of subdomain
is limited. For instance a compute node of the IT4I Salomon supercomputer
with 128 GB RAM and 2x12 CPU cores running 24 MPI processes per node can
solve approximately 100,000 DOF per MPI rank and 2,400,000 DOF per node
for 3D linear elasticity. However using such large subdomains uses an unneces-
sarily high amount of RAM as well as compute time. To tackle this problem
ESPRESO uses multilevel decomposition and a Hybrid Total FETI solver in the
following manner. ELMER defines the first level decomposition into clusters -
one cluster per MPI process. ESPRESO then internally decomposes each cluster
into subdomains, this is the second level decomposition.

The second level decomposition is a critical parameter that has the most
significant effect on the HTFETI solver performance as presented in Fig. 5. The
figure shows solver runtime for 10 different cluster sizes going from 37037 DOF
to 370370 DOF, and second level decomposition going from 1 to 512 subdomains
per cluster. The speedup that can be achieved is 7.6 for 37037 DOF cluster and
6.3 for 74074 DOF cluster. Larger clusters cannot even be solved without the
second level decomposition.

To make the usage of the HTFETI solver more transparent to the user we
have implemented a simple model that estimates optimal subdomain size based
on the size of the cluster. This model is created based on the measurements
that were used to generate Fig. 5, and its validation is shown in Fig. 6. We have
created two different models for 3D linear elasticity physics.

– Preprocessing model - contains HTFETI solver preprocessing and Dirichlet
preconditioner calculation,

– Single iteration model - contains single iteration of the PCG solver with
Dirichlet preconditioner.
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Fig. 6. Optimal subdomain size with various cluster sizes.

Table 1. The effect of using the preprocessing model for single iteration runtime.

DOF per cluster 37k 74k 111k 148k 185k 222k 259k 296k 333k 370k

Opt. for iterations [s] 0.058 0.124 0.189 0.255 0.335 0.392 0.496 0.573 0.659 0.713

Opt. for preprocessing [s] 0.059 0.127 0.196 0.259 0.343 0.402 0.496 0.576 0.663 0.717

Runtime variation 2.0% 2.1% 3.3% 1.5% 2.3% 2.5% 0.0% 0.5% 0.5% 0.7%

Table 2. The effect of using the single iteration model for preprocessing.

DOF per cluster 37k 74k 111k 148k 185k 222k 259k 296k 333k 370k

Opt. for preprocessing [s] 4.02 8.56 13.22 17.71 23.34 27.78 35.19 40.99 46.82 50.68

Opt. for iterations [s] 4.17 8.91 13.79 18.56 23.68 28.00 35.19 41.13 48.19 52.25

Runtime variation 3.6% 3.9% 4.1% 4.6% 1.5% 0.8% 0.0% 0.3% 2.9% 3.0%

From Fig. 6 one can see that both models can be described by simple linear
interpolation and that for one cluster size they point to a different optimal
subdomain size. Please note, that one cannot create a single model because
different problems of an identical size require a different number of iterations to
find the solution.

However, we have evaluated how the optimal second level decomposition for
preprocessing affects the runtime of the single iteration, see Table 1, and vice
versa, see Table 2. The key information lies in the last row of both tables which
shows that the maximum error is less than 5% if either of these models is used.
As we use the average value from these two models, prediction lies always within
this 5% error.

6 Results

This section compares results of the FETI method implemented in Elmer with
the HTFETI from ESPRESO. Performance was measured on the Salomon super-
computer at IT4Innovations National Supercomputing Center. Salomon consists
of 1008 compute nodes (2 x Intel Xeon E5-2680v3, 2.5 GHz, 12 cores; 128 GB
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DDR4@2133 MHz) interconnected by InfiniBand FDR56/7D hypercube. A 3D
linear elasticity winkel benchmark from the Elmer repository was used for weak
scalability evaluation. Tests compare both implementations on 4 - 13500 MPI
processes/1 - 614 compute nodes with a constant problem size per MPI process.
Only 22 cores from each node were used and one core per socket is left for MPI
and system processes. Even though ESPRESO supports thread parallelization
through OpenMP, all measurements were performed using only one thread per
core. This ensured consistent conditions for both implementations.

Fig. 7. Weak scaling of small subdomains with 9 000 DOF per MPI process (top),
larger subdomains with 110 000 DOF per MPI process (middle) and large subdomains
with 206 000 DOF per MPI process (bottom).

Figure 7 (top) shows solver performance when processing small subdomains
(9 000 DOF per MPI process). In this case TFETI and HTFETI from ESPRESO
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have the same performance because second level decomposition is not necessary.
However one can observe that ESPRESO solvers scale better than the ELMER
FETI solver, and can reach an up to 3.3 speedup - we call this scalability speedup,
and it is defined as the difference between ELMER FETI and ESPRESO TFETI
as they both process a single domain per MPI process.

Figure 7 (middle) shows the performance for subdomains of 110 000 DOF per
MPI process. In this case one can observe two causes of performance improve-
ments. The speedup by scalability is still present, but additionally the effect of
the second level decomposition becomes equally important, as demonstrated by
the difference between ESPRESO TFETI and ESPRESO HTFETI.

Figure 7 (bottom) shows the case of very large subdomains - 206 000 DOF
per MPI process. Here the scalability speedup is even less important and the
overall speedup is mostly gained by the second level decomposition. For the
largest problems (8 788 MPI processes and 1.82 billion DOF) ESPRESO is up
to 3.6 times faster. We were not able to run larger tests on more than 8788 MPI
processes because Elmer does not support 64 bit integers.

7 Conclusion

Our previous work [14] has shown that the HTFETI solver scales on several
of the world’s largest supercomputers. To provide our scalable implementation
to all potential users a simple C API was developed and presented. As proof
of concept we interfaced ESPRESO with the CSC ELMER solver, and com-
pared the HTFETI with the ELMER FETI solver. HTFETI performs two level
decomposition, which significantly improves both memory utilization and solver
performance.

As the optimal setup of the second level decomposition is key to achieving
the fastest time to solution, we developed a performance model that controls
decomposition automatically. This model is designed for applications that run
one MPI process per CPU core, as ELMER does. This is a major simplification
for all ELMER users, who do not have to be aware of this additional complexity
and yet have the full benefit of it.

In Sect. 6 we show that the ESPRESO HTFETI solver is up to 3.7 times faster
than the ELMER FETI solver when running on 13 500 MPI processes (the 614
compute nodes of the Salomon supercomputer) and solving a 1.5 billion DOF
problem of 3D linear elasticity. This is caused by both lower parallel overhead
(see Fig. 7 - “speedup by scalability”) and optimal second level decomposition
(see “speedup by multilevel decomposition” in the same figure).

Acknowledgement. This work was supported by The Ministry of Education, Youth
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Innovations project “IT4Innovations National Supercomputing Center – LM2015070”.
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Abstract. This paper introduces two tools for manual energy evalua-
tion and runtime tuning developed at IT4Innovations in the READEX
project. The MERIC library can be used for manual instrumentation and
analysis of any application from the energy and time consumption point
of view. Besides tracing, MERIC can also change environment and hard-
ware parameters during the application runtime, which leads to energy
savings.

MERIC stores large amounts of data, which are difficult to read by a
human. The RADAR generator analyses the MERIC output files to find
the best settings of evaluated parameters for each instrumented region. It
generates a LATEX report and a MERIC configuration file for application
production runs.

Keywords: READEX · MERIC · RADAR
Energy efficient computing · HDEEM · RAPL

1 Introduction

The Horizon 2020 project READEX (Runtime Exploitation of Application
Dynamism for Energy-efficient eXascale computing) [18] deals with manual and
also automatic tools that analyze High Performance Computing (HPC) appli-
cations, and searches for the best combination of tuned parameter settings to
use them optimally for application needs. This paper presents tools developed
in the READEX project for manual evaluation of the dynamic behavior of the
HPC applications - the MERIC and RADAR generator.

The MERIC library evaluates application behavior in terms of resource con-
sumption, and controls hardware and runtime parameters such as the Dynamic
Voltage and Frequency Scaling (DVFS), Uncore Frequency Scaling (UFS), and
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T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 144–159, 2018.
https://doi.org/10.1007/978-3-319-97136-0_11
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number of OpenMP threads through external libraries. User applications can be
instrumented using the MERIC manual instrumentation to analyze each part
of the code separately. The energy measurements are provided by the High Defi-
nition Energy Efficiency Monitoring (HDEEM) system [8], or by Running Aver-
age Power Limit (RAPL) counters [10].

The MERIC measurement outputs are analyzed using the RADAR generator,
which produces detailed reports, and also a MERIC configuration file, which
can be used to set the best parameter values for all evaluated regions in the
application.

There are several research activities in HPC application energy saving due
to applying power capping [6,11] to the whole application run instead of parsing
the application into regions and applying dynamic tuning. Other research is
dealing with scheduling system using dynamic power capping with negligible
time penalty based on previous application runs [16]. Dynamic application tuning
is the goal of the READEX project, which should deliver a tool-suite for fully
automatic application instrumentation, dynamism detection and analysis. The
analysis should find the configuration that provide the maximum energy savings
and can be used for the future production runs. The READEX tools are very
complex and may not be easy to apply. Our tools present the same approach with
focus on usage friendliness, albeit providing manual tuning only. Furthermore,
the READEX tools are focused on x86 platforms only, which is not the case for
MERIC.

2 Applications Dynamism

The READEX project expects that HPC applications have different needs in
separate parts of the code. To find these parts inside a user application, three
dynamism metrics are presently measured and used in the READEX project.
They include:

1. Execution time
2. Energy consumed
3. Computational intensity

Among these three metrics, the semantics of execution time and energy con-
sumed are straightforward. Variation in the execution time and energy consumed
by regions in an application during its execution is an indication of different
resource requirements. The computational intensity is a metric that is used to
model the behaviour of an application based on the workload imposed by it on
the CPU and the memory. Presently, computational intensity is calculated using
the following formula 1 and is analogous to the operational intensity used in the
roofline model [22].

Computational intensity =
Total number of instructions executed

Total number of L3 cache misses
(1)

Selected regions in the user application are called significant. To detect the
significant regions manually, profiling tools such as Allinea MAP [1] are used.
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The dynamism observed in an application can be due to variation of the
following factors:

– Floating point computations (for example, this may occur due to variation in
the density of matrices in dense linear algebra).

– Memory read/write access patterns (for example, this may occur due to vari-
ation in the sparsity of matrices in sparse linear algebra).

– Inter-process communication patterns (for example, this may occur due to
irregularity in a data structure leading to irregular exchange of messages for
operations such as global reductions).

– I/O operations performed during the application’s execution.
– Different inputs to regions in the application.

To address these factors, a set of tuning parameters has been identified in the
READEX project to gain possible savings due to static and dynamic tuning.
The list of the parameters contains the following:

• hardware parameters of the CPU
– Core Frequency (CF)
– Uncore frequency (UCF)1

• system software parameters
– number of OpenMP threads, thread placement

• application-level parameters
– depends on the specific application

All parameters can be set before an application is executed (this is called
static tuning), in addition some of them can be tuned dynamically during the
application runtime. For instance core and uncore frequencies can be switched
without additional overhead, but switching the number of threads can affect
performance due to NUMA effects and data placement and must be handled
carefully. Static and dynamic tuning leads to static and dynamic savings, respec-
tively.

Presently the MERIC tool (Sect. 3) is being developed and used in the
READEX project to measure the above-mentioned dynamism metrics and eval-
uate applications. When using MERIC it is possible to dynamically switch CPU
core and uncore frequencies and the number of used OpenMP threads. The mea-
surements collected by these tools for an application are logged into a READEX
Application Dynamism Analysis Report (RADAR) as described in Sect. 4.

3 Manual Dynamism Evaluation with MERIC

MERIC2 is a C++ dynamic library (with an interface for Fortran applications)
that measures energy consumption and runtime of annotated regions inside
1 Uncore frequency refers to frequency of subsystems in the physical processor pack-

age that are shared by multiple processor cores, e.g., L3 cache and on-chip ring
interconnect.

2 MERIC repository: https://code.it4i.cz/vys0053/meric.

https://code.it4i.cz/vys0053/meric
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a user application. By running the code with different settings of the tuning
parameters, we analyze possibilities for energy savings. Subsequently, the opti-
mal configurations are applied by changing the tuning parameters (list of param-
eters mentioned in the previous Sect. 2) during the application runtime, which
can be also done by using MERIC. MERIC wraps a list of libraries that provide
access to different hardware knobs and registers, operating system and runtime
system variables, i.e. tuning parameters, in order to read or modify their values.
The main motivation for the development of this tool was to simplify the eval-
uation of various applications dynamic behavior from the energy consumption
point of view, which includes a large number of measurements.

The library is easy to use. After inserting the MERIC initialization func-
tion, it is possible to instrument the application through the so-called probes,
which wrap potentially significant regions of the analysed code. Besides storing
the measurement results, the user should not notice any changes in the behavior
of the application.

3.1 MERIC Features

MERIC has minimal influence on the application’s runtime despite providing
several analysis and tuning features. Its overhead depends on the energy mea-
surement mode as described in this section, the amount of hardware performance
counters read, as well as the number of instrumented regions.

Environment Settings
During the MERIC initialization and at each region start and end, the CPU
frequency, uncore frequency and number of OpenMP threads are set. To do so,
MERIC uses the OpenMP runtime API and the cpufreq [3] and x86 adapt [17]
libraries.

Energy Measurement
The key MERIC feature is energy measurement using the High Definition Energy
Efficiency Monitoring (HDEEM) system located directly on computational nodes
that records 100 power samples per second of the CPUs and memories, and 1000
samples of the node itself via the BMC (Baseboard Management Controller) and
an FPGA (Field Programmable Gate Array). Figure 1 shows the system diagram
and a picture a node with the HDEEM.

HDEEM provides energy consumption measurement in two different ways,
and in MERIC it is possible to choose which one the user wants to use by setting
the MERIC CONTINUAL parameter.

In one mode, the energy consumed from the point that HDEEM was initial-
ized is taken from the HDEEM Stats structure (a data structure used by the
HDEEM library to provide measurement information to the user application).
In this mode we read the structure at each region start and end. This solution is
straightforward, however, there is a delay of approximately 4 ms associated with
every read from the HDEEM API. To avoid the delay, we take advantage of
the fact that during measurement HDEEM stores power samples in its internal
memory. In the second mode MERIC only needs to record timestamps at the
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Fig. 1. A HDEEM system located on a node and the system diagram [2].

beginning and the end of each region instead of calling the HDEEM API. This
results in a very small overhead for MERIC instrumentation during the appli-
cation runtime because all samples are transferred from the HDEEM memory
at the end of the application runtime. The energy consumption is subsequently
calculated from the power samples based on the recorded timestamps.

Contemporary Intel processors support energy consumption measurements
via the Running Average Power Limit (RAPL) interface. MERIC uses the
RAPL counters with 1 kHz sampling frequency to allow energy measurements on
machines without the HDEEM infrastructure as well as to compare them with
the HDEEM measurements.

The main disadvantage of using RAPL is that it measures CPUs and mem-
ories power consumption only, without providing information about the power
consumption of the blade itself. In the case of nodes with two Intel(R) Xeon(R)
CPU E5-E5-2680 v3 (2×12 cores) processors the power baseline is approximately
70 W. To overcome this handicap we statically add this 70 W to our measure-
ments when using RAPL counters. MERIC uses the x86 adapt library to read
the RAPL counters.

The minimum runtime of each evaluated region has been set in the READEX
project to 100 ms when using HDEEM or RAPL, to have enough samples per
region to evaluate the region optimum configuration correctly.

Hardware Performance Counters
To provide more information about the instrumented regions of the application,
we use the perf event and PAPI libraries, which provide access to hardware
performance counters. Values from the counters are transferred into cache-miss
rates, FLOPs/s3 and also the computational intensity that is a key metric for
dynamism detection as described in Sect. 2.

3 The Intel Haswell processors do not support floating-point instructions counters.
MERIC approximates FLOPs/s based on the counter of Advanced Vector Exten-
sions (AVX) calculation operations. For more information visit https://github.com/
RRZE-HPC/likwid/wiki/FlopsHaswell.

https://github.com/RRZE-HPC/likwid/wiki/FlopsHaswell
https://github.com/RRZE-HPC/likwid/wiki/FlopsHaswell
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Shared Interface for Score-P
The Score-P software system, as well as the MERIC library, allows users to
manually (and also automatically) instrument an application for tracing analysis.
Score-P instrumentation is also used in the READEX tool suite [13].

A user that has already instrumented an application using Score-P instru-
mentation or would want to use it in the future may use the readex.h header file
that is provided in the MERIC repository. This allows the user to only insert
the user instrumentation once, but for both MERIC and Score-P simultaneously.
When a user application is compiled, one has to define the preprocessor vari-
ables USE MERIC, USE SCOREP (Score-P phase region only) or alternatively
USE SCOREP MANUAL to select which instrumentation should be used.

Table 1 shows the list of functions defined in the header file, with their
MERIC and Score-P equivalents. Brief description of the mentioned MERIC
functions is provided in Sect. 3.2, description of the Score-P functions can be
found in its user manual [20].

Table 1. Function names defined in the readex.h header file, that can be used
for MERIC and Score-P instrumentation.

Shared interface MERIC function Score-P function

READEX INIT MERIC INIT –

READEX CLOSE MERIC CLOSE –

READEX REGION DEFINE – SCOREP USER REGION DEFINE

READEX REGION START MERIC MeasureStart SCOREP USER REGION BEGIN

READEX REGION STOP MERIC MeasureStop SCOREP USER REGION END

READEX PHASE START MERIC MeasureStart SCOREP USER OA PHASE BEGIN

READEX PHASE STOP MERIC MeasureStop SCOREP USER OA PHASE END

MERIC Requirements
MERIC currently adds synchronization MPI and OpenMP barriers into the
application code to ensure that all processes/threads under one node are syn-
chronized in a single region when measuring consumed resources or changing
hardware or runtime parameters. We realize that this approach inserts extra
overhead into application runtime and may discriminate a group of asynchronous
applications. In future the library will allow the user to turn these barriers off.

Beyond the inserted synchronization the MERIC library requires several
libraries to provide all previously mentioned features:

– Machine with HDEEM or x86 adapt library for accessing RAPL counters
– Cpufreq or x86 adapt library to change CPU frequencies
– PAPI and perf event for accessing hardware counters

ARM Jetson TX1
The MERIC library was originally developed to support resource consump-
tion measurement and DVFS on Intel Haswell processors [9], however it has
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been extended to also provide support for the Jestson/TX1 ARM system [12]
located at the Barcelona Supercomputing Center [14] (ARM Cortex-A57, 4 cores,
1.3 GHz) which supports energy measurements.

ARM systems are an interesting platform because they allow the setting of
much lower frequencies [7] and save energy accordingly. In the case that sys-
tem CPU uncore frequency is not possible to set, however, one can change the
frequency of the RAM. Minimum CPU core frequency is 0.5 GHz and the max-
imum is 1.3 GHz. The minimum and maximum RAM frequency is 40 MHz and
1.6 GHz, respectively. To change frequencies on Jetson, no third-party libraries
are necessary.

To gather power data, the Texas Instrument INA3221 chip is featured on
the board [4]. It measures the per-node energy consumption and stores samples
values in a file. It is possible to gather hundreds of samples per second, however
the measurement effects the CPU. The following Table 2 shows the impact of
sampling frequency on the CPU workload evaluated using htop4.

Table 2. The Jetson/TX1 energy measurement interface and its effect on the CPU
workload when reading 10 up to 1000 power samples per second. The load was evaluated
using htop when running the power sampling only.

Sampling
frequency [Hz]

CPU workload

10 2%

50 4%

100 8%

200 14%

500 23%

1000 30%

3.2 Workflow

First, the user has to analyze their application using a profiler tool (such as
Allinea MAP) and find the significant regions in order to cover the most con-
suming functions in terms of time, MPI communication, and I/O, and insert
MERIC instrumentation into code to wrap the selected sections of the code. A
region start function takes a parameter with the name of the region, but the
stop function does not have any input parameters, because it ends the region
that has been started most recently (last in, first out).

The instrumented application should be run as usual. To control MERIC
behaviour it is possible to export appropriate environment variables or define a
MERIC configuration file that allows the user to specify the settings not only
for the whole application run (as in the case of environment variables), but also
control the behavior for separate regions, computation nodes, or their sockets.
4 htop repository: https://github.com/hishamhm/htop.

https://github.com/hishamhm/htop
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The user can define hardware and runtime settings (CPU frequencies and number
of threads) as well as select energy measurement mode, hardware counters to
read and more.

4 RADAR: Measurement Data Analysis

RADAR presents a brief summary of the measurement results obtained with
MERIC. This is a merged form of automatically generated dynamism report by
both the RADAR generator (by IT4Innovations), described in detail in Sect. 4.1
and the readex-dyn-detect (by the Technical University of Munich), described
in [19]. The report depicts diagrams of energy consumption with respect to a set
of tuning parameters. It also contains different sets of graphical comparisons of
static and dynamic significant energy savings across phases for different hardware
tuning parameter configurations. In each perspective, the measured dynamism
metrics are presented for the default configurations that are used for the tuning
parameters.

4.1 The RADAR Generator

The RADAR generator5 allows users to evaluate the data measured by the
MERIC tool automatically, and to get an uncluttered summary of the results in
the form of a LATEX file. Moreover, it is possible to include the report generated
by the readex-dyn-detect tool, as mentioned above.

Table 3. Heat map generated by the RADAR generator comparing impact of using
different CPU core and uncore frequencies at application runtime in seconds.

Uncore freq [GHz (uncore)]
Frequency [GHz (core)]

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 12.256 11.071 10.633 10.084 9.407 8.937 9.284 8.581 8.513 8.296
1.4 11.829 10.57 10.152 9.178 8.682 8.684 8.094 8.192 7.966 7.666
1.6 11.723 10.178 9.438 8.706 8.373 8.008 7.821 7.471 7.552 7.212
1.8 10.996 9.969 8.952 8.57 7.929 7.779 7.477 7.138 7.085 6.93
2 10.607 9.516 8.925 8.203 7.79 7.356 7.096 6.908 6.802 6.744
2.2 10.23 9.734 9.02 7.977 7.5 7.23 7.129 6.778 6.827 6.361
2.4 10.775 9.438 8.416 7.919 7.367 7.208 6.772 6.577 6.436 6.356
2.5 10.798 9.086 8.366 7.856 7.555 7.072 6.66 6.605 6.257 6.107

The report itself contains information about both static and dynamic savings,
represented not only by tables, but also plots and heat-maps. Examples can be
seen in Fig. 3 and Table 3.

The generator is able to evaluate all chosen quantities at once, i.e. users do
not have to generate reports for energy consumption, and compute intensity and
execution time separately, because they can be contained in one report together.

5 RADAR generator repository: https://code.it4i.cz/bes0030/readex-radar.

https://code.it4i.cz/bes0030/readex-radar
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This provides the advantage of direct visual comparison of all optimal settings,
so users can achieve a greater understanding of the application behavior quickly.
The execution time change for energy-optimal settings is also included in the
report, as can be seen in Table 4.

Table 4. Summary table generated by the RADAR generator presenting possible
energy or runtime saving that can be reached if the best static and also best dynamic
settings for each region would be set.

Overall application evaluation

Default
settings

Default
values

Best static
config.

Static
savings

Dynamic
savings

Energy
consumption
[J] (Samples),
Blade
summary

24 threads,
3.0 GHz
UCF,
2.5 GHz CF

2473.63 J 12 threads,
3.0 GHz
UCF,
2.5 GHz CF

371.80 J
(15.03%)

4.87 J of
2101.83 J
(0.23%)

Runtime of
function [s],
Job info -
hdeem

24 threads,
3.0 GHz
UCF,
2.5 GHz CF

6.37 s 18 threads,
3.0 GHz
UCF,
2.5 GHz CF

0.26 s
(4.10%)

0.0073 s of
6.11 s
(0.12%)

Run-time change with the energy optimal settings: −0.01 s (98.19% of default time)

This evaluation is performed not only for the main region (usually the whole
application), but for its nested regions too. Users can also specify an iterative
region which contains all the nested ones and which is called directly in the
main region. In this way certain iterative schemes (e.g., iterative solvers of linear
systems) are understood in detail, because every iteration (or phase) is evaluated
separately.

With this feature users have information about the best static optima just for
the main region (which serves as the best starting settings), information about
optimal settings of nested regions in an average phase, and the above-mentioned
information about optimal settings of nested regions in every individual phase.
If we wanted to process multiple regions like one, we can group them under one
role, as can be seen in Fig. 2, where Projector l and Projector l 2 are different
regions comprising the region Projector. If multiple runs of the program are
measured, then both the average run and separate runs are evaluated.

Solver
Solve RegCG singular

F operator
apply A

Preconditioner
apply prec

Projector
Projector l

Projector l 2

Fig. 2. Example of multiple regions on one role
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For some programs such a report could be impractically long and so the
generator offers the possibility to create a shorter version containing only the
overall summary and the average phase evaluation.

The generator also supports evaluation in multiples of the original unit used
in the measurement. Both the static and dynamic baseline for the energy con-
sumption, i.e. the constant baseline and the baseline dependent on settings, are
supported too.
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Fig. 3. Plot example generated by the RADAR generator showing the effect of using
different CPU core and uncore frequencies from the energy consumption point of view.

Finally, the optimal settings for all regions and every measured quantity can
be exported into the separated files, which can be used as an input for the
MERIC tool, as described in Sect. 3.2.

All the above-mentioned settings are listed in the external configuration file,
which is set by the generator’s flag, so users can easily change several different
settings for their reports.

5 Test Case

The ESPRESO library6 was selected to present MERIC and RADAR generator
usage. The library is a combination of Finite Element (FEM) and Boundary Ele-
ment (BEM) tools and TFETI/HTFETI [5,15] domain decomposition solvers.
The ESPRESO solver is a parallel linear solver, which includes a highly effi-
cient MPI communication layer designed for massively parallel machines with
thousands of compute nodes. The parallelization inside a node is done using
OpenMP. Inside the application we have identified several regions of the code,
that may have different optimal configuration see Fig. 4.
6 ESPRESO library website: http://espreso.it4i.cz/.

http://espreso.it4i.cz/
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Fig. 4. Graph of significant regions in the ESPRESO library. The green boxes depict
multiply called regions in an iterative solver, the orange ones are only called once during
the application runtime. (Color figure online)

Table 5. Table of resultant static and dynamic savings of the ESPRESO library test.
Rows respectively focus on possible savings from the energy and runtime points of
view.

Overall application evaluation

Default
settings

Default values Best static
configuration

Static
savings

Dynamic
savings

Energy [J]
RAPL
counters

12 threads,
3.0 GHz
UCF,
2.5 GHz CF

4549.13 J 12 threads,
2.2 GHz
UCF,
2.4 GHz CF

181.76 J
(4.00%)

325.89 J of
4367.37 J
(7.46%)

Runtime [s] 12 threads,
3.0 GHz
UCF,
2.5 GHz CF

15.90 s 12 threads,
3.0 GHz
UCF,
2.5 GHz CF

0.00 s
(0.00%)

0.39 s of
15.90 s
(2.43%)

The following test was performed on the IT4Innovations Salomon cluster
powered by two Intel Xeon E5-2680v3 (Haswell-EP) processors per node using a
RAPL counter with a 70 W baseline for the energy consumption measurement.
The processor is equipped with 12 cores and allows for CPU core and uncore
frequency scaling within the range of 1.2–2.5 GHz and 1.2–3.0 GHz, respectively.
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We evaluated ESPRESO on a heat transfer problem with 2.7 million unknowns
using one MPI process per socket.

Table 5 shows the possible savings made by using different numbers
of OpenMP threads during the runtime, and by switching CPU core and uncore
frequencies. This table shows that it is possible to save 4% of the overall energy
just by statically setting different CPU core and uncore frequencies that can
be applied even without instrumenting the application at all. Table 6 shows the
impact of using different CPU frequencies in this test case, from the energy
consumption point of view.

Another 7.46% of energy can be saved through dynamic switching of the
tuned parameters to apply the best configuration for each significant region.
Overall energy savings in this test case were 11.16%. Table 7 in the appendix of
this paper contains the regions’ best settings.

Table 6. An ESPRESO library energy consumption heat-map showing the impact of
different CPU core and uncore frequencies when using 12 OpenMP threads.

UnCF [GHz]
CF [GHz]

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 5,971 5,825 5,764 5,725 5,698 5,783 5,859 5,962 6,127 6,232
1.4 5,519 5,350 5,238 5,220 5,208 5,219 5,357 5,432 5,513 5,639
1.6 5,226 5,029 4,902 4,840 4,829 4,819 4,890 4,986 5,093 5,185
1.8 5,080 4,897 4,739 4,711 4,649 4,656 4,720 4,760 4,859 4,956
2 5,054 4,852 4,707 4,587 4,565 4,528 4,585 4,636 4,736 4,817
2.2 4,985 4,774 4,605 4,520 4,464 4,442 4,469 4,540 4,632 4,653
2.4 4,984 4,783 4,593 4,442 4,391 4,367 4,408 4,438 4,503 4,578
2.5 5,211 4,858 4,675 4,547 4,479 4,422 4,445 4,439 4,482 4,549

6 Conclusion

The paper presented two tools that allow easy analysis of HPC applications’
behavior, with the goal to tune hardware and runtime parameters to minimize
the given objective (e.g., the energy consumption and runtime).

Resource consumption measurement and dynamic parameter changes are
provided by the MERIC library. The currently supported parameters that can
be switched dynamically include the CPU core and uncore frequencies, as well
as the number of active OpenMP threads.

The RADAR generator analyses the MERIC measurement outputs and pro-
vides detailed LATEX reports describing the behavior of the instrumented regions.
These reports also contain information about the settings that should be applied
for each region to reach maximum savings. The RADAR generator produces the
MERIC configuration files that should be used for production runs of the user
application to apply the best settings dynamically during the runtime.

Possible savings that can be reached when using MERIC and the RADAR
generator are presented in [21], where we show that the energy savings can reach
up to 10–30%.
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Appendix

Table 7. Table of the regions analysis from the energy point of view for the test
case presented in the Sect. 5. For every region, this table contains the percentage of
energy the region consumed compared to the entire application, and each regions’
best configuration and energy savings if the configuration were applied during the
application runtime in its the best static configuration.

Significant regions energy summary and its best dynamic configuration

Region % of 1 phase Best dynamic
configuration

Dynamic savings

Assemble Stiffness
Matrices

16.77 12 threads, 2.0 GHz
UCF, 2.4 GHz CF

6.51 J from 685.54 J
(0.95%)

Assembler–
Assemble-B0

0.2 12 threads, 2.0 GHz
UCF, 2.5 GHz CF

0.10 J from 8.07 J
(1.24%)

Assembler–
Assemble-B1

4.12 12 threads, 2.0 GHz
UCF, 2.5 GHz CF

6.61 J from 168.36 J
(3.93%)

Assembler-
K Regularization

5.00 2 threads, 2.2 GHz
UCF, 2.5 GHz CF

47.64 J from 204.24
J (23.32%)

Assembler–
PrepareMesh

12.66 2 threads, 1.8 GHz
UCF, 2.5 GHz CF

77.70 J from 517.68
J (15.01%)

Assembler–
SaveMeshtoVTK

6.89 2 threads, 1.2 GHz
UCF, 2.5 GHz CF

39.80 J from 281.63
J (14.13%)

Assembler–
SaveResults

3.38 2 threads, 1.2 GHz
UCF, 2.5 GHz CF

24.67 J from 138.34
J (17.83%)

Assembler–
SolverSolve

27.92 12 threads, 2.2 GHz
UCF, 1.6 GHz CF

114.50 J from
1141.58 J (10.03%)

Cluster–CreateF0-
AssembleF0

5.67 12 threads, 2.2 GHz
UCF, 2.4 GHz CF

0.00 J from 231.68 J
(0.00%)

(continued)
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Table 7. (continued)

Significant regions energy summary and its best dynamic configuration

Region % of 1 phase Best dynamic
configuration

Dynamic savings

Cluster–CreateG1-
perCluster

0.43 12 threads, 2.2 GHz
UCF, 2.0 GHz CF

0.64 J from 17.47 J
(3.69%)

Create GGT Inv 0.21 2 threads, 2.2 GHz
UCF, 2.5 GHz CF

2.01 J from 8.56 J
(23.46%)

Cluster–CreateF0-
FactF0

0.08 12 threads, 2.8 GHz
UCF, 2.5 GHz CF

0.21 J from 3.26 J
(6.36%)

Cluster–
Kfactorization

14.47 12 threads, 2.2 GHz
UCF, 2.4 GHz CF

0.00 J from 591.46 J
(0.00%)

Cluster–CreateSa-
SaFactorization

0.51 6 threads, 2.8 GHz
UCF, 2.5 GHz CF

2.31 J from 20.70 J
(11.30%)

Cluster–CreateSa-
SolveF0vG0

0.86 6 threads, 2.8 GHz
UCF, 2.5 GHz CF

3.02 J from 35.20 J
(8.58%)

Cluster–
SetClusterPC

0.85 12 threads, 2.4 GHz
UCF, 2.4 GHz CF

0.18 J from 34.95 J
(0.52%)
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K., Bouizi, O., Mian, U.S., Kruž́ık, J., Sojka, R., Beseda, M., Kannan, V., Bendifal-
lah, Z., Hackenberg, D., Nagel, W.E.: The READEX formalism for automatic tun-
ing for energy efficiency. Computing 1–19 (2017). https://doi.org/10.1007/s00607-
016-0532-7

19. Venkatesh, K., Lubomir, R., Michael, G., Anamika, C., Ondrej, V., Martin, B.,
David, H., Radim, S., Jakub, K., Michael, L.: Prace whitepaper: investigating and
exploiting application dynamism for energy-efficient exascale computing (2017).
www.prace-ri.eu

20. VI-HPS: Score-p user manual 3.1 (2017)

http://doi.acm.org/10.1145/2425248.2425252
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4485
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://dl.acm.org/citation.cfm?id=3014904.3014955
http://dl.acm.org/citation.cfm?id=3014904.3014955
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/X86Adapt
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/X86Adapt
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1007/s00607-016-0532-7
http://www.prace-ri.eu/


MERIC and RADAR Generator 159

21. Vysocky, O., Beseda, M., Riha, L., Zapletal, J., Nikl, V., Lysaght, M., Kannan, V.:
Evaluation of the HPC applications dynamic behavior in terms of energy consump-
tion. In: Proceedings of the Fifth International Conference on Parallel, Distributed,
Grid and Cloud Computing for Engineering. Civil-Comp Press, Stirlingshire, Paper
3 (2017)

22. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

https://doi.org/10.1145/1498765.1498785


Disc vs. Annulus: On the Bleaching
Pattern Optimization for FRAP

Experiments
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Abstract. This study deals with the problem of optimal setting of
experimental design variables, which controls the accuracy of the numer-
ical process of determining model parameters from data. Our approach,
although case independent, is formulated as an inverse problem of a
diffusion coefficient estimation using the FRAP (Fluorescence Recovery
After Photobleaching) experimental technique. The key concept relies
on the analysis of the sensitivity of the measured output with respect to
the model parameters. Based on this idea, we optimize an experimental
design factor being the initial concentration of some particles. Numer-
ical experiments on a 2D finite domain show that the discretized opti-
mal initial condition attains only two values representing the existence
or non-existence of diffusive particles. The number of jumps between
these values determines the connectivity (or the bleaching pattern) and
is dependent on the value of a diffusion coefficient, e.g., the annulus
shaped initial condition is better than a disc for some specific range of
model parameters.

Keywords: Optimization · Parameter identification · FRAP
Bleaching pattern · Initial boundary value problem
Sensitivity measure

1 Introduction

The continuous enhancement and sophistication of experimental devices in ser-
vice of biological community take advantage of the fast development of infor-
matics and image processing. However, it is not a rare case that a large amount
of spatio-temporal data, e.g., in form of a time sequence of images, is routinely
generated without a clear idea about further data processing.
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The aim of this paper is to (re)establish the link between experimental condi-
tions (experimental protocol) and the accuracy of the resulting data processing.
Our simplified case study on FRAP (Fluorescence Recovery After Photobleach-
ing) data processing [6,14] serves as a paradigmatic example of the inverse prob-
lem of the diffusion parameter estimation from spatio-temporal measurements
of fluorescent particle concentration. The FRAP technique is based on mea-
suring the fluorescence intensity (proportional to non-bleached particles con-
centration) in a region of interest (being usually an Euclidian 2D domain) in
response to a high-intensity laser pulse. The laser pulse (the so-called bleach)
causes an irreversible loss in fluorescence of some particles residing originally in
the bleached area, presumably without any damage to intracellular structures.
After the bleach, we observe the change in fluorescence intensity in a monitored
region reflecting the diffusive transport of fluorescent particles from the area
outside the bleach [12,17].

A natural question is how the experimental settings influence the accuracy of
the resulting parameter estimates. There are many rather empirical recommen-
dations related to the design of a photobleaching experiment, e.g., the bleach
spot shape and size [2], the region of interest (its location and size), or the
total time of measurement, see [16] and references within. However, we would
have a more rigorous tool for the choice of experimental design factors. This
is because the setting of initial conditions of an experiment not only influences
the following data measurement process. There is somewhat hidden a related
data processing part. Mainly in case of a model-based design of experiments and
when the measured data are used in the frame of an inverse problem of model
parameter estimation. Having a reliable process model, e.g. [11], we can perform
the subsequent sensitivity analysis with respect to the model parameters [3].
Consequently, we are allowed to formulate the problem as the maximization of a
sensitivity measure leading to the optimal initial condition (an optimal bleaching
pattern).

The paper is organized as follows. In Sect. 2, we introduce the problem,
define the sensitivity measure and formulate the optimization problem. Section 3
describes some numerical issues of sensitivity measure evaluation. In Sect. 4, we
provide a numerical example to show that our theoretical basis is well founded
and that the optimal initial condition strongly depends on the diffusion coeffi-
cient and leads to a variety of bleaching patterns. Finally, some conclusions are
presented in Sect. 5.

2 Problem Formulation

Let us consider the Fickian diffusion with a constant diffusion coefficient D > 0
and assume a spatially radially symmetric observation domain, i.e., the data
are observed on a cylinder with the radius R and height T [8]. Taking into
account the usual case of radial symmetry of the FRAP experiment, the simplest
governing equation for the spatio-temporal distribution of fluorescent particle
concentration u(r, t) is the diffusion equation as follows
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∂u

∂t
= D

(
∂2u

∂r2
+

1
r

∂u

∂r

)
, (1)

where r ∈ (0, R], t ∈ [0, T ], with the initial and Neumann boundary conditions

u(r, 0) = u0(r),
∂u

∂r
(R, t) = 0. (2)

We consider the diffusion equation in polar coordinates since both the whole
boundary value problem and the bleaching pattern used in FRAP experiments
have the rotational (radial) symmetry.1

The main issue in FRAP and related inverse problems of parameter estima-
tion is to find the value of the underlying model parameters (e.g., the diffusion
coefficient D) from spatio-temporal measurements of the concentration u(r, t),
see [13,14].

Obviously, the measured data are discrete and each data entry quantifies the
variable u at a particular spatio-temporal point (r, t) in a finite domain, i.e.,

u(ri, tj) ∈ [0, umax], i = 0 . . . n, j = 0 . . . m,

where i is the spatial index uniquely identifying the pixel position where the value
of fluorescence intensity u is measured and j is the time index (the initial con-
dition corresponds to j = 0). Usually, the data points are uniformly distributed
both in time (the time interval Δt between two consecutive measurements is
constant) and space, i.e., on an equidistant mesh with the step-size Δr, see [8].
Having Ndata := (m + 1) × (n + 1) the total number of spatio-temporal data
points, we can define a forward map (also called a parameter-to-data map)

F : R → RNdata

(D) → u(rk, tk)Ndata
k=1 . (3)

Our regression model is now
F (D) = ue, (4)

where the data ue ∈ RNdata are modeled as contaminated with additive white
noise

ue = F (DT ) + e = u(rk, tk)Ndata
k=1 + (ek)Ndata

k=1 . (5)

Here DT denotes the true coefficient and e ∈ RNdata is a data error vector, which
we assume to be normally distributed with variance σ2 for each time instant tj ,
i.e., ej = N (0, σ2), j = 0, . . . , m, ej ∈ Rn+1.

Given some data, the aim of the parameter estimation problem is to find DT ,
such that Eq. (4) is satisfied in some appropriate sense. Since Eq. (4) usually con-
sists of an overdetermined system (there are more data points than unknowns),
it cannot be expected that it holds with equality, but instead an appropriate
notion of a solution is that of a least-squares solution Dc (with ‖ . ‖ denoting
the Euclidean norm on RNdata):

‖ ue − F (Dc) ‖2= min
D>0

‖ ue − F (D) ‖2 . (6)

1 In our preceding papers [6–8,14], we employed the Cartesian coordinate system.
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Remark 1. The above defined parameter identification problem (6) is usually ill-
posed (in a Hadamard sense) for non-constant coefficients [5] and a regularization
technique has to be employed. Let us state, that the theory of regularization of
ill-posed problems is well developed, see [4] and references within there. For
some practical examples related to FRAP data processing see our works [6,7,
14]. However, if we a-priori restrict the coefficients D to be constant, then the
identification problem becomes well-posed.

Having the noisy data as in (5), the estimated value Dc of the true diffusion
coefficient DT can be computed numerically by solving the inverse problem to
initial boundary value (IBV) problems (1)–(2). It can be shown [1,3,8], that
for our case of single scalar parameter estimation and white noise as data error
assumed, the expected relative error in DT depends on the data noise level and a
factor, which we call the global semi-relative squared sensitivity SGRS , as follows

E

(∣∣∣∣Dc − DT

DT

∣∣∣∣
2
)

∼ σ2

SGRS
, (7)

where E is the expected value and σ2 denotes the variance of the additive Gaus-
sian noise. The sensitivity measure SGRS , that depends on the initial condition
u0, is defined on a spatio-temporal mesh by

SGRS(u0) = D2
T

n∑
i=0

m∑
j=1

[
∂

∂D
u(ri, tj)|D=DT

]2

, (8)

where ∂
∂Du(ri, tj) is the usual sensitivity of the model output at the spatio-

temporal point (ri, tj) with respect to the parameter D.
It is obvious from this estimate that if the noise level is fixed, the esti-

mation of DT can only be improved by switching to an experimental design
with a higher sensitivity. The sensitivity measure (8) involves several design
parameters. If the spatio-temporal grid for the data measurement is given,
i.e., all the above parameters R, T,Δr,Δt are fixed, there is only one way
to maximize the sensitivity measure SGRS : to consider the initial condition
u0 in (2) as the experimental design parameter. It means, for the discretized
version of the IBV problems (1)–(2), the aim is to find the initial condition
(u00, . . . , u0n)T = (u0(r0), . . . , u0(rn))T ∈ Rn+1 such that SGRS is maximized
and hence the expected error in DT is minimized. In order to do so, we establish
the bounds where the initial condition is considered: u0 ≤ u0i ≤ u0, i = 0, . . . , n,
where u0, u0 ∈ R, u0 < u0. The optimization problem is formulated as follows

uopt
0 = arg max

u0∈Rn+1
SGRS(u0) subject to u0 ≤ u0i ≤ u0, i = 0, . . . , n. (9)

Without loss of generality, we set u0 = 0 (zero components) and u0 = 1 (non-zero
components).
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3 Numerical Issues of Sensitivity Measure (8) evaluation

Based on the previously fixed parameters R, T , it is convenient to introduce
the following scaling of the space and time coordinates and to define a scaled
diffusion coefficient δ

r̃ :=
r

R
, t̃ :=

t

T
, δ :=

DT

R2
. (10)

Instead of the Fick diffusion Eq. (1), the concentration u, in the scaled coordi-
nates r̃, t̃, then satisfies the equation

∂u

∂t̃
= δ

(
∂2u

∂r̃2
+

1
r̃

∂u

∂r̃

)
, (11)

where r̃ ∈ (0, 1], t̃ ∈ [0, 1], with the initial and Neumann boundary conditions

u(r̃, 0) = u0(r̃),
∂u

∂r̃
(1, t̃) = 0. (12)

Let us fix n+ 1 as a number of spatial points and m + 1 as a number of time
measurements. Consider a spatio-temporal grid {r̃i, t̃j}, i = 0 . . . n, j = 0 . . . m,
where r̃0 = 0, r̃n = 1, t̃0 = 0, t̃m = 1, with corresponding spatial and time steps
Δr̃ = 1

n and Δt̃ = 1
m , respectively. Consequently, u(r̃i, 0) = u0(r̃i), i = 0 . . . n,

represents the initial condition (evaluated at discrete points r̃i) and ∂u
∂r̃ (1, t̃j) =

0, j = 1 . . . m, represents the homogeneous Neumann boundary condition.
We use the finite difference Crank-Nicolson scheme to compute a numerical

solution ui,j := u(r̃i, t̃j), i = 0 . . . n − 1, j = 1 . . . m, of the IBV problems
(11)–(12). After some algebraic manipulation we arrive at a linear system with
a three-diagonal symmetric positive definite matrix

(γ+Z − hS)u.,j = (γ−Z + hS)u.,j−1 (13)

for (u0,j , . . . , un−1,j)T . The Neumann boundary condition implies un,j = un−1,j .
Here

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 s0
s0 0 s1

s1 0 s2
. . . . . . . . .

sn−3 0 sn−2

sn−2 sn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

h =
Δt̃

Δr̃
, γ+ =

Δr̃

δ
+ h, γ− =

Δr̃

δ
− h, sk =

2k + 1
4

, k = 0, . . . , n − 1,

Z = diag(14 , 1, 2, . . . , n − 2, n − 1).

The formula (8) for SGRS involves the derivative of the solution u(r, t) of (1)–(2)
with respect to the diffusion parameter D. Taking the scaled variables (10) and
using the derivative of a composite function, we find that

D
∂u

∂D
= D

∂u

∂δ

∂δ

∂D
=

DT

R2

∂u

∂δ
= δ

∂u

∂δ
= δ

∂u

∂t̃

∂t̃

∂δ
= − Dt

δR2

∂u

∂t̃
= −t̃

∂u

∂t̃
.
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Thus, the scaled sensitivity measure (8) has the form

SGRS = δ2T

n∑
i=0

m∑
j=1

[
∂

∂δ
u(r̃i, t̃j)|δ=δT

]2

=
n∑

i=0

m∑
j=1

[
t̃j

∂

∂t̃
u(r̃i, t̃)|t̃=t̃j

]2

. (14)

Replacing the derivative with a finite difference, and using the fact that t̃j = jΔt̃,
the sensitivity measure SGRS can be approximated as follows

SGRS(u0) ≈
n∑

i=0

m∑
j=1

[
jΔt̃

u(r̃i, t̃j) − u(r̃i, t̃j−1)
Δt̃

]2

=
m∑

j=1

j2
n∑

i=0

[ui,j − ui,j−1]
2 =: Sapp(u0(r̃)), (15)

where the values ui,j are computed from ui,j−1 using (13), thus no extra work
is necessary.

As we already proved in [9], the components of the vector uopt
0 (in discrete

points r̃0, . . . , r̃n) attain only two values u0 and u0. The jumps between these
values in fact represent the discontinuities in bleached domain leading to more
complex bleaching patterns, see [9] for more details.

Remark 2. A variety of patterns arises as optimal for slow diffusive transport
(for low values of δ), e.g., the bleaching pattern is called a disc, an annulus, a
disc & annulus, or an annulus & annulus if

uopt
0 = [u0, . . . , u0, u0, . . . , u0]T ,

uopt
0 = [u0, . . . , u0, u0, . . . , u0, u0, . . . , u0]T ,

uopt
0 = [u0, . . . , u0, u0, . . . , u0, u0, . . . , u0, u0, . . . , u0]T ,

uopt
0 = [u0, . . . , u0, u0, . . . , u0, u0, . . . , u0, u0, . . . , u0, u0, . . . , u0]T ,

respectively, see Fig. 1. Note that this formulation is well suited for both (i) the
optimization of size of a specific bleached domain geometry (shape or pattern),
and (ii) the optimization between all possible patterns (as explained above).

4 Bleaching Pattern Optimization for FRAP Experiments

Previously, in [15], we found that there exists an optimal size of the bleached
domain when the pattern is restricted to the simply connected (disc) shape only.
The quantitative aspect of our result announced in [15], i.e., ropt = 1.728

√
DcT ,

valid for an infinite domain, was confirmed once again in this study, see Fig. 2.
Indeed, comparing two cases with D = 0.1 (the dashed curve) and D = 0.001
(the dotted curve), we see that the optimal disc radius with 100 times lower
diffusive mobility is 10 times smaller. Here, we have numerically (for T = 1),
ropt = 0.56 and ropt = 0.06, for D = 0.1 and D = 0.001, respectively; while the
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Fig. 1. Optimal pattern of initial bleach for two different values of δ = DT
R2 , see [9].

Left: δ = 1/4 (disc), right: δ = 1/12 (annulus).

“analytical formula” according to [15] leads to values ropt(D=0.1) = 0.546 and
ropt(D=0.001) = 0.055, respectively.

In our work [9], we found various optimal initial conditions for an inverse
problem of diffusion constant estimation on an infinite two-dimensional domain.
An interesting pattern of increasingly complicated (with respect to connectiv-
ity) optimal initial shapes was discovered by an efficient algorithm of numerical
optimization. Figure 1 shows the result for two values of dimensionless diffusion
constant δ. The exhaustive explanation of such an interesting result is far of
scope of this paper. Nevertheless, the principal cause behind this phenomenon
is clear: with the restricted observation domain and fixed overall measurement
time interval, the more complex pattern provides a better exploitation of spatio-
temporal data because the sensitivity measure SGRS , see (8), gives a higher value
than for any simpler shape, e.g., a disc (common bleaching shape used in FRAP
community).

As follows, we present a numerical case study related to the FRAP experi-
ment on a finite domain (with the Neumann homogeneous boundary condition)
when the bleaching pattern (or shape) is not restricted previously. The goal is
twofold: (i) to demonstrate (once again) the influence of Sapp on a solution of
inverse problem (6), and (ii) to show the unexpected variety of patterns corre-
sponding to optimal initial conditions, see Fig. 1.

Further, in order to perform our virtual FRAP experiments (getting several
sets of virtual experimental data), we used two values of D = DT and two levels
of noise σ. The parameters defining the experimental protocol were fixed, more
specifically:

R = 1, T = 1, n = 100, m = 300.

The sequence of numerical computation is the following:

1. Choose a diffusion coefficient DT and the non-zero components of u0 ∈ Rn+1.
2. Generate the time evolution ui,j computed using (13).
3. Produce the noisy data from ui,j using (5).
4. Solve problem (6) and find a solution Dc.

Figure 3 shows illustrative examples of exact and noisy data, which represents
a time sequence of “row” data for further processing. The dashed lines are the
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Fig. 2. The values Sapp vs. disc radius r for 5 different diffusion coefficients D. The
existence of optimal disc radii for each case is clearly visible.

initial conditions u0 (j = 0) and the solid lines from top to bottom correspond
to every 30-th time instant of exact data, i.e., for j = 30, 60, . . . , 300. The noisy
data are plotted only for j = 0, 150, 300. The known values of DT and σ were
used only a posteriori for the evaluation of relative error E and value σ2

Sapp
, cf.

(7), used in Figs. 4 and 5.
In order to generate our virtual “row” data, we used several following differ-

ent initial conditions u0 ∈ R101 with non-zero components u0i, i ∈ {0, . . . , 100},
listed below, with corresponding values of Sapp. For the first set of initial condi-
tions IC1–IC5 the value DT = 0.1 was used (with two levels of the noise σ = 0.01
and σ = 0.1), while for the second set of initial conditions IC6-IC9 we chose the
slower diffusion DT = 0.01 (and both levels of the noise) in order to allow a
more complicated bleaching pattern as optimal.

The first set of initial conditions for DT = 0.1:

– IC1: u0 has non-zero components for i = 0, . . . , 55 ⇒ Sapp = 949.5
(maximal value of Sapp among all discs)

– IC2: u0 has non-zero components for i = 19, . . . , 51 ⇒ Sapp = 589.2
(the initial condition leading to maximal value of Sapp among all annuli in
case of using another value DT = 0.01)

– IC3: u0 has non-zero components for i = 0, . . . , 79 ⇒ Sapp = 516.7
(suboptimal disc of a large radius)

– IC4: u0 has non-zero components for i = 0, . . . , 29 ⇒ Sapp = 478.9
(suboptimal disc of a small radius)
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Fig. 3. Initial values of u0 (the dashed stepwise curve) and the time evolution of the
solution uij computed using (13) for DT = 0.1. On top: disc – the non-zero components
of u0 have indices i = 0, . . . , 55. Beneath: annulus – the non-zero components of u0

have indices i = 23, . . . , 75. Left: exact data. Right: corresponding noisy data with
σ = 0.1.

– IC5: u0 has non-zero components for i = 44, . . . , 55 ⇒ Sapp = 100.5
(suboptimal annulus).

The second set of initial conditions for DT = 0.01:

– IC6: u0 has non-zero components for i = 19, . . . , 51 ⇒ Sapp = 458.5
(maximal value of Sapp among all annuli)

– IC7: u0 has non-zero components for i = 0, . . . , 18 ⇒ Sapp = 307.7
(maximal value of Sapp among all discs)

– IC8: u0 has non-zero components for i = 42, . . . , 69 ⇒ Sapp = 305.2
(suboptimal annulus)

– IC9: u0 has non-zero components for i = 0, . . . , 57 ⇒ Sapp = 115.7
(suboptimal disc).

Remark 3. It could be objected that the optimal annulus is missing among the
initial conditions IC1–IC5. This is true and the reason is simple. In case a disc is
the optimal bleaching pattern, the optimal annulus ends at the domain boundary.
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The proof relies on the evaluation of SGRS (and obviously Sapp, as well), which
leads to the identical results, cf. (14). This kind of “impure” annuli will be
excluded. Note that in case of a “pure annulus” as the optimal bleaching pattern,
the “complement” is the combination of a disc and “impure” annulus. The reason
why to exclude the bleaching domain from the border region as well as the
detailed analysis of the phenomenon of spurious optima is left to the near future.

The sensitivity measure Sapp, computed from exact data (without noise), was
used for determining the values σ2

Sapp
which theoretically give the upper bound

on the expected value E, see (7). In Tables 1–2, we resume the theoretical values
of expected relative errors of a diffusion constant estimate, see (7), for all initial
conditions (IC1–IC9) and both levels of noise (18 quantities in total).

Table 1. Expected values σ2

Sapp
for initial conditions IC1–IC5 (with DT = 0.1) defining

the concentration u0(ri). Two levels of noise are defined by σ.

IC IC1 IC2 IC3 IC4 IC5

Sapp 949.5 589.2 516.7 478.9 100.5

σ 0.01 0.01 0.01 0.01 0.01

σ2/Sapp 1.05E–7 1.70E–7 1.94E–7 2.09E–7 9.95E–7

σ 0.1 0.1 0.1 0.1 0.1

σ2/Sapp 1.05E–5 1.70E–5 1.94E–5 2.09E–5 9.95E–5

Table 2. Expected values σ2

Sapp
for initial conditions IC6–IC9 (with DT = 0.01) defining

the concentration u0(ri). Two levels of noise are defined by σ.

IC IC6 IC7 IC8 IC9

Sapp 458.5 307.7 305.2 115.7

σ 0.01 0.01 0.01 0.01

σ2/Sapp 2.18E–7 3.25E–7 3.28E–7 8.64E–7

σ 0.1 0.1 0.1 0.1

σ2/Sapp 2.18E–5 3.25E–5 3.28E–5 8.64E–5

The 18 data sets defined by 9 different initial bleaching patterns IC1–IC9
and two noise levels were further processed and compared mutually. That is,
two different true diffusion coefficients and two different levels of a Gaussian
white noise (σ = 0.1 and σ = 0.01) were chosen in order to generate 1000
trajectories representing the concentration u (measured as profiles of fluorescent
level). Using our method of diffusion parameter estimation [14] we obtained
1000 values of Dc for each data set. All these values were statistically processed.
Figures 4 and 5 illustrate the results. They are ordered into 4 groups: (i) IC1–
IC5 (for DT = 0.1) and σ = 0.01, (ii) IC1–IC5 (for DT = 0.1) and σ = 0.1,
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(iii) IC6–IC9 (for DT = 0.01) and σ = 0.01, and (iv) IC6–IC9 (for DT = 0.01)
and σ = 0.1.

The distribution of the squared error |Dc−DT

DT
|2 is shown in Fig. 4. As we

expected according to Tables 1–2, the smallest relative error for DT = 0.1 corre-
sponds the IC1 (an optimal disc, Sapp = 949.5), while for a slower diffusion (for
D = 0.01) the optimal annulus (IC6, Sapp = 485.5) gives smaller relative error
than the optimal disc (IC7, Sapp = 307.7).
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Fig. 4. The results of numerical estimation of diffusion coefficient. The boxplots show
the distribution of the squared error |Dc−DT

DT
|2, each based on 1000 noisy signal samples.

The cross marks (+) indicate the outliers. The higher value of Sapp corresponds to the
smaller box (and shorter confidence interval). Note that for both the upper left and
right graphical results (for D = 0.1) the IC1 (an optimal disc) gives the smallest relative
error, while for lower two cases of a slower diffusion (for D = 0.01), the optimal annulus
(IC6) beats the optimal disc (IC7).

In order to graphically illustrate the difference between theoretically and
numerically determined values of the relative error in a diffusion constant
estimation, we plotted Fig. 5. It was reached using (7), i.e., the difference

σ2

Sapp
− E

(∣∣∣Dc−DT

DT

∣∣∣2
)

was calculated and consequently statistically processed.



Disc vs. Annulus: On the Bleaching Pattern Optimization for FRAP 171

Again, the respective boxplots show these distributions over data sets with dif-
ferent physical (DT ), technical (σ) and experimental (initial conditions IC1–IC9)
attributes. The discrepancy is low for all cases, thus, we can rely on our sensi-
tivity based approach to the optimum experiment design. Indeed, we see that
the initial condition with maximal value of Sapp exhibits the narrowest intervals
and a distribution that is on average closest to zero than other initial conditions
(which confirms the above statement about sensitivity Sapp based approach).
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Fig. 5. The graphical results show the difference between the theoretically and numer-
ically determined values of the relative error in a diffusion constant estimation.

Remark 4. Let us add some comments about the solution process of optimiza-
tion problem (9) and finding the optimal initial condition uopt

0 . We used a global
optimization method from the UFO system [10]. This method uses local opti-
mization methods for finding local minima. Briefly speaking, we choose an initial
u
(0)
0 = (1/2, . . . , 1/2)T and for k = 0, 1, . . . , until the optimality conditions are

satisfied, we update the next iterate u
(k+1)
0 from u

(k)
0 based on the function value

Sapp(u
(k)
0 ) and its gradient. For each D we obtained a solution on the boundary

of the feasible region. Thus, uopt
0 (ri) ∈ {1, 0} is a binary-valued vector (there

exist non-zero components of uopt
0 ). As we already explained, a small number
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of jumps between 1 and 0 in uopt
0 occurs for large values of a scaled diffusion

coefficient δ. When δ decreases, the number of jumps increases.

5 Conclusion

In this paper, we have shown the importance of an interconnection between two
important activities in performing model based experiments: (i) the setting of
experimental factors, and (ii) data processing based on an underlying mathe-
matical model containing the specific experimental conditions as parameters.
Although our approach is illustrated on a specific case of photobleaching exper-
iment only, it has general validity. The key concept is based on evaluation of
sensitivity of measured data with respect to estimated parameters value. To do
so, first we formulated the problem of parameter estimation in precise terms of
parameter-to-data map, parameter estimates and their relative errors.

Only after that, our idea of the model-based optimization of experimental
conditions was presented on a numerical case study. We set up the numerical
procedure leading simultaneously to the optimal size and shape of a bleached
domain for which the sensitivity measure reaches the maximal value, hence assur-
ing the smallest relative error of the estimated parameter. Numerical calculations
revealed rather surprising results. For high values of the dimensionless diffusion
coefficient, the disc is the optimal shape and for smaller values, shapes with more
and more components (i.e., annuli-type shapes) become optimal. In particular,
this is not the disc which is the best shape, but, for practically relevant values of
the experimental settings, sometimes an annulus can be better because it leads
to a significant improvement in the confidence interval. Hence, it is proved that
the bleach size and shape can be readily optimized and the bleaching pattern rep-
resents one of the most important experimental design factors in photobleaching
experiments.

We hope that our findings will be incorporated into a novel generation of
the FRAP experimental protocols – it is not computationally expensive and the
enhancement of the parameter estimation process can be substantial.
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Abstract. Despite the fact that biotechnology with microalgae is
attracting a lot of research interest since 1950s, a reliable computational
tool for simulation of microalgal bioreactors is still lacking. In this work,
a unified multidisciplinary modeling framework for microalgae culture
systems is presented. Our framework consists of the model of microal-
gae growth in form of advection-diffusion-reaction system within a phe-
nomenological model of photosynthesis and photoinhibition. The fluid
dynamics is described by the Navier-Stokes equations and the irradiance
field inside a reactor closes the equation system. The main achievement
resides in successful integration of computational fluid dynamics code
ANSYS Fluent and reaction kinetics, which makes our approach reliable
and simple to implement. As a case study, the simulation of microalgae
growth in a Couette-Taylor bioreactor is presented. The bioreactor oper-
ation leads to hydrodynamically induced fluctuating light conditions and
the flashing light enhancement phenomenon, known from experiments.
The presented model thus exhibits features of a real system.

Keywords: Microalgae · Mathematical modeling · Photosynthesis
CFD · Couette-Taylor bioreactor · Flashing light enhancement

1 Introduction

After the failure of first generation biofuels based on corn and soya, which created
a food shortage in the third world, the focus of scientific community aimed
on simple photosynthetic organisms, cyanobacteria and microalgae [7]. These
incredibly versatile microorganisms are attracting a lot of research interest for
over a half-century, mainly for high photosynthetic efficiency, biomass growth
c© Springer International Publishing AG, part of Springer Nature 2018
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and lipids content, see [19] and references within there. Microalgae are oxygenic
unicellular phototrophs, which utilize the light energy to fix inorganic carbon
(CO2) to synthetize more complex organic molecules in photosynthetic reactions.
Moreover, they mitigate carbon dioxide but also consume inorganic nitrogen and
phosphorus and thus may participate in waste-water treatment processes [19].

However, there are technological and knowledge-based barriers preventing
optimized mass cultivation of photosynthetic microorganisms. The reason resides
in the fact that a reliable model of microalgae growth have to deal with com-
plex problems, mainly with three-dimensional multiphase (gas-liquid-solid) flow
dynamics, irradiance distribution and multi-level functionality of cellular pro-
cesses. Moreover, all these parts interact across different timescales. Thus, one
has to solve both theoretical (coping with multi-timescale phenomena) and prac-
tical (dealing with enormous computational requirements) issues. Although the
correct integration of a CFD (computational fluid dynamics) code and photo-
synthetic reaction kinetics is essential for meaningful solution, most studies of
general microalgae culture systems (MCS), e.g., photobioreactors (PBRs), are
focused on partial problems without clear connection to the whole production
process, cf. [3,13] and references within. Resuming, reliable methods with a pre-
dictive power for in silico simulation of microbial growth in MCS are rather
slowly emerging than being well established [4].

In this study, we present a unified modeling framework integrating the fluid
dynamics and photosynthetic reaction kinetics (Sect. 2). As a virtual experimen-
tal system par excellence we took the Couette-Taylor bioreactor (CTBR), first
reported in [8]. Results of numerical simulation of microalgae growth in CTBR
are shown and discussed in Sect. 3. Finally, in Sect. 4, we draw some conclusions
and future goals.

2 Model Description

Our framework for MCS (photobioreactor, open or raceway ponds) consists of

1. the state system – mass balance equations in form of advection-diffusion-
reaction partial differential equations – PDEs (1)–(3),

2. the fluid flow equations, i.e., Navier-Stokes equations (4), and
3. the irradiance distribution inside CTBR (5).

All three parts of the model are interconnected, i.e., the mass balance equations
for the state variables (species characteristics, nutrients, gases, etc.) have to be
solved simultaneously with the fluid dynamics (momentum balances, continuity
equations). Nevertheless, we assume that the stationary flow field inside MCS
is not affected by mass transfer and reactions [2]. This assumption permits the
separation of biological and environmental states and thus biological and envi-
ronmental parts (models) can be solved with different numerical method and
with different spatial-temporal discretization, dramatically reducing the compu-
tational demands. This separation can be total (for the stationary flow field in
a continuous system) or stepwise, e.g., reflecting some sequence of quasi-steady
states in a production system operated in batch mode.
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2.1 State Model

The biological part of modeling framework is based on material balance equations
for the state variables of interest describing the time dependent (non-stationary)
transport and reaction among the species or compounds [2]:

∂ci

∂t
+ ∇ · (vci) − ∇ · (De∇ci) = R(ci) + S(ci), t ∈ [t0, T ], i = 1, . . . ,m, (1)

where t0 and T are initial and final time, respectively, ci = ci(x, t) is a conserva-
tive quantity (concentration or cell density), v(x, t) is the velocity flow field ruled
by the fluid-dynamic model, cf. (4), and x ∈ Ω ⊂ R3 stands for a position vector
in a coordinate system (e.g., Cartesian or cylindrical). The dispersion coefficient
De(x) is a tensor of second order, which corresponds to the diffusion coefficient
in microstructure description. De(x) is empirical parameter describing mixing
in the system and is influenced by the molecular diffusion and velocity profile,
i.e., it is not a material constant.

The reaction kinetics and time changes of the reacting species are described
by the reaction term R(ci) and source terms S(ci), respectively. The source
term, e.g., the external load of nutrients into MCS, is usually modeled as a
corresponding boundary condition. However, in order to simplify the analytic
study of the optimal solution existence, see [1], while respecting that the location
of discharge of some material could be inside the domain Ω, we prefer the above
form of (1). The initial condition and boundary condition (impermeability of the
domain boundary, e.g., PBR walls) are following:

ci0 = ci(x, t0), x ∈ Ω ⊂ R3, i = 1, . . . , m, (2)

∇ci(x, t) = 0, x ∈ ∂Ω, t ∈ [t0, T ], i = 1, . . . , m. (3)

2.2 Fluid-Dynamic Model

Microalgae cells are solid particles and the consumed CO2 and evolved O2 are
gases, thus the system should be described as multiphase flow and transport.
However, neglecting the gaseous phase, it is possible to consider the microal-
gae culture within a bioreactor as a suspension where microalgae represent the
dispersed phase. Also, considering the cell density about 10 kg m−3 for the dry
weight of biomass, i.e., 1% of mass content, and assuming that an average diam-
eter of a spherical microalgae cell is about ten micrometers [19], we can classify
our flow system as single-phase within the employed computational software
ANSYS Fluent [10].

Mass density of the suspension is determined as ρ = ρw (1−k)+ρs k, where
ρw is the mass density of the medium and ρs the cell mass density, and k is
the volume fraction. However, one can assume ρ = ρw because of a uniform
distribution of algal cells (no aggregations) and the fact that microalgae are
floating in the medium. Furthermore, the inter-particle distances in our case of
dilute suspension are sufficiently large to calculate flow field over each particle
or cell [2], i.e., particles do not interfere with the flow field.
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Thus, we model the incompressible liquid phase (suspension of water, nutri-
ents and microalgae), hence the classical system of Navier-Stokes equations and
the continuity equation is used as fluid-dynamic model:

∂v

∂t
+ (v · ∇)v = f − 1

ρ
∇p + ν∇2v, ∇ · v = 0, (4)

in [t0, T ] × Ω, with suitable boundary conditions on [t0, T ] × ∂Ω and initial
conditions in Ω, and where v, p, f, ρ and ν denote the fluid velocity, the pressure,
the body forces, fluid density and kinematic viscosity, respectively.

2.3 Irradiance Field Within CTBR and a Suitable Reaction Model

The photosynthetic reactions depend on many variables such as irradiance, acces-
sibility of both inorganic (Fe, P, etc) and organic nutrients (e.g., carbohydrates),
concentration of gases, osmolality, and many others. In this work, we focus only
on the key variable determining the reaction kinetics, the fluctuations of irra-
diance; the other variables are assumed to be externally controlled to not limit
the cellular growth. Generally, both light attenuation and scattering should be
taken into account in order to describe the irradiance distribution inside CTBR
[5]. Here, for the sake of simplicity, only the attenuation is taken into account.
For the special case of CTBR with inner and outer radii rin, R, respectively, illu-
minated from outside by the incident irradiance I0, the following relations were
derived for the irradiance in a spatial point (determined by a radial position r)
and the average irradiance in whole system [5]

u(r) = 2u0
R

r

cosh(Λ r
R )

cosh(Λ) + sinh(Λ)
,

uav =
4u0

1 − ( rin

R )2
1/Λ

cosh(Λ) + sinh(Λ)

[
sinh(Λ) − sinh(Λ

rin

R
)
]
, (5)

where u = I/Iopt, Iopt reaches the value of 250 µE m−2 s−1 [22], u0 = I0/Iopt is
the incident irradiance on the outer surface (r = R), and Λ is the dimensionless
attenuation coefficient. It is further convenient to define this quantity as follows:
Λ := ln(2)R

r1/2
, where r1/2 is the length interval in which the intensity of light

diminishes to one half (in a linear case).

Remark 1. It seems that optimal conditions for microalgae culture growth occurs
when the averaged irradiance within CTBR has the value uav = 1. However, this
optimization problem depends on mixing intensity as well, and it is discussed
elsewhere [6]. Only for the lumped parameter system, the value u = 1 is the
optimal one (by definition).

Based on the decades of experimental research of photosynthesis, the reliable
model of reaction kinetics in MCS has to cover at least three time scales across
photosynthetic reactions. The following phenomena: (i) activation of the light
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harvesting complex (photosynthetic unit – PSU) in light reactions, (ii) biomass
production, and (iii) photoinhibition, i.e., damage of a part of PSU by an exces-
sive irradiance, has to be reflected in the reaction term R(ci) in (1). As a suitable
candidate for reaction model, we adopted the three-state model of photosynthetic
factory (PSF) [9,14,16,22,23]. PSF model considers 3 states in which microal-
gae cells may exist: activated – A, inhibited – B, rested – R. Although the fluid-
dynamical properties of cells in each of three states are identical, these states
are impacted differently by dynamic changes of the environment, i.e., spatial-
temporal changes of states concentrations determine the biomass production, cf.
(6). Let be the concentrations of respective components cA, cB , and cR (with
the same units as for the microalgae cell density cx in whole PBR – generally
106 cell ml−1 as in [22]). Then the following relation holds (for ∀t ∈ [t0, t∞], and
∀x ∈ ∂Ω): cA(x, t)+cB(x, t)+cR(x, t) = cx(x, t). The dimensionless scalar values
yA = cA/cx, yB = cB/cx and yR = cR/cx (molar fractions) are respective states
of the PSF model; for more details see Sect. 2.4. It is important to emphasize
here, that according to [9,22], the spatial-temporal averaged rate of photosyn-
thetic production (specific growth rate ċx/cx) is proportional to the activated
state fraction as follows:

ċx =
κγ

meas(Ω)T

∫ T

0

∫

Ω

[yA(I(x), t) − Me] cx dxdt, (6)

where term Me represents a cellular maintenance factor describing internal
metabolism; Me is considered constant in our case although it may vary if hydro-
dynamical shear stress is considered [23].

Remark 2. Observing the term κγ in (6), which has a value approximately 10−4

[s−1], we see the reason why the transition from the time-scale of light fluctuation
to time-scale of biomass growth (macro-scale) is reached without loss of accuracy.
State yA of the PSF model, in the range of [0, 1] as well as the other PSF model
states, is sensitive to the light fluctuations and the integral in (6) can be evaluated
separately. Afterwards, “the scale jump”, factor κγ in (6), provides the value of
a real specific growth rate.

2.4 Model of Photosynthetic Factory – PSF Model

Model of photosynthetic factory (PSF model) proposed by Eilers and Peeters [9]
and further developed by Wu and Merchuk [22,23] and Papacek and Celikovsky
[14,18] is used for the reaction term R(ci) derivation in the transport equation
(1). The state vector of the PSF model is three dimensional, y = (yR, yA, yB)�,
where the respective components represents the probability that PSF is in the
resting, activated and inhibited state. It is supposed that the photosynthetic
reactions depend on the irradiance level only. This is the input or forcing func-
tion u(t) in (7), which represents the time-dependent irradiance (in relative-
dimensionless unit). The values of PSF model parameters in its original form,
i.e., α, β, γ, δ, κ, are taken from [22], where Wu and Merchuk [22] identified
these values for the microalga Porphyridium sp.: α = 1.935 × 10−3 µE−1 m2,
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β = 5.785 × 10−7 µE−1 m2, γ = 1.460 × 10−1 s−1, δ = 4.796 × 10−4 s−1,
κ = 3.647×10−3 and Me = 5.9×10−2 h−1. For details regarding the experimen-
tal design for parameter estimation and the identifiability study, see [18]. Aiming
to use the singular perturbation method, the following re-parametrization was
introduced in [18]: q1 :=

√
γδ
αβ , q2 :=

√
αβγ

δ(α+β)2
, q3 := κγ

√
αδ
βγ , q4 := αq1, q5 :=

β/α. Consequently, the PSF model acquires the following form:

ẏ =
[A + u(t)B]

y, (7)

A = q4

⎡
⎣

0 q2(1 + q5) q5
q2(1+q5)

0 −q2(1 + q5) 0
0 0 − q5

q2(1+q5)

⎤
⎦ , B = q4

⎡
⎣

−1 0 0
1 −q5 0
0 q5 0

⎤
⎦ . (8)

Two negative eigenvalues result for the irradiance level of 250 µE m−2 s−1 (the
value of the parameter q1 which maximizes the steady-state growth): λ1 = −0.63,
λ2 = −0.59 10−3, classifying the ODE system (7) as stiff (due to value 103 of
the ratio λ1

λ2
). This fact points to the existence of two processes widely separated

in point of view of their characteristic times, being (i) photosynthetic light and
dark reactions, and (ii) photoinhibition. The “slow” state can be under some
conditions (constant level of the mean input) “frozen” and the so-called fast
reduction used [16], i.e., the behavior of the system (7) is characterized by the
only one following ODE

d
dt

yA = −q4 (uav + q2)
[
u(r) + q2
uav + q2

yA − u(r)
uav

yAss(uav)
]

, (9)

and the “slow” variable yB can be regarded as a constant depending on the
averaged value u = uav. According to our works [6,16] it holds

yAss(u) =
u/q2

u2 + u/q2 + 1
, yBss(u) =

u2

u2 + u/q2 + 1
. (10)

These equations representing the PSF model, either (7) and (9), have been imple-
mented as a User-Defined Function (UDF) in ANSYS Fluent, see Sect. 3.1.

Remark 3. PSF model clearly satisfies the requirement for model candidate; its
5 parameters can be seen in re-parametrized form (7) as three time constants
(inverse of reaction rates): the first time scale corresponding to the light and
dark reactions is in order of seconds (1/q4), the second one, corresponding to
the photoinhibition (1/q5), is in order of minutes, and finally, the third one
corresponds to microalgae growth in order of hours (1/q3), one parameter means
the optimal irradiance (q1), and the last parameter represents the shape of the
steady state growth curve (q2), see [16,18] for more details.

3 Case Study: The Couette-Taylor Bioreactor

Since 1950s, in frame of the biotechnology with microalgae, the microalgae pho-
tosynthesis in flashing light conditions is attracting a lot of research interest
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[11]. In our early works, where the PSF model was applied in a distributed
parameter system [15,16], we theoretically confirmed the so-called phenomenon
of flashing light enhancement known from experiments [11,12,21]. However, our
models suffered from over-simplification because Navier-Stokes equations were
not solved there within a fluid dynamic model. Here, we introduce a general app-
roach applicable to any geometry and operating conditions of MCS, thus ready
for industrial applications. For the validation of our integrated model, we have
chosen a Couette-Taylor bioreactor (CTBR); ideally when the so-called Taylor
vortex flow regime takes place; Taylor number Ta = Ω2rin(R−rin)

3

ν2 exceeds the
first critical value [20], where Ω is the angular velocity of the inner cylinder
of CTBR, ν is the kinematic viscosity, and the inner and outer cylinder radii
are rin, and R, respectively [20]. This situation is illustrated by ANSYS Flu-
ent simulation, see Fig. 1, left part, when the axial velocity components in axial
cross section of CTBR are shown. The so-called Taylor vortex flow (in laminar
flow regime) is forcing microalgae cells to periodically travel between illuminated
wall and the dark side of the bioreactor. This hydrodynamically induced flash-
ing light regime causes the light averaging and consequently the flashing light
enhancement may occurs [14]. A similar results, i.e., the vortex flow in a laminar
flow regime, can be observed within the idealized 2-D square cavity with moving
upper wall, see Fig. 1, right part [17].

For the initial condition and other parameters from Table 1, the case study
was resolved using UDF included in CFD code ANSYS Fluent. Within this soft-
ware, PDEs (1)–(4) were embedded and the reaction kinetics was implemented
as special UDF according to the description in Sect. 2.4. While various mixing
intensities (controlled by Ω) were tested, only one irradiance level set by u0 was
used. This specific value of u0 = 5.469 represents such value of incident irra-
diance (irradiance falling to the outer CTBR cylinder), which assures that the
average irradiance in the culture has optimal value uav = 1.

Remark 4. Having R = 66.6 [mm], rin = 50 [mm] in the relation (5), the
outer and inner radii, respectively, then setting Λ = 36 ln(2), means that
r1/2 = 66.6/36 [mm], and the evaluation of average irradiance uav gives as result
uav = u0

5.469 . Thus, in order to have uav = 1, the incident irradiance u0 = 5.469,
see Table 1.

Table 1. Parameters needed for the simulation of microalgae growth in the Couette-
Taylor bioreactor: u0 is incident irradiance, r stands for CTBR radial coordinate inter-
val, r ∈ [rin, R], Re is the Reynolds number, Λ stands for attenuation coefficient, q2,
q4, q5, yR(t0) and yA(t0), represent 3 model parameters and 2 initial conditions (for
rested and activated state) of the PSF model, respectively (see Sect. 2.4).

u0 r [mm] Re = Ωrin(R−rin)
ν

Λ q2 q4 [s−1] q5 yR(t0) yA(t0)

5.469 [50, 66.6] 0–100000 36 ln(2) 0.3 0.5 0.0003 1 0
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Y

X, r

Fig. 1. (left) Contours of Y-velocity component (reaching both positive and negative
values) in the cylindrical gap of the Coutte-Taylor bioreactor (Reynolds number is
Re = 1000, and Ω = 1.2 rad s−1). (right) Contours of steady-state velocity magnitude
of the microalgae suspension within the idealized 2-D square cavity. The vortex flow is
imposed by the moving upper wall (Re = 1000, i.e., laminar flow regime).

3.1 Numerical Aspects of PDEs (1)–(4) Implementation and
Solution

The implementation of our model consisting of PDEs (1)–(4) is straightforward.
The key role plays the reaction term R(ci) in (1); this term is “local” in sense
that it depends on the actual local transport and reaction rates, and it contains
all relevant time-scales, thus, it perfectly fits to our requirements. The technical
simplicity of PDE based approach, which takes advantage of the sophisticated
CFD codes, makes whole approach reliable and robust. There are well estab-
lished methods and CFD software packages to solve the PDEs (1)–(4) defin-
ing our modeling framework. Hence, using a suitable numerical method, PDEs
are transformed into a system of linear algebraic equations. In the fluid flow
problems, the finite volume approach (FVM) is more popular in obtaining the
discretized form of equations than other approaches like FEM or FDM (finite
element or finite differences method, respectively), especially with unstructured
grids. The system of discretized equations is solved, usually iteratively, to find
the values of velocities and other scalar quantities like concentrations in all grid
points.

The key issue is in the integration of a CFD code and photosynthetic reaction
kinetics in one modeling framework. Our approach is based on the implementa-
tion of a UDF within the commercial CFD code ANSYS Fluent, which provides
the possibility to define an arbitrary reaction term. ODE system (7) can be
reduced to only one differential Eq. (9). The right-hand side of this equation
represents the rate of change of activated state yA which can be used in the
definition of UDF. Macro DEFINE VR RATE provides the possibility to define an
arbitrary reaction term in (1), including its dependency on the spatial coordinate
as represented by (5). Macro C CENTROID can retrieve corresponding coordinates
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of the current mesh cell. The three states of the microalgae culture were rep-
resented as individual species with same molar weights. Therefore, mass and
molar fractions should be identical here. Definition of the user-defined reaction
rate employed in our simulations for the unreduced system (7) transformed to
only two equations as the third state, yR, is complement to 1:

DEFINE_VR_RATE (PSFrate, c,t,r,Mw,omega,rate,rr_t)

{

real pos[ND_ND], rd,u,x,y,z,ya,yb,dya,dyb,ctot;

C_CENTROID(pos,c,t);

x = pos[0]; z = pos[2]; /* x, z-coordinate */

y = pos[1]; /* y-coordinate, rotational axis */

rd = sqrt( SQR(x) + SQR(z) ); /* radius coordinate */

u = 2*U0*R/rd*cosh(LAMBDA/R*rd)/(cosh(LAMBDA)+sinh(LAMBDA));

ctot = C_R(c,t)/Mw[ALG]; /* total molar concentration */

ya = omega[ACTIVE]; /* active state */

yb = omega[INHIBITED]; /* inhbited */

*rate = -dya*ctot; *rr_t = *rate;

if (!strcmp(r->name,"reaction-1")) {

dya = -Q4*(1+Q5)*(Q2+u)*ya + Q4*u*(1-yb);

*rate = -dya*ctot;

}

else if (!strcmp(r->name,"reaction-2")) {

dyb = Q4*Q5*u*ya - Q4*Q5/(Q2*(1+Q5))*yb;

*rate = -dyb*ctot;

}

*rr_t = *rate;

}

A mesh with 200 thousand hexahedral elements was used in our simulations
(see Fig. 2 on the left). Even though a larger mesh size would be preferable we
stayed with this relatively small mesh because our main restriction lies in the
number of necessary time steps giving a steady-state solution. We used time step
0.1 s, and according to the approach used for estimation of the Grid Convergence
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Fig. 2. (left) Illustration of the mesh used in our simulations. (right) Parallel speed-up
of our simulations.
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Index [24], we estimated the accuracy for this time step as 0.85%. It was based
on the spatial average of the activated state concentration at the end of time
range 0–5 s. The simulation of the whole time range 0–20000 s necessary for non-
reduced system (7) took approximately 24 h using 8 parallel processes on our
computational server (with Xeon CPU E5-4627, 2.60 GHz). It corresponds to
real parallel speed-up around 6, see Fig. 2(right) describing the parallel speed-
up of our simulations (based on 250 s time range and corresponding number of
parallel processes: 1, 2, 4, 8, 12 and 16) and its deviation from the ideal linear
dependency. Computational time for the reduced order system (9) and time
range 0–40 s was around 23 min on the same computer, that is approximately 60
times smaller than for the non-reduced system. The problem of different accuracy
of both PSF model formulations is treated theoretically in [6] and practically in
the following Sect. 4.

Concerning our CFD simulations: we used non-slip boundary conditions at
the cylindrical walls of the Couette-Taylor device, with a prescribed rotational
rate for the outer wall. Symmetry-type boundary conditions were applied at
the top and bottom of the geometry. Height of the cylindrical geometry was
200 mm, inner and outer diameters were 100 mm and 133.33 mm, that is their
ratio is 0.75. Every simulation consisted of two steps. In the first step, the Navier-
Stokes equations (4) were solved iteratively to get a converged solution of the
steady-state flow field for the corresponding mixing rate (Reynolds number).
In the second step, the flow field was assumed to be fully developed and only
Eq. (1) describing the transport and reaction of individual species (states of the
algae in our case) were solved. This approach is more efficient but in cases when
the flow field exhibits a transient behavior, the Navier-Stokes equations should
be solved simultaneously with the species transport equations. For example, the
Coutte-Taylor device shows an inherently transient behavior at some specific
rotations rates [20].

4 Results and Discussion

Our specific case study, i.e., the microalgae growth simulation in CTBR, serves
as a proof of concept of a CFD code integration with a microbial kinetics model.
Both the time dependent and steady-state quantities were calculated. First, the
dynamics of spatially averaged activated states yA and yB has been calculated
using both reduced order and non-reduced systems, (9) and (7), respectively.
While the reduced order system, via the so-called fast reduction, supposes yB is
frozen (yB = yBss(uav)), the non-reduced (full) system can simulate both fast
and slow dynamics. Thus, in the case of applied fast reduction (left graph in
Fig. 3), fast transitions from the initial state yA = 0 to its steady state takes
place for all mixing intensities (described by Re = 0, 1000, 100000) in few sec-
onds. For the non-reduced PSF model, two phases can be observed: (i) fast phase
- transition from the initial value yA(t0) = 0 to the maximal value occurring in
seconds, and (ii) slow phase - gradually growing inhibited state yB occurring
in minutes (right graph in Fig. 3). Due to the slow dynamics, the value of yA
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Fig. 3. State yA (spatially averaged) vs. time t, for three different mixing intensities,
Re = 0, 1000, 100000, with and without fast reduction, respectively. On the left, yA

vs. t according to reduced system (9), for time range 0–40 s. On the right, the time
dependency of activated state yA and inhibited state yB (both spatially averaged) of
the non-reduced system (7) is shown for time range 0–20000 s.

diminishes in far time horizon (which does not occur in left graph due to a con-
stant level of yB). The comparison of accuracy of respective results is discussed
further, cf. comments on Fig. 4(right).

In biotechnological applications, a performance index J , which either classi-
fies the quality of bioreactor design or the optimality of operating conditions, is
usually defined. Such performance index depends on certain parameters, which
can be optimized afterwards. The role of mixing on spatial distribution of the
activated state yA is shown in Fig. 4(left).

In order to quantify the impact of mixing (or more precisely the dependency
of CTBR angular velocity Ω on the cellular growth), we define the objective
function JCTBR as the volumetric productivity:

JCTBR =
1

meas(Ω)T

∫ T

0

∫

Ω

[yA(u, r, t)] cx dr dt. (11)

In case of steady state operation in continuous cultivation mode (cx is con-
stant), it is only the activated state fraction yA(u, r, t), which is changing within
CTBR volume, i.e., JCTBR according to (11) can be simplified (it is only the
normalized space-averaged integral, which is further evaluated): J = JCTBR

cx
=

1
π(R2−rin

2)

∫
Ω

yA(u, z, t) dz.

In Fig. 4(right), we show the dependence of the performance index J on the
mixing rate. There are 4 different cases within Fig. 4(right). For two geometries
(square cavity and CTBR) are used both the reduced (one ODE) and non-
reduced (two ODEs) system. In all cases, for lower Da (larger mixing rate - bigger
Re), we get better performance J approaching its maximal theoretical value
corresponding to the growth in averaged continuous light, cf. (10). These results
confirm the experimentally measured flashing light enhancement phenomenon
[12]. In case of poor mixing (low Re), the discrepancy between reduced order and
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Fig. 4. (left) Contour plots of molar fraction yA for different mixing rates - Reynolds
numbers from left to right: 0, 1000, 100000. (right) Performance index J vs. Da (Re),
gained for time range 0–20000 s, with time step 0.1 s. Red circles and black squares
represent simulation results of the whole non-reduced (2 ODE) system (7) for the
square cavity and CTBR, respectively. Asterisk and cross marks represent simulation
results of the reduced (1 ODE) system (9) for the square cavity and CTBR, respectively.
(Color figure online)

non-reduced models is visible. The reason resides in the violation of “sufficient
mixing condition” permitting the averaging of the “slow” state yB .

We note that our simulated data have an illustrative and testing purpose
only and for real quantitative simulations one has to employ parameters for
specific MCS and particular microalgae species. However, the result of biological
performance for our CTBR clearly shows the growth enhancing role of mixing
induced by convective motion, i.e., the simulated flashing light enhancement is
comparable to experiments [12,17]. The simulated results in Fig. 4(right) imply
that for lower Da (bigger Re, better mixing) leads to better performance J
(reaching actually its maximal theoretical value 0.625). However, the harmful
influence of the hydrodynamically induced shear stress originally considered in
Me term [23], see (6), is not taken into account and thus in reality certain
velocity of mixing would start damaging the cellular integrity.

Remark 5. Analysis of our numerical model indicates that the numerical process
is controlled by the Damköhler number Da := qr/qtr, which submits into relation
the reaction rate qr and mass transport rate (qtr). For the reaction rate we
have from (9): qr = [q4 (uav + q2)]. Convective mass transport rate in CTBR is
expressed as qtr = Ωrin

R−rin
. Hence, for qr fixed and employing the Re number for

the Couette-Taylor flow in form of Re = Ωrin(R−rin)
ν , it holds:

Da := qr
(R − rin)2

ν

1
Re

. (12)
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5 Conclusion

The crucial point for commercial success of a production plant, e.g., for algae
biofuels, is the availability of a reliable software tool with the predictive capacity
enabling simulation and optimization of system performance. In this work, we
presented the general unified modeling framework for microalgae culture sys-
tems, which is independent of the actual production system geometry or micro-
bial strain. All parts of the multidisciplinary framework, i.e., the state system,
fluid-dynamic model, model of irradiance distribution, are interconnected within
one CFD code ANSYS Fluent.

In the illustrative case study on a Couette-Taylor bioreactor, we have shown
that a three-state model of photosynthetic factory well behaves under hydrody-
namically induced high frequency light-dark cycles regime and copes with the
requirement imposed on the reaction model, i.e., it correctly describes both the
quasi steady-state and dynamic phenomena.

We conclude that our model provides an accurate description of microalgae
growth in a CTBR, thus it is well suited for the optimal control problem formu-
lation as well. Ongoing modeling efforts will continue in order to show how an
optimization problem can be formulated and solved, and how to develop even
more reliable model considering the effect of hydrodynamical shear stress on
microalgae growth.
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Abstract. Applications of random fields typically require a generation
of random samples or their decomposition. In this contribution, we focus
on the decomposition of the isotropic Gaussian random fields on a two
or three-dimensional domain. The preferred tool for the decomposition
of the random field is the Karhunen-Loéve expansion. The Karhunen-
Loéve expansion can be approximated using the Galerkin method, where
we encounter two main problems. First, the calculation of each ele-
ment of the Galerkin matrix is expensive because it requires an accu-
rate evaluation of multi-dimensional integral. The second problem con-
sists of the memory requirements, originating from the density of the
matrix. We propose a method that overcomes both problems. We use
a tensor-structured approximation of the autocovariance kernel, which
allows its separable representation. This leads to the representation of
the matrix as a sum of Kronecker products of matrices related to the
one-dimensional problem, which significantly reduces the storage require-
ments. Moreover, this representation dramatically reduces the computa-
tion cost, as we only calculate two-dimensional integrals.

Keywords: Random fields sampling
Karhunen-Loève decomposition · Tensor approximation
Numerical integration

1 Introduction

In mathematical modeling, we can encounter the need to analyze processes in
some physical domain D ⊂ R

d with only stochastic knowledge about the mate-
rial. We can say that the material properties are described as a random field.
By the random field on D ⊂ R

d we understand a real valued function X(x, ω),
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which for every fixed x ∈ D results in a random variable and for every fixed ω
from the sample space Ω results in a function defined on D, e.g. a function from
L2(D).

A common and natural type of random field is the Gaussian random field
(GRF). For a GRF ∀x ∈ D : X(x, ω) ∼ N(μ(x);σ(x)). GRF can be fully
described by its mean value μ(x) and autocovariance function

c(x, y) = E((X(x, ω) − μ(x)) · (X(y, ω) − μ(y))).

Here we focus only on isotropic GRF, which are specified by an autocovariance
function that depends only on physical distance of x and y. An example of the
isotropic GRF is the behaviour of the porosity in samples of porous rocks like
sandstone, see [7].

In typical applications, we usually require realizations (samples) of random
field X(x, ω) (a sample is understood as a realization of X(x, ω) for some ω ∈ Ω)
or a decomposition of the random field in the form of

X(x, ω) � μ(x) +
N∑

i=1

ψi(x) · ξi(ω), (1)

where ‖ψi(x)‖ should be rapidly decreasing with increasing value of i.
A random field is an infinite-dimensional object, therefore we first need to

perform a discretization. Basically, there are two ways of random field discretiza-
tion: Point discretization and Karhunen-Loève decomposition.

The point discretization examines the GRF only on some finite set of the
domain points {x1, . . . , xN} ⊂ D. It leads to a random vector representation of
the studied random field. For a sampling the random vector, the only difficult
part is to take into account the covariance, which can be done through eigen-
value [1] or Cholesky decomposition [11] of the covariance matrix, use of circular
embedding method [1] or Krylov subspace sampling method [2,3].

The Karhunen-Loève decomposition (KLD) leads straightforwardly to the
aforementioned decomposition form (1) of the random field. In this article we
focus on the KLD and techniques for its efficient calculation. The article is
a continuation of the work presented in [12].

This paper presents an effective approach to the KLD of isotropic GRF on
a multi-dimensional interval. It consists of

– a tensor approximation of the isotropic autocovariance kernel (Subsect. 3.1),
– Galerkin approximation of the KLD of the tensor approximation (Sect. 2)
– and effective numerical integration in the construction of Galerkin matrices

(Subsect. 3.2).

Proposed approach is supported by the numerical experiments in Sect. 4. We
conclude in Sect. 5.
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2 The Karhunen-Loève Decomposition

In this section, we will discuss the approximation of the random field by a func-
tion of a random vector and a physical variable. This can be achieved using
the truncated Karhunen-Loève decomposition. The existence of the KLD is
stated in the following theorem, see [1, Theorem 7.52]. The theorem is based
on the fact that the space L2(Ω,L2(D)) is isometric isomorphic with the space
L2(Ω) ⊗ L2(D) (see [8,9]).

Theorem 1. Let D ⊂ R
d. Consider a random field {k(x;ω) : x ∈ D} and sup-

pose that k ∈ L2(Ω,L2(D)). Then

k(x;ω) = μ(x) +
∞∑

j=1

√
λjψj(x)ξj(ω), (2)

where the sum converges in L2(Ω,L2(D)),

ξj(ω) :=
1√
λj

ˆ

D
(k(x;ω) − μ(x))ψj(x) dx, (3)

and {λj , ψj} denotes the eigenvalues and the eigenvectors of the autocovariance
operator C : L2(D) → L2(D)

(Cf)(x) :=
ˆ

D
c(x, y)f(y) dy, (4)

where c(x, y) := cov(k(x;ω), k(y;ω)); λ1 ≥ λ2 ≥ · · · ≥ 0 and lim
k→∞

λk = 0. The

random variables ξj have zero mean, unit variance and are pairwise uncorrelated.

Note that GRF lies in space L2(Ω,L2(D)) (see for example [1, Corollary
4.41]), therefore its KLD exists.

In the case of the KLD of the GRF, the random variables ξi will also be
Gaussian ξi ∼ N(0; 1). Note that the random variables ξi are in general only
uncorrelated, but for the Gaussian random variables, it implies independence.

2.1 Galerkin Method for Spectral Decomposition of the
Autocovariance Operator

The most difficult part of the KLD is the spectral decomposition of the operator
C, which we can obtain by solving the eigenvalue problem

ˆ

D

c(x, y)ψi(y) dy = λiψi(x),∀i ∈ N. (5)

This is the Fredholm integral equation, which can be solved by the Galerkin
method.
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We can obtain the weak formulation of the Eq. (5) by multiplying it by a test
function v ∈ L2(D) and integrating over the domain D.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find ψi(x) ∈ L2(D), λi ∈ R
+ :´

D
v(x)

´
D

c(x, y)ψi(y) dydx =

= λi

´
D

v(x)ψi(x) dx,∀v(x) ∈ L2(D)
. (6)

The next step is the discretization of the weak formulation. First consider a basis
〈φ1(x), . . . , φn(x)〉 = Vn ⊂ L2(D), so the Galerkin formulation takes the form of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find ψi(x) =
∑n

j=1 ψijφj(x), λi ∈ R
+ :´

D
φj(x)

´
D

c(x, y)ψi(y) dydx =

= λi

´
D

φj(x)ψi(x) dx,∀φj(x)
, (7)

where ψi is a representation of the eigenvector ψi in the Vn basis. The solution
of (7) can be rephrased into a generalized eigenvalue problem

Aψn
i = λn

i Wψn
i , (8)

where
Aij =

ˆ

D

ˆ

D
c(x, y)φi(y)φj(x) dydx, (9)

Wij =
ˆ

D
φi(x)φj(x) dx. (10)

Note that the size of the matrix A, assuming the same resolution of the discretiza-
tion in each dimension, grows by the power of the dimension of the problem. The
matrix A is also a dense matrix and generally, we cannot achieve sparsity by some
specific choice of the basis.

2.2 Problem Constraints and the Choice of the Basis

First we need to emphasize that method proposed in this paper is only applicable
for domains D in the form of multidimensional intervals. In this section we
assume 2-dimensional domain in the form D = 〈a, b〉×〈c, d〉, but the ideas behind
can be easily used for more dimensional domains. We choose a discretization
〈φ1(x), . . . , φn(x)〉 = Vn of the space L2(D) as a tensor product of 1-dimensional
bases of the spaces L2(〈a, b〉) and L2(〈c, d〉). Therefore basis functions are in the
form of

φi(x) = ϕ1
i (x1)ϕ2

i (x2), (11)

where
ϕ1

i (x1) ∈ V 1
n :=

〈
ϕ1
1(x1), . . . , ϕ1

m1
(x1)

〉



192 M. Béreš

and
ϕ2

i (x2) ∈ V 2
n :=

〈
ϕ2
1(x2), . . . , ϕ2

m2
(x2)

〉

are 1-dimensional functions. The dimension of the space Vn = V 1
n ⊗ V 1

n then
equals m1 · m2.

The multidimensional form of the domain together with basis functions in
the tensor form are sufficient for the use of the tensor approximation of the auto-
covariance kernel. But we can add some more (not so constraining) requirements
to the basis, which will lead to significant reduction of computational effort. It
is useful to consider the spaces V i

n with specific properties. These properties will
be demonstrated on 1-dimensional basis denoted by 〈ϕ1(x), . . . , ϕm(x)〉.
The Orthogonality of 〈ϕ1(x ), . . . ,ϕm(x )〉. The complexity of the problem
(8) decreases if we transform the generalized eigenvalue problem into a stan-
dard eigenvalue problem (W = I). We can achieve this by assuring all of the
1-dimensional bases 〈ϕ1(x), . . . , ϕm(x)〉 to be orthonormal

∀i, j :

bˆ

a

ϕi(x)ϕj(x) dx = δi,j . (12)

The Evenness/Oddness of 〈ϕ1(x ), . . . ,ϕm(x )〉. The matrix A will generally
be dense, but some unique properties of the chosen autocovariance function can
be utilized to obtain partial sparsity of the matrix. We will demonstrate it on
the 2-dimensional example. First, we define the function p(x, y), which is related
to the autocovariance function by

p(|x1 − y1| , |x2 − y2|) = c((x1, x2), (y1, y2)). (13)

Next, consider the translation of the integral over the domain D = 〈a, b〉 × 〈c, d〉
into the integral over the domain 〈−α, α〉 × 〈−β, β〉, where α = b−a

2 and
β = d−c

2 (translate the center of D into (0, 0)). Note, that this will not affect
the function p(|x1 − y1| , |x2 − y2|). For simplicity we denote the basis functions
ϕi(x) = ϕ1

i (x1)ϕ2
i (x2) as before the translation of the integral. After these mod-

ifications, the formula for the elements of the matrix A is

Ai,j =

β̂

−β

β̂

−β

f(x2, y2)ϕ2
i (x2)ϕ2

j (y2) dy2dx2, (14)

where

f(x2, y2) =

α̂

−α

α̂

−α

p(|x1 − y1| , |x2 − y2|) ·

·ϕ1
i (x1)ϕ1

j (y1) dx1dy1. (15)
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(a) (b)

Fig. 1. (a) Standard full tensor. (b) Permuted

If ϕ1
i (x1) is even and ϕ1

j (y1) is odd (or vice versa), the function f(x2, y2) is
constant zero and Ai,j = 0. The same holds for the functions ϕ2

i (x2) and ϕ2
j (y2).

The evenness/oddness (or “parity”) of the 〈ϕ1(x), . . . , ϕm(x)〉 basis results
into a stronger property than just a partial sparsity of the matrix A. The nonzero
pattern of the matrix A for the standard ordering (alternately even, odd) (see
Fig. 1a) can be reordered into a block diagonal structure (see Fig. 1b). The per-
mutation can be done by reordering the basis functions according to their parity
in each dimension. The block diagonal structure leads to the solution of four
smaller eigenvalue problems instead of one bigger eigenvalue problem in two
dimensions. Note that in n dimensions we get 2n diagonal blocks.

The particular choice of basis functions is arbitrary. We can use e.g. poly-
nomials [12], trigonometric functions [12], piece-wise constant functions [12], or
wavelets [10].

3 Efficient Computation of the KLD Using Tensor
Approximation of Autocovariance Kernel

3.1 Tensor Representation of the Autocovariance Kernel

The isotropic autocovariance function takes only physical distance (euclidean)
of the two points as a parameter

c(x, y) = c(‖x − y‖).

Therefore all of its properties are described by one dimensional function taking
positive parameters c(‖x‖) = c(d), d ∈ R

+ (for simplicity we denote x = x − y).
Than the separable representation of c(‖x‖) of the rank M takes the following
form:

c(‖x‖) ≈
M∑

k=1

gkefk‖x‖2
=

M∑

k=1

gk

n∏

d=1

efkx2
d . (16)

The coefficients gk, fk can be estimated using different approaches such as sinc
quadrature (see [4,5]) or optimization. The form of the representation can be
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derived using the inverse Laplace transformation of the autocovariance kernel,
see [4,5]. In this paper, we focus on the optimization approach, where we mini-
mize the norm of the difference between the discretization of the autocovariance
kernel (its 1D representation c(d)) and its approximation. We assume coefficients
g = (g1, . . . gM ) , f = (f1, . . . fM ) given as the solution of following optimization
problem:

arg min
g,f

R∑

j=1

(
c (dj) − c̃

(
dj , g, f

))2
, (17)

where R is number of reference points dj and

c̃
(
dj , g, f

)
=

M∑

k=1

gke−fkd2
j

is the tensor approximation.
The choice of the points di is arbitrary, but it greatly affects the quality of

the approximation in different regions. The optimal result would be obtained
by minimizing the (squared) L2 norm of the difference. We can have a good
approximation of the L2 norm using the Gauss–Laguerre quadrature

∞̂

0

(
c (x) − c̃

(
x, g, f

))2
dx ≈

R∑

j=1

(
c (dj) − c̃

(
dj , g, f

))2
wj ,

which does not change the nature of the problem and provides a good choice of
the points dj .

Searching for the global minimum in (17) is very difficult because the func-
tional has a large number of local minima and saddle points (e.g. the couples
gi, fi are interchangeable). We propose a simple reformulation of the problem,
which leads to more “well-posed” problem:

– We can separate the minimization into two levels: minimization of coeffi-
cients g and minimization of coefficients f . The minimization of coefficients
g is a standard least squares problem and can be expressed as a solution of
a system of linear equations. The minimization of coefficients f is non-linear,
we use e.g. the Newton method only on coefficients f (coefficients g will be
calculated (easily) in each step of the optimization method).

– The standard behaviour of the tensor approximation is that coefficients fi

grow exponentially (see Fig. 2). Origins of this behaviour can be seen in the
inverse Laplace transformation of the autocovariance function, see [4,5]. This
property causes difficulties in determining the step size of the optimization
method. We propose exponential transformation of the parameters:

fi = evi .
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– Finally we can get rid of vast majority of local minima and saddle points,
caused by the interchangeability of the couples gi, fi, by optimizing the incre-
ments (u1 = v1, ui = vi − vi−1) of the coefficients vi:

vi =
i∑

j=1

uj .

The final form of the rephrased tensor approximation is

c̃ (dj , g, u) =
M∑

k=1

gk exp

(
− exp

(
k∑

i=1

ui

)
d2j

)
.

The aforementioned reformulations makes the problem easily solvable by the
Newton method (gradient and hessian for u can be expressed analytically) with
reasonable starting point. The original coefficients g and f of tensor approxima-
tion of the exponential kernel (c(x, y) = e−‖x−y‖) can be seen in Fig. 2.

1 3 5 7 9 11 13 15 17 19 21 23 24
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g k fk

Fig. 2. Coefficients of the tensor representation of rank 24

3.2 Calculation of the Galerkin Matrix

Once we have the autocovariance kernel in the following tensor form:

c (‖x‖) ≈
M∑

k=1

gk · exp
(
−fk · ‖x‖2

)
=

M∑

k=1

gk ·
n∏

d=1

exp
(−fk · x2

d

)
,

and test functions also in the tensor form:

φi (x) =
n∏

d=1

φ
(d)
i (xd) ,

we can rewrite the calculation of matrix A elements in the following way:

Aij =
ˆ

D

ˆ

D

[
M∑

k=1

gk ·
n∏

d=1

exp
(
−fk · (xd − yd)

2
)]

·
n∏

d=1

φ
(d)
i (yd) · φ

(d)
j (xd) dydx
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Aij =
M∑

k=1

gk

n∏

d=1

bdˆ

ad

bdˆ

ad

exp
(
−fk · (xd − yd)

2
)

· φ
(d)
i (yd) · φ

(d)
j (xd) dyddxd.

This means that matrix A can be assembled using the Kronecker product of
smaller sub-matrices:

A =
M∑

k=1

gk ·
n⊗

d=1

Ak,d,

(Ak,d)ij =

bdˆ

ad

bdˆ

ad

exp
(
−fk · (xd − yd)

2
)

· φ
(d)
i (yd) · φ

(d)
j (xd) dyddxd. (18)

The calculation of sub-matrices can be numerically challenging because the
coefficients fk can be very high. Therefore we propose a substitution method
based on the Duffy transformation (see [6]). For simplicity we show the substi-
tution on 〈0, 1〉. First, the high value of the coefficient fk concentrates the whole
information to the diagonal of the square 〈0, 1〉2 (function exp

(
−fk · (xd − yd)

2
)

is almost zero everywhere except x = y). We tear the square domain into two
triangles and transform them back into the same squares:

1ˆ

0

1ˆ

0

exp
(
−f · (x − y)2

)
· φ(x) · ψ(y) dydx =

1ˆ

0

1ˆ

0

x·exp
(−f · x2 · y2

)·[φ(x) · ψ ((1 − y) · x)+φ(1−x) · ψ ((y−1) · x+1)] dydx.

This shifts the area of information to the edges of the domain (x = 0 or y = 0).
Then we can stretch the area of the information by the substitution x = an, y =
bn, where n is arbitrary. The parameter n should be chosen according to the
value of fk.

In standard applications of the KLD, we only need first few most significant
elements of the decomposition. This corresponds to the calculation of the first few
eigenpairs {λj , ψj}. In common iterative methods for partial eigenvalue decom-
position, we only need to effectively perform a matrix-vector multiplication Av
with

A =
M∑

k=1

gk ·
n⊗

d=1

Ak,d, v ∈ R
m,

where m = m1 · . . . · mn.

3.3 Kronecker Product Matrix Multiplication

This can be done very effectively without explicit construction of the matrix A.
In the case of n = 2, the multiplication is performed as
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Av = vec

(
M∑

k=1

gkAk,2vAT
k,1

)
, (19)

where v ∈ R
m2×m1 is the input vector reshaped to the matrix (column-wise) and

function vec(·) reshape matrix m2 ×m1 back to vector. In higher dimensions we
treat vector v as a tensor V ∈ R

m1×...×mn . In each summand we sequentially
fold-unfold V according to the corresponding dimension and multiply by the
matrices Ak,d. The unfolding scheme is illustrated in Fig. 3.

Fig. 3. Unfolding of tensor into 2D matrix

4 Numerical Results

This section is devoted to the numerical experiments of the aforementioned meth-
ods. It is divided into three parts: numerical tests of the optimization procedure
for tensor approximation, numerical tests of the effectiveness of the numerical
integration in the calculation of sub-matrices and numerical tests of the precision
of sampling and eigenvalue approximation by tensor approximation.

4.1 Examples of Autocovariance Functions

For testing purposes we use some standard isotropic autocovariance functions
(kernels):

– Squared exponential covariance function

c (x,y) = e−λ‖x−y‖2
, λ > 0 (20)

– Exponential covariance function (Matérn autocovariance for ν = 1/2)

c (x,y) = e−λ‖x−y‖, λ > 0 (21)
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– Matérn family of covariance functions

c (x,y) =
21−ν

Γ(ν)

(√
2ν ‖x − y‖

)ν

Kν

(√
2ν ‖x − y‖

)
(22)

where ν > 0, Γ is the gamma function, Kν is the modified Bessel function of
the second kind.

• e.g. Matérn autocovariance for ν = 3/2 is

c (x,y) =
(
1 +

√
3λ ‖x − y‖

)
e−√

3λ‖x−y‖

and Matérn autocovariance for ν = 3/2 is

c (x,y) =
(

1 +
√

5λ ‖x − y‖ +
5
3
λ2 ‖x − y‖2

)
e−√

5λ‖x−y‖

Mentioned autocovariance functions together with their eigenvalues for D =
〈0, 5〉 can be seen in the following Fig. 4.
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Fig. 4. Examples of the most popular autocovariance functions

4.2 Optimization Approach to the Tensor Approximation

In this part, we show the precision of the tensor approximation. We measure
the approximation error as L2 norm of the difference between original c and its
tensor approximation c̃:

‖c − c̃‖L2 =

√√√√√
∞̂

0

(c(x) − c̃(x))2 dx.

The behaviour of the quality of the tensor approximation when increasing rank
can be seen in Fig. 5. We can see that with increasing rank we get almost expo-
nential convergence. Another observation is that speed of the convergence is
equivalent to the rate of decay of autocovariance kernel.
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Fig. 5. Tensor approximation precision

4.3 Numerical Integration in Calculation of Sub-matrices Ak,d

In this part we test the approximation error of numerical integration of Ak,d

(Eq. (18)). For comparison, we use three different integration schemes: Rect-
angle method with the use of the Fast Fourier transform (see [4,5]), Gauss-
Legendre quadrature and Gauss-Legendre quadrature with proposed substitu-
tion (we choose n = 4).

In the following numerical test, we compare the maximum of absolute errors
of each of Ak,d element using the basis of 100 Legendre polynomials. We compare
the precision against the computation time for different coefficients fk.

From the results in Fig. 6, we can see that the proposed substitution, makes
the integrand “more analytic”. Therefore the Gaussian quadrature converges
very fast even for very high values of fk. The integration complexity increases
only slightly when increasing the value of fk in comparison to other approaches.
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Fig. 6. Comparison of precision for different numerical integration schemes
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4.4 Numerical Precision of Sampling and Eigen-Values
Approximation

In the first part of the last numerical tests, we show the difference between sam-
ples from exact autocovariance kernel and its tensor approximation. We choose
the exponential covariance (Matérn for ν = 1/2) and D = 〈0, 5〉 (we use only
one-dimensional example because we cannot obtain a reasonable exact solu-
tion in higher dimensions). For comparison, we use a point discretization on
an equidistant grid consisting of 5000 points and sampling using the eigenvalue
decomposition.

In Fig. 7 we can see a realisation of one sample of X(x, ω) using exact auto-
covariance kernel and its low-rank approximations. We can see that relatively
low-rank approximation is sufficient enough (for most applications). Another
important observation is that lower rank approximations behave similarly to the
truncated KLD.
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Fig. 7. Sample of random process and its low-rank approximations
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Fig. 8. Behaviour of the sampling error of low-rank approximations

In Fig. 8 we can see more extensive test examining L2 error of the whole
sample. We show empirical cumulative distribution functions (CDF) of approx-
imation error based on 10000 samples. We can see that tensor approximations
have very nice behaviour when increasing rank.
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In the very last numerical test, we show the precision of the eigenvalue cal-
culation using a low-rank approximation.

In Fig. 9 we can see exact eigenvalues and their tensor approximations. We
can observe, that lower rank approximations have the faster decay of eigenvalues.
In Fig. 10 we see the absolute error of tensor approximations. We can again
observe a very nice behaviour of the approximations when increasing rank.
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Fig. 9. Eigenvalues and their low-rank approximations
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Fig. 10. Error of low-rank approximations of eigenvalues

5 Conclusions

This paper presents an effective approach to decomposition of isotropic GRF
on a multi-dimensional interval. Our approach greatly reduces the memory and
computation complexity of the KLD of random fields in 2D, 3D and higher
dimensions in orders of magnitude. It also provides an opportunity for parallel
implementation (calculation of sub-matrices Ak,d and matrix multiplication can
be easily parallelized).
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We also provided extensive numerical tests examining the construction of
tensor approximation, the efficiency of numerical integration and precision of
tensor approximation in sampling and eigenvalue approximation.

This paper has two main contributions. The first is in use of optimization
approach to the tensor approximation calculation using Gauss–Laguerre quadra-
ture and reformulation of the problem. The second consists in the substitution
method for efficient calculation of sub-matrices Ak,d with coefficients fk taking
very high value.
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Abstract. The contribution focuses on the estimation of material
parameters on subdomains with given material interfaces in the Darcy
flow problem. For the estimation, we use the Bayesian approach, which
incorporates the natural uncertainty of measurements. The main interest
of this contribution is to describe the posterior distribution of material
parameters using samples generated by the Metropolis-Hastings method.
This method requires a large number of direct problem solutions, which
is time-consuming. We propose a combination of the standard direct
solutions with sampling from the stochastic Galerkin method (SGM)
solution. The SGM solves the Darcy flow problem with random param-
eters as additional problem dimensions. This leads to the solution in the
form of a function of both random variables and space variables, which
is computationally expensive to obtain, but the samples are very cheap.
The resulting sampling procedure is applied to a model groundwater flow
inverse problem as an alternative to the existing deterministic approach.

Keywords: Bayesian inversion · Darcy flow · Metropolis-Hastings
Identification problem · Posterior distribution
Uncertainty quantification

1 Introduction

By an identification problem we understand an inverse problem of determin-
ing material parameters of a boundary value problem. A solver for the direct
problem is available, but the inversion is unknown. Problems of this kind are
present in various engineering areas. Here, the identification problem is in fact
a groundwater flow inverse problem. In the case of the direct problem, the mate-
rial on the domain is given and the pore pressure and Darcy’s velocity is cal-
culated afterwards. On the contrary, in the case of the inverse problem, only
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some measurements of the pore pressure or the Darcy’s velocity are given and
the objective is to identify the parameters of the material, i.e. the parameters
that specify the material field on the given domain. Generally, if we consider a
material in the form of the Gaussian random field or its function, the number
of material parameters would be infinite. It would be necessary to approximate
the material field using finite number of parameters first, e.g. using a proper
decomposition, see [1]. Here we consider constant materials on subdomains with
given interfaces, so we do not have to deal with this issue.

The identification problem is to find a vector u ∈ R
n of unknown material

parameters that satisfies
y = G (u) + η,

where y ∈ R
m is a vector of measured values, G : Rn → R

m is the observation
operator that includes the solution of the boundary value problem and η ∈ R

m

represents the additive noise of the measurements. Generally, we can distinguish
two approaches to the solution of identification problems, the deterministic and
the stochastic one. Since in the real engineering applications the uncertainties
in measurements are almost inevitable, we consider the stochastic approach. We
solve the identification problem using the Bayesian framework, which presumes
that the measurements are corrupted by noise. Therefore, the solution of the
inverse problem formulated in the Bayesian way is not a point estimate, but
a joint probability density of the vector of the uncertain material parameters.

A complication lies in the fact that the resulting probability distribution
depends on the solution of the direct problem, i.e. on the solution of some partial
differential equation. Therefore, the resulting joint probability density cannot be
expressed analytically. Even samples cannot be provided directly, we have to use
advanced sampling techniques. Here we consider sampling using the Metropolis-
Hastings (MH) algorithm. This Markov chain Monte Carlo (MCMC) method is
well suitable for this purpose, it is simple to use and to implement. But the draw-
back of the standard MH algorithm lies in the need of repeated solutions of the
direct boundary value problem. Many techniques and modifications of the MH
method have been developed to overcome this problem. Usually they are based
on the construction of the approximation of the observation operator G and they
differ in the way of using this approximation. For example [2] suggests a multi-
level approach that works with the solution of the boundary value problem on
a set of coarser grids. The paper [3] proposes a procedure of model error itera-
tive updating. In the paper [4], a general modification of the MH algorithm with
approximation is described. Furthermore it is proven that this modification does
not change the limiting distribution of the resulting Markov chain, which makes
this approach attractive to use.

This contribution focuses on the Darcy flow problem with given material
interfaces. For this problem, we can compute the stochastic Galerkin method
solution. The SGM provides a fairly good approximation of the direct problem
solution for a low computation time per one material sample. In the following,
we describe and analyze the use of the MH algorithm in combination with the
SGM.
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2 Bayesian Solution of the Inverse Problem

The solution using the Bayesian inversion differs from the deterministic app-
roach, both in dealing with the input information and the interpretation of the
results. The Bayesian approach leads to the posterior probability distribution
of the random vector of material parameters. Therefore, the uncertainty of the
measurements is incorporated. Further information about the unknown param-
eters can be also taken into account in the form of the prior distribution. The
deterministic formulation of the inverse problem may not have a unique solution;
however, the Bayesian approach naturally overcomes this problem. A comprehen-
sive theoretical background for the Bayesian approach to the solution of inverse
problems can be found in [5,6].

It is assumed that the distribution of the measurement error is known. For
the additive noise it is natural to assume the Gaussian distribution with zero
mean, i.e.

η ∼ N (0m;Ση ) ,

where 0m denotes a zero vector of length m and Ση denotes the covariance
matrix.

The prior distribution of the random parameters expresses our prior belief
about the material parameters. In the case of the Darcy flow boundary problem,
we are speaking about the hydraulic conductivity parameters. In fact, we con-
sider the logarithm of the hydraulic conductivity, which represents the porosity in
this model. For the porosity, it is suitable to consider the Gaussian distribution,
see [7]. Here, we expect apriori that the distribution of the random parameters
is Gaussian with independent components, i.e. the prior information says that

u ∼ N (
μ;σ2In

)
,

where μ is the prior mean, σ > 0 is the prior standard deviation (the same for
all components of the random vector) and In is the identity matrix of size n×n.

Based on the observed data and the prior information, the Bayesian theorem
says that the posterior probability density function of the material parameters
has the form

π (u|y) ∝ fη (y − G (u)) π0 (u) ∝
∝ exp

(
− (y−G(u))T Σ−1

η (y−G(u))

2 − ‖u−μ‖2

2σ2

)
,

(1)

where fη denotes the joint probability density function of the noise and π0

denotes the prior probability density function. Note that even though the prob-
ability density is known only up to a normalizing constant, it is fully specified
by the formula (1).

Finding the formula for the posterior distribution of the material parameters
was the first step of the Bayesian framework. At this point, we can proceed to
the sampling procedure and generate samples from (1).
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3 Sampling Using the MH Algorithm

For sampling from the posterior probability density function that is known only
up to a normalizing constant, we can use the MH algorithm. Here we just briefly
outline the principle of the method; for a detailed description of the MH algo-
rithm, see e.g. [8]. The standard MH algorithm is based on proposing a chain of
samples from an instrumental density. Each proposed sample is either accepted
with a calculated acceptance probability or rejected, i.e. the previous sample
is kept. This way a Markov chain with the limiting distribution π (u|y) is con-
structed.

Each step of the Markov chain requires the calculation of the acceptance
probability, which includes the evaluation of the observation operator G for the
proposed material sample. Therefore, the standard MH algorithm is compu-
tationally intensive. To reduce the computational complexity, we can consider
an approximation G̃ of the observation operator G and use it to enhance the
MH algorithm. A straightforward way is to keep the MH algorithm unchanged
and replace all the G evaluations by the approximated solutions of G̃; however,
this procedure changes the limiting distribution of the resulting Markov chain.

3.1 Modified MH Algorithm

To obtain the correct limiting distribution π (u|y), we use the modification of
the MH algorithm, which is described in [4]. This modified MH algorithm works
with an approximation π̃ of the posterior distribution π. Here, we define π̃ using
the approximation of the observation operator, i.e.

π̃ (u|y) ∝ exp

⎛

⎜
⎝−

(
y − G̃ (u)

)T

Σ−1
η

(
y − G̃ (u)

)

2
− ‖u − μ‖2

2σ2

⎞

⎟
⎠ .

We assume the symmetric instrumental density

q (u,x) =
1

√
(2πσ2

MH)n
exp

(

− (u − x)T (u − x)
2σ2

MH

)

, (2)

which leads to the following algorithm of the modified MH method:

– Choose u0.
– For t = 0, 1, . . . , T

• generate x from q (ut,x) and calculate the “pre”-acceptance probability

α̃ (ut,x) = min
{

1,
π̃ (x|y)
π̃ (ut|y)

}
, (3)

• if the sample x is “pre”-accepted, calculate the acceptance probability

α (ut,x) = min
{

1,
π (x|y)
π (ut|y)

π̃ (ut|y)
π̃ (x|y)

}
, (4)

• set ut+1 = x with probability α (ut,x), otherwise set ut+1 = ut.
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The last part of the sampling process does not differ from the standard MH
algorithm. The autocovariance of the resulting Markov chain is analyzed and
subsequently, certain number of samples is kept as final (almost uncorrelated).

3.2 Efficiency of the Sampling Process

Note that the calculation of the “pre”-acceptance probability does not contain
the evaluation of the observation operator G. Only when a sample is “pre”-
accepted, the acceptance probability is recalculated using G. Therefore, the set-
tings of the algorithm should ensure a low “pre”-acceptance probability (3) and
a high acceptance probability (4). A low “pre”-acceptance probability leads to
a weakly autocorrelated Markov chain. And further a high acceptance probabil-
ity causes that the computation time is not wasted by rejecting many samples,
for which the expensive operator G has been evaluated.

The aim of the sampling process is to reduce the average number of the G
evaluations per one final sample. By changing the variance parameter σ2

MH of
the instrumental density (2), we can influence the acceptance rate, i.e. the ratio
between the number of the accepted samples and the length of the Markov chain.
In the numerical experiments (see Sect. 5.2), the dependency of the sampling
process efficiency on the acceptance rate is studied.

3.3 Approximation of the Observation Operator

There are many possibilities of constructing the approximation G̃. For example,
when G contains a solution of the boundary value problem using the finite ele-
ment method (FEM), we can use the FEM computation on a coarser grid as
the approximation. Other possibility is the stochastic collocation method (see
[9,10]) or various methods for a surrogate models construction.

In this contribution, the SGM is used for the approximation of the FEM
solution of the Darcy flow problem. For example in the case of the model problem
from Sect. 5, the SGM provides approximately 100× to 600× faster solution
in comparison to the FEM, depending on the settings of the SGM method.
Therefore, this modification of the MH algorithm promises a significant reduction
of the computation time in comparison to the standard MH algorithm.

4 Stochastic Galerkin Method

By the SGM, we understand the standard Galerkin method applied both to the
physical domain and to the parameter space, for a detailed description see [11].

We consider the Darcy flow problem including the random parameters given
by the following equations. For simplicity, zero Dirichlet condition is considered
on the whole boundary:

{
−div (k (x;Z) · ∇p (x;Z)) = f (x) ∀x ∈ D,∀Z

p (x;Z) = 0 ∀x ∈ ΓD,∀Z,
(5)
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where Z = (Z1, . . . , Zn) is a vector of independent normal random variables
Zi ∼ N (0; 1) for i ∈ {1, . . . , n}.

In this case, we consider constant materials on n subdomains Ωi with given
interfaces and log-normal prior distribution of each component of the material.
Therefore, the random material k (x;Z) has the form of

k (x;Z) = k0 (x) +
n∑

i=1

ki (x) · gi (Z) ,

where k0 (x) consists of the mean material field, ki (x) is the characteristic func-
tion of the subdomain Ωi and

gi (Z) = exp (ai + bi · Zi) .

The values of ai and bi are parameters of the log-normal prior distribution of
the ith component and Zi represent standard normal variables.

The weak formulation of the Darcy flow problem including random parame-
ters has the form of
⎧
⎨

⎩

Find p (x;Z) ∈ V, ∀v (x;Z) ∈ V :
∫

RN

∫

D
k (x;Z) · ∇xp (x;Z) · ∇xv (x;Z) dxdFZ =

∫

RN

∫

D
f (x) · v (x;Z) dxdFZ,

where V := L2
dFZ

(
R

N ,H1
0 (D)

)
= H1

0 (D) ⊗ L2
dFZ

(
R

N
)
. The tensor structure

of the test space allows us to use the tensor product of the discretized bases of
the spaces H1

0 (D) and L2
dFZ

(
R

N
)

as the discretization of V .

4.1 Assembling the System of Equations

As the discretization of the physical domain, we choose standard linear finite
elements, let us denote the basis by V h

D and the number of the finite elements
by ND. As the discretization of the parameter space, we choose the Hermite
polynomials basis, i.e. polynomials orthogonal with respect to the distribution
of the parameters. We denote the basis by V h

P and the number of the polynomials
by NP . Then the discretized test function space is given by

V h := V h
D ⊗ V h

P = 〈ϕ1 (x) , . . . , ϕND
(x)〉 ⊗ 〈ψ1 (Z) , . . . , ψNP

(Z)〉 ⊂ V.

The solution of the discretized problem takes the form of

ph (x;Z) =
ND∑

i=1

NP∑

j=1

(p)ij · ϕi (x) · ψj (Z) . (6)

Using the discretization V h, we obtain the system of linear equations

A · p = b. (7)
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The entries of the matrix A ∈ R
(ND·NP )×(ND·NP ) and the vector b ∈ R

ND·NP are
defined as

(A)ij,kl =
∫

RN

∫

D
k (x;Z) · ∇ϕi (x) ψj (Z) · ∇ϕk (x) ψl (Z) dxdFZ, (8)

(
b
)
ij

=
∫

RN

∫

D
f (x) · ϕi (x) ψj (Z) dxdFZ. (9)

Using the tensor structure of the material function and the test functions, we
can rewrite the calculation of A into

A =
M∑

m=0

Gm ⊗ Km,

where
(Km)i,k =

∫

D
km (x) · ∇ϕi (x) · ∇ϕk (x) dx,

which arises from the discretization of the physical domain, and

(Gm)j,l =
∫

RN

gm (Z) · ψj (Z) · ψl (Z) dFZ,

which follows from the parameter space discretization. Similarly b can be rewrit-
ten as

b = g ⊗ f,

where
(f)i =

∫

D
f (x) · ϕi (x) dx and (g)j =

∫

RN

ψj (Z) dFZ.

We solve the system using the reduced basis method, which involves a cre-
ation of the reduced rational Krylov approximation of the matrices Km. For
detailed description of the reduced basis method, see [13]. This work is a contin-
uation of the research presented in [12], where we solved the Darcy flow problem
with the material in the form of a random field and used iterative solvers.

5 Application to a Model Problem

The model problem is a groundwater flow inverse problem that is solved on
a square domain with given material interfaces. It represents a pumping test of
hydraulic conductivity in an aquifer. This inverse problem was taken from [14],
where it was solved using a deterministic iterative method.
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5.1 Description of the Model Problem

The material parameters are constant on each of the seven subdomains that are
shown in Fig. 1; the subdomain Ω4 consists of two separate parts. The task is
to identify these seven material parameters in the Bayesian way, i.e. to estimate
the posterior distribution of the random vector u of length n = 7. The given
vector of measurements y contains the results of the pumping tests that serve
as the input values for the identification problem.

Fig. 1. Subdomains with given interfaces and the illustration of the wells (Color figure
online)

The eight circles in Fig. 1 represent wells. The pumping test consists of 4
sub-tests, Fig. 1 illustrates one of them. In each sub-test, one of the wells is
chosen as an injection (the red circle in Fig. 1), the opposite one is chosen as
a drainage (the blue circle in Fig. 1), and the remaining six wells are points of
measurements. The measured value is the pressure in the given point, which
corresponds to the water column height in the well. We obtain six measured
values from each sub-test, i.e. 24 measurements from the whole pumping test,
possibly corrupted by noise.

To formulate the Bayesian solution of the inverse problem, the observation
operator G has to be defined first. The observation operator includes the solution
of the underlying boundary value problem four times for the same material
sample but with different wells configurations. The square domain from Fig. 1 is
surrounded by a bigger domain, see Fig. 2a. The four direct subproblems are for
i ∈ {1, 2, 3, 4} given by the Darcy flow boundary value problem

−div (exp (u) · ∇pi) = fi in D = 〈0, 1200〉 × 〈0, 1200〉 ,
pi = 0 on ∂D,

where pi is the pore pressure and fi are the forcing terms that distinguish the four
sub-tests. The exponential of the material function u represents the hydraulic
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conductivity. For a given material, the results of the direct sub-problem are
obtained by solving this boundary value problem using the FEM. This procedure
defines the observation operator G : R7 → R

24 that for the material parameters
on the seven subdomains returns the m = 24 values of the pressure,

G (u) = (p1, . . . , p24) .

Figure 2b shows an example of the solution of one of the sub-problems for the
real material parameters

ureal = (9.952, 7.601, 6.507, 5.940, 4.094, 4.956, 2.197) .

On the surroundings, the exponential of the hydraulic conductivity has the value
of 8.151, this value is not uncertain. This real material parameters were taken
from [14].

(a) Domain of the model problem (b) Solution of a sub-problem

Fig. 2. Problem settings with the visualization of the real material parameters and the
solution on the whole domain

To obtain the approximation G̃, the four subproblems were also solved using
the SGM. For the discretization of the physical domain, the 240 × 240 grid was
used; this yields 57121 finite elements. For the approximation in the material
parameters, we used the complete Hermite polynomials on 7 random variables up
to certain degree between 1 and 10. For example, there are 120 polynomials up to
degree 3, which leads to a linear system with 6.8 · 106 unknowns; or eventually
19448 polynomials up to degree 10, which leads to 1.1 · 109 unknowns.

It is assumed that the vector of measurements is corrupted by the Gaussian
additive noise with independent components. Therefore, Ση is a diagonal matrix.
As the mean of the prior distribution, we choose the vector

μ = (9.787, 7.438, 6.697, 6.292, 4.291, 4.788, 1.792) ;

the same vector was taken as the initial iteration of the iterative method in the
paper [14].



212 S. Domesová and M. Béreš

5.2 Numerical Experiments

In the first experiment, the SGM was used instead of the FEM in the stan-
dard MH algorithm, i.e. no FEM solutions were calculated. This experiment
serves to compare the different accuracy of the SGM given by different maximal
polynomial degree. As an example to visualize, we choose the resulting marginal
posterior probability density functions calculated for the 5th material parameter,
see Fig. 3. The final samples were fitted by the normal distribution, Table 1 shows
the 95% confidence intervals for the mean and standard deviation of this distri-
bution. In the case of the other marginal distributions, the situation was similar.
These results show that the polynomials of lower degree should not replace the
FEM solution in the MH algorithm, because they lead to a significantly differ-
ent posterior distribution. This results emphasize the use of the modified MH
algorithm that leads to the correct limiting distribution π (u|y).
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Fig. 3. Fitted normal distributions for different maximal polynomial degrees (the 5th

material parameter as an example)

In the following, the samples were generated using the modified MH algo-
rithm. For the SGM, complete polynomials up to degree 3 were used. This setting
leads to a reasonable accuracy in a fairly short evaluation time. One evaluation
of the approximation G̃ using SGM took 1.1 · 10−4 s on average. In contrast, the
evaluation of the observation operator G took 0.69 s on average, using compara-
ble implementation.

Figure 4 shows the marginal posterior distributions for the 7 material param-
eters approximated from the samples obtained using this procedure. The sample
correlation matrix is displayed in Fig. 5. These results come from 24 independent
Markov chains of length 106.

In the following experiment, the Markov chain was generated several times
with different variance parameters of the instrumental density. This resulted in
different acceptance rates. Table 2 shows the number of FEM and SGM calcu-
lations carried out while generating this chains. It also contains the number of
final samples that were kept after the autocovariance analysis and the number
of FEM calculations per one final sample.
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Table 1. 95% confidence intervals (c. i.) for the mean and the standard deviation
(std) of the fitted normal distribution for different maximal polynomial degrees (the
5th material parameter as an example)

Maximal polynomial
degree

Mean c. i. Std c. i.

1 4.0607 4.0613 0.0252 0.0257

2 4.0508 4.0516 0.0325 0.0331

3 4.0529 4.0537 0.0316 0.0322

4 4.0523 4.0531 0.0319 0.0325

6 4.0522 4.0530 0.0318 0.0324

8 4.0523 4.0531 0.0318 0.0324

10 4.0522 4.0530 0.0318 0.0324
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4.2 4.4 4.6 4.8 5 5.2

6

posterior distribution
real value
prior mean
prior distribution

1 1.5 2 2.5 3

7

Fig. 4. Marginal posterior probability density functions for the 7 parameters
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Fig. 5. Sample correlation matrix of the posterior distribution of the random vector of
material parameters
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Table 2. Efficiency of the MH algorithm depending on the acceptance rate

Average acceptance rate 5.8e−5 3.8e−4 1.7e−3 1.0e−2 3.1e−2 1.0e−1

Number of FEM calculations 1435 9300 40389 2.53e5 7.39e5 2.46e6

Number of SGM calculations 24000000

Number of final samples 120 600 2400 7992 12000 24000

FEM calculations per one
final sample

11.96 15.50 16.83 31.66 61.58 102.50

Time per one final sample [s] 30.25 15.09 12.71 22.17 42.72 70.96

For a more comprehensive comparison of the sampling efficiency, the compu-
tation time of the G and G̃ evaluations should be also taken into consideration,
see the last row of Table 2. Figure 6 shows the dependency of the sampling effi-
ciency on the acceptance rate. The vertical axis indicates the total time of both
the G and G̃ evaluations per one final sample. The resulting curve shows that
the time per one sample decreases with decreasing acceptance rate; but this
only works to a certain point, from which the resulting Markov chain is too
autocorrelated and a high number of samples is rejected.

Fig. 6. Dependence of the sampling efficiency on the acceptance rate

For comparison, the sampling from the posterior distribution was also per-
formed using the standard MH algorithm; 240 independent Markov chains of
length 4 · 104 were generated. Based on the autocovariance analysis, 9600 final
samples were kept, i.e. the computation cost was 690 s per one final sample.
Therefore, the use of the modified MH algorithm reduced the computation time
approximately by the factor of 50.

6 Conclusions

In this work we analyzed the possibilities of the use of the SGM for the Darcy
flow inverse problem. The use of the SGM requires a solution of a large linear
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system. However, the evaluation of the resulting approximation of the observa-
tion operator is much faster per one material sample than the FEM solution and
accurate enough to be used with the modified MH algorithm from the paper [4].

When the SGM solution is constructed, the following sampling procedure
remains simple in principle, such as the standard MH algorithm. Therefore, if
the boundary value is solvable using the SGM, than the combination of the SGM
and the MH algorithm leads to an effective sampling procedure. The numerical
experiments confirmed that it is necessary to pay attention to the choice of the
instrumental density. Here we used the symmetric instrumental density and we
showed that its variance parameters influence the sampling efficiency signifi-
cantly.

This approach can be understood as an alternative to deterministic numeri-
cal methods. While the deterministic approach is sensitive to the measurements
accuracy, see e.g. [14], the Bayesian approach expects uncertainty in the mea-
surements. Therefore, we obtain a comprehensive solution of the inverse problem,
including the uncertainty quantification.
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